1
|
Wall MJ, Hill E, Huckstepp R, Barkan K, Deganutti G, Leuenberger M, Preti B, Winfield I, Carvalho S, Suchankova A, Wei H, Safitri D, Huang X, Imlach W, La Mache C, Dean E, Hume C, Hayward S, Oliver J, Zhao FY, Spanswick D, Reynolds CA, Lochner M, Ladds G, Frenguelli BG. Selective activation of Gαob by an adenosine A 1 receptor agonist elicits analgesia without cardiorespiratory depression. Nat Commun 2022; 13:4150. [PMID: 35851064 PMCID: PMC9293909 DOI: 10.1038/s41467-022-31652-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
The development of therapeutic agonists for G protein-coupled receptors (GPCRs) is hampered by the propensity of GPCRs to couple to multiple intracellular signalling pathways. This promiscuous coupling leads to numerous downstream cellular effects, some of which are therapeutically undesirable. This is especially the case for adenosine A1 receptors (A1Rs) whose clinical potential is undermined by the sedation and cardiorespiratory depression caused by conventional agonists. We have discovered that the A1R-selective agonist, benzyloxy-cyclopentyladenosine (BnOCPA), is a potent and powerful analgesic but does not cause sedation, bradycardia, hypotension or respiratory depression. This unprecedented discrimination between native A1Rs arises from BnOCPA's unique and exquisitely selective activation of Gob among the six Gαi/o subtypes, and in the absence of β-arrestin recruitment. BnOCPA thus demonstrates a highly-specific Gα-selective activation of the native A1R, sheds new light on GPCR signalling, and reveals new possibilities for the development of novel therapeutics based on the far-reaching concept of selective Gα agonism.
Collapse
Affiliation(s)
- Mark J Wall
- School of Life Sciences, University of Warwick, Gibbet Hill Rd, Coventry, CV4 7AL, UK.
| | - Emily Hill
- School of Life Sciences, University of Warwick, Gibbet Hill Rd, Coventry, CV4 7AL, UK
| | - Robert Huckstepp
- School of Life Sciences, University of Warwick, Gibbet Hill Rd, Coventry, CV4 7AL, UK
| | - Kerry Barkan
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Giuseppe Deganutti
- Centre for Sport, Exercise and Life Sciences (CSELS), Faculty of Health and Life Sciences, Coventry University, Coventry, CV1 2DS, UK
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Michele Leuenberger
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland
| | - Barbara Preti
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland
| | - Ian Winfield
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Sabrina Carvalho
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Anna Suchankova
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | | | - Dewi Safitri
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
- Pharmacology and Clinical Pharmacy Research Group, School of Pharmacy, Bandung Institute of Technology, Bandung, 40132, Indonesia
| | - Xianglin Huang
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Wendy Imlach
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Innovation Walk, Clayton, VIC, 3800, Australia
| | - Circe La Mache
- School of Life Sciences, University of Warwick, Gibbet Hill Rd, Coventry, CV4 7AL, UK
| | - Eve Dean
- School of Life Sciences, University of Warwick, Gibbet Hill Rd, Coventry, CV4 7AL, UK
| | - Cherise Hume
- School of Life Sciences, University of Warwick, Gibbet Hill Rd, Coventry, CV4 7AL, UK
| | - Stephanie Hayward
- School of Life Sciences, University of Warwick, Gibbet Hill Rd, Coventry, CV4 7AL, UK
| | - Jess Oliver
- School of Life Sciences, University of Warwick, Gibbet Hill Rd, Coventry, CV4 7AL, UK
| | | | - David Spanswick
- NeuroSolutions Ltd, Coventry, UK
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Innovation Walk, Clayton, VIC, 3800, Australia
- Warwick Medical School, University of Warwick, Gibbet Hill Rd, Coventry, CV4 7AL, UK
| | - Christopher A Reynolds
- Centre for Sport, Exercise and Life Sciences (CSELS), Faculty of Health and Life Sciences, Coventry University, Coventry, CV1 2DS, UK
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Martin Lochner
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK.
| | - Bruno G Frenguelli
- School of Life Sciences, University of Warwick, Gibbet Hill Rd, Coventry, CV4 7AL, UK.
| |
Collapse
|
2
|
Mechanistic diversity involved in the desensitization of G protein-coupled receptors. Arch Pharm Res 2021; 44:342-353. [PMID: 33761113 DOI: 10.1007/s12272-021-01320-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/14/2021] [Indexed: 01/14/2023]
Abstract
The desensitization of G protein-coupled receptors (GPCRs), which involves rapid loss of responsiveness due to repeated or chronic exposure to agonists, can occur through various mechanisms at different levels of signaling pathways. In this review, the mechanisms of GPCR desensitization are classified according to their occurrence at the receptor level and downstream to the receptor. The desensitization at the receptor level occurs in a phosphorylation-dependent manner, wherein the activated receptors are phosphorylated by GPCR kinases (GRKs), thereby increasing their affinities for arrestins. Arrestins bind to receptors through the cavity on the cytoplasmic region of heptahelical domains and interfere with the binding and activation of G-protein. Diverse mechanisms are involved in the desensitization that occurs downstream of the receptor. Some of these include the sequestration of G proteins, such as Gq and Gi/o by GRK2/3 and deubiquitinated arrestins, respectively. Mechanistically, GRK2/3 attenuates GPCR signaling by sequestering the Gα subunits of the Gq family and Gβγ via regulators of G protein signaling and pleckstrin homology domains, respectively. Moreover, studies on Gi/o-coupled D2-like receptors have reported that arrestins are deubiquitinated under desensitization condition and form a stable complex with Gβγ, thereby preventing them from coupling with Gα and the receptor, eventually leading to receptor signaling inhibition. Notably, the desensitization mechanism that involves arrestin deubiquitination is interesting; however, this is a new mechanism and needs to be explored further.
Collapse
|
3
|
Roles of the G protein-coupled receptor kinase 2 and Rab5 in α 1B-adrenergic receptor function and internalization. Eur J Pharmacol 2020; 867:172846. [PMID: 31811856 DOI: 10.1016/j.ejphar.2019.172846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/21/2019] [Accepted: 12/03/2019] [Indexed: 11/23/2022]
Abstract
Cells expressing eGFP-tagged Rab5 (wild-type or the GDP-Rab5 mutant) and the DsRed-tagged α1B-adrenergic receptors were employed and the roles of GRK2 were studied utilizing paroxetine and the dominant-negative mutant of GRK2 (DN-GRK2). The following parameters were studied: a) FRET (as an index of α1B-adrenergic receptor-Rab5 interaction): b) intracellular accumulation of DsRed fluorescence (receptor internalization); c) α1B-adrenergic receptor phosphorylation, and d) noradrenaline-induced increase in intracellular calcium concentration. Noradrenaline increased α1B-adrenergic receptor-Rab5 interaction, which was blocked by paroxetine and by expression of the dominant-negative GRK2 mutant. Similarly, paroxetine and expression of the DN-GRK2 or the GDP-Rab5 mutants markedly decreased receptor internalization, α1B-adrenergic receptor phosphorylation, and attenuated the ability of the adrenergic agonist to induce homologous desensitization (calcium signaling). The S406, 410,412A α1B-adrenergic receptor mutant did not reproduce the actions of GRK2 inhibition. The data indicate that GRK2 and Rab5 play key roles in α1B-adrenergic receptor phosphorylation, internalization, and desensitization. The possibility that Rab5 might form part of a signaling complex is suggested, as well as that GDP-Rab5 might interfere with the ability of GRK2 to catalyze α1B-adrenergic receptor phosphorylation.
Collapse
|
4
|
Zhou Z, Matsumoto T, Jankowski V, Pernow J, Mustafa SJ, Duncker DJ, Merkus D. Uridine adenosine tetraphosphate and purinergic signaling in cardiovascular system: An update. Pharmacol Res 2019; 141:32-45. [PMID: 30553823 PMCID: PMC6685433 DOI: 10.1016/j.phrs.2018.12.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/26/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023]
Abstract
Uridine adenosine tetraphosphate (Up4A), biosynthesized by activation of vascular endothelial growth factor receptor (VEGFR) 2, was initially identified as a potent endothelium-derived vasoconstrictor in perfused rat kidney. Subsequently, the effect of Up4A on vascular tone regulation was intensively investigated in arteries isolated from different vascular beds in rodents including rat pulmonary arteries, aortas, mesenteric and renal arteries as well as mouse aortas, in which Up4A produces vascular contraction. In contrast, Up4A produces vascular relaxation in porcine coronary small arteries and rat aortas. Intravenous infusion of Up4A into conscious rats or mice decreases blood pressure, and intravenous bolus injection of Up4A into anesthetized mice increases coronary blood flow, indicating an overall vasodilator influence in vivo. Although Up4A is the first dinucleotide described that contains both purine and pyrimidine moieties, its cardiovascular effects are exerted mainly through activation of purinergic receptors. These effects not only encompass regulation of vascular tone, but also endothelial angiogenesis, smooth muscle cell proliferation and migration, and vascular calcification. Furthermore, this review discusses a potential role for Up4A in cardiovascular pathophysiology, as plasma levels of Up4A are elevated in juvenile hypertensive patients and Up4A-mediated vascular purinergic signaling changes in cardiovascular disease such as hypertension, diabetes, atherosclerosis and myocardial infarction. Better understanding the vascular effect of the novel dinucleotide Up4A and the purinergic signaling mechanisms mediating its effects will enhance its potential as target for treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Zhichao Zhou
- Division of Cardiology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Tokyo, Japan
| | - Vera Jankowski
- RWTH-Aachen, Institute for Molecular Cardiovascular Research, Aachen, Germany
| | - John Pernow
- Division of Cardiology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - S Jamal Mustafa
- Department of Physiology, Pharmacology & Neuroscience, Center for Cardiovascular and Respiratory Sciences, Clinical and Translational Science Institute, West Virginia University, Morgantown, WV, United States
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
5
|
Kienitz MC, Vladimirova D, Müller C, Pott L, Rinne A. Receptor Species-dependent Desensitization Controls KCNQ1/KCNE1 K+ Channels as Downstream Effectors of Gq Protein-coupled Receptors. J Biol Chem 2016; 291:26410-26426. [PMID: 27834678 DOI: 10.1074/jbc.m116.746974] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/09/2016] [Indexed: 12/17/2022] Open
Abstract
Activation of Gq protein-coupled receptors (GqPCRs) might induce divergent cellular responses, related to receptor-specific activation of different branches of the Gq signaling pathway. Receptor-specific desensitization provides a mechanism of effector modulation by restricting the spatiotemporal activation of signaling components downstream of Gq We quantified signaling events downstream of GqPCR activation with FRET-based biosensors in CHO and HEK 293 cells. KCNQ1/KCNE1 channels (IKs) were measured as a functional readout of receptor-specific activation. Activation of muscarinic M1 receptors (M1-Rs) caused robust and reversible inhibition of IKs. In contrast, activation of α1B-adrenergic receptors (α1B-ARs) induced transient inhibition of IKs, which turned into delayed facilitation after agonist withdrawal. As a novel finding, we demonstrate that GqPCR-specific kinetics of IKs modulation are determined by receptor-specific desensitization, evident at the level of Gαq activation, phosphatidylinositol 4,5-bisphosphate (PIP2) depletion, and diacylglycerol production. Sustained IKs inhibition during M1-R stimulation is attributed to robust membrane PIP2 depletion, whereas the rapid desensitization of α1B-AR delimits PIP2 reduction and augments current activation by protein kinase C (PKC). Overexpression of Ca2+-independent PKCδ did not affect the time course of α1B-AR-induced diacylglycerol formation, excluding a contribution of PKCδ to α1B-AR desensitization. Pharmacological inhibition of Ca2+-dependent PKC isoforms abolished fast α1B receptor desensitization and augmented IKs reduction, but did not affect IKs facilitation. These data indicate a contribution of Ca2+-dependent PKCs to α1B-AR desensitization, whereas IKs facilitation is induced by Ca2+-independent PKC isoforms. In contrast, neither inhibition of Ca2+-dependent/Ca2+-independent isoforms nor overexpression of PKCδ induced M1 receptor desensitization, excluding a contribution of PKC to M1-R-induced IKs modulation.
Collapse
Affiliation(s)
- Marie-Cécile Kienitz
- From the Institute of Physiology, Ruhr-University Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany
| | - Dilyana Vladimirova
- From the Institute of Physiology, Ruhr-University Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany
| | - Christian Müller
- From the Institute of Physiology, Ruhr-University Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany
| | - Lutz Pott
- From the Institute of Physiology, Ruhr-University Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany
| | - Andreas Rinne
- From the Institute of Physiology, Ruhr-University Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany
| |
Collapse
|
6
|
See Hoe LE, May LT, Headrick JP, Peart JN. Sarcolemmal dependence of cardiac protection and stress-resistance: roles in aged or diseased hearts. Br J Pharmacol 2016; 173:2966-91. [PMID: 27439627 DOI: 10.1111/bph.13552] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/25/2022] Open
Abstract
Disruption of the sarcolemmal membrane is a defining feature of oncotic death in cardiac ischaemia-reperfusion (I-R), and its molecular makeup not only fundamentally governs this process but also affects multiple determinants of both myocardial I-R injury and responsiveness to cardioprotective stimuli. Beyond the influences of membrane lipids on the cytoprotective (and death) receptors intimately embedded within this bilayer, myocardial ionic homeostasis, substrate metabolism, intercellular communication and electrical conduction are all sensitive to sarcolemmal makeup, and critical to outcomes from I-R. As will be outlined in this review, these crucial sarcolemmal dependencies may underlie not only the negative effects of age and common co-morbidities on myocardial ischaemic tolerance but also the on-going challenge of implementing efficacious cardioprotection in patients suffering accidental or surgically induced I-R. We review evidence for the involvement of sarcolemmal makeup changes in the impairment of stress-resistance and cardioprotection observed with ageing and highly prevalent co-morbid conditions including diabetes and hypercholesterolaemia. A greater understanding of membrane changes with age/disease, and the inter-dependences of ischaemic tolerance and cardioprotection on sarcolemmal makeup, can facilitate the development of strategies to preserve membrane integrity and cell viability, and advance the challenging goal of implementing efficacious 'cardioprotection' in clinically relevant patient cohorts. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.
Collapse
Affiliation(s)
- Louise E See Hoe
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Chermside, Queensland, Australia
| | - Lauren T May
- Monash Institute of Pharmaceutical Sciences, Monash University, Clayton, VIC, Australia
| | - John P Headrick
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Jason N Peart
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.
| |
Collapse
|
7
|
Guerram M, Zhang LY, Jiang ZZ. G-protein coupled receptors as therapeutic targets for neurodegenerative and cerebrovascular diseases. Neurochem Int 2016; 101:1-14. [PMID: 27620813 DOI: 10.1016/j.neuint.2016.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 09/01/2016] [Accepted: 09/06/2016] [Indexed: 12/24/2022]
Abstract
Neurodegenerative and cerebrovascular diseases are frequent in elderly populations and comprise primarily of dementia (mainly Alzheimer's disease) Parkinson's disease and stroke. These neurological disorders (NDs) occur as a result of neurodegenerative processes and represent one of the most frequent causes of death and disability worldwide with a significant clinical and socio-economic impact. Although NDs have been characterized for many years, the exact molecular mechanisms that govern these pathologies or why they target specific individuals and specific neuronal populations remain unclear. As research progresses, many similarities appear which relate these diseases to one another on a subcellular level. Discovering these similarities offers hope for therapeutic advances that could ameliorate the conditions of many diseases simultaneously. G-protein coupled receptors (GPCRs) are the most abundant receptor type in the central nervous system and are linked to complex downstream pathways, manipulation of which may have therapeutic application in many NDs. This review will highlight the potential use of neurotransmitter GPCRs as emerging therapeutic targets for neurodegenerative and cerebrovascular diseases.
Collapse
Affiliation(s)
- Mounia Guerram
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Faculty of Exact Sciences and Nature and Life Sciences, Department of Biology, Larbi Ben M'hidi University, Oum El Bouaghi 04000, Algeria
| | - Lu-Yong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen-Zhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
8
|
Cardiovascular adenosine receptors: Expression, actions and interactions. Pharmacol Ther 2013; 140:92-111. [DOI: 10.1016/j.pharmthera.2013.06.002] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 05/28/2013] [Indexed: 12/26/2022]
|
9
|
Iacovelli L, Nicoletti F, De Blasi A. Molecular mechanisms that desensitize metabotropic glutamate receptor signaling: an overview. Neuropharmacology 2012; 66:24-30. [PMID: 22659473 DOI: 10.1016/j.neuropharm.2012.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/06/2012] [Accepted: 05/08/2012] [Indexed: 01/10/2023]
Abstract
The purpose of the present article is to review our actual knowledge on the desensitization of metabotropic glutamate receptors based on the literature available so far, with the attempt to emphasize all converging data and to give a possible explanation to those evidences that still remain controversial. 1. We review our knowledge on the regulation of mGlu receptors based on the available literature 2. We report converging data and we comment on issues that still remain controversial. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.
Collapse
Affiliation(s)
- Luisa Iacovelli
- Dept. of Physiology and Pharmacology "V. Erspamer", University of Rome "Sapienza", P.le Aldo Moro 5, 00185 Rome, Italy.
| | | | | |
Collapse
|
10
|
Castillo-Badillo JA, Molina-Muñoz T, Romero-Ávila MT, Vázquez-Macías A, Rivera R, Chun J, García-Sáinz JA. Sphingosine 1-phosphate-mediated α1B-adrenoceptor desensitization and phosphorylation. Direct and paracrine/autocrine actions. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:245-54. [PMID: 22019450 PMCID: PMC3273635 DOI: 10.1016/j.bbamcr.2011.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 09/20/2011] [Accepted: 10/06/2011] [Indexed: 12/26/2022]
Abstract
Sphingosine-1-phosphate-induced α1B-adrenergic receptor desensitization and phosphorylation were studied in rat-1 fibroblasts stably expressing enhanced green fluorescent protein-tagged adrenoceptors. Sphingosine-1-phosphate induced adrenoceptor desensitization and phosphorylation through a signaling cascade that involved phosphoinositide 3-kinase and protein kinase C activities. The autocrine/paracrine role of sphingosine-1-phosphate was also studied. It was observed that activation of receptor tyrosine kinases, such as insulin growth factor-1 (IGF-I) and epidermal growth factor (EGF) receptors increased sphingosine kinase activity. Such activation and consequent production of sphingosine-1-phosphate appear to be functionally relevant in IGF-I- and EGF-induced α1B-adrenoceptor phosphorylation and desensitization as evidenced by the following facts: a) expression of a catalytically inactive (dominant-negative) mutant of sphingosine kinase 1 or b) S1P1 receptor knockdown markedly reduced this growth factor action. This action of sphingosine-1-phosphate involves EGF receptor transactivation. In addition, taking advantage of the presence of the eGFP tag in the receptor construction, we showed that S1P was capable of inducing α1B-adrenergic receptor internalization and that its autocrine/paracrine generation was relevant for internalization induced by IGF-I. Four distinct hormone receptors and two autocrine/paracrine mediators participate in IGF-I receptor-α1B-adrenergic receptor crosstalk.
Collapse
Affiliation(s)
- Jean A. Castillo-Badillo
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular; Universidad Nacional Autónoma de México, México D. F. 04510
| | - Tzindilú Molina-Muñoz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular; Universidad Nacional Autónoma de México, México D. F. 04510
| | - M. Teresa Romero-Ávila
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular; Universidad Nacional Autónoma de México, México D. F. 04510
| | - Aleida Vázquez-Macías
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular; Universidad Nacional Autónoma de México, México D. F. 04510
| | - Richard Rivera
- Department of Molecular Biology, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jerold Chun
- Department of Molecular Biology, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - J. Adolfo García-Sáinz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular; Universidad Nacional Autónoma de México, México D. F. 04510
| |
Collapse
|
11
|
Roles of phosphoinositide-dependent kinase-1 in α1B-adrenoceptor phosphorylation and desensitization. Eur J Pharmacol 2012; 674:179-87. [DOI: 10.1016/j.ejphar.2011.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 09/30/2011] [Accepted: 11/10/2011] [Indexed: 11/19/2022]
|
12
|
García-Sáinz JA, Romero-Ávila MT, Alcántara-Hernández R. Mechanisms involved in α1B-adrenoceptor desensitization. IUBMB Life 2011; 63:811-5. [PMID: 21815242 DOI: 10.1002/iub.519] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 05/22/2011] [Indexed: 12/12/2022]
Abstract
α(1B)-Adrenergic receptors mediate many of the actions of the natural catecholamines, adrenaline and noradrenaline. They belong to the seven transmembrane domains G protein-coupled receptor superfamily and exert their actions mainly through activation of Gq proteins and phosphoinositide turnover/calcium signaling. Many hormones and neurotransmitters are capable of inducing α(1B)-adrenergic receptor phosphorylation and desensitization; among them: adrenaline and noradrenaline, phorbol esters, endothelin-I, bradykinin, lysophosphatidic acid, insulin, EGF, PDGF, IGF-I, TGF-β, and estrogens. Key protein kinases for these effects are G protein coupled receptor kinases and protein kinase C. The lipid/protein kinase, phosphoinositide-3 kinase also appears to play a key role, acting upstream of protein kinase C. In addition to the agents employed for cells stimulation, we observed that paracrine/autocrine mediators also participate; these processes include EGF transactivation and sphingosine-1-phosphate production and action. The complex regulation of these receptors unlocks opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- J Adolfo García-Sáinz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México. Ap. Postal 70-248, México, Distrito Federal.
| | | | | |
Collapse
|
13
|
Verzijl D, IJzerman AP. Functional selectivity of adenosine receptor ligands. Purinergic Signal 2011; 7:171-92. [PMID: 21544511 PMCID: PMC3146648 DOI: 10.1007/s11302-011-9232-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 04/05/2011] [Indexed: 12/11/2022] Open
Abstract
Adenosine receptors are plasma membrane proteins that transduce an extracellular signal into the interior of the cell. Basically every mammalian cell expresses at least one of the four adenosine receptor subtypes. Recent insight in signal transduction cascades teaches us that the current classification of receptor ligands into agonists, antagonists, and inverse agonists relies very much on the experimental setup that was used. Upon activation of the receptors by the ubiquitous endogenous ligand adenosine they engage classical G protein-mediated pathways, resulting in production of second messengers and activation of kinases. Besides this well-described G protein-mediated signaling pathway, adenosine receptors activate scaffold proteins such as β-arrestins. Using innovative and sensitive experimental tools, it has been possible to detect ligands that preferentially stimulate the β-arrestin pathway over the G protein-mediated signal transduction route, or vice versa. This phenomenon is referred to as functional selectivity or biased signaling and implies that an antagonist for one pathway may be a full agonist for the other signaling route. Functional selectivity makes it necessary to redefine the functional properties of currently used adenosine receptor ligands and opens possibilities for new and more selective ligands. This review focuses on the current knowledge of functionally selective adenosine receptor ligands and on G protein-independent signaling of adenosine receptors through scaffold proteins.
Collapse
Affiliation(s)
- Dennis Verzijl
- Division of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Ad P. IJzerman
- Division of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
14
|
Breton B, Lagacé M, Bouvier M. Combining resonance energy transfer methods reveals a complex between the α 2A‐adrenergic receptor, Gα i1β 1γ 2, and GRK2. FASEB J 2010. [DOI: 10.1096/fj.10.164061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Billy Breton
- Department of BiochemistryInstitute for Research in Immunology and CancerGroupe de Recherche Universitaire sur le MédicamentUniversité de Montréal Montréal Québec Canada
| | - Monique Lagacé
- Department of BiochemistryInstitute for Research in Immunology and CancerGroupe de Recherche Universitaire sur le MédicamentUniversité de Montréal Montréal Québec Canada
| | - Michel Bouvier
- Department of BiochemistryInstitute for Research in Immunology and CancerGroupe de Recherche Universitaire sur le MédicamentUniversité de Montréal Montréal Québec Canada
| |
Collapse
|
15
|
Breton B, Lagacé M, Bouvier M. Combining resonance energy transfer methods reveals a complex between the alpha2A-adrenergic receptor, Galphai1beta1gamma2, and GRK2. FASEB J 2010; 24:4733-43. [PMID: 20696855 DOI: 10.1096/fj.10-164061] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traditionally, G-protein-coupled receptor (GPCR) interactions with their G proteins and regulatory proteins, GPCR kinases (GRKs) and arrestins, are described as sequential events involving rapid assemblies/disassemblies. To directly monitor the dynamics of these interactions in living cells, we combined two spectrally resolved bioluminescence and one fluorescence resonance energy transfer (RET) methods. The RET combination analysis revealed that stimulation of the α(2A)-adrenergic receptor (α(2A)AR) leads to the recruitment of GRK2 at a receptor still associated with the Gα(i1)β(1)γ(2) complex. The interaction kinetics of GRKs with Gγ(2) (2.8 ± 0.4 s) and α(2A)AR (5.2 ± 0.5 s) were similar to that of the receptor-promoted change in RET between Gα(i1) and Gγ(2) (5.2 ± 1.2 s), and persisted until the translocation of βarrestin2 to the receptor, indicating that GRK2 remains associated to the receptor/G-protein complex for longer periods than anticipated. Moreover, GRK2 or a kinase-deficient GRK2 mutant, but not GRK5, potentiated the receptor-promoted changes in RET between Gα(i1) and Gγ(2) and abrogated the α(2A)AR-stimulated calcium response, suggesting that the recruitment of GRK2 to the complex contributes to the structural rearrangement and functional regulation of the signaling unit, independently of the kinase activity. RET combination analysis revealed unanticipated dynamics in GPCR signaling and will be applicable to many biological systems.
Collapse
Affiliation(s)
- Billy Breton
- Department of Biochemistry, Institute for Research in Immunology and Cancer, and Groupe de Recherche Universitaire sur le Médicament, Université de Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|
16
|
Mundell S, Kelly E. Adenosine receptor desensitization and trafficking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:1319-28. [PMID: 20550943 DOI: 10.1016/j.bbamem.2010.06.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 05/28/2010] [Accepted: 06/06/2010] [Indexed: 11/26/2022]
Abstract
As with the majority of G-protein-coupled receptors, all four of the adenosine receptor subtypes are known to undergo agonist-induced regulation in the form of desensitization and trafficking. These processes can limit the ability of adenosine receptors to couple to intracellular signalling pathways and thus reduce the ability of adenosine receptor agonists as well as endogenous adenosine to produce cellular responses. In addition, since adenosine receptors couple to multiple signalling pathways, these pathways may desensitize differentially, while the desensitization of one pathway could even trigger signalling via another. Thus, the overall picture of adenosine receptor regulation can be complex. For all adenosine receptor subtypes, there is evidence to implicate arrestins in agonist-induced desensitization and trafficking, but there is also evidence for other possible forms of regulation, including second messenger-dependent kinase regulation, heterologous effects involving G proteins, and the involvement of non-clathrin trafficking pathways such as caveolae. In this review, the evidence implicating these mechanisms is summarized for each adenosine receptor subtype, and we also discuss those issues of adenosine receptor regulation that remain to be resolved as well as likely directions for future research in this field.
Collapse
Affiliation(s)
- Stuart Mundell
- Department of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | | |
Collapse
|
17
|
The GRK2 Overexpression Is a Primary Hallmark of Mitochondrial Lesions during Early Alzheimer Disease. Cardiovasc Psychiatry Neurol 2010; 2009:327360. [PMID: 20204079 PMCID: PMC2832107 DOI: 10.1155/2009/327360] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 11/16/2009] [Indexed: 12/25/2022] Open
Abstract
Increasing evidence points to vascular damage as an early contributor to the development of two leading causes of age-associated dementia, namely Alzheimer disease (AD) and AD-like pathology such as stroke. This review focuses on the role of G protein-coupled receptor kinases (GRKs) as they relate to dementia and how the cardio and cerebrovasculature is involved in AD pathogenesis. The exploration of GRKs in AD pathogenesis may help bridge gaps in our understanding of the heart-brain connection in relation to neurovisceral damage and vascular complications of AD. The a priori basis for this inquiry stems from the fact that kinases of this family regulate numerous receptor functions in the brain, myocardium and elsewhere. The aim of this review is to discuss the finding of GRK2 overexpression in the context of early AD pathogenesis. Also, we consider the consequences for this overexpression as a loss of G-protein coupled receptor (GPCR) regulation, as well as suggest a potential role for GPCRs and GRKs in a unifying theory of AD pathogenesis through the cerebrovasculature. Finally, we synthesize this newer information in an attempt to put it into context with GRKs as regulators of cellular function, which makes these proteins potential diagnostic and therapeutic targets for future pharmacological intervention.
Collapse
|
18
|
Iacovelli L, Molinaro G, Battaglia G, Motolese M, Di Menna L, Alfiero M, Blahos J, Matrisciano F, Corsi M, Corti C, Bruno V, De Blasi A, Nicoletti F. Regulation of Group II Metabotropic Glutamate Receptors by G Protein-Coupled Receptor Kinases: mGlu2 Receptors Are Resistant to Homologous Desensitization. Mol Pharmacol 2009; 75:991-1003. [DOI: 10.1124/mol.108.052316] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
19
|
Alcántara-Hernández R, Adolfo García-Sáinz J. Effect of inhibitors of mitogen-activated protein kinase kinase on alpha(1B)-adrenoceptor phosphorylation. AUTONOMIC & AUTACOID PHARMACOLOGY 2009; 29:13-23. [PMID: 19302552 DOI: 10.1111/j.1474-8673.2009.00427.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
1 Mitogen-activated protein kinases mediate hormone/neurotransmitter action on proliferation and differentiation and participate in receptor regulation. The effect of inhibitors of mitogen-activated kinase kinase (MEK) on alpha(1B)-adrenoceptor phosphorylation state and function was studied using different cell lines. It was observed that at nanomolar concentrations the MEK inhibitors, PD98059 (2'-amino-3'-methoxyflavone) and UO126 [1,4-(diamino-2,3-dicyano/1,4-bis-(2-aminophenylthio)-butadiene], increased alpha(1B)-adrenoceptor phosphorylation and diminished the functional response of this receptor to noradrenaline. These agents did not alter the action of lysophosphatidic acid. 2 Staurosporine (IC(50) approximately 0.8 nm) (a general protein kinase inhibitor) and bis-indolyl-maleimide I (IC(50) approximately 200 nm) (a selective protein kinase C inhibitor) inhibited PD98059-induced alpha(1B)-adrenoceptor phosphorylation. In contrast, neither wortmannin (phosphoinositide 3-kinase inhibitor) nor genistein (protein tyrosine kinase inhibitor) had any effect. The data suggest the possibility that MEK might exert control on the activity of the enzymes that regulate receptor phosphorylation, such as G-protein-coupled receptor kinases, protein kinase C or serine/threonine protein phosphatases. 3 Coimmunoprecipitation studies showed a constant association of total extracellular signal-regulated kinase 2 (ERK2) with alpha(1B)-adrenoceptors. Association of phospho-ERK 1/2 to alpha(1B)-adrenoceptors increased not only in response to agonist but also in response to agents that increase alpha(1B)-adrenoceptor and ERK1/2 phosphorylation [such as endothelin-1, phorbol 12-myristate-13-acetate (PMA) and epidermal growth factor (EGF)]; not surprisingly, PD98059 decreased this effect. 4 Our data show that blockade of MEK activity results in increased alpha(1B)-adrenoceptor phosphorylation, diminished adrenoceptor function and perturbation of receptor-ERK1/2 interaction.
Collapse
Affiliation(s)
- R Alcántara-Hernández
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, D.F., Mexico
| | | |
Collapse
|
20
|
Obrenovich ME, Morales LA, Cobb CJ, Shenk JC, Méndez GM, Fischbach K, Smith MA, Qasimov EK, Perry G, Aliev G. Insights into cerebrovascular complications and Alzheimer disease through the selective loss of GRK2 regulation. J Cell Mol Med 2008; 13:853-65. [PMID: 19292735 PMCID: PMC2919803 DOI: 10.1111/j.1582-4934.2008.00512.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Alzheimer disease (AD) and stroke are two leading causes of age-associated dementia. Increasing evidence points to vascular damage as an early contributor to the development of AD and AD-like pathology. In this review, we discuss the role of G protein-coupled receptor kinase 2 (GRK2) as it relates to individuals affected by AD and how the cardiovasculature plays a role in AD pathogenesis. The possible involvement of GRKs in AD pathogenesis is an interesting notion, which may help bridge the gap in our understanding of the heart–brain connection in relation to neurovisceral damage and vascular complications in AD, since kinases of this family are known to regulate numerous receptor functions both in the brain, myocardium, and elsewhere. The aim of this review is to discuss our findings of overexpression of GRK2 in the context of the early pathogenesis of AD, because increased levels of GRK2 immunoreactivity were found in vulnerable neurons of AD patients as well as in a two-vessel occlusion (2-VO) mammalian model of ischaemia. Also, we consider the consequences for this overexpression as a loss of G-protein coupled receptor (GPCR) regulation, as well as suggest a potential role for GPCRs and GRKs in a unifying theory of AD pathogenesis, particularly in the context of cerebrovascular disease. We synthesize this newer information and attempt to put it into context with GRKs as regulators of diverse physiological cellular functions that could be appropriate targets for future pharmacological intervention.
Collapse
Affiliation(s)
- Mark E Obrenovich
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Alcántara-Hernández R, Casas-González P, García-Sáinz JA. Roles of c-Src in alpha1B-adrenoceptor phosphorylation and desensitization. ACTA ACUST UNITED AC 2008; 28:29-39. [PMID: 18257749 DOI: 10.1111/j.1474-8673.2007.00414.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
1 The role of the protein tyrosine kinase, c-Src, on the function and phosphorylation of alpha1B-adrenoceptors (alpha1B-AR) and their association with G-protein-coupled receptor kinase (GRK) isozymes was studied. 2 Inhibitors of this kinase (PP2 and Src Inhibitor II) decreased ( approximately 50-75%) noradrenaline- (NA) and phorbol myristate acetate-mediated receptor phosphorylation. Expression of a dominant-negative mutant of c-Src similarly reduced receptor phosphorylation induced by the natural agonists, active phorbol esters and endothelin-1 (ET-1). 3 c-Src, GRK2, GRK3 and GRK5 coimmunoprecipitate with alpha1B-ARs in the basal state. In cells treated with NA or phorbol myristate acetate the amount of coimmunoprecipitated GRK2 and GRK3 increased ( approximately 2- to 3-fold), while treatment with ET-1 only augmented the amount of coimmunoprecipitated GRK2 ( approximately 2-fold). The Src inhibitor, PP2, markedly attenuated all these increases. 4 Cell pretreatment with PP2 amplified the increase in intracellular-free calcium observed with NA, in the basal state and after the stimulation (desensitization) induced by ET-1. 5 The data suggest a role of c-Src in alpha1B-AR desensitization/phosphorylation and in the interaction of these ARs with GRKs.
Collapse
Affiliation(s)
- R Alcántara-Hernández
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70-248, México DF 04510
| | | | | |
Collapse
|
22
|
Internalization and desensitization of adenosine receptors. Purinergic Signal 2007; 4:21-37. [PMID: 18368531 PMCID: PMC2245999 DOI: 10.1007/s11302-007-9086-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 10/02/2007] [Indexed: 01/28/2023] Open
Abstract
Until now, more than 800 distinct G protein-coupled receptors (GPCRs) have been identified in the human genome. The four subtypes of the adenosine receptor (A1, A2A, A2B and A3 receptor) belong to this large family of GPCRs that represent the most widely targeted pharmacological protein class. Since adenosine receptors are widespread throughout the body and involved in a variety of physiological processes and diseases, there is great interest in understanding how the different subtypes are regulated, as a basis for designing therapeutic drugs that either avoid or make use of this regulation. The major GPCR regulatory pathway involves phosphorylation of activated receptors by G protein-coupled receptor kinases (GRKs), a process that is followed by binding of arrestin proteins. This prevents receptors from activating downstream heterotrimeric G protein pathways, but at the same time allows activation of arrestin-dependent signalling pathways. Upon agonist treatment, adenosine receptor subtypes are differently regulated. For instance, the A1Rs are not (readily) phosphorylated and internalize slowly, showing a typical half-life of several hours, whereas the A2AR and A2BR undergo much faster downregulation, usually shorter than 1 h. The A3R is subject to even faster downregulation, often a matter of minutes. The fast desensitization of the A3R after agonist exposure may be therapeutically equivalent to antagonist occupancy of the receptor. This review describes the process of desensitization and internalization of the different adenosine subtypes in cell systems, tissues and in vivo studies. In addition, molecular mechanisms involved in adenosine receptor desensitization are discussed.
Collapse
|
23
|
Zhou J, Livak MFA, Bernier M, Muller DC, Carlson OD, Elahi D, Maudsley S, Egan JM. Ubiquitination is involved in glucose-mediated downregulation of GIP receptors in islets. Am J Physiol Endocrinol Metab 2007; 293:E538-47. [PMID: 17505054 PMCID: PMC2640485 DOI: 10.1152/ajpendo.00070.2007] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is a gastrointestinal hormone that has a potent stimulatory effect on insulin release under conditions of normal glucose tolerance. However, its insulinotropic effect is reduced or even absent entirely in type 2 diabetic patients. In this study, we addressed the role of glucose concentration in the diabetic range of >or=11 mM, i.e., hyperglycemia per se, as a cause of the lack of response to GIP. Culturing rat and human pancreatic islets in >or=11 mM glucose for up to 24 h resulted in prevention of GIP-mediated intracellular cAMP increase compared with culturing in 5 mM glucose. Western blot analysis revealed a selective 67 +/- 2% (rat) and 60 +/- 8% (human) decrease of GIP-R expression in islets exposed to >or=11 mM glucose compared with 5 mM glucose (P < 0.001). We further immunoprecipitated GIP-R from islets and found that GIP-R was targeted for ubiquitination in a glucose- and time-dependent manner. Downregulation of GIP-R was rescued by treating isolated islets with proteasomal inhibitors lactacystin and MG-132, and the islets were once again capable of increasing intracellular cAMP levels in response to GIP. These results suggest that the GIP-R is ubiquitated, resulting in downregulation of the actions of GIP.
Collapse
Affiliation(s)
- Jie Zhou
- Diabetes Section, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Obrenovich ME, Smith MA, Siedlak SL, Chen SG, de la Torre JC, Perry G, Aliev G. Overexpression of GRK2 in Alzheimer disease and in a chronic hypoperfusion rat model is an early marker of brain mitochondrial lesions. Neurotox Res 2006; 10:43-56. [PMID: 17000469 DOI: 10.1007/bf03033333] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heterotrimeric guanine nucleotide-binding (G) protein-coupled receptor kinases (GRKs) are cytosolic proteins that are known to contribute to the adaptation of the heptahelical G protein-coupled receptors (GPCRs) and to regulate downstream signals through these receptors. GPCRs mediate the action of messengers that are key modulators of cardiac and vascular cell function, such as growth and differentiation. GRKs are members of a multigene family, which are classified into three subfamilies and are found in cardiac, vascular and cerebral tissues. Increasing evidence strongly supports the hypothesis that vascular damage is an early contributor to the development of Alzheimer disease (AD) and/or other pathology that can mimic human AD. Based on this hypothesis, and since kinases of this family are known to regulate numerous receptor functions both in the brain, myocardium and elsewhere, we explored cellular and subcellular localization by immunoreactivity of G protein-coupled receptor kinase 2 (GRK2), also known as beta-adrenergic receptor kinase-1(betaARK1), in the early pathogenesis of AD and in ischemia reperfusion injury models of brain hypoperfusion. In the present study, we used the two-vessel carotid artery occlusion model, namely the 2-VO system that results in chronic brain hypoperfusion (CBH) and mimics mild cognitive impairment (MCI) and vascular changes in AD pathology. Our findings demonstrate the early overexpression of GRK2 member kinase in the cerebrovasculature, especially endothelial cells (EC) following CBH, as well as in select cells from human AD tissue. We found a significant increase in GRK2 immunoreactivity in the EC of AD patients and after CBH, which preceded any amyloid deposition. Since GRK2 activity is associated with certain compensatory changes in brain cellular compartments and in ischemic cardiac tissue, our findings suggest that chronic hypoperfusion initiates oxidative stress in these conditions and appears to be the main initiating injury stimulus for disruption of brain and cerebrovascular homeostasis and metabolism.
Collapse
Affiliation(s)
- Mark E Obrenovich
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Molina-Muñoz T, Romero-Avila MT, García-Sáinz JA. Insulin-like growth factor-I induces alpha(1B)-adrenergic receptor phosphorylation through G beta gamma and epidermal growth factor receptor transactivation. Mol Endocrinol 2006; 20:2773-83. [PMID: 16803866 DOI: 10.1210/me.2006-0090] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
IGF-I induces alpha(1B)-adrenoceptor (alpha(1B)-AR) phosphorylation. The effect of IGF-I was rapid and transient, reaching near-maximal values at 10 min and decreasing after 30 min; it was observed at low IGF-I concentrations (EC(50) approximately 10 ng/ml) and was associated to receptor desensitization as evidenced by a decreased alpha(1B)-adrenergic effect on intracellular calcium and production of inositol phosphates. The effect of IGF-I was markedly decreased in cells treated with pertussis toxin suggesting involvement of pertussis toxin-sensitive G proteins. Transfection of the carboxyl terminus of the beta-adrenergic receptor kinase or the Deltap85 mutant of phosphoinositide 3-kinase (PI3K) markedly decreased the alpha(1B)-AR phosphorylation induced by IGF-I without decreasing the receptor phosphorylation induced by noradrenaline. Inhibitors of PI3K and protein kinase C blocked IGF-I-induced alpha(1B)-AR phosphorylation. In addition, it was observed that AG1478, an inhibitor of the epidermal growth factor (EGF) receptor kinase, and BB-94, a metalloproteinase inhibitor, also diminished IGF-I-induced adrenoceptor phosphorylation. The data clearly show that IGF-I triggers a complex signaling pathway, which leads to the phosphorylation and desensitization of a serpentine G protein-coupled receptor, suggesting the following hypothetical model: 1) stimulation of IGF-I receptors activate pertussis toxin-sensitive G proteins; 2) the growth factor action activates metalloproteinases, which catalyze heparin binding-EGF shedding, and transactivation of EGF receptors, and 3) dissociated Gbetagamma subunits and phosphotyrosine residues seem to trigger PI3K activity, which leads to activation of protein kinase C, resulting in alpha(1B)-AR phosphorylation and desensitization.
Collapse
Affiliation(s)
- Tzindilú Molina-Muñoz
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-248, 04510 México D.F., México
| | | | | |
Collapse
|
26
|
Casas-González P, García-Sáinz JA. Role of epidermal growth factor receptor transactivation in alpha1B-adrenoceptor phosphorylation. Eur J Pharmacol 2006; 542:31-6. [PMID: 16828079 DOI: 10.1016/j.ejphar.2006.05.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 05/12/2006] [Accepted: 05/19/2006] [Indexed: 11/22/2022]
Abstract
Phosphorylation of G protein-coupled receptors is one of the earliest events that regulate their function. Current evidence indicates that homologous desensitization of these receptors mainly involves G protein-coupled receptor kinases whereas in heterologous desensitization second messenger-activated kinases play key roles. Recent data show that transactivation of EGF (epidermal growth factor) receptors may also play a role in receptor phosphorylation. The role of this process was studied for the alpha1B-adrenoceptor phosphorylation induced by agents acting through different processes using inhibitors to block the EGF receptor transactivation process at different levels. Experiments were performed using transfected rat-1 fibroblasts that express alpha1B-adrenoceptors in a stably fashion. A metalloproteinase inhibitor, an anti-heparin-binding-EGF-selective antibody, and a selective EGF-receptor kinase inhibitor blocked the alpha1B-adrenoceptor phosphorylation induced by noradrenaline or endothelin-1. Our results indicate that shedding of heparin-binding-EGF, transactivation of EGF receptors plays a more general role in alpha1B-adrenoceptor phosphorylation than previously anticipated. It is possible that other receptors/channels could be modulated through a similar pathway.
Collapse
Affiliation(s)
- Patricia Casas-González
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado postal 70-248, México, DF 04510, Mexico
| | | |
Collapse
|
27
|
Gros R, Ding Q, Chorazyczewski J, Andrews J, Pickering JG, Hegele RA, Feldman RD. The impact of blunted beta-adrenergic responsiveness on growth regulatory pathways in hypertension. Mol Pharmacol 2005; 69:317-27. [PMID: 16223959 DOI: 10.1124/mol.105.013953] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The effects of vasodilator hormones acting through receptors linked to adenylyl cyclase are impaired in the hypertensive state. This has been ascribed to impaired receptor-G protein coupling. However, these receptors also act via effectors not linked to adenylyl cyclase activation. These "alternate" mechanisms may be especially important in growth regulation and might be unaffected (or enhanced) with G protein-coupled receptor-G protein uncoupling. Therefore, we assessed the effects of beta-adrenergic activation on 1) regulation of phosphatidylinositol 3-kinase (PI3 kinase) and extracellular signal-regulated kinase (ERK) activation-two tyrosine kinase-dependent enzymes linked to cell growth-and 2) microarray analysis in vascular smooth muscle cells from spontaneously hypertensive rats (SHR). Isoproterenol-stimulated phosphorylation of ERK1/2 was impaired in SHR. The effect of forskolin was unaltered. In contrast, both vasopressin and angiotensin 2-mediated stimulation of ERK activation was enhanced in SHR. In addition, beta-adrenergic-mediated inhibition of PI3 kinase activity was attenuated in SHR (whereas the effect of forskolin remained intact). In microarray studies, the effect of isoproterenol to regulate transcription was significantly impaired in SHR (as was the effect of forskolin). Together, these data support the hypothesis that the blunted vasodilator effects of hormones linked to adenylyl cyclase activation are an index of a more generalized impairment in modulating growth regulatory pathways. Furthermore, this study supports the hypothesis that the blunting of beta-adrenergic responses relating to increased G protein-coupled receptor kinase 2 expression reflects a "generalized uncoupling" of beta-adrenergic-mediated responses and do not support the concept of "enhanced coupling" of "alternate" pathways of beta-adrenergic growth regulatory pathways in the hypertensive state.
Collapse
MESH Headings
- Adrenergic beta-Agonists/pharmacology
- Animals
- Base Sequence
- Cell Proliferation/drug effects
- Cells, Cultured
- Colforsin/pharmacology
- DNA Primers
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Gene Expression Regulation/drug effects
- Hypertension/physiopathology
- Isoproterenol/pharmacology
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Oligonucleotide Array Sequence Analysis
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation
- Platelet-Derived Growth Factor/pharmacology
- Rats
- Rats, Inbred WKY
- Receptors, Adrenergic, beta/physiology
Collapse
Affiliation(s)
- Robert Gros
- Cell Signaling Research Group, Robarts Research Institute, 100 Perth Dr., London, ON, Canada N6A 5K8
| | | | | | | | | | | | | |
Collapse
|
28
|
Ando T, Latif R, Davies TF. Concentration-dependent regulation of thyrotropin receptor function by thyroid-stimulating antibody. J Clin Invest 2004; 113:1589-95. [PMID: 15173885 PMCID: PMC419493 DOI: 10.1172/jci21334] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Accepted: 03/23/2004] [Indexed: 11/17/2022] Open
Abstract
Thyrotropin receptor (TSHR) Ab's of the stimulating variety are the cause of hyperthyroid Graves disease. MS-1 is a hamster mAb with TSHR-stimulating activity. To examine the in vivo biological activity of MS-1, mice were treated with purified MS-1 intraperitoneally and the thyroid response evaluated. MS-1 induced a dose-dependent increase in serum thyroxine (T4), with a maximum effect after 10 proportional, variant g of MS-1 was administered. MS-1-secreting hybridoma cells were then transferred into the peritoneum of nude mice to study chronic thyroid stimulation. Serum MS-1 levels detected after 2 weeks were approximately 10-50 proportional, variant g/ml, and the serum TSH was suppressed in all animals. Serum triiodothyronine levels were elevated, but only in animals with low serum MS-1 concentrations. In addition, there was a negative correlation between serum T4 and the serum MS-1 concentrations. These in vivo studies suggested a partial TSHR inactivation induced by excessive stimulation by MS-1. We confirmed this inactivation by demonstrating MS-1 modulation of TSHR function in vitro as evidenced by downregulation and desensitization of the TSHR at concentrations of MS-1 achieved in the in vivo studies. Thus, inactivation of the TSHR by stimulating TSHR autoantibodies (TSHR-Ab's) in Graves disease patients may provide a functional explanation for the poor correlation between thyroid function and serum TSHR-Ab concentrations.
Collapse
Affiliation(s)
- Takao Ando
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | |
Collapse
|
29
|
Iacovelli L, Capobianco L, Iula M, Di Giorgi Gerevini V, Picascia A, Blahos J, Melchiorri D, Nicoletti F, De Blasi A. Regulation of mGlu4 metabotropic glutamate receptor signaling by type-2 G-protein coupled receptor kinase (GRK2). Mol Pharmacol 2004; 65:1103-10. [PMID: 15102938 DOI: 10.1124/mol.65.5.1103] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the role of G-protein coupled receptor kinase-2 (GRK2) in the homologous desensitization of mGlu4 metabotropic glutamate receptors transiently expressed in human embryonic kidney (HEK) 293 cells. Receptor activation with the agonist l-2-amino-4-phosphonobutanoate (l-AP4) stimulated at least two distinct signaling pathways: inhibition of cAMP formation and activation of the mitogen-activated protein kinase (MAPK) pathway [assessed by Western blot analysis of phosphorylated extracellular signal-regulated kinase (ERK) 1 and 2]. Activation of both pathways was attenuated by pertussis toxin. Overexpression of GRK2 (but not GRK4) largely attenuated the stimulation of the MAPK pathway by l-AP4, whereas it slightly potentiated the inhibition of FSK-stimulated cAMP formation. Transfection with a kinase-dead mutant of GRK2 (GRK2-K220R) or with the C-terminal fragment of GRK2 also reduced the mGlu4-mediated stimulation of MAPK, suggesting that GRK2 binds to the Gbetagamma subunits to inhibit signal propagation toward the MAPK pathway. This was confirmed by the evidence that GRK2 coimmunoprecipitated with Gbetagamma subunits in an agonist-dependent manner. Finally, neither GRK2 nor its kinase-dead mutant had any effect on agonist-induced mGlu4 receptor internalization in HEK293 cells transiently transfected with GFP-tagged receptors. Agonist-dependent internalization was instead abolished by a negative-dominant mutant of dynamin, which also reduced the stimulation of MAPK pathway by l-AP4. We speculate that GRK2 acts as a "switch molecule" by inhibiting the mGlu4 receptor-mediated stimulation of MAPK and therefore directing the signal propagation toward the inhibition of adenylyl cyclase.
Collapse
Affiliation(s)
- L Iacovelli
- Dept. of Human Physiology and Pharmacology, University of Rome La Sapienza, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
G-protein-coupled receptor kinases (GRKs) comprise a family of seven mammalian serine/threonine protein kinases that phosphorylate and regulate agonist-occupied or constitutively active G-protein-coupled receptors (GPCRs). Studies of the details and consequences of these mechanisms have focused heavily on the original beta-adrenoceptor kinase (beta-ARK) family (GRK2 and GRK3) and, in particular, on phosphorylation-dependent recruitment of adaptor proteins such as the beta-arrestins. However, recent work has indicated roles for the other, non-visual GRKs (GRK4, GRK5 and GRK6) and has revealed potential phosphorylation-independent regulation of GPCRs by GRK2 and GRK3. In this article, we review this newer information and attempt to put it into context with GRKs as physiological regulators that could be appropriate targets for future pharmacological intervention.
Collapse
Affiliation(s)
- Jonathon M Willets
- Department of Cell Physiology & Pharmacology, University of Leicester, Maurice Shock Medical Sciences Building, University Road, LE1 9HN, Leicester, UK
| | | | | |
Collapse
|
31
|
Sorensen SD, Conn PJ. G protein-coupled receptor kinases regulate metabotropic glutamate receptor 5 function and expression. Neuropharmacology 2003; 44:699-706. [PMID: 12681368 DOI: 10.1016/s0028-3908(03)00053-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Metabotropic glutamate receptors (mGluR) serve important neuromodulatory roles at glutamatergic synapses to shape excitatory neurotransmission. Recent evidence indicates that the desensitization of mGluRs is an important determinant in regulating the functions of these receptors. The present results demonstrate that G protein-coupled receptor kinases (GRKs), which are known to regulate the desensitization of many G protein-coupled receptors, regulate both the expression and function of mGluR5 in a heterologous expression system. This regulatory event is limited to members of the GRK2 family since GRK4 family members do not elicit the same effects on mGluR5. Kinase activity is shown to be required for GRK-mediated regulation of mGluR5. Furthermore, the ability of GRK2 to regulate mGluR5 is dependent, at least in part, on the presence of threonine 840 in the carboxyl terminus of mGluR5. These studies identify novel roles for GRKs in regulating mGluR5 that may serve to further shape the function of these receptors in neurotransmission.
Collapse
Affiliation(s)
- Scott D Sorensen
- Department of Pharmacology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.
| | | |
Collapse
|
32
|
Romero-Avila MT, Flores-Jasso CF, García-Sáinz JA. alpha1B-Adrenergic receptor phosphorylation and desensitization induced by transforming growth factor-beta. Biochem J 2002; 368:581-7. [PMID: 12234252 PMCID: PMC1223020 DOI: 10.1042/bj20021052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2002] [Revised: 09/11/2002] [Accepted: 09/17/2002] [Indexed: 01/11/2023]
Abstract
Transforming growth factor-beta (TGF-beta) induced alpha(1B)-adrenergic receptor phosphorylation in Rat-1 fibroblasts stably expressing these adrenoceptors. This effect of TGF-beta was rapid, reaching a maximum within 30 min and decreasing thereafter, and concentration-dependent (EC(50) 0.3 pM). The phosphoinositide 3-kinase inhibitors wortmannin and LY294002, and the protein kinase C inhibitors staurosporine, Ro 318220 and bisindolylmaleimide, blocked the effect of this growth factor. alpha(1B)-Adrenergic receptor phosphorylation was associated with desensitization, as indicated by a reduction in the adrenergic-mediated production of [(3)H]inositol phosphates. Phosphorylation of alpha(1B)-adrenergic receptors by TGF-beta was also observed in Cos-1 cells transfected with the receptor. Co-transfection of the dominant-negative mutant of the regulatory subunit of phosphoinositide 3-kinase (Deltap85) inhibited the phosphorylation of alpha(1B)-adrenergic receptors induced by TGF-beta. Our results indicate that activation of TGF-beta receptors induces alpha(1B)-adrenergic receptor phosphorylation and desensitization. The data suggest that phosphoinositide 3-kinase and protein kinase C play key roles in this effect of TGF-beta.
Collapse
Affiliation(s)
- M Teresa Romero-Avila
- Instituto de Fisiologi;a Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-248, México D.F. 04510
| | | | | |
Collapse
|
33
|
Giorelli M, Livrea P, Defazio G, Iacovelli L, Capobianco L, Picascia A, Sallese M, Martino D, Aniello MS, Trojano M, De Blasi A. Interferon beta-1a counteracts effects of activation on the expression of G-protein-coupled receptor kinases 2 and 3, beta-arrestin-1, and regulators of G-protein signalling 2 and 16 in human mononuclear leukocytes. Cell Signal 2002; 14:673-8. [PMID: 12020767 DOI: 10.1016/s0898-6568(02)00011-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Activation regulates the responsiveness of G-protein-coupled receptors (GPCRs) on T cells, and modifications in the activity of GPCRs characterize lymphocytes from some immune disorders such as multiple sclerosis (MS) and rheumatoid arthritis (RA). Some lines of evidence suggest that such an effect is connected with the altered expression of some GPCRs regulatory proteins. Herein we demonstrate that phitoemagglutinin (PHA)-induced activation leads to differential expression of G-protein-coupled receptor kinase (GRK) 2, GRK3, beta-arrestin-1, regulators of G-protein signalling (RGS) 2, and RGS16 and decreases responsiveness of mononuclear leukocytes (MNL) to the beta-adrenergic agonist isoproterenol. Interferon beta-1a (IFN beta-1a), which is known to ameliorate the course of MS, counteracts the activation-induced effects on the expression of these GPCR regulatory proteins in MNL. Furthermore, IFN beta-1a quenches the effects of PHA on the isoproterenol-induced accumulation of cyclic AMP (cAMP). We suggest that regulation of GPCRs responsiveness may be a relevant property of IFN beta-1a in MS.
Collapse
Affiliation(s)
- Maurizio Giorelli
- Department of Neurologic and Psychiatric Sciences, University of Bari, I-70124 Bari, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Klinger M, Freissmuth M, Nanoff C. Adenosine receptors: G protein-mediated signalling and the role of accessory proteins. Cell Signal 2002; 14:99-108. [PMID: 11781133 DOI: 10.1016/s0898-6568(01)00235-2] [Citation(s) in RCA: 212] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ever since the discovery of the effects of adenosine in the circulation, adenosine receptors continue to represent a promising drug target. Firstly, this is due to the fact that the receptors are expressed in a large variety of cells; in particular, the actions of adenosine (or, respectively, of the antagonistic methylxanthines) in the central nervous system, in the circulation, on immune cells and on other tissues can be beneficial in certain disorders. Secondly, there exists a large number of ligands, which have been generated by introducing several modifications in the structure of the lead compounds (adenosine and methylxanthine), some of them highly specific. Four adenosine receptor subtypes have been identified by molecular cloning; they belong to the family of G protein-coupled receptors, which transfer signals by activating heterotrimeric G proteins. It has been appreciated recently that accessory proteins impinge on the receptor/G protein interaction and thus modulate the signalling reaction. These accessory components may be thought as adaptors that redirect the signalling pathway to elicit a cell-specific response. Here, we review the recent literature on adenosine receptors and place a focus on the role of accessory proteins in the organisation of adenosine receptor signalling. These components have been involved in receptor sorting, in the control of signal amplification and in the temporal regulation of receptor activity, while the existence of others is postulated on the basis of atypical cellular reactions elicited by receptor activation.
Collapse
Affiliation(s)
- Markus Klinger
- Institute of Pharmacology, University of Vienna, Währinger Strasse 13a, Vienna A-1090, Austria
| | | | | |
Collapse
|
35
|
Alcántara-Hernández R, Leyva-Illades D, García-Sáinz JA. Protein kinase C-α1b-adrenoceptor coimmunoprecipitation: effect of hormones and phorbol myristate acetate. Eur J Pharmacol 2001; 419:9-13. [PMID: 11348624 DOI: 10.1016/s0014-2999(01)00969-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
alpha(1b)-Adrenoceptors immunoprecipitated with protein kinase C alpha, delta, and epsilon isoforms under basal conditions and such coimmunoprecipitations were increased in cells treated with phorbol myristate acetate. The increased coimmunoprecipitations induced by phorbol myristate acetate were concentration-dependent and reached their maxima 1 to 2 min after the addition of the tumor promoter. No coimmunoprecipitation of protein kinase C zeta and alpha(1b)-adrenoceptors was detected. Norepinephrine, endothelin-1, lysophosphatidic acid and epidermal growth factor were also able to increase the coimmunoprecipitation of protein kinase C isoenzymes and alpha(1b)-adrenoceptors. These data support the idea that protein kinase-receptor complexes might form and could be relevant in receptor desensitization.
Collapse
Affiliation(s)
- R Alcántara-Hernández
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-248, D.F. 04510, Mexico
| | | | | |
Collapse
|
36
|
Dautzenberg FM, Braun S, Hauger RL. GRK3 mediates desensitization of CRF1 receptors: a potential mechanism regulating stress adaptation. Am J Physiol Regul Integr Comp Physiol 2001; 280:R935-46. [PMID: 11247813 DOI: 10.1152/ajpregu.2001.280.4.r935] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Potential G protein-coupled receptor kinase (GRK) and protein kinase A (PKA) mediation of homologous desensitization of corticotropin-releasing factor type 1 (CRF1) receptors was investigated in human retinoblastoma Y-79 cells. Inhibition of PKA activity by PKI(5-22) or H-89 failed to attenuate homologous desensitization of CRF1 receptors, and direct activation of PKA by forskolin or dibutyryl cAMP failed to desensitize CRF-induced cAMP accumulation. However, treatment of permeabilized Y-79 cells with heparin, a nonselective GRK inhibitor, reduced homologous desensitization of CRF1 receptors by approximately 35%. Furthermore, Y-79 cell uptake of a GRK3 antisense oligonucleotide (ODN), but not of a random or mismatched ODN, reduced GRK3 mRNA expression by approximately 50% without altering GRK2 mRNA expression and inhibited homologous desensitization of CRF1 receptors by approximately 55%. Finally, Y-79 cells transfected with a GRK3 antisense cDNA construct exhibited an approximately 50% reduction in GRK3 protein expression and an ~65% reduction in homologous desensitization of CRF1 receptors. We conclude that GRK3 contributes importantly to the homologous desensitization of CRF1 receptors in Y-79 cells, a brain-derived cell line.
Collapse
MESH Headings
- Colforsin/pharmacology
- Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors
- Cyclic AMP-Dependent Protein Kinases/genetics
- Cyclic AMP-Dependent Protein Kinases/metabolism
- DNA, Antisense
- Enzyme Inhibitors/pharmacology
- Eye Neoplasms
- G-Protein-Coupled Receptor Kinase 3
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/physiology
- Humans
- Isoquinolines/pharmacology
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Peptide Fragments/pharmacology
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- RNA, Messenger/genetics
- Receptors, Corticotropin-Releasing Hormone/drug effects
- Receptors, Corticotropin-Releasing Hormone/genetics
- Receptors, Corticotropin-Releasing Hormone/physiology
- Recombinant Proteins/metabolism
- Retinoblastoma
- Sulfonamides
- Transcription, Genetic/drug effects
- Transfection
- Tumor Cells, Cultured
- beta-Adrenergic Receptor Kinases
Collapse
Affiliation(s)
- F M Dautzenberg
- Pharma Division, Preclinical Research, F-Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | | | | |
Collapse
|
37
|
Reiter E, Marion S, Robert F, Troispoux C, Boulay F, Guillou F, Crepieux P. Kinase-inactive G-protein-coupled receptor kinases are able to attenuate follicle-stimulating hormone-induced signaling. Biochem Biophys Res Commun 2001; 282:71-8. [PMID: 11263973 DOI: 10.1006/bbrc.2001.4534] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Homologous desensitization of G-protein-coupled receptors (GPCR) is thought to occur in several steps: binding of G-protein-coupled receptor kinases (GRKs) to receptors, receptor phosphorylation, kinase dissociation, and finally binding of beta-arrestin to phosphorylated receptors and functional uncoupling of the associated Galpha protein. It has recently been reported that GRKs can inhibit Galphaq-mediated signaling in the absence of phosphorylation of some GPCRs. Whether or not comparable phosphorylation-independent effects are also possible with Galphas-coupled receptors remains unclear. In the present study, using the tightly Galphas-coupled FSR receptor (FSH-R) as a model, we observed inhibition of the cAMP-dependent signaling pathway using kinase-inactive mutants of GRK2, 5, and 6. These negative effects occur upstream of adenylyl cyclase activation and are likely independent of GRK interaction with G protein alpha or beta/gamma subunits. Moreover, we demonstrated that, when overexpressed in Cos 7 cells, mutated GRK2 associates with the FSH activated FSH-R. We hypothesize that phosphorylation-independent dampening of the FSH-R-associated signaling could be attributable to physical association between GRKs and the receptor, subsequently inhibiting G protein activation.
Collapse
Affiliation(s)
- E Reiter
- UMR Physiologie de la Reproduction et des Comportements 6073, INRA-CNRS-Université de Tours, Nouzilly, 37380, France.
| | | | | | | | | | | | | |
Collapse
|
38
|
Dautzenberg FM, Hauger RL. G-protein-coupled receptor kinase 3- and protein kinase C-mediated desensitization of the PACAP receptor type 1 in human Y-79 retinoblastoma cells. Neuropharmacology 2001; 40:394-407. [PMID: 11166332 DOI: 10.1016/s0028-3908(00)00167-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Pituitary adenylyl cyclase-activating polypeptide (PACAP) receptor type 1 (PAC(1)) signaling and desensitization were investigated in human retinoblastoma Y-79 cells. Concentration-dependent stimulation of cAMP accumulation was observed in Y-79 cells incubated for 30 min with PACAP38, PACAP27, or VIP (10(-12) to 10(-6) M). The following EC(50) values were calculated: PACAP38, 24+/-3 pM; PACAP27, 99+/-8 pM; and VIP, 29+/-3 nM. Homologous desensitization of PAC(1) receptors in Y-79 cells pretreated with 10 nM PACAP38 or PACAP27 for 60 min was characterized by a 30-50% reduction in PACAP-stimulated cAMP accumulation (p<0.0001) and a two- to fivefold rightward shift in EC(50) values (p<0.0001). PAC(1) receptor desensitization was not accompanied by a reduction in PAC(1) mRNA expression. We concluded that the desensitizing effect of PACAP38 was homologous because neither corticotropin-releasing factor- nor (-)-isoproterenol-stimulated cAMP accumulation was altered by PACAP38 preincubation. Pretreating Y-79 cells with the protein kinase A (PKA) inhibitor H89 failed to inhibit homologous PAC(1) receptor desensitization. Similarly, pretreating Y-79 cells with the protein kinase C (PKC) inhibitors staurosporine or bisindolylmaleimide failed to alter homologous PAC(1) receptor desensitization. Although activation of PKA by dibutyryl cAMP or forskolin did not desensitize PAC(1) receptors, direct activation of PKC by PMA heterologously desensitized PAC(1) receptors, reducing cAMP accumulation 34.2+/-2.2% (p<0.001). Using RT-PCR, mRNA levels for G-protein-coupled receptor kinase 3 (GRK3), but not GRK2, were found to increase 2.2- to 4.8-fold in Y-79 cells exposed to PACAP38 for 10 min to 24 h (p<0.001). PAC(1) receptor desensitization decreased 72.5+/-4.3% (p<0.001) in Y-79 cells transfected with a GRK3 antisense cDNA construct that also reduced GRK3 protein expression 48.5+/-7.9% (p<0.0005). These experiments demonstrate that GRK3 plays an important role in the homologous desensitization of retinoblastoma PAC(1) receptors, whereas PKC, but not PKA, contributes to the heterologous desensitization of retinoblastoma PAC(1) receptors.
Collapse
MESH Headings
- Adrenergic beta-Agonists/pharmacology
- Alternative Splicing
- Corticotropin-Releasing Hormone/pharmacology
- Cyclic AMP/metabolism
- Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors
- Cyclic AMP-Dependent Protein Kinases/metabolism
- DNA, Antisense/pharmacology
- Enzyme Inhibitors/pharmacology
- G-Protein-Coupled Receptor Kinase 3
- Humans
- Intracellular Fluid/metabolism
- Neuropeptides/pharmacology
- Pituitary Adenylate Cyclase-Activating Polypeptide
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/metabolism
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- RNA, Messenger/metabolism
- Receptors, Adrenergic, beta/metabolism
- Receptors, Corticotropin-Releasing Hormone/metabolism
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I
- Receptors, Pituitary Hormone/genetics
- Receptors, Pituitary Hormone/metabolism
- Retinoblastoma/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Tumor Cells, Cultured
- Vasoactive Intestinal Peptide/pharmacology
Collapse
Affiliation(s)
- F M Dautzenberg
- Pharma Division, Preclinical Research, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | | |
Collapse
|
39
|
Sallese M, Salvatore L, D'Urbano E, Sala G, Storto M, Launey T, Nicoletti F, Knöpfel T, De Blasi A. The G-protein-coupled receptor kinase GRK4 mediates homologous desensitization of metabotropic glutamate receptor 1. FASEB J 2000; 14:2569-80. [PMID: 11099476 DOI: 10.1096/fj.00-0072com] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
G-protein-coupled receptor kinases (GRKs) are involved in the regulation of many G-protein-coupled receptors. As opposed to the other GRKs, such as rhodopsin kinase (GRK1) or beta-adrenergic receptor kinase (beta ARK, GRK2), no receptor substrate for GRK4 has been so far identified. Here we show that GRK4 is expressed in cerebellar Purkinje cells, where it regulates mGlu(1) metabotropic glutamate receptors, as indicated by the following: 1) When coexpressed in heterologous cells (HEK293), mGlu(1) receptor signaling was desensitized by GRK4 in an agonist-dependent manner (homologous desensitization). 2) In transfected HEK293 and in cultured Purkinje cells, the exposure to glutamate agonists induced internalization of the receptor and redistribution of GRK4. There was a substantial colocalization of the receptor and kinase both under basal condition and after internalization. 3) Kinase activity was necessary for desensitizing mGlu(1a) receptor and agonist-dependent phosphorylation of this receptor was also documented. 4) Antisense treatment of cultured Purkinje cells, which significantly reduced the levels of GRK4 expression, induced a marked modification of the mGlu(1)-mediated functional response, consistent with an impaired receptor desensitization. The critical role for GRK4 in regulating mGlu(1) receptors implicates a major involvement of this kinase in the physiology of Purkinje cell and in motor learning.
Collapse
Affiliation(s)
- M Sallese
- Department of Molecular Pharmacology and Pathology, Consorzio Mario Negri Sud, Istituto di Ricerche Farmacologiche Mario Negri, Santa Maria Imbaro, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Horie K, Insel PA. Retrovirally mediated transfer of a G protein-coupled receptor kinase (GRK) dominant-negative mutant enhances endogenous calcitonin receptor signaling in Chinese hamster ovary cells. GRK inhibition enhances expression of receptors and receptor mRNA. J Biol Chem 2000; 275:29433-40. [PMID: 10889199 DOI: 10.1074/jbc.m003413200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptor kinases (GRKs) initiate pathways leading to agonist-dependent phosphorylation and desensitization of G protein-coupled receptors. However, the role of GRKs in modulation of signaling properties of native receptors has not been clearly defined. Here we addressed this question by generating Chinese hamster ovary (CHO) cells stably expressing a dominant-negative mutant of GRK2 (DN-GRK2), K220R, using retrovirally mediated gene transfer, and we assessed function of the endogenously expressed calcitonin (CT) receptors. We found that CT-mediated responses were prominently enhanced in CHO cells expressing DN-GRK2 compared with mock-infected control CHO cells with approximately 3-fold increases in CT-promoted cAMP production in whole cells and adenylyl cyclase activity in membrane fractions. CT-promoted phosphoinositide hydrolysis was also enhanced in DN-GRK2 cells. The number of CT receptors was increased approximately 3-fold in DN-GRK2 cells, as assessed by (125)I-salmon CT-specific binding, and this was associated with increased CT receptor mRNA levels. These results indicate that DN-GRK2 has multiple consequences for CT receptor signaling, but a primary effect is an increase in CT receptor mRNA and receptor number and, in turn, enhanced CT receptor signaling. As such, our findings provide a mechanistic basis for previous observations regarding agonist-promoted down-regulation of CT receptors and for resistance and escape from response to CT in vitro and in vivo. Moreover, the data suggest that blunting of receptor desensitization by DN-GRK2 blocks a GRK-mediated tonic inhibition of CT receptor expression and response. We speculate that GRKs play a similar role for other G protein-coupled receptors as well.
Collapse
Affiliation(s)
- K Horie
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
41
|
García-Sáinz JA, Vázquez-Prado J, del Carmen Medina L. Alpha 1-adrenoceptors: function and phosphorylation. Eur J Pharmacol 2000; 389:1-12. [PMID: 10686290 DOI: 10.1016/s0014-2999(99)00896-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This review focuses on alpha(1)-adrenoceptor phosphorylation and function. Most of what is currently known is based on studies on the hamster alpha(1B)-adrenoceptor. It is known that agonist stimulation leads to homologous desensitization of these receptors and current evidence indicates that such decrease in receptor activity is associated with receptor phosphorylation. Such receptor phosphorylation seems to involve G protein-receptor kinases and the receptor phosphorylation sites have been located in the carboxyl tail (Ser(404), Ser(408), and Ser(410)). There is also evidence showing that in addition to desensitization, receptor phosphorylation is associated with internalization and roles of beta-arrestins have been observed. Direct activation of protein kinase C leads to receptor desensitization/internalization associated with phosphorylation; the protein-kinase-C-catalyzed receptor phosphorylation sites have been also located in the carboxyl tail (Ser(394) and Ser(400)). Activation of G(q)-coupled receptors, such as the endothelin ET(A) receptor induces alpha(1B)-adrenoceptor phosphorylation and desensitization. Such effect involves protein kinase C and a yet unidentified tyrosine kinase. Activation of G(i)-coupled receptors, such as the lysophosphatidic acid receptor, also induces alpha(1B)-adrenoceptor phosphorylation and desensitization. These effects involve protein kinase C and phosphatidyl inositol 3-kinase. Interestingly, activation of epidermal growth factor receptors also induces alpha(1B)-adrenoceptor phosphorylation and desensitization involving protein kinase C and phosphatidyl inositol 3-kinase. A pivotal role of these kinases in heterologous desensitization is evidenced.
Collapse
Affiliation(s)
- J A García-Sáinz
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México. Apartado postal 70-248, México, Mexico.
| | | | | |
Collapse
|
42
|
Eckhart AD, Duncan SJ, Penn RB, Benovic JL, Lefkowitz RJ, Koch WJ. Hybrid transgenic mice reveal in vivo specificity of G protein-coupled receptor kinases in the heart. Circ Res 2000; 86:43-50. [PMID: 10625304 DOI: 10.1161/01.res.86.1.43] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
G protein-coupled receptor kinases (GRKs) phosphorylate activated G protein-coupled receptors, including alpha(1B)-adrenergic receptors (ARs), resulting in desensitization. In vivo analysis of GRK substrate selectivity has been limited. Therefore, we generated hybrid transgenic mice with myocardium-targeted overexpression of 1 of 3 GRKs expressed in the heart (GRK2 [commonly known as the beta-AR kinase 1], GRK3, or GRK5) with concomitant cardiac expression of a constitutively activated mutant (CAM) or wild-type alpha(1B)AR. Transgenic mice with cardiac CAMalpha(1B)AR overexpression had enhanced myocardial alpha(1)AR signaling and elevated heart-to-body weight ratios with ventricular atrial natriuretic factor expression denoting myocardial hypertrophy. Transgenic mouse hearts overexpressing only GRK2, GRK3, or GRK5 had no hypertrophy. In hybrid transgenic mice, enhanced in vivo signaling through CAMalpha(1B)ARs, as measured by myocardial diacylglycerol content, was attenuated by concomitant overexpression of GRK3 but not GRK2 or GRK5. CAMalpha(1B)AR-induced hypertrophy and ventricular atrial natriuretic factor expression were significantly attenuated with either concurrent GRK3 or GRK5 overexpression. Similar GRK selectivity was seen in hybrid transgenic mice with wild-type alpha(1B)AR overexpression concurrently with a GRK. GRK2 overexpression was without effect on any in vivo CAM or wild-type alpha(1B)AR cardiac phenotype, which is in contrast to previously reported in vitro findings. Furthermore, endogenous myocardial alpha(1)AR mitogen-activated protein kinase signaling in single-GRK transgenic mice also exhibited selectivity, as GRK3 and GRK5 desensitized in vivo alpha(1)AR mitogen-activated protein kinase responses that were unaffected by GRK2 overexpression. Thus, these results demonstrate that GRKs differentially interact with alpha(1B)ARs in vivo such that GRK3 desensitizes all alpha(1B)AR signaling, whereas GRK5 has partial effects and, most interestingly, GRK2 has no effect on in vivo alpha(1B)AR signaling in the heart.
Collapse
Affiliation(s)
- A D Eckhart
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|