1
|
Li J, Li XC, Gan HY, Zhang Y, Guo ZX, Liu YX, Lin YQ, Guo LD. Plant diversity increases diversity and network complexity rather than alters community assembly processes of leaf-associated fungi in a subtropical forest. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2630-6. [PMID: 39432205 DOI: 10.1007/s11427-024-2630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/23/2024] [Indexed: 10/22/2024]
Abstract
Plant diversity significantly impacts ecosystem processes and functions, yet its influence on the community assembly of leaf fungi remains poorly understood. In this study, we investigated leaf epiphytic and endophytic fungal communities in a Chinese subtropical tree species richness experiment, ranging from 1 to 16 species, using amplicon sequencing to target the internal transcribed spacer 1 region of the rDNA. We found that the community assembly of epiphytic and endophytic fungi was predominantly governed by stochastic processes, with a higher contribution of dispersal limitation on epiphytic than on endophytic fungal communities but a higher contribution of selection on endophytic than on epiphytic fungal communities. The plant-epiphytic fungus interaction network was more complex (e.g., more highly connected and strongly nested but less specialized and modularized) than the plant-endophytic fungus interaction network. Additionally, tree species richness was positively correlated with the network complexity and diversity of epiphytic (α-, β- and γ-diversity) and endophytic (β- and γ-diversity) fungi, but was not associated with the contribution of the stochastic and deterministic processes on the community assembly of epiphytic and endophytic fungi. This study highlights that tree species diversity enhances the diversity and network complexity, rather than alters the ecological processes in community assembly of leaf-associated fungi.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xing-Chun Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui-Yun Gan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zi-Xuan Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Xuan Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong-Qing Lin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Olanipon D, Boeraeve M, Jacquemyn H. Arbuscular mycorrhizal fungal diversity and potential association networks among African tropical forest trees. MYCORRHIZA 2024; 34:271-282. [PMID: 38850289 DOI: 10.1007/s00572-024-01156-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/26/2024] [Indexed: 06/10/2024]
Abstract
Tropical forests represent one of the most diverse and productive ecosystems on Earth. High productivity is sustained by efficient and rapid cycling of nutrients, which is in large part made possible by symbiotic associations between plants and mycorrhizal fungi. In these associations, an individual plant typically associates simultaneously with multiple fungi and the fungi associate with multiple plants, creating complex networks among fungi and plants. However, there are few studies that have investigated mycorrhizal fungal composition and diversity in tropical forest trees, particularly in Africa, or that assessed the structure of the network of associations among fungi and trees. In this study, we collected root and soil samples from Ise Forest Reserve (Southwest Nigeria) and used a metabarcoding approach to identify the dominant arbuscular mycorrhizal (AM) fungal taxa in the soil and associating with ten co-occurring tree species to assess variation in AM communities. Network analysis was used to elucidate the architecture of the network of associations between fungi and tree species. A total of 194 Operational Taxonomic Units (OTUs) belonging to six AM fungal families were identified, with 68% of all OTUs belonging to Glomeraceae. While AM fungal diversity did not differ among tree species, AM fungal community composition did. Network analyses showed that the network of associations was not significantly nested and showed a relatively low level of specialization (H2 = 0.43) and modularity (M = 0.44). We conclude that, although there were some differences in AM fungal community composition, the studied tree species associate with a large number of AM fungi. Similarly, most AM fungi had great host breadth and were detected in most tree species, thereby potentially working as interaction network hubs.
Collapse
Affiliation(s)
- Damilola Olanipon
- Department of Biological Sciences, Afe Babalola University, Ado Ekiti, Nigeria.
| | - Margaux Boeraeve
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Biology, UAntwerpen, Antwerpen, Belgium
| | - Hans Jacquemyn
- Biology Department, KU Leuven, Kasteelpark Arenberg 31, Heverlee, B-3001, Belgium
| |
Collapse
|
3
|
Toju H, Suzuki SS, Baba YG. Interaction network rewiring and species' contributions to community-scale flexibility. PNAS NEXUS 2024; 3:pgae047. [PMID: 38444600 PMCID: PMC10914369 DOI: 10.1093/pnasnexus/pgae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/23/2024] [Indexed: 03/07/2024]
Abstract
The architecture of species interaction networks is a key factor determining the stability of ecological communities. However, the fact that ecological network architecture can change through time is often overlooked in discussions on community-level processes, despite its theoretical importance. By compiling a time-series community dataset involving 50 spider species and 974 Hexapoda prey species/strains, we quantified the extent to which the architecture of predator-prey interaction networks could shift across time points. We then developed a framework for finding species that could increase the flexibility of the interaction network architecture. Those "network coordinator" species are expected to promote the persistence of species-rich ecological communities by buffering perturbations in communities. Although spiders are often considered as generalist predators, their contributions to network flexibility vary greatly among species. We also found that detritivorous prey species can be cores of interaction rewiring, dynamically interlinking below-ground and above-ground community dynamics. We further found that the predator-prey interactions between those network coordinators differed from those highlighted in the standard network-analytical framework assuming static topology. Analyses of network coordinators will add a new dimension to our understanding of species coexistence mechanisms and provide platforms for systematically prioritizing species in terms of their potential contributions in ecosystem conservation and restoration.
Collapse
Affiliation(s)
- Hirokazu Toju
- Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2133, Japan
- Laboratory of Ecosystems and Coevolution, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Center for Living Systems Information Science (CeLiSIS), Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Sayaka S Suzuki
- Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2133, Japan
| | - Yuki G Baba
- Biodiversity Division, Institute for Agro-Environmental Sciences, NARO, Tsukuba, Ibaraki 305-8604, Japan
| |
Collapse
|
4
|
Wang Y, Wang J, He Y, Qu M, Zhu W, Xue Y, Li J. Interkingdom ecological networks between plants and fungi drive soil multifunctionality across arid inland river basin. Mol Ecol 2023; 32:6939-6952. [PMID: 37902115 DOI: 10.1111/mec.17184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 08/31/2023] [Accepted: 10/17/2023] [Indexed: 10/31/2023]
Abstract
Despite the known collective contribution of above- (plants) and below-ground (soil fungi) biodiversity on multiple soil functions, how the associations among plant and fungal communities regulate soil multifunctionality (SMF) differentially remains unknown. Here, plant communities were investigated at 81 plots across a typical arid inland river basin, within which associated soil fungal communities and seven soil functions (nutrients storage and biological activity) were measured in surface (0-15 cm) and subsurface soil (15-30 cm). We evaluated the relative importance of species richness and biotic associations (reflected by network complexity) on SMF. Our results demonstrated that plant species richness and plant-fungus network complexity promoted SMF in surface and subsurface soil. SMF in two soil layers was mainly determined by plant-fungus network complexity, mean groundwater depth and soil variables, among which plant-fungus network complexity played a crucial role. Plant-fungus network complexity had stronger effects on SMF in surface soil than in subsurface soil. We present evidence that plant-fungus network complexity surpassed plant-fungal species richness in determining SMF in surface and subsurface soil. Moreover, plant-fungal species richness could not directly affect SMF. Greater plant-fungal species richness indirectly promoted SMF since they ensured greater plant-fungal associations. Collectively, we concluded that interkingdom networks between plants and fungi drive SMF even in different soil layers. Our findings enhanced our knowledge of the underlying mechanisms that above- and below-ground associations promote SMF in arid inland river basins. Future study should place more emphasis on the associations among plant and microbial communities in protecting soil functions under global changes.
Collapse
Affiliation(s)
- Yin Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- Ejina Institute of Populus euphratica, Beijing Forestry University, Alax, China
| | - Jianming Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- Ejina Institute of Populus euphratica, Beijing Forestry University, Alax, China
| | - Yicheng He
- China Agricultural University, Beijing, China
| | - Mengjun Qu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- Ejina Institute of Populus euphratica, Beijing Forestry University, Alax, China
| | - Weilin Zhu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- Ejina Institute of Populus euphratica, Beijing Forestry University, Alax, China
| | - Yujie Xue
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- Ejina Institute of Populus euphratica, Beijing Forestry University, Alax, China
| | - Jingwen Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- Ejina Institute of Populus euphratica, Beijing Forestry University, Alax, China
| |
Collapse
|
5
|
Suzuki SS, Baba YG, Toju H. Dynamics of species-rich predator-prey networks and seasonal alternations of core species. Nat Ecol Evol 2023; 7:1432-1443. [PMID: 37460838 DOI: 10.1038/s41559-023-02130-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 06/16/2023] [Indexed: 09/08/2023]
Abstract
In nature, entangled webs of predator-prey interactions constitute the backbones of ecosystems. Uncovering the network architecture of such trophic interactions has been recognized as the essential step for exploring species with great impacts on ecosystem-level phenomena and functions. However, it has remained a major challenge to reveal how species-rich networks of predator-prey interactions are continually reshaped through time in the wild. Here, we show that dynamics of species-rich predator-prey interactions can be characterized by remarkable network structural changes and alternations of species with greatest impacts on community processes. On the basis of high-throughput detection of prey DNA from 1,556 spider individuals collected in a grassland ecosystem, we reconstructed dynamics of interaction networks involving, in total, 50 spider species and 974 prey species and strains through 8 months. The networks were compartmentalized into modules (groups) of closely interacting predators and prey in each month. Those modules differed in detritus/grazing food chain properties, forming complex fission-fusion dynamics of belowground and aboveground energy channels across the seasons. The substantial shifts of network structure entailed alternations of spider species located at the core positions within the entangled webs of interactions. These results indicate that knowledge of dynamically shifting food webs is crucial for understanding temporally varying roles of 'core species' in ecosystem processes.
Collapse
Affiliation(s)
- Sayaka S Suzuki
- Center for Ecological Research, Kyoto University, Otsu, Japan.
| | - Yuki G Baba
- Institute for Agro-Environmental Sciences, NARO, Tsukuba, Japan
| | - Hirokazu Toju
- Center for Ecological Research, Kyoto University, Otsu, Japan.
| |
Collapse
|
6
|
Fernandez CW, Mielke L, Stefanski A, Bermudez R, Hobbie SE, Montgomery RA, Reich PB, Kennedy PG. Climate change-induced stress disrupts ectomycorrhizal interaction networks at the boreal-temperate ecotone. Proc Natl Acad Sci U S A 2023; 120:e2221619120. [PMID: 37579148 PMCID: PMC10450648 DOI: 10.1073/pnas.2221619120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 07/10/2023] [Indexed: 08/16/2023] Open
Abstract
The interaction networks formed by ectomycorrhizal fungi (EMF) and their tree hosts, which are important to both forest recruitment and ecosystem carbon and nutrient retention, may be particularly susceptible to climate change at the boreal-temperate forest ecotone where environmental conditions are changing rapidly. Here, we quantified the compositional and functional trait responses of EMF communities and their interaction networks with two boreal (Pinus banksiana and Betula papyrifera) and two temperate (Pinus strobus and Quercus macrocarpa) hosts to a factorial combination of experimentally elevated temperatures and reduced rainfall in a long-term open-air field experiment. The study was conducted at the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment in Minnesota, USA, where infrared lamps and buried heating cables elevate temperatures (ambient, +3.1 °C) and rain-out shelters reduce growing season precipitation (ambient, ~30% reduction). EMF communities were characterized and interaction networks inferred from metabarcoding of fungal-colonized root tips. Warming and rainfall reduction significantly altered EMF community composition, leading to an increase in the relative abundance of EMF with contact-short distance exploration types. These compositional changes, which likely limited the capacity for mycelial connections between trees, corresponded with shifts from highly redundant EMF interaction networks under ambient conditions to less redundant (more specialized) networks. Further, the observed changes in EMF communities and interaction networks were correlated with changes in soil moisture and host photosynthesis. Collectively, these results indicate that the projected changes in climate will likely lead to significant shifts in the traits, structure, and integrity of EMF communities as well as their interaction networks in forest ecosystems at the boreal-temperate ecotone.
Collapse
Affiliation(s)
- Christopher W. Fernandez
- Department of Biology, Syracuse University, Syracuse, NY13210
- Department of Plant & Microbial Biology, University of Minnesota, Saint Paul, MN55108
| | - Louis Mielke
- Department of Plant & Microbial Biology, University of Minnesota, Saint Paul, MN55108
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala750 07, Sweden
| | - Artur Stefanski
- Department of Forest Resources, University of Minnesota, Saint Paul, MN55108
| | - Raimundo Bermudez
- Department of Forest Resources, University of Minnesota, Saint Paul, MN55108
| | - Sarah E. Hobbie
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN55108
| | - Rebecca A. Montgomery
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW2751, Australia
| | - Peter B. Reich
- Department of Forest Resources, University of Minnesota, Saint Paul, MN55108
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW2751, Australia
- Institute for Global Change Biology, and School for Environment and Sustainability, University of Michigan, Ann Arbor, MI48109
| | - Peter G. Kennedy
- Department of Plant & Microbial Biology, University of Minnesota, Saint Paul, MN55108
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN55108
| |
Collapse
|
7
|
Zhu C, Lin Y, Wang Z, Luo W, Zhang Y, Chu C. Community assembly and network structure of epiphytic and endophytic phyllosphere fungi in a subtropical mangrove ecosystem. Front Microbiol 2023; 14:1147285. [PMID: 37007520 PMCID: PMC10064055 DOI: 10.3389/fmicb.2023.1147285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
Microorganisms can influence plant growth and health, ecosystem functioning, and stability. Community and network structures of mangrove phyllosphere fungi have rarely been studied although mangroves have very important ecological and economical values. Here, we used high throughput sequencing of the internal transcribed spacer 2 (ITS2) to assess epiphytic and endophytic phyllosphere fungal communities of six true mangrove species and five mangrove associates. Totally, we obtained 1,391 fungal operational taxonomic units (OTUs), including 596 specific epiphytic fungi, 600 specific endophytic fungi, and 195 shared fungi. The richness and community composition differed significantly for epiphytes and endophytes. Phylogeny of the host plant had a significant constraint on epiphytes but not endophytes. Network analyses showed that plant–epiphyte and plant–endophyte networks exhibited strong specialization and modularity but low connectance and anti-nestedness. Compared to plant–endophyte network, plant–epiphyte network showed stronger specialization, modularity, and robustness but lower connectance and anti-nestedness. These differences in community and network structures of epiphytes and endophytes may be caused by spatial niche partitioning, indicating their underlying ecological and environmental drivers are inconsistent. We highlight the important role of plant phylogeny in the assembly of epiphytic but not endophytic fungal communities in mangrove ecosystems.
Collapse
Affiliation(s)
- Chunchao Zhu
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- *Correspondence: Chunchao Zhu,
| | | | - Zihui Wang
- Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - Wenqi Luo
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Yonghua Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Chengjin Chu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Yang T, Tedersoo L, Soltis PS, Soltis DE, Sun M, Ma Y, Ni Y, Liu X, Fu X, Shi Y, Lin HY, Zhao YP, Fu C, Dai CC, Gilbert JA, Chu H. Plant and fungal species interactions differ between aboveground and belowground habitats in mountain forests of eastern China. SCIENCE CHINA LIFE SCIENCES 2022; 66:1134-1150. [PMID: 36462107 DOI: 10.1007/s11427-022-2174-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022]
Abstract
Plant and fungal species interactions drive many essential ecosystem properties and processes; however, how these interactions differ between aboveground and belowground habitats remains unclear at large spatial scales. Here, we surveyed 494 pairwise fungal communities in leaves and soils by Illumina sequencing, which were associated with 55 woody plant species across more than 2,000-km span of mountain forests in eastern China. The relative contributions of plant, climate, soil and space to the variation of fungal communities were assessed, and the plant-fungus network topologies were inferred. Plant phylogeny was the strongest predictor for fungal community composition in leaves, accounting for 19.1% of the variation. In soils, plant phylogeny, climatic factors and soil properties explained 9.2%, 9.0% and 8.7% of the variation in soil fungal community, respectively. The plant-fungus networks in leaves exhibited significantly higher specialization, modularity and robustness (resistance to node loss), but less complicated topology (e.g., significantly lower linkage density and mean number of links) than those in soils. In addition, host/fungus preference combinations and key species, such as hubs and connectors, in bipartite networks differed strikingly between aboveground and belowground samples. The findings provide novel insights into cross-kingdom (plant-fungus) species co-occurrence at large spatial scales. The data further suggest that community shifts of trees due to climate change or human activities will impair aboveground and belowground forest fungal diversity in different ways.
Collapse
Affiliation(s)
- Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, Tartu, 50409, Estonia
- College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, 32611, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, 32611, USA
| | - Miao Sun
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuying Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yingying Ni
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Han-Yang Lin
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yun-Peng Zhao
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chengxin Fu
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210003, China
| | - Jack A Gilbert
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, 92093, USA
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Gaytán Á, Abdelfattah A, Faticov M, Moreira X, Castagneyrol B, Van Halder I, De Frenne P, Meeussen C, Timmermans BGH, Ten Hoopen JPJG, Rasmussen PU, Bos N, Jaatinen R, Pulkkinen P, Söderlund S, Gotthard K, Pawlowski K, Tack AJM. Changes in the foliar fungal community between oak leaf flushes along a latitudinal gradient in Europe. JOURNAL OF BIOGEOGRAPHY 2022; 49:2269-2280. [PMID: 36636040 PMCID: PMC9828548 DOI: 10.1111/jbi.14508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/19/2022] [Accepted: 09/07/2022] [Indexed: 06/17/2023]
Abstract
Aim Leaves support a large diversity of fungi, which are known to cause plant diseases, induce plant defences or influence leaf senescence and decomposition. To advance our understanding of how foliar fungal communities are structured and assembled, we assessed to what extent leaf flush and latitude can explain the within- and among-tree variation in foliar fungal communities. Location A latitudinal gradient spanning c. 20 degrees in latitude in Europe. Taxa The foliar fungal community associated with a foundation tree species, the pedunculate oak Quercus robur. Methods We examined the main and interactive effects of leaf flush and latitude on the foliar fungal community by sampling 20 populations of the pedunculate oak Quercus robur across the tree's range. We used the ITS region as a target for characterization of fungal communities using DNA metabarcoding. Results Species composition, but not species richness, differed between leaf flushes. Across the latitudinal gradient, species richness was highest in the central part of the oak's distributional range, and foliar fungal community composition shifted along the latitudinal gradient. Among fungal guilds, the relative abundance of plant pathogens and mycoparasites was lower on the first leaf flush, and the relative abundance of plant pathogens and saprotrophs decreased with latitude. Conclusions Changes in community composition between leaf flushes and along the latitudinal gradient were mostly a result of species turnover. Overall, our findings demonstrate that leaf flush and latitude explain 5%-22% of the small- and large-scale spatial variation in the foliar fungal community on a foundation tree within the temperate region. Using space-for-time substitution, we expect that foliar fungal community structure will change with climate warming, with an increase in the abundance of plant pathogens and mycoparasites at higher latitudes, with major consequences for plant health, species interactions and ecosystem dynamics.
Collapse
Affiliation(s)
- Álvaro Gaytán
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
- Bolin Center for Climate ResearchStockholm UniversityStockholmSweden
| | - Ahmed Abdelfattah
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB)PotsdamGermany
| | - Maria Faticov
- Department of BiologySherbrooke UniversitySherbrookeQuebecCanada
| | | | | | | | | | | | | | | | - Pil U. Rasmussen
- The National Research Centre for the Working EnvironmentCopenhagenDenmark
| | - Nick Bos
- Section for Ecology and EvolutionUniversity of CopenhagenCopenhagenDenmark
| | - Raimo Jaatinen
- Natural Resources Institute Finland, Haapastensyrjä Breeding StationLäyliäinenFinland
| | - Pertti Pulkkinen
- Natural Resources Institute Finland, Haapastensyrjä Breeding StationLäyliäinenFinland
| | - Sara Söderlund
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| | - Karl Gotthard
- Bolin Center for Climate ResearchStockholm UniversityStockholmSweden
- Department of ZoologyStockholm UniversityStockholmSweden
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| | - Ayco J. M. Tack
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
- Bolin Center for Climate ResearchStockholm UniversityStockholmSweden
| |
Collapse
|
10
|
Gomes SIF, Fortuna MA, Bascompte J, Merckx VSFT. Mycoheterotrophic plants preferentially target arbuscular mycorrhizal fungi that are highly connected to autotrophic plants. THE NEW PHYTOLOGIST 2022; 235:2034-2045. [PMID: 35706373 PMCID: PMC9539982 DOI: 10.1111/nph.18310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
How mycoheterotrophic plants that obtain carbon and soil nutrients from fungi are integrated in the usually mutualistic arbuscular mycorrhizal networks is unknown. Here, we compare autotrophic and mycoheterotrophic plant associations with arbuscular mycorrhizal fungi and use network analysis to investigate interaction preferences in the tripartite network. We sequenced root tips from autotrophic and mycoheterotrophic plants to assemble the combined tripartite network between autotrophic plants, mycorrhizal fungi and mycoheterotrophic plants. We compared plant-fungi interactions between mutualistic and antagonist networks, and searched for a diamond-like module defined by a mycoheterotrophic and an autotrophic plant interacting with the same pair of fungi to investigate whether pairs of fungi simultaneously linked to plant species from each interaction type were overrepresented throughout the network. Mycoheterotrophic plants as a group interacted with a subset of the fungi detected in autotrophs but are indirectly linked to all autotrophic plants, and fungi with a high overlap in autotrophic partners tended to interact with a similar set of mycoheterotrophs. Moreover, pairs of fungi sharing the same mycoheterotrophic and autotrophic plant species are overrepresented in the network. We hypothesise that the maintenance of antagonistic interactions is maximised by targeting well linked mutualistic fungi, thereby minimising the risk of carbon supply shortages.
Collapse
Affiliation(s)
- Sofia I. F. Gomes
- Above‐Belowground Interactions Group, Institute of BiologyLeiden UniversitySylviusweg 722333 BELeidenthe Netherlands
- Naturalis Biodiversity CenterDarwinweg 22333 CRLeidenthe Netherlands
| | - Miguel A. Fortuna
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichCH‐8057ZurichSwitzerland
| | - Jordi Bascompte
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichCH‐8057ZurichSwitzerland
| | - Vincent S. F. T. Merckx
- Naturalis Biodiversity CenterDarwinweg 22333 CRLeidenthe Netherlands
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamPO Box 942401090 GEAmsterdamthe Netherlands
| |
Collapse
|
11
|
Perez-Lamarque B, Petrolli R, Strullu-Derrien C, Strasberg D, Morlon H, Selosse MA, Martos F. Structure and specialization of mycorrhizal networks in phylogenetically diverse tropical communities. ENVIRONMENTAL MICROBIOME 2022; 17:38. [PMID: 35859141 PMCID: PMC9297633 DOI: 10.1186/s40793-022-00434-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/27/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND The root mycobiome plays a fundamental role in plant nutrition and protection against biotic and abiotic stresses. In temperate forests or meadows dominated by angiosperms, the numerous fungi involved in root symbioses are often shared between neighboring plants, thus forming complex plant-fungus interaction networks of weak specialization. Whether this weak specialization also holds in rich tropical communities with more phylogenetically diverse sets of plant lineages remains unknown. We collected roots of 30 plant species in semi-natural tropical communities including angiosperms, ferns, and lycophytes, in three different habitat types on La Réunion island: a recent lava flow, a wet thicket, and an ericoid shrubland. We identified root-inhabiting fungi by sequencing both the 18S rRNA and the ITS2 variable regions. We assessed the diversity of mycorrhizal fungal taxa according to plant species and lineages, as well as the structure and specialization of the resulting plant-fungus networks. RESULTS The 18S and ITS2 datasets are highly complementary at revealing the root mycobiota. According to 18S, Glomeromycotina colonize all plant groups in all habitats forming the least specialized interactions, resulting in nested network structures, while Mucoromycotina (Endogonales) are more abundant in the wetland and show higher specialization and modularity compared to the former. According to ITS2, mycorrhizal fungi of Ericaceae and Orchidaceae, namely Helotiales, Sebacinales, and Cantharellales, also colonize the roots of most plant lineages, confirming that they are frequent endophytes. While Helotiales and Sebacinales present intermediate levels of specialization, Cantharellales are more specialized and more sporadic in their interactions with plants, resulting in highly modular networks. CONCLUSIONS This study of the root mycobiome in tropical environments reinforces the idea that mycorrhizal fungal taxa are locally shared between co-occurring plants, including phylogenetically distant plants (e.g. lycophytes and angiosperms), where they may form functional mycorrhizae or establish endophytic colonization. Yet, we demonstrate that, irrespectively of the environmental variations, the level of specialization significantly varies according to the fungal lineages, probably reflecting the different evolutionary origins of these plant-fungus symbioses. Frequent fungal sharing between plants questions the roles of the different fungi in community functioning and highlights the importance of considering networks of interactions rather than isolated hosts.
Collapse
Affiliation(s)
- Benoît Perez-Lamarque
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, UA, CP39, 57 rue Cuvier, 75 005, Paris, France.
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d'Ulm, 75 005, Paris, France.
| | - Rémi Petrolli
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, UA, CP39, 57 rue Cuvier, 75 005, Paris, France
| | - Christine Strullu-Derrien
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, UA, CP39, 57 rue Cuvier, 75 005, Paris, France
- Science Group, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Dominique Strasberg
- Peuplements Végétaux et Bioagresseurs en Milieu Tropical, UMR PVBMT, Université de La Réunion, 97 400, Saint-Denis, La Réunion, France
| | - Hélène Morlon
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d'Ulm, 75 005, Paris, France
| | - Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, UA, CP39, 57 rue Cuvier, 75 005, Paris, France
- Department of Plant Taxonomy and Nature Conservation, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
- Institut Universitaire de France (IUF), Paris, France
| | - Florent Martos
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, UA, CP39, 57 rue Cuvier, 75 005, Paris, France
| |
Collapse
|
12
|
Unipartite and bipartite mycorrhizal networks of Abies religiosa forests: Incorporating network theory into applied ecology of conifer species and forest management. ECOLOGICAL COMPLEXITY 2022. [DOI: 10.1016/j.ecocom.2022.101002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Guseva K, Darcy S, Simon E, Alteio LV, Montesinos-Navarro A, Kaiser C. From diversity to complexity: Microbial networks in soils. SOIL BIOLOGY & BIOCHEMISTRY 2022; 169:108604. [PMID: 35712047 PMCID: PMC9125165 DOI: 10.1016/j.soilbio.2022.108604] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 05/07/2023]
Abstract
Network analysis has been used for many years in ecological research to analyze organismal associations, for example in food webs, plant-plant or plant-animal interactions. Although network analysis is widely applied in microbial ecology, only recently has it entered the realms of soil microbial ecology, shown by a rapid rise in studies applying co-occurrence analysis to soil microbial communities. While this application offers great potential for deeper insights into the ecological structure of soil microbial ecosystems, it also brings new challenges related to the specific characteristics of soil datasets and the type of ecological questions that can be addressed. In this Perspectives Paper we assess the challenges of applying network analysis to soil microbial ecology due to the small-scale heterogeneity of the soil environment and the nature of soil microbial datasets. We review the different approaches of network construction that are commonly applied to soil microbial datasets and discuss their features and limitations. Using a test dataset of microbial communities from two depths of a forest soil, we demonstrate how different experimental designs and network constructing algorithms affect the structure of the resulting networks, and how this in turn may influence ecological conclusions. We will also reveal how assumptions of the construction method, methods of preparing the dataset, and definitions of thresholds affect the network structure. Finally, we discuss the particular questions in soil microbial ecology that can be approached by analyzing and interpreting specific network properties. Targeting these network properties in a meaningful way will allow applying this technique not in merely descriptive, but in hypothesis-driven research. Analysing microbial networks in soils opens a window to a better understanding of the complexity of microbial communities. However, this approach is unfortunately often used to draw conclusions which are far beyond the scientific evidence it can provide, which has damaged its reputation for soil microbial analysis. In this Perspectives Paper, we would like to sharpen the view for the real potential of microbial co-occurrence analysis in soils, and at the same time raise awareness regarding its limitations and the many ways how it can be misused or misinterpreted.
Collapse
Affiliation(s)
- Ksenia Guseva
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Corresponding author.
| | - Sean Darcy
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Eva Simon
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - Lauren V. Alteio
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Alicia Montesinos-Navarro
- Centro de Investigaciones sobre Desertificación (CIDE, CSIC-UV-GV), Carretera de Moncada-Náquera Km 4.5, 46113, Moncada, Valencia, Spain
| | - Christina Kaiser
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Corresponding author.
| |
Collapse
|
14
|
Cong W, Yu J, Feng K, Deng Y, Zhang Y. The Coexistence Relationship Between Plants and Soil Bacteria Based on Interdomain Ecological Network Analysis. Front Microbiol 2021; 12:745582. [PMID: 34950114 PMCID: PMC8689066 DOI: 10.3389/fmicb.2021.745582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
The relationship between plants and their associated soil microbial communities plays a crucial role in maintaining ecosystem processes and function. However, identifying these complex relationships is challenging. In this study, we constructed an interdomain ecology network (IDEN) of plant–bacteria based on SparCC pairwise associations using synchronous aboveground plant surveys and belowground microbial 16S rRNA sequencing among four different natural forest types along the climate zones in China. The results found that a total of 48 plants were associated with soil bacteria among these four sites, and soil microbial group associations with specific plant species existed within the observed plant–bacteria coexistence network. Only 0.54% of operational taxonomy units (OTUs) was shared by the four sites, and the proportion of unique OTUs for each site ranged from 43.08 to 76.28%, which occupied a large proportion of soil bacterial community composition. The plant–bacteria network had a distinct modular structure (p < 0.001). The tree Acer tetramerum was identified as the network hubs in the warm temperate coniferous and broad-leaved mixed forests coexistence network and indicates that it may play a key role in stabilizing of the community structure of these forest ecosystems. Therefore, IDEN of plant–bacteria provides a novel perspective for exploring the relationships of interdomain species, and this study provides valuable insights into understanding coexistence between above-ground plants and below-ground microorganisms.
Collapse
Affiliation(s)
- Wei Cong
- Key Laboratory of Biodiversity Conservation of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Jingjing Yu
- Key Laboratory of Biodiversity Conservation of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Kai Feng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yuguang Zhang
- Key Laboratory of Biodiversity Conservation of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
15
|
Dong C, Zhang Z, Shao Q, Yao T, Liang Z, Han Y. Mycobiota of Eucommia ulmoides bark: Diversity, rare biosphere and core taxa. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2021.101090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Addo‐Fordjour P, Marfo I, Ofosu‐Bamfo B. Forest fragmentation drives liana community structure but not the patterns of liana–tree interaction network in two forest ecosystems in Ghana. Ecol Res 2021. [DOI: 10.1111/1440-1703.12258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Patrick Addo‐Fordjour
- Department of Theoretical and Applied Biology, Faculty of Biosciences College of Science, Kwame Nkrumah University of Science and Technology Kumasi Ghana
| | - Isaac Marfo
- Department of Theoretical and Applied Biology, Faculty of Biosciences College of Science, Kwame Nkrumah University of Science and Technology Kumasi Ghana
| | - Bismark Ofosu‐Bamfo
- Department of Basic and Applied Biology, School of Sciences University of Energy and Natural Resources Sunyani Ghana
| |
Collapse
|
17
|
Kaasalainen U, Tuovinen V, Mwachala G, Pellikka P, Rikkinen J. Complex Interaction Networks Among Cyanolichens of a Tropical Biodiversity Hotspot. Front Microbiol 2021; 12:672333. [PMID: 34177853 PMCID: PMC8220813 DOI: 10.3389/fmicb.2021.672333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Interactions within lichen communities include, in addition to close mutualistic associations between the main partners of specific lichen symbioses, also more elusive relationships between members of a wider symbiotic community. Here, we analyze association patterns of cyanolichen symbionts in the tropical montane forests of Taita Hills, southern Kenya, which is part of the Eastern Afromontane biodiversity hotspot. The cyanolichen specimens analyzed represent 74 mycobiont taxa within the order Peltigerales (Ascomycota), associating with 115 different variants of the photobionts genus Nostoc (Cyanobacteria). Our analysis demonstrates wide sharing of photobionts and reveals the presence of several photobiont-mediated lichen guilds. Over half of all mycobionts share photobionts with other fungal species, often from different genera or even families, while some others are strict specialists and exclusively associate with a single photobiont variant. The most extensive symbiont network involves 24 different fungal species from five genera associating with 38 Nostoc photobionts. The Nostoc photobionts belong to two main groups, the Nephroma-type Nostoc and the Collema/Peltigera-type Nostoc, and nearly all mycobionts associate only with variants of one group. Among the mycobionts, species that produce cephalodia and those without symbiotic propagules tend to be most promiscuous in photobiont choice. The extent of photobiont sharing and the structure of interaction networks differ dramatically between the two major photobiont-mediated guilds, being both more prevalent and nested among Nephroma guild fungi and more compartmentalized among Peltigera guild fungi. This presumably reflects differences in the ecological characteristics and/or requirements of the two main groups of photobionts. The same two groups of Nostoc have previously been identified from many lichens in various lichen-rich ecosystems in different parts of the world, indicating that photobiont sharing between fungal species is an integral part of lichen ecology globally. In many cases, symbiotically dispersing lichens can facilitate the dispersal of sexually reproducing species, promoting establishment and adaptation into new and marginal habitats and thus driving evolutionary diversification.
Collapse
Affiliation(s)
- Ulla Kaasalainen
- Department of Geobiology, University of Göttingen, Göttingen, Germany.,Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Veera Tuovinen
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | | | - Petri Pellikka
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland.,State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China
| | - Jouko Rikkinen
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland.,Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
18
|
Yang T, Tedersoo L, Fu X, Zhao C, Liu X, Gao G, Cheng L, Adams JM, Chu H. Saprotrophic fungal diversity predicts ectomycorrhizal fungal diversity along the timberline in the framework of island biogeography theory. ISME COMMUNICATIONS 2021; 1:15. [PMID: 37938216 PMCID: PMC9723781 DOI: 10.1038/s43705-021-00015-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/08/2021] [Accepted: 04/20/2021] [Indexed: 06/13/2023]
Abstract
Island biogeography theory (IBT) is one of the most fruitful paradigms in macroecology, positing positive species-area and negative species-isolation relationships for the distribution of organisms. Biotic interactions are also crucial for diversity maintenance on islands. In the context of a timberline tree species (Betula ermanii) as "virtual island", we surveyed ectomycorrhizal (EcM) fungal diversity along a 430-m vertical gradient on the top of Changbai Mountain, China, sampling fine roots and neighboring soils of B. ermanii. Besides elevation, soil properties and plant functional traits, endophytic and saprotrophic fungal diversity were assessed as candidate predictors to construct integrative models. EcM fungal diversity decreased with increasing elevation, and exhibited positive diversity to diameter at breast height and negative diversity to distance from forest edge relationships in both roots and soils. Integrative models further showed that saprotrophic fungal diversity was the strongest predictor of EcM fungal diversity, directly enhancing EcM fungal diversity in roots and soils. Our study supports IBT as a basic framework to explain EcM fungal diversity. The diversity-begets-diversity hypothesis within the fungal kingdom is more predictive for EcM fungal diversity within the IBT framework, which reveals a tight association between saprotrophic and EcM fungal lineages in the timberline ecosystem.
Collapse
Affiliation(s)
- Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia
- College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Xiao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chang Zhao
- School of Geography Sciences, Nanjing Normal University, Nanjing, China
| | - Xu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guifeng Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Liang Cheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jonathan M Adams
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
19
|
Siddique AB, Biella P, Unterseher M, Albrectsen BR. Mycobiomes of Young Beech Trees Are Distinguished by Organ Rather Than by Habitat, and Community Analyses Suggest Competitive Interactions Among Twig Fungi. Front Microbiol 2021; 12:646302. [PMID: 33936005 PMCID: PMC8086555 DOI: 10.3389/fmicb.2021.646302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
Beech trees (Fagus sylvatica) are prominent keystone species of great economic and environmental value for central Europe, hosting a diverse mycobiome. The composition of endophyte communities may depend on tree health, plant organ or tissue, and growth habitat. To evaluate mycobiome communalities at local scales, buds, and twigs were sampled from two young healthy mountain beech stands in Bavaria, Germany, four kilometers apart. With Illumina high-throughput sequencing, we found 113 fungal taxa from 0.7 million high-quality reads that mainly consisted of Ascomycota (52%) and Basidiomycota (26%) taxa. Significant correlations between richness and diversity indices were observed (p < 0.05), and mycobiomes did not differ between habitats in the current study. Species richness and diversity were higher in twigs compared to spring buds, and the assemblages in twigs shared most similarities. Interaction network analyses revealed that twig-bound fungi shared similar numbers of (interaction) links with others, dominated by negative co-occurrences, suggesting that competitive exclusion may be the predominant ecological interaction in the highly connected twig mycobiome. Combining community and network analyses strengthened the evidence that plant organs may filter endophytic communities directly through colonization access and indirectly by facilitating competitive interactions between the fungi.
Collapse
Affiliation(s)
- Abu Bakar Siddique
- Department of Ecology and Environmental Sciences, Faculty of Science and Technology, Umeå University, Umeå, Sweden
| | - Paolo Biella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | | | |
Collapse
|
20
|
Arraiano-Castilho R, Bidartondo MI, Niskanen T, Clarkson JJ, Brunner I, Zimmermann S, Senn-Irlet B, Frey B, Peintner U, Mrak T, Suz LM. Habitat specialisation controls ectomycorrhizal fungi above the treeline in the European Alps. THE NEW PHYTOLOGIST 2021; 229:2901-2916. [PMID: 33107606 DOI: 10.1111/nph.17033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
Alpine habitats are one of the most vulnerable ecosystems to environmental change, however, little information is known about the drivers of plant-fungal interactions in these ecosystems and their resilience to climate change. We investigated the influence of the main drivers of ectomycorrhizal (EM) fungal communities along elevation and environmental gradients in the alpine zone of the European Alps and measured their degree of specialisation using network analysis. We sampled ectomycorrhizas of Dryas octopetala, Bistorta vivipara and Salix herbacea, and soil fungal communities at 28 locations across five countries, from the treeline to the nival zone. We found that: (1) EM fungal community composition, but not richness, changes along elevation, (2) there is no strong evidence of host specialisation, however, EM fungal networks in the alpine zone and within these, EM fungi associated with snowbed communities, are more specialised than in other alpine habitats, (3) plant host population structure does not influence EM fungal communities, and (4) most variability in EM fungal communities is explained by fine-scale changes in edaphic properties, like soil pH and total nitrogen. The higher specialisation and narrower ecological niches of these plant-fungal interactions in snowbed habitats make these habitats particularly vulnerable to environmental change in alpine ecosystems.
Collapse
Affiliation(s)
- Ricardo Arraiano-Castilho
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Martin I Bidartondo
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Tuula Niskanen
- Identification and Naming, Royal Botanic Gardens, Kew, TW9 3DS, UK
| | - James J Clarkson
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK
| | - Ivano Brunner
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Stephan Zimmermann
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Beatrice Senn-Irlet
- Biodiversity and Conservation Biology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Ursula Peintner
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, Innsbruck, 6020, Austria
| | - Tanja Mrak
- Slovenian Forestry Institute, Večna pot 2, Ljubljana, 1000, Slovenia
| | - Laura M Suz
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK
| |
Collapse
|
21
|
Kadowaki K, Yamamoto S, Sato H, Tanabe AS, Toju H. Aboveground herbivores drive stronger plant species-specific feedback than belowground fungi to regulate tree community assembly. Oecologia 2021; 195:773-784. [PMID: 33598833 DOI: 10.1007/s00442-021-04868-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/03/2021] [Indexed: 11/28/2022]
Abstract
Ectomycorrhizal (EcM) tree species often become more dominant than arbuscular mycorrhizal (AM) tree species in temperate forests, but they generally coexist. Theory predicts that ecological feedback mediated by aboveground herbivory and/or belowground microbes could explain these dominance/coexistence patterns. An experimental test of how aboveground/belowground organisms associated with AM/EcM trees mediate ecological feedbacks has been lacking at the community-level. By establishing AM and EcM tree sapling assemblages in mesocosms and then introducing seedlings of each type in a reciprocal planting experiment, we compared seedling performance under varying sapling species (conspecifics, heterospecifics within the same and different mycorrhizal types), using traits that reflect either aboveground herbivory-mediated feedback or belowground fungal-mediated feedback or both. When examining seedling traits that reflect aboveground herbivory-mediated feedbacks (i.e., foliar damage), AM plants tended to experience less foliar damage and EcM plants more damage under conspecific versus heterospecific saplings within the same mycorrhizal types, and aboveground herbivory-mediated feedback was species-specific rather than mycorrhizal type-specific. Conversely, when examining traits that reflect belowground fungal-mediated feedbacks, both AM and EcM plant species often exhibited mycorrhizal type-specific feedbacks (e.g., greater aboveground biomass under the same versus different mycorrhizal-type saplings) rather than species-specific feedbacks. Furthermore, tree species affected by herbivory-mediated feedback were less affected by belowground feedback, indicating that the relative importance of the feedbacks varied among plant species. Analysis of plant-associated organisms verified that the feedback outcomes corresponded with species accumulation of belowground fungi (but not of aboveground herbivores). Thus, aboveground herbivores drive stronger plant species-specific feedback than belowground fungi to regulate temperate tree diversity.
Collapse
Affiliation(s)
- Kohmei Kadowaki
- Field Science Education and Research Center, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo, Kyoto, 606-8502, Japan. .,The Hakubi Center for Advanced Research, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo, Kyoto, 606-8502, Japan.
| | - Satoshi Yamamoto
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo, Kyoto, 606-8502, Japan
| | - Hirotoshi Sato
- Graduate School of Human and Environmental Studies, Yoshida-nihonmatsu-cho, Sakyo, Kyoto, 606-8501, Japan
| | - Akifumi S Tanabe
- Graduate School of Life Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Hirokazu Toju
- Center for Ecological Research, Kyoto University, Hirano 2 509-3, Otsu, 520-2113, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
22
|
Addo‐Fordjour P, Afram IS. Clearcutting and selective logging have inconsistent effects on liana diversity and abundance but not on liana–tree interaction networks. Biotropica 2021. [DOI: 10.1111/btp.12888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Patrick Addo‐Fordjour
- Department of Theoretical and Applied Biology College of Science Kwame Nkrumah University of Science and Technology Kumasi Ghana
| | - Isaac Sarfo Afram
- Department of Theoretical and Applied Biology College of Science Kwame Nkrumah University of Science and Technology Kumasi Ghana
| |
Collapse
|
23
|
Moroenyane I, Tremblay J, Yergeau É. Temporal and spatial interactions modulate the soybean microbiome. FEMS Microbiol Ecol 2021; 97:fiaa2062. [PMID: 33367840 DOI: 10.1093/femsec/fiaa206] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022] Open
Abstract
Managed agricultural ecosystems are unique systems where crops and microbes are intrinsically linked. This study focuses on discerning microbiome successional patterns across all plant organs and tests for evidence of niche differentiation along temporal and spatial axes. Soybean plants were grown in an environmental chamber till seed maturation. Samples from various developmental stages (emergence, growth, flowering and maturation) and compartments (leaf, stem, root and rhizosphere) were collected. Community structure and composition were assessed with 16S rRNA gene and ITS region amplicon sequencing. Overall, the interaction between spatial and temporal dynamics modulated alpha and beta diversity patterns. Time lag analysis on measured diversity indices highlighted a strong temporal dependence of communities. Spatial and temporal interactions influenced the relative abundance of the most abundant genera, whilst random forest predictions reinforced the observed localisation patterns of abundant genera. Overall, our results show that spatial and temporal interactions tend to maintain high levels of biodiversity within the bacterial/archaeal community, whilst in fungal communities OTUs within the same genus tend to have overlapping niches.
Collapse
Affiliation(s)
- Itumeleng Moroenyane
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec, H7V1B7, Canada
| | - Julien Tremblay
- Energy, Mining, and Environment, Natural Resource Council Canada, 6100 avenue Royalmount, Montréal, Québec, H4P 2R2, Canada
| | - Étienne Yergeau
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec, H7V1B7, Canada
| |
Collapse
|
24
|
Yao H, Sun X, He C, Li XC, Guo LD. Host identity is more important in structuring bacterial epiphytes than endophytes in a tropical mangrove forest. FEMS Microbiol Ecol 2020; 96:5800982. [PMID: 32149339 DOI: 10.1093/femsec/fiaa038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 03/05/2020] [Indexed: 01/24/2023] Open
Abstract
Interactions between plants and microbes are involved in biodiversity maintenance, community stability and ecosystem functioning. However, differences in the community and network structures between phyllosphere epiphytic and endophytic bacteria have rarely been investigated. Here, we examined phyllosphere epiphytic and endophytic bacterial communities of six mangrove species using Illumina MiSeq sequencing of the 16S rRNA gene. The results revealed that the community structure of epiphytic and endophytic bacteria was different. Plant identity significantly affected the diversity and community structure of both epiphytic and endophytic bacteria, with a greater effect on the community structure of the former than the latter. Network analysis showed that both plant-epiphytic and plant-endophytic bacterial network structures were characterized by significantly highly specialized and modular but lowly connected and anti-nested properties. Furthermore, the epiphytic bacterial network was more highly specialized and modular but less connected and more strongly anti-nested than the endophytic bacterial network. This study reveals that the phyllosphere epiphytic and endophytic bacterial community structures differ and plant identity has a greater effect on the epiphytic than on the endophytic bacteria, which may provide a comprehensive insight into the role of plant identity in driving the phyllosphere epiphytic and endophytic microbial community structures in mangrove ecosystems.
Collapse
Affiliation(s)
- Hui Yao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Xing-Chun Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Rog I, Rosenstock NP, Körner C, Klein T. Share the wealth: Trees with greater ectomycorrhizal species overlap share more carbon. Mol Ecol 2020; 29:2321-2333. [PMID: 31923325 PMCID: PMC7116085 DOI: 10.1111/mec.15351] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 12/24/2019] [Accepted: 01/05/2020] [Indexed: 01/03/2023]
Abstract
The mutualistic symbiosis between forest trees and ectomycorrhizal fungi (EMF) is among the most ubiquitous and successful interactions in terrestrial ecosystems. Specific species of EMF are known to colonize specific tree species, benefitting from their carbon source, and in turn, improving their access to soil water and nutrients. EMF also form extensive mycelial networks that can link multiple root-tips of different trees. Yet the number of tree species connected by such mycelial networks, and the traffic of material across them, are just now under study. Recently we reported substantial belowground carbon transfer between Picea, Pinus, Larix and Fagus trees in a mature forest. Here, we analyze the EMF community of these same individual trees and identify the most likely taxa responsible for the observed carbon transfer. Among the nearly 1,200 EMF root-tips examined, 50%-70% belong to operational taxonomic units (OTUs) that were associated with three or four tree host species, and 90% of all OTUs were associated with at least two tree species. Sporocarp 13 C signals indicated that carbon originating from labelled Picea trees was transferred among trees through EMF networks. Interestingly, phylogenetically more closely related tree species exhibited more similar EMF communities and exchanged more carbon. Our results show that belowground carbon transfer is well orchestrated by the evolution of EMFs and tree symbiosis.
Collapse
Affiliation(s)
- Ido Rog
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Christian Körner
- Department of Environmental Sciences -Botany, University of Basel, Basel, Switzerland
| | - Tamir Klein
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
26
|
Arraiano-Castilho R, Bidartondo M, Niskanen T, Zimmermann S, Frey B, Brunner I, Senn-Irlet B, Hörandl E, Gramlich S, Suz L. Plant-fungal interactions in hybrid zones: Ectomycorrhizal communities of willows (Salix) in an alpine glacier forefield. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2020.100936] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Li HD, Tang L, Jia C, Holyoak M, Fründ J, Huang X, Xiao Z. The functional roles of species in metacommunities, as revealed by metanetwork analyses of bird-plant frugivory networks. Ecol Lett 2020; 23:1252-1262. [PMID: 32436358 DOI: 10.1111/ele.13529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 01/12/2023]
Abstract
Understanding how biodiversity and interaction networks change across environmental gradients is a major challenge in ecology. We integrated metacommunity and metanetwork perspectives to test species' functional roles in bird-plant frugivory interactions in a fragmented forest landscape in Southwest China, with consequences for seed dispersal. Availability of fruit resources both on and under trees created vertical feeding stratification for frugivorous birds. Bird-plant interactions involving birds feeding only on-the-tree or both on and under-the-tree (shared) had a higher centrality and contributed more to metanetwork organisation than interactions involving birds feeding only under-the-tree. Moreover, bird-plant interactions associated with large-seeded plants disproportionately contributed to metanetwork organisation and centrality. Consequently, on-the-tree and shared birds contributed more to metanetwork organisation whereas under-the-tree birds were more involved in local processes. We would expect that species' roles in the metanetwork will translate into different conservation values for maintaining functioning of seed-dispersal networks.
Collapse
Affiliation(s)
- Hai-Dong Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Linfang Tang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.,Key Laboratory of Zoological Systematics and Evolution, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Chenxi Jia
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.,Key Laboratory of Zoological Systematics and Evolution, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Marcel Holyoak
- Department of Environmental Science and Policy, University of California, 1 Shields Ave, Davis, CA, 95616, USA
| | - Jochen Fründ
- Biometry and Environmental System Analysis, University of Freiburg, Tennenbacherstr. 4, 79106, Freiburg, Germany
| | - Xiaoqun Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Zhishu Xiao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 10049, China
| |
Collapse
|
28
|
Sultan S, Snider J, Conn A, Li M, Topp CN, Navlakha S. A Statistical Growth Property of Plant Root Architectures. PLANT PHENOMICS (WASHINGTON, D.C.) 2020; 2020:2073723. [PMID: 33313546 PMCID: PMC7706341 DOI: 10.34133/2020/2073723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/03/2020] [Indexed: 05/14/2023]
Abstract
Numerous types of biological branching networks, with varying shapes and sizes, are used to acquire and distribute resources. Here, we show that plant root and shoot architectures share a fundamental design property. We studied the spatial density function of plant architectures, which specifies the probability of finding a branch at each location in the 3-dimensional volume occupied by the plant. We analyzed 1645 root architectures from four species and discovered that the spatial density functions of all architectures are population-similar. This means that despite their apparent visual diversity, all of the roots studied share the same basic shape, aside from stretching and compression along orthogonal directions. Moreover, the spatial density of all architectures can be described as variations on a single underlying function: a Gaussian density truncated at a boundary of roughly three standard deviations. Thus, the root density of any architecture requires only four parameters to specify: the total mass of the architecture and the standard deviations of the Gaussian in the three (x, y, z) growth directions. Plant shoot architectures also follow this design form, suggesting that two basic plant transport systems may use similar growth strategies.
Collapse
Affiliation(s)
- Sam Sultan
- Cold Spring Harbor Laboratory, Simons Center for Quantitative Biology, Cold Spring Harbor, NY, USA
| | - Joseph Snider
- University of California San Diego, Institute for Neural Computation, La Jolla, CA, USA
| | - Adam Conn
- Cold Spring Harbor Laboratory, Simons Center for Quantitative Biology, Cold Spring Harbor, NY, USA
| | - Mao Li
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | | | - Saket Navlakha
- Cold Spring Harbor Laboratory, Simons Center for Quantitative Biology, Cold Spring Harbor, NY, USA
| |
Collapse
|
29
|
Feng K, Zhang Y, He Z, Ning D, Deng Y. Interdomain ecological networks between plants and microbes. Mol Ecol Resour 2019; 19:1565-1577. [PMID: 31479575 DOI: 10.1111/1755-0998.13081] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 07/26/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022]
Abstract
While macroscopic interkingdom relationships have been intensively investigated in various ecosystems, the above-belowground ecology in natural ecosystems has been poorly understood, especially for the plant-microbe associations at a regional scale. In this study, we proposed a workflow to construct interdomain ecological networks (IDEN) between multiple plants and various microbes (bacteria and archaea in this study). Across 30 latitudinal forests in China, the regional IDEN showed particular topological features, including high connectance, nested structure, asymmetric specialization and modularity. Also, plant species exhibited strong preference to specific microbial groups, and the observed network was significantly different from randomly rewired networks. Network module analysis indicated that a majority of microbes associated with plants within modules rather than across modules, suggesting specialized associations between plants and microorganisms. Consistent plant-microbe associations were captured via IDENs constructed within individual forest locations, which reinforced the validity of IDEN analysis. In addition, the plant-forest link distribution showed the geographical distribution of plants had higher endemicity than that of microorganisms. With cautious experimental design and data processing, this study shows interdomain species associations between plants and microbes in natural forest ecosystems and provides new insights into our understanding of meta-communities across different domain species.
Collapse
Affiliation(s)
- Kai Feng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yuguang Zhang
- Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Key Laboratory of Forest Ecology and Environment of State Forestry Administration, Beijing, China
| | - Zhili He
- Environmental Microbiomics Research Center, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Daliang Ning
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
Correia M, Rodríguez-Echeverría S, Timóteo S, Freitas H, Heleno R. Integrating plant species contribution to mycorrhizal and seed dispersal mutualistic networks. Biol Lett 2019; 15:20180770. [PMID: 31039725 PMCID: PMC6548724 DOI: 10.1098/rsbl.2018.0770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/08/2019] [Indexed: 11/12/2022] Open
Abstract
Mutualistic interactions like those established between plants and mycorrhizal fungi or seed dispersers are key drivers of plant population dynamics and ecosystem functioning; however, these interactions have rarely been explored together. We assembled a tripartite fungi-plant-disperser network in the Gorongosa National Park-Mozambique, to test (1) if diversity and importance of plant mutualists above- and belowground are correlated, and (2) whether biotically and abiotically dispersed plants are associated with distinct arbuscular mycorrhizal fungi (AMF). We quantified seed dispersal by animals for 1 year and characterized the AMF of 26 common plant species. Sixteen plant species were dispersed by 15 animals and colonized by 48 AMF virtual taxa (VT), while the remaining 10 plant species were not dispersed by animals and associated with 34 AMF VT. We found no evidence for a correlation between the number of plant partners above- and belowground or on plant specialization on both types of partners. We also found no evidence for differentiation of AMF communities between biotically and abiotically dispersed plants. Our results suggest that the establishment of plant interactions with seed dispersers and mycorrhizal fungi is largely independent and that both biotically and abiotically dispersed plants seem to associate with similar communities of AMF.
Collapse
Affiliation(s)
- Marta Correia
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, Portugal
| | | | | | | | | |
Collapse
|
31
|
Yao H, Sun X, He C, Maitra P, Li XC, Guo LD. Phyllosphere epiphytic and endophytic fungal community and network structures differ in a tropical mangrove ecosystem. MICROBIOME 2019; 7:57. [PMID: 30967154 PMCID: PMC6456958 DOI: 10.1186/s40168-019-0671-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/22/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Revealing the relationship between plants and fungi is very important in understanding biodiversity maintenance, community stability, and ecosystem functioning. However, differences in the community and network structures of phyllosphere epiphytic and endophytic fungi are currently poorly documented. In this study, we examined epiphytic and endophytic fungal communities associated with the leaves of six mangrove species using Illumina MiSeq sequencing of internal transcribed spacer 2 (ITS2) sequences. RESULTS A total of 635 operational taxonomic units (OTUs) of endophytic and epiphytic fungi were obtained at a 97% sequence similarity level; they were dominated by Dothideomycetes and Tremellomycetes. Plant identity had a significant effect on the OTU richness of endophytic fungi, but not on epiphytic fungi. The community composition of epiphytic and endophytic fungi was significantly different, and plant identity had a greater effect on endophytic fungi than on epiphytic fungi. Network analysis showed that both epiphytic and endophytic network structures were characterized by significantly highly specialized and modular but lowly connected and anti-nested properties. Furthermore, the endophytic network had higher levels of specialization and modularity but lower connectance and stronger anti-nestedness than the epiphytic network. CONCLUSIONS This study reveals that the phyllosphere epiphytic and endophytic fungal communities differ, and plant identity has a greater effect on the endophytic fungi than on epiphytic fungi. These findings demonstrate the role of host plant identity in driving phyllosphere epiphytic and endophytic community structure.
Collapse
Affiliation(s)
- Hui Yao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 People’s Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Xiang Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 People’s Republic of China
| | - Chao He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 People’s Republic of China
| | - Pulak Maitra
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 People’s Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Xing-Chun Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 People’s Republic of China
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 People’s Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| |
Collapse
|
32
|
Sepp S, Davison J, Jairus T, Vasar M, Moora M, Zobel M, Öpik M. Non‐random association patterns in a plant–mycorrhizal fungal network reveal host–symbiont specificity. Mol Ecol 2018; 28:365-378. [DOI: 10.1111/mec.14924] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 12/30/2022]
Affiliation(s)
| | - John Davison
- Department of Botany University of Tartu Tartu Estonia
| | - Teele Jairus
- Department of Botany University of Tartu Tartu Estonia
| | - Martti Vasar
- Department of Botany University of Tartu Tartu Estonia
| | - Mari Moora
- Department of Botany University of Tartu Tartu Estonia
| | - Martin Zobel
- Department of Botany University of Tartu Tartu Estonia
| | - Maarja Öpik
- Department of Botany University of Tartu Tartu Estonia
| |
Collapse
|
33
|
Toju H, Sato H, Yamamoto S, Tanabe AS. Structural diversity across arbuscular mycorrhizal, ectomycorrhizal, and endophytic plant-fungus networks. BMC PLANT BIOLOGY 2018; 18:292. [PMID: 30463525 PMCID: PMC6249749 DOI: 10.1186/s12870-018-1500-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/25/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Below-ground linkage between plant and fungal communities is one of the major drivers of terrestrial ecosystem dynamics. However, we still have limited knowledge of how such plant-fungus associations vary in their community-scale properties depending on fungal functional groups and geographic locations. METHODS By compiling a high-throughput sequencing dataset of root-associated fungi in eight forests along the Japanese Archipelago, we performed a comparative analysis of arbuscular mycorrhizal, ectomycorrhizal, and saprotrophic/endophytic associations across a latitudinal gradient from cool-temperate to subtropical regions. RESULTS In most of the plant-fungus networks analyzed, host-symbiont associations were significantly specialized but lacked "nested" architecture, which has been commonly reported in plant-pollinator and plant-seed disperser networks. In particular, the entire networks involving all functional groups of plants and fungi and partial networks consisting of ectomycorrhizal plant and fungal species/taxa displayed "anti-nested" architecture (i.e., negative nestedness scores) in many of the forests examined. Our data also suggested that geographic factors affected the organization of plant-fungus network structure. For example, the southernmost subtropical site analyzed in this study displayed lower network-level specificity of host-symbiont associations and higher (but still low) nestedness than northern localities. CONCLUSIONS Our comparative analyses suggest that arbuscular mycorrhizal, ectomycorrhizal, and saprotrophic/endophytic plant-fungus associations often lack nested network architecture, while those associations can vary, to some extent, in their community-scale properties along a latitudinal gradient. Overall, this study provides a basis for future studies that will examine how different types of plant-fungus associations collectively structure terrestrial ecosystems.
Collapse
Affiliation(s)
- Hirokazu Toju
- Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 Japan
| | - Hirotoshi Sato
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto 606-8501 Japan
| | - Satoshi Yamamoto
- Graduate School of Science, Kyoto University, Kitashirakawa-oiwake-cho, Kyoto, 606-8502 Japan
| | - Akifumi S. Tanabe
- Faculty of Science and Technology, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga 520-2194 Japan
| |
Collapse
|
34
|
Kadowaki K, Yamamoto S, Sato H, Tanabe AS, Hidaka A, Toju H. Mycorrhizal fungi mediate the direction and strength of plant-soil feedbacks differently between arbuscular mycorrhizal and ectomycorrhizal communities. Commun Biol 2018; 1:196. [PMID: 30480098 PMCID: PMC6244237 DOI: 10.1038/s42003-018-0201-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 10/22/2018] [Indexed: 11/23/2022] Open
Abstract
Plants influence their soil environment, which affects the next generation of seedlings that can be established. While research has shown that such plant-soil feedbacks occur in the presence of mycorrhizal fungi, it remains unclear when and how mycorrhizal fungi mediate the direction and strength of feedbacks in tree communities. Here we show that arbuscular mycorrhizal and ectomycorrhizal fungal guilds mediate plant-soil feedbacks differently to influence large-scale patterns such as tree species coexistence and succession. When seedlings are grown under the same mycorrhizal type forest, arbuscular mycorrhizal plant species exhibit negative or neutral feedbacks and ectomycorrhizal plant species do neutral or positive feedbacks. In contrast, positive and neutral feedbacks dominate when seedlings are grown in associations within the same versus different mycorrhizal types. Thus, ectomycorrhizal communities show more positive feedbacks than arbuscular mycorrhizal communities, potentially explaining why most temperate forests are ectomycorrhizal.
Collapse
Affiliation(s)
- Kohmei Kadowaki
- Center for Ecological Research, Kyoto University, Hirano 2, Otsu, Shiga, 520-2113, Japan.
- Research and Educational Unit for Studies on Connectivity of Hills, Humans and Oceans, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo, Kyoto, 606-8502, Japan.
| | - Satoshi Yamamoto
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo, Kyoto, 606-8502, Japan
| | - Hirotoshi Sato
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo, Kyoto, 606-8501, Japan
| | - Akifumi S Tanabe
- Faculty of Science and Technology, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga, 520-2194, Japan
| | - Amane Hidaka
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo, Kyoto, 606-8502, Japan
| | - Hirokazu Toju
- Center for Ecological Research, Kyoto University, Hirano 2, Otsu, Shiga, 520-2113, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
35
|
Ramirez KS, Geisen S, Morriën E, Snoek BL, van der Putten WH. Network Analyses Can Advance Above-Belowground Ecology. TRENDS IN PLANT SCIENCE 2018; 23:759-768. [PMID: 30072227 DOI: 10.1016/j.tplants.2018.06.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/05/2018] [Accepted: 06/17/2018] [Indexed: 06/08/2023]
Abstract
An understanding of above-belowground (AG-BG) ecology is important for evaluating how plant interactions with enemies, symbionts, and decomposers affect species diversity and will respond to global changes. However, research questions and experiments often focus on only a limited number of interactions, creating an incomplete picture of how entire communities may be involved in AG-BG community ecology. Therefore, a pressing challenge is to formulate hypotheses of AG-BG interactions when considering communities in their full complexity. Here we discuss how network analyses can be a powerful tool to progress AG-BG research, link across scales from individual to community and ecosystem, visualize community interactions between the two (AG and BG) subsystems, and develop testable hypotheses.
Collapse
Affiliation(s)
- Kelly S Ramirez
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, The Netherlands.
| | - Stefan Geisen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, The Netherlands; Laboratory of Nematology, Wageningen University, P.O. Box 8123, 6700 ES, Wageningen, The Netherlands
| | - Elly Morriën
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, The Netherlands; Institute of Biodiversity and Ecosystem Dynamics, Department of Ecosystem and Landscape Dynamics (IBED-ELD), University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands
| | - Basten L Snoek
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, The Netherlands; Laboratory of Nematology, Wageningen University, P.O. Box 8123, 6700 ES, Wageningen, The Netherlands; Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Wim H van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, The Netherlands; Laboratory of Nematology, Wageningen University, P.O. Box 8123, 6700 ES, Wageningen, The Netherlands
| |
Collapse
|
36
|
Toju H, Tanabe AS, Sato H. Network hubs in root-associated fungal metacommunities. MICROBIOME 2018; 6:116. [PMID: 29935536 PMCID: PMC6015470 DOI: 10.1186/s40168-018-0497-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/08/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Although a number of recent studies have uncovered remarkable diversity of microbes associated with plants, understanding and managing dynamics of plant microbiomes remain major scientific challenges. In this respect, network analytical methods have provided a basis for exploring "hub" microbial species, which potentially organize community-scale processes of plant-microbe interactions. METHODS By compiling Illumina sequencing data of root-associated fungi in eight forest ecosystems across the Japanese Archipelago, we explored hubs within "metacommunity-scale" networks of plant-fungus associations. In total, the metadata included 8080 fungal operational taxonomic units (OTUs) detected from 227 local populations of 150 plant species/taxa. RESULTS Few fungal OTUs were common across all the eight forests. However, in each of the metacommunity-scale networks representing northern four localities or southern four localities, diverse mycorrhizal, endophytic, and pathogenic fungi were classified as "metacommunity hubs," which were detected from diverse host plant taxa throughout a climatic region. Specifically, Mortierella (Mortierellales), Cladophialophora (Chaetothyriales), Ilyonectria (Hypocreales), Pezicula (Helotiales), and Cadophora (incertae sedis) had broad geographic and host ranges across the northern (cool-temperate) region, while Saitozyma/Cryptococcus (Tremellales/Trichosporonales) and Mortierella as well as some arbuscular mycorrhizal fungi were placed at the central positions of the metacommunity-scale network representing warm-temperate and subtropical forests in southern Japan. CONCLUSIONS The network theoretical framework presented in this study will help us explore prospective fungi and bacteria, which have high potentials for agricultural application to diverse plant species within each climatic region. As some of those fungal taxa with broad geographic and host ranges have been known to promote the survival and growth of host plants, further studies elucidating their functional roles are awaited.
Collapse
Affiliation(s)
- Hirokazu Toju
- Center for Ecological Research, Kyoto University, Otsu, Shiga, 520-2113, Japan.
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan.
| | - Akifumi S Tanabe
- Faculty of Science and Technology, Ryukoku University, Seta Oe, Otsu, Shiga, 520-2194, Japan
| | - Hirotoshi Sato
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto, 606-8501, Japan
| |
Collapse
|
37
|
Jacobsen RM, Sverdrup-Thygeson A, Kauserud H, Birkemoe T. Revealing hidden insect-fungus interactions; moderately specialized, modular and anti-nested detritivore networks. Proc Biol Sci 2018; 285:rspb.2017.2833. [PMID: 29618548 DOI: 10.1098/rspb.2017.2833] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/12/2018] [Indexed: 12/22/2022] Open
Abstract
Ecological networks are composed of interacting communities that influence ecosystem structure and function. Fungi are the driving force for ecosystem processes such as decomposition and carbon sequestration in terrestrial habitats, and are strongly influenced by interactions with invertebrates. Yet, interactions in detritivore communities have rarely been considered from a network perspective. In the present study, we analyse the interaction networks between three functional guilds of fungi and insects sampled from dead wood. Using DNA metabarcoding to identify fungi, we reveal a diversity of interactions differing in specificity in the detritivore networks, involving three guilds of fungi. Plant pathogenic fungi were relatively unspecialized in their interactions with insects inhabiting dead wood, while interactions between the insects and wood-decay fungi exhibited the highest degree of specialization, which was similar to estimates for animal-mediated seed dispersal networks in previous studies. The low degree of specialization for insect symbiont fungi was unexpected. In general, the pooled insect-fungus networks were significantly more specialized, more modular and less nested than randomized networks. Thus, the detritivore networks had an unusual anti-nested structure. Future studies might corroborate whether this is a common aspect of networks based on interactions with fungi, possibly owing to their often intense competition for substrate.
Collapse
Affiliation(s)
- Rannveig M Jacobsen
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Høgskoleveien 12, 1433 Ås, Norway .,The Norwegian Institute for Nature Research (NINA), Gaustadalléen 21, 0349 Oslo, Norway
| | - Anne Sverdrup-Thygeson
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Høgskoleveien 12, 1433 Ås, Norway
| | - Håvard Kauserud
- Section for Genetics and Evolutionary Biology (EVOGENE), University of Oslo, Blindernveien 31, 0316 Oslo, Norway
| | - Tone Birkemoe
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Høgskoleveien 12, 1433 Ås, Norway
| |
Collapse
|
38
|
Toju H, Sato H. Root-Associated Fungi Shared Between Arbuscular Mycorrhizal and Ectomycorrhizal Conifers in a Temperate Forest. Front Microbiol 2018; 9:433. [PMID: 29593682 PMCID: PMC5858530 DOI: 10.3389/fmicb.2018.00433] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/26/2018] [Indexed: 11/29/2022] Open
Abstract
Arbuscular mycorrhizal and ectomycorrhizal symbioses are among the most important drivers of terrestrial ecosystem dynamics. Historically, the two types of symbioses have been investigated separately because arbuscular mycorrhizal and ectomycorrhizal plant species are considered to host discrete sets of fungal symbionts (i.e., arbuscular mycorrhizal and ectomycorrhizal fungi, respectively). Nonetheless, recent studies based on high-throughput DNA sequencing technologies have suggested that diverse non-mycorrhizal fungi (e.g., endophytic fungi) with broad host ranges play roles in relationships between arbuscular mycorrhizal and ectomycorrhizal plant species in forest ecosystems. By analyzing an Illumina sequencing dataset of root-associated fungi in a temperate forest in Japan, we statistically examined whether co-occurring arbuscular mycorrhizal (Chamaecyparis obtusa) and ectomycorrhizal (Pinus densiflora) plant species could share non-mycorrhizal fungal communities. Among the 919 fungal operational taxonomic units (OTUs) detected, OTUs in various taxonomic lineages were statistically designated as “generalists,” which associated commonly with both coniferous species. The list of the generalists included fungi in the genera Meliniomyces, Oidiodendron, Cladophialophora, Rhizodermea, Penicillium, and Mortierella. Meanwhile, our statistical analysis also detected fungi preferentially associated with Chamaecyparis (e.g., Pezicula) or Pinus (e.g., Neolecta). Overall, this study provides a basis for future studies on how arbuscular mycorrhizal and ectomycorrhizal plant species interactively drive community- or ecosystem-scale processes. The physiological functions of the fungi highlighted in our host-preference analysis deserve intensive investigations for understanding their roles in plant endosphere and rhizosphere.
Collapse
Affiliation(s)
- Hirokazu Toju
- Center for Ecological Research, Kyoto University, Otsu, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Hirotoshi Sato
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| |
Collapse
|
39
|
Põlme S, Bahram M, Jacquemyn H, Kennedy P, Kohout P, Moora M, Oja J, Öpik M, Pecoraro L, Tedersoo L. Host preference and network properties in biotrophic plant-fungal associations. THE NEW PHYTOLOGIST 2018; 217:1230-1239. [PMID: 29165806 DOI: 10.1111/nph.14895] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 10/13/2017] [Indexed: 05/04/2023]
Abstract
Analytical methods can offer insights into the structure of biological networks, but mechanisms that determine the structure of these networks remain unclear. We conducted a synthesis based on 111 previously published datasets to assess a range of ecological and evolutionary mechanisms that may influence the plant-associated fungal interaction networks. We calculated the relative host effect on fungal community composition and compared nestedness and modularity among different mycorrhizal types and endophytic fungal guilds. We also assessed how plant-fungal network structure was related to host phylogeny, environmental and sampling properties. Orchid mycorrhizal fungal communities responded most strongly to host identity, but the effect of host was similar among all other fungal guilds. Community nestedness, which did not differ among fungal guilds, declined significantly with increasing mean annual precipitation on a global scale. Orchid and ericoid mycorrhizal fungal communities were more modular than ectomycorrhizal and root endophytic communities, with arbuscular mycorrhizal fungi in an intermediate position. Network properties among a broad suite of plant-associated fungi were largely comparable and generally unrelated to phylogenetic distance among hosts. Instead, network metrics were predominantly affected by sampling and matrix properties, indicating the importance of study design in properly inferring ecological patterns.
Collapse
Affiliation(s)
- Sergei Põlme
- Natural History Museum, University of Tartu, 14a Ravila, 50411, Tartu, Estonia
- Department of Botany, University of Tartu, 40 Lai Street, 51005, Tartu, Estonia
| | - Mohammad Bahram
- Department of Botany, University of Tartu, 40 Lai Street, 51005, Tartu, Estonia
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Hans Jacquemyn
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001, Heverlee, Belgium
| | - Peter Kennedy
- Department of Plant Biology, University of Minnesota, 1445 Gortner Ave, St Paul, MN, 55108, USA
| | - Petr Kohout
- Department of Botany, University of Tartu, 40 Lai Street, 51005, Tartu, Estonia
- Institute of Botany, Academy of Sciences of the Czech Republic, CZ-252 43, Průhonice, Czech Republic
- Faculty of Science, Charles University, CZ-128 44, Prague 2, Czech Republic
| | - Mari Moora
- Department of Botany, University of Tartu, 40 Lai Street, 51005, Tartu, Estonia
| | - Jane Oja
- Department of Botany, University of Tartu, 40 Lai Street, 51005, Tartu, Estonia
| | - Maarja Öpik
- Department of Botany, University of Tartu, 40 Lai Street, 51005, Tartu, Estonia
| | - Lorenzo Pecoraro
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, 518114, Shenzhen, China
- Center for Biotechnology & BioMedicine and Division of Life & Health Sciences, Graduate School at Shenzhen, Tsinghua University, 518055, Shenzhen, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Leho Tedersoo
- Natural History Museum, University of Tartu, 14a Ravila, 50411, Tartu, Estonia
| |
Collapse
|
40
|
Ikeda H, Fukumori K, Shoda‐Kagaya E, Takahashi M, Ito MT, Sakai Y, Matsumoto K. Evolution of a key trait greatly affects underground community assembly process through habitat adaptation in earthworms. Ecol Evol 2018; 8:1726-1735. [PMID: 29435247 PMCID: PMC5792615 DOI: 10.1002/ece3.3777] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 11/18/2022] Open
Abstract
Underground community assemblies have not been studied well compared with aboveground communities, despite their importance for our understanding of whole ecosystems. To investigate underground community assembly over evolutionary timescales, we examined terrestrial earthworm communities (Oligochaeta: Haplotaxida) in conserved mountainous primary forests in Japan as a model system. We collected 553 earthworms mostly from two dominant families, the Megascolecidae and the Lumbricidae, from 12 sites. We constructed a molecular taxonomic unit tree based on the analysis of three genes to examine the effects of a biogeographic factor (dispersal ability) and an evolutionary factor (habitat adaptation) on the earthworm community assembly process. The phylogenetic distance of the earthworm communities among sites was positively correlated with geographic distance when intraspecific variation was included, indicating that the divergence within species was affected by biogeographic factors. The community assembly process in the Megascolecidae has also been affected by environmental conditions in relation to an evolutionary relationship between habitat environment and intestinal cecum type, a trait closely related to habitat depth and diet, whereas that in the Lumbricidae has not been affected as such. Intestinal cecum type showed a pattern of niche conservatism in the Megascolecidae lineage. Our results suggest that investigating the evolution of a key trait related to life history can lead to the clear description of community assembly process over a long timescale and that the community assembly process can differ greatly among related lineages even though they live sympatrically.
Collapse
Affiliation(s)
- Hiroshi Ikeda
- Faculty of Agriculture and Life ScienceHirosaki UniversityHirosakiJapan
| | - Kayoko Fukumori
- National Institute of Advanced Industrial Science and TechnologyTsukubaJapan
| | | | | | - Masamichi T. Ito
- Faculty of Economics and ManagementSurugadai UniversityHannoJapan
| | - Yoshimi Sakai
- Kyushu Research CenterForestry and Forest Products Research InstituteKumamotoJapan
| | - Kazuma Matsumoto
- Association of International Research Initiatives for Environmental StudiesTaito‐kuJapan
| |
Collapse
|
41
|
Gehring CA, Johnson NC. Beyond ICOM8: perspectives on advances in mycorrhizal research from 2015 to 2017. MYCORRHIZA 2018; 28:197-201. [PMID: 29290018 DOI: 10.1007/s00572-017-0818-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
This report reviews important advances in mycorrhizal research that occurred during the past 2 years. We highlight major advancements both within and across levels of biological organization and describe areas where greater integration has led to unique insights. Particularly active areas of research include exploration of the mechanisms underpinning the development of the mycorrhizal symbiosis, the mycorrhizal microbiome, comparisons among types of mycorrhizas from molecular to ecosystem scales, the extent and function of mycorrhizal networks and enhanced understanding of the role of mycorrhizas in carbon dynamics from local to global scales. The top-tier scientific journals have acknowledged mycorrhizas to be complex adaptive systems that play key roles in the development of communities and ecosystem processes. Understanding the mechanisms driving these large-scale effects requires integration of knowledge across scales of biological organization.
Collapse
Affiliation(s)
- Catherine A Gehring
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, 617 S. Beaver Street, Flagstaff, AZ, 86011-5640, USA.
| | - Nancy C Johnson
- School of Earth Sciences and Environmental Sustainability and Department of Biological Sciences, Northern Arizona University, 525 S. Beaver Street, Flagstaff, AZ, 86011-5694, USA
| |
Collapse
|
42
|
Mitani N, Mougi A. Population cycles emerging through multiple interaction types. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170536. [PMID: 28989759 PMCID: PMC5627099 DOI: 10.1098/rsos.170536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Cyclic dynamics of populations are outstanding and widespread phenomena across many taxa. Previous theoretical studies have mainly focused on the consumer-resource interaction as the driving force for such cycling. However, natural ecosystems comprise diverse types of species interactions, but their roles in population dynamics remains unclear. Here, using a four-species hybrid module with antagonistic, mutualistic and competitive interactions, we analytically showed that the system with major interaction types can drive population cycles. Stronger interactions easily cause cycling, and even when sub-modules with possible combinations of two interactions are stabilized by weak interactions, the system with all interaction types can cause unstable population oscillations. Diversity of interaction types allows to add mutualists to the list of drivers of oscillations in a focal species' population size, when they act in conjunction to other drivers.
Collapse
|
43
|
Clark TJ, Friel CA, Grman E, Shachar‐Hill Y, Friesen ML. Modelling nutritional mutualisms: challenges and opportunities for data integration. Ecol Lett 2017; 20:1203-1215. [DOI: 10.1111/ele.12810] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/23/2016] [Accepted: 06/12/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Teresa J. Clark
- Department of Plant Biology Michigan State University 612 Wilson Rd. East Lansing MI48824 USA
| | - Colleen A. Friel
- Department of Plant Biology Michigan State University 612 Wilson Rd. East Lansing MI48824 USA
| | - Emily Grman
- Biology Department Eastern Michigan University 441 Mark Jefferson Science Complex Ypsilanti MI48197 USA
| | - Yair Shachar‐Hill
- Department of Plant Biology Michigan State University 612 Wilson Rd. East Lansing MI48824 USA
| | - Maren L. Friesen
- Department of Plant Biology Michigan State University 612 Wilson Rd. East Lansing MI48824 USA
| |
Collapse
|
44
|
Chen L, Zheng Y, Gao C, Mi XC, Ma KP, Wubet T, Guo LD. Phylogenetic relatedness explains highly interconnected and nested symbiotic networks of woody plants and arbuscular mycorrhizal fungi in a Chinese subtropical forest. Mol Ecol 2017; 26:2563-2575. [DOI: 10.1111/mec.14061] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 01/05/2017] [Accepted: 02/06/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Liang Chen
- State Key Laboratory of Mycology; Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
- College of Life Sciences; University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yong Zheng
- State Key Laboratory of Mycology; Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
| | - Cheng Gao
- State Key Laboratory of Mycology; Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
| | - Xiang-Cheng Mi
- State Key Laboratory of Vegetation and Environmental Change; Institute of Botany; Chinese Academy of Sciences; Beijing 100093 China
| | - Ke-Ping Ma
- State Key Laboratory of Vegetation and Environmental Change; Institute of Botany; Chinese Academy of Sciences; Beijing 100093 China
| | - Tesfaye Wubet
- Department of Soil Ecology; UFZ - Helmholtz Centre for Environmental Research; 06120 Halle (Saale) Germany
- The German Centre for Integrative Biodiversity Research (iDiv); University Leipzig; 04103 Leipzig Germany
| | - Liang-Dong Guo
- State Key Laboratory of Mycology; Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
- College of Life Sciences; University of Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
45
|
Species-rich networks and eco-evolutionary synthesis at the metacommunity level. Nat Ecol Evol 2017; 1:24. [DOI: 10.1038/s41559-016-0024] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/25/2016] [Indexed: 12/21/2022]
|
46
|
Toju H, Kishida O, Katayama N, Takagi K. Networks Depicting the Fine-Scale Co-Occurrences of Fungi in Soil Horizons. PLoS One 2016; 11:e0165987. [PMID: 27861486 PMCID: PMC5115672 DOI: 10.1371/journal.pone.0165987] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/20/2016] [Indexed: 01/29/2023] Open
Abstract
Fungi in soil play pivotal roles in nutrient cycling, pest controls, and plant community succession in terrestrial ecosystems. Despite the ecosystem functions provided by soil fungi, our knowledge of the assembly processes of belowground fungi has been limited. In particular, we still have limited knowledge of how diverse functional groups of fungi interact with each other in facilitative and competitive ways in soil. Based on the high-throughput sequencing data of fungi in a cool-temperate forest in northern Japan, we analyzed how taxonomically and functionally diverse fungi showed correlated fine-scale distributions in soil. By uncovering pairs of fungi that frequently co-occurred in the same soil samples, networks depicting fine-scale co-occurrences of fungi were inferred at the O (organic matter) and A (surface soil) horizons. The results then led to the working hypothesis that mycorrhizal, endophytic, saprotrophic, and pathogenic fungi could form compartmentalized (modular) networks of facilitative, antagonistic, and/or competitive interactions in belowground ecosystems. Overall, this study provides a research basis for further understanding how interspecific interactions, along with sharing of niches among fungi, drive the dynamics of poorly explored biospheres in soil.
Collapse
Affiliation(s)
- Hirokazu Toju
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto, Japan
| | - Osamu Kishida
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Aza-Takaoka, Tomakomai, Hokkaido, Japan
| | - Noboru Katayama
- Center for Ecological Research, Kyoto University, 2-chome, Hirano, Otsu, Shiga, Japan
| | - Kentaro Takagi
- Teshio Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Aza-Toikanbetsu 131, Horonobe-cho, Teshio-gun, Hokkaido, Japan
| |
Collapse
|
47
|
Weiß M, Waller F, Zuccaro A, Selosse MA. Sebacinales - one thousand and one interactions with land plants. THE NEW PHYTOLOGIST 2016; 211:20-40. [PMID: 27193559 DOI: 10.1111/nph.13977] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/05/2016] [Indexed: 05/20/2023]
Abstract
20 I 21 II 21 III 23 IV 29 V 33 VI 35 36 36 References 36 SUMMARY: Root endophytism and mycorrhizal associations are complex derived traits in fungi that shape plant physiology. Sebacinales (Agaricomycetes, Basidiomycota) display highly diverse interactions with plants. Although early-diverging Sebacinales lineages are root endophytes and/or have saprotrophic abilities, several more derived clades harbour obligate biotrophs forming mycorrhizal associations. Sebacinales thus display transitions from saprotrophy to endophytism and to mycorrhizal nutrition within one fungal order. This review discusses the genomic traits possibly associated with these transitions. We also show how molecular ecology revealed the hyperdiversity of Sebacinales and their evolutionary diversification into two sister families: Sebacinaceae encompasses mainly ectomycorrhizal and early-diverging saprotrophic species; the second family includes endophytes and lineages that repeatedly evolved ericoid, orchid and ectomycorrhizal abilities. We propose the name Serendipitaceae for this family and, within it, we transfer to the genus Serendipita the endophytic cultivable species Piriformospora indica and P. williamsii. Such cultivable Serendipitaceae species provide excellent models for root endophytism, especially because of available genomes, genetic tractability, and broad host plant range including important crop plants and the model plant Arabidopsis thaliana. We review insights gained with endophytic Serendipitaceae species into the molecular mechanisms of endophytism and of beneficial effects on host plants, including enhanced resistance to abiotic and pathogen stress.
Collapse
Affiliation(s)
- Michael Weiß
- Steinbeis-Innovationszentrum Organismische Mykologie und Mikrobiologie, Vor dem Kreuzberg 17, 72070, Tübingen, Germany
- Department of Biology, University of Tübingen, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Frank Waller
- Pharmaceutical Biology, Julius von Sachs Institute for Biosciences, Biocenter, Würzburg University, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany
| | - Alga Zuccaro
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), BioCenter, University of Cologne, 50674, Cologne, Germany
- Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Marc-André Selosse
- Département Systématique et Evolution (UMR 7205 ISYEB), Muséum national d'Histoire naturelle, CP 50, 45 rue Buffon, 75005, Paris, France
- Department of Plant Taxonomy and Nature Conservation, University of Gdansk, Gdansk, Poland
| |
Collapse
|
48
|
Toju H, Tanabe AS, Ishii HS. Ericaceous plant-fungus network in a harsh alpine-subalpine environment. Mol Ecol 2016; 25:3242-57. [DOI: 10.1111/mec.13680] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 12/16/2022]
Affiliation(s)
- H. Toju
- Graduate School of Human and Environmental Studies; Kyoto University; Sakyo Kyoto 606-8501 Japan
| | - A. S. Tanabe
- National Research Institute of Fisheries Science; Japan Fisheries Research and Education Agency; 2-12-4 Fukuura Kanazawa-ku Yokohama Kanagawa 236-8648 Japan
| | - H. S. Ishii
- Department of Environmental Biology and Chemistry; Graduate School of Science and Engineering; University of Toyama; 3190 Gofuku Toyama 930-8555 Japan
| |
Collapse
|
49
|
Toju H, Yamamoto S, Tanabe AS, Hayakawa T, Ishii HS. Network modules and hubs in plant-root fungal biomes. J R Soc Interface 2016; 13:20151097. [PMID: 26962029 PMCID: PMC4843674 DOI: 10.1098/rsif.2015.1097] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/15/2016] [Indexed: 01/31/2023] Open
Abstract
Terrestrial plants host phylogenetically and functionally diverse groups of below-ground microbes, whose community structure controls plant growth/survival in both natural and agricultural ecosystems. Therefore, understanding the processes by which whole root-associated microbiomes are organized is one of the major challenges in ecology and plant science. We here report that diverse root-associated fungi can form highly compartmentalized networks of coexistence within host roots and that the structure of the fungal symbiont communities can be partitioned into semi-discrete types even within a single host plant population. Illumina sequencing of root-associated fungi in a monodominant south beech forest revealed that the network representing symbiont-symbiont co-occurrence patterns was compartmentalized into clear modules, which consisted of diverse functional groups of mycorrhizal and endophytic fungi. Consequently, terminal roots of the plant were colonized by either of the two largest fungal species sets (represented by Oidiodendron or Cenococcum). Thus, species-rich root microbiomes can have alternative community structures, as recently shown in the relationships between human gut microbiome type (i.e., 'enterotype') and host individual health. This study also shows an analytical framework for pinpointing network hubs in symbiont-symbiont networks, leading to the working hypothesis that a small number of microbial species organize the overall root-microbiome dynamics.
Collapse
Affiliation(s)
- Hirokazu Toju
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Satoshi Yamamoto
- Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada-ku, Kobe 657-8501, Japan
| | - Akifumi S Tanabe
- National Research Institute of Fisheries Science, Fisheries Research Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-8648, Japan
| | - Takashi Hayakawa
- Department of Wildlife Science (Nagoya Railroad Co., Ltd.), Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan Japan Monkey Centre, Inuyama, Aichi 484-0081, Japan
| | - Hiroshi S Ishii
- Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| |
Collapse
|