1
|
Chronic Trazodone and Citalopram Treatments Increase Trophic Factor and Circadian Rhythm Gene Expression in Rat Brain Regions Relevant for Antidepressant Efficacy. Int J Mol Sci 2022; 23:ijms232214041. [PMID: 36430520 PMCID: PMC9698904 DOI: 10.3390/ijms232214041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Trazodone is an efficacious atypical antidepressant acting both as an SSRI and a 5HT2A and 5HT2C antagonist. Antagonism to H1-histaminergic and alpha1-adrenergic receptors is responsible for a sleep-promoting action. We studied long-term gene expression modulations induced by chronic trazodone to investigate the molecular underpinning of trazodone efficacy. Rats received acute or chronic treatment with trazodone or citalopram. mRNA expression of growth factor and circadian rhythm genes was evaluated by qPCR in the prefrontal cortex (PFCx), hippocampus, Nucleus Accumbens (NAc), amygdala, and hypothalamus. CREB levels and phosphorylation state were evaluated using Western blotting. BDNF levels were significantly increased in PFCx and hippocampus by trazodone and in the NAc and hypothalamus by citalopram. Likewise, TrkB receptor levels augmented in the PFCx after trazodone and in the amygdala after citalopram. FGF-2 and FGFR2 levels were higher after trazodone in the PFCx. The CREB phosphorylation state was increased by chronic trazodone in the PFCx, hippocampus, and hypothalamus. Bmal1 and Per1 were increased by both antidepressants after acute and chronic treatments, while Per2 levels were specifically augmented by chronic trazodone in the PFCx and NAc, and by citalopram in the PFCx, amygdala, and NAc. These findings show that trazodone affects the expression of neurotrophic factors involved in antidepressant responses and alters circadian rhythm genes implicated in the pathophysiology of depression, thus shedding light on trazodone's molecular mechanism of action.
Collapse
|
2
|
Xiao L, Loh YP. Neurotrophic Factor-α1/Carboxypeptidase E Functions in Neuroprotection and Alleviates Depression. Front Mol Neurosci 2022; 15:918852. [PMID: 35711734 PMCID: PMC9197069 DOI: 10.3389/fnmol.2022.918852] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Depression is a major psychiatric disease affecting all ages and is often co-morbid with neurodegeneration in the elderly. Depression and neurodegeneration are associated with decreased neurotrophic factors. In this mini-review the functions and potential therapeutic use of a newly discovered trophic factor, Neurotrophic factor-α1 (NF-α1), also known as Carboxypeptidase E (CPE), in depression and neuroprotection are discussed. NF-α1/CPE expression is enriched in CA3 neurons of the hippocampus. Families carrying null and homozygous non-sense mutations of the NF-α1/CPE gene share common clinical features including childhood onset obesity, type 2 diabetes, impaired intellectual abilities and hypogonadotrophic hypogonadism. Studies in animal models such as CPE knockout (KO) mice and CPEfat/fat mutant mice exhibit similar phenotypes. Analysis of CPE-KO mouse brain revealed that hippocampal CA3 was completely degenerated after weaning stress, along with deficits in hippocampal long-term potentiation. Carbamazepine effectively blocked weaning stress-induced hippocampal CA3 degeneration, suggesting the stress induced epileptic-like neuronal firing led to the degeneration. Analysis of possible mechanisms underlying NF-α1/CPE -mediated neuroprotection revealed that it interacts with the serotonin receptor, 5-HTR1E, and via β arrestin activation, subsequently upregulates ERK1/2 signaling and pro-survival protein, BCL2, levels. Furthermore, the NF-α1/CPE promoter contains a peroxisome proliferator-activated receptor (PPARγ) binding site which can be activated by rosiglitazone, a PPARγ agonist, to up-regulate expression of NF-α1/CPE and neurogenesis, resulting in anti-depression in animal models. Rosiglitazone, an anti-diabetic drug administered to diabetic patients resulted in decline of depression. Thus, NF-α1/CPE is a potential therapeutic agent or drug target for treating depression and neurodegenerative disorders.
Collapse
|
3
|
Jeong M, Bojkovic K, Sagi V, Stankovic KM. Molecular and Clinical Significance of Fibroblast Growth Factor 2 in Development and Regeneration of the Auditory System. Front Mol Neurosci 2022; 14:757441. [PMID: 35002617 PMCID: PMC8733209 DOI: 10.3389/fnmol.2021.757441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/18/2021] [Indexed: 01/25/2023] Open
Abstract
The fibroblast growth factor 2 (FGF2) is a member of the FGF family which is involved in key biological processes including development, cellular proliferation, wound healing, and angiogenesis. Although the utility of the FGF family as therapeutic agents has attracted attention, and FGF2 has been studied in several clinical contexts, there remains an incomplete understanding of the molecular and clinical function of FGF2 in the auditory system. In this review, we highlight the role of FGF2 in inner ear development and hearing protection and present relevant clinical studies for tympanic membrane (TM) repair. We conclude by discussing the future implications of FGF2 as a potential therapeutic agent.
Collapse
Affiliation(s)
- Minjin Jeong
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States.,Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, United States
| | - Katarina Bojkovic
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, United States
| | - Varun Sagi
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States.,University of Minnesota Medical School, Minneapolis, MN, United States
| | - Konstantina M Stankovic
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States.,Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Kamel LY, Xiong W, Gott BM, Kumar A, Conway CR. Vagus nerve stimulation: An update on a novel treatment for treatment-resistant depression. J Neurol Sci 2022; 434:120171. [DOI: 10.1016/j.jns.2022.120171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/21/2021] [Accepted: 01/21/2022] [Indexed: 12/11/2022]
|
5
|
Martins-Macedo J, Salgado AJ, Gomes ED, Pinto L. Adult brain cytogenesis in the context of mood disorders: From neurogenesis to the emergent role of gliogenesis. Neurosci Biobehav Rev 2021; 131:411-428. [PMID: 34555383 DOI: 10.1016/j.neubiorev.2021.09.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022]
Abstract
Psychiatric disorders severely impact patients' lives. Motivational, cognitive and emotional deficits are the most common symptoms observed in these patients and no effective treatment is still available, either due to the adverse side effects or the low rate of efficacy of currently available drugs. Neurogenesis recovery has been one important focus in the treatment of psychiatric disorders, which undeniably contributes to the therapeutic action of antidepressants. However, glial plasticity is emerging as a new strategy to explore the deficits observed in mood disorders and the efficacy of therapeutic interventions. Thus, it is crucial to understand the mechanisms behind glio- and neurogenesis to better define treatments and preventive therapies, once adult cytogenesis is of pivotal importance to cognitive and emotional components of behavior, both in healthy and pathological contexts, including in psychiatric disorders. Here, we review the concepts and history of neuro- and gliogenesis, providing as well a reflection on the functional importance of cytogenesis in the context of disease.
Collapse
Affiliation(s)
- Joana Martins-Macedo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Eduardo D Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
6
|
Klimaschewski L, Claus P. Fibroblast Growth Factor Signalling in the Diseased Nervous System. Mol Neurobiol 2021; 58:3884-3902. [PMID: 33860438 PMCID: PMC8280051 DOI: 10.1007/s12035-021-02367-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
Fibroblast growth factors (FGFs) act as key signalling molecules in brain development, maintenance, and repair. They influence the intricate relationship between myelinating cells and axons as well as the association of astrocytic and microglial processes with neuronal perikarya and synapses. Advances in molecular genetics and imaging techniques have allowed novel insights into FGF signalling in recent years. Conditional mouse mutants have revealed the functional significance of neuronal and glial FGF receptors, not only in tissue protection, axon regeneration, and glial proliferation but also in instant behavioural changes. This review provides a summary of recent findings regarding the role of FGFs and their receptors in the nervous system and in the pathogenesis of major neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Lars Klimaschewski
- Department of Anatomy, Histology and Embryology, Institute of Neuroanatomy, Medical University of Innsbruck, Innsbruck, Austria.
| | - Peter Claus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
7
|
Liran M, Rahamim N, Ron D, Barak S. Growth Factors and Alcohol Use Disorder. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a039271. [PMID: 31964648 DOI: 10.1101/cshperspect.a039271] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neurotrophic growth factors were originally characterized for their support in neuronal differentiation, outgrowth, and survival during development. However, it has been acknowledged that they also play a vital role in the adult brain. Abnormalities in growth factors have been implicated in a variety of neurological and psychiatric disorders, including alcohol use disorder (AUD). This work focuses on the interaction between alcohol and growth factors. We review literature suggesting that several growth factors play a unique role in the regulation of alcohol consumption, and that breakdown in these growth factor systems is linked to the development of AUD. Specifically, we focus on the brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), fibroblast growth factor 2 (FGF2), and insulin growth factor 1 (IGF-1). We also review the literature on the potential role of midkine (MDK) and pleiotrophin (PTN) and their receptor, anaplastic lymphoma kinase (ALK), in AUD. We show that alcohol alters the expression of these growth factors or their receptors in brain regions previously implicated in addiction, and that manipulations on these growth factors and their downstream signaling can affect alcohol-drinking behaviors in animal models. We conclude that there is a need for translational and clinical research to assess the therapeutic potential of new pharmacotherapies targeting these systems.
Collapse
Affiliation(s)
- Mirit Liran
- Department of Neurobiology, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Nofar Rahamim
- Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Dorit Ron
- Department of Neurology, University of California, 675 Nelson Rising Lane, San Francisco, California 94143-0663, USA
| | - Segev Barak
- Department of Neurobiology, Tel Aviv University, 69978 Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel.,School of Psychological Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| |
Collapse
|
8
|
Lou YX, Wang ZZ, Xia CY, Mou Z, Ren Q, Liu DD, Zhang X, Chen NH. The protective effect of ginsenoside Rg1 on depression may benefit from the gap junction function in hippocampal astrocytes. Eur J Pharmacol 2020; 882:173309. [PMID: 32598952 DOI: 10.1016/j.ejphar.2020.173309] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 01/12/2023]
Abstract
Studies have shown that the ginsenoside Rg1 can improve depressive symptoms in vitro and in vivo. However, the efficacy of Rg1on the hippocampal astrocyte gap junctions in depression are unclear. We mainly aimed to explore the relationship between Rg1, hippocampal astrocyte gap junctions and depression. Using primary cultured astrocytes, corticosterone (CORT) was used to induce stress. CORT (100 μM) significantly reduced the survival rate in astrocytes, and this effect was prevented by additional Rg1 administration. Interestingly, the gap junction blocker carbenoxolone (CBX) was able to revert this Rg1 effect. In in vivo models, one group was exposed to chronic unpredictable stress (CUS) for 47 days, while another group was bilaterally injected with CBX (100 μM) into the hippocampal CA1 region. Rats treated with Rg1 (20 mg/kg) showed an improvement in the sucrose preference and the forced swimming test in both models, indicating an antidepressive activity of Rg1. The levels of astrocyte gap junction connexin 43 (Cx43) were detected by immunofluorescence (IF) and western blotting. The levels of glial fibrillary acidic protein (GFAP) were detected by IF. The gap junctions in the hippocampal CA1 area were evaluated using dye transfer and electron microscopy. The reduction in Cx43 expression, the decrease in the Cx43 to GFAP ratio, the shorter dye diffusion distance, and the abnormal ultrastructure of gap junctions in rats exposed to CUS were markedly alleviated by concomitant Rg1 treatment. Taken together, the ginsenoside Rg1 could improve depression-like behavior in rats induced by astrocyte gap junction dysfunction in the hippocampus.
Collapse
Affiliation(s)
- Yu-Xia Lou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Cong-Yuan Xia
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zheng Mou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qian Ren
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Dan-Dan Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xin Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
9
|
Kin K, Yasuhara T, Kameda M, Tomita Y, Umakoshi M, Kuwahara K, Kin I, Kidani N, Morimoto J, Okazaki M, Sasaki T, Tajiri N, Borlongan CV, Date I. Cell encapsulation enhances antidepressant effect of the mesenchymal stem cells and counteracts depressive-like behavior of treatment-resistant depressed rats. Mol Psychiatry 2020; 25:1202-1214. [PMID: 30108315 DOI: 10.1038/s41380-018-0208-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/05/2018] [Accepted: 06/20/2018] [Indexed: 12/20/2022]
Abstract
Despite the advances in pharmacological therapies, only the half of depressed patients respond to currently available treatment. Thus, the need for further investigation and development of effective therapies, especially those designed for treatment-resistant depression, has been sorely needed. Although antidepressant effects of mesenchymal stem cells (MSCs) have been reported, the potential benefit of this cell therapy on treatment-resistant depression is unknown. Cell encapsulation may enhance the survival rate of grafted cells, but the therapeutic effects and mechanisms mediating encapsulation of MSCs remain unexplored. Here, we showed that encapsulation enhanced the antidepressant effects of MSCs by attenuating depressive-like behavior of Wistar Kyoto (WKY) rats, which are considered as a promising animal model of treatment-resistant depression. The implantation of encapsulated MSCs (eMSCs) into the lateral ventricle counteracted depressive-like behavior and enhanced the endogenous neurogenesis in the subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampus, whereas the implantation of MSCs without encapsulation or the implantation of eMSCs into the striatum did not show such ameliorative effects. eMSCs displayed robust and stable secretion of vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor, fibroblast growth factor-2, and ciliary neurotrophic factor (CNTF), and the implantation of eMSCs into the lateral ventricle activated relevant pathways associated with these growth factors. Additionally, eMSCs upregulated intrinsic expression of VEGF and CNTF and their receptors. This study suggests that the implantation of eMSCs into the lateral ventricle exerted antidepressant effects likely acting via neurogenic pathways, supporting their utility for depression treatment.
Collapse
Affiliation(s)
- Kyohei Kin
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan.
| | - Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Masahiro Kameda
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Yousuke Tomita
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Michiari Umakoshi
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Ken Kuwahara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Ittetsu Kin
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Naoya Kidani
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Jun Morimoto
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Mihoko Okazaki
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Tatsuya Sasaki
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Naoki Tajiri
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan.,Department of Psychology, Kibi International University Graduate School of Psychology, 8, iga-cho, takahashi-shi, Okayama, 716-8508, Japan
| | - Cesario V Borlongan
- Department of Neurosurgery, University of South Florida College Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| |
Collapse
|
10
|
Kumar R, Tang Q, Müller SA, Gao P, Mahlstedt D, Zampagni S, Tan Y, Klingl A, Bötzel K, Lichtenthaler SF, Höglinger GU, Koeglsperger T. Fibroblast Growth Factor 2-Mediated Regulation of Neuronal Exosome Release Depends on VAMP3/Cellubrevin in Hippocampal Neurons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902372. [PMID: 32195080 PMCID: PMC7080514 DOI: 10.1002/advs.201902372] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/11/2019] [Indexed: 05/06/2023]
Abstract
Extracellular vesicles (EVs) are endogenous membrane-derived vesicles that shuttle bioactive molecules between glia and neurons, thereby promoting neuronal survival and plasticity in the central nervous system (CNS) and contributing to neurodegenerative conditions. Although EVs hold great potential as CNS theranostic nanocarriers, the specific molecular factors that regulate neuronal EV uptake and release are currently unknown. A combination of patch-clamp electrophysiology and pH-sensitive dye imaging is used to examine stimulus-evoked EV release in individual neurons in real time. Whereas spontaneous electrical activity and the application of a high-frequency stimulus induce a slow and prolonged fusion of multivesicular bodies (MVBs) with the plasma membrane (PM) in a subset of cells, the neurotrophic factor basic fibroblast growth factor (bFGF) greatly increases the rate of stimulus-evoked MVB-PM fusion events and, consequently, the abundance of EVs in the culture medium. Proteomic analysis of neuronal EVs demonstrates bFGF increases the abundance of the v-SNARE vesicle-associated membrane protein 3 (VAMP3, cellubrevin) on EVs. Conversely, knocking-down VAMP3 in cultured neurons attenuates the effect of bFGF on EV release. The results determine the temporal characteristics of MVB-PM fusion in hippocampal neurons and reveal a new function for bFGF signaling in controlling neuronal EV release.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Translational NeurodegenerationGerman Centre for Neurodegenerative DiseasesFeodor‐Lynen‐Str. 1781377MunichGermany
- Department of NeurologyLudwig Maximilian UniversityMarchioninistr. 1581377MunichGermany
- Graduate Program for Experimental MedicineFaculty of MedicineTechnical University of MunichIsmaninger Straße 2281675MünchenGermany
| | - Qilin Tang
- Department of Translational NeurodegenerationGerman Centre for Neurodegenerative DiseasesFeodor‐Lynen‐Str. 1781377MunichGermany
- Department of NeurologyLudwig Maximilian UniversityMarchioninistr. 1581377MunichGermany
| | - Stephan A. Müller
- Department of NeuroproteomicsGerman Centre for Neurodegenerative DiseasesFeodor‐Lynen‐Str. 1781377MunichGermany
| | - Pan Gao
- Department of Translational NeurodegenerationGerman Centre for Neurodegenerative DiseasesFeodor‐Lynen‐Str. 1781377MunichGermany
| | - Diana Mahlstedt
- Department of Translational NeurodegenerationGerman Centre for Neurodegenerative DiseasesFeodor‐Lynen‐Str. 1781377MunichGermany
- Graduate Program for Experimental MedicineFaculty of MedicineTechnical University of MunichIsmaninger Straße 2281675MünchenGermany
| | - Sofia Zampagni
- Department of Translational NeurodegenerationGerman Centre for Neurodegenerative DiseasesFeodor‐Lynen‐Str. 1781377MunichGermany
| | - Yi Tan
- Department of Translational NeurodegenerationGerman Centre for Neurodegenerative DiseasesFeodor‐Lynen‐Str. 1781377MunichGermany
- Graduate Program for Experimental MedicineFaculty of MedicineTechnical University of MunichIsmaninger Straße 2281675MünchenGermany
| | - Andreas Klingl
- Plant Development and Electron MicroscopyDepartment of Biology IBiocenterLudwig Maximilian UniversityGroßhaderner Str. 282152Planegg‐MartinsriedGermany
| | - Kai Bötzel
- Department of NeurologyLudwig Maximilian UniversityMarchioninistr. 1581377MunichGermany
| | - Stefan F. Lichtenthaler
- Department of NeuroproteomicsGerman Centre for Neurodegenerative DiseasesFeodor‐Lynen‐Str. 1781377MunichGermany
- NeuroproteomicsKlinikum rechts der IsarInstitute for Advanced StudyTechnical University of MunichIsmaninger Straße 2281675MunichGermany
| | - Günter U. Höglinger
- Department of Translational NeurodegenerationGerman Centre for Neurodegenerative DiseasesFeodor‐Lynen‐Str. 1781377MunichGermany
- Department of Neurology (OE 7210)Hannover Medical SchoolCarl‐Neuberg‐Str. 130625HannoverGermany
- Department of NeurologyTechnical University of MunichIsmaninger Str. 2281675MunichGermany
| | - Thomas Koeglsperger
- Department of Translational NeurodegenerationGerman Centre for Neurodegenerative DiseasesFeodor‐Lynen‐Str. 1781377MunichGermany
- Department of NeurologyLudwig Maximilian UniversityMarchioninistr. 1581377MunichGermany
| |
Collapse
|
11
|
Park JY, Chae S, Kim CS, Kim YJ, Yi HJ, Han E, Joo Y, Hong S, Yun JW, Kim H, Shin KH. Role of nociceptin/orphanin FQ and nociceptin opioid peptide receptor in depression and antidepressant effects of nociceptin opioid peptide receptor antagonists. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:427-448. [PMID: 31680765 PMCID: PMC6819898 DOI: 10.4196/kjpp.2019.23.6.427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/11/2019] [Accepted: 08/26/2019] [Indexed: 01/28/2023]
Abstract
Nociceptin/orphanin FQ (N/OFQ) and its receptor, nociceptin opioid peptide (NOP) receptor, are localized in brain areas implicated in depression including the amygdala, bed nucleus of the stria terminalis, habenula, and monoaminergic nuclei in the brain stem. N/OFQ inhibits neuronal excitability of monoaminergic neurons and monoamine release from their terminals by activation of G protein-coupled inwardly rectifying K+ channels and inhibition of voltage sensitive calcium channels, respectively. Therefore, NOP receptor antagonists have been proposed as a potential antidepressant. Indeed, mounting evidence shows that NOP receptor antagonists have antidepressant-like effects in various preclinical animal models of depression, and recent clinical studies again confirmed the idea that blockade of NOP receptor signaling could provide a novel strategy for the treatment of depression. In this review, we describe the pharmacological effects of N/OFQ in relation to depression and explore the possible mechanism of NOP receptor antagonists as potential antidepressants.
Collapse
Affiliation(s)
- Jong Yung Park
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Suji Chae
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Chang Seop Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Yoon Jae Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Hyun Joo Yi
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Eunjoo Han
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Youngshin Joo
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Surim Hong
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Jae Won Yun
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Hyojung Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Kyung Ho Shin
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| |
Collapse
|
12
|
Hövel FFV, Leiter I, Rumpel R, Langenhagen A, Wedekind D, Häger C, Bleich A, Palme R, Grothe C. FGF-2 isoforms influence the development of dopaminergic neurons in the murine substantia nigra, but not anxiety-like behavior, stress susceptibility, or locomotor behavior. Behav Brain Res 2019; 374:112113. [PMID: 31381976 DOI: 10.1016/j.bbr.2019.112113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Loss of fibroblast growth factor 2 (FGF-2) is responsible for the development of an increased number of dopaminergic (DA) neurons in the murine substantia nigra pars compacta (SNpc). Furthermore, dysregulation of its expression patterns within the central nervous system (CNS) is associated with behavioral abnormalities in mice. Until now, the contributions of the individual FGF-2 isoforms (one low (LMW) and two high molecular weight (HMW) isoforms) in the CNS are elusive. METHODS To unravel the specific effects of FGF-2 isoforms, we compared three knockout mouse lines, one only deficient for LMW, one deficient for HMW and another lacking both isoforms, regarding DA neuronal development. With this regard, three time points of ontogenic development of the SNpc were stereologically investigated. Furthermore, behavioral aspects were analyzed in young adult mice, supplemented by corticosterone measurements. RESULTS Juvenile mice lacking either LMW or HMW develop equal supernumerary DA neuron numbers in the SNpc. Compensatory increased LMW expression is observed in animals lacking HMW. Meanwhile, no knockout mouse line demonstrated changes in anxiety-like behavior, stress susceptibility, or locomotor behavior. CONCLUSIONS Both FGF-2 isoforms crucially influence DA neuronal development in the murine SNpc. However, absence of LMW or HMW alone alters neither anxiety-like nor locomotor behavior, or stress susceptibility. Therefore, FGF-2 is not a determinant and causative factor for behavioral alterations alone, but probably in combination with appropriate conditions, like environmental or genetic factors.
Collapse
Affiliation(s)
- Friederike Freiin von Hövel
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hanover, Germany; Center for Systems Neuroscience (ZSN), Hanover, Germany
| | - Ina Leiter
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hanover, Germany; Center for Systems Neuroscience (ZSN), Hanover, Germany
| | - Regina Rumpel
- Institute for Laboratory Animal Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hanover, Germany
| | - Alina Langenhagen
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hanover, Germany; Center for Systems Neuroscience (ZSN), Hanover, Germany
| | - Dirk Wedekind
- Institute for Laboratory Animal Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hanover, Germany
| | - Christine Häger
- Institute for Laboratory Animal Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hanover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hanover, Germany
| | - Rupert Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Claudia Grothe
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hanover, Germany; Center for Systems Neuroscience (ZSN), Hanover, Germany.
| |
Collapse
|
13
|
Graham BM, Dong V, Richardson R. The impact of chronic fluoxetine on conditioned fear expression and hippocampal FGF2 in rats: Short- and long-term effects. Neurobiol Learn Mem 2018; 155:344-350. [DOI: 10.1016/j.nlm.2018.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/20/2018] [Accepted: 09/04/2018] [Indexed: 11/29/2022]
|
14
|
Kin K, Yasuhara T, Borlongan CV, Date I. Encapsulated stem cells ameliorate depressive-like behavior via growth factor secretion. Brain Circ 2018; 4:128-132. [PMID: 30450420 PMCID: PMC6187943 DOI: 10.4103/bc.bc_17_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/04/2018] [Accepted: 09/10/2018] [Indexed: 12/28/2022] Open
Abstract
As prevalence of depression continues to rise around the world, there remains a stagnation of available treatments as the affected population grows. The subset of treatment-resistant depression also is on the rise highlighting the need for innovative treatments to address this issue. Mesenchymal stem cells (MSCs) have been reported to attenuate depression-like behaviors, however, the effects of encapsulation of MSCs have yet to be investigated. Encapsulation of MSCs exhibited prolonged survival of exogenous cell injection accompanied with increased secretion of neurotrophic factors including vascular endothelial growth factor, ciliary neurotrophic factor, and others. The enhanced expression of these factors highlights the ability of encapsulated MSCs to upregulate the respective signaling pathways, which are associated with depression pathology and activation of neurogenesis. This treatment identifies a promising therapeutic option for depression, specifically treatment-resistant depression. Further, evaluation of long-term effects of the treatment is warranted. This paper is a review article. Referred literature in this paper has been listed in the references section. The datasets supporting the conclusions of this article are available online by searching various databases including PubMed. Some original themes in this article come from the laboratory practice in our research center and the authors' experiences.
Collapse
Affiliation(s)
- Kyohei Kin
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, FL, US
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Okayama, Japan
| |
Collapse
|
15
|
Simard S, Shail P, MacGregor J, El Sayed M, Duman RS, Vaccarino FM, Salmaso N. Fibroblast growth factor 2 is necessary for the antidepressant effects of fluoxetine. PLoS One 2018; 13:e0204980. [PMID: 30273396 PMCID: PMC6166983 DOI: 10.1371/journal.pone.0204980] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/18/2018] [Indexed: 01/01/2023] Open
Abstract
Previous research has shown that fibroblast growth factor 2 protein (FGF2) can act as an anxiolytic and anti-depressive agent in rodents. Levels of hippocampal FGF2 and FGF2 receptors are decreased in post-mortem brains of individuals with mood disorders. No changes in FGF2 were noted in the post-mortem brains of individuals with mood disorders that were successfully treated with anti-depressant medication prior to death. Mutations in the FGF2 gene in humans have been shown to predict non-responsiveness to the therapeutic effects of selective serotonin reuptake inhibitors (SSRIs). These findings suggest that FGF2 may potentially be a target of and/or required for the therapeutic effects of antidepressant medications. To test this, we employed a rodent model of depressive behaviour, chronic variable stress (CVS) in conjunction with antidepressant treatment (fluoxetine) in wild-type (WT) and FGF2 knockout mice (FGF2KO) and examined depressive and anxiety behaviors. Results showed that fluoxetine reversed the effects of CVS on depressive and anxiety behaviours in wild-type mice only, suggesting that the FGF2 gene is indeed necessary for the therapeutic effects of fluoxetine. Interestingly, CVS decreased hippocampal FGF2 levels and fluoxetine partially reversed this effect. Because FGF2 has been previously shown to modify HPA activity through hippocampal glucocorticoid receptors (GR), we examined levels of glucocorticoid receptors and found a decrease in GR in response to CVS, with a further decrease in FGF2KO. No effect of fluoxetine on GR was observed in either WT or FGF2KO mice. This suggests that further changes in glucocorticoid receptors are not necessary for the anti-depressant effects of fluoxetine in WT mice, although decreased glucocorticoid receptors in response to FGF2 deletion may preclude the therapeutic actions of fluoxetine in FGF2KO. Whether astroglia, astroglial functions, or HPA changes are the downstream target of FGF2-mediated changes induced by fluoxetine remains to be determined, however, the current study reaffirms the potential of FGF2 as a novel therapeutic target in the treatment of depression and anxiety disorders.
Collapse
Affiliation(s)
- Stephanie Simard
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Pragya Shail
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Jessica MacGregor
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Maha El Sayed
- Department of Psychiatry, Yale University, New Haven, Connecticut, United States of America
| | - Ronald S Duman
- Department of Psychiatry, Yale University, New Haven, Connecticut, United States of America
| | - Flora M Vaccarino
- Child Study Center, Yale University, New Haven, Connecticut, United States of America
| | - Natalina Salmaso
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada.,Child Study Center, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
16
|
Even-Chen O, Barak S. The role of fibroblast growth factor 2 in drug addiction. Eur J Neurosci 2018; 50:2552-2561. [PMID: 30144335 DOI: 10.1111/ejn.14133] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/08/2018] [Accepted: 08/16/2018] [Indexed: 12/21/2022]
Abstract
Fibroblast growth factor 2 (FGF2) is a member of the FGF-family, which consists of 22 members, with four known FGF receptors (five in humans). Over the last 30 years, FGF2 has been extensively studied for its role in cell proliferation, differentiation, growth, survival and angiogenesis during development, as well as for its role in adult neurogenesis and regenerative plasticity. Over the past decade, FGF2 has been implicated in learning and memory, as well as in several neuropsychiatric disorders, including anxiety, stress, depression and drug addiction. In this review, we present accumulating evidence indicating the involvement of FGF2 in neuroadaptations caused by drugs of abuse, namely, amphetamine, cocaine, nicotine and alcohol. Moreover, evidence suggests that FGF2 is a positive regulator of alcohol and drug-related behaviors. Thus, although additional studies are yet required, we suggest that reducing FGF2 activity may provide a novel therapeutic approach for substance use disorders.
Collapse
Affiliation(s)
- Oren Even-Chen
- School of Psychological Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Segev Barak
- School of Psychological Sciences, Tel Aviv University, 69978, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
17
|
The Mechanism of Action of Vagus Nerve Stimulation in Treatment-Resistant Depression: Current Conceptualizations. Psychiatr Clin North Am 2018; 41:395-407. [PMID: 30098653 DOI: 10.1016/j.psc.2018.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stimulation of the left cervical vagus nerve, or vagus nerve stimulation (VNS), brings about an antidepressant response in a subset of treatment-resistant depression (TRD) patients. How this occurs is poorly understood; however, knowledge of the neuroanatomic vagal pathways, in conjunction with functional brain imaging studies, suggests several brain regions associated with mood regulation are critical: brainstem nuclei (locus coeruleus, dorsal raphe, and ventral tegmental area), thalamus, and insular and prefrontal cortex. Furthermore, animal studies suggest that VNS enhances neuroplasticity and changes in neuronal firing patterns. Continued study to better understand the mechanism of action of VNS in TRD is warranted.
Collapse
|
18
|
Ren Q, Wang ZZ, Chu SF, Xia CY, Chen NH. Gap junction channels as potential targets for the treatment of major depressive disorder. Psychopharmacology (Berl) 2018; 235:1-12. [PMID: 29178009 DOI: 10.1007/s00213-017-4782-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 11/05/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) remains a major public health problem worldwide. The association between MDD and the dysfunction of gap junction channels (GJCs) in glial cells, especially astrocytes, is still controversial. OBJECTIVE This review provides an overview of the role of astrocyte GJCs in LMDD. RESULTS Exposure to chronic unpredictable stress caused a reduction in connexin expression in the rat prefrontal cortex, a result that is consistent with clinical findings reported in postmortem studies of brains from MDD patients. Chronic antidepressant treatment in these rats increased the expression of connexins. However, pharmacological GJC blockade in normal rodents decreased connexin expression and caused depressive-like behaviors. Furthermore, GJC dysfunction affects electrical conductance, metabolic coupling and secondary messengers, and inflammatory responses, which are consistent with current hypotheses on MDD. All these results provide a comprehensive overview of the neurobiology of MDD. CONCLUSION This review supports the hypothesis that the regulation of GJCs between astrocytes could be an underlying mechanism for the therapeutic effect of antidepressants.
Collapse
Affiliation(s)
- Qian Ren
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Cong-Yuan Xia
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China. .,College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
19
|
Gupta S, M-Redmond T, Meng F, Tidball A, Akil H, Watson S, Parent JM, Uhler M. Fibroblast growth factor 2 regulates activity and gene expression of human post-mitotic excitatory neurons. J Neurochem 2017; 145:188-203. [PMID: 29168882 DOI: 10.1111/jnc.14255] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 12/21/2022]
Abstract
Many neuropsychiatric disorders are thought to result from subtle changes in neural circuit formation. We used human embryonic stem cells and induced pluripotent stem cells (hiPSCs) to model mature, post-mitotic excitatory neurons and examine effects of fibroblast growth factor 2 (FGF2). FGF2 gene expression is known to be altered in brain regions of major depressive disorder (MDD) patients and FGF2 has anti-depressive effects in animal models of depression. We generated stable inducible neurons (siNeurons) conditionally expressing human neurogenin-2 (NEUROG2) to generate a homogenous population of post-mitotic excitatory neurons and study the functional as well as the transcriptional effects of FGF2. Upon induction of NEUROG2 with doxycycline, the vast majority of cells are post-mitotic, and the gene expression profile recapitulates that of excitatory neurons within 6 days. Using hES cell lines that inducibly express NEUROG2 as well as GCaMP6f, we were able to characterize spontaneous calcium activity in these neurons and show that calcium transients increase in the presence of FGF2. The FGF2-responsive genes were determined by RNA-Seq. FGF2-regulated genes previously identified in non-neuronal cell types were up-regulated (EGR1, ETV4, SPRY4, and DUSP6) as a result of chronic FGF2 treatment of siNeurons. Novel neuron-specific genes were also identified that may mediate FGF2-dependent increases in synaptic efficacy including NRXN3, SYT2, and GALR1. Since several of these genes have been implicated in MDD previously, these results will provide the basis for more mechanistic studies of the role of FGF2 in MDD.
Collapse
Affiliation(s)
- Shweta Gupta
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Tanya M-Redmond
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Fan Meng
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrew Tidball
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Huda Akil
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Stanley Watson
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Jack M Parent
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael Uhler
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, USA.,Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
20
|
Vitale G, Filaferro M, Micioni Di Bonaventura MV, Ruggieri V, Cifani C, Guerrini R, Simonato M, Zucchini S. Effects of [Nphe 1, Arg 14, Lys 15] N/OFQ-NH 2 (UFP-101), a potent NOP receptor antagonist, on molecular, cellular and behavioural alterations associated with chronic mild stress. J Psychopharmacol 2017; 31:691-703. [PMID: 28417659 DOI: 10.1177/0269881117691456] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The present study investigated the effect of [Nphe1] Arg14, Lys15-N/OFQ-NH2 (UFP-101), a selective NOP receptor antagonist, in chronic mild stress (CMS) in male Wistar rats. NOP receptor antagonists were reported to elicit antidepressant-like effects in rodents. Our aim was to investigate UFP-101 effects on CMS-induced anhedonia and impairment of hippocampal neurogenesis. UFP-101 (10 nmol/rat intracerebroventricularly) did not influence sucrose intake in non-stressed animals, but reinstated basal sucrose consumption in stressed animals from the second week of treatment. UFP-101 also reversed stress effects in forced swimming test and in open field. Fluoxetine (10 mg/kg intraperitoneally) produced similar effects. Moreover, we investigated whether UFP-101 could affect CMS-induced impairment in hippocampal cell proliferation and neurogenesis, and in fibroblast growth factor (FGF-2) expression. Our data confirm that CMS reduced neural stem cell proliferation and neurogenesis in adult rat hippocampus. Chronic UFP-101 treatment did not affect the reduced proliferation (bromodeoxyuridine-positive cells) observed in stressed animals. However, UFP-101 increased the number of doublecortin-positive cells, restoring neurogenesis. Finally, UFP-101 significantly increased FGF-2 expression, reduced by CMS. These findings support the view that blockade of NOP receptors produces antidepressant-like effects in CMS associated with positive effects on neurogenesis and FGF-2 expression. Therefore, NOP receptors may represent a target for innovative antidepressant drugs.
Collapse
Affiliation(s)
- Giovanni Vitale
- 1 Department Life Sciences, University of Modena and RE, Modena, Italy
| | - Monica Filaferro
- 2 Department Biomedical, Metabolical and Neuro-Sciences, University of Modena and RE, Modena, Italy
| | | | - Valentina Ruggieri
- 4 Department Medical and Surgical Sciences for Children & Adults - University Hospital of Modena, Modena, Italy
| | - Carlo Cifani
- 3 School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Remo Guerrini
- 5 Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Michele Simonato
- 6 Department Medical Sciences and Laboratory for the Technologies for Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Silvia Zucchini
- 6 Department Medical Sciences and Laboratory for the Technologies for Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| |
Collapse
|
21
|
Di Liberto V, Frinchi M, Verdi V, Vitale A, Plescia F, Cannizzaro C, Massenti MF, Belluardo N, Mudò G. Anxiolytic effects of muscarinic acetylcholine receptors agonist oxotremorine in chronically stressed rats and related changes in BDNF and FGF2 levels in the hippocampus and prefrontal cortex. Psychopharmacology (Berl) 2017; 234:559-573. [PMID: 27957715 DOI: 10.1007/s00213-016-4498-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 11/16/2016] [Indexed: 12/13/2022]
Abstract
RATIONALE In depressive disorders, one of the mechanisms proposed for antidepressant drugs is the enhancement of synaptic plasticity in the hippocampus and cerebral cortex. Previously, we showed that the muscarinic acetylcholine receptor (mAChR) agonist oxotremorine (Oxo) increases neuronal plasticity in hippocampal neurons via FGFR1 transactivation. OBJECTIVES Here, we aimed to explore (a) whether Oxo exerts anxiolytic effect in the rat model of anxiety-depression-like behavior induced by chronic restraint stress (CRS), and (b) if the anxiolytic effect of Oxo is associated with the modulation of neurotrophic factors, brain-derived neurotrophic factor (BDNF) and fibroblast growth factor-2 (FGF2), and phosphorylated Erk1/2 (p-Erk1/2) levels in the dorsal or ventral hippocampus and in the medial prefrontal cortex. METHODS The rats were randomly divided into four groups: control unstressed, CRS group, CRS group treated with 0.2 mg/kg Oxo, and unstressed group treated with Oxo. After 21 days of CRS, the groups were treated for 10 days with Oxo or saline. The anxiolytic role of Oxo was tested by using the following: forced swimming test, novelty suppressed feeding test, elevated plus maze test, and light/dark box test. The hippocampi and prefrontal cortex were used to evaluate BDNF and FGF2 protein levels and p-Erk1/2 levels. RESULTS Oxo treatment significantly attenuated anxiety induced by CRS. Moreover, Oxo treatment counteracted the CRS-induced reduction of BDNF and FGF2 levels in the ventral hippocampus and medial prefrontal cerebral cortex CONCLUSIONS: The present study showed that Oxo treatment ameliorates the stress-induced anxiety-like behavior and rescues FGF2 and BDNF levels in two brain regions involved in CRS-induced anxiety, ventral hippocampal formation, and medial prefrontal cortex.
Collapse
Affiliation(s)
- Valentina Di Liberto
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Corso Tukory 129, 90134, Palermo, Italy
| | - Monica Frinchi
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Corso Tukory 129, 90134, Palermo, Italy
| | - Vincenzo Verdi
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Corso Tukory 129, 90134, Palermo, Italy
| | - Angela Vitale
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Corso Tukory 129, 90134, Palermo, Italy
| | - Fulvio Plescia
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo, 90134, Palermo, Italy
| | - Carla Cannizzaro
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo, 90134, Palermo, Italy
| | - Maria F Massenti
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo, 90134, Palermo, Italy
| | - Natale Belluardo
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Corso Tukory 129, 90134, Palermo, Italy
| | - Giuseppa Mudò
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Corso Tukory 129, 90134, Palermo, Italy.
| |
Collapse
|
22
|
Turner CA, Eren-Koçak E, Inui EG, Watson SJ, Akil H. Dysregulated fibroblast growth factor (FGF) signaling in neurological and psychiatric disorders. Semin Cell Dev Biol 2016; 53:136-43. [PMID: 26454097 PMCID: PMC4833700 DOI: 10.1016/j.semcdb.2015.10.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/05/2015] [Indexed: 12/27/2022]
Abstract
The role of the fibroblast growth factor (FGF) system in brain-related disorders has received considerable attention in recent years. To understand the role of this system in neurological and psychiatric disorders, it is important to identify the specific members of the FGF family that are implicated, their location and the various mechanisms they can be modulated. Each disorder appears to impact specific molecular players in unique anatomical locations, and all of these could conceivably become targets for treatment. In the last several years, the issue of how to target this system directly has become an area of increasing interest. To date, the most promising therapeutics are small molecule inhibitors and antibodies that modulate FGF receptor (FGFR) function. Beyond attempting to modify the primary players affected by a given brain disorder, it may prove useful to target molecules, such as membrane-bound or extracellular proteins that interact with FGF ligands or FGFRs to modulate signaling.
Collapse
Affiliation(s)
- Cortney A Turner
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA.
| | - Emine Eren-Koçak
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | | | - Stanley J Watson
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Huda Akil
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
23
|
Abstract
Both gene expression profiling in postmortem human brain and studies using animal models have implicated the fibroblast growth factor (FGF) family in affect regulation and suggest a potential role in the pathophysiology of major depressive disorder (MDD). FGF2, the most widely characterized family member, is down-regulated in the depressed brain and plays a protective role in rodent models of affective disorders. By contrast, using three microarray analyses followed by quantitative RT-PCR confirmation, we show that FGF9 expression is up-regulated in the hippocampus of individuals with MDD, and that FGF9 expression is inversely related to the expression of FGF2. Because little is known about FGF9's function in emotion regulation, we used animal models to shed light on its potential role in affective function. We found that chronic social defeat stress, an animal model recapitulating some aspects of MDD, leads to a significant increase in hippocampal FGF9 expression, paralleling the elevations seen in postmortem human brain tissue. Chronic intracerebroventricular administration of FGF9 increased both anxiety- and depression-like behaviors. In contrast, knocking down FGF9 expression in the dentate gyrus of the hippocampus using a lentiviral vector produced a decrease in FGF9 expression and ameliorated anxiety-like behavior. Collectively, these results suggest that high levels of hippocampal FGF9 play an important role in the development or expression of mood and anxiety disorders. We propose that the relative levels of FGF9 in relation to other members of the FGF family may prove key to understanding vulnerability or resilience in affective disorders.
Collapse
|
24
|
The antidepressant mechanism of action of vagus nerve stimulation: Evidence from preclinical studies. Neurosci Biobehav Rev 2015; 56:26-34. [DOI: 10.1016/j.neubiorev.2015.06.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/19/2015] [Accepted: 06/21/2015] [Indexed: 01/22/2023]
|
25
|
Kajitani N, Hisaoka-Nakashima K, Okada-Tsuchioka M, Hosoi M, Yokoe T, Morioka N, Nakata Y, Takebayashi M. Fibroblast growth factor 2 mRNA expression evoked by amitriptyline involves extracellular signal-regulated kinase-dependent early growth response 1 production in rat primary cultured astrocytes. J Neurochem 2015; 135:27-37. [DOI: 10.1111/jnc.13247] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 01/17/2023]
Affiliation(s)
- Naoto Kajitani
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences; Hiroshima University; Minami-ku Hiroshima Japan
- Division of Psychiatry and Neuroscience; Institute for Clinical Research; National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer Center; Kure Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences; Hiroshima University; Minami-ku Hiroshima Japan
| | - Mami Okada-Tsuchioka
- Division of Psychiatry and Neuroscience; Institute for Clinical Research; National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer Center; Kure Japan
| | - Mayu Hosoi
- Division of Psychiatry and Neuroscience; Institute for Clinical Research; National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer Center; Kure Japan
| | - Toshiki Yokoe
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences; Hiroshima University; Minami-ku Hiroshima Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences; Hiroshima University; Minami-ku Hiroshima Japan
| | - Yoshihiro Nakata
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences; Hiroshima University; Minami-ku Hiroshima Japan
| | - Minoru Takebayashi
- Division of Psychiatry and Neuroscience; Institute for Clinical Research; National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer Center; Kure Japan
- Department of Psychiatry; National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer Center; Kure Japan
| |
Collapse
|
26
|
Koyama Y. Functional alterations of astrocytes in mental disorders: pharmacological significance as a drug target. Front Cell Neurosci 2015. [PMID: 26217185 PMCID: PMC4491615 DOI: 10.3389/fncel.2015.00261] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Astrocytes play an essential role in supporting brain functions in physiological and pathological states. Modulation of their pathophysiological responses have beneficial actions on nerve tissue injured by brain insults and neurodegenerative diseases, therefore astrocytes are recognized as promising targets for neuroprotective drugs. Recent investigations have identified several astrocytic mechanisms for modulating synaptic transmission and neural plasticity. These include altered expression of transporters for neurotransmitters, release of gliotransmitters and neurotrophic factors, and intercellular communication through gap junctions. Investigation of patients with mental disorders shows morphological and functional alterations in astrocytes. According to these observations, manipulation of astrocytic function by gene mutation and pharmacological tools reproduce mental disorder-like behavior in experimental animals. Some drugs clinically used for mental disorders affect astrocyte function. As experimental evidence shows their role in the pathogenesis of mental disorders, astrocytes have gained much attention as drug targets for mental disorders. In this paper, I review functional alterations of astrocytes in several mental disorders including schizophrenia, mood disorder, drug dependence, and neurodevelopmental disorders. The pharmacological significance of astrocytes in mental disorders is also discussed.
Collapse
Affiliation(s)
- Yutaka Koyama
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University Tondabayashi, Osaka, Japan
| |
Collapse
|
27
|
Costa V, Lugert S, Jagasia R. Role of adult hippocampal neurogenesis in cognition in physiology and disease: pharmacological targets and biomarkers. Handb Exp Pharmacol 2015; 228:99-155. [PMID: 25977081 DOI: 10.1007/978-3-319-16522-6_4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Adult hippocampal neurogenesis is a remarkable form of brain structural plasticity by which new functional neurons are generated from adult neural stem cells/precursors. Although the precise role of this process remains elusive, adult hippocampal neurogenesis is important for learning and memory and it is affected in disease conditions associated with cognitive impairment, depression, and anxiety. Immature neurons in the adult brain exhibit an enhanced structural and synaptic plasticity during their maturation representing a unique population of neurons to mediate specific hippocampal function. Compelling preclinical evidence suggests that hippocampal neurogenesis is modulated by a broad range of physiological stimuli which are relevant in cognitive and emotional states. Moreover, multiple pharmacological interventions targeting cognition modulate adult hippocampal neurogenesis. In addition, recent genetic approaches have shown that promoting neurogenesis can positively modulate cognition associated with both physiology and disease. Thus the discovery of signaling pathways that enhance adult neurogenesis may lead to therapeutic strategies for improving memory loss due to aging or disease. This chapter endeavors to review the literature in the field, with particular focus on (1) the role of hippocampal neurogenesis in cognition in physiology and disease; (2) extrinsic and intrinsic signals that modulate hippocampal neurogenesis with a focus on pharmacological targets; and (3) efforts toward novel strategies pharmacologically targeting neurogenesis and identification of biomarkers of human neurogenesis.
Collapse
Affiliation(s)
- Veronica Costa
- Roche Pharmaceutical Research and Early Development, Neuroscience Ophthalmology and Rare Diseases (NORD), Roche Innovation Center Basel, 124 Grenzacherstrasse, 4070, Basel, Switzerland
| | | | | |
Collapse
|
28
|
Morioka N, Suekama K, Zhang FF, Kajitani N, Hisaoka-Nakashima K, Takebayashi M, Nakata Y. Amitriptyline up-regulates connexin43-gap junction in rat cultured cortical astrocytes via activation of the p38 and c-Fos/AP-1 signalling pathway. Br J Pharmacol 2014; 171:2854-67. [PMID: 24641259 DOI: 10.1111/bph.12614] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/09/2014] [Accepted: 01/25/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Intercellular communication via gap junctions, comprised of connexin (Cx) proteins, allow for communication between astrocytes, which in turn is crucial for maintaining CNS homeostasis. The expression of Cx43 is decreased in post-mortem brains from patients with major depression. A potentially novel mechanism of tricyclic antidepressants is to increase the expression and functioning of gap junctions in astrocytes. EXPERIMENTAL APPROACH The effect of amitriptyline on the expression of Cx43 and gap junction intercellular communication (GJIC) in rat primary cultured cortical astrocytes was investigated. We also investigated the role of p38 MAPK intracellular signalling pathway in the amitriptyline-induced expression of Cx43 and GJIC. KEY RESULTS Treatment with amitriptyline for 48 h significantly up-regulated Cx43 mRNA, protein and GJIC. The up-regulation of Cx43 was not monoamine-related since noradrenaline, 5-HT and dopamine did not induce Cx43 expression and pretreatment with α- and β-adrenoceptor antagonists had no effect. Intracellular signalling involved p38 MAPK, as amitriptyline significantly increased p38 MAPK phosphorylation and Cx43 expression and GJIC were significantly blocked by the p38 inhibitor SB 202190. Furthermore, amitriptyline-induced Cx43 expression and GJIC were markedly reduced by transcription factor AP-1 inhibitors (curcumin and tanshinone IIA). The translocation of c-Fos from the cytosol and the nucleus of cortical astrocytes was increased by amitriptyline, and this response was dependent on p38 activity. CONCLUSION AND IMPLICATION These findings indicate a novel mechanism of action of amitriptyline through cortical astrocytes, and further suggest that targeting this mechanism could lead to the development of a new class of antidepressants.
Collapse
Affiliation(s)
- N Morioka
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, Minami-ku, Hiroshima, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Guidolin D, Agnati LF, Marcoli M, Borroto-Escuela DO, Fuxe K. G-protein-coupled receptor type A heteromers as an emerging therapeutic target. Expert Opin Ther Targets 2014; 19:265-83. [PMID: 25381716 DOI: 10.1517/14728222.2014.981155] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The discovery of receptor-receptor interactions (RRIs) in the early 1980s provided evidence that G-protein-coupled receptors (GPCRs) operate not only as monomers but also as heteromers, in which integration of the incoming signals takes place already at the plasma membrane level through allosteric RRIs. These integrative mechanisms give sophisticated dynamics to the structure and function of these receptor assemblies in terms of modulation of recognition, G-protein signaling and selectivity and switching to β-arrestin signaling. AREAS COVERED The present review briefly describes the concept of direct RRI and the available data on the mechanisms of oligomer formation. Further, pharmacological data concerning the best characterized heteromers involving type A GPCRs will be analyzed to evaluate their profile as possible targets for the treatment of various diseases, in particular of impacting diseases of the CNS. EXPERT OPINION GPCR heteromers have the potential to open a completely new field for pharmacology with likely a major impact in molecular medicine. Novel pharmacological strategies for the treatment of several pathologies have already been proposed. However, several challenges still exist to accurately characterize the role of the identified heteroreceptor complexes in pathology and to develop heteromer-specific ligands capable of efficiently exploiting their pharmacological features.
Collapse
Affiliation(s)
- Diego Guidolin
- University of Padova, Department of Molecular Medicine , via Gabelli 65, 35121 Padova , Italy +39 049 8272316 ; +39 049 8272319 ;
| | | | | | | | | |
Collapse
|
30
|
Evidence for fibroblast growth factor-2 as a mediator of amphetamine-enhanced motor improvement following stroke. PLoS One 2014; 9:e108031. [PMID: 25229819 PMCID: PMC4168218 DOI: 10.1371/journal.pone.0108031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/25/2014] [Indexed: 11/19/2022] Open
Abstract
Previously we have shown that addition of amphetamine to physical therapy results in enhanced motor improvement following stroke in rats, which was associated with the formation of new motor pathways from cortical projection neurons of the contralesional cortex. It is unclear what mechanisms are involved, but amphetamine is known to induce the neuronal release of catecholamines as well as upregulate fibroblast growth factor-2 (FGF-2) expression in the brain. Since FGF-2 has been widely documented to stimulate neurite outgrowth, the present studies were undertaken to provide evidence for FGF-2 as a neurobiological mechanism underlying amphetamine-induced neuroplasticity. In the present study rats that received amphetamine plus physical therapy following permanent middle cerebral artery occlusion exhibited significantly greater motor improvement over animals receiving physical therapy alone. Amphetamine plus physical therapy also significantly increased the number of FGF-2 expressing pyramidal neurons of the contralesional cortex at 2 weeks post-stroke and resulted in significant axonal outgrowth from these neurons at 8 weeks post-stroke. Since amphetamine is a known releaser of norepinephrine, in vitro analyses focused on whether noradrenergic stimulation could lead to neurite outgrowth in a manner requiring FGF-2 activity. Primary cortical neurons did not respond to direct stimulation by norepinephrine or amphetamine with increased neurite outgrowth. However, conditioned media from astrocytes exposed to norepinephrine or isoproterenol (a beta adrenergic agonist) significantly increased neurite outgrowth when applied to neuronal cultures. Adrenergic agonists also upregulated FGF-2 expression in astrocytes. Pharmacological analysis indicated that beta receptors and alpha1, but not alpha2, receptors were involved in both effects. Antibody neutralization studies demonstrated that FGF-2 was a critical contributor to neurite outgrowth induced by astrocyte-conditioned media. Taken together the present results suggest that noradrenergic activation, when combined with physical therapy, can improve motor recovery following ischemic damage by stimulating the formation of new neural pathways in an FGF-2-dependent manner.
Collapse
|
31
|
Hsu WCJ, Nilsson CL, Laezza F. Role of the axonal initial segment in psychiatric disorders: function, dysfunction, and intervention. Front Psychiatry 2014; 5:109. [PMID: 25191280 PMCID: PMC4139700 DOI: 10.3389/fpsyt.2014.00109] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/06/2014] [Indexed: 12/22/2022] Open
Abstract
The progress of developing effective interventions against psychiatric disorders has been limited due to a lack of understanding of the underlying cellular and functional mechanisms. Recent research findings focused on exploring novel causes of psychiatric disorders have highlighted the importance of the axonal initial segment (AIS), a highly specialized neuronal structure critical for spike initiation of the action potential. In particular, the role of voltage-gated sodium channels, and their interactions with other protein partners in a tightly regulated macromolecular complex has been emphasized as a key component in the regulation of neuronal excitability. Deficits and excesses of excitability have been linked to the pathogenesis of brain disorders. Identification of the factors and regulatory pathways involved in proper AIS function, or its disruption, can lead to the development of novel interventions that target these mechanistic interactions, increasing treatment efficacy while reducing deleterious off-target effects for psychiatric disorders.
Collapse
Affiliation(s)
- Wei-Chun Jim Hsu
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Graduate Program in Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- M.D.–Ph.D. Combined Degree Program, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Carol Lynn Nilsson
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Sealy Center for Molecular Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Center for Addiction Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Center for Biomedical Engineering, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
32
|
He S, Zhang T, Hong B, Peng D, Su H, Lin Z, Fang Y, Jiang K, Liu X, Li H. Decreased serum fibroblast growth factor - 2 levels in pre- and post-treatment patients with major depressive disorder. Neurosci Lett 2014; 579:168-72. [PMID: 25079902 DOI: 10.1016/j.neulet.2014.07.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 07/18/2014] [Accepted: 07/20/2014] [Indexed: 12/24/2022]
Abstract
Increasing evidence indicates that neurotrophic factor dysfunction might be involved in the pathophysiology and treatment of major depressive disorder (MDD). Fibroblast growth factor (FGF)-2, one of the major neurotrophins, plays an important role in the central nervous system (CNS). The aim of this study was to explore whether the FGF-2 in serum was associated with MDD and to evaluate the effects of antidepressant treatment on serum FGF-2 levels. Serum FGF-2 levels were determined in 28 pre- and post-treatment MDD patients and 30 healthy controls using ELISA. The results of the current study revealed that serum FGF-2 levels in MDD patients were significantly lower than those in healthy controls (p=0.005), and the serum FGF-2 levels decreased significantly but marginally following treatment for 8 weeks (p=0.005). These findings demonstrate that the lower serum FGF-2 levels contribute to the pathophysiology of MDD and that FGF-2 may be used as a peripheral biological marker for MDD.
Collapse
Affiliation(s)
- Shen He
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Tianhong Zhang
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Bo Hong
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Daihui Peng
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Hui Su
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Zhiguang Lin
- Biochemistry Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yiru Fang
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Kaida Jiang
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xiaohua Liu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Huafang Li
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Biochemistry Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Medical Institution Conducting Clinical Trials for Human Used Drug, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
33
|
Turner CA, Thompson RC, Bunney WE, Schatzberg AF, Barchas JD, Myers RM, Akil H, Watson SJ. Altered choroid plexus gene expression in major depressive disorder. Front Hum Neurosci 2014; 8:238. [PMID: 24795602 PMCID: PMC4001046 DOI: 10.3389/fnhum.2014.00238] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/02/2014] [Indexed: 11/13/2022] Open
Abstract
Given the emergent interest in biomarkers for mood disorders, we assessed gene expression in the choroid plexus (CP), the region that produces cerebrospinal fluid (CSF), in individuals with major depressive disorder (MDD). Genes that are expressed in the CP can be secreted into the CSF and may be potential biomarker candidates. Given that we have previously shown that fibroblast growth factor family members are differentially expressed in post-mortem brain of subjects with MDD and the CP is a known source of growth factors in the brain, we posed the question whether growth factor dysregulation would be found in the CP of subjects with MDD. We performed laser capture microscopy of the CP at the level of the hippocampus in subjects with MDD and psychiatrically normal controls. We then extracted, amplified, labeled, and hybridized the cRNA to Illumina BeadChips to assess gene expression. In controls, the most highly abundant known transcript was transthyretin. Moreover, half of the 14 most highly expressed transcripts in controls encode ribosomal proteins. Using BeadStudio software, we identified 169 transcripts differentially expressed (p < 0.05) between control and MDD samples. Using pathway analysis we noted that the top network altered in subjects with MDD included multiple members of the transforming growth factor-beta (TGFβ) pathway. Quantitative real-time PCR (qRT-PCR) confirmed downregulation of several transcripts that interact with the extracellular matrix in subjects with MDD. These results suggest that there may be an altered cytoskeleton in the CP in MDD subjects that may lead to a disrupted blood-CSF-brain barrier.
Collapse
Affiliation(s)
- Cortney A Turner
- Molecular and Behavioral Neuroscience Institute, University of Michigan Ann Arbor, MI, USA
| | - Robert C Thompson
- Molecular and Behavioral Neuroscience Institute, University of Michigan Ann Arbor, MI, USA ; Department of Psychiatry, University of Michigan Ann Arbor, MI, USA
| | - William E Bunney
- Psychiatry and Human Behavior, University of California - Irvine Irvine, CA, USA
| | - Alan F Schatzberg
- Department of Psychiatry and Behavioral Sciences, Stanford University Palo Alto, CA, USA
| | - Jack D Barchas
- Department of Psychiatry, Weill Cornell Medical College, Cornell University Ithaca, NY, USA
| | | | - Huda Akil
- Molecular and Behavioral Neuroscience Institute, University of Michigan Ann Arbor, MI, USA ; Department of Psychiatry, University of Michigan Ann Arbor, MI, USA
| | - Stanley J Watson
- Molecular and Behavioral Neuroscience Institute, University of Michigan Ann Arbor, MI, USA ; Department of Psychiatry, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
34
|
Perez-Caballero L, Torres-Sanchez S, Bravo L, Mico JA, Berrocoso E. Fluoxetine: a case history of its discovery and preclinical development. Expert Opin Drug Discov 2014; 9:567-78. [DOI: 10.1517/17460441.2014.907790] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Dang V, Medina B, Das D, Moghadam S, Martin KJ, Lin B, Naik P, Patel D, Nosheny R, Wesson Ashford J, Salehi A. Formoterol, a long-acting β2 adrenergic agonist, improves cognitive function and promotes dendritic complexity in a mouse model of Down syndrome. Biol Psychiatry 2014; 75:179-88. [PMID: 23827853 DOI: 10.1016/j.biopsych.2013.05.024] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/17/2013] [Accepted: 05/17/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Down syndrome is associated with significant failure in cognitive function. Our previous investigation revealed age-dependent degeneration of locus coeruleus, a major player in contextual learning, in the Ts65Dn mouse model of Down syndrome. We studied whether drugs already available for use in humans can be used to improve cognitive function in these mice. METHODS We studied the status of β adrenergic signaling in the dentate gyrus of the Ts65Dn mouse model of Down syndrome. Furthermore, we used fear conditioning to study learning and memory in these mice. Postmortem analyses included the analysis of synaptic density, dendritic arborization, and neurogenesis. RESULTS We found significant atrophy of dentate gyrus and failure of β adrenergic signaling in the hippocampus of Ts65Dn mice. Our behavioral analyses revealed that formoterol, a long-acting β2 adrenergic receptor agonist, caused significant improvement in the cognitive function in Ts65Dn mice. Postmortem analyses revealed that the use of formoterol was associated with a significant improvement in the synaptic density and increased complexity of newly born dentate granule neurons in the hippocampus of Ts65Dn mice. CONCLUSIONS Our data suggest that targeting β2 adrenergic receptors is an effective strategy for restoring synaptic plasticity and cognitive function in these mice. Considering its widespread use in humans and positive effects on cognition in Ts65Dn mice, formoterol or similar β2 adrenergic receptor agonists with ability to cross the blood brain barrier might be attractive candidates for clinical trials to improve cognitive function in individuals with Down syndrome.
Collapse
Affiliation(s)
- Van Dang
- Department of Psychiatry and Behavioral Sciences (VD, JWA, AS); Veterans Administration Palo Alto Health Care System (VD, BM, DD, SM, KJM, BL, PN, DP, JWA, AS), Palo Alto, California
| | - Brian Medina
- Veterans Administration Palo Alto Health Care System (VD, BM, DD, SM, KJM, BL, PN, DP, JWA, AS), Palo Alto, California
| | - Devsmita Das
- Veterans Administration Palo Alto Health Care System (VD, BM, DD, SM, KJM, BL, PN, DP, JWA, AS), Palo Alto, California
| | - Sarah Moghadam
- Veterans Administration Palo Alto Health Care System (VD, BM, DD, SM, KJM, BL, PN, DP, JWA, AS), Palo Alto, California
| | - Kara J Martin
- Veterans Administration Palo Alto Health Care System (VD, BM, DD, SM, KJM, BL, PN, DP, JWA, AS), Palo Alto, California
| | - Bill Lin
- Veterans Administration Palo Alto Health Care System (VD, BM, DD, SM, KJM, BL, PN, DP, JWA, AS), Palo Alto, California
| | - Priyanka Naik
- Veterans Administration Palo Alto Health Care System (VD, BM, DD, SM, KJM, BL, PN, DP, JWA, AS), Palo Alto, California
| | - Devan Patel
- Veterans Administration Palo Alto Health Care System (VD, BM, DD, SM, KJM, BL, PN, DP, JWA, AS), Palo Alto, California
| | - Rachel Nosheny
- Department of Molecular and Cellular Physiology (RN), Stanford University School of Medicine, Stanford
| | - John Wesson Ashford
- Department of Psychiatry and Behavioral Sciences (VD, JWA, AS); Veterans Administration Palo Alto Health Care System (VD, BM, DD, SM, KJM, BL, PN, DP, JWA, AS), Palo Alto, California
| | - Ahmad Salehi
- Department of Psychiatry and Behavioral Sciences (VD, JWA, AS); Veterans Administration Palo Alto Health Care System (VD, BM, DD, SM, KJM, BL, PN, DP, JWA, AS), Palo Alto, California.
| |
Collapse
|
36
|
Vaidya VA, Fernandes K, Jha S. Regulation of adult hippocampal neurogenesis: relevance to depression. Expert Rev Neurother 2014; 7:853-64. [PMID: 17610392 DOI: 10.1586/14737175.7.7.853] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recent hypotheses suggest that depression may involve an inability to mount adaptive structural changes in key neuronal networks. In particular, the addition of new neurons within the hippocampus, a limbic region implicated in mood disorders, is compromised in animal models of depression. Adult hippocampal neurogenesis is also a target for chronic antidepressant treatments, and an increase in adult hippocampal neurogenesis is implicated in the behavioral effects of antidepressants in animal models. The 'neurogenic' hypothesis of depression raises the intriguing possibility that hippocampal neurogenesis may contribute to the pathogenesis and treatment of depressive disorders. While there remains substantial debate about the precise relevance of hippocampal neurogenesis to mood disorders, this provocative hypothesis has been the focus of many recent studies. In this review, we discuss the pathways that may mediate the effects of depression models and antidepressants on adult hippocampal neurogenesis, and the promise of these studies in the development of novel antidepressants.
Collapse
Affiliation(s)
- Vidita A Vaidya
- Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India.
| | | | | |
Collapse
|
37
|
Fuxe K, Borroto-Escuela DO, Romero-Fernandez W, Palkovits M, Tarakanov AO, Ciruela F, Agnati LF. Moonlighting proteins and protein-protein interactions as neurotherapeutic targets in the G protein-coupled receptor field. Neuropsychopharmacology 2014; 39:131-55. [PMID: 24105074 PMCID: PMC3857668 DOI: 10.1038/npp.2013.242] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/04/2013] [Accepted: 07/05/2013] [Indexed: 12/28/2022]
Abstract
There is serious interest in understanding the dynamics of the receptor-receptor and receptor-protein interactions in space and time and their integration in GPCR heteroreceptor complexes of the CNS. Moonlighting proteins are special multifunctional proteins because they perform multiple autonomous, often unrelated, functions without partitioning into different protein domains. Moonlighting through receptor oligomerization can be operationally defined as an allosteric receptor-receptor interaction, which leads to novel functions of at least one receptor protomer. GPCR-mediated signaling is a more complicated process than previously described as every GPCR and GPCR heteroreceptor complex requires a set of G protein interacting proteins, which interacts with the receptor in an orchestrated spatio-temporal fashion. GPCR heteroreceptor complexes with allosteric receptor-receptor interactions operating through the receptor interface have become major integrative centers at the molecular level and their receptor protomers act as moonlighting proteins. The GPCR heteroreceptor complexes in the CNS have become exciting new targets for neurotherapeutics in Parkinson's disease, schizophrenia, drug addiction, and anxiety and depression opening a new field in neuropsychopharmacology.
Collapse
Affiliation(s)
- Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet,, Stockholm, Sweden
| | | | | | - Miklós Palkovits
- Department of Anatomy, Histology and Embryology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Alexander O Tarakanov
- Russian Academy of Sciences, St. Petersburg Institute for Informatics and Automation, Saint Petersburg, Russia
| | - Francisco Ciruela
- Facultat de Medicina, Departament de Patologia i Terapèutica Experimental IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Unitat de Farmacologia, Barcelona, Spain
| | | |
Collapse
|
38
|
Rajkowska G, Stockmeier CA. Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr Drug Targets 2013; 14:1225-36. [PMID: 23469922 PMCID: PMC3799810 DOI: 10.2174/13894501113149990156] [Citation(s) in RCA: 413] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/22/2013] [Accepted: 02/26/2013] [Indexed: 02/07/2023]
Abstract
The present paper reviews astrocyte pathology in major depressive disorder (MDD) and proposes that reductions in astrocytes and related markers are key features in the pathology of MDD. Astrocytes are the most numerous and versatile of all types of glial cells. They are crucial to the neuronal microenvironment by regulating glucose metabolism, neurotransmitter uptake (particularly for glutamate), synaptic development and maturation and the blood brain barrier. Pathology of astrocytes has been consistently noted in MDD as well as in rodent models of depressive-like behavior. This review summarizes evidence from human postmortem tissue showing alterations in the expression of protein and mRNA for astrocyte markers such as glial fibrillary acidic protein (GFAP), gap junction proteins (connexin 40 and 43), the water channel aquaporin-4 (AQP4), a calcium-binding protein S100B and glutamatergic markers including the excitatory amino acid transporters 1 and 2 (EAAT1, EAAT2) and glutamine synthetase. Moreover, preclinical studies are presented that demonstrate the involvement of GFAP and astrocytes in animal models of stress and depressive-like behavior and the influence of different classes of antidepressant medications on astrocytes. In light of the various astrocyte deficits noted in MDD, astrocytes may be novel targets for the action of antidepressant medications. Possible functional consequences of altered expression of astrocytic markers in MDD are also discussed. Finally, the unique pattern of cell pathology in MDD, characterized by prominent reductions in the density of astrocytes and in the expression of their markers without obvious neuronal loss, is contrasted with that found in other neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State St., Box 127, Jackson, MS 39216-4505, USA.
| | | |
Collapse
|
39
|
Implementing neuronal plasticity in NeuroAIDS: the experience of brain-derived neurotrophic factor and other neurotrophic factors. J Neuroimmune Pharmacol 2013; 9:80-91. [PMID: 23832285 DOI: 10.1007/s11481-013-9488-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/26/2013] [Indexed: 12/16/2022]
Abstract
Human immunodeficiency virus type-1 (HIV) causes mild or severe neurological problems, termed HIV-associated neurocognitive disorder (HAND), even when HIV patients receive antiretroviral therapy. Thus, novel adjunctive therapies are necessary to reduce or abolish the neurotoxic effect of HIV. However, new therapies require a better understanding of the molecular and cellular mechanisms of HIV-induced neurotoxicity. HAND subjects are characterized by being profoundly depressed, and they experience deficits in memory, learning and movements. Experimental evidence has also shown that HIV reduces neurogenesis. These deficits resemble those occurring in premature brain aging or in a brain with impaired neural repair properties. Thus, it appears that HIV diminishes neuronal survival, along with reduced neuronal connections. These two phenomena should not occur in the adult and developing brain when synaptic plasticity is promoted by neurotrophic factors, polypeptides that are present in adult synapses. This review will outline experimental evidence as well as present emerging concepts for the use of neurotrophic factors and in particular brain-derived neurotrophic factor as an adjunct therapy to prevent HIV-mediated neuronal degeneration and restore the loss of synaptic connections.
Collapse
|
40
|
Engel D, Zomkowski ADE, Lieberknecht V, Rodrigues AL, Gabilan NH. Chronic administration of duloxetine and mirtazapine downregulates proapoptotic proteins and upregulates neurotrophin gene expression in the hippocampus and cerebral cortex of mice. J Psychiatr Res 2013; 47:802-8. [PMID: 23522402 DOI: 10.1016/j.jpsychires.2013.02.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 02/24/2013] [Indexed: 01/16/2023]
Abstract
Structural alterations in the limbic system, neuronal cell loss, and low levels of neurotrophins have been implicated in the pathogenesis of depression. While it is generally accepted that increasing monoamine levels in the brain can effectively alleviate depression, the precise neurobiological mechanisms involved are unclear. In the present study, we examined the effects of two antidepressants, duloxetine and mirtazapine, on the expression of apoptotic and neurotrophic proteins in the cerebral cortex and hippocampus of mice. Duloxetine (10 mg/kg) and mirtazapine (3 mg/kg) were chronically administered for 21 days, and qRT-PCR analysis was carried for the following: neurotrophins (BDNF, NGF, FGF-2, and NT-3); anti-apoptotic proteins (Bcl-2 and Bcl-xL) and pro-apoptotic proteins (Bax, Bad, and p53). Both duloxetine and mirtazapine produced antidepressant activity in the forced swimming test and induced increased cortical and hippocampal mRNA expression of BDNF. Duloxetine also increased Bcl-2, Bcl-xL, FGF-2, and NT-3 expression in the cerebral cortex, and FGF-2 expression in the hippocampus. Moreover, duloxetine reduced Bax and p53 expression in the hippocampus, and Bad expression in the cerebral cortex. Mirtazapine decreased Bcl-xL and Bax expression in the hippocampus, and Bad and p53 expression in both the hippocampus and cerebral cortex. Mirtazapine also increased the expression of neurotrophins, NGF and NT-3, in the cerebral cortex. These results suggest that duloxetine and mirtazapine could elicit their therapeutic effect by modulating the activity of apoptotic and neurotrophic pathways, thus enhancing plasticity and cell survival in depressive patients.
Collapse
Affiliation(s)
- Daiane Engel
- Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | | | | | | | | |
Collapse
|
41
|
GDNF facilitates differentiation of the adult dentate gyrus-derived neural precursor cells into astrocytes via STAT3. Biochem Biophys Res Commun 2013; 434:779-84. [DOI: 10.1016/j.bbrc.2013.04.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 11/20/2022]
|
42
|
Moylan S, Maes M, Wray NR, Berk M. The neuroprogressive nature of major depressive disorder: pathways to disease evolution and resistance, and therapeutic implications. Mol Psychiatry 2013; 18:595-606. [PMID: 22525486 DOI: 10.1038/mp.2012.33] [Citation(s) in RCA: 353] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In some patients with major depressive disorder (MDD), individual illness characteristics appear consistent with those of a neuroprogressive illness. Features of neuroprogression include poorer symptomatic, treatment and functional outcomes in patients with earlier disease onset and increased number and length of depressive episodes. In such patients, longer and more frequent depressive episodes appear to increase vulnerability for further episodes, precipitating an accelerating and progressive illness course leading to functional decline. Evidence from clinical, biochemical and neuroimaging studies appear to support this model and are informing novel therapeutic approaches. This paper reviews current knowledge of the neuroprogressive processes that may occur in MDD, including structural brain consequences and potential molecular mechanisms including the role of neurotransmitter systems, inflammatory, oxidative and nitrosative stress pathways, neurotrophins and regulation of neurogenesis, cortisol and the hypothalamic-pituitary-adrenal axis modulation, mitochondrial dysfunction and epigenetic and dietary influences. Evidence-based novel treatments informed by this knowledge are discussed.
Collapse
Affiliation(s)
- S Moylan
- School of Medicine, Deakin University, Geelong, VIC, Australia.
| | | | | | | |
Collapse
|
43
|
Turner CA, Watson SJ, Akil H. The fibroblast growth factor family: neuromodulation of affective behavior. Neuron 2012; 76:160-74. [PMID: 23040813 DOI: 10.1016/j.neuron.2012.08.037] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2012] [Indexed: 12/20/2022]
Abstract
In this review, we propose a broader view of the role of the fibroblast growth factor (FGF) family in modulating brain function. We suggest that some of the FGF ligands together with the FGF receptors are altered in individuals with affective disorder and modulate emotionality in animal models. Thus, we propose that members of the FGF family may be genetic predisposing factors for anxiety, depression, or substance abuse; that they play a key organizing role during early development but continue to play a central role in neuroplasticity in adulthood; and that they work not only over extended time frames, but also via rapid signaling mechanisms, allowing them to exert an "on-line" influence on behavior. Therefore, the FGF family appears to be a prototype of "switch genes" that are endowed with organizational and modulatory properties across the lifespan, and that may represent molecular candidates as biomarkers and treatment targets for affective and addictive disorders.
Collapse
Affiliation(s)
- Cortney A Turner
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
44
|
Antidepressant acts on astrocytes leading to an increase in the expression of neurotrophic/growth factors: differential regulation of FGF-2 by noradrenaline. PLoS One 2012; 7:e51197. [PMID: 23227251 PMCID: PMC3515577 DOI: 10.1371/journal.pone.0051197] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 10/29/2012] [Indexed: 01/27/2023] Open
Abstract
Recently, multiple neurotrophic/growth factors have been proposed to play an important role in the therapeutic action of antidepressants. In this study, we prepared astrocyte- and neuron-enriched cultures from the neonatal rat cortex, and examined the changes in neurotrophic/growth factor expression by antidepressant treatment using real-time PCR. Treatment with amitriptyline (a tricyclic antidepressant) significantly increased the expression of fibroblast growth factor-2 (FGF-2), brain-derived neurotrophic factor, vascular endothelial growth factor and glial cell line-derived neurotrophic factor mRNA with a different time course in astrocyte cultures, but not in neuron-enriched cultures. Only the expression of FGF-2 was higher in astrocyte cultures than in neuron-enriched cultures. We focused on the FGF-2 production in astrocytes. Several different classes of antidepressants, but not non-antidepressants, also induced FGF-2 mRNA expression. Noradrenaline (NA) is known to induce FGF-2 expression in astrocyte cultures, as with antidepressants. Therefore, we also assessed the mechanism of NA-induced FGF-2 expression, in comparison to amitriptyline. NA increased the FGF-2 mRNA expression via α1 and β-adrenergic receptors; however, the amitriptyline-induced FGF-2 mRNA expression was not mediated via these adrenergic receptors. Furthermore, the amitriptyline-induced FGF-2 mRNA expression was completely blocked by cycloheximide (an inhibitor of protein synthesis), while the NA-induced FGF-2 mRNA was not. These data suggest that the regulation of FGF-2 mRNA expression by amitriptyline was distinct from that by NA. Taken together, antidepressant-stimulated astrocytes may therefore be important mediators that produce several neurotrophic/growth factors, especially FGF-2, through a monoamine-independent and a de novo protein synthesis-dependent mechanism.
Collapse
|
45
|
Duman RS. Neural plasticity: consequences of stress and actions of antidepressant treatment. DIALOGUES IN CLINICAL NEUROSCIENCE 2012. [PMID: 22034207 PMCID: PMC3181800 DOI: 10.31887/dcns.2004.6.2/rduman] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neural plasticity is emerging as a fundamental and critical mechanism of neuronal function, which allows the brain to receive information and make the appropriate adaptive responses to subsequent related stimuli. Elucidation of the molecular and cellular mechanisms underlying neural plasticity is a major goal of neuroscience research, and significant advances have been made in recent years. These mechanisms include regulation of signal transduction and gene expression, and also structural alterations of neuronal spines and processes, and even the birth of new neurons in the adult brain. Altered plasticity could thereby contribute to psychiatric and neurological disorders. This article revievi/s the literature demonstrating altered plasticity in response to stress, and evidence that chronic antidepressant treatment can reverse or block the effects, and even induce neural piasiicity-iike responses. Continued elucidation of the mechanisms underlying neural plasticity will lead to novel drug targets that could prove to be effective and rapidly acting therapeutic interventions.
Collapse
Affiliation(s)
- Ronald S Duman
- Division of Molecular Psychiatry, Departments of Psychiatry and Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
46
|
Neto FL, Borges G, Torres-Sanchez S, Mico JA, Berrocoso E. Neurotrophins role in depression neurobiology: a review of basic and clinical evidence. Curr Neuropharmacol 2012; 9:530-52. [PMID: 22654714 PMCID: PMC3263450 DOI: 10.2174/157015911798376262] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 08/18/2010] [Accepted: 08/09/2010] [Indexed: 01/02/2023] Open
Abstract
Depression is a neuropsychiatric disorder affecting a huge percentage of the active population especially in developed countries. Research has devoted much of its attention to this problematic and many drugs have been developed and are currently prescribed to treat this pathology. Yet, many patients are refractory to the available therapeutic drugs, which mainly act by increasing the levels of the monoamines serotonin and noradrenaline in the synaptic cleft. Even in the cases antidepressants are effective, it is usually observed a delay of a few weeks between the onset of treatment and remission of the clinical symptoms. Additionally, many of these patients who show remission with antidepressant therapy present a relapse of depression upon treatment cessation. Thus research has focused on other possible molecular targets, besides monoamines, underlying depression. Both basic and clinical evidence indicates that depression is associated with
several structural and neurochemical changes where the levels of neurotrophins, particularly of brain-derived neurotrophic factor (BDNF), are altered. Antidepressants, as well as other therapeutic strategies, seem to restore these levels. Neuronal atrophy, mostly detected in limbic structures that regulate mood and cognition, like the hippocampus, is observed in depressed patients and in animal behavioural paradigms for depression. Moreover, chronic antidepressant treatment enhances adult hippocampal neurogenesis, supporting the notion that this event underlies antidepressants effects. Here we review some of the preclinical and clinical studies, aimed at disclosing the role of neurotrophins in the pathophysiological
mechanisms of depression and the mode of action of antidepressants, which favour the neurotrophic/neurogenic hypothesis.
Collapse
Affiliation(s)
- Fani L Neto
- Instituto de Histologia e Embriologia, Faculdade de Medicina e IBMC, Universidade do Porto, 4200-319, Porto, Portugal
| | | | | | | | | |
Collapse
|
47
|
Turner CA, Watson SJ, Akil H. Fibroblast growth factor-2: an endogenous antidepressant and anxiolytic molecule? Biol Psychiatry 2012; 72:254-5. [PMID: 22840947 PMCID: PMC4417938 DOI: 10.1016/j.biopsych.2012.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 05/31/2012] [Indexed: 01/25/2023]
Affiliation(s)
- Cortney A Turner
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
48
|
Elsayed M, Banasr M, Duric V, Fournier NM, Licznerski P, Duman RS. Antidepressant effects of fibroblast growth factor-2 in behavioral and cellular models of depression. Biol Psychiatry 2012; 72:258-65. [PMID: 22513055 PMCID: PMC3401338 DOI: 10.1016/j.biopsych.2012.03.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 02/28/2012] [Accepted: 03/01/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Basic and clinical studies report that the expression of fibroblast growth factor-2 (FGF-2) is decreased in the prefrontal cortex (PFC) of depressed subjects or rodents exposed to stress and increased following antidepressant treatment. Here, we aim to determine if 1) FGF-2/fibroblast growth factor receptor (FGFR) signaling is sufficient and required for mediating an antidepressant response behaviorally and cellularly; and 2) if the antidepressant actions of FGF-2 are mediated specifically by the PFC. METHODS The role of FGF-2 signaling in behavioral models of depression and anxiety was tested using chronic unpredictable stress (CUS)/sucrose consumption test (SCT), forced swim test (FST), and novelty suppressed feeding test (NSFT). We also assessed the number of bromodeoxyuridine labeled dividing glial cells in the PFC as a cellular index relevant to depression (i.e., decreased by stress and increased by antidepressant treatment). RESULTS Chronic FGF-2 infusions (intracerebroventricular) blocked the deficit in SCT caused by CUS. Moreover, the response to antidepressant treatment in the CUS/SCT and FST was abolished upon administration of an inhibitor of FGFR activity, SU5402. These results are consistent with the regulation of proliferating cells in the PFC, a portion of which are of oligodendrocyte lineage. Lastly, subchronic infusions of FGF-2 into the PFC but not into the dorsal striatum produced antidepressant-like and anxiolytic-like effects on FST and NSFT respectively. CONCLUSIONS These findings demonstrate that FGF-2/FGFR signaling is sufficient and necessary for the behavioral, as well as gliogenic, actions of antidepressants and highlight the PFC as a brain region sensitive to the antidepressant actions of FGF-2.
Collapse
|
49
|
Novak CM, Burghardt PR, Levine JA. The use of a running wheel to measure activity in rodents: relationship to energy balance, general activity, and reward. Neurosci Biobehav Rev 2012; 36:1001-1014. [PMID: 22230703 DOI: 10.1016/j.neubiorev.2011.12.012] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 12/07/2011] [Accepted: 12/22/2011] [Indexed: 12/21/2022]
Abstract
Running wheels are commonly employed to measure rodent physical activity in a variety of contexts, including studies of energy balance and obesity. There is no consensus on the nature of wheel-running activity or its underlying causes, however. Here, we will begin by systematically reviewing how running wheel availability affects physical activity and other aspects of energy balance in laboratory rodents. While wheel running and physical activity in the absence of a wheel commonly correlate in a general sense, in many specific aspects the two do not correspond. In fact, the presence of running wheels alters several aspects of energy balance, including body weight and composition, food intake, and energy expenditure of activity. We contend that wheel-running activity should be considered a behavior in and of itself, reflecting several underlying behavioral processes in addition to a rodent's general, spontaneous activity. These behavioral processes include defensive behavior, predatory aggression, and depression- and anxiety-like behaviors. As it relates to energy balance, wheel running engages several brain systems-including those related to the stress response, mood, and reward, and those responsive to growth factors-that influence energy balance indirectly. We contend that wheel-running behavior represents factors in addition to rodents' tendency to be physically active, engaging additional neural and physiological mechanisms which can then independently alter energy balance and behavior. Given the impact of wheel-running behavior on numerous overlapping systems that influence behavior and physiology, this review outlines the need for careful design and interpretation of studies that utilize running wheels as a means for exercise or as a measurement of general physical activity.
Collapse
Affiliation(s)
- Colleen M Novak
- Department of Biological Sciences, Kent State University, PO Box 5190, 222 Cunningham Hall, Kent, OH 44242, United States
| | | | - James A Levine
- Mayo Clinic, Endocrine Research Unit, Rochester, MN 55905, United States
| |
Collapse
|
50
|
Borroto-Escuela DO, Romero-Fernandez W, Mudó G, Pérez-Alea M, Ciruela F, Tarakanov AO, Narvaez M, Di Liberto V, Agnati LF, Belluardo N, Fuxe K. Fibroblast growth factor receptor 1- 5-hydroxytryptamine 1A heteroreceptor complexes and their enhancement of hippocampal plasticity. Biol Psychiatry 2012; 71:84-91. [PMID: 22035699 DOI: 10.1016/j.biopsych.2011.09.012] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 09/06/2011] [Accepted: 09/08/2011] [Indexed: 10/15/2022]
Abstract
BACKGROUND The hippocampus and its 5-hydroxytryptamine transmission plays an important role in depression related to its involvement in limbic circuit plasticity. METHODS The analysis was made with bioluminescence resonance energy transfer, co-immunoprecipitation, in situ proximity ligation assay, binding assay, in cell western and the forced swim test. RESULTS Using bioluminescence resonance energy transfer analysis, fibroblast growth factor receptor 1 (FGFR1)-5-hydroxytryptamine 1A (5-HT1A) receptor complexes have been demonstrated and their specificity and agonist modulation characterized. Their presence based on co-immunoprecipitation and proximity ligation assay has also been indicated in hippocampal cultures and rat dorsal hippocampal formation showing a neuronal location. In vitro assays on extracellular signal-regulated kinases 1 and 2 phosphorylation have shown synergistic increases in signaling on coactivation with fibroblast growth factor 2 (FGF2) and a 5-HT1A agonist, and dependent on the heteroreceptor interface. In vitro and in vivo studies also revealed a 5-HT1A agonist induced phosphorylation of FGFR1 and extracellular signal-regulated kinase 1/2 in rat hippocampus without changing FGF2 levels. Co-activation of the heteroreceptor also resulted in synergistic increases in extensions of PC12 cells and neurite densities and protrusions in primary hippocampal cultures dependent on the receptor interface. The combined acute and repeated intracerebroventricular treatment with FGF2 and 8-OH-DPAT was found to produce evidence of highly significant antidepressant actions in the forced swim test. CONCLUSIONS The findings indicate that neurotrophic and antidepressant effects of 5-HT in brain may, in part, be mediated by activation of the 5-HT1A receptor protomer in the hippocampal FGFR1-5-HT1A receptor complex enhancing the FGFR1 signaling.
Collapse
|