1
|
Tang JL, Moonshi SS, Wu Y, Cowin G, Vazquez- Prada KX, Tran HD, Bulmer AC, Ta HT. A methotrexate labelled dual metal oxide nanocomposite for long-lasting anti-cancer theranostics. Mater Today Bio 2025; 30:101377. [PMID: 39742148 PMCID: PMC11683249 DOI: 10.1016/j.mtbio.2024.101377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 01/03/2025] Open
Abstract
We explored the feasibility of a self-assembled chitosan nanocomposite incorporating cerium oxide/nanoceria and superparamagnetic iron oxide nanoparticles (Chit-IOCO NPs), conjugated with methotrexate (MTX) and Cy5 dye, as an integrated cancer theranostic nanosystem (Chit-IOCO-MTX-Cy5). In this system, nanoceria serves as an anti-cancer agent, while the superparamagnetic iron oxide nanoparticles function as a negative contrast agent for MR imaging. This dual metal oxide nanocomposite is conjugated with MTX which is a structural analogue of folate, serving both as a targeting mechanism for folate receptors on cancer cells and as a chemotherapeutic drug. Chit-IOCO-MTX-Cy5 exhibited exceptional negative contrast in T2 and T2∗-weighted MRI, achieving a high relaxivity of 409.5 mM⁻1 s⁻1 which is superior to clinically approved agents. The nanocomposite demonstrated both pro-oxidative and antioxidative properties, significantly increasing reactive oxygen species (ROS) production in U87MG cells (1.4-fold change), which triggered apoptosis in these cancer cells. Simultaneously, it exhibited ROS scavenging activity in non-malignant endothelial cells (0.8-fold change). Intravenous infusion of Chit-IOCO-MTX-Cy5 (5 mg/kg MTX) led to significant tumor growth inhibition, indicating a synergistic enhancement of anti-cancer effects when combining MTX and nanoceria, compared to free MTX or nanoceria without MTX conjugation. Importantly, after treatment cessation, tumours in the nanocomposite group did not re-grow, while those in the free MTX group rapidly did. In vivo MR and fluorescence imaging revealed improved uptake and retention of Chit-IOCO-MTX-Cy5 in tumours compared to nanoceria without MTX. Notably, biosafety and biochemical analyses in mice showed no significant differences between the Chit-IOCO-MTX-Cy5 treatment group and control groups.
Collapse
Affiliation(s)
- Joyce L.Y. Tang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
- School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
| | - Shehzahdi S. Moonshi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
- School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
| | - Yuao Wu
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
- School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
| | - Gary Cowin
- National Imaging Facility, Centre for Advanced Imaging, University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Karla X. Vazquez- Prada
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Huong D.N. Tran
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Andrew C. Bulmer
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Queensland, 4215, Australia
| | - Hang Thu Ta
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
- School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
| |
Collapse
|
2
|
Amano S, Matsumoto M, Morimoto M, Kawamoto H, Takeshita F, Yasui T, Sakagami H. Efficacy of toothpaste containing Brazilian green propolis extracts with an optimal kaempferide/betuletol ratio for improving oral microbiota: A randomized, controlled, paired crossover study. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118762. [PMID: 39214193 DOI: 10.1016/j.jep.2024.118762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Propolis is a resinous substance collected by honeybees from various plant sources and has been used in traditional folk medicine for centuries. Propolis has various biological properties, including antibacterial, antiviral, anti-inflammatory, and anti-tumor properties. The use of propolis in oral health care is attributable to its antimicrobial and anti-inflammatory effects. However, limited evidence exists on the in vivo efficacy of propolis against periodontal pathogens. AIM OF THE STUDY We aimed to evaluate the efficacy of Brazilian green propolis (BGP)-containing toothpaste for improving the oral environment and define its antibacterial compounds. MATERIALS AND METHODS Overall, 48 student volunteers aged 18-40 years (24 females and 24 males) were randomly categorized into the BGP and placebo groups. The BGP and placebo groups received toothpaste with and without BGP, respectively. After a baseline assessment, the plaque index (PI) score, gingival index (GI) score, and proportion of periodontal pathogens on the tongue surface were analyzed at 0, 1, and 2 weeks. Antibacterial compounds were identified using liquid-liquid partitioning, high-performance liquid chromatography purification, and nuclear magnetic resonance methods. RESULTS The concentration of BGP in the toothpaste was set at 0.0347 w/v%. Compared with the placebo group, the BGP group demonstrated a reduction in the PI score (p < 0.05) but not in the GI score, as well as a reduction in Porphyromonas gingivalis (Pg)/Total bacteria (Tb), Fusobacterium nucleatum (Fn)/Tb, and Aggregatibacter actinomycetemcomitans (Aa)/Tb (p < 0.05) but not in Streptococcus salivalius/Tb. Effect sizes for Pg, Fn and Aa were 0.360, 0.556, and 0.164, respectively. The antibacterial compounds of the BGP-containing toothpaste included a mixture of kaempferide/betuletol. CONCLUSIONS We confirmed the efficacy of propolis toothpaste with an optimal kaempferide/betuletol ratio for improving oral microbiota, thereby suggesting that BGP toothpaste is clinically useful in maintaining oral health and preventing periodontal disease.
Collapse
Affiliation(s)
- Shigeru Amano
- Meikai University Research Institute of Odontology, Japan.
| | - Masaru Matsumoto
- Division of Sports Dentistry Meikai University School of Dentistry, Japan
| | - Masanori Morimoto
- Department of Applied Biological Chemistry/Graduate School of Agriculture Kindai University, Japan.
| | | | | | | | | |
Collapse
|
3
|
Maan M, Jaiswal N, Liu M, Saavedra HI, Chellappan SP, Dutta M. TBK1 Reprograms Metabolism in Breast Cancer: An Integrated Omics Approach. J Proteome Res 2025; 24:121-133. [PMID: 39670797 DOI: 10.1021/acs.jproteome.4c00530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Metabolic rewiring is required for cancer cells to survive in harsh microenvironments and is considered to be a hallmark of cancer. Specific metabolic adaptations are required for a tumor to become invasive and metastatic. Cell division and metabolism are inherently interconnected, and several cell cycle modulators directly regulate metabolism. Here, we report that TBK1, which is a noncanonical IKK kinase with known roles in cell cycle regulation and TLR signaling, affects cellular metabolism in cancer cells. While TBK1 is reported to be overexpressed in several cancers and its enhanced protein level correlates with poor prognosis, the underlying molecular mechanism involved in the tumor-promoting role of TBK1 is not fully understood. In this study, we show a novel role of TBK1 in regulating cancer cell metabolism using combined metabolomics, transcriptomics, and pharmacological approaches. We find that TBK1 mediates the regulation of nucleotide and energy metabolism through aldo-keto reductase B10 (AKRB10) and thymidine phosphorylase (TYMP) genes, suggesting that this TBK1-mediated metabolic rewiring contributes to its oncogenic function. In addition, we find that TBK1 inhibitors can act synergistically with AKRB10 and TYMP inhibitors to reduce cell viability. These findings raise the possibility that combining these inhibitors might be beneficial in combating cancers that show elevated levels of TBK1.
Collapse
Affiliation(s)
- Meenu Maan
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, Florida 33612, United States
- New York University - Abu Dhabi, Abu Dhabi, P.O. Box 129188, United Arab Emirates
| | - Neha Jaiswal
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, Florida 33612, United States
- Roswell Park Comprehensive Cancer Center, Buffalo, New York 1420, United States
| | - Min Liu
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, Florida 33612, United States
| | - Harold I Saavedra
- Department of Basic Sciences, Division of Pharmacology and Cancer Biology, Ponce Health Sciences University/Ponce Research Institute, Ponce 00716-2347, Puerto Rico
| | - Srikumar P Chellappan
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, Florida 33612, United States
| | - Mainak Dutta
- Department of Biotechnology, Birla Institute of Technology and Science Pilani (BITS Pilani) - Dubai Campus, Academic City, Dubai, P.O. Box 345055, United Arab Emirates
| |
Collapse
|
4
|
Liao Q, Deng J, Tong J, Gan Y, Hong W, Dong H, Cao M, Xiong C, Chen Y, Xie B, Yang FY, Alifu A, Zhou GB, Huang S, Xiong J, Hao Q, Zhou X. p53 induces circFRMD4A to suppress cancer development through glycolytic reprogramming and cuproptosis. Mol Cell 2025; 85:132-149.e7. [PMID: 39637854 DOI: 10.1016/j.molcel.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/15/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Cuproptosis is a type of copper-induced cell death that mainly impacts cells relying on mitochondrial metabolism. Although p53 regulates glycolytic metabolism, its role in cuproptosis remains unclear. Here, we report that the circular RNA, circFRMD4A, is crucial for p53-mediated metabolic reprogramming and cuproptosis. CircFRMD4A originates from the transcript of FRMD4A, which is transcriptionally activated by p53, and the formation of circFRMD4A is facilitated by the RNA-binding protein EWSR1. CircFRMD4A functions as a tumor suppressor and enhances the sensitivity of cancer cells to elesclomol-induced cuproptosis. Mechanistic analysis reveals that circFRMD4A interacts with and inactivates the pyruvate kinase PKM2, leading to a decrease in lactate production and a redirection of glycolytic flux toward the tricarboxylic acid cycle. Finally, p53 agonists and elesclomol coordinately suppress the growth of cancer in a xenograft mouse model. Altogether, our study uncovers that p53 promotes glycolytic reprogramming and cuproptosis via circFRMD4A and suggests a potential combination strategy against cancers with wild-type p53.
Collapse
Affiliation(s)
- Quan Liao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang 330006, Jiangxi, China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang 330006, Jiangxi, China
| | - Jing Tong
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu Gan
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Weiwei Hong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Hanzhi Dong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang 330006, Jiangxi, China
| | - Mingming Cao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chen Xiong
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yajie Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Bangxiang Xie
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Fu-Ying Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Aikede Alifu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guang-Biao Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shenglin Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang 330006, Jiangxi, China.
| | - Qian Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
5
|
Xiong C, Ling H, Huang Y, Dong H, Xie B, Hao Q, Zhou X. AZD1775 synergizes with SLC7A11 inhibition to promote ferroptosis. SCIENCE CHINA. LIFE SCIENCES 2025; 68:204-218. [PMID: 39245684 DOI: 10.1007/s11427-023-2589-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/11/2024] [Indexed: 09/10/2024]
Abstract
Tumor suppressor p53-mediated cell cycle arrest and DNA damage repair may exert cytoprotective effects against cancer therapies, including WEE1 inhibition. Considering that p53 activation can also lead to multiple types of cell death, the role of this tumor suppressor in WEE1 inhibitor-based therapies remains disputed. In this study, we reported that nucleolar stress-mediated p53 activation enhanced the WEE1 inhibitor AZD1775-induced ferroptosis to suppress lung cancer growth. Our findings showed that AZD1775 promoted ferroptosis by blocking cystine uptake, an action similar to that of Erastin. Meanwhile, inhibition of WEE1 by the WEE1 inhibitors or siRNAs induced compensatory upregulation of SLC7A11, which conferred resistance to ferroptosis. Mechanistically, AZD1775 prevented the enrichment of H3K9me3, a histone marker of transcriptional repression, on the SLC7A11 promoter by repressing the expression of the histone methyltransferase SETDB1, thereby enhancing NRF2-mediated SLC7A11 transcription. This finding was also validated using the H3K9me3 inhibitor BRD4770. Remarkably, we found that the nucleolar stress-inducing agent Actinomycin D (Act. D) inhibited SLC7A11 expression by activating p53, thus augmenting AZD1775-induced ferroptosis. Moreover, the combination of AZD1775 and Act. D synergistically suppressed wild-type p53-harboring lung cancer cell growth both in vitro and in vivo. Altogether, our study demonstrates that AZD1775 promotes ferroptosis by targeting cystine uptake but also mediates the adaptive activation of SLC7A11 through the WEE1-SETDB1 cascade and NRF2-induced transcription, and inhibition of SLC7A11 by Act. D boosts the anti-tumor efficacy of AZD1775 by enhancing ferroptosis in cancers with wild-type p53.
Collapse
Affiliation(s)
- Chen Xiong
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hong Ling
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Yingdan Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hanzhi Dong
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Bangxiang Xie
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing, 100069, China
| | - Qian Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Li R, Xiao L, Li W, Li W, Zhao K, Zhu L. Synergistic and Additive Inhibition of UDP-Glucuronosyltransferase 1A9 by Endogenous and Foodborne Inhibitors. Basic Clin Pharmacol Toxicol 2025; 136:e14116. [PMID: 39722440 DOI: 10.1111/bcpt.14116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/15/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024]
Abstract
UDP-glucuronosyltransferases (UGTs) are responsible for inactivation of a variety of drugs, endogenous hormones and environmental toxicants. Chemical inhibitors are a common factor decreasing UGT activities and furtherly inducing health problems. Although simultaneously encountering different inhibitors is readily to occur, no information is available for combined inhibition of UGT. This in vitro study investigates the combined inhibition of human UGT1A9 by endogenous and foodborne inhibitors (magnolol, di-bromophenols, UDP). J values (the ratio of inhibitory rate to the remaining activity) are analysed to determine the combined inhibition type. The combined inhibition of di-bromophenols and UDP obeys additive inhibition, in which combined J values equal to the sum of individual J values in alone inhibition assays. Meanwhile, there is a synergistic effect between 2,4-di-bromophenol and magnolol with combination index values ranging from 0.10 to 0.85. Further assays indicate that 2,4-di-bromophenol decreases IC50 values for magnolol and vice versa. Kinetic analysis confirms that the two inhibitors and UGT1A9 can form a ternary complex with the inhibition constants of 0.0188 μM (magnolol) and 0.634 (2,4-di-bromophenol) μM. In summary, this study demonstrates that besides additive inhibition, synergistic inhibition is a probable occurrence in combined inhibition of UGT. It is suggested that the inhibitors can increase mutual inhibitory effects which deserves attentions in future UGT inhibition related studies.
Collapse
Affiliation(s)
- Ruixue Li
- Collaborative Innovation Center of Targeted Development of Medicinal Resources (iCTM) & Research Center of Aquatic Organism Conservation and Water Ecosystem Restoration, Anqing Normal University, Anqing, China
| | - Ling Xiao
- School of Resources and Environment & Provincial Key Laboratory of Intelligent Quality Monitoring and Soil Fertility Improvement for Farmland, Anqing Normal University, Anqing, China
| | - Wenjuan Li
- Collaborative Innovation Center of Targeted Development of Medicinal Resources (iCTM) & Research Center of Aquatic Organism Conservation and Water Ecosystem Restoration, Anqing Normal University, Anqing, China
| | - Wenjing Li
- Collaborative Innovation Center of Targeted Development of Medicinal Resources (iCTM) & Research Center of Aquatic Organism Conservation and Water Ecosystem Restoration, Anqing Normal University, Anqing, China
| | - Kuan Zhao
- School of Resources and Environment & Provincial Key Laboratory of Intelligent Quality Monitoring and Soil Fertility Improvement for Farmland, Anqing Normal University, Anqing, China
| | - Liangliang Zhu
- Collaborative Innovation Center of Targeted Development of Medicinal Resources (iCTM) & Research Center of Aquatic Organism Conservation and Water Ecosystem Restoration, Anqing Normal University, Anqing, China
| |
Collapse
|
7
|
McKeown BT, Goralski KB. Pharmacological interactions of jadomycin B with topoisomerase poisons in MDA-MB-231 human breast cancer cells. Can J Physiol Pharmacol 2025; 103:36-45. [PMID: 39481122 DOI: 10.1139/cjpp-2024-0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Jadomycin B, a natural product isolated from Streptomyces venezuelae, exerts an anti-cancer effect on human triple negative breast cancer cells in vitro and has anti-tumoral effects in vivo in animal models of breast cancer. One proposed mechanism for this anti-cancer effect is through interaction with topoisomerase 2 (TOP2). Based on the previously described interactions between jadomycin B and TOP2 we hypothesized that jadomycin B will act additively with TOP2 poisons and produce a similar functional outcome in eliciting cell cycle arrest. Combined treatments of jadomycin B and the TOP2 poisons doxorubicin or mitoxantrone produced moderately synergistic to additive cytotoxicity (combination index values ranging from 0.72-0.94) in MDA-MB-231 cells. In comparison, combined mitoxantrone and doxorubicin produced additive cytotoxicity (combination index values 0.96-1.11). Jadomycin B combined with the proteosome inhibitor MG132 had additive cytotoxicity (combination index values 0.76-1.18). In contrast, mitoxantrone or doxorubicin cytotoxicity was antagonized by MG132 (combination index values 1.21-2.31). Jadomycin B treatment arrested cells in S-phase (P = 0.0024) as opposed to mitoxantrone which caused G2/M-phase arrest (P < 0.0001). In conclusion, jadomycin B interacts differently than known TOP2 poisons in combination, supporting a novel pharmacological mechanism(s) of action for jadomycin B cytotoxicity.
Collapse
Affiliation(s)
- Brendan T McKeown
- Department of Pharmacology. Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Kerry B Goralski
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- Department of Pharmacology and Department of Pediatrics, Faculty of Medicine and College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS, Canada
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, IWK Health Centre, Halifax, NS, Canada
| |
Collapse
|
8
|
Sayilan Ozgun G, Ozgun E, Karabas T, Suer Gokmen S, Eskiocak S. Piperine induces cellular stresses, apoptosis, and cytotoxicity via JNK signaling and has concentration-dependently additive or synergistic effects with sorafenib in hepatocellular carcinoma: an in-vitro study. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03725-0. [PMID: 39708099 DOI: 10.1007/s00210-024-03725-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
We aimed to determine the effects of piperine on cell viability, cellular stresses, and apoptosis first, then the relationship of piperine's effects with the c-Jun N-terminal kinase (JNK) signaling pathway, and also the interaction of piperine with sorafenib in hepatocellular carcinoma. Hepatocellular carcinoma (HepG2 and Hep3B) and non-cancerous hepatocyte (AML12) cell lines were used. The cell viability was determined by using MTT assay. Cellular stresses, apoptosis, and JNK signaling markers were measured by Western blotting. Cells were pre-treated with SP600125 as a JNK inhibitor. The inhibitory concentration 50% (IC50) values and interaction of piperine with sorafenib were calculated by using CompuSyn software. IC50 values of piperine were 97 µM for HepG2, 58 µM for Hep3B, and 184 µM for AML12 with incubation for 48 h. Piperine caused a significant concentration-dependent increase in cellular stresses, apoptosis, and activated JNK signaling in hepatocellular carcinoma cells. Pre-treatment with a JNK inhibitor significantly reduced piperine-induced cellular stresses, apoptosis, and cytotoxicity. Piperine had concentration-dependent additive or synergistic effects when combined with sorafenib in both HepG2 and Hep3B cells. We found that piperine induces cellular stresses, apoptosis, and cytotoxicity via JNK signaling and has concentration-dependently additive or synergistic effects with sorafenib in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Gulben Sayilan Ozgun
- Department of Medical Biochemistry, Trakya University School of Medicine, Edirne, 22030, Turkey.
| | - Eray Ozgun
- Department of Medical Biochemistry, Trakya University School of Medicine, Edirne, 22030, Turkey
| | - Tugce Karabas
- Department of Medical Biochemistry, Trakya University School of Medicine, Edirne, 22030, Turkey
| | - Selma Suer Gokmen
- Department of Medical Biochemistry, Trakya University School of Medicine, Edirne, 22030, Turkey
| | - Sevgi Eskiocak
- Department of Medical Biochemistry, Trakya University School of Medicine, Edirne, 22030, Turkey
| |
Collapse
|
9
|
Tao MT, Ding TT, Wang ZJ, Gu ZW, Liu SS. Prediction of toxicity and identification of key components for complex mixtures containing hormetic components. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177733. [PMID: 39626415 DOI: 10.1016/j.scitotenv.2024.177733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/04/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024]
Abstract
Mixtures containing hormetic components are likely to induce hormesis. However, due to the presence of stimulatory effects, predicting the toxicity of such mixtures and identifying their key components face challenges. This study investigated the complex relationship between the stimulatory effects of individual components and their mixtures, focusing on predicting mixture toxicity and identifying key components influencing this toxicity. Sixteen chemicals, commonly found in disinfectants and hand sanitizers, were selected to construct a complex mixture system containing hormetic components. Using Vibrio qinghaiensis sp.-Q67 as an indicator organism, the study employed microplate toxicity tests to collect toxicity data for individual chemicals and their mixtures. The independent action (IA) and back-propagation neural network (BPNN) methods were utilized to predict mixture toxicity, while global sensitivity analysis (GSA) identified key components affecting toxicity. Results revealed that six of the sixteen chemicals exhibited time-dependent hormesis. However, when combined into mixtures, the stimulatory effects observed in individual components tended to diminish or disappear, leading to higher overall toxicity, likely due to synergism. Traditional models like the IA significantly underestimated mixture toxicity, whereas the BPNN model demonstrated superior predictive performance. GSA identified five key components, and changes in the levels of some non-toxic components significantly altered the toxicity of the mixtures. Moreover, increasing the levels of certain key components could either increase or decrease the mixture's toxicity, making the strategy of reducing their concentration to control mixture toxicity ineffective. This study revealed the potential of neural networks in predicting the toxicity of mixtures containing hormetic components and the possible characteristics of the effects of key components on mixture toxicity.
Collapse
Affiliation(s)
- Meng-Ting Tao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ting-Ting Ding
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ze-Jun Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Zhong-Wei Gu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
10
|
Zhou Y, Lin S, Zhong X, Huang F, Huang J, Xu L. Oleanolic acid combined with aspirin plays antitumor roles in colorectal cancer via the Akt/NFκB/IκBα/COX2 pathway. Cell Death Discov 2024; 10:504. [PMID: 39695129 DOI: 10.1038/s41420-024-02223-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 07/16/2024] [Accepted: 10/21/2024] [Indexed: 12/20/2024] Open
Abstract
Among the common malignancies, colorectal cancer (CRC) is often resistant to chemotherapy because of drug resistance and severe toxicity. Currently, aspirin is one of the most promising CRC chemopreventive drugs, both for primary prevention and for reducing the chance of recurrence and metastasis following radical surgery in patients with early-stage CRC. Oleanolic acid is a potential antineoplastic drug that has an antagonistic effect on many kinds of tumors. Network pharmacology, molecular docking, and in vitro experiments were performed to investigate whether OA combined with aspirin can enhance the anticancer effects of aspirin. As indicated by the network pharmacology results, oleanolic acid and aspirin can regulate multiple signaling pathways through multiple target proteins, including NFκB1\IκBα\PTGS2\MAPK3\PIK3CA. A series of cellular experiments demonstrated for the first time that oleanolic acid synergistically enhances aspirin to inhibit the proliferation and invasion of HCT116 and HT29 cells and induce S-phase arrest by regulating Akt/NFκB/IκBα/COX2 signaling pathway, thus synergistically enhancing the ability of aspirin to promote apoptosis of colorectal cancer cells. This study provides a novel approach to the use of fresh medications for the treatment of colorectal cancer and offers a theoretical foundation for the potential creation of aspirin derivatives based on oleanolic acid.
Collapse
Affiliation(s)
- Yulv Zhou
- Department of Chinese Medicine and Anorectology, Sanming First Hospital, Affiliated Hospital of Fujian Medical University, Sanming City, Fujian Province, China
| | - Shengnan Lin
- Department of Clinical Pharmacy, Sanming First Hospital, Affiliated Hospital of Fujian Medical University, Sanming City, Fujian Province, China
| | - Xinzhu Zhong
- Department of Clinical Pharmacy, Sanming First Hospital, Affiliated Hospital of Fujian Medical University, Sanming City, Fujian Province, China
| | - Fang Huang
- Department of Clinical Pharmacy, Sanming First Hospital, Affiliated Hospital of Fujian Medical University, Sanming City, Fujian Province, China
| | - Jinxiang Huang
- Department of Neurosurgery, The First Affiliated Hospital of Naval Medical University (Changhai Hospital), Naval Medical University, Shanghai, China.
| | - Luning Xu
- Department of Clinical Pharmacy, Sanming First Hospital, Affiliated Hospital of Fujian Medical University, Sanming City, Fujian Province, China.
| |
Collapse
|
11
|
Irum I, Khan F, Sufyan M, Benish Ali SH, Rehman S. Developing multifaceted drug synergistic therapeutic strategy against neurological disorders. Comput Biol Med 2024; 185:109495. [PMID: 39693689 DOI: 10.1016/j.compbiomed.2024.109495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
Drug synergism can alter the ultimate biological effects and bioavailability of phytoconstituents. Acetylcholinesterase (AChE) inhibitors as symptomatic drugs are potent therapeutic regimen for neurodegenerative diseases. In this context, this study characterized the synergistic antioxidant, anti-inflammatory and anti-AChE effects of the selected phytochemicals including standard drugs followed by enzyme kinetics, structure-based ligands screening and molecular dynamics simulation study. The synergistic interactions were evaluated through Isoradiation and Synergy finder 3.0 methods. The combinations of Quercetin (QCT), Folic acid (FA), and Swertiamarin (SWT) with specific reference drugs were studied. The combinations of SWT + GA (Gallic acid) and FA + GA at 1:1 (γ:0.10 & 0.08, respectively) showed the significant synergistic antioxidant effect via ABTS assay. Further, in combination, QCT + SWT showed the maximum synergistic effect (γ: 0.02-0.13) in anti-inflammatory assay. Moreover, the combinations QCT, FA, and SWT with reference drug, Donepezil (DP), illustrated potent synergistic activity as anti-AChE in 1:1 proportion (γ: 0.18). The interaction pattern of phytochemicals significantly exhibited synergism (γ < 1) depicting their optimum activity in combinations compared to individual components. Enzyme kinetics evaluation showed the competitive binding of SWT with AChE as of donepezil. All the parameters of ADMET study proposed the QCT and SWT as acceptable oral drug molecules. Computational docking study revealed that QCT and SWT with lowest RMSD (1.096, 2.104) and lowest docking score (-9.831, -7.435 kcal/mol) showed maximum binding efficacy. Furthermore, molecular simulation study depicted the stability of protein-ligand complexes. These findings provide novel insight in the development of dietary treatment based on their synergistic effects for neurological disorders as optimum alternative therapeutic agents.
Collapse
Affiliation(s)
- Izza Irum
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, 45550, Pakistan
| | - Fariha Khan
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, 45550, Pakistan
| | - Muhammad Sufyan
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Syeda Hafiza Benish Ali
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, 45550, Pakistan
| | - Sidra Rehman
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, 45550, Pakistan.
| |
Collapse
|
12
|
Sawada JI, Matsuno K, Ogo N, Asai A. Identification of antimitotic sulfonamides inhibiting chromosome congression. Biochem Pharmacol 2024; 232:116718. [PMID: 39701545 DOI: 10.1016/j.bcp.2024.116718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/28/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
The discovery of new small-molecule inhibitors is essential to enhancing our understanding of biological events at the molecular level and driving advancements in drug discovery. Mitotic inhibitors have played a crucial role in development of anticancer drugs. Beyond traditional microtubule inhibitors, various inhibitors targeting specific mitotic factors have been developed. This study aimed to develop novel mitotic inhibitors targeting chromosome alignment. We established a cell-based screening method using Cell Division Cycle Associated 5 (CDCA5) and kinesin-5 as markers, designed to efficiently detect mitotic phenotypes characterized by aberrant bipolar spindles with some misaligned chromosomes. Through this screening, we identified CAIS-1, an aryl sulfonamide with unique antimitotic properties. CAIS-1 exhibits dual functionality by inhibiting chromosome congression at low concentrations and spindle microtubule formation at high concentrations, causing a concentration-dependent mitotic arrest, followed by apoptotic cell death. Mechanistic studies revealed that CAIS-1 directly acts on tubulin at high concentrations, thereby inhibiting tubulin polymerization in vitro. In contrast, at low concentrations, CAIS-1 functions through a mechanism distinct from GSK923295, a conventional chromosome congression inhibitor targeting Centromere-associated protein-E (CENP-E), highlighting its unique mode of action. Moreover, CAIS-2, a structural analog of CAIS-1, selectively inhibits chromosome congression without significantly affecting spindle microtubules. This observation suggests that CAIS-1 and CAIS-2 function as antimitotic sulfonamides with distinct targets beyond tubulin, thus offering additional biological potential of sulfonamide compounds. Together, CAIS-1 and CAIS-2 represent promising tools for providing new molecular insights into kinetochore function during mitosis and for exploring new approaches in anticancer drug development.
Collapse
Affiliation(s)
- Jun-Ichi Sawada
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Kenji Matsuno
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Naohisa Ogo
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Akira Asai
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
13
|
Rani S, Gupta S, Tejavath KK, Gupta U. Effect of combination of polyphenols, polysaccharide, and sodium selenite on bortezomib anti-cancer action. Int J Biol Macromol 2024; 289:138809. [PMID: 39694374 DOI: 10.1016/j.ijbiomac.2024.138809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/22/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Combinatorial drug delivery has shown promising results over single drug for cancer therapy. Here, we aimed to explore combination of proteasome inhibitor; bortezomib (BTZ) with natural antioxidants (AOs); polyphenols like caffeic acid (CFA), resveratrol (RES), fucoidan (FD), and synthetic AO; sodium selenite (Na2SeO3) for cellular cytotoxicity in breast cancer cell lines; MCF-7 and MDA MB-231. The combination of RES + BTZ, FD + BTZ, and Na2SeO3 + BTZ showed synergism while CFA showed antagonism with BTZ. The EC50 values of different combinations were found to be significantly less than the individual AOs in ABTS and DPPH assay. Furthermore, the effect of combination of drugs on migratory properties of MCF-7 cells were evaluated by in-vitro wound healing assay, resulting in the reduction of such behavior. In support of this, RT-qPCR was performed to analyze differential gene expressions of apoptotic and Epithelial-Mesenchymal Transition (EMT) markers with and without treatment. In results, the combination of Na2SeO3 + BTZ reduced the expression of Bcl-XL and N-Cad causing cytotoxicity and suggested that the combination of Na2SeO3 + BTZ (IC50 = 1.40 ± 0.45 μM) could be a better option among other combinations for breast cancer therapy. Overall, the outcome indicates that the combination of BTZ with AOs may yield potential therapeutic benefit.
Collapse
Affiliation(s)
- Sarita Rani
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | | | - Kiran Kumar Tejavath
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India; Department of Biochemistry, All India Institute of Medical Sciences, BIBINAGAR, HYDERABAD METROPOLITAN REGION (HMR) TELANGANA 508126.
| | - Umesh Gupta
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India.
| |
Collapse
|
14
|
Suo S, Sun S, Nguyen LXT, Qian J, Li F, Zhao D, Yu W, Lou Y, Zhu H, Tong H, Yang M, Huang X, Zhao S, Qiao J, Liang C, Wang H, Zhang Y, Zhang X, Hoang DH, Chen F, Kang H, Valerio M, Sun J, Ghoda L, Li L, Marcucci G, Zhang B, Jin J. Homoharringtonine synergizes with venetoclax in early T cell progenitor acute lymphoblastic leukemia: Bench and bed. MED 2024; 5:1510-1524.e4. [PMID: 39151422 DOI: 10.1016/j.medj.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/26/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Early T cell precursor acute lymphoblastic leukemia (ETP-ALL) is a distinct subtype of T-ALL with a poor prognosis. To find a cure, we examined the synergistic effect of homoharringtonine (HHT) in combination with the BCL-2 inhibitor venetoclax (VEN) in ETP-ALL. METHODS Using in vitro cellular assays and ETP-ALL xenograft models, we first investigated the synergistic activity of HHT and VEN in ETP-ALL. Next, to explore the underlying mechanism, we employed single-cell RNA sequencing of primary ETP-ALL cells treated with HHT or VEN alone or in combination and validated the results with western blot assays. Based on the promising preclinical results and given that both drugs have been approved for clinical use, we then assessed this combination in clinical practice. FINDINGS Our results showed that HHT synergizes strongly with VEN both in vitro and in vivo in ETP-ALL. Mechanistic studies demonstrated that the HHT/VEN combination concurrently downregulated key anti-apoptotic proteins, i.e., MCL1, leading to enhanced apoptosis. Importantly, the clinical results were very promising. Six patients with ETP-ALL with either refractory/relapsed (R/R) or newly diagnosed disease were treated with an HHT/VEN-based regimen. All patients achieved complete remission (CR) after only one cycle of treatment. CONCLUSIONS Our findings demonstrate that a combination of HHT/VEN is effective on ETP-ALL and represents the "backbone" of a promising and safe regimen for newly diagnosed and R/R patients with ETP-ALL. FUNDING This work was funded by the National Cancer Institute, Gehr Family Foundation, George Hoag Family Foundation, National Natural Science Foundation of China, and Key Research and Development Program of Zhejiang Province of China.
Collapse
Affiliation(s)
- Shanshan Suo
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA; Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, P.R. China
| | - Shu Sun
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, P.R. China
| | - Le Xuan Truong Nguyen
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA
| | - Jiejing Qian
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, P.R. China
| | - Fenglin Li
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Dandan Zhao
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA
| | - Wenjuan Yu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, P.R. China
| | - Yinjun Lou
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, P.R. China
| | - Honghu Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, P.R. China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, P.R. China
| | - Min Yang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, P.R. China
| | - Xin Huang
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Shuqi Zhao
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Junjing Qiao
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA
| | - Chen Liang
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA
| | - Huafeng Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, P.R. China
| | - Yi Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, P.R. China
| | - Xiang Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, P.R. China
| | - Dinh Hoa Hoang
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA
| | - Fang Chen
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA
| | - Hyunjun Kang
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA
| | - Melissa Valerio
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA
| | - Jie Sun
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, P.R. China
| | - Lucy Ghoda
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA
| | - Ling Li
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA
| | - Guido Marcucci
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA.
| | - Bin Zhang
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA.
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, P.R. China.
| |
Collapse
|
15
|
Yang Y, Xu Q, Gu W, Nan K, Chen S, Wang S, Zhang J, Zhao Q. Oxidative stress-augmented Cu-doped hollow mesoporous carbon nanozyme for photothermal/photodynamic synergistic therapy. J Colloid Interface Sci 2024; 683:910-925. [PMID: 39709766 DOI: 10.1016/j.jcis.2024.12.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024]
Abstract
Photodynamic therapy (PDT) has witnessed remarkable progress in recent years owing to its specific properties. Given that the antioxidation system of tumor microenvironment (TME) adversely affects treatment outcomes, powerful TME modulators can significantly resolve the limitation of PDT. Herein, we developed a PEG-modified Cu2+-doped hollow mesoporous carbon nanozyme (CHC-PEG) and loaded insoluble photosensitizer IR780 into its pores and cavities to construct the multifunctional nano-system IR780/CHCP. CHC-PEG nanozyme could perform photothermal therapy (PTT) effect and protect IR780 from aggregation-caused quenching (ACQ) effect, while exerting peroxidase (POD)-mimetic activity and the ability of consuming glutathione (GSH) to achieve oxidative stress-augmented PDT effect. When exposed to near-infrared (NIR) light, IR780 was stimulated to produce singlet oxygen (1O2) and CHC-PEG could increase the temperature of TME to exert stronger POD-mimetic activity for producing more hydroxyl radicals (OH), therefore the IR780/CHCP nano-system exhibited remarkable tumor growth inhibition. Benefited by the enhanced synergistic effect, IR780/CHCP exhibited remarkable in vivo tumor growth inhibition, with the tumor inhibition rate of 93 %, and had no significant effect on major organs. Above all, IR780/CHCP could resist the antioxidant system in TME to enhance the level of oxidative stress, thereby enabling effective anti-tumor therapy. This study introduced a novel strategy to effectively promote the synergistic PTT/PDT effect by the enhanced oxidative stress.
Collapse
Affiliation(s)
- Yuanqi Yang
- Department of Microbial and Biochemical Pharmacy, School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qingqing Xu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Wei Gu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Kaisheng Nan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Siyu Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Jinghai Zhang
- Department of Microbial and Biochemical Pharmacy, School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
16
|
Rodrigues L, Giglioti R, Katiki LM, Sarria ALF, Scholze G, Veríssimo CJ. Assessment of synergistic and antagonistic interactions between volatile compounds thymol, carvacrol, and eugenol diluted in solvents against Rhipicephalus microplus in in vitro tests. Exp Parasitol 2024; 268:108877. [PMID: 39674534 DOI: 10.1016/j.exppara.2024.108877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/18/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
The cattle tick Rhipicephalus microplus is prevalent in tropical and subtropical regions, causing substantial economic losses due to its resistance to conventional acaricides. There is an urgent need to identify safe and effective new acaricidal agents. Essential oils and their volatile compounds are promising alternatives. Ensuring the use of optimal solvents or surfactants that do not compromise the acaricidal activity of these compounds during testing is crucial. This study aims to evaluate how compounds thymol, carvacrol and eugenol interact with xylol, methanol, ethanol, acetone, isopropyl alcohol, glycerol, dimethyl sulfoxide, castor oil, propylene glycol, vaseline, and Tween 80® to enhance (or to worse) their acaricidal efficacy against R. microplus. Larval mortality time were compared against one negative control (soybean oil) and two positive controls (commercial pour-on products). The experiments were conducted in 48-well polyethylene plates, with around 100 larvae immersed in 200 μl of each solvent at 100, 50, 25, 12.5, 6.25, 3.125 and 1.56% and diluted in soybean oil or water, according to solubility. Each volatile compound (Thymol, carvacrol and eugenol) was diluted in the tested solvents to assess larval mortality time. Xylol demonstrated the shortest larval mortality time, even at a minimum concentration (p < 0.05). In contrast, liquid vaseline exhibited the longest larval mortality time. When thymol, carvacrol, and eugenol were combined with xylol, they achieved the shortest larval mortality time. Conversely, when diluted in liquid vaseline they exhibited synergistic effects decreasing the mortality time. Tween 80® worsen the efficacy of thymol, carvacrol, and eugenol, resulting in prolonged larval mortality times. These findings emphasize the critical role of solvent selection, indicating the choice of solvent profoundly affects the formulation's effectiveness, directly influencing the activity of the active compounds.
Collapse
Affiliation(s)
- Leandro Rodrigues
- Centro de Pesquisa de Genética e Reprodução Animal - Instituto de Zootecnia, Rua Heitor Penteado, 56, CEP, 13380-011, Nova Odessa, SP, Brazil.
| | - Rodrigo Giglioti
- Centro de Pesquisa de Genética e Reprodução Animal - Instituto de Zootecnia, Rua Heitor Penteado, 56, CEP, 13380-011, Nova Odessa, SP, Brazil
| | - Luciana Morita Katiki
- Centro de Pesquisa de Genética e Reprodução Animal - Instituto de Zootecnia, Rua Heitor Penteado, 56, CEP, 13380-011, Nova Odessa, SP, Brazil
| | | | - Germano Scholze
- GS®-Technology in Natural Products, P&D, Rodovia Alkindar Monteiro Junqueira, S/n, Km 34, Bairro Barreiro, CEP 12.918-150, Bragança Paulista, SP, Brazil
| | - Cecília José Veríssimo
- Centro de Pesquisa de Genética e Reprodução Animal - Instituto de Zootecnia, Rua Heitor Penteado, 56, CEP, 13380-011, Nova Odessa, SP, Brazil
| |
Collapse
|
17
|
Zhao Z, Zhao Q, Mao Z, Tian Y, Yang L, Ma Y, Gu J, Tan R. High-throughput screening of the natural STK11 agonist dauricine: A biphenylisoquinoline alkaloid exerting anti-NSCLC effects and reversing gefitinib resistance. Eur J Pharmacol 2024; 984:177024. [PMID: 39362388 DOI: 10.1016/j.ejphar.2024.177024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Serine/threonine kinase 11 (STK11) deletion and downregulation caused cancer progression, and were widely associated with drug resistance. Accurate screening of natural small molecules about anti-cancer and anti-drug resistance is the key to the development and utilization of natural product application, which could promote traditional Chinese medicine in the treatment of cancer. Dauricine, which is derived from the rhizome of Menispermum dauricum DC., has certain potential but unexplored mechanism for the treatment of cancer. PURPOSE The aim of this study was to screen and validate the role and mechanism of natural STK11 agonists with anti-drug resistance from plants in the treatment of NSCLC. METHODS A lentiviral STK11 overexpression cell model was employed for the screening of natural STK11 agonists. The efficacy of dauricine in the treatment of NSCLC was validated on PC-9 and HCC827 cells. In vivo validation of dauricine activity was performed using nude mouse models equipped with PC9 xenografts. To investigate the anti-resistant effects of dauricine, gefitinib-resistant PC9 cell models were constructed. RESULTS As a natural agonist of STK11, it causes the activation of the STK11/AMPK pathway and inhibits the growth of PC-9 cells. Dauricine synergises the inhibitory effect with gefitinib on PC9. The up-regulation of STK11 protein expression by dauricine was demonstrated in vitro and in vivo, while restoring the sensitivity of PC9/GR to gefitinib by down-regulating the protein expression of Nrf2 and Pgp. CONCLUSION Dauricine, a natural agonist of STK11, effectively inhibited NSCLC, and its combination treatment with gefitinib reversed drug-resistant NSCLC.
Collapse
Affiliation(s)
- Zhigao Zhao
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China; College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Qian Zhao
- School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zhiyuan Mao
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yang Tian
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Li Yang
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yu Ma
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, Chengdu, 610225, China
| | - Rui Tan
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China; College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
18
|
Bhute L, Dighe S, Katari O, Yadav V, Jain S. Bifunctional Oxaliplatin (IV) Prodrug Based pH-Sensitive PEGylated Liposomes for Synergistic Anticancer Action Against Triple Negative Breast cancer. AAPS PharmSciTech 2024; 26:2. [PMID: 39633214 DOI: 10.1208/s12249-024-02988-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Triple negative breast cancer (TNBC) exhibits higher susceptibility towards oxaliplatin (OXA) due to a faulty DNA damage repair system. However, the unfavorable physicochemical properties and risk of toxicities limit the clinical utility of OXA. Therefore, to impart kinetic inertness, site-specific delivery, and multidrug action, an octahedral Pt(IV) prodrug was developed by using chlorambucil (CBL) as a choice of ligand. The combination of OXA and CBL exhibited synergistic anti-cancer action in TNBC cell lines. Further, to maximize tumor-specific delivery, intracellular accumulation, and in-vivo performance, the developed prodrug (OXA-CBL) was encapsulated in pH-sensitive PEGylated liposomes into (OXA-CBL/PEG-Liposomes). The fabricated liposomes had smaller particle size < 200 nm and higher drug loading (~ 4.26 ± 0.18%). In-vitro release displayed pH-dependent sustained release for up to 48 h. Cellular internalization revealed maximal uptake via clathrin-mediated endocytosis. The cytotoxicity assay showed reduced IC50 in the 4T1 (~ 1.559-fold) and MDA-MB-231 (~ 1.539-fold) cell lines than free OXA-CBL. In-vivo efficacy in 4T1-induced TNBC model revealed a marked increase in % tumor inhibition rate, while diminished % tumor burden in OXA-CBL/BSA-NPs treated animals. Toxicity assessment displayed no signs of systemic and hemolytic toxicity. Overall, delivery of Pt (IV) prodrug as a pH-sensitive PEGylated liposomes offers a safer and efficient system to manage TNBC.
Collapse
Affiliation(s)
- Lavkesh Bhute
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67 S.A.S., Nagar, Punjab, 160062, India
| | - Sayali Dighe
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67 S.A.S., Nagar, Punjab, 160062, India
| | - Oly Katari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67 S.A.S., Nagar, Punjab, 160062, India
| | - Vivek Yadav
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67 S.A.S., Nagar, Punjab, 160062, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67 S.A.S., Nagar, Punjab, 160062, India.
| |
Collapse
|
19
|
Eid SY. Coptisine enhances the sensitivity of chemoresistant breast cancer cells by inhibiting the function and expression of ABC transporters. Front Pharmacol 2024; 15:1472458. [PMID: 39691399 PMCID: PMC11650208 DOI: 10.3389/fphar.2024.1472458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/21/2024] [Indexed: 12/19/2024] Open
Abstract
Background Multidrug resistance (MDR), mainly caused by ATP-binding cassette transporters (ABCTs) efflux, makes it difficult for many anticancer drugs to treat breast cancer (BC). Phytochemicals can reverse cancer's MDR by modifying ABC transporter expression and function, as well as working synergistically with anticancer drugs to target other molecules. The reversal effect of the isoquinoline alkaloid coptisine (COP) was assessed on four breast cell lines; Two sensitive MCF-7 cell lines with positive estrogen, androgen, progesterone, and glucocorticoid receptors, as well as MDB-MB-231 cells with negative estrogen, progesterone, and HER2 receptors, and two doxorubicin-resistant cell lines, MCF-7/ADR and MDB-MB-231/ADR. Methods The cytotoxicity of COP and its ability to improve doxorubicin (DOX) cytotoxicity were assessed using the MTT assay. The effectiveness of COP in reversing DOX resistance was evaluated by calculating resistance ratio (RR) values, combination index (CI), and isobologram (IB). The inhibitory effect of COP on ABCT efflux function in comparison to verapamil (VER) was evaluated by measuring the cellular accumulation of Rho123 using flow cytometry. The impact of COP, either alone or in combination with DOX, on the gene expression of ABCTs (P-gp/MDR1, BCRP, and MRP1) of investigated cell lines was assessed by RT-PCR. Results The COP showed modest cytotoxicity on the examined cell lines. In MCF-7/ADR and MDA-MB-231/ADR cells, COP (31 μM) enhanced DOX cytotoxicity with CI (0.77 and 0.75), RR (2.58 and 3.33), and IB suggesting synergism. COP significantly inhibits ABCT function in resistant BC cell lines, increases Rho123 accumulation, and decreases efflux more than VER; 2.1 and 1.2-fold, respectively. The combination of COP and DOX had a strong inhibitory effect on ABCT function (3.1 and 3.9 times VER, P< 0.001) and downregulated the genes and protein expression of ABCT. Conclusion COP reversed ABCT-mediated multidrug resistance in vitro, indicating its potential as a multidrug resistance-reversing agent in cancer chemotherapy.
Collapse
Affiliation(s)
- Safaa Yehia Eid
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
20
|
Quezada Meza CP, Salizzato V, Calistri E, Basso M, Zavatti M, Marmiroli S, Salvi M, Carter BZ, Donella-Deana A, Borgo C, Ruzzene M. Critical role of protein kinase CK2 in chronic myeloid leukemia cells harboring the T315I BCR::ABL1 mutation. Int J Biol Macromol 2024; 286:138305. [PMID: 39631575 DOI: 10.1016/j.ijbiomac.2024.138305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/06/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Chronic myeloid leukemia (CML) is characterized by the fusion protein BCR::ABL1, a constitutively active tyrosine kinase. The frontline treatment, represented by tyrosine kinase inhibitors (TKIs), has dramatically improved the clinical outcomes of patients. However, TKI resistance through various mechanisms has been reported. In particular, the BCR::ABL11 T315I mutation is associated with resistance to first- and second-generation TKIs and poor survival outcomes. For patients harboring this mutation, treatments with third generation TKIs are indicated, which are however accompanied by adverse events. Protein kinase CK2 is implicated in several human diseases. Although its role in CML has already been proven, its essentialness in T315I-mediated TKI resistance has yet to be investigated. Here we show that CK2 contributes to the aberrantly high signaling pathways in T315I-cells, and that its pharmacological or genetic targeting diminishes those signals, induces apoptosis, and reduces the proliferation and clonogenic potential of T315I-cells. The effects of CK2 inhibition are also observed in the presence of bone marrow stromal cells and under hypoxic conditions, and, remarkably, in patient-derived cells. Moreover, CK2 inhibition or genetic ablation of the CK2α catalytic subunit sensitizes T315I-cells towards TKIs. Collectively, our results suggest the potential benefit of inhibiting CK2 in CML characterized by T315I-dependent resistance.
Collapse
Affiliation(s)
| | | | | | - Marco Basso
- Pharmacy, Veneto Institute of Oncology IOV IRCCS, Padua, Italy
| | - Manuela Zavatti
- Dept. Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sandra Marmiroli
- Dept. Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Mauro Salvi
- Dept. Biomedical Sciences, University of Padova, Padova, Italy
| | - Bing Z Carter
- Dept. Leukemia, The University of Texas MD Anderson Cancer Center, Houston, USA
| | | | - Christian Borgo
- Dept. Biomedical Sciences, University of Padova, Padova, Italy; Dept. Medicine, University of Padova, Padova, Italy.
| | - Maria Ruzzene
- Dept. Biomedical Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
21
|
Persico C, Iaccarino N, Romano F, Giustiniano M, Russo C, Laneri S, Di Lorenzo R, Aiello I, Abate S, Izzo L, Merlino F, Brancaccio D, Pagano B, Amato J, Marzano S, D’Aria F, De Tito S, Di Porzio A, Randazzo A. Sensitization of melanoma cells to standard chemotherapy: G-quadruplex binders as synergistic agents. NAR Cancer 2024; 6:zcae042. [PMID: 39478935 PMCID: PMC11523109 DOI: 10.1093/narcan/zcae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/13/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
The use of chemotherapeutics has achieved considerable success in cancer therapy; however, their toxicity can severely impact patients' health. In this study, aiming to reduce the doses and potential side effects of traditional chemotherapeutics, we systematically treated A375MM human melanoma cells with seven clinically approved antineoplastic drugs, in combination with three well-characterized G-quadruplex (G4) ligands, using either simultaneous or sequential dosing schedules. Interestingly, the G4 binders synergized with most of the investigated anticancer drugs, with the degree of synergism being strictly dependent on both the treatment schedule and the drug sequence employed. Notably, some of the synergistic combinations showed selective toxicity toward melanoma cells over nontumorigenic human keratinocytes. Furthermore, immunofluorescence experiments highlighted the potential implication of G4 structures in the molecular mechanisms driving the synergistic interaction between some chemotherapeutics and G4 binders. Overall, our systematic study supports the combination of G4-interacting molecules with standard antineoplastic drugs as a promising antitumor strategy.
Collapse
Affiliation(s)
- Carolina Persico
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Francesca Romano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Mariateresa Giustiniano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Camilla Russo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Sonia Laneri
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Ritamaria Di Lorenzo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Immacolata Aiello
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Sara Abate
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Luana Izzo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Francesco Merlino
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Diego Brancaccio
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Simona Marzano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Federica D’Aria
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Stefano De Tito
- The Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Anna Di Porzio
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|
22
|
Gamal H, Ismail KA, Omar AMME, Teleb M, Abu-Serie MM, Huang S, Abdelsattar AS, Zamponi GW, Fahmy H. Non-small cell lung cancer sensitisation to platinum chemotherapy via new thiazole-triazole hybrids acting as dual T-type CCB/MMP-9 inhibitors. J Enzyme Inhib Med Chem 2024; 39:2388209. [PMID: 39140776 PMCID: PMC11328607 DOI: 10.1080/14756366.2024.2388209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
Cisplatin remains the unchallenged standard therapy for NSCLC. However, it is not completely curative due to drug resistance and oxidative stress-induced toxicity. Drug resistance is linked to overexpression of matrix metalloproteinases (MMPs) and aberrant calcium signalling. We report synthesis of novel thiazole-triazole hybrids as MMP-9 inhibitors with T-type calcium channel blocking and antioxidant effects to sensitise NSCLC to cisplatin and ameliorate its toxicity. MTT and whole cell patch clamp assays revealed that 6d has a balanced profile of cytotoxicity (IC50 = 21 ± 1 nM, SI = 12.14) and T-type calcium channel blocking activity (⁓60% at 10 μM). It exhibited moderate ROS scavenging activity and nanomolar MMP-9 inhibition (IC50 = 90 ± 7 nM) surpassing NNGH with MMP-9 over -2 and MMP-10 over -13 selectivity. Docking and MDs simulated its receptor binding mode. Combination studies confirmed that 6d synergized with cisplatin (CI = 0.69 ± 0.05) lowering its IC50 by 6.89 folds. Overall, the study introduces potential lead adjuvants for NSCLC platinum-based therapy.
Collapse
Affiliation(s)
- Hassan Gamal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Khadiga A Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Faculty of Pharmacy, Alamein International University (AIU), Alamein City, Egypt
| | - A-Mohsen M E Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Egypt
| | - Sun Huang
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Abdalla S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Sciences and Technology, October Gardens, Giza, Egypt
| | - Gerald W Zamponi
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Hesham Fahmy
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
23
|
Gan Y, Hao Q, Han T, Tong J, Yan Q, Zhong H, Gao B, Li Y, Xuan Z, Li P, Yao L, Xu Y, Jiang YZ, Shao ZM, Deng J, Chen J, Zhou X. Targeting BRIX1 via Engineered Exosomes Induces Nucleolar Stress to Suppress Cancer Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407370. [PMID: 39475053 DOI: 10.1002/advs.202407370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/16/2024] [Indexed: 12/19/2024]
Abstract
Elevated ribosome biogenesis correlates with the rapid growth and progression of cancer. Targeted blockade of ribosome biogenesis induces nucleolar stress, which preferentially leads to the elimination of malignant cells. In this study, it is reported that the nucleolar protein BRIX1 is a critical regulator for the homeostasis between ribosome biogenesis and p53 activation. BRIX1 facilitated the processing of pre-rRNA by supporting the formation of the PeBoW complex. In addition, BRIX1 prevented p53 activation in response to nucleolar stress by impairing the interactions between MDM2 and the ribosomal proteins, RPL5, and RPL11, thereby triggering the resistance of cancer cells to chemotherapy. Conversely, depletion of BRIX1 induced nucleolar stress, which in turn activated p53 through RPL5 and RPL11, consequently inhibiting the growth of tumors. Moreover, engineered exosomes are developed, which are surface-decorated with iRGD, a tumor-homing peptide, and loaded with siRNAs specific to BRIX1, for the treatment of cancer. iRGD-Exo-siBRIX1 significantly suppressed the growth of colorectal cancer and enhanced the efficacy of 5-FU chemotherapy in vivo. Overall, the study uncovers that BRIX1 functions as an oncoprotein to promote rRNA synthesis and dampen p53 activity, and also implies that targeted inhibition of BRIX1 via engineered exosomes can be a potent approach for cancer therapy.
Collapse
Affiliation(s)
- Yu Gan
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Qian Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Tao Han
- Institutes of Health Central Plains, Xinxiang Key laboratory for Molecular Oncology, Xinxiang Medical University, Xinxiang, Henan, 453003, P. R. China
| | - Jing Tong
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Qingya Yan
- Institutes of Health Central Plains, Xinxiang Key laboratory for Molecular Oncology, Xinxiang Medical University, Xinxiang, Henan, 453003, P. R. China
| | - Hongguang Zhong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi, 330006, P. R. China
| | - Bo Gao
- Umibio Co. Ltd., Shanghai, 201210, P. R. China
| | - Yanan Li
- Umibio Co. Ltd., Shanghai, 201210, P. R. China
| | | | - Pengfei Li
- Laboratory of Animal Center, Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, 712046, P. R. China
| | - Litong Yao
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P. R. China
| | - Yingying Xu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P. R. China
| | - Yi-Zhou Jiang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, P. R. China
| | - Zhi-Ming Shao
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, P. R. China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi, 330006, P. R. China
| | - Jiaxiang Chen
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P. R. China
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, P. R. China
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China
| |
Collapse
|
24
|
Wang G. A more holistic view of the logarithmic dose-response curve offers greater insights into insulin responses. J Biol Chem 2024; 301:108037. [PMID: 39617270 DOI: 10.1016/j.jbc.2024.108037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024] Open
Abstract
The stimulus-response curve is usually modeled by the Hill function due to its simplicity and clear molecular mechanisms (Michaelis-Menten type of kinetics). Unfortunately, the mechanisms do not explain why the stimulus is ubiquitously measured by logarithmic dose rather than the dose itself and why the log(dose)-response curve possesses such fine properties as symmetry and wide adjustability. Here, the dose-response is considered from a holistic perspective spanning multiple biological levels from molecules to the whole organism, which reveals that an appropriate model for log(dose) response is the cumulative normal distribution (CND) function, which had only statistical implication previously but now possess mechanistic-statistical duality. The present CND model establishes a connection between single-cell all-or-none responses and the graded response at the tissue/organism level, reveals the raison d'être of the logarithmic transformation, explains why log(dose)-response curve possesses many fine properties, and reveals new mechanisms of tissue/organism dose-response, including homogeneity-induced sensitivity. It also provides new insights into vital biological processes, such as the insulin dose-response.
Collapse
Affiliation(s)
- Guanyu Wang
- Laboratory of Biocomplexity and Engineering Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, China; Futian Biomedical Innovation R&D Center, The Chinese University of Hong Kong, Shenzhen, China; Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen, China; Center for Endocrinology and Metabolic Diseases, Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
25
|
Chaudhary A, Kumar A, Swain N, Chaudhary K, Sonker H, Dewan S, Patil RA, Singh RG. Endocytic Uptake of Self-Assembled Iridium(III) Nanoaggregates for Holistic Treatment of Metastatic 3D Triple-Negative Breast Tumor Spheroids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406809. [PMID: 39607393 DOI: 10.1002/smll.202406809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Triple-negative breast cancer (TNBC) presents a formidable challenge due to its aggressive behavior and limited array of treatment options available. This study focuses on employing nanoaggregate material of organometallic Ir(III) complexes for treating TNBC cell line MDA-MB-231. In this approach, Ir(III) complexes with enhanced cellular permeability are strategically designed and achieved through the incorporation of COOMe groups into their structure. The lead compound, IrL1, exhibits promiscuous nanoscale aggregation in RPMI cell culture media, characterized by a stable hydrodynamic effective diameter ranging from 190 to 202 nm over 48 h. With excellent photo-responsive contrast-enhanced cell imaging properties IrL1 exhibits an outstanding IC50, 48h value of 36.05± 0.03 nm when irradiated with 390 nm light in MDA-MB-231 (IC50, 48 h of Cisplatin is 5.29 µµ). In cell, investigation confirms that IrL1 nanoaggregates internalization via energy-dependent endocytosis undergo ferroptosis and ROS mediated cell death in MDA-MB-231 cells. Further, these in vivo studies using NOD-SCID mice confirmed that IrL1 exhibits a tendency to ablate tumors inoculated in mice models at therapeutically relevant doses. Thus, this comprehensive approach holds promise for expanding the repertoire of organometallic Ir(III) nanoaggregates with adaptable characteristics, thereby advancing their clinical utility of nanomedicine in the holistic treatment of metastatic 3D triple-negative breast tumor spheroids.
Collapse
Affiliation(s)
| | - Ashwini Kumar
- Department of Chemistry, IIT Kanpur, Kanpur, UP, 208016, India
| | - Nikhil Swain
- Department of Chemistry, IIT Kanpur, Kanpur, UP, 208016, India
| | - Kajal Chaudhary
- Department of Chemistry, IIT Kanpur, Kanpur, UP, 208016, India
| | - Himanshu Sonker
- Department of Chemistry, IIT Kanpur, Kanpur, UP, 208016, India
| | - Sayari Dewan
- Department of Chemistry, IIT Kanpur, Kanpur, UP, 208016, India
| | | | | |
Collapse
|
26
|
Fischer J, Erkner E, Radszuweit P, Hentrich T, Keppeler H, Korkmaz F, Schulze-Hentrich J, Fitzel R, Lengerke C, Schneidawind D, Schneidawind C. Only Infant MLL-Rearranged Leukemia Is Susceptible to an Inhibition of Polo-like Kinase 1 (PLK-1) by Volasertib. Int J Mol Sci 2024; 25:12760. [PMID: 39684470 DOI: 10.3390/ijms252312760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
MLL-rearranged (MLLr) leukemia is characterized by a poor prognosis. Depending on the cell of origin, it differs in the aggressiveness and therapy response. For instance, in adults, volasertib blocking Polo-like kinase 1 (PLK-1) exhibited limited success. Otherwise, PLK-1 characterizes an infant MLLr signature, indicating potential sensitivity. By using our CRISPR/Cas9 MLLr model in CD34+ cells from human cord blood (huCB) and bone marrow (huBM) mimicking the infant and adult patient diseases, we were able to shed light on this phenomenon. The PLK-1 mRNA level was significantly increased in our huCB compared to the huBM model, which was underpinned by analyzing infant and adult MLLr leukemia patients. Importantly, the expression levels correlated with a functional response. Volasertib induced a significant dose-dependent decrease in proliferation and cell cycle arrest, most pronounced in the infant model. Mechanistically, upon volasertib treatment, we uncovered negative feedback only in the huBM model by compensatory upregulation of PLK-1 and related genes like AURKA involved in mitosis. Importantly, the poor response could be overcome by a combinatorial strategy with alisertib, an Aurora kinase A inhibitor. Our study emphasizes the importance of considering the cell of origin in therapeutic decision-making and provides the rationale for evaluating volasertib and alisertib in MLLr leukemia.
Collapse
Affiliation(s)
- Jacqueline Fischer
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
| | - Estelle Erkner
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
| | - Pia Radszuweit
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
- Department of Medical Oncology and Hematology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Thomas Hentrich
- Department of Genetics/Epigenetics, Faculty NT, Saarland University, 66123 Saarbruecken, Germany
| | - Hildegard Keppeler
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
| | - Fulya Korkmaz
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
| | - Julia Schulze-Hentrich
- Department of Genetics/Epigenetics, Faculty NT, Saarland University, 66123 Saarbruecken, Germany
| | - Rahel Fitzel
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
| | - Claudia Lengerke
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
| | - Dominik Schneidawind
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
- Department of Medical Oncology and Hematology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Corina Schneidawind
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
- Department of Medical Oncology and Hematology, University Hospital Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
27
|
Hidaoui D, Porquet A, Chelbi R, Bohm M, Polyzou A, Alcazer V, Depil S, Imanci A, Morabito M, Renneville A, Selimoglu-Buet D, Thépot S, Itzykson R, Laplane L, Droin N, Trompouki E, Elvira-Matelot E, Solary E, Porteu F. Targeting heterochromatin eliminates chronic myelomonocytic leukemia malignant stem cells through reactivation of retroelements and immune pathways. Commun Biol 2024; 7:1555. [PMID: 39578583 PMCID: PMC11584673 DOI: 10.1038/s42003-024-07214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/05/2024] [Indexed: 11/24/2024] Open
Abstract
Chronic myelomonocytic leukemia (CMML) is a severe myeloid malignancy affecting the elderly, for which therapeutic options are limited. DNA hypomethylating agents (HMAs) provide transient responses, failing to eradicate the malignant clone. Hematopoietic stem cell (HSC) aging involves heterochromatin reorganization, evidenced by alterations in histone marks H3K9me2 and H3K9me3. These repressive marks together with DNA methylation are essential for suppressing transposable elements (TEs). In solid cancers, the antitumor efficacy of HMAs involves the derepression of TEs, mimicking a state of viral infection. In this study, we demonstrate a significant disorganization of heterochromatin in CMML HSCs and progenitors (HSPCs) characterized by an increase in the repressive mark H3K9me2, mainly at the level of TEs, and a repression of immune and age-associated transcripts. Combining HMAs with G9A/GLP H3K9me2 methyltransferase inhibitors reactivates these pathways, selectively targeting mutated cells while preserving wild-type HSCs, thus offering new therapeutic avenues for this severe myeloid malignancy.
Collapse
MESH Headings
- Leukemia, Myelomonocytic, Chronic/genetics
- Leukemia, Myelomonocytic, Chronic/metabolism
- Leukemia, Myelomonocytic, Chronic/drug therapy
- Leukemia, Myelomonocytic, Chronic/immunology
- Leukemia, Myelomonocytic, Chronic/pathology
- Heterochromatin/metabolism
- Heterochromatin/genetics
- Humans
- Neoplastic Stem Cells/metabolism
- Retroelements/genetics
- Histone-Lysine N-Methyltransferase/genetics
- Histone-Lysine N-Methyltransferase/metabolism
- Hematopoietic Stem Cells/metabolism
- DNA Methylation
- Animals
- Mice
- Male
- Histones/metabolism
Collapse
Affiliation(s)
- Donia Hidaoui
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
| | - Audrey Porquet
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
| | - Rabie Chelbi
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
- Inovarion, 75005, Paris, France
| | - Mathieu Bohm
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
- Inovarion, 75005, Paris, France
| | - Aikaterini Polyzou
- IRCAN Institute for Research on Cancer and Aging, INSERM U1081, CNRS UMR 7284, Université Côte d'Azur, Nice, France
| | - Vincent Alcazer
- Centre International de Recherche en Infectiologie, INSERM U1111 CNRS UMR530, Lyon, France
- Service d'hématologie Clinique, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Stéphane Depil
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM U1052 CNRS 5286 Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Aygun Imanci
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
| | - Margot Morabito
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
| | - Aline Renneville
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
- INSERM US23, CNRS UMS 3655, Gustave Roussy Cancer Center, Villejuif, France
| | - Dorothée Selimoglu-Buet
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
| | - Sylvain Thépot
- Clinical Hematology Department, University Hospital, Angers, France
| | - Raphael Itzykson
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Lucie Laplane
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
- Institut d'Histoire et Philosophie des Sciences et des Techniques, Université Paris I Panthéon-Sorbonne, Paris, France
| | - Nathalie Droin
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
- INSERM US23, CNRS UMS 3655, Gustave Roussy Cancer Center, Villejuif, France
| | - Eirini Trompouki
- IRCAN Institute for Research on Cancer and Aging, INSERM U1081, CNRS UMR 7284, Université Côte d'Azur, Nice, France
| | - Emilie Elvira-Matelot
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
| | - Eric Solary
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
- Clinical Hematology Department, Gustave Roussy Cancer Center, Villejuif, France
| | - Françoise Porteu
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France.
| |
Collapse
|
28
|
Zheng L, Wang J, Han S, Zhong L, Liu Z, Li B, Zhang R, Zhou L, Zheng X, Liu Z, Zeng C, Li R, Zou Y, Wang L, Wu Y, Kang T. The KLF16/MYC feedback loop is a therapeutic target in bladder cancer. J Exp Clin Cancer Res 2024; 43:303. [PMID: 39551759 PMCID: PMC11571712 DOI: 10.1186/s13046-024-03224-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Bladder cancer (BLCA) is a common malignancy characterized by dysregulated transcription and a lack of effective therapeutic targets. In this study, we aimed to identify and evaluate novel targets with clinical potential essential for tumor growth in BLCA. METHODS CRISPR-Cas9 screening was used to identify transcription factors essential for bladder cancer cell viability. The biological functions of KLF16 in bladder cancer were investigated both in vitro and in vivo. The regulatory mechanism between KLF16 and MYC was elucidated through a series of analyses, including RNA sequencing, quantitative polymerase chain reaction (qPCR), RNA immunoprecipitation, Western blotting, Mass spectrometry, Dual-luciferase reporter assays, Cleavage Under Targets and Tagmentation (CUT&Tag) sequencing, OptoDroplets assays, and RNA stability assay. The clinical relevance of KLF16 and MYC in bladder cancer was evaluated through analyses of public databases and immunohistochemistry. RESULTS Krüppel-like factor 16 (KLF16) was essential for BLCA cell viability. Elevated expression of KLF16 was observed in bladder cancer tissues, and higher expression levels of KLF16 were correlated with poor progression-free survival (PFS) and cancer-specific survival (CSS) probabilities in BLCA patients. Mechanistically, KLF16 mRNA competed with the mRNA of dual-specificity phosphatase 16 (DUSP16) for binding to the RNA-binding protein, WW domain binding protein 11 (WBP11), resulting in destabilization of the DUSP16 mRNA. This, in turn, led to activation of ERK1/2, which stabilized the MYC protein. Furthermore, KLF16 interacted with MYC to form nuclear condensates, thereby enhancing MYC's transcriptional activity. Additionally, MYC transcriptionally upregulated KLF16, creating a positive feedback loop between KLF16 and MYC that amplified their oncogenic functions. Targeting this loop with bromodomain inhibitors, such as OTX015 and ABBV-744, suppressed the transcription of both KLF16 and MYC, resulting in reduced BLCA cell viability and tumor growth, as well as increased sensitivity to chemotherapy. CONCLUSIONS Our study revealed the crucial role of the KLF16/MYC regulatory axis in modulating tumor growth and chemotherapy sensitivity in BLCA, suggesting that combining bromodomain inhibitors, such as OTX015 or ABBV-744, with DDP or gemcitabine could be a promising therapeutic intervention for BLCA patients.
Collapse
Affiliation(s)
- Lisi Zheng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Jingxuan Wang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Shan Han
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Li Zhong
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Center of Digestive Disease, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Zefu Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Bin Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ruhua Zhang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Liwen Zhou
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Xianchong Zheng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Zhenhua Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Cuiling Zeng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Ruonan Li
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Yezi Zou
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Liqin Wang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
| | - Yuanzhong Wu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
| | - Tiebang Kang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
29
|
Nichols Doyle R, Yang V, Kayode YI, Damoiseaux R, Taylor HE, Fregoso OI. NSC95397 Is a Novel HIV-1 Latency-Reversing Agent. Viruses 2024; 16:1783. [PMID: 39599897 PMCID: PMC11599149 DOI: 10.3390/v16111783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024] Open
Abstract
The latent viral reservoir represents one of the major barriers to curing HIV-1. Focus on the "kick and kill" (also called "shock and kill") approach, in which virus expression is reactivated, and then cells producing virus are selectively depleted, has led to the discovery of many latency-reversing agents (LRAs) that have furthered our understanding of the mechanisms driving HIV-1 latency and latency reversal. Thus far, individual compounds have yet to be robust enough to work as a therapy, highlighting the importance of identifying new compounds that target novel pathways and synergize with known LRAs. In this study, we identified a promising LRA, NSC95397, from a screen of ~4250 compounds. We validated that NSC95397 reactivates latent viral transcription and protein expression from cells with unique integration events and across different latency models. Co-treating cells with NSC95397 and known LRAs demonstrated that NSC95397 synergizes with different drugs under both standard normoxic and physiological hypoxic conditions. NSC95397 does not globally increase open chromatin, and bulk RNA sequencing revealed that NSC95397 does not greatly increase cellular transcription. Instead, NSC95397 downregulates pathways key to metabolism, cell growth, and DNA repair-highlighting the potential of these pathways in regulating HIV-1 latency. Overall, we identified NSC95397 as a novel LRA that does not largely alter global transcription, shows potential for synergy with known LRAs, and may act through novel pathways not previously recognized for their ability to modulate HIV-1 latency.
Collapse
Affiliation(s)
- Randilea Nichols Doyle
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (R.N.D.); (V.Y.)
| | - Vivian Yang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (R.N.D.); (V.Y.)
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Yetunde I. Kayode
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY 13210, USA; (Y.I.K.); (H.E.T.)
| | - Robert Damoiseaux
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA;
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| | - Harry E. Taylor
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY 13210, USA; (Y.I.K.); (H.E.T.)
| | - Oliver I. Fregoso
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (R.N.D.); (V.Y.)
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
30
|
Alkhaldi O, Abusulieh S, Abusara OH, Sunoqrot S. Development of Mitoxantrone-Loaded Quercetin Nanoparticles for Breast Cancer Therapy with Potential for Synergism with Bioactive Natural Products. Int J Pharm 2024; 665:124674. [PMID: 39245083 DOI: 10.1016/j.ijpharm.2024.124674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Nanoparticle (NP)-based drug delivery systems have caused a paradigm shift in cancer treatment by enabling drug targeting, sustaining drug release, and reducing systemic toxicity of chemotherapy. Here we developed a novel NP formulation for the anticancer drug mitoxantrone (MTZ) by loading it into an emerging nanomaterial derived from the plant polyphenol quercetin (QCT). QCT was partially oxidized to produce amphiphilic oxQCT which was co-assembled with poly(ethylene glycol) (PEG) and MTZ by nanoprecipitation to form MTZ NPs. The optimal NPs exhibited an average diameter of 128 nm, a polydispersity index of 0.22, and a drug loading efficiency of 76%. While only a small fraction of the loaded drug was released at physiologic pH, a significantly higher fraction was released at acidic pH. The anticancer activity of MTZ NPs was assessed in MCF-7 and MDA-MB-231 breast cancer cell lines, alone and in combination with the bioactive natural products curcumin (CUR) and thymoquinone (TQ). In cell viability assays, MTZ NPs were slightly less potent than free MTZ, most likely due to their sustained release properties, but their cytotoxicity was greatly enhanced in the presence of TQ (in MCF-7 cells) as well as CUR (in MDA-MB-231 cells). The results were corroborated by apoptosis assays such as mitochondrial membrane potential measurement, acridine orange/ethidium bromide staining, in addition to caspase activity assays. The assays revealed that the NPs' proapoptotic effect was enhanced in the presence of CUR or TQ, depending on the cell line. Our work presents a promising nanocarrier platform for MTZ with the potential to enhance its bioactivity against breast cancer when combined with bioactive natural products.
Collapse
Affiliation(s)
- Otrujja Alkhaldi
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Samah Abusulieh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Osama H Abusara
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Suhair Sunoqrot
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan.
| |
Collapse
|
31
|
Koba Y, Nakamoto M, Nagao M, Miura Y, Matsusaki M. Intrinsic Synergy and Selectivity for the Inhibition of Cancer Cell Growth Generated by a Polymer Ligand of Proximal Enzymes. NANO LETTERS 2024; 24:14206-14214. [PMID: 39388612 DOI: 10.1021/acs.nanolett.4c03334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
A fundamental understanding of the design of polymer ligands of proximal enzymes is essential for the precise targeting of cancer cells, but it is still in its infancy. In this study, we systematically investigated the contribution of the chain length, ligand density, and ligand ratio of proximal enzyme-targeted polymers to the efficacy, synergy, and selectivity for the inhibition of cancer cell proliferation. The results revealed that employing a moderate chain length as a scaffold allowed for an intrinsically high efficacy and synergy of proximal enzyme-targeted polymers, in contrast to single enzyme-targeted polymers that prefer longer chain length for efficacy. The synergy obtained in proximal enzyme targeting was not provided by the combination of the corresponding small molecules. Moreover, the maturation of the synergistic efficacy of the proximal enzyme-targeted polymers also improved selectivity. This study proposes a rational design for polymer inhibitors and/or ligands for cancer cells with a high efficacy and selectivity.
Collapse
Affiliation(s)
- Yuki Koba
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiko Nakamoto
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masanori Nagao
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshiko Miura
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Michiya Matsusaki
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
32
|
Stutz C, Fontão APGA, Silva GWDSE, Seito LN, Perdomo RT, Sampaio ALF. Betulinic Acid Acts in Synergism with Imatinib Mesylate, Triggering Apoptosis in MDR Leukemia Cells. PLANTA MEDICA 2024. [PMID: 39395407 DOI: 10.1055/a-2440-4847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disease, characterized by the presence of the oncogene BCR-ABL. Imatinib mesylate (IMA) is the first-line treatment for CML, and some treatment resistance has been reported. Natural products are rich sources of bioactive compounds with biological effects, opening a possibility to alter cell susceptibility to drugs such as imatinib. Herein, we evaluated the interference of betulinic acid and ursolic acid in glycoprotein P (P-gp) activity and the possible synergistic effect when associated with IMA by the Chou-Talalay method. Ursolic acid presented an IC50 of 14.0 µM and 19.6 µM for K562 and Lucena 1, respectively, whilst betulinic acid presented an IC50 of 8.6 µM and 12.5 µM for these cell lines. Evaluation of the combination of terpenoids and imatinib mesylate revealed that ursolic acid or betulinic acid acts in synergism with IMA, as indicated by the combination indexes (CI<1). Analysis of annexin V labeling demonstrated that a combination of IMA with betulinic acid enhances the inhibition on cell proliferation via the apoptosis pathway, with caspases 3/7 activation after 24 hours of treatment and inhibition of the STAT5/survivin pathway, decreasing cell viability. The combination of natural products and IMA on a multidrug-resistant leukemia cell line is a promising strategy for CML treatment.
Collapse
Affiliation(s)
- Claudia Stutz
- Fundação Oswaldo Cruz, Eusébio, CE, Brasil
- Fundação Oswaldo Cruz, Campo Grande, MS, Brasil
| | | | | | - Leonardo Noboru Seito
- Laboratório de Farmacologia Aplicada, Instituto de Tecnologia em Fármacos; Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Renata Trentin Perdomo
- Laboratório de Biologia Molecular e Culturas Celulares, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição; UFMS, Campo Grande, MS, Brasil
| | - André Luiz Franco Sampaio
- Laboratório de Farmacologia Molecular, Instituto de Tecnologia em Fármacos; Fiocruz, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
33
|
Helmy MW, Youssef MH, Yamari I, Amr A, Moussa FI, El Wakil A, Chtita S, El-Samad LM, Hassan MA. Repurposing of sericin combined with dactolisib or vitamin D to combat non-small lung cancer cells through computational and biological investigations. Sci Rep 2024; 14:27034. [PMID: 39505930 PMCID: PMC11541877 DOI: 10.1038/s41598-024-76947-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
This study aims to repurpose sericin in combating non-small lung cancer cells (A549 and H460) by combining it with dactolisib or vitamin D to reduce the dose of dactolisib and boost the anticancer effectiveness of dactolisib and vitamin D. Therefore, the binding affinities of individual and combined drugs were examined using in silico and protein-protein interaction studies, targeting NF-κB, Cyclin D1, p-AKT, and VEGF1 proteins. The findings manifested remarkable affinities for combinatorial drugs compared to individual compounds. To substantiate these findings, the combined IC50 for each combination (sericin + dactolisib and sericin + vitamin D) were determined, reporting 31.9 and 41.8 µg/ml, respectively, against A549 cells and 47.9 and 55.3 µg/ml, respectively, against H460 cells. Furthermore, combination indices were assessed to lower the doses of each drug. Interestingly, in vitro results exhibited marked diminutions in NF-κB, Cyclin D1, p-AKT, and VEGF1 after treatment with sericin + dactolisib and sericin + vitamin D compared to control lung cancer cells and those treated with a single drug. Moreover, A549 and H460 cells treated with both combinations demonstrated augmented caspase-3 levels, implying substantial apoptotic activity. Altogether, these results accentuated the prospective implementation of sericin in combination with dactolisib and vitamin D at low doses to preclude lung cancer cell proliferation.
Collapse
Affiliation(s)
- Maged W Helmy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Damanhour University, 22511, Damanhour, Egypt
| | - Mariam H Youssef
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Imane Yamari
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, P. O. Box 7955, Casablanca, Morocco
| | - Alaa Amr
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Farouzia I Moussa
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Abeer El Wakil
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Alexandria, Egypt
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, P. O. Box 7955, Casablanca, Morocco
| | - Lamia M El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt.
| |
Collapse
|
34
|
Hong G, Chang JE. Enhancing Cancer Treatment Through Combined Approaches: Photodynamic Therapy in Concert with Other Modalities. Pharmaceutics 2024; 16:1420. [PMID: 39598543 PMCID: PMC11597730 DOI: 10.3390/pharmaceutics16111420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
This review explores the role of photodynamic therapy (PDT) as an adjunctive treatment for cancers, with a focus on its potential to enhance the effects of established therapies like chemotherapy, surgery, and radiotherapy. Given the limitations of conventional cancer treatments, PDT's ability to improve therapeutic outcomes through combination strategies is examined. In cancers such as lung, breast, cholangiocarcinoma, and cervical, PDT shows promise in enhancing response rates, reducing recurrence, and minimizing adverse effects when used alongside standard modalities. This study highlights current findings on PDT's mechanisms in complementing chemotherapy, augmenting surgical precision, and enhancing radiotherapeutic effects, thus offering a multi-faceted approach to cancer treatment. Additionally, insights into the clinical application of PDT in these cancers emphasize its potential for reducing tumor resistance and supporting more effective, personalized care. By providing an overview of PDT's synergistic applications across diverse cancer types, this review underscores its emerging significance in oncology as a tool to address traditional treatment limitations. Ultimately, this review aims to inform and inspire researchers and clinicians seeking to refine and innovate cancer therapy strategies through PDT integration, contributing to the advancement of more effective, synergistic cancer treatments.
Collapse
Affiliation(s)
| | - Ji-Eun Chang
- College of Pharmacy, Dongduk Women’s University, Seoul 02748, Republic of Korea
| |
Collapse
|
35
|
Xie DM, Li ZY, Ren BK, Gong R, Yang D, Huang S. Tanshinone II A Facilitates Chemosensitivity of Osteosarcoma Cells to Cisplatin via Activation of p38 MAPK Pathway. Chin J Integr Med 2024:10.1007/s11655-024-4118-5. [PMID: 39499413 DOI: 10.1007/s11655-024-4118-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 11/07/2024]
Abstract
OBJECTIVE To examine the mechanism of action of tanshinone II A (Tan II A) in promoting chemosensitization of osteosarcoma cells to cisplatin (DDP). METHODS The effects of different concentrations of Tan II A (0-80 µ mol/L) and DDP (0-2 µ mol/L) on the proliferation of osteosarcoma cell lines (U2R, U2OS, 143B, and HOS) at different times were examined using the cell counting kit-8 and colony formation assays. Migration and invasion of U2R and U2OS cells were detected after 24 h treatment with 30 µ mol/L Tan II A, 0.5 µ mol/L DDP alone, and a combination of 10 µ mol/L Tan II A and 0.25 µ mol/L DDP using the transwell assay. After 48 h of treatment of U2R and U2OS cells with predetermined concentrations of each group of drugs, the cell cycle was analyzed using a cell cycle detection kit and flow cytometry. After 48 h treatment, apoptosis of U2R and U2OS cells was detected using annexin V-FITC apoptosis detection kit and flow cytometry. U2R cells were inoculated into the unilateral axilla of nude mice and then the mice were randomly divided into 4 groups of 6 nude mice each. The 4 groups were treated with equal volume of Tan II A (15 mg/kg), DDP (3 mg/kg), Tan II A (7.5 mg/kg) + DDP (1.5 mg/kg), and normal saline, respectively. The body weight of the nude mice was weighed, and the tumor volume and weight were measured. Cell-related gene and signaling pathway expression were detected by RNA sequencing and Kyoto Encyclopedia of Genes and Genomes pathway analysis. p38 MAPK signaling pathway proteins and apoptotic protein expressions were detected by Western blot. RESULTS In vitro studies have shown that Tan II A, DDP and the combination of Tan II A and DDP inhibit the proliferation, migration and invasion of osteosarcoma cells. The inhibitory effect was more pronounced in the Tan II A and DDP combined treatment group (P<0.05 or P<0.01). Osteosarcoma cells underwent significantly cell-cycle arrest and cell apoptosis by Tan II A-DDP combination treatment (P<0.05 or P<0.01). In vivo studies demonstrated that the Tan II A-DD combination treatment group significantly inhibited tumor growth compared to the Tan II A and DDP single drug group (P<0.01). Additionally, we found that the combination of Tan II A and DDP treatment enhanced the p38 MAPK signaling pathway. Western blot assays showed higher p-p38, cleaved caspase-3, and Bax and lower caspase-3, and Bcl-2 expressions with the combination of Tan II A and DDP treatment compared to the single drug treatment (P<0.01). CONCLUSION Tan II A synergizes with DDP by activating the p38/MAPK pathway to upregulate cleaved caspase-3 and Bax pro-apoptotic gene expressions, and downregulate caspase-3 and Bcl-2 inhibitory apoptotic gene expressions, thereby enhancing the chemosensitivity of osteosarcoma cells to DDP.
Collapse
Affiliation(s)
- Da-Ming Xie
- Department of Orthopaedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang, 330006, China
| | - Zhi-Yun Li
- Department of Orthopaedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Bing-Kai Ren
- Department of Orthopaedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Rui Gong
- Department of Clinical Medicine, Jiangxi Health Vocational College, Nanchang, 330052, China
| | - Dong Yang
- Department of Orthopaedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang, 330006, China
| | - Sheng Huang
- Department of Orthopaedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang, 330006, China.
| |
Collapse
|
36
|
Areewong S, Suppramote O, Prasopporn S, Jirawatnotai S. Exploiting acquired vulnerability to develop novel treatments for cholangiocarcinoma. Cancer Cell Int 2024; 24:362. [PMID: 39501277 PMCID: PMC11539612 DOI: 10.1186/s12935-024-03548-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/26/2024] [Indexed: 11/08/2024] Open
Abstract
Cholangiocarcinoma (CCA) presents a formidable therapeutic challenge due to its extensive heterogeneity and plasticity, which inevitably lead to acquired resistance to current treatments. However, recent evidence suggests that acquired drug resistance is associated with a fitness cost resulting from the myriad of acquired alterations under the selective pressure of the primary treatment. Consequently, CCA patients with acquired resistance are more susceptible to alternative therapies that are ineffective as monotherapies. This phenomenon, termed "acquired vulnerability," has garnered significant interest in drug development, as the acquired alterations could potentially be exploited therapeutically. This review elucidates the modes of acquired vulnerability, methods for identifying and exploiting acquired vulnerabilities in cancer (particularly in CCA), and strategies to enhance the clinical efficacy of drug combinations by leveraging the principle of acquired vulnerability. Identifying acquired vulnerabilities may pave the way for novel drug combinations to effectively treat highly heterogeneous and adaptable malignancies such as CCA.
Collapse
Affiliation(s)
- Sirayot Areewong
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, 2 Wanglang Rd., 11th Floor Srisavarindhira Building, Bangkok Noi, 10700, Bangkok, Thailand
| | - Orawan Suppramote
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, 906 Kampangpetch 6 Rd., Talat Bang Khen, Lak Si, 10210, Bangkok, Thailand
| | - Sunisa Prasopporn
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, 2 Wanglang Rd., 11th Floor Srisavarindhira Building, Bangkok Noi, 10700, Bangkok, Thailand
| | - Siwanon Jirawatnotai
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, 2 Wanglang Rd., 11th Floor Srisavarindhira Building, Bangkok Noi, 10700, Bangkok, Thailand.
- Faculty of Pharmacy, Silpakorn University, 6 Ratchamankanai Road., Phra Pathom Chedi Sub-district, Mueang District, 73000, Nakhon Pathom, Thailand.
| |
Collapse
|
37
|
Braga CB, Perli G, Fonseca R, Grigolo TA, Ionta M, Ornelas C, Pilli RA. Enhanced Synergistic Efficacy Against Breast Cancer Cells Promoted by Co-Encapsulation of Piplartine and Paclitaxel in Acetalated Dextran Nanoparticles. Mol Pharm 2024; 21:5577-5597. [PMID: 39365693 DOI: 10.1021/acs.molpharmaceut.4c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Malignant breast tumors constitute the most frequent cancer diagnosis among women. Notwithstanding the progress in treatments, this condition persists as a major public health issue. Paclitaxel (PTX) is a first-line classical chemotherapeutic drug used as a single active pharmaceutical ingredient (API) or in combination therapy for breast cancer (BC) treatment. Adverse effects, poor water solubility, and inevitable susceptibility to drug resistance seriously limit its therapeutic efficacy in the clinic. Piplartine (PPT), an alkaloid extracted from Piper longum L., has been shown to inhibit cancer cell proliferation in several cell lines due to its pro-oxidant activity. However, PPT has low water solubility and bioavailability in vivo, and new strategies should be developed to optimize its use as a chemotherapeutic agent. In this context, the present study aimed to synthesize a series of acetalated dextran nanoparticles (Ac-Dex NPs) encapsulating PPT and PTX to overcome the limitations of PPT and PTX, maximizing their therapeutic efficacy and achieving prolonged and targeted codelivery of these anticancer compounds into BC cells. Biodegradable, pH-responsive, and biocompatible Ac-Dex NPs with diameters of 100-200 nm and spherical morphologies were formulated using a single emulsion method. Selected Ac-Dex NPs containing only PPT or PTX as well as those coloaded with PPT and PTX achieved excellent drug-loading capabilities (PPT, ca. 11-33%; PTX, ca. 2-14%) and high encapsulation efficiencies (PPT, ∼57-98%; PTX, ∼80-97%). Under physiological conditions (pH 7.4), these NPs exhibited excellent colloidal stability and were capable of protecting drug release, while under acidic conditions (pH 5.5) they showed structural collapse, releasing the therapeutics in an extended manner. Cytotoxicity results demonstrated that the encapsulation in Ac-Dex NPs had a positive effect on the activities of both PPT and PTX against the MCF-7 human breast cancer cell line after 48 h of treatment, as well as toward MDA-MB-231 triple-negative BC cells. PPT/PTX@Ac-Dex NPs were significantly more cytotoxic (IC50/PPT = 0.25-1.77 μM and IC50/PTX = 0.07-0.75 μM) and selective (SI = 2.9-6.7) against MCF-7 cells than all the control therapeutic agents: free PPT (IC50 = 4.57 μM; SI = 1.2), free PTX (IC50 = 0.97 μM; SI = 1.0), the single-drug-loaded Ac-Dex NPs, and the physical mixture of both free drugs. All combinations of PPT and PTX resulted in pronounced synergistic antiproliferative effects in MCF-7 cells, with an optimal molar ratio of PPT to PTX of 2.3:1. PPT/PTX-2@Ac-Dex NPs notably promoted apoptosis, cell cycle arrest at the G2/M, accumulation of intracellular reactive oxygen species (ROS), and combined effects from both PPT and PTX on the microtubule network of MCF-7 cells. Overall, the combination of PTX and PPT in pH-responsive Ac-Dex NPs may offer great potential to improve the therapeutic efficacy, overcome the limitations, and provide effective simultaneous delivery of these therapeutics for BC treatment.
Collapse
Affiliation(s)
- Carolyne Brustolin Braga
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970, Campinas, São Paulo Brazil
| | - Gabriel Perli
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970, Campinas, São Paulo Brazil
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, 20018 Donostia-San Sebastián Spain
| | - Rafael Fonseca
- Institute of Biomedical Sciences, Federal University of Alfenas, UNIFAL-MG, 37130-001 Alfenas, Minas Gerais, Brazil
| | - Thiago Augusto Grigolo
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970, Campinas, São Paulo Brazil
| | - Marisa Ionta
- Institute of Biomedical Sciences, Federal University of Alfenas, UNIFAL-MG, 37130-001 Alfenas, Minas Gerais, Brazil
| | - Catia Ornelas
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970, Campinas, São Paulo Brazil
- R&D Department, ChemistryX, R&D and Consulting Company, 9000 Funchal, Portugal
- R&D Department, Dendriwave, Research & Development Start-Up Company, 9000 Funchal, Portugal
| | - Ronaldo A Pilli
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970, Campinas, São Paulo Brazil
| |
Collapse
|
38
|
Exposito F, Redrado M, Serrano D, Calabuig-Fariñas S, Bao-Caamano A, Gallach S, Jantus-Lewintre E, Diaz-Lagares A, Rodriguez-Casanova A, Sandoval J, San Jose-Eneriz E, Garcia J, Redin E, Senent Y, Leon S, Pio R, Lopez R, Oyarzabal J, Pineda-Lucena A, Agirre X, Montuenga LM, Prosper F, Calvo A. G9a/DNMT1 co-targeting inhibits non-small cell lung cancer growth and reprograms tumor cells to respond to cancer-drugs through SCARA5 and AOX1. Cell Death Dis 2024; 15:787. [PMID: 39488528 PMCID: PMC11531574 DOI: 10.1038/s41419-024-07156-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 11/04/2024]
Abstract
The treatment of non-small cell lung cancer (NSCLC) patients has significantly improved with recent therapeutic strategies; however, many patients still do not benefit from them. As a result, new treatment approaches are urgently needed. In this study, we evaluated the antitumor efficacy of co-targeting G9a and DNMT1 enzymes and its potential as a cancer drug sensitizer. We observed co-expression and overexpression of G9a and DNMT1 in NSCLC, which were associated with poor prognosis. Co-targeting G9a/DNMT1 with the drug CM-272 reduced proliferation and induced cell death in a panel of human and murine NSCLC cell lines. Additionally, the transcriptomes of these cells were reprogrammed to become highly responsive to chemotherapy (cisplatin), targeted therapy (trametinib), and epigenetic therapy (vorinostat). In vivo, CM-272 reduced tumor volume in human and murine cell-derived cancer models, and this effect was synergistically enhanced by cisplatin. The expression of SCARA5 and AOX1 was induced by CM-272, and both proteins were found to be essential for the antiproliferative response, as gene silencing decreased cytotoxicity. Furthermore, the expression of SCARA5 and AOX1 was positively correlated with each other and inversely correlated with G9a and DNMT1 expression in NSCLC patients. SCARA5 and AOX1 DNA promoters were hypermethylated in NSCLC, and SCARA5 methylation was identified as an epigenetic biomarker in tumors and liquid biopsies from NSCLC patients. Thus, we demonstrate that co-targeting G9a/DNMT1 is a promising strategy to enhance the efficacy of cancer drugs, and SCARA5 methylation could serve as a non-invasive biomarker to monitor tumor progression.
Collapse
Affiliation(s)
- Francisco Exposito
- Program in Solid Tumors, Cima-Universidad de Navarra, Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- CIBERONC, ISCIII, Madrid, Spain
- IDISNA, Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
- Yale Cancer Center, New Haven, CT, USA
| | - Miriam Redrado
- Program in Solid Tumors, Cima-Universidad de Navarra, Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- IDISNA, Pamplona, Spain
| | - Diego Serrano
- Program in Solid Tumors, Cima-Universidad de Navarra, Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- CIBERONC, ISCIII, Madrid, Spain
- IDISNA, Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Silvia Calabuig-Fariñas
- CIBERONC, ISCIII, Madrid, Spain
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, 46014, Valencia, Spain
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, 46014, Valencia, Spain
- Department of Pathology, Universitat de València, 46010, Valencia, Spain
| | - Aida Bao-Caamano
- Epigenomics Units, Cancer Epigenomics, Translational Medical Oncology Group (ONCOGAL), Health Research Institute of Santiago de Compostela (IDIS), and Department of Clinical Analysis, University Hospital Complex of Santiago de Compostela (CHUS), Roche-CHUS Joint Unit (ONCOMET), Health Research Institute of Santiago (IDIS), 15706, Santiago de Compostela, Spain, 15706, Santiago de Compostela, Spain
| | - Sandra Gallach
- CIBERONC, ISCIII, Madrid, Spain
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, 46014, Valencia, Spain
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, 46014, Valencia, Spain
| | - Eloisa Jantus-Lewintre
- CIBERONC, ISCIII, Madrid, Spain
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, 46014, Valencia, Spain
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, 46014, Valencia, Spain
- Department of Biotechnology, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Angel Diaz-Lagares
- CIBERONC, ISCIII, Madrid, Spain
- Epigenomics Units, Cancer Epigenomics, Translational Medical Oncology Group (ONCOGAL), Health Research Institute of Santiago de Compostela (IDIS), and Department of Clinical Analysis, University Hospital Complex of Santiago de Compostela (CHUS), Roche-CHUS Joint Unit (ONCOMET), Health Research Institute of Santiago (IDIS), 15706, Santiago de Compostela, Spain, 15706, Santiago de Compostela, Spain
| | - Aitor Rodriguez-Casanova
- Epigenomics Units, Cancer Epigenomics, Translational Medical Oncology Group (ONCOGAL), Health Research Institute of Santiago de Compostela (IDIS), and Department of Clinical Analysis, University Hospital Complex of Santiago de Compostela (CHUS), Roche-CHUS Joint Unit (ONCOMET), Health Research Institute of Santiago (IDIS), 15706, Santiago de Compostela, Spain, 15706, Santiago de Compostela, Spain
| | - Juan Sandoval
- Biomarkers and Precision Medicine (UBMP) and Epigenomics Unit, IIS, La Fe, 46026, Valencia, Spain
| | - Edurne San Jose-Eneriz
- CIBERONC, ISCIII, Madrid, Spain
- IDISNA, Pamplona, Spain
- Division of Hemato-Oncology, Cima-Universidad de Navarra, Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Javier Garcia
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Esther Redin
- Program in Solid Tumors, Cima-Universidad de Navarra, Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- CIBERONC, ISCIII, Madrid, Spain
- IDISNA, Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Yaiza Senent
- Program in Solid Tumors, Cima-Universidad de Navarra, Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Sergio Leon
- Program in Solid Tumors, Cima-Universidad de Navarra, Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- CIBERONC, ISCIII, Madrid, Spain
| | - Ruben Pio
- Program in Solid Tumors, Cima-Universidad de Navarra, Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- CIBERONC, ISCIII, Madrid, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Rafael Lopez
- CIBERONC, ISCIII, Madrid, Spain
- Epigenomics Units, Cancer Epigenomics, Translational Medical Oncology Group (ONCOGAL), Health Research Institute of Santiago de Compostela (IDIS), and Department of Clinical Analysis, University Hospital Complex of Santiago de Compostela (CHUS), Roche-CHUS Joint Unit (ONCOMET), Health Research Institute of Santiago (IDIS), 15706, Santiago de Compostela, Spain, 15706, Santiago de Compostela, Spain
| | - Julen Oyarzabal
- Molecular Therapeutics Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | | | - Xabier Agirre
- CIBERONC, ISCIII, Madrid, Spain
- IDISNA, Pamplona, Spain
- Division of Hemato-Oncology, Cima-Universidad de Navarra, Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Luis M Montuenga
- Program in Solid Tumors, Cima-Universidad de Navarra, Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- CIBERONC, ISCIII, Madrid, Spain
- IDISNA, Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Felipe Prosper
- CIBERONC, ISCIII, Madrid, Spain
- IDISNA, Pamplona, Spain
- Hematology and Cell Therapy Service, Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Alfonso Calvo
- Program in Solid Tumors, Cima-Universidad de Navarra, Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain.
- CIBERONC, ISCIII, Madrid, Spain.
- IDISNA, Pamplona, Spain.
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain.
| |
Collapse
|
39
|
Liu X, Qian X, Yu Z, Zheng X, Qiao Y, Chen C, Li W, Li W, Yang J, Zhu J. A one-dimensional bacterial cellulose nano-whiskers-based binary-drug delivery system for the cancer treatment. Int J Biol Macromol 2024; 279:134970. [PMID: 39181347 DOI: 10.1016/j.ijbiomac.2024.134970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
It's currently a challenge to design a drug delivery system for chemotherapy with high drug contents and minimal side effects. Herein, we constructed a novel one-dimensional binary-drug delivery system for cancer treatment. In this drug delivery system, drugs (doxorubicin (DOX) and resveratrol (RES)) self-assemble on bacterial cellulose nano-whiskers (BCW) and are subsequently encapsulated by polydopamine (PDA) with high encapsulation efficiencies (DOX: 81.53 %, RES: 70.32 %) and high drug loading efficiencies (DOX: 51.54 %, RES: 36.93 %). The cumulative release efficiencies can reach 89.27 % for DOX and 80.05 % for RES in acidic medium within 96 h. The BCW/(DOX + RES)/PDA can enter tumor cells easily through endocytosis and presents significant anti-cancer effects. Furthermore, the released-RES plays a protective role in normal cells through up-regulation of antioxidant enzymes activities and scavenging of reactive oxygen species. Taken together, the one-dimensional BCW/(DOX + RES)/PDA binary-drug delivery system can be used for the anticancer treatment along with slight side effects.
Collapse
Affiliation(s)
- Xiaoli Liu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing 210023, China.
| | - Xiaofang Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing 210023, China
| | - Zirui Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing 210023, China
| | - Xingxing Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing 210023, China
| | - Yang Qiao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing 210023, China
| | - Chen Chen
- Institute of Chemobiological and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, Jiangsu Province, China
| | - Wenping Li
- Institute of Chemobiological and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, Jiangsu Province, China
| | - Wenjing Li
- Institute of Chemobiological and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, Jiangsu Province, China
| | - Jiazhi Yang
- Institute of Chemobiological and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, Jiangsu Province, China.
| | - Jing Zhu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing 210023, China.
| |
Collapse
|
40
|
Lu YS, Chen J, He XR, Yang SL, Ma BJ, Yu J, Qiu J, Qian YZ, Xu YY. Perfluorooctane sulfonate (PFOS) and benzo[a]pyrene (BaP) synergistically induce neurotoxicity in C6 rat glioma cells via the activation of neurotransmitter and Cyp1a1-mediated steroid hormone synthesis pathways. Food Chem Toxicol 2024; 193:115058. [PMID: 39423996 DOI: 10.1016/j.fct.2024.115058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Humans are often exposed to complex mixtures of multiple pollutants rather than a single pollutant. However, the combined toxic effects and the molecular mechanism of PFOS and BaP remain poorly understood. In this study, two typical environmental pollutants, perfluorooctane sulfonate acid (PFOS) and benzo [a]pyrene (BaP), were selected to investigate their combined neurotoxic effects on rat C6 glioma cells at environmentally relevant concentrations. The results showed that coexposure to low-dose PFOS and BaP induced greater toxicity (synergistic effect) than did single exposure. PFOS-BaP coexposure had stronger toxic effects on inducing oxidative stress and promoting early apoptosis. Targeted metabolomics confirmed that increased levels of the neurotransmitters 5-hydroxytryptophan, dopamine, tryptophan and serotonin disturb the phenylalanine, tyrosine and tryptophan biosynthesis pathways. Mechanistically, exposure to a low-dose PFOS-BaP binary mixture induces steroid hormone synthesis disorder through the activation of Cyp1a1 and Hsd17b8 (steroid hormone synthesis genes) and Dhcr24 and Dhcr7 (cholesterol synthesis genes). These findings are useful for comprehensively and systematically elucidating the biological safety of PFOS-BaP and its potential threats to human health.
Collapse
Affiliation(s)
- Yu-Shun Lu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Ju Chen
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiao-Rong He
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shang-Lin Yang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bing-Jie Ma
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiang Yu
- Faculty of Printing and Packaging and Digital Media, Xi' an University of Technology, Xi'an, 710048, China
| | - Jing Qiu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yong-Zhong Qian
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Yan-Yang Xu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
41
|
Williams KB, Larsson AT, Keller BJ, Chaney KE, Williams RL, Bhunia MM, Draper GM, Jubenville TA, Hudson WA, Moertel CL, Ratner N, Largaespada DA. Pharmacogenomic synthetic lethal screens reveal hidden vulnerabilities and new therapeutic approaches for treatment of NF1-associated tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.585959. [PMID: 38585724 PMCID: PMC10996510 DOI: 10.1101/2024.03.25.585959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Neurofibromatosis Type 1 (NF1) is a common cancer predisposition syndrome, caused by heterozygous loss of function mutations in the tumor suppressor gene NF1. Individuals with NF1 develop benign tumors of the peripheral nervous system (neurofibromas), originating from the Schwann cell linage after somatic loss of the wild type NF1 allele, some of which progress further to malignant peripheral nerve sheath tumors (MPNST). There is only one FDA approved targeted therapy for symptomatic plexiform neurofibromas and none approved for MPNST. The genetic basis of NF1 syndrome makes associated tumors ideal for using synthetic drug sensitivity approaches to uncover therapeutic vulnerabilities. We developed a drug discovery pipeline to identify therapeutics for NF1-related tumors using isogeneic pairs of NF1-proficient and deficient immortalized human Schwann cells. We utilized these in a large-scale high throughput screen (HTS) for drugs that preferentially kill NF1-deficient cells, through which we identified 23 compounds capable of killing NF1-deficient Schwann cells with selectivity. Multiple hits from this screen clustered into classes defined by method of action. Four clinically interesting drugs from these classes were tested in vivo using both a genetically engineered mouse model of high-grade peripheral nerve sheath tumors and human MPNST xenografts. All drugs tested showed single agent efficacy in these models as well as significant synergy when used in combination with the MEK inhibitor Selumetinib. This HTS platform yielded novel therapeutically relevant compounds for the treatment of NF1-associated tumors and can serve as a tool to rapidly evaluate new compounds and combinations in the future.
Collapse
Affiliation(s)
- Kyle B Williams
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alex T Larsson
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bryant J Keller
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Katherine E Chaney
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229-0713, USA
| | - Rory L Williams
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Minu M Bhunia
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, USA
| | - Garrett M Draper
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tyler A Jubenville
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wendy A Hudson
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christopher L Moertel
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229-0713, USA
| | - David A Largaespada
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
42
|
Morgan EL, Saleh AD, Cornelius S, Carlson SG, Toni T, Cheng H, Jeon J, Viswanathan R, Yang X, Silvin C, Clavijo PE, Sowers AL, Mitchell JB, Ormanoglu P, Lal Nag M, Martin SE, Chen Z, Van Waes C. Functional RNAi Screening Identifies G2/M and Kinetochore Components as Modulators of TNFα/NF-κB Prosurvival Signaling in Head and Neck Squamous Cell Carcinoma. CANCER RESEARCH COMMUNICATIONS 2024; 4:2903-2918. [PMID: 39392349 PMCID: PMC11541648 DOI: 10.1158/2767-9764.crc-24-0274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/14/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024]
Abstract
SIGNIFICANCE Here, RNAi library screening reveals that multiple G2/M and kinetochore components, including TTK/monopolar spindle 1, modulate TNFα-induced NF-κB activation, cell survival, and genotoxicity, underscoring their potential importance as therapeutic targets in HNSCC.
Collapse
Affiliation(s)
- Ethan L. Morgan
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Anthony D. Saleh
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Shaleeka Cornelius
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Sophie G. Carlson
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Tiffany Toni
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Hui Cheng
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Jun Jeon
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Ramya Viswanathan
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Xinping Yang
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Christopher Silvin
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Paul E. Clavijo
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Anastasia L. Sowers
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - James B. Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Pinar Ormanoglu
- RNAi Screening Facility, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Madhu Lal Nag
- RNAi Screening Facility, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Scott E. Martin
- RNAi Screening Facility, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Zhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
43
|
Casas-Rodríguez A, Šentjurc T, Diez-Quijada L, Pichardo S, Žegura B, Jos A, Cameán AM. Invitro evaluation of interactions between cylindrospermopsin and water contaminants, arsenic and cadmium, in two human immune cell lines. CHEMOSPHERE 2024; 368:143727. [PMID: 39532252 DOI: 10.1016/j.chemosphere.2024.143727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/21/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Cylindrospermopsin (CYN), a cyanotoxin with worldwide distribution, is gaining increased attention due to its bioaccumulation potential and toxicological effects. Previous research suggests that CYN may interact with other environmental contaminants, potentially amplifying its toxicity. To address this concern, the present study investigated the combined effects of CYN with arsenic (As) and cadmium (Cd) on human immune cell lines, Jurkat and THP-1. Cytotoxicity tests showed that As and Cd significantly decreased the viability of both cell lines after 24 and 48 h of exposure. The EC50 (24 h) values for Jurkat cells were 13.15 ± 1.97 (As) and 36.92 ± 3.77 μM (Cd), respectively, while for THP-1, the EC50 (24 h) values were 46.48 ± 0.17 for As and 55.09 ± 4.98 μM for Cd. Furthermore, individual contaminants and their mixtures with CYN impaired monocyte differentiation into macrophages. The effect on mRNA expression of some cytokines (TNF-α, INF-γ, IL-2, IL-6 and IL-8) was also assessed. In the Jurkat cell line, As upregulated IL-8 expression while Cd increased the expression of all interleukins. Exposure to binary combinations (CYN + As, and CYN + Cd) increased IL-2 and INF-γ expression. In THP-1 cells, As elevated IL-8 and INF-γ expression, whereas Cd caused an increase in TNF-α and INF-γ expression. Exposure to CYN + As up-regulated IL-8 and INF-γ expression, while the CYN + Cd combination down-regulated TNF-α expression. These findings highlight the complex interactions between contaminants, emphasizing the need for evaluating combined effects in risk assessments.
Collapse
Affiliation(s)
- Antonio Casas-Rodríguez
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Professor García González n°2, 41012, Sevilla, Spain
| | - Tjaša Šentjurc
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Leticia Diez-Quijada
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Professor García González n°2, 41012, Sevilla, Spain
| | - Silvia Pichardo
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Professor García González n°2, 41012, Sevilla, Spain.
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Professor García González n°2, 41012, Sevilla, Spain
| | - Ana María Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Professor García González n°2, 41012, Sevilla, Spain
| |
Collapse
|
44
|
Huang Y, Cen Y, Wu H, Zeng G, Su Z, Zhang Z, Feng S, Jiang X, Wei A. Nodularin-R Synergistically Enhances Abiraterone Against Castrate- Resistant Prostate Cancer via PPP1CA Inhibition. J Cell Mol Med 2024; 28:e70210. [PMID: 39550701 PMCID: PMC11569623 DOI: 10.1111/jcmm.70210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/18/2024] Open
Abstract
Clinically, most prostate cancer (PCa) patients inevitably progress to castration-resistant prostate cancer (CRPC) with poor prognosis after androgen deprivation therapy (ADT), including abiraterone, the drug of choice for ADT. Therefore, it is necessary to explore the resistance mechanism of abiraterone in depth. Genome-wide CRISPR/Cas9 knockout technology was used to screen CRPC cell line 22Rv1 for abiraterone-resistant genes. Combined with bioinformatics, a key gene with high expression and poor prognosis in CRPC patients was screened. Then, the effects of target gene on abiraterone-resistant 22Rv1 cell function were explored by silencing and overexpression. Further, a natural product with potential targeting effect was identified and validated by molecular docking and protein expression. Molecular dynamics simulations revealed potential mechanism for the natural product affecting target protein expression. Finally, the combined anti-CRPC effects of the natural product and abiraterone were validated by cellular and in vivo experiments. Five common resistance genes (KCNJ3, COL2A1, PPP1CA, MDH2 and EXOSC5) were identified successfully, among which high PPP1CA expression had the worst prognosis for disease-free survival. Moreover, PPP1CA was highly expressed in abiraterone-resistant 22Rv1 cells. Silencing PPP1CA increased cell sensitivity to abiraterone while promoting apoptosis and inhibiting clone formation. Overexpressing PPP1CA exerted the opposite effects. Molecular docking revealed the binding mode of the natural product nodularin-R to PPP1CA with a dose-dependent manner for inhibition. Mechanistically, nodularin-R attenuates the interaction between PPP1CA and USP11 (deubiquitinating enzyme), potentially promoting PPP1CA degradation. Additionally, combination of 2.72 μM nodularin-R and 54.5 μM abiraterone synergistically inhibited the resistant 22Rv1 cell function. In vivo experiments also revealed that combination therapy significantly inhibited tumour growth and reduced inducible expression of PPP1CA. PPP1CA is a key driver for abiraterone resistance, and nodularin-R enhances the anti-CRPC effects of abiraterone by inhibiting PPP1CA.
Collapse
Affiliation(s)
- Yiqiao Huang
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Yi Cen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory DiseaseGuangzhou Medical UniversityGuangzhouChina
| | - Hualing Wu
- Department of Gynecology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Guohao Zeng
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Zhengming Su
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Zhiming Zhang
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Shourui Feng
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Xianhan Jiang
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Anyang Wei
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
45
|
Herrmann A, Gege C, Wangen C, Wagner S, Kögler M, Cordsmeier A, Irrgang P, Ip WH, Weil T, Hunszinger V, Groß R, Heinen N, Pfaender S, Reuter S, Klopfleisch R, Uhlig N, Eberlein V, Issmail L, Grunwald T, Hietel B, Cynis H, Münch J, Sparrer KMJ, Ensser A, Tenbusch M, Dobner T, Vitt D, Kohlhof H, Hahn F. Orally bioavailable RORγ/DHODH dual host-targeting small molecules with broad-spectrum antiviral activity. Antiviral Res 2024; 231:106008. [PMID: 39306285 DOI: 10.1016/j.antiviral.2024.106008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024]
Abstract
Host-directed antivirals (HDAs) represent an attractive treatment option and a strategy for pandemic preparedness, especially due to their potential broad-spectrum antiviral activity and high barrier to resistance development. Particularly, dual-targeting HDAs offer a promising approach for antiviral therapy by simultaneously disrupting multiple pathways essential for viral replication. Izumerogant (IMU-935) targets two host proteins, (i) the retinoic acid receptor-related orphan receptor γ isoform 1 (RORγ1), which modulates cellular cholesterol metabolism, and (ii) the enzyme dihydroorotate dehydrogenase (DHODH), which is involved in de novo pyrimidine synthesis. Here, we synthesized optimized derivatives of izumerogant and characterized their antiviral activity in comparison to a recently described structurally distinct RORγ/DHODH dual inhibitor. Cell culture-based infection models for enveloped and non-enveloped DNA and RNA viruses, as well as a retrovirus, demonstrated high potency and broad-spectrum activity against human viral pathogens for RORγ/DHODH dual inhibitors at nanomolar concentrations. Comparative analyses with equipotent single-target inhibitors in metabolite supplementation approaches revealed that the dual-targeting mode represents the mechanistic basis for the potent antiviral activity. For SARS-CoV-2, an optimized dual inhibitor completely blocked viral replication in human airway epithelial cells at 5 nM and displayed a synergistic drug interaction with the nucleoside analog molnupiravir. In a SARS-CoV-2 mouse model, treatment with a dual inhibitor alone, or in combination with molnupiravir, reduced the viral load by 7- and 58-fold, respectively. Considering the clinical safety, oral bioavailability, and tolerability of izumerogant in a recent Phase I study, izumerogant-like drugs represent potent dual-targeting antiviral HDAs with pronounced broad-spectrum activity for further clinical development.
Collapse
Affiliation(s)
| | | | - Christina Wangen
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Sabrina Wagner
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Melanie Kögler
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Arne Cordsmeier
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Pascal Irrgang
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Wing-Hang Ip
- Leibniz Institute of Virology, Hamburg, Germany.
| | - Tatjana Weil
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
| | - Victoria Hunszinger
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
| | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
| | - Natalie Heinen
- Ruhr-University Bochum, Department of Molecular and Medical Virology, Bochum, Germany.
| | - Stephanie Pfaender
- Leibniz Institute of Virology, Hamburg, Germany; Ruhr-University Bochum, Department of Molecular and Medical Virology, Bochum, Germany; University of Luebeck, Department of Natural Sciences, Institute of Virology and Cell Biology, Lübeck, Germany.
| | - Sebastian Reuter
- University Hospital Essen - Ruhrlandklinik, Department of Pulmonary Medicine, Experimental Pneumology, Essen, Germany.
| | - Robert Klopfleisch
- Institute for Animal Pathology, Freie Universität Berlin, Berlin, Germany.
| | - Nadja Uhlig
- Fraunhofer Institute for Cell Therapy and Immunology, Preclinical Validation, Leipzig, Germany.
| | - Valentina Eberlein
- Fraunhofer Institute for Cell Therapy and Immunology, Preclinical Validation, Leipzig, Germany.
| | - Leila Issmail
- Fraunhofer Institute for Cell Therapy and Immunology, Preclinical Validation, Leipzig, Germany.
| | - Thomas Grunwald
- Fraunhofer Institute for Cell Therapy and Immunology, Preclinical Validation, Leipzig, Germany.
| | - Benjamin Hietel
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, Halle, Germany.
| | - Holger Cynis
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, Halle, Germany; Junior Research Group "Immunomodulation in Pathophysiological Processes", Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany.
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
| | | | - Armin Ensser
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Matthias Tenbusch
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | | | | | | | - Friedrich Hahn
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
46
|
Orobator ON, Mertens RT, Obisesan OA, Awuah SG. Energy and endoplasmic reticulum stress induction by gold(III) dithiocarbamate and 2-deoxyglucose synergistically trigger cell death in breast cancer. J Biol Chem 2024:107949. [PMID: 39481597 DOI: 10.1016/j.jbc.2024.107949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
The elusiveness of triple-negative breast cancer from targeted therapy has redirected focus towards exploiting the metabolic shortcomings of these highly metastatic subtypes of breast cancer. Cueing from the metabolic heterogeneity of TNBC and the exposition of the dual dependence of some TNBCs on OXPHOS and glycolysis for ATP, we herein report the efficacy of cotreatment of TNBCs with an OXPHOS inhibitor, 2a and 2DG, a potent glycolysis inhibitor. 2a-2DG cotreatment inhibited TNBC cell proliferation with IC50 of ∼5 to 36 times lower than that of 2a alone and over 5000 times lower than IC50 of 2DG alone. 2a-2DG cotreatment suppressed mitochondrial ATP production and significantly induced AMPK activation. Mechanistic studies revealed the distinct yet synergistic contributions of 2a and 2DG to the antiproliferative effect of the cotreatment. While 2a induced apoptotic cell death, 2DG sensitized TNBCs to the antiproliferative effects of 2a via endoplasmic reticulum stress induction. Strikingly, the combination of 2a-2DG ablated SUM159 tumors in an orthotopic xenograft mouse model. This study highlights the synergistic effect of a gold-based complex with 2DG and the potential benefit of multi-metabolic pathways targeting as an effective therapeutic strategy against TNBCs.
Collapse
Affiliation(s)
- Owamagbe N Orobator
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - R Tyler Mertens
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Oluwatosin A Obisesan
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Samuel G Awuah
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States; Center for Pharmaceutical Research and Innovation, Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA; Center for Bioelectronics and Nanomedicine, University of Kentucky, Lexington KY, 40506, USA.
| |
Collapse
|
47
|
Negi A, Verma A, Garg M, Goswami K, Mishra V, Singh AK, Agrawal G, Murab S. Osteogenic citric acid linked chitosan coating of 3D-printed PLA scaffolds for preventing implant-associated infections. Int J Biol Macromol 2024; 282:136968. [PMID: 39490474 DOI: 10.1016/j.ijbiomac.2024.136968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/10/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
>25 % of the patients who receive orthopedic implants have been reported with implant-associated osteomyelitis, which can result in inflammation, osteolysis, and aseptic loosening of implants. Current treatment methods doesn't ensure defect healing and prevention from reinfection. Thermoplastic-based 3D-printed scaffolds offer a bioresorbable, biocompatible, and mechanical strong implant system. However, the hydrophobicity and bio-inertness of these polymers prevent their use in clinics. In this study, we developed dual functionalized scaffolds with osteogenic and antibacterial properties by immobilizing citric acid-linked chitosan on oxygen plasma etched 3D-printed PLA scaffolds through an EDC-NHS coupling reaction. Acellular mineralization of these scaffolds in DMEM demonstrated the deposition of crystalline hydroxyapatite. In addition, the antibacterial properties of these surface-modified scaffolds have been determined against E. coli and S. aureus, where the citric-linked chitosan biofunctionalized 3D-printed PLA scaffolds showed significantly higher antibacterial activity in comparison to oxygen-etched PLA and PLA scaffolds due to the synergistic effect of citric acid and chitosan functionalities. MG-63 cells exhibited increased proliferation and osteogenic activity on the modified scaffolds compared to the PLA and OP-PLA. These 3D-printed scaffolds, coated with citric-linked chitosan, can be a potential solution to orthopedic complications such as critical-sized bone defects and implant-associated osteomyelitis.
Collapse
Affiliation(s)
- Ankita Negi
- School of Biosciences & Bioengineering, IIT Mandi, HP, India
| | - Aakash Verma
- School of Biosciences & Bioengineering, IIT Mandi, HP, India
| | - Megha Garg
- School of Chemical Sciences, IIT Mandi, HP, India
| | | | - Vedante Mishra
- School of Biosciences & Bioengineering, IIT Mandi, HP, India
| | - Arun Kumar Singh
- Department of Electronics and Communications Engineering, Punjab Engineering College, Chandigarh, India
| | - Garima Agrawal
- School of Chemical Sciences, IIT Mandi, HP, India; Indian Knowledge System and Mental Health Applications Centre, IIT Mandi, HP, India; Advanced Materials Research Centre, IIT Mandi, HP, India; Technology Innovation Hub in Human-Computer Interaction (iHub), HP, India.
| | - Sumit Murab
- School of Biosciences & Bioengineering, IIT Mandi, HP, India; Indian Knowledge System and Mental Health Applications Centre, IIT Mandi, HP, India; BioX Centre, IIT Mandi, HP, India; Advanced Materials Research Centre, IIT Mandi, HP, India; Technology Innovation Hub in Human-Computer Interaction (iHub), HP, India.
| |
Collapse
|
48
|
Wu F, Lin B, Chen J, Zheng F, Yang Y, Rasheed U, Chen G. Mechanistic Insights into the Antioxidant Potential of Sugarcane Vinegar Polyphenols: A Combined Approach of DPPH-UPLC-MS, Network Pharmacology and Molecular Docking. Foods 2024; 13:3379. [PMID: 39517163 PMCID: PMC11545288 DOI: 10.3390/foods13213379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
This study investigated the antioxidant potential of sugarcane vinegar, an emerging functional food, by analyzing its polyphenols and underlying molecular mechanisms that intervene in oxidative stress. Using a 1,1-diphenyl-2-trinitrophenylhydrazine (DPPH) assay combined with UPLC-MS analysis, six key polyphenols were identified: chlorogenic acid, caffeic acid, ferulic acid, luteolin, protocatechuic acid, and syringic acid. These compounds showed a positive correlation with antioxidant capacity. In a simulated sugarcane vinegar environment, these polyphenols exhibited synergistic antioxidant effects, while in methanol, antagonistic interactions were predominant. Network pharmacology revealed five key polyphenols targeting 10 critical proteins involved in oxidative stress, including the PI3K-Akt and IL-17 signaling pathways. Molecular docking confirmed strong binding affinities between these polyphenols and core targets like PTGS2, STAT3, and GSK3B. This study establishes a reference for the antioxidant mechanisms of sugarcane vinegar and highlights its potential for developing functional products.
Collapse
Affiliation(s)
- Feifei Wu
- Guangxi South Subtropical Agricultural Research Institute, Guangxi Academy of Agricultural Sciences, Longzhou 532400, China; (F.W.); (J.C.)
- Institute of Agro-Products Processing Science and Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (B.L.); (F.Z.); (Y.Y.)
| | - Bo Lin
- Institute of Agro-Products Processing Science and Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (B.L.); (F.Z.); (Y.Y.)
| | - Jing Chen
- Guangxi South Subtropical Agricultural Research Institute, Guangxi Academy of Agricultural Sciences, Longzhou 532400, China; (F.W.); (J.C.)
- Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530001, China;
| | - Fengjin Zheng
- Institute of Agro-Products Processing Science and Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (B.L.); (F.Z.); (Y.Y.)
| | - Yuxia Yang
- Institute of Agro-Products Processing Science and Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (B.L.); (F.Z.); (Y.Y.)
| | - Usman Rasheed
- Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530001, China;
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Nanning 530001, China
- Guangxi Key Laboratory of Quality and Safety Control for Subtropical Fruits, Nanning 530001, China
| | - Ganlin Chen
- Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530001, China;
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Nanning 530001, China
- Guangxi Key Laboratory of Quality and Safety Control for Subtropical Fruits, Nanning 530001, China
| |
Collapse
|
49
|
Degirmenci NS, Padar G, Sahin F, Omeroglu Ulu Z. Investigating the Mechanisms of Anti-tumoral Effect of Combination Therapy of Calcitriol and Sodium Pentaborate Pentahydrate on HepG2 Hepatocellular Carcinoma Cells. Biol Trace Elem Res 2024:10.1007/s12011-024-04416-w. [PMID: 39441231 DOI: 10.1007/s12011-024-04416-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common primary liver cancers worldwide and is often associated with poor prognosis due to drug resistance. Combination therapies demonstrate superior efficacy at lower drug dosages on cancer cells compared to single treatments, resulting in less drug resistance in the cells. This study investigates the synergistic anti-tumoral effects of calcitriol, the biologically active form of vitamin D, and sodium pentaborate pentahydrate (NaB) on HepG2 cells. We examined the cell viability of NaB, calcitriol, or the combination of NaB and calcitriol on HepG2 cells and healthy human hepatic stellate cells (HHSC) using MTS. Our findings showed that combination therapy with 3.3 mM NaB and 1 µM calcitriol has a synergistic effect and a more cytotoxic effect on HepG2 cells. This combination significantly increased apoptosis and ROS levels compared to treatment alone with NaB or calcitriol. Gene expression and proteomics analysis revealed inhibition of DNA replication and the cell cycle process, further confirming the potent anti-proliferative effects of the combination therapy. When HepG2 cells were treated with a combination of 3.3 mM NaB and 1 µM calcitriol, mRNA levels of apoptosis-related genes AKT1 and MDM2 were downregulated, while p53 was upregulated. Additionally, cell cycle-related genes CDKN1A, GADD45A, and p27 were upregulated, whereas MCM2, MCM5, and MCM7 were downregulated. Furthermore, genes associated with the vitamin D receptor (VDR), including VDR and CYP24A1, were upregulated, while CYP27B1 was downregulated. Our proteomic analysis revealed decreased MCM2 and MCM5 protein expressions which was confirmed by western blotting. In conclusion, this study highlights the potential of NaB and calcitriol as a promising therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Nurdan Sena Degirmenci
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayisdagi Cad, Atasehir, Istanbul, 34755, Turkey
| | - Gamze Padar
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayisdagi Cad, Atasehir, Istanbul, 34755, Turkey
| | - Fikrettin Sahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayisdagi Cad, Atasehir, Istanbul, 34755, Turkey
| | - Zehra Omeroglu Ulu
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayisdagi Cad, Atasehir, Istanbul, 34755, Turkey.
| |
Collapse
|
50
|
Rodriguez-Galvez R, Tvarijonaviciute A, Peres-Rubio C, Lopez-Jornet P. Efficacy of Combined vs. Monotherapy in Oral Lichen Planus: A Randomized Clinical Trial. Oral Dis 2024. [PMID: 39435599 DOI: 10.1111/odi.15151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/23/2024]
Abstract
OBJECTIVES The aim of this study was to compare the topical therapeutic efficacy of triamcinolone acetonide (TA) (0.2%) plus hyaluronic acid (HA) (0.1%) versus monotherapy in patients with symptomatic oral lichen planus (OLP), as well as to investigate the oxidative stress of saliva under the different treatments. MATERIALS AND METHODS Sixty OLP patients were included in a randomized, double-blind, singlecenter study with a treatment duration of 28 days and 3-month follow-up period. Participants were randomized into three groups: Group I (TA + HA), Group II (TA), and Group III (HA). Treatment efficacy was assessed by means of Thongprasom scale, Oral Health Impact Profile-14 (OHIP-14), and visual analog scale (VAS). In addition, biochemical analyses were performed in order to determine the level of antioxidant biomarkers in saliva, including superoxide dismutase (SOD), glutathione (GSH), and total antioxidant capacity (TAC). RESULTS All treatments seem to exhibit a significant effect in accordance with Thongprasom scale (p < 0.001), VAS reduction (p < 0.001), and OHIP14 (p < 0.05), which maintains over time. No significant changes in salivary oxidative stress in any of the three groups occurred. CONCLUSIONS The results exhibited a significant improvement in the treated patients in all three groups. There were no significant changes in salivary stress biomarkers under treatment condition.
Collapse
Affiliation(s)
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Murcia, Spain
| | - Camila Peres-Rubio
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Murcia, Spain
| | - Pia Lopez-Jornet
- Faculty of Medicine and Odontology, Hospital Morales Meseguer, Murcia, Spain
| |
Collapse
|