1
|
Matera MG, Rogliani P, Page CP, Calzetta L, Cazzola M. The discovery and development of gefapixant as a novel antitussive therapy. Expert Opin Drug Discov 2024; 19:1159-1172. [PMID: 39138872 DOI: 10.1080/17460441.2024.2391902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
INTRODUCTION Gefapixant, a P2X 3 receptor antagonist, shows considerable potential in managing refractory or unexplained chronic cough. Clinical trials have consistently demonstrated its efficacy in significantly reducing cough frequency and alleviating associated symptoms. However, its adverse effect profile, particularly taste disturbances such as dysgeusia and hypogeusia, the incidence of which is dose-dependent, poses a significant challenge to patient compliance and overall treatment satisfaction. AREAS COVERED The authors review the mechanism of action of gefapixant, the dose-dependent nature of its adverse effects and the findings from various clinical trials, including Phase 1, Phase 2, and Phase 3 studies. The authors also cover its regulatory status, post-marketing data, and its main competitors. EXPERT OPINION Gefapixant represents a significant advancement in treating chronic cough. However, balancing efficacy and tolerability is crucial. Lower effective doses and potential combination therapies may mitigate taste disturbances. Patient education and close monitoring during treatment are also important for optimal outcomes. Further research is needed to refine dosing strategies to minimize side effects while maintaining therapeutic efficacy. This research and personalized treatment approaches are key to optimizing gefapixant therapy, ensuring improved management of chronic cough while reducing adverse effects. However, pharmaceutical trials and proposals must be adapted to align with each regulatory body's specific requirements and concerns.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Clive P Page
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Luigino Calzetta
- Unit of Respiratory Disease and Lung Function, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
2
|
Chan NJ, Chen YY, Hsu CC, Lin YS, Zakeri M, Kim S, Khosravi M, Lee LY. Release of ATP in the lung evoked by inhalation of irritant gases in rats. J Appl Physiol (1985) 2024; 137:581-590. [PMID: 38932688 PMCID: PMC11424173 DOI: 10.1152/japplphysiol.00137.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024] Open
Abstract
Adenosine triphosphate (ATP) can be released into the extracellular milieu from various types of cells in response to a wide range of physical or chemical stresses. In the respiratory tract, extracellular ATP is recognized as an important signal molecule and trigger of airway inflammation. Chlorine (Cl2), sulfur dioxide (SO2), and ammonia (NH3) are potent irritant gases and common industrial air pollutants due to their widespread uses as chemical agents. This study was carried out to determine if acute inhalation challenges of these irritant gases, at the concentration and duration simulating the accidental exposures to these chemical gases in industrial operations, triggered the release of ATP in the rat respiratory tract; and if so, whether the level of ATP in bronchoalveolar lavage fluid (BALF) evoked by inhalation challenge of a given irritant gas was elevated by chronic allergic airway inflammation. Our results showed: 1) inhalation of these irritant gases caused significant increases in the ATP level in BALF, and the magnitude of evoked ATP release was in the order of Cl2 > SO2 > NH3. 2) Chronic airway inflammation induced by ovalbumin-sensitization markedly elevated the ATP level in BALF during baseline (breathing room air) but did not potentiate the release of ATP in the lung triggered by inhalation challenges of these irritant gases. These findings suggested a possible involvement of the ATP release in the lung in the regulation of overall airway responses to acute inhalation of irritant gases and the pathogenesis of chronic allergic airway inflammation.NEW & NOTEWORTHY Extracellular adenosine triphosphate (ATP) is a contributing factor and signaling molecule of airway inflammation. This study demonstrated for the first time that the ATP release in the lung was markedly elevated after acute inhalation challenges of three common industrial air pollutants; the order of the response magnitude was chlorine > sulfur dioxide > ammonia. These findings provided new information and improved our understanding of the adverse pulmonary effects caused by accidental inhalation exposures to these irritant gases.
Collapse
Affiliation(s)
- Nai-Ju Chan
- Department of Physiology, University of Kentucky Medical Center, Lexington, Kentucky, United States
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yueh-Yin Chen
- Department of Physiology, University of Kentucky Medical Center, Lexington, Kentucky, United States
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Chun Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - You Shuei Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Maxwell Zakeri
- Department of Physiology, University of Kentucky Medical Center, Lexington, Kentucky, United States
| | - Seonwook Kim
- Department of Physiology, University of Kentucky Medical Center, Lexington, Kentucky, United States
| | - Mehdi Khosravi
- Department of Medicine, University of Kentucky Medical Center, Lexington, Kentucky, United States
| | - Lu-Yuan Lee
- Department of Physiology, University of Kentucky Medical Center, Lexington, Kentucky, United States
| |
Collapse
|
3
|
Gerasimovskaya E, Patil RS, Davies A, Maloney ME, Simon L, Mohamed B, Cherian-Shaw M, Verin AD. Extracellular purines in lung endothelial permeability and pulmonary diseases. Front Physiol 2024; 15:1450673. [PMID: 39234309 PMCID: PMC11372795 DOI: 10.3389/fphys.2024.1450673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
The purinergic signaling system is an evolutionarily conserved and critical regulatory circuit that maintains homeostatic balance across various organ systems and cell types by providing compensatory responses to diverse pathologies. Despite cardiovascular diseases taking a leading position in human morbidity and mortality worldwide, pulmonary diseases represent significant health concerns as well. The endothelium of both pulmonary and systemic circulation (bronchial vessels) plays a pivotal role in maintaining lung tissue homeostasis by providing an active barrier and modulating adhesion and infiltration of inflammatory cells. However, investigations into purinergic regulation of lung endothelium have remained limited, despite widespread recognition of the role of extracellular nucleotides and adenosine in hypoxic, inflammatory, and immune responses within the pulmonary microenvironment. In this review, we provide an overview of the basic aspects of purinergic signaling in vascular endothelium and highlight recent studies focusing on pulmonary microvascular endothelial cells and endothelial cells from the pulmonary artery vasa vasorum. Through this compilation of research findings, we aim to shed light on the emerging insights into the purinergic modulation of pulmonary endothelial function and its implications for lung health and disease.
Collapse
Affiliation(s)
| | - Rahul S Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Adrian Davies
- Department of Internal Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - McKenzie E Maloney
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Office of Academic Affairs, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Liselle Simon
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Basmah Mohamed
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Mary Cherian-Shaw
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Alexander D Verin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
4
|
Sierra-Marquez J, Schaller L, Sassenbach L, Ramírez-Fernández A, Alt P, Rissiek B, Zimmer B, Schredelseker J, Hector J, Stähler T, Koch-Nolte F, Staab-Weijnitz CA, Dietrich A, Kopp R, Nicke A. Different localization of P2X4 and P2X7 receptors in native mouse lung - lack of evidence for a direct P2X4-P2X7 receptor interaction. Front Immunol 2024; 15:1425938. [PMID: 38953020 PMCID: PMC11215518 DOI: 10.3389/fimmu.2024.1425938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/28/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction P2X receptors are a family of homo- and heterotrimeric cation channels gated by extracellular ATP. The P2X4 and P2X7 subunits show overlapping expression patterns and have been involved in similar physiological processes, such as pain and inflammation as well as various immune cell functions. While formation of P2X2/P2X3 heterotrimers produces a distinct pharmacological phenotype and has been well established, functional identification of a P2X4/P2X7 heteromer has been difficult and evidence for and against a physical association has been found. Most of this evidence stems, however, from in vitro model systems. Methods Here, we used a P2X7-EGFP BAC transgenic mouse model as well as P2X4 and P2X7 knock-out mice to re-investigate a P2X4-P2X7 interaction in mouse lung by biochemical and immunohistochemical experiments as well as quantitative expression analysis. Results No detectable amounts of P2X4 could be co-purified from mouse lung via P2X7-EGFP. In agreement with these findings, immuno-histochemical analysis using a P2X7-specific nanobody revealed only limited overlap in the cellular and subcellular localizations of P2X4 and P2X7 in both the native lung tissue and primary cells. Comparison of P2X4 and P2X7 transcript and protein levels in the respective gene-deficient and wild type mice showed no mutual interrelation between their expression levels in whole lungs. However, a significantly reduced P2rx7 expression was found in alveolar macrophages of P2rx4 -/- mice. Discussion In summary, our detailed analysis of the cellular and subcellular P2X4 and P2X7 localization and expression does not support a physiologically relevant direct association of P2X4 and P2X7 subunits or receptors in vivo.
Collapse
Affiliation(s)
- Juan Sierra-Marquez
- Walther Straub Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Lena Schaller
- Walther Straub Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Lukas Sassenbach
- Walther Straub Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Antonio Ramírez-Fernández
- Walther Straub Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Philipp Alt
- Walther Straub Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Béla Zimmer
- Walther Straub Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Johann Schredelseker
- Walther Straub Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Faculty of Medicine, LMU Munich, Munich, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung, Partner Site Munich Heart Alliance, Munich, Germany
| | - Julia Hector
- Walther Straub Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Tobias Stähler
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia A. Staab-Weijnitz
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Germany
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Alexander Dietrich
- Walther Straub Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Robin Kopp
- Walther Straub Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Faculty of Medicine, LMU Munich, Munich, Germany
| |
Collapse
|
5
|
Jairaman A, Prakriya M. Calcium Signaling in Airway Epithelial Cells: Current Understanding and Implications for Inflammatory Airway Disease. Arterioscler Thromb Vasc Biol 2024; 44:772-783. [PMID: 38385293 PMCID: PMC11090472 DOI: 10.1161/atvbaha.123.318339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Airway epithelial cells play an indispensable role in protecting the lung from inhaled pathogens and allergens by releasing an array of mediators that orchestrate inflammatory and immune responses when confronted with harmful environmental triggers. While this process is undoubtedly important for containing the effects of various harmful insults, dysregulation of the inflammatory response can cause lung diseases including asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. A key cellular mechanism that underlies the inflammatory responses in the airway is calcium signaling, which stimulates the production and release of chemokines, cytokines, and prostaglandins from the airway epithelium. In this review, we discuss the role of major Ca2+ signaling pathways found in airway epithelial cells and their contributions to airway inflammation, mucociliary clearance, and surfactant production. We highlight the importance of store-operated Ca2+ entry as a major signaling hub in these processes and discuss therapeutic implications of targeting Ca2+ signaling for airway inflammation.
Collapse
Affiliation(s)
- Amit Jairaman
- Department of Physiology and Biophysics, School of Medicine, University of California-Irvine (UCI) (A.J.)
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (M.P.)
| |
Collapse
|
6
|
Babou Kammoe RB, Sévigny J. Extracellular nucleotides in smooth muscle contraction. Biochem Pharmacol 2024; 220:116005. [PMID: 38142836 DOI: 10.1016/j.bcp.2023.116005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Extracellular nucleotides and nucleosides are crucial signalling molecules, eliciting diverse biological responses in almost all organs and tissues. These molecules exert their effects by activating specific nucleotide receptors, which are finely regulated by ectonucleotidases that break down their ligands. In this comprehensive review, we aim to elucidate the relevance of extracellular nucleotides as signalling molecules in the context of smooth muscle contraction, considering the modulatory influence of ectonucleotidases on this intricate process. Specifically, we provide a detailed examination of the involvement of extracellular nucleotides in the contraction of non-vascular smooth muscles, including those found in the urinary bladder, the airways, the reproductive system, and the gastrointestinal tract. Furthermore, we present a broader overview of the role of extracellular nucleotides in vascular smooth muscle contraction.
Collapse
Affiliation(s)
- Romuald Brice Babou Kammoe
- Centre de Recherche du CHU de Québec - Université Laval, Québec City, QC G1V 4G2, Canada; Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec - Université Laval, Québec City, QC G1V 4G2, Canada; Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada.
| |
Collapse
|
7
|
Wallace DV. Evaluation and management of chronic cough in adults. Allergy Asthma Proc 2023; 44:382-394. [PMID: 37919844 DOI: 10.2500/aap.2023.44.230059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Background: Chronic cough (CC), a cough that lasts > 8 weeks, has an overall prevalence of 5-11% in adults, peaking between 60 and 80 years of age. Of the 15% of patients who remain undiagnosed or refractory to treatment, two thirds are women. Objective: The objective was to present an updated evidence-based algorithmic approach for evaluating and managing CC, with emphasis on treatment modalities for refractory CC. Methods: A literature search was conducted of medical literature data bases for guidelines, position papers, systematic reviews, and clinical trials from January 2022 to June 2023, on the evaluation and management of CC. Results: The initial assessment should be limited to a detailed history, physical examination, chest radiograph, spirometry, exhaled nitric oxide, blood eosinophil count, and measurement of cough severity and quality of life by using validated instruments. The top diagnoses to consider are asthma, chronic obstructive pulmonary disease, nonasthmatic eosinophilic bronchitis, gastroesophageal reflux disease, and upper airway cough syndrome. Additional studies are only obtained when red flags are present or the patient fails to respond after avoidance of high-risk factors, e.g., smoking and angiotensin-converting enzyme inhibitors, and 4-6 weeks of empiric treatment for the most likely respiratory and gastrointestinal diseases. When diagnostic tests and/or specific directed treatments fail to control CC, low-dose morphine (preferred), gabapentin, pregabalin, and/or cough control therapy are recommended. Non-narcotic purinergic 2×3 (P2×3) receptor antagonists, gafapixant and campilixant, are currently being studied for CC. Conclusion: For the evaluation and management of patients with CC, clinicians should use an algorithmic approach and identify "red flags," reduce high-risk factors, and use empiric treatment for the five top diagnoses before extensive diagnostic testing. Current treatment for refractory cough is limited to symptomatic management.
Collapse
|
8
|
Schulman ES, Nishi H, Pelleg A. Degranulation of human mast cells: modulation by P2 receptors' agonists. Front Immunol 2023; 14:1216580. [PMID: 37868982 PMCID: PMC10585249 DOI: 10.3389/fimmu.2023.1216580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/04/2023] [Indexed: 10/24/2023] Open
Abstract
Since the late 1970s, there has been an alarming increase in the incidence of asthma and its morbidity and mortality. Acute obstruction and inflammation of allergic asthmatic airways are frequently caused by inhalation of exogenous substances such as allergens cross-linking IgE receptors expressed on the surface of the human lung mast cells (HLMC). The degree of constriction of human airways produced by identical amounts of inhaled allergens may vary from day to day and even hour to hour. Endogenous factors in the human mast cell (HMC)'s microenvironment during allergen exposure may markedly modulate the degranulation response. An increase in allergic responsiveness may significantly enhance bronchoconstriction and breathlessness. This review focuses on the role that the ubiquitous endogenous purine nucleotide, extracellular adenosine 5'-triphosphate (ATP), which is a component of the damage-associated molecular patterns, plays in mast cells' physiology. ATP activates P2 purinergic cell-surface receptors (P2R) to trigger signaling cascades resulting in heightened inflammatory responses. ATP is the most potent enhancer of IgE-mediated HLMC degranulation described to date. Current knowledge of ATP as it relates to targeted receptor(s) on HMC along with most recent studies exploring HMC post-receptor activation pathways are discussed. In addition, the reviewed studies may explain why brief, minimal exposures to allergens (e.g., dust, cat, mouse, and grass) can unpredictably lead to intense clinical reactions. Furthermore, potential therapeutic approaches targeting ATP-related enhancement of allergic reactions are presented.
Collapse
Affiliation(s)
- Edward S. Schulman
- Division of Pulmonary, Critical Care and Allergy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Haruhisa Nishi
- Department of Pharmacology, Jikei University School of Medicine, Tokyo, Japan
| | - Amir Pelleg
- Danmir Therapeutics, LLC, Haverford, PA, United States
| |
Collapse
|
9
|
Fjærvoll HK, Fjærvoll KA, Yang M, Bair J, Utheim TP, Dartt DA. Purinergic 2X 4 (P2X4), but not P2X7, receptors increase cytosolic [Ca 2+] and stimulate mucin secretion in rat conjunctival goblet cells to maintain ocular surface health. Exp Eye Res 2023; 235:109614. [PMID: 37580003 DOI: 10.1016/j.exer.2023.109614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/14/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Ionotropic purinergic receptors (P2XRs) are activated by ATP and ATP analogs. ATP can be released through ATP-permeable channels such as the pannexin hemichannels. Upon activation, the P2XRs become permeable to Ca2+, a potent stimulator of mucin secretion in conjunctival goblet cells (CGCs). The purpose of this study was to investigate the presence and function of P2XRs in CGCs. We also examined the presence of pannexin hemichannels. Rat first passage CGCs were stained with the goblet cell marker anti-cytokeratin 7 antibody and specific antibodies to P2X1-7 receptors and pannexin 1-3. mRNA expression was determined by RT-PCR using primers specific to P2XRs and pannexins. Proteins were identified with Western blotting (WB) using the same antibodies as for immunofluorescence (IF) microscopy. To study receptor function, CGCs were incubated with Fura 2-AM, exposed to agonists and antagonists, and intracellular [Ca2+] ([Ca2+]i) measured. [Ca2+]i was also measured after knock down of P2X4 and P2X7 receptor expression, and when exploiting P2XR specific characteristics. Lastly, mucin secretion was measured after the addition of several P2XR agonists. All P2XRs and pannexins were visualized with IF microscopy, and identified with RT-PCR and WB. [Ca2+]i was significantly increased when stimulated with ATP (10-7-10-4 M). Suramin, a non-selective P2XR antagonist at 10-4 M did not reduce ATP-induced peak [Ca2+]i. The potent P2X7 agonist, BzATP (10-7-10-4 M) increased the [Ca2+]i, although to a lesser extent than ATP. When measuring [Ca2+]i the effect of repeated applications of ATP at 10-5 or 10-6 M the response "desensitized" after 30-60 s. The P2X4 specific antagonist 5-BDBD decreased the P2X4 agonist, 2MeSATP,-induced [Ca2+]i increase. Furthermore, siRNA against the P2X4R, but not the P2X7R, decreased agonist-induced peak [Ca2+]i. ATP (10-5 M), BzATP (10-4 M) and 2MeSATP (10-5 M) induced mucin secretion. We conclude that all seven P2XRs are present in cultured rat CGCs. Of the P2XRs, only activation of the homotrimeric P2X4R appears to increase [Ca2+]i and induce mucin secretion. The P2X4R in CGCs offers a new therapeutic target for protective mucin secretion.
Collapse
Affiliation(s)
- Haakon K Fjærvoll
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States; Medical Student Research Program, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Ketil A Fjærvoll
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States; Medical Student Research Program, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Menglu Yang
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Jeffrey Bair
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Tor P Utheim
- Medical Student Research Program, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Darlene A Dartt
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Pelleg A, Sirtori E, Rolland JF, Mahadevan A. DT-0111: a novel P2X3 receptor antagonist. Purinergic Signal 2023; 19:467-479. [PMID: 36944825 PMCID: PMC10539268 DOI: 10.1007/s11302-023-09930-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
Extracellular adenosine 5'-triphosphate (ATP) acts as an autocrine and paracrine agent, the actions of which on affected cells are mediated by P2 receptors (P2R), which include trans cell-membrane cationic channels (P2XRs), and G protein coupled receptors (P2YRs). The mammalian P2X receptors form homotrimeric or heterotrimeric cationic channels, each of which contains three ATP-binding sites. There are seven homotrimeric P2X receptors (P2X1-7) and three heteromeric (P2X2/P2X3, P2X4/P2X6, P2X1/P2X5). In the lungs and airways, ATP activates P2X3 and P2X2/3 receptors (P2X3R, P2X2/3R, respectively) localized on vagal sensory nerve terminals resulting in bronchoconstriction, and cough, and probably also localized release of pro-inflammatory neuropeptides via the axon reflex. Currently, several P2X3R and P2X2/3R antagonists are being developed as drug-candidates for the treatment of chronic cough. This report presents the receptor affinity data of a novel water-soluble small molecule, DT-0111, that acts as a selective P2X3R antagonist.
Collapse
Affiliation(s)
- Amir Pelleg
- Danmir Therapeutics LLC, 24 Dartmouth Lane, Haverford, PA, 19041-1020, USA.
| | | | | | | |
Collapse
|
11
|
Drake MG, McGarvey LP, Morice AH. From bench to bedside: The role of cough hypersensitivity in chronic cough. Clin Transl Med 2023; 13:e1343. [PMID: 37501282 PMCID: PMC10374883 DOI: 10.1002/ctm2.1343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Chronic cough is a burdensome condition characterized by persistent cough lasting longer than 8 weeks. Chronic cough can significantly affect quality of life, physical function and productivity, with many people troubled with a cough that lasts for months or even years. People with chronic cough commonly report a persistent urge to cough with frequent bouts of coughing triggered by innocuous stimuli, which has led to the concept of cough hypersensitivity. MAIN BODY Both central and peripheral neural pathways regulate cough, and although mechanisms driving development of cough hypersensitivity are not fully known, sensitization of these neural pathways contributes to excessive cough triggering in cough hypersensitivity. Effective therapies that control chronic cough are currently lacking. Recent therapeutic development has focused on several ion channels and receptors involved in peripheral activation of cough (e.g., transient receptor potential channels, P2 × 3 receptors and voltage-gated sodium channels) or central cough processing (e.g., neurokinin-1 [NK-1] receptors and nicotinic acetylcholine receptors). CONCLUSION These targeted therapies provide novel insights into mechanisms underlying cough hypersensitivity and may offer new treatment options for people with chronic cough. In this review, we explore preclinical and clinical studies that have improved our understanding of the mechanisms responsible for chronic cough and discuss the most promising targeted approaches to date, including trials of P2 × 3-receptor antagonists and NK-1-receptor antagonists.
Collapse
Affiliation(s)
- Matthew G. Drake
- Division of Pulmonary and Critical Care Medicine, Department of MedicineOregon Health and Science UniversityPortlandOregonUSA
| | - Lorcan P. McGarvey
- Wellcome‐Wolfson Institute for Experimental Medicine, School of MedicineDentistry & Biomedical Science, Queen's University BelfastBelfastUnited Kingdom of Great Britain and Northern Ireland
| | - Alyn H. Morice
- Respiratory Research GroupHull York Medical SchoolUniversity of HullCottinghamUK
| |
Collapse
|
12
|
Brouns I, Adriaensen D, Timmermans JP. The pulmonary neuroepithelial body microenvironment represents an underestimated multimodal component in airway sensory pathways. Anat Rec (Hoboken) 2023. [PMID: 36808710 DOI: 10.1002/ar.25171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 02/22/2023]
Abstract
Exciting new imaging and molecular tools, combined with state-of-the-art genetically modified mouse models, have recently boosted interest in pulmonary (vagal) sensory pathway investigations. In addition to the identification of diverse sensory neuronal subtypes, visualization of intrapulmonary projection patterns attracted renewed attention on morphologically identified sensory receptor end-organs, such as the pulmonary neuroepithelial bodies (NEBs) that have been our area of expertise for the past four decades. The current review aims at providing an overview of the cellular and neuronal components of the pulmonary NEB microenvironment (NEB ME) in mice, underpinning the role of these complexly organized structures in the mechano- and chemosensory potential of airways and lungs. Interestingly, the pulmonary NEB ME additionally harbors different types of stem cells, and emerging evidence suggests that the signal transduction pathways that are active in the NEB ME during lung development and repair also determine the origin of small cell lung carcinoma. Although documented for many years that NEBs appear to be affected in several pulmonary diseases, the current intriguing knowledge on the NEB ME seems to encourage researchers that are new to the field to explore the possibility that these versatile sensor-effector units may be involved in lung pathogenesis or pathobiology.
Collapse
Affiliation(s)
- Inge Brouns
- Laboratory of Cell Biology and Histology (CBH), Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology (CBH), Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology (CBH), Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
13
|
Abstract
Coughing is a dynamic physiological process resulting from input of vagal sensory neurons innervating the airways and perceived airway irritation. Although cough serves to protect and clear the airways, it can also be exploited by respiratory pathogens to facilitate disease transmission. Microbial components or infection-induced inflammatory mediators can directly interact with sensory nerve receptors to induce a cough response. Analysis of cough-generated aerosols and transmission studies have further demonstrated how infectious disease is spread through coughing. This review summarizes the neurophysiology of cough, cough induction by respiratory pathogens and inflammation, and cough-mediated disease transmission.
Collapse
Affiliation(s)
- Kubra F Naqvi
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| | - Stuart B Mazzone
- Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia
| | - Michael U Shiloh
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
14
|
Li L, Wei B, Jia J, Li M, Ren M, Zhang S. P2X3- P2X7 SNPs and gene-gene and gene-environment interactions on pediatric asthma. J Asthma 2023; 60:1438-1445. [PMID: 36469748 DOI: 10.1080/02770903.2022.2155184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND To investigate the relationship between polymorphisms of P2X3, P2X7 genes and environment interaction with susceptibility of childhood asthma. METHODS We conducted a matched case-control study with 170 cases and 175 healthy controls. The rs10896611, rs2276038, rs3781899 in P2X3 and rs1718119, rs3751143 in P2X7 polymorphisms were genotyped using the technique of an improved multiplex ligation detection reaction. Gene-gene, gene-environment and haplotype-environment interactions were tested using the generalized multi-factor dimensionality reduction method. RESULTS There were no differences between cases and controls in allele or genotype frequencies of P2X3 and P2X7. The C/C, G/C genotypes of rs10896611, and C/C, C/T genotypes of rs2276038 and G/G, G/A genotypes of rs3781899 were associated with asthmatic cough (p > 0.05). The haplotype GCT of P2X3 reduced the risk of asthma (OR = 0.48, p = 0.048), and the haplotypes AGT (OR = 0.45, p = 0.001) and GCC (OR = 2.16, p = 0.002) were associated with asthmatic cough. The haplotype AA of P2X7 increased risk of asthma severity (p < 0.05). The three-locus model indicated a potential haplotype-environment interaction in GCT, ETS, and pet (p = 0.001). CONCLUSIONS The rs10896611, rs2276038 and rs3781899 of P2X3 minor alleles increased the risk of asthmatic cough. Haplotype GCT of P2X3 was a protective factor for asthma, the haplotype AGT was a protective factor and GCC was a risk factor for asthma with cough. In addition, the interactions of haplotype GCT of P2X3, ETS and pet may increase an individual's susceptibility to asthma.
Collapse
Affiliation(s)
- Lingxue Li
- Department of Neonatology, Northern Theater Command General Hospital (formerly General Hospital of Shenyang Military Command), Shenyang, P.R. China
| | - Bing Wei
- Department of Neonatology, Northern Theater Command General Hospital (formerly General Hospital of Shenyang Military Command), Shenyang, P.R. China
| | - Jingjing Jia
- Department of Neonatology, Northern Theater Command General Hospital (formerly General Hospital of Shenyang Military Command), Shenyang, P.R. China.,Post-graduate College, Jinzhou Medical University, Jinzhou, P.R. China
| | - Mo Li
- Department of Neonatology, Northern Theater Command General Hospital (formerly General Hospital of Shenyang Military Command), Shenyang, P.R. China
| | - Mengyang Ren
- Department of Neonatology, Northern Theater Command General Hospital (formerly General Hospital of Shenyang Military Command), Shenyang, P.R. China.,Post-graduate College, Jinzhou Medical University, Jinzhou, P.R. China
| | - Shinan Zhang
- Department of Neonatology, Northern Theater Command General Hospital (formerly General Hospital of Shenyang Military Command), Shenyang, P.R. China
| |
Collapse
|
15
|
Sgambellone S, Marri S, Catarinicchia S, Pini A, Tosh DK, Jacobson KA, Masini E, Salvemini D, Lucarini L. Adenosine A 3 Receptor (A 3AR) Agonist for the Treatment of Bleomycin-Induced Lung Fibrosis in Mice. Int J Mol Sci 2022; 23:13300. [PMID: 36362112 PMCID: PMC9657240 DOI: 10.3390/ijms232113300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 07/25/2023] Open
Abstract
Adenosine receptors (ARs) are involved in the suppression and development of inflammatory and fibrotic conditions. Specifically, AR activation promotes differentiation of lung fibroblasts into myofibroblasts, typical of a fibrotic event. Pulmonary fibrosis is a severe disease characterized by inflammation and fibrosis of unknown etiology and lacking an effective treatment. The present investigation explored the action of MRS5980, a new, highly potent and selective A3AR agonist, in an established murine model of lung fibrosis. The effects of either vehicle or MRS5980 were studied in mice following intratracheal bleomycin administration. We evaluated the role of the A3AR agonist on lung stiffness, studying the airway resistance to inflation, oxidative stress (8-OHdG and MDA), inflammation, pro- and anti-inflammatory marker levels (IL-1β, IL-6, TNF-α, IL-10 and IL-17A) and fibrosis establishment, evaluating transforming growth factor (TGF)-β expression and α-smooth muscle actin (α-SMA) deposition in lungs. Bleomycin administration increased lung stiffness, TGF-β levels, α-SMA deposition, and inflammatory and oxidative stress markers. The treatment with MRS5980 attenuated all the analyzed functional, biochemical and histopathological markers in a dose-dependent manner. Our findings support the therapeutic potential of A3AR agonists in lung fibrosis by demonstrating reduced disease progression, as indicated by decreased inflammation, TGF-β expression and fibrotic remodeling.
Collapse
Affiliation(s)
- Silvia Sgambellone
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Silvia Marri
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Stefano Catarinicchia
- Department of Experimental and Clinical Medicine, Section of Histology, University of Florence, Viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Alessandro Pini
- Department of Experimental and Clinical Medicine, Section of Histology, University of Florence, Viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Dilip K. Tosh
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Kenneth A. Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Emanuela Masini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Daniela Salvemini
- Pharmacology and Physiology, Saint Louis University, School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| | - Laura Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| |
Collapse
|
16
|
Alberto AVP, Ferreira NCDS, Bonavita AGC, Nihei OK, de Farias FP, Bisaggio RDC, de Albuquerque C, Savino W, Coutinho‐Silva R, Persechini PM, Alves LA. Physiologic roles of P2 receptors in leukocytes. J Leukoc Biol 2022; 112:983-1012. [PMID: 35837975 PMCID: PMC9796137 DOI: 10.1002/jlb.2ru0421-226rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/13/2022] [Indexed: 01/01/2023] Open
Abstract
Since their discovery in the 1970s, purinergic receptors have been shown to play key roles in a wide variety of biologic systems and cell types. In the immune system, purinergic receptors participate in innate immunity and in the modulation of the adaptive immune response. In particular, P2 receptors, which respond to extracellular nucleotides, are widely expressed on leukocytes, causing the release of cytokines and chemokines and the formation of inflammatory mediators, and inducing phagocytosis, degranulation, and cell death. The activity of these receptors is regulated by ectonucleotidases-expressed in these same cell types-which regulate the availability of nucleotides in the extracellular environment. In this article, we review the characteristics of the main purinergic receptor subtypes present in the immune system, focusing on the P2 family. In addition, we describe the physiologic roles of the P2 receptors already identified in leukocytes and how they can positively or negatively modulate the development of infectious diseases, inflammation, and pain.
Collapse
Affiliation(s)
- Anael Viana Pinto Alberto
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil
| | | | | | - Oscar Kenji Nihei
- Center of Education and LetterState University of the West of ParanáFoz do IguaçuPRBrazil
| | | | - Rodrigo da Cunha Bisaggio
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil,Federal Institute of Education, Science, and Technology of Rio de JaneiroRio de JaneiroRJBrazil
| | | | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil,Brazilian National Institute of Science and Technology on NeuroimmunomodulationRio de Janeiro Research Network on NeuroinflammationRio de JaneiroRJBrazil
| | - Robson Coutinho‐Silva
- Laboratory of Immunophysiology, Carlos Chagas Filho Biophysics InstituteFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Pedro Muanis Persechini
- Laboratory of Immunobiophysics, Carlos Chagas Filho Biophysics InstituteFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Luiz Anastacio Alves
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil
| |
Collapse
|
17
|
Sykes DL, Zhang M, Morice AH. Treatment of chronic cough: P2X3 receptor antagonists and beyond. Pharmacol Ther 2022; 237:108166. [DOI: 10.1016/j.pharmthera.2022.108166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
|
18
|
Zhang M, Sykes DL, Sadofsky LR, Morice AH. ATP, an attractive target for the treatment of refractory chronic cough. Purinergic Signal 2022; 18:289-305. [PMID: 35727480 PMCID: PMC9209634 DOI: 10.1007/s11302-022-09877-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022] Open
Abstract
Chronic cough is the most common complaint in respiratory clinics. Most of them have identifiable causes and some may respond to common disease-modifying therapies. However, there are many patients whose cough lacks effective aetiologically targeted treatments or remains unexplained after thorough assessments, which have been described as refractory chronic cough. Current treatments for refractory chronic cough are limited and often accompanied by intolerable side effects such as sedation. In recent years, various in-depth researches into the pathogenesis of chronic cough have led to an explosion in the development of drugs for the treatment of refractory chronic cough. There has been considerable progress in the underlying mechanisms of chronic cough targeting ATP, and ongoing or completed clinical studies have confirmed the promising antitussive efficacy of P2X3 antagonists for refractory cough. Herein, we review the foundation on which ATP target was developed as potential antitussive medications and provide an update on current clinical progresses.
Collapse
Affiliation(s)
- Mengru Zhang
- Respiratory Research Group, Hull York Medical School, Cottingham, UK.,Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dominic L Sykes
- Respiratory Research Group, Hull York Medical School, Cottingham, UK
| | - Laura R Sadofsky
- Respiratory Research Group, Hull York Medical School, Cottingham, UK
| | - Alyn H Morice
- Respiratory Research Group, Hull York Medical School, Cottingham, UK.
| |
Collapse
|
19
|
Nussbaum JC, Hussain A, Min KC, Marbury TC, Lasseter K, Stoch SA, Iwamoto M. Effects of Renal Impairment on the Pharmacokinetics of Gefapixant, a P2×3 Receptor Antagonist. J Clin Pharmacol 2022; 62:1435-1444. [PMID: 35656754 DOI: 10.1002/jcph.2094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/25/2022] [Indexed: 11/07/2022]
Abstract
Gefapixant, a P2×3 receptor antagonist, has demonstrated efficacy in patients with refractory or unexplained chronic cough. We investigated the effect of renal impairment (RI) on the pharmacokinetics (PK) of gefapixant 50 mg in an open-label, single-dose study enrolling participants with moderate (n = 6) or severe (n = 6) RI, end stage renal disease (ESRD; n = 6) under hemodialysis (HD) and non-HD conditions, and healthy matched controls (n = 6). Serial plasma and urine samples for gefapixant concentrations were collected at selected time points over 72 hours and 48 hours post dose, respectively. Linear regression analysis predicted a 1.87-, 2.79-, and 3.76-fold higher exposure (AUC) for participants with mild, moderate, and severe RI, respectively, than that for healthy matched control participants. Categorical analysis exhibited a 2.98-, 4.43-, and 4.74-fold higher exposure for participants with moderate RI, severe RI, and ESRD, respectively, than that for healthy matched control participants. Clearance (CL/F and CLr) was lower in participants with various degrees of RI, by 66-90%, compared with healthy matched control participants, explaining the increased gefapixant exposure with increasing degrees of renal impairment. Gefapixant AUC and Cmax decreased by ∼25% under HD conditions compared to non-HD conditions. Single dose administration of gefapixant was generally well tolerated in this study. The data from this trial informed the enrollment of Phase 3 clinical trials that evaluated the efficacy and safety of gefapixant in over 2,000 participants with refractory or unexplained chronic cough. Those efficacy and safety data, combined with analysis of population pharmacokinetics from across the entire development program, will be used to evaluate the magnitude of the renal impairment effect in the refractory or unexplained chronic cough population and to determine any dose adjustment recommendations. This article is protected by copyright. All rights reserved.
Collapse
|
20
|
Rouadi PW, Idriss SA, Bousquet J, Laidlaw TM, Azar CR, Al-Ahmad MS, Yañez A, Al-Nesf MAY, Nsouli TM, Bahna SL, Abou-Jaoude E, Zaitoun FH, Hadi UM, Hellings PW, Scadding GK, Smith PK, Morais-Almeida M, Maximiliano Gómez R, Gonzalez Diaz SN, Klimek L, Juvelekian GS, Riachy MA, Canonica GW, Peden D, Wong GW, Sublett J, Bernstein JA, Wang L, Tanno LK, Chikhladze M, Levin M, Chang YS, Martin BL, Caraballo L, Custovic A, Ortego-Martell JA, Lesslar OJ, Jensen-Jarolim E, Ebisawa M, Fiocchi A, Ansotegui IJ. WAO-ARIA consensus on chronic cough - Part III: Management strategies in primary and cough-specialty care. Updates in COVID-19. World Allergy Organ J 2022; 15:100649. [PMID: 35600836 PMCID: PMC9117692 DOI: 10.1016/j.waojou.2022.100649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/18/2022] Open
Abstract
Background Chronic cough management necessitates a clear integrated care pathway approach. Primary care physicians initially encounter the majority of chronic cough patients, yet their role in proper management can prove challenging due to limited access to advanced diagnostic testing. A multidisciplinary approach involving otolaryngologists and chest physicians, allergists, and gastroenterologists, among others, is central to the optimal diagnosis and treatment of conditions which underly or worsen cough. These include infectious and inflammatory, upper and lower airway pathologies, or gastro-esophageal reflux. Despite the wide armamentarium of ancillary testing conducted in cough multidisciplinary care, such management can improve cough but seldom resolves it completely. This can be due partly to the limited data on the role of tests (eg, spirometry, exhaled nitric oxide), as well as classical pharmacotherapy conducted in multidisciplinary specialties for chronic cough. Other important factors include presence of multiple concomitant cough trigger mechanisms and the central neuronal complexity of chronic cough. Subsequent management conducted by cough specialists aims at control of cough refractory to prior interventions and includes cough-specific behavioral counseling and pharmacotherapy with neuromodulators, among others. Preliminary data on the role of neuromodulators in a proof-of-concept manner are encouraging but lack strong evidence on efficacy and safety. Objectives The World Allergy Organization (WAO)/Allergic Rhinitis and its Impact on Asthma (ARIA) Joint Committee on Chronic Cough reviewed the recent literature on management of chronic cough in primary, multidisciplinary, and cough-specialty care. Knowledge gaps in diagnostic testing, classical and neuromodulator pharmacotherapy, in addition to behavioral therapy of chronic cough were also analyzed. Outcomes This third part of the WAO/ARIA consensus on chronic cough suggests a management algorithm of chronic cough in an integrated care pathway approach. Insights into the inherent limitations of multidisciplinary cough diagnostic testing, efficacy and safety of currently available antitussive pharmacotherapy, or the recently recognized behavioral therapy, can significantly improve the standards of care in patients with chronic cough.
Collapse
Affiliation(s)
- Philip W. Rouadi
- Department of Otolaryngology – Head and Neck Surgery, Eye and Ear University Hospital, Beirut, Lebanon
- Ear, Nose and Throat Department, Dar Al Shifa Hospital, Hawally, Kuwait
| | - Samar A. Idriss
- Department of Otolaryngology – Head and Neck Surgery, Eye and Ear University Hospital, Beirut, Lebanon
- Department of Audiology and Otoneurological Evaluation, Edouard Herriot Hospital, Lyon, France
| | - Jean Bousquet
- Hospital Charité, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Dermatology and Allergy, Comprehensive Allergy Center, Berlin Institute of Health, Berlin, Germany
- Macvia France, Montpellier France
- Université Montpellier, Montpellier, France
| | - Tanya M. Laidlaw
- Department of Medicine, Harvard Medical School, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital Boston, Massachusetts, USA
| | - Cecilio R. Azar
- Department of Gastroenterology, American University of Beirut Medical Center (AUBMC), Beirut, Lebanon
- Department of Gastroenterology, Middle East Institute of Health (MEIH), Beirut, Lebanon
- Department of Gastroenterology, Clemenceau Medical Center (CMC), Beirut, Lebanon
| | - Mona S. Al-Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait
| | - Anahi Yañez
- INAER - Investigaciones en Alergia y Enfermedades Respiratorias, Buenos Aires, Argentina
| | - Maryam Ali Y. Al-Nesf
- Allergy and Immunology Section, Department of Medicine, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | | | - Sami L. Bahna
- Allergy & Immunology Section, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | | - Fares H. Zaitoun
- Department of Allergy Otolaryngology, LAU-RIZK Medical Center, Beirut, Lebanon
| | - Usamah M. Hadi
- Clinical Professor Department of Otolaryngology Head and Neck Surgery, American University of Beirut, Lebanon
| | - Peter W. Hellings
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Allergy and Clinical Immunology, Leuven, Belgium
- University Hospitals Leuven, Department of Otorhinolaryngology, Leuven, Belgium
- University Hospital Ghent, Department of Otorhinolaryngology, Laboratory of Upper Airways Research, Ghent, Belgium
- Academic Medical Center, University of Amsterdam, Department of Otorhinolaryngology, Amsterdam, the Netherlands
| | | | - Peter K. Smith
- Clinical Medicine Griffith University, Southport Qld, 4215, Australia
| | | | | | - Sandra N. Gonzalez Diaz
- Universidad Autónoma de Nuevo León, Hospital Universitario and Facultad de Medicina, Monterrey, Nuevo León, Mexico
| | - Ludger Klimek
- Center for Rhinology and Allergology, Wiesbaden, Germany
| | - Georges S. Juvelekian
- Department of Pulmonary, Critical Care and Sleep Medicine at Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Moussa A. Riachy
- Department of Pulmonary and Critical Care, Hôtel-Dieu de France university Hospital, Beirut, Lebanon
| | - Giorgio Walter Canonica
- Humanitas University & Personalized Medicine Asthma & Allergy Clinic-Humanitas Research Hospital-IRCCS-Milano Italy
| | - David Peden
- UNC Center for Environmental Medicine, Asthma, and Lung Biology, Division of Allergy, Immunology and Rheumatology, Department of Pediatrics UNC School of Medicine, USA
| | - Gary W.K. Wong
- Department of Pediatrics, Chinese University of Hong Kong, Hong Kong, China
| | - James Sublett
- Department of Pediatrics, Section of Allergy and Immunology, University of Louisville School of Medicine, 9800 Shelbyville Rd, Louisville, KY, USA
| | - Jonathan A. Bernstein
- University of Cincinnati College of Medicine, Department of Internal Medicine, Division of Immunology/Allergy Section, Cincinnati, OH, USA
| | - Lianglu Wang
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Disease, State Key Laboratory of Complex Severe and Rare Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, 100730, China
| | - Luciana K. Tanno
- Université Montpellier, Montpellier, France
- Desbrest Institute of Epidemiology and Public Health, UMR UA-11, INSERM University of Montpellier, Montpellier, France
- WHO Collaborating Centre on Scientific Classification Support, Montpellier, France
| | - Manana Chikhladze
- Medical Faculty at Akaki Tsereteli State University, National Institute of Allergy, Asthma & Clinical Immunology, KuTaisi, Tskaltubo, Georgia
| | - Michael Levin
- Division of Paediatric Allergology, Department of Paediatrics, University of Cape Town, South Africa
| | - Yoon-Seok Chang
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Bryan L. Martin
- Department of Otolaryngology, Division of Allergy & Immunology, The Ohio State University, Columbus, OH, USA
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena. Cartagena de Indias, Colombia
| | - Adnan Custovic
- National Heart and Lund Institute, Imperial College London, UK
| | | | | | - Erika Jensen-Jarolim
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Austria
- The interuniversity Messerli Research Institute, Medical University Vienna and University of Veterinary Medicine, Vienna, Austria
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan
| | - Alessandro Fiocchi
- Translational Pediatric Research Area, Allergic Diseases Research Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Holy See
| | - Ignacio J. Ansotegui
- Department of Allergy and Immunology, Hospital Quironsalud Bizkaia, Bilbao, Spain
| |
Collapse
|
21
|
Janho dit Hreich S, Benzaquen J, Hofman P, Vouret-Craviari V. The Purinergic Landscape of Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14081926. [PMID: 35454832 PMCID: PMC9025794 DOI: 10.3390/cancers14081926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
Lung cancer is the most common cancer worldwide. Despite recent therapeutic advances, including targeted therapies and immune checkpoint inhibitors, the disease progresses in almost all advanced lung cancers and in up to 50% of early-stage cancers. The purpose of this review is to discuss whether purinergic checkpoints (CD39, CD73, P2RX7, and ADORs), which shape the immune response in the tumor microenvironment, may represent novel therapeutic targets to combat progression of non-small cell lung cancer by enhancing the antitumor immune response.
Collapse
Affiliation(s)
- Serena Janho dit Hreich
- Institute of Research on Cancer and Aging (IRCAN, CNRS, INSERM), FHU OncoAge, Université Côte d’Azur, 06108 Nice, France; (S.J.d.H.); (J.B.)
| | - Jonathan Benzaquen
- Institute of Research on Cancer and Aging (IRCAN, CNRS, INSERM), FHU OncoAge, Université Côte d’Azur, 06108 Nice, France; (S.J.d.H.); (J.B.)
| | - Paul Hofman
- CHU Nice, Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France;
- Institute of Research on Cancer and Aging (IRCAN, CNRS, INSERM, Team 4), Université Côte d’Azur, 06100 Nice, France
- CHU Nice, FHU OncoAge, Hospital-Integrated Biobank (BB-0033-00025), Université Côte d’Azur, 06000 Nice, France
| | - Valérie Vouret-Craviari
- Institute of Research on Cancer and Aging (IRCAN, CNRS, INSERM), FHU OncoAge, Université Côte d’Azur, 06108 Nice, France; (S.J.d.H.); (J.B.)
- Correspondence: ; Tel.: +33-492-031-223
| |
Collapse
|
22
|
Pacini ESA, Satori NA, Jackson EK, Godinho RO. Extracellular cAMP-Adenosine Pathway Signaling: A Potential Therapeutic Target in Chronic Inflammatory Airway Diseases. Front Immunol 2022; 13:866097. [PMID: 35479074 PMCID: PMC9038211 DOI: 10.3389/fimmu.2022.866097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/21/2022] [Indexed: 12/25/2022] Open
Abstract
Adenosine is a purine nucleoside that, via activation of distinct G protein-coupled receptors, modulates inflammation and immune responses. Under pathological conditions and in response to inflammatory stimuli, extracellular ATP is released from damaged cells and is metabolized to extracellular adenosine. However, studies over the past 30 years provide strong evidence for another source of extracellular adenosine, namely the “cAMP-adenosine pathway.” The cAMP-adenosine pathway is a biochemical mechanism mediated by ATP-binding cassette transporters that facilitate cAMP efflux and by specific ectoenzymes that convert cAMP to AMP (ecto-PDEs) and AMP to adenosine (ecto-nucleotidases such as CD73). Importantly, the cAMP-adenosine pathway is operative in many cell types, including those of the airways. In airways, β2-adrenoceptor agonists, which are used as bronchodilators for treatment of asthma and chronic respiratory diseases, stimulate cAMP efflux and thus trigger the extracellular cAMP-adenosine pathway leading to increased concentrations of extracellular adenosine in airways. In the airways, extracellular adenosine exerts pro-inflammatory effects and induces bronchoconstriction in patients with asthma and chronic obstructive pulmonary diseases. These considerations lead to the hypothesis that the cAMP-adenosine pathway attenuates the efficacy of β2-adrenoceptor agonists. Indeed, our recent findings support this view. In this mini-review, we will highlight the potential role of the extracellular cAMP-adenosine pathway in chronic respiratory inflammatory disorders, and we will explore how extracellular cAMP could interfere with the regulatory effects of intracellular cAMP on airway smooth muscle and innate immune cell function. Finally, we will discuss therapeutic possibilities targeting the extracellular cAMP-adenosine pathway for treatment of these respiratory diseases.
Collapse
Affiliation(s)
- Enio Setsuo Arakaki Pacini
- Division of Cellular Pharmacology, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Naiara Ayako Satori
- Division of Cellular Pharmacology, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Edwin Kerry Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Rosely Oliveira Godinho
- Division of Cellular Pharmacology, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
- *Correspondence: Rosely Oliveira Godinho,
| |
Collapse
|
23
|
Schultz IC, Bertoni APS, Wink MR. Purinergic signaling elements are correlated with coagulation players in peripheral blood and leukocyte samples from COVID-19 patients. J Mol Med (Berl) 2022; 100:569-584. [PMID: 35091759 PMCID: PMC8799442 DOI: 10.1007/s00109-021-02175-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022]
Abstract
For over a year, the coronavirus disease 2019 has been affecting the world population by causing severe tissue injuries and death in infected people. Adenosine triphosphate (ATP) and the nicotinamide adenine dinucleotide (NAD +) are two molecules that are released into the extracellular microenvironment after direct virus infection or cell death caused by hyper inflammation and coagulopathy. Also, these molecules are well known to participate in multiple pathways and have a pivotal role in the purinergic signaling pathway. Thus, using public datasets available on the Gene Expression Omnibus (GEO), we analyzed raw proteomics data acquired using mass spectrometry (the gold standard method) and raw genomics data from COVID-19 patient samples obtained by microarray. The data was analyzed using bioinformatics and statistical methods according to our objectives. Here, we compared the purinergic profile of the total leukocyte population and evaluated the levels of these soluble biomolecules in the blood, and their correlation with coagulation components in COVID-19 patients, in comparison to healthy people or non-COVID-19 patients. The blood metabolite analysis showed a stage-dependent inosine increase in COVID-19 patients, while the nucleotides ATP and ADP had positive correlations with fibrinogen and other coagulation proteins. Also, ATP, ADP, inosine, and hypoxanthine had positive and negative correlations with clinical features. Regarding leukocyte gene expression, COVID-19 patients showed an upregulation of the P2RX1, P2RX4, P2RX5, P2RX7, P2RY1, P2RY12, PANX1, ADORA2B, NLPR3, and F3 genes. Yet, the ectoenzymes of the canonical and non-canonical adenosinergic pathway (ENTPD1 and CD38) are upregulated, suggesting that adenosine is produced by both active adenosinergic pathways. Hence, approaches targeting these biomolecules or their specific purinoreceptors and ectoenzymes may attenuate the high inflammatory state and the coagulopathy seen in COVID-19 patients. KEY MESSAGES : Adenosinergic pathways are modulated on leukocytes from COVID-19 patients. Plasmatic inosine levels are increased in COVID-19 patients. ATP, ADP, AMP, hypoxanthine, and inosine are correlated with coagulation players. The nucleotides and nucleosides are correlated with patients' clinical features. The P2 receptors and ectoenzymes are correlated with Tissue factor in COVID-19.
Collapse
Affiliation(s)
- Iago C Schultz
- Departamento de Ciências Básicas da Saúde, Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245 Sala 304, Porto Alegre, RS, 90050-170, Brazil
| | - Ana Paula S Bertoni
- Departamento de Ciências Básicas da Saúde, Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245 Sala 304, Porto Alegre, RS, 90050-170, Brazil
| | - Márcia R Wink
- Departamento de Ciências Básicas da Saúde, Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245 Sala 304, Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
24
|
Morice A, Dicpinigaitis P, McGarvey L, Birring SS. Chronic cough: new insights and future prospects. Eur Respir Rev 2021; 30:210127. [PMID: 34853095 PMCID: PMC9488126 DOI: 10.1183/16000617.0127-2021] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/20/2021] [Indexed: 11/25/2022] Open
Abstract
Chronic cough is defined in adults as a cough that lasts for ≥8 weeks. When it proves intractable to standard-of-care treatment, it can be referred to as refractory chronic cough (RCC). Chronic cough is now understood to be a condition of neural dysregulation. Chronic cough and RCC result in a serious, often unrecognized, disease burden, which forms the focus of the current review.The estimated global prevalence of chronic cough is 2-18%. Patients with chronic cough and RCC report many physical and psychological effects, which impair their quality of life. Chronic cough also has a significant economic burden for the patient and healthcare systems. RCC diagnosis and treatment are often delayed for many years as potential treatable triggers must be excluded first and a stepwise empirical therapeutic regimen is recommended.Evidence supporting most currently recommended treatments is limited. Many treatments do not address the underlying pathology, are used off-label, have limited efficacy and produce significant side-effects. There is therefore a significant unmet need for alternative therapies for RCC that target the underlying disease mechanisms. Early clinical data suggest that antagonists of the purinergic P2X3 receptor, an important mediator of RCC, are promising, though more evidence is needed.
Collapse
Affiliation(s)
- Alyn Morice
- Centre for Clinical Sciences, Hull York Medical School, University of Hull, Hull, UK
| | - Peter Dicpinigaitis
- Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Lorcan McGarvey
- Centre for Experimental Medicine, Dentistry, and Biomedical Sciences, Queen's University, Belfast, UK
| | - Surinder S Birring
- Centre for Human & Applied Physiological Sciences, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College Hospital, London, UK
| |
Collapse
|
25
|
Milici A, Sanchez A, Talavera K. Silica Nanoparticles Inhibit Responses to ATP in Human Airway Epithelial 16HBE Cells. Int J Mol Sci 2021; 22:10173. [PMID: 34576336 PMCID: PMC8467126 DOI: 10.3390/ijms221810173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Because of their low cost and easy production, silica nanoparticles (SiNPs) are widely used in multiple manufacturing applications as anti-caking, densifying and hydrophobic agents. However, this has increased the exposure levels of the general population and has raised concerns about the toxicity of this nanomaterial. SiNPs affect the function of the airway epithelium, but the biochemical pathways targeted by these particles remain largely unknown. Here we investigated the effects of SiNPs on the responses of 16HBE14o- cultured human bronchial epithelial (16HBE) cells to the damage-associated molecular pattern ATP, using fluorometric measurements of intracellular Ca2+ concentration. Upon stimulation with extracellular ATP, these cells displayed a concentration-dependent increase in intracellular Ca2+, which was mediated by release from intracellular stores. SiNPs inhibited the Ca2+ responses to ATP within minutes of application and at low micromolar concentrations, which are significantly faster and more potent than those previously reported for the induction of cellular toxicity and pro-inflammatory responses. SiNPs-induced inhibition is independent from the increase in intracellular Ca2+ they produce, is largely irreversible and occurs via a non-competitive mechanism. These findings suggest that SiNPs reduce the ability of airway epithelial cells to mount ATP-dependent protective responses.
Collapse
Affiliation(s)
| | | | - Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; (A.M.); (A.S.)
| |
Collapse
|
26
|
Li Z, Gao Y, He C, Wei H, Zhang J, Zhang H, Hu L, Jiang W. Purinergic Receptor P2Y 6 Is a Negative Regulator of NK Cell Maturation and Function. THE JOURNAL OF IMMUNOLOGY 2021; 207:1555-1565. [PMID: 34426542 DOI: 10.4049/jimmunol.2000750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/20/2021] [Indexed: 12/28/2022]
Abstract
NK cells are critical innate immune cells that target the tumor cells and cancer-initiating cells and clear viruses by producing cytokines and cytotoxic granules. However, the role of the purinergic receptor P2Y6 in the NK cells remains largely unknown. In this study, we discovered that the expression of P2Y6 was decreased upon the activation of the NK cells. Moreover, in the P2Y6-deficient mice, we found that the deficiency of P2Y6 promoted the development of the NK precursor cells into immature NK and mature NK cells. We also found that the P2Y6 deficiency increased, but the P2Y6 receptor agonist UDP or UDP analog 5-OMe-UDP decreased the production of IFN-γ in the activated NK cells. Furthermore, we demonstrated that the P2Y6-deficient NK cells exhibited stronger cytotoxicity in vitro and antimetastatic effects in vivo. Mechanistically, P2Y6 deletion promoted the expression of T-bet (encoded by Tbx21), with or without the stimulation of IL-15. In the absence of P2Y6, the levels of phospho-serine/threonine kinase and pS6 in the NK cells were significantly increased upon the stimulation of IL-15. Collectively, we demonstrated that the P2Y6 receptor acted as a negative regulator of the NK cell function and inhibited the maturation and antitumor activities of the NK cells. Therefore, inhibition of the P2Y6 receptor increases the antitumor activities of the NK cells, which may aid in the design of innovative strategies to improve NK cell-based cancer therapy.
Collapse
Affiliation(s)
- Zhenlong Li
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yaoxin Gao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Cong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Huan Wei
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiang Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Hongmei Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Lulu Hu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Wenzheng Jiang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
27
|
Ford AP, Dillon MP, Kitt MM, Gever JR. The discovery and development of gefapixant. Auton Neurosci 2021; 235:102859. [PMID: 34403981 DOI: 10.1016/j.autneu.2021.102859] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/06/2021] [Accepted: 07/21/2021] [Indexed: 01/02/2023]
Abstract
Gefapixant is the approved generic name for a compound also known as MK-7264, and prior to that AF-219 and RO-4926219. It is the first-in-class clinically developed antagonist for the P2X3 subtype of trimeric ionotropic purinergic receptors, a family of ATP-gated excitatory ion channels, showing nanomolar potency for the human P2X3 homotrimeric channel and essentially no activity at related channels devoid of P2X3 subunits. As the first P2X3 antagonist to have progressed into clinical studies it has now progressed to the point of successful completion of Phase 3 investigations for the treatment of cough, and the NDA application is under review with US FDA for treatment of refractory chronic cough or unexplained chronic cough. The molecule was discovered in the laboratories of Roche Pharmaceuticals in Palo Alto, California, but clinical development then continued with the formation of Afferent Pharmaceuticals for the purpose of identifying the optimal therapeutic indication for this novel mechanism and establishing a clinical plan for development in the optimal patient populations selected. Geoff Burnstock was a close collaborator and advisor to the P2X3 program for close to two decades of discovery and development. Progression of gefapixant through later stage clinical studies has been conducted by the research laboratories of Merck & Co., Inc., Kenilworth, NJ, USA (MRL; following acquisition of Afferent in 2016), who may commercialize the product once authorization has been granted by regulatory authorities.
Collapse
Affiliation(s)
- Anthony P Ford
- CuraSen Therapeutics, 930 Brittan Avenue, Suite 306, San Carlos, CA 94070, USA.
| | - Michael P Dillon
- Ideaya Biosciences, 7000 Shoreline Court, Suite 350, South San Francisco, CA 94080, USA
| | - Michael M Kitt
- Axalbion LTD., C/O Medicines Evaluation Unit, The Langley Building, Southmoor Road, Wythenshawe, M23 9QZ Manchester, UK
| | - Joel R Gever
- CuraSen Therapeutics, 930 Brittan Avenue, Suite 306, San Carlos, CA 94070, USA
| |
Collapse
|
28
|
Nishi H, Niyonsaba F, Pelleg A, Schulman ES. Enhancement of Mast Cell Degranulation Mediated by Purinergic Receptors' Activation and PI3K Type δ. THE JOURNAL OF IMMUNOLOGY 2021; 207:1001-1008. [PMID: 34330752 DOI: 10.4049/jimmunol.2001002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 05/28/2021] [Indexed: 11/19/2022]
Abstract
Mast cells express multiple metabotropic purinergic P2Y receptor (P2YR) subtypes. Few studies have evaluated their role in human mast cell (HMC) allergic response as quantified by degranulation induced by cross-linking the high-affinity IgE receptor (FcεRI). We have previously shown that extracellular nucleotides modify the FcεRI activation-dependent degranulation in HMCs derived from human lungs, but the mechanism of this action has not been fully delineated. This study was undertaken to determine the mechanism of activation of P2YRs on the degranulation of HMCs and elucidate the specific postreceptor pathways involved. Sensitized LAD2 cells, a human-derived mast cell line, were subjected to a weak allergic stimulation (WAS) using a low concentration of Ag in the absence and presence of P2YR agonists. Only the metabotropic purinergic P2Y11 receptor (P2Y11R) agonist, adenosine 5'-(3-thio)triphosphate (ATPγS), enhanced WAS-induced degranulation resulting in a net 7-fold increase in release (n = 4; p < 0.01). None of the P2YR agonists tested, including high concentrations of ATPγS (1000 μM), enhanced WAS-induced intracellular Ca2+ mobilization, an essential component of activated FcεRI-induced degranulation. Both a PI3K inhibitor and the relevant gene knockout decreased the ATPγS-induced enhancement. The effect of ATPγS was associated with enhanced phosphorylation of PI3K type δ and protein kinase B, but not the phosphoinositide-dependent kinase-1. The effects of ATPγS were dose dependently inhibited by NF157, a P2Y11R antagonist. To our knowledge, these data indicate for the first time that P2YR is linked to enhancement of allergic degranulation in HMC via the PI3K/protein kinase B pathway.
Collapse
Affiliation(s)
- Haruhisa Nishi
- Department of Pharmacology, Jikei University School of Medicine, Tokyo, Japan;
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Faculty of International Liberal Arts, Juntendo University, Tokyo, Japan
| | - Amir Pelleg
- Danmir Therapeutics, LLC, Haverford, PA; and
| | | |
Collapse
|
29
|
Extracellular metabolism of 3',5'-cyclic AMP as a source of interstitial adenosine in the rat airways. Biochem Pharmacol 2021; 192:114713. [PMID: 34331910 DOI: 10.1016/j.bcp.2021.114713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 01/29/2023]
Abstract
In the respiratory tract, intracellular 3',5'-cAMP mediates smooth muscle relaxation triggered by the β2-adrenoceptor/Gs protein/adenylyl cyclase axis. More recently, we have shown that β2-adrenoceptor agonists also increase extracellular 3',5'-cAMP levels in isolated rat trachea, which leads to contraction of airway smooth muscle. In many other tissues, extracellular 3',5'-cAMP is metabolized by ectoenzymes to extracellular adenosine, a catabolic pathway that has never been addressed in airways. In order to evaluate the possible extracellular degradation of 3',5'-cAMP into 5'-AMP and adenosine in the airways, isolated rat tracheas were incubated with exogenous 3',5'-cAMP and the amount of 5'-AMP, adenosine and inosine (adenosine metabolite) produced was evaluated using ultraperformance liquid chromatography-tandem mass spectrometry. Incubation of tracheal tissue with 3',5'-cAMP induced a time- and concentration-dependent increase in 5'-AMP, adenosine and inosine in the medium. Importantly, IBMX (non-selective phosphodiesterase (PDE) inhibitor) and DPSPX (selective ecto-PDE inhibitor) reduced the extracellular conversion of 3',5'-cAMP to 5'-AMP. In addition, incubation of 3',5'-cAMP in the presence of AMPCP (inhibitor of ecto-5'-nucleotidase) increased extracellular levels of 5'-AMP while drastically reducing extracellular levels of adenosine and inosine. These results indicate that airways express an extracellular enzymatic system (ecto-phosphodiesterase, ecto-5'-nucleotidase and adenosine deaminase) that sequentially converts 3',5'-cAMP into 5'-AMP, adenosine and inosine. The observation that extracellular 3',5'-cAMP is a source of interstitial adenosine supports the idea that the extrusion and extracellular metabolism of 3',5'-cAMP has a role in respiratory physiology and pathophysiology.
Collapse
|
30
|
Arzola-Martínez L, Benavente R, Vega G, Ríos M, Fonseca W, Rasky AJ, Morris S, Lukacs NW, Villalón MJ. Blocking ATP-releasing channels prevents high extracellular ATP levels and airway hyperreactivity in an asthmatic mouse model. Am J Physiol Lung Cell Mol Physiol 2021; 321:L466-L476. [PMID: 34231389 DOI: 10.1152/ajplung.00450.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Allergic asthma is a chronic airway inflammatory response to different triggers like inhaled allergens. Excessive ATP in fluids from patients with asthma is considered an inflammatory signal and an important autocrine/paracrine modulator of airway physiology. Here, we investigated the deleterious effect of increased extracellular ATP (eATP) concentration on the mucociliary clearance (MCC) effectiveness and determined the role of ATP releasing channels during airway inflammation in an ovalbumin (OVA)-sensitized mouse model. Our allergic mouse model exhibited high levels of eATP measured in the tracheal fluid with a luciferin-luciferase assay and reduced MCC velocity determined by microspheres tracking in the trachea ex vivo. Addition of ATP had a dual effect on MCC, where lower ATP concentration (µM) increased microspheres velocity, whereas higher concentration (mM) transiently stopped microspheres movement. Also, an augmented ethidium bromide uptake by the allergic tracheal airway epithelium suggests an increase in ATP release channel functionality during inflammatory conditions. The use of carbenoxolone, a nonspecific inhibitor of connexin and pannexin1 channels reduced the eATP concentration in the allergic mouse tracheal fluid and dye uptake by the airway epithelium, providing evidence that these ATP release channels are facilitating the net flux of ATP to the lumen during airway inflammation. However, only the specific inhibition of pannexin1 with 10Panx peptide significantly reduced eATP in bronchoalveolar lavage and decreased airway hyperresponsiveness in OVA-allergic mouse model. These data provide evidence that blocking eATP may be a pharmacological alternative to be explored in rescue therapy during episodes of airflow restriction in patients with asthma.
Collapse
Affiliation(s)
- Llilian Arzola-Martínez
- Department of Physiology, Faculty of Biological Science, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Rebeca Benavente
- Department of Physiology, Faculty of Biological Science, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Génesis Vega
- Department of Physiology, Faculty of Biological Science, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariana Ríos
- Department of Molecular Genetics and Microbiology, Faculty of Biological Science, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Wendy Fonseca
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Andrew J Rasky
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Susan Morris
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Manuel J Villalón
- Department of Physiology, Faculty of Biological Science, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
31
|
Sykes DL, Morice AH. The Cough Reflex: The Janus of Respiratory Medicine. Front Physiol 2021; 12:684080. [PMID: 34267675 PMCID: PMC8277195 DOI: 10.3389/fphys.2021.684080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/09/2021] [Indexed: 01/11/2023] Open
Abstract
In clinical practice, we commonly face adversity when encountering dysfunction of the cough reflex. Similar to ancient Roman deity Janus, it often presents with one of two opposing "faces". Continual aberrant activation of the cough reflex, also known as chronic cough, can cause great detriment to quality of life and many of these patients are left misdiagnosed and undertreated. In contrast, loss of normal functioning of the cough reflex is the cause of a significant proportion of mortality in the elderly, primarily through the development of aspiration pneumonia. In this review we discuss both hyper- and hypo-activation of the cough reflex and how airway reflux and chronic aspiration may be involved in the aetiology and sequalae of both disease states. We detail the physiological and pharmacological mechanisms involved in cough, and how the recent development of P2X3 receptor antagonists may lead to the first pharmaceutical agent licensed for chronic cough. The treatment and prevention of loss of the cough reflex, which has been largely neglected, is also discussed as novel low-cost interventions could help prevent a number of hospital and domiciliary deaths from both acute and chronic aspiration.
Collapse
Affiliation(s)
- Dominic L. Sykes
- Hull University Teaching Hospitals NHS Trust, Hull, United Kingdom
| | - Alyn H. Morice
- Hull York Medical School, University of York, York, United Kingdom
| |
Collapse
|
32
|
Thompson RJ, Sayers I, Kuokkanen K, Hall IP. Purinergic Receptors in the Airways: Potential Therapeutic Targets for Asthma? FRONTIERS IN ALLERGY 2021; 2:677677. [PMID: 35386996 PMCID: PMC8974712 DOI: 10.3389/falgy.2021.677677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/30/2021] [Indexed: 12/30/2022] Open
Abstract
Extracellular ATP functions as a signaling messenger through its actions on purinergic receptors, and is known to be involved in numerous physiological and pathophysiological processes throughout the body, including in the lungs and airways. Consequently, purinergic receptors are considered to be promising therapeutic targets for many respiratory diseases, including asthma. This review explores how online bioinformatics resources combined with recently generated datasets can be utilized to investigate purinergic receptor gene expression in tissues and cell types of interest in respiratory disease to identify potential therapeutic targets, which can then be investigated further. These approaches show that different purinergic receptors are expressed at different levels in lung tissue, and that purinergic receptors tend to be expressed at higher levels in immune cells and at more moderate levels in airway structural cells. Notably, P2RX1, P2RX4, P2RX7, P2RY1, P2RY11, and P2RY14 were revealed as the most highly expressed purinergic receptors in lung tissue, therefore suggesting that these receptors have good potential as therapeutic targets for asthma and other respiratory diseases.
Collapse
Affiliation(s)
- Rebecca J. Thompson
- Division of Respiratory Medicine, Nottingham Biomedical Research Centre, National Institute for Health Research, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Ian Sayers
- Division of Respiratory Medicine, Nottingham Biomedical Research Centre, National Institute for Health Research, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Katja Kuokkanen
- Orion Corporation, Orion Pharma, Research and Development, Turku, Finland
| | - Ian P. Hall
- Division of Respiratory Medicine, Nottingham Biomedical Research Centre, National Institute for Health Research, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- *Correspondence: Ian P. Hall
| |
Collapse
|
33
|
Brouns I, Verckist L, Pintelon I, Timmermans JP, Adriaensen D. Pulmonary Sensory Receptors. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2021; 233:1-65. [PMID: 33950466 DOI: 10.1007/978-3-030-65817-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Inge Brouns
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium.
| | - Line Verckist
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| |
Collapse
|
34
|
Hyperinflammation and airway surface liquid dehydration in cystic fibrosis: purinergic system as therapeutic target. Inflamm Res 2021; 70:633-649. [PMID: 33904934 DOI: 10.1007/s00011-021-01464-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE AND DESIGN The exacerbate inflammatory response contributes to the progressive loss of lung function in cystic fibrosis (CF), a genetic disease that affects the osmotic balance of mucus and mucociliary clearance, resulting in a microenvironment that favors infection and inflammation. The purinergic system, an extracellular signaling pathway characterized by nucleotides, enzymes and receptors, may have a protective role in the disease, through its action in airway surface liquid (ASL) and anti-inflammatory response. MATERIALS AND METHODS To make up this review, studies covering topics of CF, inflammation, ASL and purinergic system were selected from the main medical databases, such as Pubmed and ScienceDirect. CONCLUSION We propose several ways to modulate the purinergic system as a potential therapy for CF, like inhibition of P2X7, activation of P2Y2, A2A and A2B receptors and blocking of adenosine deaminase. Among them, we postulate that the most suitable strategy is to block the action of adenosine deaminase, which culminates in the increase of Ado levels that presents anti-inflammatory actions and improves mucociliary clearance. Furthermore, it is possible to maintain the physiological levels of ATP to control the hydration of ASL. These therapies could correct the main mechanisms that contribute to the progression of CF.
Collapse
|
35
|
Abu-Zaid A, Aljaili AK, Althaqib A, Adem F, Alhalal DA, Almubarak AF, Aldughaither SM, Alghabban SA, Alfaraj G, Masoud AT, Alsuhaibani NA. Safety and efficacy of gefapixant, a novel drug for the treatment of chronic cough: A systematic review and meta-analysis of randomized controlled trials. Ann Thorac Med 2021; 16:127-140. [PMID: 34012479 PMCID: PMC8109686 DOI: 10.4103/atm.atm_417_20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/06/2020] [Indexed: 11/23/2022] Open
Abstract
AIM We conducted this systematic review and meta-analysis to investigate the efficacy and safety of gefapixant, a novel P2X3 receptor antagonist, in patients with chronic cough. METHODS We searched four databases for randomized controlled trials (RCTs). We assessed the cough frequency, severity, total Leicester cough questionnaire (LCQ) score, and adverse events. We analyzed the data using Open Meta-Analyst and Review Manager Software. RESULTS We included four unique studies (comprising five stand-alone RCTs) with 439 patients. Compared to placebo, gefapixant had positive anti-tussive effects by improving awake cough frequency (mean difference [MD] = -5.27, 95% confidence interval [CI] [-6.12, -4.42], P < 0.00001), night cough frequency (MD = -3.71, 95% CI [-6.57, -0.85], P = 0. 01), 24 h cough frequency (MD = -4.18, 95% CI [-5.01, -3.36], P < 0.00001), cough severity using the Visual Analog Scale (MD = -13.36, 95% CI [-17.80, -8.92], P < 0.00001), cough severity diary (MD = -0.88, 95% CI [-1.25, -0.51], P < 0.00001), and total LCQ score (MD = 2.00, 95% CI [1.15, 2.86], P = 0. 00001). Meta-regression analyses showed a positive correlation between the gefapixant dose and the incidence of any adverse event (relative risk [RR] = 0.239, 95% CI [0.093, 1.839], P = 0.001) and incidence of adverse event related to treatment (RR = 0.520, 95% CI [0.117, 0.922], P = 0.011). CONCLUSIONS In patient with chronic cough, gefapixant exhibits favorable anti-tussive outcomes by improving the cough frequency, severity, and quality of life. While gefapixant is largely tolerable, its side effects (notably taste alteration) are dose dependent.
Collapse
Affiliation(s)
- Ahmed Abu-Zaid
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | - Amnah Althaqib
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Fatima Adem
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | | | | | | | - Ghaidaa Alfaraj
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | | |
Collapse
|
36
|
Functional Exploration of the Pulmonary NEB ME. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2021; 233:31-67. [PMID: 33950469 DOI: 10.1007/978-3-030-65817-5_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
37
|
Pelleg A. Extracellular adenosine 5'-triphosphate in pulmonary disorders. Biochem Pharmacol 2020; 187:114319. [PMID: 33161021 DOI: 10.1016/j.bcp.2020.114319] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
Adenosine 5'-triphosphate (ATP) is found in every cell of the human body where it plays a critical role in cellular energetics and metabolism. ATP is released from cells under physiologic and pathophysiologic condition; extracellular ATP is rapidly degraded to adenosine 5'-diphosphate (ADP) and adenosine by ecto-enzymes (mainly, CD39 and CD73). Before its degradation, ATP acts as an autocrine and paracrine agent exerting its effects on targeted cells by activating cell surface receptors named P2 Purinergic receptors. The latter are expressed by different cell types in the lungs, the activation of which is involved in multiple pulmonary disorders. This succinct review summarizes the role of ATP in inflammation processes associated with these disorders including bronchoconstriction, cough, mechanical ventilation-induced lung injury and idiopathic pulmonary fibrosis. All of these disorders still constitute unmet clinical needs. Therefore, the various ATP-signaling pathways in pulmonary inflammation constitute attractive targets for novel drug-candidates that would improve the management of patients with multiple pulmonary diseases.
Collapse
Affiliation(s)
- Amir Pelleg
- Danmir Therapeutics, LLC, Haverford, PA, USA. http://www.danmirtherapeutics.com
| |
Collapse
|
38
|
Strassheim D, Verin A, Batori R, Nijmeh H, Burns N, Kovacs-Kasa A, Umapathy NS, Kotamarthi J, Gokhale YS, Karoor V, Stenmark KR, Gerasimovskaya E. P2Y Purinergic Receptors, Endothelial Dysfunction, and Cardiovascular Diseases. Int J Mol Sci 2020; 21:ijms21186855. [PMID: 32962005 PMCID: PMC7555413 DOI: 10.3390/ijms21186855] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Purinergic G-protein-coupled receptors are ancient and the most abundant group of G-protein-coupled receptors (GPCRs). The wide distribution of purinergic receptors in the cardiovascular system, together with the expression of multiple receptor subtypes in endothelial cells (ECs) and other vascular cells demonstrates the physiological importance of the purinergic signaling system in the regulation of the cardiovascular system. This review discusses the contribution of purinergic P2Y receptors to endothelial dysfunction (ED) in numerous cardiovascular diseases (CVDs). Endothelial dysfunction can be defined as a shift from a “calm” or non-activated state, characterized by low permeability, anti-thrombotic, and anti-inflammatory properties, to a “activated” state, characterized by vasoconstriction and increased permeability, pro-thrombotic, and pro-inflammatory properties. This state of ED is observed in many diseases, including atherosclerosis, diabetes, hypertension, metabolic syndrome, sepsis, and pulmonary hypertension. Herein, we review the recent advances in P2Y receptor physiology and emphasize some of their unique signaling features in pulmonary endothelial cells.
Collapse
Affiliation(s)
- Derek Strassheim
- The Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA; (D.S.); (N.B.); (V.K.); (K.R.S.)
| | - Alexander Verin
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; (A.V.); (R.B.); (A.K.-K.)
| | - Robert Batori
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; (A.V.); (R.B.); (A.K.-K.)
| | - Hala Nijmeh
- The Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA;
| | - Nana Burns
- The Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA; (D.S.); (N.B.); (V.K.); (K.R.S.)
| | - Anita Kovacs-Kasa
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; (A.V.); (R.B.); (A.K.-K.)
| | | | - Janavi Kotamarthi
- The Department of BioMedical Engineering, University of Wisconsin, Madison, WI 53706, USA; (J.K.); (Y.S.G.)
| | - Yash S. Gokhale
- The Department of BioMedical Engineering, University of Wisconsin, Madison, WI 53706, USA; (J.K.); (Y.S.G.)
| | - Vijaya Karoor
- The Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA; (D.S.); (N.B.); (V.K.); (K.R.S.)
| | - Kurt R. Stenmark
- The Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA; (D.S.); (N.B.); (V.K.); (K.R.S.)
- The Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA;
| | - Evgenia Gerasimovskaya
- The Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA; (D.S.); (N.B.); (V.K.); (K.R.S.)
- The Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA;
- Correspondence: ; Tel.: +1-303-724-5614
| |
Collapse
|
39
|
Abstract
Pulmonary arterial hypertension (PAH) is a life‐threatening disease characterized by increased pulmonary arterial pressure and pulmonary vascular resistance, which result in an increase in afterload imposed onto the right ventricle, leading to right heart failure. Current therapies are incapable of reversing the disease progression. Thus, the identification of novel and potential therapeutic targets is urgently needed. An alteration of nucleotide‐ and nucleoside‐activated purinergic signaling has been proposed as a potential contributor in the pathogenesis of PAH. Adenosine‐mediated purinergic 1 receptor activation, particularly A2AR activation, reduces pulmonary vascular resistance and attenuates pulmonary vascular remodeling and right ventricle hypertrophy, thereby exerting a protective effect. Conversely, A2BR activation induces pulmonary vascular remodeling, and is therefore deleterious. ATP‐mediated P2X7R activation and ADP‐mediated activation of P2Y1R and P2Y12R play a role in pulmonary vascular tone, vascular remodeling, and inflammation in PAH. Recent studies have revealed a role of ectonucleotidase nucleoside triphosphate diphosphohydrolase, that degrades ATP/ADP, in regulation of pulmonary vascular remodeling. Interestingly, existing evidence that adenosine activates erythrocyte A2BR signaling, counteracting hypoxia‐induced pulmonary injury, and that ATP release is impaired in erythrocyte in PAH implies erythrocyte dysfunction as an important trigger to affect purinergic signaling for pathogenesis of PAH. The present review focuses on current knowledge on alteration of nucleot(s)ide‐mediated purinergic signaling as a potential disease mechanism underlying the development of PAH.
Collapse
Affiliation(s)
- Zongye Cai
- Division of Experimental Cardiology Department of Cardiology Erasmus MCUniversity Medical Center Rotterdam Rotterdam the Netherlands
| | - Ly Tu
- INSERM UMR_S 999Hôpital Marie Lannelongue Le Plessis-Robinson France.,School of Medicine Université Paris-Saclay Kremlin-Bicêtre France
| | - Christophe Guignabert
- INSERM UMR_S 999Hôpital Marie Lannelongue Le Plessis-Robinson France.,School of Medicine Université Paris-Saclay Kremlin-Bicêtre France
| | - Daphne Merkus
- Division of Experimental Cardiology Department of Cardiology Erasmus MCUniversity Medical Center Rotterdam Rotterdam the Netherlands.,Walter Brendel Center of Experimental Medicine LMU Munich Munich Germany.,German Center for Cardiovascular Research, Partner Site MunichMunich Heart Alliance Munich Germany
| | - Zhichao Zhou
- Division of Cardiology Department of Medicine Karolinska University HospitalKarolinska Institutet Stockholm Sweden
| |
Collapse
|
40
|
Mazzone SB, McGarvey L. Mechanisms and Rationale for Targeted Therapies in Refractory and Unexplained Chronic Cough. Clin Pharmacol Ther 2020; 109:619-636. [PMID: 32748976 PMCID: PMC7983941 DOI: 10.1002/cpt.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/24/2020] [Indexed: 12/22/2022]
Abstract
Chronic cough, defined as a cough lasting > 8 weeks, is a common medical condition that exerts a substantial physical, mental, and social burden on patients. A subset of patients with chronic cough are troubled with a cough that persists despite optimal treatment of presumed associated common and uncommon conditions (refractory chronic cough; RCC) or in which no diagnosable cause for cough can be identified despite extensive assessment (unexplained chronic cough; UCC). Many of these patients exhibit clinical features of cough hypersensitivity, including laryngeal paresthesia, hypertussia, and allotussia. Over-the-counter cough remedies are ineffective and can lead to intolerable side effects when used for RCC/UCC, and the lack of approved treatments indicated for these conditions reflects a major unmet need. An increased understanding of the anatomy and neurophysiology of protective and pathologic cough has fostered a robust clinical development pipeline of several targeted therapies for RCC/UCC. This manuscript reviews the mechanisms presumed to underly RCC/UCC together with the rationale and clinical evidence for several targeted therapies currently under clinical investigation, including transient receptor potential channel antagonists, P2X3-receptor antagonists, voltage-gated sodium channel blockers, neuromodulators, and neurokinin-1-receptor antagonists. Finally, we provide an overview of targets that have been investigated in preclinical models of cough and other airway diseases that may hold future promise for clinical studies in RCC/UCC. Development of targeted therapies with different sites of action may foster a precision medicine approach to treat this heterogeneous, underserved patient population.
Collapse
Affiliation(s)
- Stuart B Mazzone
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Lorcan McGarvey
- Wellcome-Wolfson Institute of Experimental Medicine, Queen's University Belfast, Belfast, UK
| |
Collapse
|
41
|
Colangelo MT, Galli C, Guizzardi S. The effects of polydeoxyribonucleotide on wound healing and tissue regeneration: a systematic review of the literature. Regen Med 2020; 15:1801-1821. [PMID: 32757710 DOI: 10.2217/rme-2019-0118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Aim: The present study evaluated the effects of polydeoxyribonucleotide (PDRN) on tissue regeneration, paying special attention to the molecular mechanisms that underlie its tissue remodeling actions to better identify its effective therapeutic potential in wound healing. Materials & methods: Strategic searches were conducted through MEDLINE/PubMed, Google Scholar, Scopus, Web of Science and the Cochrane Central Register of Controlled Trials, from their earliest available dates to March 2020. The studies were included with the following eligibility criteria: studies evaluating tissue regeneration, and being an in vitro, in vivo and clinical study. Results: Out of more than 90 articles, 34 fulfilled the eligibility criteria. All data obtained proved the ability of PDRN in promoting a physiological tissue repair through salvage pathway and adenosine A2A receptor activation. Conclusion: Up to date PDRN has proved promising results in term of wound regeneration, healing time and absence of side effects.
Collapse
Affiliation(s)
- Maria T Colangelo
- Department of Medicine & Surgery, Histology & Embryology Lab, University of Parma, Parma, Italy
| | - Carlo Galli
- Department of Medicine & Surgery, University of Parma, Parma, Italy
| | - Stefano Guizzardi
- Department of Medicine & Surgery, Histology & Embryology Lab, University of Parma, Parma, Italy
| |
Collapse
|
42
|
Resolving the Ionotropic P2X4 Receptor Mystery Points Towards a New Therapeutic Target for Cardiovascular Diseases. Int J Mol Sci 2020; 21:ijms21145005. [PMID: 32679900 PMCID: PMC7404342 DOI: 10.3390/ijms21145005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
Adenosine triphosphate (ATP) is a primordial versatile autacoid that changes its role from an intracellular energy saver to a signaling molecule once released to the extracellular milieu. Extracellular ATP and its adenosine metabolite are the main activators of the P2 and P1 purinoceptor families, respectively. Mounting evidence suggests that the ionotropic P2X4 receptor (P2X4R) plays pivotal roles in the regulation of the cardiovascular system, yet further therapeutic advances have been hampered by the lack of selective P2X4R agonists. In this review, we provide the state of the art of the P2X4R activity in the cardiovascular system. We also discuss the role of P2X4R activation in kidney and lungs vis a vis their interplay to control cardiovascular functions and dysfunctions, including putative adverse effects emerging from P2X4R activation. Gathering this information may prompt further development of selective P2X4R agonists and its translation to the clinical practice.
Collapse
|
43
|
Wirsching E, Fauler M, Fois G, Frick M. P2 Purinergic Signaling in the Distal Lung in Health and Disease. Int J Mol Sci 2020; 21:E4973. [PMID: 32674494 PMCID: PMC7404078 DOI: 10.3390/ijms21144973] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
The distal lung provides an intricate structure for gas exchange in mammalian lungs. Efficient gas exchange depends on the functional integrity of lung alveoli. The cells in the alveolar tissue serve various functions to maintain alveolar structure, integrity and homeostasis. Alveolar epithelial cells secrete pulmonary surfactant, regulate the alveolar surface liquid (ASL) volume and, together with resident and infiltrating immune cells, provide a powerful host-defense system against a multitude of particles, microbes and toxicants. It is well established that all of these cells express purinergic P2 receptors and that purinergic signaling plays important roles in maintaining alveolar homeostasis. Therefore, it is not surprising that purinergic signaling also contributes to development and progression of severe pathological conditions like pulmonary inflammation, acute lung injury/acute respiratory distress syndrome (ALI/ARDS) and pulmonary fibrosis. Within this review we focus on the role of P2 purinergic signaling in the distal lung in health and disease. We recapitulate the expression of P2 receptors within the cells in the alveoli, the possible sources of ATP (adenosine triphosphate) within alveoli and the contribution of purinergic signaling to regulation of surfactant secretion, ASL volume and composition, as well as immune homeostasis. Finally, we summarize current knowledge of the role for P2 signaling in infectious pneumonia, ALI/ARDS and idiopathic pulmonary fibrosis (IPF).
Collapse
Affiliation(s)
| | | | | | - Manfred Frick
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (E.W.); (M.F.); (G.F.)
| |
Collapse
|
44
|
Ferrari D, Vuerich M, Casciano F, Longhi MS, Melloni E, Secchiero P, Zech A, Robson SC, Müller T, Idzko M. Eosinophils and Purinergic Signaling in Health and Disease. Front Immunol 2020; 11:1339. [PMID: 32733449 PMCID: PMC7360723 DOI: 10.3389/fimmu.2020.01339] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022] Open
Abstract
Eosinophils are major effector cells against parasites, fungi, bacteria, and viruses. However, these cells also take part in local and systemic inflammation, which are central to eczema, atopy, rhinitis, asthma, and autoimmune diseases. A role for eosinophils has been also shown in vascular thrombotic disorders and in cancer. Many, if not all, above-mentioned conditions involve the release of intracellular nucleotides (ATP, ADP, UTP, etc.) and nucleosides (adenosine) in the extracellular environment. Simultaneously, eosinophils further release ATP, which in autocrine and paracrine manners, stimulates P2 receptors. Purinergic signaling in eosinophils mediates a variety of responses including CD11b induction, ROI production, release of granule contents and enzymes, as well as cytokines. Exposure to extracellular ATP also modulates the expression of endothelial adhesion molecules, thereby favoring eosinophil extravasation and accumulation. In addition, eosinophils express the immunosuppressive adenosine P1 receptors, which regulate degranulation and migration. However, pro-inflammatory responses induced by extracellular ATP predominate. Due to their important role in innate immunity and tissue damage, pharmacological targeting of nucleotide- and nucleoside-mediated signaling in eosinophils could represent a novel approach to alleviate eosinophilic acute and chronic inflammatory diseases. These innovative approaches might also have salutary effects, particularly in host defense against parasites and in cancer.
Collapse
Affiliation(s)
- Davide Ferrari
- Section of Microbiology and Applied Pathology, Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Marta Vuerich
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Fabio Casciano
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Maria Serena Longhi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Elisabetta Melloni
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Andreas Zech
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Simon C Robson
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Tobias Müller
- Division of Pneumology, University Hospital RWTH Aachen, Aachen, Germany
| | - Marco Idzko
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
45
|
Song WJ, An J, McGarvey L. Recent progress in the management of chronic cough. Korean J Intern Med 2020; 35:811-822. [PMID: 32422697 PMCID: PMC7373968 DOI: 10.3904/kjim.2020.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic cough is a common clinical condition with significant impact on quality of life and for which effective therapy remains an unmet clinical need. Over the past decade, there has been a major shift in how we approach this problem, driven by better appreciation of the clinical manifestation of chronic cough and an improved understanding of the associated neurobiology. "Cough hypersensitivity syndrome" has been proposed as a new diagnostic term for chronic cough, encompassing different phenotypes of the condition. Accumulating evidence suggests that this new concept is clinically relevant. However, while it is gaining widespread endorsement within the allergy and respiratory community, raising its profile in routine clinical practice is a priority. Thus, the present paper reviews recent progress in our understanding and management of chronic cough, with focus on mechanistic and clinical studies. It also provides detail on knowledge gaps and future research directions.
Collapse
Affiliation(s)
- Woo-Jung Song
- Department of Allergy and Clinical Immunology, Airway Sensation and Cough Research Laboratory, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin An
- Department of Allergy and Clinical Immunology, Airway Sensation and Cough Research Laboratory, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Lorcan McGarvey
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, UK
| |
Collapse
|
46
|
Kazeminasab S, Emamalizadeh B, Jouyban A, Shoja MM, Khoubnasabjafari M. Macromolecular biomarkers of chronic obstructive pulmonary disease in exhaled breath condensate. Biomark Med 2020; 14:1047-1063. [PMID: 32940079 DOI: 10.2217/bmm-2020-0121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
Biomarkers provide important diagnostic and prognostic information on heterogeneous diseases such as chronic obstructive pulmonary disease (COPD). However, finding a suitable specimen for clinical analysis of biomarkers for COPD is challenging. Exhaled breath condensate (EBC) sampling is noninvasive, rapid, cost-effective and easily repeatable. EBC sampling has also provided recent progress in the identification of biological macromolecules, such as lipids, proteins and DNA in EBC samples, which has increased its utility for clinical scientists. In this article, we review applications involving EBC sampling for the analysis of COPD biomarkers and discuss its future potential.
Collapse
Affiliation(s)
- Somayeh Kazeminasab
- Pharmaceutical Analysis Research Center & Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
- Liver & Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14756, Iran
| | - Babak Emamalizadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences,Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center & Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
- Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran 14117-13135, Iran
| | - Mohammadali M Shoja
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Maryam Khoubnasabjafari
- Tuberculosis & Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14756, Iran
| |
Collapse
|
47
|
Reduction in Blood Glutamate Levels Combined With the Genetic Inactivation of A2AR Significantly Alleviate Traumatic Brain Injury-Induced Acute Lung Injury. Shock 2020; 51:502-510. [PMID: 29688987 DOI: 10.1097/shk.0000000000001170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Traumatic brain injury-induced acute lung injury (TBI-ALI) is a serious complication of traumatic brain injury (TBI). Our previous clinical study found that high levels of blood glutamate after TBI were closely related to the occurrence and severity of TBI-ALI, while it remains unknown whether a high concentration of blood glutamate directly causes or aggravates TBI-ALI. We found that inhibition of the adenosine A2A receptor (A2AR) after brain injury alleviated the TBI-ALI; however, it is unknown whether lowering blood glutamate levels in combination with inhibiting the A2AR would lead to better effects. Using mouse models of moderate and severe TBI, we found that intravenous administration of L-glutamate greatly increased the lung water content, lung-body index, level of inflammatory markers in bronchoalveolar lavage fluid and acute lung injury score and significantly decreased the PaO2/FiO2 ratio. Moreover, the incidence of TBI-ALI and the mortality rate were significantly increased, and the combined administration of A2AR activator and exogenous glutamate further exacerbated the above damaging effects. Conversely, lowering the blood glutamate level through peritoneal dialysis or intravenous administration of oxaloacetate notably improved the above parameters, and a further improvement was seen with concurrent A2AR genetic inactivation. These data suggest that A2AR activation aggravates the damaging effect of high blood glutamate concentrations on the lung and that combined treatment targeting both A2AR and blood glutamate may be an effective way to prevent and treat TBI-ALI.
Collapse
|
48
|
Zhang M, Wang S, Yu L, Xu X, Qiu Z. The role of ATP in cough hypersensitivity syndrome: new targets for treatment. J Thorac Dis 2020; 12:2781-2790. [PMID: 32642186 PMCID: PMC7330343 DOI: 10.21037/jtd-20-cough-001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Clinically, chronic cough can be effectively controlled in most patients by etiological treatment; however, there remain a small number of patients whose cough has unidentifiable etiology or where treatment efficacy is poor following etiology identification, whose condition is described as unexplained chronic cough or refractory chronic cough. Patients with refractory chronic or unexplained chronic cough commonly have increased cough reflex sensitivity, which has been described as cough hypersensitivity syndrome. The adenosine triphosphate (ATP)-gated P2X3 receptor may be a key link in the activation of sensory neurons that regulate cough reflexes and has recently draw attention as a potential target for the treatment of refractory chronic cough, with a number of clinical studies validating the therapeutic effects of P2X3 receptor antagonists in patients with this condition. As the energy source for various cells in vivo, ATP localizes within cells under normal physiological conditions, and has physiological functions, including in metabolism; however, under some pathological circumstances, ATP can act as a neuromodulator and is released into the extracellular space in large quantities as a signal transduction molecule. In addition, ATP is involved in regulation of airway inflammation and the cough reflex. Here, we review the generation, release, and regulation of ATP during airway inflammation and its role in the etiology of cough hypersensitivity syndrome, including the potential underlying mechanism.
Collapse
Affiliation(s)
- Mengru Zhang
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Shengyuan Wang
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Li Yu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Xianghuai Xu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Zhongmin Qiu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|
49
|
Song WJ, Chung KF. Pharmacotherapeutic Options for Chronic Refractory Cough. Expert Opin Pharmacother 2020; 21:1345-1358. [DOI: 10.1080/14656566.2020.1751816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Woo-Jung Song
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- National Heart & Lung Institute, Imperial College London & Royal Brompton and Harefield NHS Trust, London, UK
| | - Kian Fan Chung
- National Heart & Lung Institute, Imperial College London & Royal Brompton and Harefield NHS Trust, London, UK
| |
Collapse
|
50
|
Analysis of purine receptor expression and functionality in alveolar epithelial cells. Purinergic Signal 2020; 16:213-229. [PMID: 32236789 DOI: 10.1007/s11302-020-09696-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
Despite its fundamental role in providing an extensive surface for gas exchange, the alveolar epithelium (AE) serves as an immunological barrier through, e.g., the release of proinflammatory cytokines and secretion of surfactant to prevent alveolar collapse. Thus, AE is important for sustaining lung homeostasis. Extracellular ATP secreted by alveolar epithelial cells (AECs) is involved in physiological and pathological conditions and acts mainly through the activation of purine receptors (P2Rs). When studying P2R-mediated processes, primary isolated type II AECs (piAECs) still represent the gold standard in in vitro research, although their preparation is time-consuming and requires the sacrifice of many animals. Hence, cultivated immortalized and tumor-derived AEC lines may constitute a valuable alternative. In this work, we examined P2R expression and functionality in piAECs, in immortalized and tumor-derived AEC lines with the purpose of gaining a better understanding of purinergic signaling in different cell systems and assisting researchers in the choice of a suitable cell line with a certain P2R in demand. We combined mRNA and protein analysis to evaluate the expression of P2R. For pharmacological testing, we conducted calcium ([Ca2+]) measurements and siRNA receptor knockdown. Interestingly, the mRNA and protein levels of P2Y2, P2Y6, and P2X4 were detected on all cell lines. Concerning functionality, P2XR could be narrowed to L2 and piAECs while P2YR were active in all cell lines.
Collapse
|