1
|
Varadi G. Mechanism of Analgesia by Gabapentinoid Drugs: Involvement of Modulation of Synaptogenesis and Trafficking of Glutamate-Gated Ion Channels. J Pharmacol Exp Ther 2024; 388:121-133. [PMID: 37918854 DOI: 10.1124/jpet.123.001669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
Gabapentinoids have clinically been used for treating epilepsy, neuropathic pain, and several other neurologic disorders for >30 years; however, the definitive molecular mechanism responsible for their therapeutic actions remained uncertain. The conventional pharmacological observation regarding their efficacy in chronic pain modulation is the weakening of glutamate release at presynaptic terminals in the spinal cord. While the α2/δ-1 subunit of voltage-gated calcium channels (VGCCs) has been identified as the primary drug receptor for gabapentinoids, the lack of consistent effect of this drug class on VGCC function is indicative of a minor role in regulating this ion channel's activity. The current review targets the efficacy and mechanism of gabapentinoids in treating chronic pain. The discovery of interaction of α2/δ-1 with thrombospondins established this protein as a major synaptogenic neuronal receptor for thrombospondins. Other findings identified α2/δ-1 as a powerful regulator of N-methyl-D-aspartate receptor (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) by potentiating the synaptic expression, a putative pathophysiological mechanism of neuropathic pain. Further, the interdependent interactions between thrombospondin and α2/δ-1 contribute to chronic pain states, while gabapentinoid ligands efficaciously reverse such pain conditions. Gabapentin normalizes and even blocks NMDAR and AMPAR synaptic targeting and activity elicited by nerve injury. SIGNIFICANCE STATEMENT: Gabapentinoid drugs are used to treat various neurological conditions including chronic pain. In chronic pain states, gene expression of cacnα2/δ-1 and thrombospondins are upregulated and promote aberrant excitatory synaptogenesis. The complex trait of protein associations that involve interdependent interactions between α2/δ-1 and thrombospondins, further, association of N-methyl-D-aspartate receptor and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor with the C-tail of α2/δ-1, constitutes a macromolecular signaling complex that forms the crucial elements for the pharmacological mode of action of gabapentinoids.
Collapse
|
2
|
Page KM, Gumerov VM, Dahimene S, Zhulin IB, Dolphin AC. The importance of cache domains in α 2δ proteins and the basis for their gabapentinoid selectivity. Channels (Austin) 2023; 17:2167563. [PMID: 36735378 PMCID: PMC9901441 DOI: 10.1080/19336950.2023.2167563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In this hybrid review, we have first collected and reviewed available information on the structure and function of the enigmatic cache domains in α2δ proteins. These are organized into two double cache (dCache_1) domains, and they are present in all α2δ proteins. We have also included new data on the key function of these domains with respect to amino acid and gabapentinoid binding to the universal amino acid-binding pocket, which is present in α2δ-1 and α2δ-2. We have now identified the reason why α2δ-3 and α2δ-4 do not bind gabapentinoid drugs or amino acids with bulky side chains. In relation to this, we have determined that the bulky amino acids Tryptophan and Phenylalanine prevent gabapentin from inhibiting cell surface trafficking of α2δ-1. Together, these novel data shed further light on the importance of the cache domains in α2δ proteins.
Collapse
Affiliation(s)
- Karen M Page
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Vadim M Gumerov
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, OH, USA
| | - Shehrazade Dahimene
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Igor B Zhulin
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, OH, USA
| | - Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
- CONTACT Annette C Dolphin Dolphin Department of Neuroscience, Physiology and Pharmacology, University College London, LondonWC1E 6BT, UK
| |
Collapse
|
3
|
Chen Z, Mondal A, Minor DL. Structural basis for Ca Vα 2δ:gabapentin binding. Nat Struct Mol Biol 2023; 30:735-739. [PMID: 36973510 PMCID: PMC10896480 DOI: 10.1038/s41594-023-00951-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/28/2023] [Indexed: 03/29/2023]
Abstract
Gabapentinoid drugs for pain and anxiety act on the CaVα2δ-1 and CaVα2δ-2 subunits of high-voltage-activated calcium channels (CaV1s and CaV2s). Here we present the cryo-EM structure of the gabapentin-bound brain and cardiac CaV1.2/CaVβ3/CaVα2δ-1 channel. The data reveal a binding pocket in the CaVα2δ-1 dCache1 domain that completely encapsulates gabapentin and define CaVα2δ isoform sequence variations that explain the gabapentin binding selectivity of CaVα2δ-1 and CaVα2δ-2.
Collapse
Affiliation(s)
- Zhou Chen
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Abhisek Mondal
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Daniel L Minor
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA.
- Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA, USA.
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA, USA.
- Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
4
|
Kozai D, Numoto N, Nishikawa K, Kamegawa A, Kawasaki S, Hiroaki Y, Irie K, Oshima A, Hanzawa H, Shimada K, Kitano Y, Fujiyoshi Y. Recognition mechanism of a novel gabapentinoid drug, mirogabalin, for recombinant human α 2δ1, a voltage-gated calcium channel subunit. J Mol Biol 2023; 435:168049. [PMID: 36933823 DOI: 10.1016/j.jmb.2023.168049] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/22/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023]
Abstract
Mirogabalin is a novel gabapentinoid drug with a hydrophobic bicyclo substituent on the γ-aminobutyric acid moiety that targets the voltage-gated calcium channel subunit α2δ1. Here, to reveal the mirogabalin recognition mechanisms of α2δ1, we present structures of recombinant human α2δ1 with and without mirogabalin analyzed by cryo-electron microscopy. These structures show the binding of mirogabalin to the previously reported gabapentinoid binding site, which is the extracellular dCache_1 domain containing a conserved amino acid binding motif. A slight conformational change occurs around the residues positioned close to the hydrophobic group of mirogabalin. Mutagenesis binding assays identified that residues in the hydrophobic interaction region, in addition to several amino acid binding motif residues around the amino and carboxyl groups of mirogabalin, are critical for mirogabalin binding. The A215L mutation introduced to decrease the hydrophobic pocket volume predictably suppressed mirogabalin binding and promoted the binding of another ligand, L-Leu, with a smaller hydrophobic substituent than mirogabalin. Alterations of residues in the hydrophobic interaction region of α2δ1 to those of the α2δ2, α2δ3, and α2δ4 isoforms, of which α2δ3 and α2δ4 are gabapentin-insensitive, suppressed the binding of mirogabalin. These results support the importance of hydrophobic interactions in α2δ1 ligand recognition.
Collapse
Affiliation(s)
- Daisuke Kozai
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Japan Biological Informatics Consortium, 2-4-32 Aomi, Koto-ku, Tokyo 135-0063, Japan; Advanced Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8501, Japan.
| | - Nobutaka Numoto
- Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8501, Japan.
| | - Kouki Nishikawa
- CeSPIA Inc., 2-1-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan; Joint Research Course for Advanced Biomolecular Characterization, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
| | - Akiko Kamegawa
- Advanced Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8501, Japan; CeSPIA Inc., 2-1-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan.
| | - Shohei Kawasaki
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan.
| | - Yoko Hiroaki
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Japan Biological Informatics Consortium, 2-4-32 Aomi, Koto-ku, Tokyo 135-0063, Japan.
| | - Katsumasa Irie
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Atsunori Oshima
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Hiroyuki Hanzawa
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan.
| | - Kousei Shimada
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan.
| | - Yutaka Kitano
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan.
| | - Yoshinori Fujiyoshi
- Advanced Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8501, Japan; CeSPIA Inc., 2-1-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan.
| |
Collapse
|
5
|
Zong P, Yue L. Regulation of Presynaptic Calcium Channels. ADVANCES IN NEUROBIOLOGY 2023; 33:171-202. [PMID: 37615867 DOI: 10.1007/978-3-031-34229-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Voltage-gated calcium channels (VGCCs), especially Cav2.1 and Cav2.2, are the major mediators of Ca2+ influx at the presynaptic membrane in response to neuron excitation, thereby exerting a predominant control on synaptic transmission. To guarantee the timely and precise release of neurotransmitters at synapses, the activity of presynaptic VGCCs is tightly regulated by a variety of factors, including auxiliary subunits, membrane potential, G protein-coupled receptors (GPCRs), calmodulin (CaM), Ca2+-binding proteins (CaBP), protein kinases, various interacting proteins, alternative splicing events, and genetic variations.
Collapse
Affiliation(s)
- Pengyu Zong
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Lixia Yue
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington, CT, USA.
| |
Collapse
|
6
|
Reyes Fernandez PC, Wright CS, Warden SJ, Hum J, Farach-Carson MC, Thompson WR. Effects of Gabapentin and Pregabalin on Calcium Homeostasis: Implications for Physical Rehabilitation of Musculoskeletal Tissues. Curr Osteoporos Rep 2022; 20:365-378. [PMID: 36149592 PMCID: PMC10108402 DOI: 10.1007/s11914-022-00750-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW In this review, we discuss the mechanism of action of gabapentinoids and the potential consequences of long-term treatment with these drugs on the musculoskeletal system. RECENT FINDINGS Gabapentinoids, such as gabapentin (GBP) and pregabalin (PGB) were designed as antiepileptic reagents and are now commonly used as first-line treatment for neuropathic pain and increasingly prescribed off-label for other pain disorders such as migraines and back pain. GBP and PGB exert their analgesic actions by selectively binding the α2δ1 auxiliary subunit of voltage-sensitive calcium channels, thereby inhibiting channel function. Numerous tissues express the α2δ1 subunit where GBP and PGB can alter calcium-mediated signaling events. In tissues such as bone, muscle, and cartilage, α2δ1 has important roles in skeletal formation, mechanosensation, and normal tissue function/repair that may be affected by chronic use of gabapentinoids. Long-term use of gabapentinoids is associated with detrimental musculoskeletal outcomes, including increased fracture risk. Therefore, understanding potential complications is essential for clinicians to guide appropriate treatments.
Collapse
Affiliation(s)
- Perla C Reyes Fernandez
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Christian S Wright
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Stuart J Warden
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Julia Hum
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
- College of Osteopathic Medicine, Marian University, Indianapolis, IN, 4622, USA
| | - Mary C Farach-Carson
- Department of Diagnostic & Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, 77054, USA
| | - William R Thompson
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA.
- College of Osteopathic Medicine, Marian University, Indianapolis, IN, 4622, USA.
- Department of Anatomy and Cell Biology, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
7
|
Chen X, An M, Ye S, Yang Z, Ding Z. The α 2δ Calcium Channel Subunit Accessorily and Independently Affects the Biological Function of Ditylenchus destructor. Int J Mol Sci 2022; 23:12999. [PMID: 36361788 PMCID: PMC9657823 DOI: 10.3390/ijms232112999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 01/24/2024] Open
Abstract
The α2δ subunit is a high-voltage activated (HVA) calcium channel (Cav1 and Cav2) auxiliary subunit that increases the density and function of HVA calcium channels in the plasma membrane of mammals. However, its function in plant parasitic nematodes remains unknown. In this study, we cloned the full-length cDNA sequence of the voltage-gated calcium channel (VGCC) α2δ subunit (named DdCavα2δ) in Ditylenchus destructor. We found that DdCavα2δ tends to be expressed in the egg stage, followed by the J3 stage. RNA-DIG in situ hybridization experiments showed that the DdCavα2δ subunit was expressed in the body wall, esophageal gland, uterus, post uterine, and spicules of D. destructor. The in vitro application of RNA interference (RNAi) affected the motility, reproduction, chemotaxis, stylet thrusting, and protein secretion of D. destructor to different degrees by targeting DdCα1D, DdCα1A, and DdCavα2δ in J3 stages, respectively. Based on the results of RNAi experiments, it was hypothesized that L-type VGCC may affect the motility, chemotaxis, and stylet thrusting of D. destructor. Non-L-type VGCC may affect the protein secretion and reproduction of D. destructor. The DdCavα2δ subunit gene also affected the motility, chemotaxis, and reproduction of D. destructor. These findings reveal the independent function of the VGCC α2δ subunit in D. destructor as well as give a theoretical foundation for future research on plant parasitic nematode VGCC.
Collapse
Affiliation(s)
| | | | | | - Zhuhong Yang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Zhong Ding
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
8
|
Pidsley R, Lam D, Qu W, Peters TJ, Luu P, Korbie D, Stirzaker C, Daly RJ, Stricker P, Kench JG, Horvath LG, Clark SJ. Comprehensive methylome sequencing reveals prognostic epigenetic biomarkers for prostate cancer mortality. Clin Transl Med 2022; 12:e1030. [PMID: 36178085 PMCID: PMC9523674 DOI: 10.1002/ctm2.1030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Prostate cancer is a clinically heterogeneous disease with a subset of patients rapidly progressing to lethal-metastatic prostate cancer. Current clinicopathological measures are imperfect predictors of disease progression. Epigenetic changes are amongst the earliest molecular changes in tumourigenesis. To find new prognostic biomarkers to enable earlier intervention and improved outcomes, we performed methylome sequencing of DNA from patients with localised prostate cancer and long-term clinical follow-up. METHODS We used whole-genome bisulphite sequencing (WGBS) to comprehensively map and compare DNA methylation of radical prostatectomy tissue between patients with lethal disease (n = 7) and non-lethal (n = 8) disease (median follow-up 19.5 years). Validation of differentially methylated regions (DMRs) was performed in an independent cohort (n = 185, median follow-up 15 years) using targeted multiplex bisulphite sequencing of candidate regions. Survival was assessed via univariable and multivariable analyses including clinicopathological measures (log-rank and Cox regression models). RESULTS WGBS data analysis identified cancer-specific methylation patterns including CpG island hypermethylation, and hypomethylation of repetitive elements, with increasing disease risk. We identified 1420 DMRs associated with prostate cancer-specific mortality (PCSM), which showed enrichment for gene sets downregulated in prostate cancer and de novo methylated in cancer. Through comparison with public prostate cancer datasets, we refined the DMRs to develop an 18-gene prognostic panel. Applying this panel to an independent cohort, we found significant associations between PCSM and hypermethylation at EPHB3, PARP6, TBX1, MARCH6 and a regulatory element within CACNA2D4. Strikingly in a multivariable model, inclusion of CACNA2D4 methylation was a better predictor of PCSM versus grade alone (Harrell's C-index: 0.779 vs. 0.684). CONCLUSIONS Our study provides detailed methylome maps of non-lethal and lethal prostate cancer and identifies novel genic regions that distinguish these patient groups. Inclusion of our DNA methylation biomarkers with existing clinicopathological measures improves prognostic models of prostate cancer mortality, and holds promise for clinical application.
Collapse
Affiliation(s)
- Ruth Pidsley
- Garvan Institute of Medical ResearchSydneyNew South WalesAustralia,School of Clinical MedicineSt Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW SydneySydneyNew South WalesAustralia
| | - Dilys Lam
- Garvan Institute of Medical ResearchSydneyNew South WalesAustralia,Present address:
School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia,Present address:
Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| | - Wenjia Qu
- Garvan Institute of Medical ResearchSydneyNew South WalesAustralia
| | - Timothy J. Peters
- Garvan Institute of Medical ResearchSydneyNew South WalesAustralia,School of Clinical MedicineSt Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW SydneySydneyNew South WalesAustralia
| | - Phuc‐Loi Luu
- Garvan Institute of Medical ResearchSydneyNew South WalesAustralia,School of Clinical MedicineSt Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW SydneySydneyNew South WalesAustralia
| | - Darren Korbie
- Centre for Personalised NanomedicineAustralian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Clare Stirzaker
- Garvan Institute of Medical ResearchSydneyNew South WalesAustralia,School of Clinical MedicineSt Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW SydneySydneyNew South WalesAustralia
| | - Roger J. Daly
- Cancer Research Program and Department of Biochemistry and Molecular BiologyBiomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| | - Phillip Stricker
- Garvan Institute of Medical ResearchSydneyNew South WalesAustralia,School of Clinical MedicineSt Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW SydneySydneyNew South WalesAustralia,Department of UrologySt. Vincent's Prostate Cancer CentreSydneyNew South WalesAustralia
| | - James G. Kench
- Garvan Institute of Medical ResearchSydneyNew South WalesAustralia,Department of Tissue PathologyNSW Health PathologyRoyal Prince Alfred HospitalCamperdownSydneyNew South WalesAustralia
| | - Lisa G. Horvath
- Garvan Institute of Medical ResearchSydneyNew South WalesAustralia,School of Clinical MedicineSt Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW SydneySydneyNew South WalesAustralia,Chris O'Brien Lifehouse, CamperdownSydneyNew South WalesAustralia,University of SydneySydneyNew South WalesAustralia
| | - Susan J. Clark
- Garvan Institute of Medical ResearchSydneyNew South WalesAustralia,School of Clinical MedicineSt Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW SydneySydneyNew South WalesAustralia
| |
Collapse
|
9
|
Chen Y, Zhang T, Xian M, Zhang R, Yang W, Su B, Yang G, Sun L, Xu W, Xu S, Gao H, Xu L, Gao X, Li J. A draft genome of Drung cattle reveals clues to its chromosomal fusion and environmental adaptation. Commun Biol 2022; 5:353. [PMID: 35418663 PMCID: PMC9008013 DOI: 10.1038/s42003-022-03298-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 03/21/2022] [Indexed: 12/02/2022] Open
Abstract
Drung cattle (Bos frontalis) have 58 chromosomes, differing from the Bos taurus 2n = 60 karyotype. To date, its origin and evolution history have not been proven conclusively, and the mechanisms of chromosome fusion and environmental adaptation have not been clearly elucidated. Here, we assembled a high integrity and good contiguity genome of Drung cattle with 13.7-fold contig N50 and 4.1-fold scaffold N50 improvements over the recently published Indian mithun assembly, respectively. Speciation time estimation and phylogenetic analysis showed that Drung cattle diverged from Bos taurus into an independent evolutionary clade. Sequence evidence of centromere regions provides clues to the breakpoints in BTA2 and BTA28 centromere satellites. We furthermore integrated a circulation and contraction-related biological process involving 43 evolutionary genes that participated in pathways associated with the evolution of the cardiovascular system. These findings may have important implications for understanding the molecular mechanisms of chromosome fusion, alpine valleys adaptability and cardiovascular function.
Collapse
Affiliation(s)
- Yan Chen
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Tianliu Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Ming Xian
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Rui Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Weifei Yang
- 1 Gene Co., Ltd, 310051, Hangzhou, P.R. China
- Annoroad Gene Technology (Beijing) Co., Ltd, 100176, Beijing, P.R. China
| | - Baqi Su
- Drung Cattle Conservation Farm in Jiudang Wood, Drung and Nu Minority Autonomous County, Gongshan, 673500, Kunming, Yunnan, P.R. China
| | - Guoqiang Yang
- Livestock and Poultry Breed Improvement Center, Nujiang Lisu Minority Autonomous Prefecture, 673199, Kunming, Yunnan, P.R. China
| | - Limin Sun
- Yunnan Animal Husbandry Service, 650224, Kunming, Yunnan, P.R. China
| | - Wenkun Xu
- Yunnan Animal Husbandry Service, 650224, Kunming, Yunnan, P.R. China
| | - Shangzhong Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Huijiang Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Lingyang Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Xue Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China.
| | - Junya Li
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China.
| |
Collapse
|
10
|
Komatsu S, Nakamura S, Nonaka T, Yamada T, Yamamoto T. Analgesic characteristics of a newly developed α 2δ ligand, mirogabalin, on inflammatory pain. Mol Pain 2021; 17:17448069211052167. [PMID: 34823399 PMCID: PMC8649095 DOI: 10.1177/17448069211052167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mirogabalin is a novel α2δ ligand approved in Japan for the treatment of peripheral neuropathic pain. However, the sites of action of α2δ ligands to produce analgesic effects on inflammatory pain remain unclear. In this study, we investigated the analgesic effect and site of action of mirogabalin using the rat formalin test, an acute inflammatory pain model. Mirogabalin was administered orally, intrathecally, and intracerebroventricularly. Open field tests were performed to evaluate the effect of oral-, intrathecally, and intracerebroventricularly administered mirogabalin on locomotor activity and orientation ability. Oral mirogabalin produced an analgesic effect when the formalin test was performed 4 h, but not 1 or 2 h, after oral administration. Intrathecal, but not intracerebroventricular, administration of mirogabalin produced analgesic effects when mirogabalin was administered 10 min before formalin injection. These analgesic effects were not antagonized by idazoxan, an α2 adrenergic antagonist; WAY100135, a 5-HT1A antagonist; or naloxone, an opioid receptor antagonist. Mirogabalin attenuated moving distances 1 and 2 h after oral administration and 10 min after intracerebroventricular administration, but not 10 min after intrathecal administration. In the oral administration group, the time course of the analgesic effect was different from that of moving distance. In the intracerebroventricular group, mirogabalin attenuated moving distances but did not produce an analgesic effect. In the intrathecal group, mirogabalin produced an analgesic effect but did not affect moving distances. These findings suggest that the analgesic effect of mirogabalin on the rat formalin test is mediated by spinal action and not by the activation of α2, 5-HT1A, or opioid receptors, and that the inhibitory effect of mirogabalin on moving distances is mediated by the supraspinal brain.
Collapse
Affiliation(s)
- Shuji Komatsu
- Department of Anesthesiology, School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Shingo Nakamura
- Department of Anesthesiology, School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Takahiro Nonaka
- Department of Anesthesiology, School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Toshihiko Yamada
- Department of Anesthesiology, School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Tatsuo Yamamoto
- Department of Anesthesiology, School of Medical Science, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
11
|
Novel compound heterozygous missense variants (c.G955A and c.A1822C) of CACNA2D4 likely causing autosomal recessive retinitis pigmentosa in a Chinese patient. 3 Biotech 2021; 11:208. [PMID: 33927996 DOI: 10.1007/s13205-021-02761-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/29/2021] [Indexed: 12/28/2022] Open
Abstract
Retinitis pigmentosa (RP) is a rare and heterogeneous group of inherited ocular diseases. However, the relationship between CACNA2D4 mutations and RP is not well understood. In this study, a Chinese autosomal recessive retinitis pigmentosa (arRP) pedigree was enrolled and targeted next-generation sequencing was employed for identifying the causative gene in the proband. These steps were followed by confirmatory Sanger sequencing and segregation analysis. RNA-sequencing (RNA-seq) data and semi-quantitative reverse transcription polymerase chain reaction analysis were then applied to examine the expressions in the human and mouse tissues. Novel compound heterozygous, deleterious missense variants of the CACNA2D4 gene, NM_172364.4: c.G955A (p.D319N) and c.A1822C (p.I608L), were identified in the arRP pedigree, co-segregating with the clinical phenotype in the patient. The CACNA2D4 protein is highly conserved among species. The CACNA2D4 mRNA expression showed the highest expression in the retina of humans and in the later four developmental stages/times of retinal tissues in mice, indicating its role in retina/eye functions and developments. This study is the first to identify novel compound heterozygous mutations c.G955A (p.D319N) and c.A1822C (p.I608L) in the CACNA2D4 gene. These might be disease-causing mutations, thereby extending the mutational spectra. The identification of pathogenic CACNA2D4 variants is expected to enhance our understanding of the genotype-phenotype correlations of arRP for disease diagnosis and genetic counseling. The relationship between the CACNA2D4 variants and diseases/phenotypes other than RP has also been reviewed and discussed in this paper.
Collapse
|
12
|
Wright CS, Robling AG, Farach-Carson MC, Thompson WR. Skeletal Functions of Voltage Sensitive Calcium Channels. Curr Osteoporos Rep 2021; 19:206-221. [PMID: 33721180 PMCID: PMC8216424 DOI: 10.1007/s11914-020-00647-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 12/15/2022]
Abstract
Voltage-sensitive calcium channels (VSCCs) are ubiquitous multimeric protein complexes that are necessary for the regulation of numerous physiological processes. VSCCs regulate calcium influx and various intracellular processes including muscle contraction, neurotransmission, hormone secretion, and gene transcription, with function specificity defined by the channel's subunits and tissue location. The functions of VSCCs in bone are often overlooked since bone is not considered an electrically excitable tissue. However, skeletal homeostasis and adaptation relies heavily on VSCCs. Inhibition or deletion of VSCCs decreases osteogenesis, impairs skeletal structure, and impedes anabolic responses to mechanical loading. RECENT FINDINGS: While the functions of VSCCs in osteoclasts are less clear, VSCCs have distinct but complementary functions in osteoblasts and osteocytes. PURPOSE OF REVIEW: This review details the structure, function, and nomenclature of VSCCs, followed by a comprehensive description of the known functions of VSCCs in bone cells and their regulation of bone development, bone formation, and mechanotransduction.
Collapse
Affiliation(s)
- Christian S Wright
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Alexander G Robling
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
- Department of Anatomy & Cell Biology, Indiana University, Indianapolis, IN, 46202, USA
| | - Mary C Farach-Carson
- Department of Diagnostic & Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, 77054, USA
| | - William R Thompson
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA.
- Department of Anatomy & Cell Biology, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
13
|
Geisler SM, Benedetti A, Schöpf CL, Schwarzer C, Stefanova N, Schwartz A, Obermair GJ. Phenotypic Characterization and Brain Structure Analysis of Calcium Channel Subunit α 2δ-2 Mutant (Ducky) and α 2δ Double Knockout Mice. Front Synaptic Neurosci 2021; 13:634412. [PMID: 33679366 PMCID: PMC7933509 DOI: 10.3389/fnsyn.2021.634412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/11/2021] [Indexed: 01/19/2023] Open
Abstract
Auxiliary α2δ subunits of voltage-gated calcium channels modulate channel trafficking, current properties, and synapse formation. Three of the four isoforms (α2δ-1, α2δ-2, and α2δ-3) are abundantly expressed in the brain; however, of the available knockout models, only α2δ-2 knockout or mutant mice display an obvious abnormal neurological phenotype. Thus, we hypothesize that the neuronal α2δ isoforms may have partially specific as well as redundant functions. To address this, we generated three distinct α2δ double knockout mouse models by crossbreeding single knockout (α2δ-1 and -3) or mutant (α2δ-2/ducky) mice. Here, we provide a first phenotypic description and brain structure analysis. We found that genotypic distribution of neonatal litters in distinct α2δ-1/-2, α2δ-1/-3, and α2δ-2/-3 breeding combinations did not conform to Mendel's law, suggesting premature lethality of single and double knockout mice. Notably, high occurrences of infant mortality correlated with the absence of specific α2δ isoforms (α2Δ-2 > α2δ-1 > α2δ-3), and was particularly observed in cages with behaviorally abnormal parenting animals of α2δ-2/-3 cross-breedings. Juvenile α2δ-1/-2 and α2δ-2/-3 double knockout mice displayed a waddling gate similar to ducky mice. However, in contrast to ducky and α2δ-1/-3 double knockout animals, α2δ-1/-2 and α2δ-2/-3 double knockout mice showed a more severe disease progression and highly impaired development. The observed phenotypes within the individual mouse lines may be linked to differences in the volume of specific brain regions. Reduced cortical volume in ducky mice, for example, was associated with a progressively decreased space between neurons, suggesting a reduction of total synaptic connections. Taken together, our findings show that α2δ subunits differentially regulate premature survival, postnatal growth, brain development, and behavior, suggesting specific neuronal functions in health and disease.
Collapse
Affiliation(s)
- Stefanie M. Geisler
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Ariane Benedetti
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| | - Clemens L. Schöpf
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| | - Christoph Schwarzer
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Arnold Schwartz
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Gerald J. Obermair
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
- Division Physiology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| |
Collapse
|
14
|
Mitochondrial-Protective Effects of R-Phenibut after Experimental Traumatic Brain Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9364598. [PMID: 33274011 PMCID: PMC7700030 DOI: 10.1155/2020/9364598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/24/2020] [Accepted: 11/03/2020] [Indexed: 12/22/2022]
Abstract
Altered neuronal Ca2+ homeostasis and mitochondrial dysfunction play a central role in the pathogenesis of traumatic brain injury (TBI). R-Phenibut ((3R)-phenyl-4-aminobutyric acid) is an antagonist of the α2δ subunit of voltage-dependent calcium channels (VDCC) and an agonist of gamma-aminobutyric acid B (GABA-B) receptors. The aim of this study was to evaluate the potential therapeutic effects of R-phenibut following the lateral fluid percussion injury (latFPI) model of TBI in mice and the impact of R- and S-phenibut on mitochondrial functionality in vitro. By determining the bioavailability of R-phenibut in the mouse brain tissue and plasma, we found that R-phenibut (50 mg/kg) reached the brain tissue 15 min after intraperitoneal (i.p.) and peroral (p.o.) injections. The maximal concentration of R-phenibut in the brain tissues was 0.6 μg/g and 0.2 μg/g tissue after i.p. and p.o. administration, respectively. Male Swiss-Webster mice received i.p. injections of R-phenibut at doses of 10 or 50 mg/kg 2 h after TBI and then once daily for 7 days. R-Phenibut treatment at the dose of 50 mg/kg significantly ameliorated functional deficits after TBI on postinjury days 1, 4, and 7. Seven days after TBI, the number of Nissl-stained dark neurons (N-DNs) and interleukin-1beta (IL-1β) expression in the cerebral neocortex in the area of cortical impact were reduced. Moreover, the addition of R- and S-phenibut at a concentration of 0.5 μg/ml inhibited calcium-induced mitochondrial swelling in the brain homogenate and prevented anoxia-reoxygenation-induced increases in mitochondrial H2O2 production and the H2O2/O ratio. Taken together, these results suggest that R-phenibut could serve as a neuroprotective agent and promising drug candidate for treating TBI.
Collapse
|
15
|
Becskeházi E, Korsós MM, Erőss B, Hegyi P, Venglovecz V. OEsophageal Ion Transport Mechanisms and Significance Under Pathological Conditions. Front Physiol 2020; 11:855. [PMID: 32765303 PMCID: PMC7379034 DOI: 10.3389/fphys.2020.00855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022] Open
Abstract
Ion transporters play an important role in several physiological functions, such as cell volume regulation, pH homeostasis and secretion. In the oesophagus, ion transport proteins are part of the epithelial resistance, a mechanism which protects the oesophagus against reflux-induced damage. A change in the function or expression of ion transporters has significance in the development or neoplastic progression of Barrett’s oesophagus (BO). In this review, we discuss the physiological and pathophysiological roles of ion transporters in the oesophagus, highlighting transport proteins which serve as therapeutic targets or prognostic markers in eosinophilic oesophagitis, BO and esophageal cancer. We believe that this review highlights important relationships which might contribute to a better understanding of the pathomechanisms of esophageal diseases.
Collapse
Affiliation(s)
- Eszter Becskeházi
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | | | - Bálint Erőss
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary.,Division of Gastroenterology, First Department of Medicine, Medical School, University of Pécs, Pécs, Hungary.,First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| |
Collapse
|
16
|
Duran P, Sandoval A, González-Ramírez R, Zarco N, Felix R. Regulation of the Ca 2+ channel α 2δ-1 subunit expression by epidermal growth factor via the ERK/ELK-1 signaling pathway. Am J Physiol Endocrinol Metab 2020; 319:E232-E244. [PMID: 32369417 DOI: 10.1152/ajpendo.00007.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Voltage-gated Ca2+ (CaV) channels are expressed in endocrine cells where they contribute to hormone secretion. Diverse chemical messengers, including epidermal growth factor (EGF), are known to affect the expression of CaV channels. Previous studies have shown that EGF increases Ca2+ currents in GH3 pituitary cells by increasing the number of high voltage-activated (HVA) CaV channels at the cell membrane, which results in enhanced prolactin (PRL) secretion. However, little is known regarding the mechanisms underlying this regulation. Here, we show that EGF actually increases the expression of the CaVα2δ-1 subunit, a key molecular component of HVA channels. The analysis of the gene promoter encoding CaVα2δ-1 (CACNA2D1) revealed binding sites for transcription factors activated by the Ras/Raf/MEK/ERK signaling cascade. Chromatin immunoprecipitation and site-directed mutagenesis showed that ELK-1 is crucial for the transcriptional regulation of CACNA2D1 in response to EGF. Furthermore, we found that EGF increases the membrane expression of CaVα2δ-1 and that ELK-1 overexpression increases HVA current density, whereas ELK-1 knockdown decreases the functional expression of the channels. Hormone release assays revealed that CaVα2δ-1 overexpression increases PRL secretion. These results suggest a mechanism for how EGF, by activating the Ras/Raf/MEK/ERK/ELK-1 pathway, may influence the expression of HVA channels and the secretory behavior of pituitary cells.
Collapse
Affiliation(s)
- Paz Duran
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Alejandro Sandoval
- School of Medicine FES Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla, Mexico
| | - Ricardo González-Ramírez
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico
| | | | - Ricardo Felix
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| |
Collapse
|
17
|
Ablinger C, Geisler SM, Stanika RI, Klein CT, Obermair GJ. Neuronal α 2δ proteins and brain disorders. Pflugers Arch 2020; 472:845-863. [PMID: 32607809 PMCID: PMC7351808 DOI: 10.1007/s00424-020-02420-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 01/31/2023]
Abstract
α2δ proteins are membrane-anchored extracellular glycoproteins which are abundantly expressed in the brain and the peripheral nervous system. They serve as regulatory subunits of voltage-gated calcium channels and, particularly in nerve cells, regulate presynaptic and postsynaptic functions independently from their role as channel subunits. α2δ proteins are the targets of the widely prescribed anti-epileptic and anti-allodynic drugs gabapentin and pregabalin, particularly for the treatment of neuropathic pain conditions. Recently, the human genes (CACNA2D1-4) encoding for the four known α2δ proteins (isoforms α2δ-1 to α2δ-4) have been linked to a large variety of neurological and neuropsychiatric disorders including epilepsy, autism spectrum disorders, bipolar disorders, schizophrenia, and depressive disorders. Here, we provide an overview of the hitherto identified disease associations of all known α2δ genes, hypothesize on the pathophysiological mechanisms considering their known physiological roles, and discuss the most immanent future research questions. Elucidating their specific physiological and pathophysiological mechanisms may open the way for developing entirely novel therapeutic paradigms for treating brain disorders.
Collapse
Affiliation(s)
- Cornelia Ablinger
- Institute of Physiology, Medical University Innsbruck, 6020, Innsbruck, Austria
| | - Stefanie M Geisler
- Department of Pharmacology and Toxicology, University of Innsbruck, 6020, Innsbruck, Austria
| | - Ruslan I Stanika
- Division Physiology, Karl Landsteiner University of Health Sciences, 3500, Krems, Austria
| | - Christian T Klein
- Department of Life Sciences, IMC University of Applied Sciences, 3500, Krems, Austria
| | - Gerald J Obermair
- Institute of Physiology, Medical University Innsbruck, 6020, Innsbruck, Austria.
- Division Physiology, Karl Landsteiner University of Health Sciences, 3500, Krems, Austria.
| |
Collapse
|
18
|
Dolphin AC, Lee A. Presynaptic calcium channels: specialized control of synaptic neurotransmitter release. Nat Rev Neurosci 2020; 21:213-229. [PMID: 32161339 PMCID: PMC7873717 DOI: 10.1038/s41583-020-0278-2] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2020] [Indexed: 11/09/2022]
Abstract
Chemical synapses are heterogeneous junctions formed between neurons that are specialized for the conversion of electrical impulses into the exocytotic release of neurotransmitters. Voltage-gated Ca2+ channels play a pivotal role in this process as they are the major conduits for the Ca2+ ions that trigger the fusion of neurotransmitter-containing vesicles with the presynaptic membrane. Alterations in the intrinsic function of these channels and their positioning within the active zone can profoundly alter the timing and strength of synaptic output. Advances in optical and electron microscopic imaging, structural biology and molecular techniques have facilitated recent breakthroughs in our understanding of the properties of voltage-gated Ca2+ channels that support their presynaptic functions. Here we examine the nature of these channels, how they are trafficked to and anchored within presynaptic boutons, and the mechanisms that allow them to function optimally in shaping the flow of information through neural circuits.
Collapse
Affiliation(s)
- Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| | - Amy Lee
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
19
|
Ninomiya W, Mizobuchi K, Hayashi T, Okude S, Katagiri S, Kubo A, Masuhara N, Nakano T. Electroretinographic abnormalities associated with pregabalin: a case report. Doc Ophthalmol 2020; 140:279-287. [DOI: 10.1007/s10633-019-09743-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/18/2019] [Indexed: 12/29/2022]
|
20
|
Kong X, Li M, Shao K, Yang Y, Wang Q, Cai M. Progesterone induces cell apoptosis via the CACNA2D3/Ca2+/p38 MAPK pathway in endometrial cancer. Oncol Rep 2020; 43:121-132. [PMID: 31746409 PMCID: PMC6908942 DOI: 10.3892/or.2019.7396] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
Endometrial cancer (EC) is one of the most common malignant gynecological tumors in women. The main treatments for EC (surgery, chemotherapy and radiation therapy) produce significant side effects. Thus, it is urgent to identify promising therapeutic targets and prognostic markers. CACNA2D3, as a member of the calcium channel regulatory α2δ subunit family, is reported to exert a tumor suppressive effect in numerous cancers. However, the function of CACNA2D3 in EC is not well known. In the present study, CACNA2D3 was lowly expressed in EC tissues and cells. The overexpression of CACNA2D3 via lentiviral particle injection significantly blocked the tumor growth in an in vivo xenograft model. In vitro, the overexpression of CACNA2D3 markedly inhibited cell proliferation and migration, and promoted cell apoptosis and calcium influx. These data revealed that CACNA2D3 functions as a tumor suppressor in EC. It was also revealed that the addition of progesterone (P4) blocked tumor growth in Ishikawa‑injected nude mice. P4 induced the expression of CACNA2D3 in vivo and in vitro, and the silencing of CACNA2D3 affected P4‑inhibited cell proliferation and P4‑induced cell apoptosis and calcium influx. In Ishikawa cells, P4 enhanced the expression of phosphorylated (p)‑p38 MAPK and PTEN, but blocked the levels of p‑PI3K and p‑AKT. The knockdown of CACNA2D3 blocked the function of P4. These data revealed that P4 promoted cell apoptosis via the activation of the CACNA2D3/Ca2+/p38 MAPK pathway, and blocked cell proliferation via suppression of the PI3K/AKT pathway. Collectively, these findings indicated the antitumor role of CACNA2D3 in EC, and revealed the mechanism of P4 inhibition of EC progression, which provided a new target for EC therapy and new evidence for P4 in EC therapy.
Collapse
Affiliation(s)
- Xiangnan Kong
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Min Li
- Department of Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Kai Shao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
- Qingdao Key Lab of Mitochondrial Medicine, Qilu Hospital of Shandong University (Qingdao), Qingdao, Shandong 266035, P.R. China
| | - Yinrong Yang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qian Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Meijuan Cai
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
21
|
El-Awaad E, Pryymachuk G, Fried C, Matthes J, Isensee J, Hucho T, Neiss WF, Paulsson M, Herzig S, Zaucke F, Pietsch M. Direct, gabapentin-insensitive interaction of a soluble form of the calcium channel subunit α 2δ-1 with thrombospondin-4. Sci Rep 2019; 9:16272. [PMID: 31700036 PMCID: PMC6838084 DOI: 10.1038/s41598-019-52655-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/21/2019] [Indexed: 12/31/2022] Open
Abstract
The α2δ‐1 subunit of voltage-gated calcium channels binds to gabapentin and pregabalin, mediating the analgesic action of these drugs against neuropathic pain. Extracellular matrix proteins from the thrombospondin (TSP) family have been identified as ligands of α2δ‐1 in the CNS. This interaction was found to be crucial for excitatory synaptogenesis and neuronal sensitisation which in turn can be inhibited by gabapentin, suggesting a potential role in the pathogenesis of neuropathic pain. Here, we provide information on the biochemical properties of the direct TSP/α2δ-1 interaction using an ELISA-style ligand binding assay. Our data reveal that full-length pentameric TSP-4, but neither TSP-5/COMP of the pentamer-forming subgroup B nor TSP-2 of the trimer-forming subgroup A directly interact with a soluble variant of α2δ-1 (α2δ-1S). Interestingly, this interaction is not inhibited by gabapentin on a molecular level and is not detectable on the surface of HEK293-EBNA cells over-expressing α2δ‐1 protein. These results provide biochemical evidence that supports a specific role of TSP-4 among the TSPs in mediating the binding to neuronal α2δ‐1 and suggest that gabapentin does not directly target TSP/α2δ-1 interaction to alleviate neuropathic pain.
Collapse
Affiliation(s)
- Ehab El-Awaad
- Institute II for Pharmacology, Centre of Pharmacology, Medical Faculty, University of Cologne, Gleueler Str. 24, D-50931, Cologne, Germany.,Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Galyna Pryymachuk
- Department of Anatomy I, Medical Faculty, University of Cologne, Kerpener Str. 62, D-50937, Cologne, Germany
| | - Cora Fried
- Institute II for Pharmacology, Centre of Pharmacology, Medical Faculty, University of Cologne, Gleueler Str. 24, D-50931, Cologne, Germany
| | - Jan Matthes
- Institute II for Pharmacology, Centre of Pharmacology, Medical Faculty, University of Cologne, Gleueler Str. 24, D-50931, Cologne, Germany
| | - Jörg Isensee
- Experimental Anaesthesiology and Pain Research, Department of Anaesthesiology and Intensive Care Medicine, Medical Faculty, University of Cologne, Robert-Koch-Str. 10, D-50931, Cologne, Germany
| | - Tim Hucho
- Experimental Anaesthesiology and Pain Research, Department of Anaesthesiology and Intensive Care Medicine, Medical Faculty, University of Cologne, Robert-Koch-Str. 10, D-50931, Cologne, Germany
| | - Wolfram F Neiss
- Department of Anatomy I, Medical Faculty, University of Cologne, Kerpener Str. 62, D-50937, Cologne, Germany
| | - Mats Paulsson
- Institute for Biochemistry II, Centre for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, D-50931, Cologne, Germany.,Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, D-50931, Cologne, Germany
| | - Stefan Herzig
- Institute II for Pharmacology, Centre of Pharmacology, Medical Faculty, University of Cologne, Gleueler Str. 24, D-50931, Cologne, Germany.,President of TH Köln, TH Köln (University of Applied Sciences), Claudiusstr. 1, D-50678, Cologne, Germany
| | - Frank Zaucke
- Institute for Biochemistry II, Centre for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, D-50931, Cologne, Germany.,Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital, Friedrichsheim gGmbH, Marienburgstr. 2, D-60528, Frankfurt/Main, Germany
| | - Markus Pietsch
- Institute II for Pharmacology, Centre of Pharmacology, Medical Faculty, University of Cologne, Gleueler Str. 24, D-50931, Cologne, Germany.
| |
Collapse
|
22
|
Andrade A, Brennecke A, Mallat S, Brown J, Gomez-Rivadeneira J, Czepiel N, Londrigan L. Genetic Associations between Voltage-Gated Calcium Channels and Psychiatric Disorders. Int J Mol Sci 2019; 20:E3537. [PMID: 31331039 PMCID: PMC6679227 DOI: 10.3390/ijms20143537] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 12/23/2022] Open
Abstract
Psychiatric disorders are mental, behavioral or emotional disorders. These conditions are prevalent, one in four adults suffer from any type of psychiatric disorders world-wide. It has always been observed that psychiatric disorders have a genetic component, however, new methods to sequence full genomes of large cohorts have identified with high precision genetic risk loci for these conditions. Psychiatric disorders include, but are not limited to, bipolar disorder, schizophrenia, autism spectrum disorder, anxiety disorders, major depressive disorder, and attention-deficit and hyperactivity disorder. Several risk loci for psychiatric disorders fall within genes that encode for voltage-gated calcium channels (CaVs). Calcium entering through CaVs is crucial for multiple neuronal processes. In this review, we will summarize recent findings that link CaVs and their auxiliary subunits to psychiatric disorders. First, we will provide a general overview of CaVs structure, classification, function, expression and pharmacology. Next, we will summarize tools to study risk loci associated with psychiatric disorders. We will examine functional studies of risk variations in CaV genes when available. Finally, we will review pharmacological evidence of the use of CaV modulators to treat psychiatric disorders. Our review will be of interest for those studying pathophysiological aspects of CaVs.
Collapse
Affiliation(s)
- Arturo Andrade
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA.
| | - Ashton Brennecke
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Shayna Mallat
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Julian Brown
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | | | - Natalie Czepiel
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Laura Londrigan
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
23
|
Nie C, Qin X, Li X, Tian B, Zhao Y, Jin Y, Li Y, Wang Q, Zeng D, Hong A, Chen X. CACNA2D3 Enhances the Chemosensitivity of Esophageal Squamous Cell Carcinoma to Cisplatin via Inducing Ca 2+-Mediated Apoptosis and Suppressing PI3K/Akt Pathways. Front Oncol 2019; 9:185. [PMID: 31001468 PMCID: PMC6454090 DOI: 10.3389/fonc.2019.00185] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/04/2019] [Indexed: 12/24/2022] Open
Abstract
Resistance to platinum-based combination chemotherapy is the main cause of poor prognosis in patients with advanced esophageal squamous cell carcinoma (ESCC). Previously, we showed that CACNA2D3 (voltage-dependent subunit alpha 2 delta 3 of a calcium channel complex) was significantly downregulated and functioned as a tumor suppressor in ESCC, but its role in the chemosensitivity of ESCC to cisplatin remained unknown. Here, we found that the expression of CACNA2D3 was significantly associated with poor platinum response in ESCC patients from the Gene Expression Omnibus database. Overexpression of CACNA2D3 increased sensitivity to cisplatin in ESCC in vitro, whereas knockdown of CACNA2D3 increased cisplatin resistance. CACNA2D3 promoted cisplatin-induced apoptosis by modulating intracellular Ca2+ stores. In vivo experiments further showed that overexpression of CACNA2D3 enhanced cisplatin anti-tumor effects in a xenograft mouse model. CACNA2D3 overexpression also resulted in the attenuation of PI3K and Akt phosphorylation. Treatment with the PI3K/Akt inhibitor LY294002 restored the chemosensitivity of CACAN2D3-knockdown cells to cisplatin. In conclusion, the results of the current study indicate that CACAN2D3 enhances the chemosensitivity of ESCC to cisplatin via inducing Ca2+-mediated apoptosis and suppressing PI3K/Akt pathways. Therefore, regulating the expression of CACNA2D3 is a potential new strategy to increase the efficacy of cisplatin in ESCC patients.
Collapse
Affiliation(s)
- Changjun Nie
- Department of Cell Biology, Institute of Biomedicine, Jinan University, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, China.,Department of Medical Genetics, Liuzhou Maternal and Children Healthcare Hospital, Liuzhou, China
| | - Xiaohui Qin
- Department of Medical Genetics, Liuzhou Maternal and Children Healthcare Hospital, Liuzhou, China
| | - Xiaoyan Li
- Department of Cell Biology, Institute of Biomedicine, Jinan University, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, China
| | - Baoqing Tian
- Department of Cell Biology, Institute of Biomedicine, Jinan University, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, China
| | - Ying Zhao
- Department of Cell Biology, Institute of Biomedicine, Jinan University, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, China
| | - Yuan Jin
- Department of Cell Biology, Institute of Biomedicine, Jinan University, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, China
| | - Yadan Li
- Department of Cell Biology, Institute of Biomedicine, Jinan University, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, China
| | - Qiang Wang
- Department of Cell Biology, Institute of Biomedicine, Jinan University, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, China
| | - Dingyuan Zeng
- Department of Medical Genetics, Liuzhou Maternal and Children Healthcare Hospital, Liuzhou, China
| | - An Hong
- Department of Cell Biology, Institute of Biomedicine, Jinan University, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, China
| | - Xiaojia Chen
- Department of Cell Biology, Institute of Biomedicine, Jinan University, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, China
| |
Collapse
|
24
|
Calcium Channel Subunit α2δ4 Is Regulated by Early Growth Response 1 and Facilitates Epileptogenesis. J Neurosci 2019; 39:3175-3187. [PMID: 30792272 DOI: 10.1523/jneurosci.1731-18.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/03/2018] [Accepted: 01/08/2019] [Indexed: 12/17/2022] Open
Abstract
Transient brain insults, including status epilepticus (SE), can trigger a period of epileptogenesis during which functional and structural reorganization of neuronal networks occurs resulting in the onset of focal epileptic seizures. In recent years, mechanisms that regulate the dynamic transcription of individual genes during epileptogenesis and thereby contribute to the development of a hyperexcitable neuronal network have been elucidated. Our own results have shown early growth response 1 (Egr1) to transiently increase expression of the T-type voltage-dependent Ca2+ channel (VDCC) subunit CaV3.2, a key proepileptogenic protein. However, epileptogenesis involves complex and dynamic transcriptomic alterations; and so far, our understanding of the transcriptional control mechanism of gene regulatory networks that act in the same processes is limited. Here, we have analyzed whether Egr1 acts as a key transcriptional regulator for genes contributing to the development of hyperexcitability during epileptogenesis. We found Egr1 to drive the expression of the VDCC subunit α2δ4, which was augmented early and persistently after pilocarpine-induced SE. Furthermore, we show that increasing levels of α2δ4 in the CA1 region of the hippocampus elevate seizure susceptibility of mice by slightly decreasing local network activity. Interestingly, we also detected increased expression levels of Egr1 and α2δ4 in human hippocampal biopsies obtained from epilepsy surgery. In conclusion, Egr1 controls the abundance of the VDCC subunits CaV3.2 and α2δ4, which act synergistically in epileptogenesis, and thereby contributes to a seizure-induced "transcriptional Ca2+ channelopathy."SIGNIFICANCE STATEMENT The onset of focal recurrent seizures often occurs after an epileptogenic process induced by transient insults to the brain. Recently, transcriptional control mechanisms for individual genes involved in converting neurons hyperexcitable have been identified, including early growth response 1 (Egr1), which activates transcription of the T-type Ca2+ channel subunit CaV3.2. Here, we find Egr1 to regulate also the expression of the voltage-dependent Ca2+ channel subunit α2δ4, which was augmented after pilocarpine- and kainic acid-induced status epilepticus. In addition, we observed that α2δ4 affected spontaneous network activity and the susceptibility for seizure induction. Furthermore, we detected corresponding dynamics in human biopsies from epilepsy patients. In conclusion, Egr1 orchestrates a seizure-induced "transcriptional Ca2+ channelopathy" consisting of CaV3.2 and α2δ4, which act synergistically in epileptogenesis.
Collapse
|
25
|
Voltage-dependent calcium channels in the neurosecretory cells of cerebral ganglia of the mud crab, Scylla paramamosain. Neuroreport 2019; 29:1068-1074. [PMID: 29965872 DOI: 10.1097/wnr.0000000000001074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Voltage-dependent calcium channels (VDCCs) play a critical role in stimulus-secretion coupling in neurosecretory cells (NSCs). The crustacean cerebral ganglion plays a crucial role in neuromodulation and controls neuropeptide release. The present study used patch-clamp and Illumina sequencing techniques to investigate the potential features of VDCC in the cerebral ganglia of the mud crab (Scylla paramamosain). The electrophysiological characteristics of VDCC were analyzed in three types of NSCs with a patch clamp. The thresholds for activation of Ca channel current recorded from all the three types of NSCs were all above -40 mV, with peak amplitudes occurring around 0 mV. Therefore, it was concluded that the currents recorded in NSCs were mediated by high-voltage-activated Ca channels. Ca channel current densities in I type NSCs were significantly lower than those in II and III type NSCs. Four VDCC subunits derived from three transcripts were predicted from a transcriptome database of the cerebral ganglia. Among these transcripts, Cavα1, Cavβ, and Cavα2/δ were predicted to encode 1674, 554, and 776 amino acids, respectively, and they shared conservative domains with VDCC subunits in other species. Overall, these findings provide an important basis for further studies on the neuroendocrine mechanisms in crustaceans.
Collapse
|
26
|
T-type Calcium Channels in Cancer. Cancers (Basel) 2019; 11:cancers11020134. [PMID: 30678110 PMCID: PMC6407089 DOI: 10.3390/cancers11020134] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/10/2019] [Accepted: 01/17/2019] [Indexed: 12/21/2022] Open
Abstract
Although voltage-activated Ca2+ channels are a common feature in excitable cells, their expression in cancer tissue is less understood. T-type Ca2+ channels are particularly overexpressed in various cancers. Because of their activation profile at membrane potentials close to rest and the generation of a window current, T-type Ca2+ channels may regulate a variety of Ca2+-dependent cellular processes, including cell proliferation, survival, and differentiation. The expression of T-type Ca2+ channels is of special interest as a target for therapeutic interventions.
Collapse
|
27
|
Abstract
Voltage-gated calcium (CaV) channels are associated with β and α2δ auxiliary subunits. This review will concentrate on the function of the α2δ protein family, which has four members. The canonical role for α2δ subunits is to convey a variety of properties on the CaV1 and CaV2 channels, increasing the density of these channels in the plasma membrane and also enhancing their function. More recently, a diverse spectrum of non-canonical interactions for α2δ proteins has been proposed, some of which involve competition with calcium channels for α2δ or increase α2δ trafficking and others which mediate roles completely unrelated to their calcium channel function. The novel roles for α2δ proteins which will be discussed here include association with low-density lipoprotein receptor-related protein 1 (LRP1), thrombospondins, α-neurexins, prion proteins, large conductance (big) potassium (BK) channels, and N-methyl-d-aspartate (NMDA) receptors.
Collapse
Affiliation(s)
- Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
28
|
Abstract
This review will first describe the importance of Ca2+ entry for function of excitable cells, and the subsequent discovery of voltage-activated calcium conductances in these cells. This finding was rapidly followed by the identification of multiple subtypes of calcium conductance in different tissues. These were initially termed low- and high-voltage activated currents, but were then further subdivided into L-, N-, PQ-, R- and T-type calcium currents on the basis of differing pharmacology, voltage-dependent and kinetic properties, and single channel conductance. Purification of skeletal muscle calcium channels allowed the molecular identification of the pore-forming and auxiliary α2δ, β and ϒ subunits present in these calcium channel complexes. These advances then led to the cloning of the different subunits, which permitted molecular characterisation, to match the cloned channels with physiological function. Studies with knockout and other mutant mice then allowed further investigation of physiological and pathophysiological roles of calcium channels. In terms of pharmacology, cardiovascular L-type channels are targets for the widely used antihypertensive 1,4-dihydropyridines and other calcium channel blockers, N-type channels are a drug target in pain, and α2δ-1 is the therapeutic target of the gabapentinoid drugs, used in neuropathic pain. Recent structural advances have allowed a deeper understanding of Ca2+ permeation through the channel pore and the structure of both the pore-forming and auxiliary subunits. Voltage-gated calcium channels are subject to multiple pathways of modulation by G-protein and second messenger regulation. Furthermore, their trafficking pathways, subcellular localisation and functional specificity are the subjects of active investigation.
Collapse
|
29
|
Wen X, Van Hook MJ, Grassmeyer JJ, Wiesman AI, Rich GM, Cork KM, Thoreson WB. Endocytosis sustains release at photoreceptor ribbon synapses by restoring fusion competence. J Gen Physiol 2018; 150:591-611. [PMID: 29555658 PMCID: PMC5881445 DOI: 10.1085/jgp.201711919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/21/2018] [Indexed: 01/15/2023] Open
Abstract
Endocytosis is an essential process at sites of synaptic release. Not only are synaptic vesicles recycled by endocytosis, but the removal of proteins and lipids by endocytosis is needed to restore release site function at active zones after vesicle fusion. Synaptic exocytosis from vertebrate photoreceptors involves synaptic ribbons that serve to cluster vesicles near the presynaptic membrane. In this study, we hypothesize that this clustering increases the likelihood that exocytosis at one ribbon release site may disrupt release at an adjacent site and therefore that endocytosis may be particularly important for restoring release site competence at photoreceptor ribbon synapses. To test this, we combined optical and electrophysiological techniques in salamander rods. Pharmacological inhibition of dynamin-dependent endocytosis rapidly inhibits release from synaptic ribbons and slows recovery of ribbon-mediated release from paired pulse synaptic depression. Inhibiting endocytosis impairs the ability of second-order horizontal cells to follow rod light responses at frequencies as low as 2 Hz. Inhibition of endocytosis also increases lateral membrane mobility of individual Ca2+ channels, showing that it changes release site structure. Visualization of single synaptic vesicles by total internal reflection fluorescence microscopy reveals that inhibition of endocytosis reduces the likelihood of fusion among vesicles docked near ribbons and increases the likelihood that they will retreat from the membrane without fusion. Vesicle advance toward the membrane is also reduced, but the number of membrane-associated vesicles is not. Endocytosis therefore appears to be more important for restoring later steps in vesicle fusion than for restoring docking. Unlike conventional synapses in which endocytic restoration of release sites is evident only at high frequencies, endocytosis is needed to maintain release from rod ribbon synapses even at modest frequencies.
Collapse
Affiliation(s)
- Xiangyi Wen
- Department of Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Matthew J Van Hook
- Department of Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE
| | - Justin J Grassmeyer
- Department of Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Alex I Wiesman
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Grace M Rich
- Department of Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE
| | - Karlene M Cork
- Department of Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Wallace B Thoreson
- Department of Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
30
|
Domon Y, Arakawa N, Inoue T, Matsuda F, Takahashi M, Yamamura N, Kai K, Kitano Y. Binding Characteristics and Analgesic Effects of Mirogabalin, a Novel Ligand for the α2δ Subunit of Voltage-Gated Calcium Channels. J Pharmacol Exp Ther 2018; 365:573-582. [DOI: 10.1124/jpet.117.247551] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/19/2018] [Indexed: 11/22/2022] Open
|
31
|
Zhang Q, Chen J, Qin Y, Wang J, Zhou L. Mutations in voltage-gated L-type calcium channel: implications in cardiac arrhythmia. Channels (Austin) 2018; 12:201-218. [PMID: 30027834 PMCID: PMC6104696 DOI: 10.1080/19336950.2018.1499368] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/08/2018] [Accepted: 07/05/2018] [Indexed: 02/06/2023] Open
Abstract
The voltage-gated L-type calcium channel (LTCC) is essential for multiple cellular processes. In the heart, calcium influx through LTCC plays an important role in cardiac electrical excitation. Mutations in LTCC genes, including CACNA1C, CACNA1D, CACNB2 and CACNA2D, will induce the dysfunctions of calcium channels, which result in the abnormal excitations of cardiomyocytes, and finally lead to cardiac arrhythmias. Nevertheless, the newly found mutations in LTCC and their functions are continuously being elucidated. This review summarizes recent findings on the mutations of LTCC, which are associated with long QT syndromes, Timothy syndromes, Brugada syndromes, short QT syndromes, and some other cardiac arrhythmias. Indeed, we describe the gain/loss-of-functions of these mutations in LTCC, which can give an explanation for the phenotypes of cardiac arrhythmias. Moreover, we present several challenges in the field at present, and propose some diagnostic or therapeutic approaches to these mutation-associated cardiac diseases in the future.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Cardiology, the Second Affiliated Hospital of Nantong University, Nantong First Hospital, Nantong, Jiangsu, China
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junjie Chen
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yao Qin
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juejin Wang
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Zhou
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
32
|
Zagaja M, Andres-Mach M, Patrzylas P, Pyrka D, Szpringer M, Florek-Łuszczki M, Żółkowska D, Skalicka-Woźniak K, Łuszczki JJ. Influence of xanthotoxin (8-methoxypsoralen) on the anticonvulsant activity of various novel antiepileptic drugs against maximal electroshock-induced seizures in mice. Fitoterapia 2016; 115:86-91. [DOI: 10.1016/j.fitote.2016.09.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/26/2016] [Accepted: 09/30/2016] [Indexed: 01/25/2023]
|
33
|
McKinnon D, Rosati B. Transmural gradients in ion channel and auxiliary subunit expression. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:165-186. [PMID: 27702655 DOI: 10.1016/j.pbiomolbio.2016.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/30/2016] [Indexed: 12/11/2022]
Abstract
Evolution has acted to shape the action potential in different regions of the heart in order to produce a maximally stable and efficient pump. This has been achieved by creating regional differences in ion channel expression levels within the heart as well as differences between equivalent cardiac tissues in different species. These region- and species-dependent differences in channel expression are established by regulatory evolution, evolution of the regulatory mechanisms that control channel expression levels. Ion channel auxiliary subunits are obvious targets for regulatory evolution, in order to change channel expression levels and/or modify channel function. This review focuses on the transmural gradients of ion channel expression in the heart and the role that regulation of auxiliary subunit expression plays in generating and shaping these gradients.
Collapse
Affiliation(s)
- David McKinnon
- Department of Veterans Affairs Medical Center, Northport, NY, USA; Institute of Molecular Cardiology, Stony Brook University, Stony Brook, NY, USA; Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Barbara Rosati
- Department of Veterans Affairs Medical Center, Northport, NY, USA; Institute of Molecular Cardiology, Stony Brook University, Stony Brook, NY, USA; Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
34
|
Gerardi MC, Atzeni F, Batticciotto A, Di Franco M, Rizzi M, Sarzi-Puttini P. The safety of pregabalin in the treatment of fibromyalgia. Expert Opin Drug Saf 2016; 15:1541-1548. [DOI: 10.1080/14740338.2016.1242575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Maria Chiara Gerardi
- Rheumatology Unit, ASST-Fatebenefratelli-L, Sacco University Hospital, Milan, Italy
| | - Fabiola Atzeni
- Rheumatology Unit, ASST-Fatebenefratelli-L, Sacco University Hospital, Milan, Italy
| | - Alberto Batticciotto
- Rheumatology Unit, ASST-Fatebenefratelli-L, Sacco University Hospital, Milan, Italy
| | - Manuela Di Franco
- Rheumatology Unit, Department of Internal Medicine and Medical Specialities, Sapienza, University of Rome, Rome, Italy
| | - Maurizio Rizzi
- Pulmonary Department, ASST-Fatebenefratelli-L, Sacco University Hospital, Milan, Italy
| | | |
Collapse
|
35
|
Tedeschi A, Dupraz S, Laskowski CJ, Xue J, Ulas T, Beyer M, Schultze JL, Bradke F. The Calcium Channel Subunit Alpha2delta2 Suppresses Axon Regeneration in the Adult CNS. Neuron 2016; 92:419-434. [PMID: 27720483 DOI: 10.1016/j.neuron.2016.09.026] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/21/2016] [Accepted: 09/01/2016] [Indexed: 12/22/2022]
Abstract
Injuries to the adult CNS often result in permanent disabilities because neurons lose the ability to regenerate their axon during development. Here, whole transcriptome sequencing and bioinformatics analysis followed by gain- and loss-of-function experiments identified Cacna2d2, the gene encoding the Alpha2delta2 subunit of voltage-gated calcium channels (VGCCs), as a developmental switch that limits axon growth and regeneration. Cacna2d2 gene deletion or silencing promoted axon growth in vitro. In vivo, Alpha2delta2 pharmacological blockade through Pregabalin (PGB) administration enhanced axon regeneration in adult mice after spinal cord injury (SCI). As PGB is already an established treatment for a wide range of neurological disorders, our findings suggest that targeting Alpha2delta2 may be a novel treatment strategy to promote structural plasticity and regeneration following CNS trauma.
Collapse
Affiliation(s)
- Andrea Tedeschi
- Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases, 53175 Bonn, Germany
| | - Sebastian Dupraz
- Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases, 53175 Bonn, Germany
| | - Claudia J Laskowski
- Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases, 53175 Bonn, Germany
| | - Jia Xue
- Genomics and Immunoregulation, LIMES-Institute, University of Bonn, 53115 Bonn, Germany
| | - Thomas Ulas
- Genomics and Immunoregulation, LIMES-Institute, University of Bonn, 53115 Bonn, Germany
| | - Marc Beyer
- Genomics and Immunoregulation, LIMES-Institute, University of Bonn, 53115 Bonn, Germany
| | - Joachim L Schultze
- Genomics and Immunoregulation, LIMES-Institute, University of Bonn, 53115 Bonn, Germany; Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases, 53175 Bonn, Germany
| | - Frank Bradke
- Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases, 53175 Bonn, Germany.
| |
Collapse
|
36
|
Jin Y, Cui D, Ren J, Wang K, Zeng T, Gao L. CACNA2D3 is downregulated in gliomas and functions as a tumor suppressor. Mol Carcinog 2016; 56:945-959. [PMID: 27583705 DOI: 10.1002/mc.22548] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 08/22/2016] [Accepted: 08/29/2016] [Indexed: 01/08/2023]
Abstract
CACNA2D3, an auxiliary member of the alpha-2/delta subunit three family of the voltage-dependent calcium channel complex, plays a critical role in tumor suppression. However, its role in glioma carcinogenesis remains largely unknown. Here, we investigated the putative tumor suppressive role of CACNA2D3 in gliomas. Downregulation of CACNA2D3 was frequently detected in glioma tissues and cells compared with their non-tumorigenic counterparts, and correlated with poor survival. To investigate the underlying mechanism of CACNA2D3 in the development and progression of glioma, we performed CACNA2D3 ectopic expression in glioma cells (U87 and U251) and knockdown of CACNA2D3 in LN229 cells and conducted in vitro and in vivo functional assays. Our findings showed that increased intracellular calcium (Ca2+ ) mediated by overexpression of CACNA2D3 induced mitochondrial-mediated apoptosis, upregulation of NLK (through the Wnt/Ca2+ pathway) and inhibition of the epithelial-to-mesenchymal transition. Ectopic expression of CACNA2D3 inhibited cell proliferation, migration, invasion, and tumor growth in vitro and in vivo, whereas CACNA2D3 depletion inhibited cell viability and invasion. Furthermore, we confirmed that CACNA2D3 increased NLK expression in vitro by immunostaining and found that downregulation of CACNA2D3 in glioma cells and high-grade glioma tissue was accompanied by increased methylation. A reporter assay showed increased luciferase activity in NLK knockdown glioma cells and transcriptional activity of β-cantenin/TCF was remarkably enhanced, which further confirmed that NLK antagonizes Wnt signaling-mediated anchorage-dependent and independent cell proliferation and invasion. This mechanism may contribute to a better understanding of glioma cancer pathogenesis and facilitate the development of new therapeutic strategies for the treatment of this disease. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yi Jin
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Daming Cui
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Jie Ren
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Ke Wang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Tao Zeng
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Liang Gao
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
37
|
Dolphin AC. Voltage-gated calcium channels and their auxiliary subunits: physiology and pathophysiology and pharmacology. J Physiol 2016; 594:5369-90. [PMID: 27273705 PMCID: PMC5043047 DOI: 10.1113/jp272262] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/09/2016] [Indexed: 12/22/2022] Open
Abstract
Voltage‐gated calcium channels are essential players in many physiological processes in excitable cells. There are three main subdivisions of calcium channel, defined by the pore‐forming α1 subunit, the CaV1, CaV2 and CaV3 channels. For all the subtypes of voltage‐gated calcium channel, their gating properties are key for the precise control of neurotransmitter release, muscle contraction and cell excitability, among many other processes. For the CaV1 and CaV2 channels, their ability to reach their required destinations in the cell membrane, their activation and the fine tuning of their biophysical properties are all dramatically influenced by the auxiliary subunits that associate with them. Furthermore, there are many diseases, both genetic and acquired, involving voltage‐gated calcium channels. This review will provide a general introduction and then concentrate particularly on the role of auxiliary α2δ subunits in both physiological and pathological processes involving calcium channels, and as a therapeutic target.
![]()
Collapse
Affiliation(s)
- Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
38
|
Park J, Yu YP, Zhou CY, Li KW, Wang D, Chang E, Kim DS, Vo B, Zhang X, Gong N, Sharp K, Steward O, Vitko I, Perez-Reyes E, Eroglu C, Barres B, Zaucke F, Feng G, Luo ZD. Central Mechanisms Mediating Thrombospondin-4-induced Pain States. J Biol Chem 2016; 291:13335-48. [PMID: 27129212 DOI: 10.1074/jbc.m116.723478] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Indexed: 12/30/2022] Open
Abstract
Peripheral nerve injury induces increased expression of thrombospondin-4 (TSP4) in spinal cord and dorsal root ganglia that contributes to neuropathic pain states through unknown mechanisms. Here, we test the hypothesis that TSP4 activates its receptor, the voltage-gated calcium channel Cavα2δ1 subunit (Cavα2δ1), on sensory afferent terminals in dorsal spinal cord to promote excitatory synaptogenesis and central sensitization that contribute to neuropathic pain states. We show that there is a direct molecular interaction between TSP4 and Cavα2δ1 in the spinal cord in vivo and that TSP4/Cavα2δ1-dependent processes lead to increased behavioral sensitivities to stimuli. In dorsal spinal cord, TSP4/Cavα2δ1-dependent processes lead to increased frequency of miniature and amplitude of evoked excitatory post-synaptic currents in second-order neurons as well as increased VGlut2- and PSD95-positive puncta, indicative of increased excitatory synapses. Blockade of TSP4/Cavα2δ1-dependent processes with Cavα2δ1 ligand gabapentin or genetic Cavα2δ1 knockdown blocks TSP4 induced nociception and its pathological correlates. Conversely, TSP4 antibodies or genetic ablation blocks nociception and changes in synaptic transmission in mice overexpressing Cavα2δ1 Importantly, TSP4/Cavα2δ1-dependent processes also lead to similar behavioral and pathological changes in a neuropathic pain model of peripheral nerve injury. Thus, a TSP4/Cavα2δ1-dependent pathway activated by TSP4 or peripheral nerve injury promotes exaggerated presynaptic excitatory input and evoked sensory neuron hyperexcitability and excitatory synaptogenesis, which together lead to central sensitization and pain state development.
Collapse
Affiliation(s)
- John Park
- From the Department of Pharmacology and
| | | | | | - Kang-Wu Li
- Department of Anesthesiology and Perioperative Care, University of California, Irvine, California 92697
| | - Dongqing Wang
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Eric Chang
- Department of Anesthesiology and Perioperative Care, University of California, Irvine, California 92697
| | - Doo-Sik Kim
- Department of Anesthesiology and Perioperative Care, University of California, Irvine, California 92697
| | - Benjamin Vo
- Department of Anesthesiology and Perioperative Care, University of California, Irvine, California 92697
| | - Xia Zhang
- Department of Anesthesiology and Perioperative Care, University of California, Irvine, California 92697
| | - Nian Gong
- Department of Anesthesiology and Perioperative Care, University of California, Irvine, California 92697
| | - Kelli Sharp
- Reeve-Irvine Research Center, University of California, Irvine, School of Medicine, Irvine, California 92697
| | - Oswald Steward
- Reeve-Irvine Research Center, University of California, Irvine, School of Medicine, Irvine, California 92697
| | - Iuliia Vitko
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Cagla Eroglu
- Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Ben Barres
- Department of Neurobiology, Stanford University, Stanford, California 94305, and
| | - Frank Zaucke
- Center for Biochemistry and Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne, D50931 Cologne, Germany
| | - Guoping Feng
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Z David Luo
- From the Department of Pharmacology and Department of Anesthesiology and Perioperative Care, University of California, Irvine, California 92697, Reeve-Irvine Research Center, University of California, Irvine, School of Medicine, Irvine, California 92697,
| |
Collapse
|
39
|
Abstract
A central theme in the quest to unravel the genetic basis of epilepsy has been the effort to elucidate the roles played by inherited defects in ion channels. The ubiquitous expression of voltage-gated calcium channels (VGCCs) throughout the central nervous system (CNS), along with their involvement in fundamental processes, such as neuronal excitability and synaptic transmission, has made them attractive candidates. Recent insights provided by the identification of mutations in the P/Q-type calcium channel in humans and rodents with epilepsy and the finding of thalamic T-type calcium channel dysfunction in the absence of seizures have raised expectations of a causal role of calcium channels in the polygenic inheritance of idiopathic epilepsy. In this review, we consider how genetic variation in neuronal VGCCs may influence the development of epilepsy.
Collapse
Affiliation(s)
- Sanjeev Rajakulendran
- UCL-Institute of Neurology, MRC Centre for Neuromuscular Diseases, Queen Square, London WC1N 3BG, United Kingdom
| | - Michael G Hanna
- UCL-Institute of Neurology, MRC Centre for Neuromuscular Diseases, Queen Square, London WC1N 3BG, United Kingdom
| |
Collapse
|
40
|
Zhu W, Varga Z, Silva JR. Molecular motions that shape the cardiac action potential: Insights from voltage clamp fluorometry. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 120:3-17. [PMID: 26724572 DOI: 10.1016/j.pbiomolbio.2015.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/11/2015] [Accepted: 12/16/2015] [Indexed: 01/04/2023]
Abstract
Very recently, voltage-clamp fluorometry (VCF) protocols have been developed to observe the membrane proteins responsible for carrying the ventricular ionic currents that form the action potential (AP), including those carried by the cardiac Na(+) channel, NaV1.5, the L-type Ca(2+) channel, CaV1.2, the Na(+)/K(+) ATPase, and the rapid and slow components of the delayed rectifier, KV11.1 and KV7.1. This development is significant, because VCF enables simultaneous observation of ionic current kinetics with conformational changes occurring within specific channel domains. The ability gained from VCF, to connect nanoscale molecular movement to ion channel function has revealed how the voltage-sensing domains (VSDs) control ion flux through channel pores, mechanisms of post-translational regulation and the molecular pathology of inherited mutations. In the future, we expect that this data will be of great use for the creation of multi-scale computational AP models that explicitly represent ion channel conformations, connecting molecular, cell and tissue electrophysiology. Here, we review the VCF protocol, recent results, and discuss potential future developments, including potential use of these experimental findings to create novel computational models.
Collapse
Affiliation(s)
- Wandi Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Zoltan Varga
- MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, University of Debrecen, Debrecen, Hungary
| | - Jonathan R Silva
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
41
|
Valadan M, Banifatemi S, Yousefshahi F. Preoperative Gabapentin to Prevent Postoperative Shoulder Pain After Laparoscopic Ovarian Cystectomy: A Randomized Clinical Trial. Anesth Pain Med 2015; 5:e31524. [PMID: 26705527 PMCID: PMC4688820 DOI: 10.5812/aapm.31524] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/25/2015] [Accepted: 09/22/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Patients undergoing gynecology laparoscopy frequently experience shoulder pain as a common postoperative complication. Considering diaphragm stimulation in its pathophysiology, there are some advice to prevent or control this special form of referral pain. OBJECTIVES The current study aimed to assess the prophylactic effect of preoperative administration of oral gabapentin to prevent Post Laparoscopic Shoulder Pain (PLSP) after laparoscopic ovarian cystectomy. PATIENTS AND METHODS In a randomized, double blind, placebo controlled trial 40 female patients who were candidates to have elective laparoscopic ovarian cystectomy, received uniformed capsules containing gabapentin 600 mg or placebo 30 minutes before anesthesia induction. All patients had the American Society of Anesthesiologists (ASA) Physical Status of I-II and none had pervious abdominal surgery. Thereafter, the presence of side effects and PLSP and its severity was assessed by Visual Analog Scale (VAS) in the beginning of surgery and 2, 6, 12 hours after the surgery. RESULTS Comparing the gabapentin (n = 20) and placebo (n = 20) groups, basic characteristics including age (P = 0.446), Body Mass Index (BMI) (P = 0.876), pregnancy history (P = 0.660), and surgery time (P = 0.232) were statistically similar. PLSP occurrence was less frequent in the gabapentin group (45%) compared with the placebo group (75%) (P = 0.053), while In gabapentin group the VAS scores were lower in 2(P = 0.004), 6 (P = 0.132), and 12 (P = 0.036) hours, post operatively. CONCLUSIONS Prophylactic gabapentin administration could be considered as an effective and safe intervention to reduce occurrence and severity of PLSP after gynecologic laparoscopic cystectomy.
Collapse
Affiliation(s)
- Mehrnaz Valadan
- Obstetrics and Gynecology Department, Women Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sakineh Banifatemi
- Obstetrics and Gynecology Department, Women Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fardin Yousefshahi
- Anesthesiology and Critical Care Department, Women Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Corresponding author: Fardin Yousefshahi, Anesthesiology and Critical Care Department, Women Hospital, Tehran University of Medical Sciences, Tehran, Iran. Tel: +98-2142046, Fax: +98-2188915959, E-mail:
| |
Collapse
|
42
|
Zamponi GW, Striessnig J, Koschak A, Dolphin AC. The Physiology, Pathology, and Pharmacology of Voltage-Gated Calcium Channels and Their Future Therapeutic Potential. Pharmacol Rev 2015; 67:821-70. [PMID: 26362469 PMCID: PMC4630564 DOI: 10.1124/pr.114.009654] [Citation(s) in RCA: 728] [Impact Index Per Article: 80.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Voltage-gated calcium channels are required for many key functions in the body. In this review, the different subtypes of voltage-gated calcium channels are described and their physiologic roles and pharmacology are outlined. We describe the current uses of drugs interacting with the different calcium channel subtypes and subunits, as well as specific areas in which there is strong potential for future drug development. Current therapeutic agents include drugs targeting L-type Ca(V)1.2 calcium channels, particularly 1,4-dihydropyridines, which are widely used in the treatment of hypertension. T-type (Ca(V)3) channels are a target of ethosuximide, widely used in absence epilepsy. The auxiliary subunit α2δ-1 is the therapeutic target of the gabapentinoid drugs, which are of value in certain epilepsies and chronic neuropathic pain. The limited use of intrathecal ziconotide, a peptide blocker of N-type (Ca(V)2.2) calcium channels, as a treatment of intractable pain, gives an indication that these channels represent excellent drug targets for various pain conditions. We describe how selectivity for different subtypes of calcium channels (e.g., Ca(V)1.2 and Ca(V)1.3 L-type channels) may be achieved in the future by exploiting differences between channel isoforms in terms of sequence and biophysical properties, variation in splicing in different target tissues, and differences in the properties of the target tissues themselves in terms of membrane potential or firing frequency. Thus, use-dependent blockers of the different isoforms could selectively block calcium channels in particular pathologies, such as nociceptive neurons in pain states or in epileptic brain circuits. Of important future potential are selective Ca(V)1.3 blockers for neuropsychiatric diseases, neuroprotection in Parkinson's disease, and resistant hypertension. In addition, selective or nonselective T-type channel blockers are considered potential therapeutic targets in epilepsy, pain, obesity, sleep, and anxiety. Use-dependent N-type calcium channel blockers are likely to be of therapeutic use in chronic pain conditions. Thus, more selective calcium channel blockers hold promise for therapeutic intervention.
Collapse
Affiliation(s)
- Gerald W Zamponi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Joerg Striessnig
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Alexandra Koschak
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Annette C Dolphin
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| |
Collapse
|
43
|
Zvejniece L, Vavers E, Svalbe B, Veinberg G, Rizhanova K, Liepins V, Kalvinsh I, Dambrova M. R-phenibut binds to the α2-δ subunit of voltage-dependent calcium channels and exerts gabapentin-like anti-nociceptive effects. Pharmacol Biochem Behav 2015; 137:23-9. [PMID: 26234470 DOI: 10.1016/j.pbb.2015.07.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 07/26/2015] [Accepted: 07/29/2015] [Indexed: 02/02/2023]
Abstract
Phenibut is clinically used anxiolytic, mood elevator and nootropic drug. R-phenibut is responsible for the pharmacological activity of racemic phenibut, and this activity correlates with its binding affinity for GABAB receptors. In contrast, S-phenibut does not bind to GABAB receptors. In this study, we assessed the binding affinities of R-phenibut, S-phenibut, baclofen and gabapentin (GBP) for the α2-δ subunit of the voltage-dependent calcium channel (VDCC) using a subunit-selective ligand, radiolabelled GBP. Binding experiments using rat brain membrane preparations revealed that the equilibrium dissociation constants (Kis) for R-phenibut, S-phenibut, baclofen and GBP were 23, 39, 156 and 0.05μM, respectively. In the pentylenetetrazole (PTZ)-induced seizure test, we found that at doses up to 100mg/kg, R-phenibut did not affect PTZ-induced seizures. The anti-nociceptive effects of R-phenibut were assessed using the formalin-induced paw-licking test and the chronic constriction injury (CCI) of the sciatic nerve model. Pre-treatment with R-phenibut dose-dependently decreased the nociceptive response during both phases of the test. The anti-nociceptive effects of R-phenibut in the formalin-induced paw-licking test were not blocked by the GABAB receptor-selective antagonist CGP35348. In addition, treatment with R- and S-phenibut alleviated the mechanical and thermal allodynia induced by CCI of the sciatic nerve. Our data suggest that the binding affinity of R-phenibut for the α2-δ subunit of the VDCC is 4 times higher than its affinity for the GABAB receptor. The anti-nociceptive effects of R-phenibut observed in the tests of formalin-induced paw licking and CCI of the sciatic nerve were associated with its effect on the α2-δ subunit of the VDCC rather than with its effects on GABAB receptors. In conclusion, our results provide experimental evidence for GBP-like, anti-nociceptive properties of R-phenibut, which might be used clinically to treat neuropathic pain disorders.
Collapse
Affiliation(s)
- Liga Zvejniece
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia.
| | - Edijs Vavers
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia; Riga Stradins University, Dzirciema 16, Riga, LV-1007, Latvia
| | - Baiba Svalbe
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia
| | - Grigory Veinberg
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia
| | | | | | - Ivars Kalvinsh
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia
| | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia; Riga Stradins University, Dzirciema 16, Riga, LV-1007, Latvia
| |
Collapse
|
44
|
Hajela RK, Huntoon KM, Atchison WD. Lambert-Eaton syndrome antibodies target multiple subunits of voltage-gated Ca2+channels. Muscle Nerve 2014; 51:176-84. [DOI: 10.1002/mus.24295] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Ravindra K. Hajela
- Department of Pharmacology and Toxicology; Michigan State University; B331 Life Sciences Building, 1355 Bogue Street East Lansing Michigan 48824-1317 USA
| | - Kristin M. Huntoon
- Department of Pharmacology and Toxicology; Michigan State University; B331 Life Sciences Building, 1355 Bogue Street East Lansing Michigan 48824-1317 USA
| | - William D. Atchison
- Department of Pharmacology and Toxicology; Michigan State University; B331 Life Sciences Building, 1355 Bogue Street East Lansing Michigan 48824-1317 USA
| |
Collapse
|
45
|
Geisler S, Schöpf CL, Obermair GJ. Emerging evidence for specific neuronal functions of auxiliary calcium channel α₂δ subunits. Gen Physiol Biophys 2014; 34:105-118. [PMID: 25504062 DOI: 10.4149/gpb_2014037] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/06/2014] [Indexed: 11/08/2022]
Abstract
In nerve cells the ubiquitous second messenger calcium regulates a variety of vitally important functions including neurotransmitter release, gene regulation, and neuronal plasticity. The entry of calcium into cells is tightly regulated by voltage-gated calcium channels, which consist of a heteromultimeric complex of a pore forming α₁, and the auxiliary β and α₂δ subunits. Four genes (Cacna2d1-4) encode for the extracellular membrane-attached α₂δ subunits (α₂δ-1 to α₂δ-4), out of which three isoforms (α₂δ-1 to -3) are strongly expressed in the central nervous system. Over the years a wealth of studies has demonstrated the classical role of α₂δ subunits in channel trafficking and calcium current modulation. Recent studies in specialized neuronal cell systems propose roles of α₂δ subunits beyond the classical view and implicate α₂δ subunits as important regulators of synapse formation. These findings are supported by the identification of novel human disease mutations associated with α₂δ subunits and by the fact that α₂δ subunits are the target of the anti-epileptic and anti-allodynic drugs gabapentin and pregabalin. Here we review the recently emerging evidence for specific as well as redundant neuronal roles of α₂δ subunits and discuss the mechanisms for establishing and maintaining specificity.
Collapse
Affiliation(s)
- Stefanie Geisler
- Division of Physiology, Department of Physiology and Medical Physics, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Clemens L Schöpf
- Division of Physiology, Department of Physiology and Medical Physics, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Gerald J Obermair
- Division of Physiology, Department of Physiology and Medical Physics, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
46
|
Lee A, Wang S, Williams B, Hagen J, Scheetz TE, Haeseleer F. Characterization of Cav1.4 complexes (α11.4, β2, and α2δ4) in HEK293T cells and in the retina. J Biol Chem 2014; 290:1505-21. [PMID: 25468907 DOI: 10.1074/jbc.m114.607465] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In photoreceptor synaptic terminals, voltage-gated Cav1.4 channels mediate Ca(2+) signals required for transmission of visual stimuli. Like other high voltage-activated Cav channels, Cav1.4 channels are composed of a main pore-forming Cav1.4 α1 subunit and auxiliary β and α2δ subunits. Of the four distinct classes of β and α2δ, β2 and α2δ4 are thought to co-assemble with Cav1.4 α1 subunits in photoreceptors. However, an understanding of the functional properties of this combination of Cav subunits is lacking. Here, we provide evidence that Cav1.4 α1, β2, and α2δ4 contribute to Cav1.4 channel complexes in the retina and describe their properties in electrophysiological recordings. In addition, we identified a variant of β2, named here β2X13, which, along with β2a, is present in photoreceptor terminals. Cav1.4 α1, β2, and α2δ4 were coimmunoprecipitated from lysates of transfected HEK293 cells and mouse retina and were found to interact in the outer plexiform layer of the retina containing the photoreceptor synaptic terminals, by proximity ligation assays. In whole-cell patch clamp recordings of transfected HEK293T cells, channels (Cav1.4 α1 + β2X13) containing α2δ4 exhibited weaker voltage-dependent activation than those with α2δ1. Moreover, compared with channels (Cav1.4 α1 + α2δ4) with β2a, β2X13-containing channels exhibited greater voltage-dependent inactivation. The latter effect was specific to Cav1.4 because it was not seen for Cav1.2 channels. Our results provide the first detailed functional analysis of the Cav1.4 subunits that form native photoreceptor Cav1.4 channels and indicate potential heterogeneity in these channels conferred by β2a and β2X13 variants.
Collapse
Affiliation(s)
- Amy Lee
- From the Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, and Neurology, University of Iowa, Iowa City, Iowa 52242
| | - Shiyi Wang
- From the Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, and Neurology, University of Iowa, Iowa City, Iowa 52242
| | - Brittany Williams
- From the Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, and Neurology, University of Iowa, Iowa City, Iowa 52242
| | - Jussara Hagen
- From the Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, and Neurology, University of Iowa, Iowa City, Iowa 52242
| | - Todd E Scheetz
- the Departments of Ophthalmology and Visual Sciences and Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, and
| | - Françoise Haeseleer
- the Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| |
Collapse
|
47
|
Weeke P, Muhammad R, Delaney JT, Shaffer C, Mosley JD, Blair M, Short L, Stubblefield T, Roden DM, Darbar D. Whole-exome sequencing in familial atrial fibrillation. Eur Heart J 2014; 35:2477-83. [PMID: 24727801 DOI: 10.1093/eurheartj/ehu156] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
AIMS Positional cloning and candidate gene approaches have shown that atrial fibrillation (AF) is a complex disease with familial aggregation. Here, we employed whole-exome sequencing (WES) in AF kindreds to identify variants associated with familial AF. METHODS AND RESULTS WES was performed on 18 individuals in six modestly sized familial AF kindreds. After filtering very rare variants by multiple metrics, we identified 39 very rare and potentially pathogenic variants [minor allele frequency (MAF) ≤0.04%] in genes not previously associated with AF. Despite stringent filtering >1 very rare variants in the 5/6 of the kindreds were identified, whereas no plausible variants contributing to familial AF were found in 1/6 of the kindreds. Two candidate AF variants in the calcium channel subunit genes (CACNB2 and CACNA2D4) were identified in two separate families using expression data and predicted function. CONCLUSION By coupling family data with exome sequencing, we identified multiple very rare potentially pathogenic variants in five of six families, suggestive of a complex disease mechanism, whereas none were identified in the remaining AF pedigree. This study highlights some important limitations and challenges associated with performing WES in AF including the importance of having large well-curated multi-generational pedigrees, the issue of potential AF misclassification, and limitations of WES technology when applied to a complex disease.
Collapse
Affiliation(s)
- Peter Weeke
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA Department of Cardiology, Copenhagen University Hospital, Gentofte, Denmark
| | - Raafia Muhammad
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Jessica T Delaney
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Christian Shaffer
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Jonathan D Mosley
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Marcia Blair
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Laura Short
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Tanya Stubblefield
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Dan M Roden
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, 2215B Garland Avenue, Room 1285A MRB IV, Nashville 37323-6602, TN, USA
| | - Dawood Darbar
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, 2215B Garland Avenue, Room 1285A MRB IV, Nashville 37323-6602, TN, USA
| | | |
Collapse
|
48
|
Hofmann F, Flockerzi V, Kahl S, Wegener JW. L-type CaV1.2 calcium channels: from in vitro findings to in vivo function. Physiol Rev 2014; 94:303-26. [PMID: 24382889 DOI: 10.1152/physrev.00016.2013] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The L-type Cav1.2 calcium channel is present throughout the animal kingdom and is essential for some aspects of CNS function, cardiac and smooth muscle contractility, neuroendocrine regulation, and multiple other processes. The L-type CaV1.2 channel is built by up to four subunits; all subunits exist in various splice variants that potentially affect the biophysical and biological functions of the channel. Many of the CaV1.2 channel properties have been analyzed in heterologous expression systems including regulation of the L-type CaV1.2 channel by Ca(2+) itself and protein kinases. However, targeted mutations of the calcium channel genes confirmed only some of these in vitro findings. Substitution of the respective serines by alanine showed that β-adrenergic upregulation of the cardiac CaV1.2 channel did not depend on the phosphorylation of the in vitro specified amino acids. Moreover, well-established in vitro phosphorylation sites of the CaVβ2 subunit of the cardiac L-type CaV1.2 channel were found to be irrelevant for the in vivo regulation of the channel. However, the molecular basis of some kinetic properties, such as Ca(2+)-dependent inactivation and facilitation, has been approved by in vivo mutagenesis of the CaV1.2α1 gene. This article summarizes recent findings on the in vivo relevance of well-established in vitro results.
Collapse
|
49
|
Li KW, Yu YP, Zhou C, Kim DS, Lin B, Sharp K, Steward O, Luo ZD. Calcium channel α2δ1 proteins mediate trigeminal neuropathic pain states associated with aberrant excitatory synaptogenesis. J Biol Chem 2014; 289:7025-7037. [PMID: 24459143 DOI: 10.1074/jbc.m114.548990] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
To investigate a potential mechanism underlying trigeminal nerve injury-induced orofacial hypersensitivity, we used a rat model of chronic constriction injury to the infraorbital nerve (CCI-ION) to study whether CCI-ION caused calcium channel α2δ1 (Cavα2δ1) protein dysregulation in trigeminal ganglia and associated spinal subnucleus caudalis and C1/C2 cervical dorsal spinal cord (Vc/C2). Furthermore, we studied whether this neuroplasticity contributed to spinal neuron sensitization and neuropathic pain states. CCI-ION caused orofacial hypersensitivity that correlated with Cavα2δ1 up-regulation in trigeminal ganglion neurons and Vc/C2. Blocking Cavα2δ1 with gabapentin, a ligand for the Cavα2δ1 proteins, or Cavα2δ1 antisense oligodeoxynucleotides led to a reversal of orofacial hypersensitivity, supporting an important role of Cavα2δ1 in orofacial pain processing. Importantly, increased Cavα2δ1 in Vc/C2 superficial dorsal horn was associated with increased excitatory synaptogenesis and increased frequency, but not the amplitude, of miniature excitatory postsynaptic currents in dorsal horn neurons that could be blocked by gabapentin. Thus, CCI-ION-induced Cavα2δ1 up-regulation may contribute to orofacial neuropathic pain states through abnormal excitatory synapse formation and enhanced presynaptic excitatory neurotransmitter release in Vc/C2.
Collapse
Affiliation(s)
- Kang-Wu Li
- Department of Anesthesiology and Perioperative Care, University of California School of Medicine, Irvine, California 92697
| | - Yanhui Peter Yu
- Department of Pharmacology, University of California School of Medicine, Irvine, California 92697
| | - Chunyi Zhou
- Department of Pharmacology, University of California School of Medicine, Irvine, California 92697
| | - Doo-Sik Kim
- Department of Anesthesiology and Perioperative Care, University of California School of Medicine, Irvine, California 92697
| | - Bin Lin
- Department of Anesthesiology and Perioperative Care, University of California School of Medicine, Irvine, California 92697
| | - Kelli Sharp
- Reeve-Irvine Research Center, University of California School of Medicine, Irvine, California 92697
| | - Oswald Steward
- Reeve-Irvine Research Center, University of California School of Medicine, Irvine, California 92697
| | - Z David Luo
- Department of Anesthesiology and Perioperative Care, University of California School of Medicine, Irvine, California 92697; Department of Pharmacology, University of California School of Medicine, Irvine, California 92697; Reeve-Irvine Research Center, University of California School of Medicine, Irvine, California 92697.
| |
Collapse
|
50
|
De Sevilla Müller LP, Liu J, Solomon A, Rodriguez A, Brecha NC. Expression of voltage-gated calcium channel α(2)δ(4) subunits in the mouse and rat retina. J Comp Neurol 2014; 521:2486-501. [PMID: 23296739 DOI: 10.1002/cne.23294] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 12/12/2012] [Accepted: 12/27/2012] [Indexed: 01/18/2023]
Abstract
High-voltage activated Ca channels participate in multiple cellular functions, including transmitter release, excitation, and gene transcription. Ca channels are heteromeric proteins consisting of a pore-forming α(1) subunit and auxiliary α(2)δ and β subunits. Although there are reports of α(2)δ(4) subunit mRNA in the mouse retina and localization of the α(2)δ(4) subunit immunoreactivity to salamander photoreceptor terminals, there is a limited overall understanding of its expression and localization in the retina. α(2)δ(4) subunit expression and distribution in the mouse and rat retina were evaluated by using reverse transcriptase polymerase chain reaction, western blot, and immunohistochemistry with specific primers and a well-characterized antibody to the α(2)δ(4) subunit. α(2)δ(4) subunit mRNA and protein are present in mouse and rat retina, brain, and liver homogenates. Immunostaining for the α(2)δ(4) subunit is mainly localized to Müller cell processes and endfeet, photoreceptor terminals, and photoreceptor outer segments. This subunit is also expressed in a few displaced ganglion cells and bipolar cell dendrites. These findings suggest that the α(2)δ(4) subunit participates in the modulation of L-type Ca(2+) current regulating neurotransmitter release from photoreceptor terminals and Ca(2+)-dependent signaling pathways in bipolar and Müller cells.
Collapse
Affiliation(s)
- Luis Pérez De Sevilla Müller
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California 90095, USA.
| | | | | | | | | |
Collapse
|