1
|
Wu XQ, Ding YL, Du Y, Chen Z, Tan B. VTA is the Key to Pain Resilience in Empathic Behavior. Neurosci Bull 2024:10.1007/s12264-024-01313-z. [PMID: 39466363 DOI: 10.1007/s12264-024-01313-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/04/2024] [Indexed: 10/30/2024] Open
Affiliation(s)
- Xue-Qing Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Yi-La Ding
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Yu Du
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310058, China.
| | - Bei Tan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Yang XL, Gao W, Dong WY, Zheng C, Wang S, Wei HR, Luo Y, Zhang Z, Chen Y, Jin Y. A neural circuit for alcohol withdrawal-induced hyperalgesia in a nondependent state. SCIENCE ADVANCES 2024; 10:eadp8636. [PMID: 39331713 PMCID: PMC11430459 DOI: 10.1126/sciadv.adp8636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/23/2024] [Indexed: 09/29/2024]
Abstract
Alcohol use disorder is highly prevalent worldwide, with characteristically severe pain sensitivity during withdrawal. Here, we established a mouse model of hyperalgesia during ethanol withdrawal (EW) before addiction to investigate the window for onset and underlying mechanisms. Viral tracing with in vivo microendoscopic and two-photon calcium imaging identified a circuit pathway from dorsal hippocampal CA1 glutamatergic neurons (dCA1Glu) to anterior cingulate cortex glutamatergic neurons (ACCGlu) activated in EW mice with hyperalgesia. Chemogenetic inhibition of this pathway can alleviate hyperalgesia in EW mice, whereas artificial activation recapitulates EW-induced hyperalgesia in naïve mice. These findings demonstrate that the dCA1Glu → ACCGlu neuronal pathway participates in driving EW-induced hyperalgesia before ethanol dependence in mice.
Collapse
Affiliation(s)
- Xin-Lu Yang
- Department of Anesthesiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Department of Anesthesiology, First Affiliated Hospital of Wannan Medical College, Wuhu 241002, China
| | - Wei Gao
- Department of Anesthesiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Wan-Ying Dong
- Department of Anesthesiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Changjian Zheng
- Department of Anesthesiology, First Affiliated Hospital of Wannan Medical College, Wuhu 241002, China
| | - Sheng Wang
- Department of Anesthesiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Hong-Rui Wei
- Department of Anesthesiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yanli Luo
- Department of Psychological Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhi Zhang
- Department of Anesthesiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Department of Biophysics and Neurobiology, CAS Key laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
| | - Yongquan Chen
- Department of Anesthesiology, First Affiliated Hospital of Wannan Medical College, Wuhu 241002, China
| | - Yan Jin
- Department of Biophysics and Neurobiology, CAS Key laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| |
Collapse
|
3
|
Zhu H, Xiao Y, Xie T, Yang M, Zhou X, Xiao B, Peng J, Yang J. Effects of educational attainment on comorbidity of pain and depression in Chinese older adults. Heliyon 2024; 10:e37595. [PMID: 39290281 PMCID: PMC11407029 DOI: 10.1016/j.heliyon.2024.e37595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
Pain and depression comorbidity (PD) among older adults in China is common and significantly affects their physical and mental health. The psychosocial factors may affect people's feelings, understanding and expression of pain and depression, leading to inaccurate assessment of this condition. Educational attainment is thought to be associated with either pain or depression. However, we do not yet know the relationship between educational attainment and PD. Using data from the 2018 China Health and Retirement Longitudinal Study in 2018, we analyzed various variables in 7742 individuals aged 60 years and older. Our results indicate significant differences between the PD and non-PD populations in terms of social, lifestyle, and behavioral factors. We observed a significant decrease in the incidence of PD among older adults with higher levels of education (p < 0.001). This association appears to be partially mediated by cognitive ability, suggesting that educational attainment may mitigate the risk of PD through cognitive enhancement. In addition, our analysis shows that the effect of educational attainment on PD is moderated by additional psychosocial factors, including living environment and alcohol consumption patterns. Older adults with higher levels of education tend to live in urban areas and have better control over alcohol consumption, which may contribute to a lower incidence of PD. Therefore, interventions aimed at enhancing cognitive abilities, improving living environments, and promoting healthier lifestyles and habits among older adults could potentially reduce their burden of PD.
Collapse
Affiliation(s)
- Haiyan Zhu
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, China
| | - Yang Xiao
- Department of Urology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, China
| | - Tongjin Xie
- Department of Urology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, China
| | - Mohan Yang
- Department of Urology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, China
| | - Xun Zhou
- Department of Urology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, China
| | - Biao Xiao
- Department of Urology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, China
| | - Jingxuan Peng
- Department of Urology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Jianfu Yang
- Department of Urology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, China
| |
Collapse
|
4
|
Castany S, Rosa PB, Shionoya K, Blomqvist A, Engblom D. Social transmission of inflammation in mice. Brain Behav Immun 2024; 120:464-470. [PMID: 38925419 DOI: 10.1016/j.bbi.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/03/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024] Open
Abstract
The ability to detect and respond to sickness in others promotes survival. Here we show that mouse dams respond to immune challenged pups by mirroring their inflammatory response. Dams with pups subjected to immune challenge displayed a marked induction of inflammatory mediators in both the brain and the periphery, accompanied by an increase in maternal behaviors and corticosterone levels. This social transmission of inflammation did not require physical contact, and it contributed to the stress hormone response in the dams. In adult dyads, interaction with an immune challenged cagemate did not elicit robust inflammatory signaling but induced an increased responsiveness to a subsequent immune challenge. The identification of social transmission of inflammation, or inflammatory responsiveness, may open new avenues for research on social behavior, just like the description of similar phenomena such as observational fear and transmitted pain has done.
Collapse
Affiliation(s)
- Silvia Castany
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden.
| | - Priscila Batista Rosa
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden
| | - Kiseko Shionoya
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden
| | - Anders Blomqvist
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden
| | - David Engblom
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden.
| |
Collapse
|
5
|
Peng S, Yang X, Meng S, Liu F, Lv Y, Yang H, Kong Y, Xie W, Li M. Dual circuits originating from the ventral hippocampus independently facilitate affective empathy. Cell Rep 2024; 43:114277. [PMID: 38805397 DOI: 10.1016/j.celrep.2024.114277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/24/2024] [Accepted: 05/09/2024] [Indexed: 05/30/2024] Open
Abstract
Affective empathy enables social mammals to learn and transfer emotion to conspecifics, but an understanding of the neural circuitry and genetics underlying affective empathy is still very limited. Here, using the naive observational fear between cagemates as a paradigm similar to human affective empathy and chemo/optogenetic neuroactivity manipulation in mouse brain, we investigate the roles of multiple brain regions in mouse affective empathy. Remarkably, two neural circuits originating from the ventral hippocampus, previously unknown to function in empathy, are revealed to regulate naive observational fear. One is from ventral hippocampal pyramidal neurons to lateral septum GABAergic neurons, and the other is from ventral hippocampus pyramidal neurons to nucleus accumbens dopamine-receptor-expressing neurons. Furthermore, we identify the naive observational-fear-encoding neurons in the ventral hippocampus. Our findings highlight the potentially diverse regulatory pathways of empathy in social animals, shedding light on the mechanisms underlying empathy circuity and its disorders.
Collapse
Affiliation(s)
- Siqi Peng
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Xiuqi Yang
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Sibie Meng
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Fuyuan Liu
- Jiangsu Provincial Joint International Research Laboratory of Medical Information Processing, School of Computer Science and Engineering, Southeast University, Nanjing 210096, China
| | - Yaochen Lv
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Huiquan Yang
- School of Medicine, Southeast University, Nanjing 210096, China
| | - Youyong Kong
- Jiangsu Provincial Joint International Research Laboratory of Medical Information Processing, School of Computer Science and Engineering, Southeast University, Nanjing 210096, China
| | - Wei Xie
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China; Jiangsu Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Moyi Li
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China; Jiangsu Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.
| |
Collapse
|
6
|
Han Y, Ai L, Song L, Zhou Y, Chen D, Sha S, Ji R, Li Q, Bu Q, Pan X, Zhai X, Cui M, Duan J, Yang J, Chaudhury D, Hu A, Liu H, Han MH, Cao JL, Zhang H. Midbrain glutamatergic circuit mechanism of resilience to socially transferred allodynia in male mice. Nat Commun 2024; 15:4947. [PMID: 38858350 PMCID: PMC11164890 DOI: 10.1038/s41467-024-49340-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 05/28/2024] [Indexed: 06/12/2024] Open
Abstract
The potential brain mechanism underlying resilience to socially transferred allodynia remains unknown. Here, we utilize a well-established socially transferred allodynia paradigm to segregate male mice into pain-susceptible and pain-resilient subgroups. Brain screening results show that ventral tegmental area glutamatergic neurons are selectively activated in pain-resilient mice as compared to control and pain-susceptible mice. Chemogenetic manipulations demonstrate that activation and inhibition of ventral tegmental area glutamatergic neurons bi-directionally regulate resilience to socially transferred allodynia. Moreover, ventral tegmental area glutamatergic neurons that project specifically to the nucleus accumbens shell and lateral habenula regulate the development and maintenance of the pain-resilient phenotype, respectively. Together, we establish an approach to explore individual variations in pain response and identify ventral tegmental area glutamatergic neurons and related downstream circuits as critical targets for resilience to socially transferred allodynia and the development of conceptually innovative analgesics.
Collapse
Affiliation(s)
- Yi Han
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Lin Ai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Lingzhen Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Yu Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Dandan Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Sha Sha
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Ran Ji
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Qize Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Qingyang Bu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Xiangyu Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Xiaojing Zhai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Mengqiao Cui
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Jiawen Duan
- Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, PR China
| | - Junxia Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Dipesh Chaudhury
- Division of Science, New York University Abu Dhabi (NYUAD), Saadiyat Island, 129188, United Arab Emirates
| | - Ankang Hu
- The Animal Facility of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - He Liu
- Department of Anesthesiology, Huzhou Central Hospital, Huzhou, Zhejiang, 313000, PR China
| | - Ming-Hu Han
- Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, PR China.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China.
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China.
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China.
| |
Collapse
|
7
|
Rodrigues Tavares LR, Petrilli LA, Baptista-de-Souza D, Canto-de-Souza L, Planeta CDS, Guimarães FS, Nunes-de-Souza RL, Canto-de-Souza A. Cannabidiol Treatment Shows Therapeutic Efficacy in a Rodent Model of Social Transfer of Pain in Pair-Housed Male Mice. Cannabis Cannabinoid Res 2024; 9:699-713. [PMID: 37074109 DOI: 10.1089/can.2022.0300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Introduction: Prosocial behavior refers to sharing emotions and sensations such as pain. Accumulated data indicate that cannabidiol (CBD), a nonpsychotomimetic component of the Cannabis sativa plant, attenuates hyperalgesia, anxiety, and anhedonic-like behavior. Nevertheless, the role of CBD in the social transfer of pain has never been evaluated. In this study, we investigated the effects of acute systemic administration of CBD in mice that cohabited with a conspecific animal suffering from chronic constriction injury. Furthermore, we assessed whether repeated CBD treatment decreases hypernociception, anxiety-like behavior, and anhedonic-like responses in mice undergoing chronic constriction injury and whether this attenuation would be socially transferred to the partner. Materials and Methods: Male Swiss mice were Housed in pairs for 28 days. On the 14th day of living together, animals were then divided into two groups: cagemate nerve constriction (CNC), in which one animal of each partner was subjected to sciatic nerve constriction; and cagemate sham (CS), subjected to the same surgical procedure but without suffering nerve constriction. In Experiments 1, 2, and 3 on day 28 of living together, the cagemates (CNC and CS) animals received a single systemic injection (intraperitoneally) of vehicle or CBD (0.3, 1, 10, or 30 mg/kg). After 30 min, the cagemates were subjected to the elevated plusmaze followed by exposure to the writhing and sucrose splash tests. For chronic treatment (Exp. 4), sham and chronic constriction injury animals received a repeated systemic injection (subcutaneous) of vehicle or CBD (10 mg/kg) for 14 days after the sciatic nerve constriction procedure. On days 28 and 29 sham and chronic constriction injury animals and their cagemates were behaviorally tested. Results and Conclusion: Acute CBD administration attenuated anxiety-like behavior, pain hypersensitivity, and anhedonic-like behavior in cagemates that cohabited with a pair in chronic pain. In addition, repeated CBD treatment reversed the anxiety-like behavior induced by chronic pain and enhanced the mechanical withdrawal thresholds in Von Frey filaments and the grooming time in the sucrose splash test. Moreover, repeated CBD treatment effects were socially transferred to the chronic constriction injury cagemates.
Collapse
Affiliation(s)
- Lígia Renata Rodrigues Tavares
- Psychobiology Group, Department of Psychology, CECH-Universidade Federal de São Carlos-UFSCar, São Carlos, Brazil
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, São Carlos, Brazil
| | - Leonardo Abdelnur Petrilli
- Psychobiology Group, Department of Psychology, CECH-Universidade Federal de São Carlos-UFSCar, São Carlos, Brazil
| | - Daniela Baptista-de-Souza
- Psychobiology Group, Department of Psychology, CECH-Universidade Federal de São Carlos-UFSCar, São Carlos, Brazil
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Universidade Estadual Paulista-UNESP, Araraquara, Brazil
- Neuroscience and Behavior Institute-IneC, Ribeirão Preto, São Paulo, Brazil
| | - Lucas Canto-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Universidade Estadual Paulista-UNESP, Araraquara, Brazil
- Neuroscience and Behavior Institute-IneC, Ribeirão Preto, São Paulo, Brazil
| | - Cleopatra da Silva Planeta
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, São Carlos, Brazil
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Universidade Estadual Paulista-UNESP, Araraquara, Brazil
| | - Francisco Silveira Guimarães
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Ricardo Luiz Nunes-de-Souza
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, São Carlos, Brazil
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Universidade Estadual Paulista-UNESP, Araraquara, Brazil
- Neuroscience and Behavior Institute-IneC, Ribeirão Preto, São Paulo, Brazil
| | - Azair Canto-de-Souza
- Psychobiology Group, Department of Psychology, CECH-Universidade Federal de São Carlos-UFSCar, São Carlos, Brazil
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, São Carlos, Brazil
- Neuroscience and Behavior Institute-IneC, Ribeirão Preto, São Paulo, Brazil
- Program in Psychology UFSCar, São Carlos, Brazil
| |
Collapse
|
8
|
Johnson MC, Zweig JA, Zhang Y, Ryabinin AE. Effects of social housing on alcohol intake in mice depend on the non-social environment. Front Behav Neurosci 2024; 18:1380031. [PMID: 38817806 PMCID: PMC11137225 DOI: 10.3389/fnbeh.2024.1380031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
Background Excessive alcohol consumption leads to serious health problems. Mechanisms regulating the consumption of alcohol are insufficiently understood. Previous preclinical studies suggested that non-social environmental and social environmental complexities can regulate alcohol consumption in opposite directions. However, previous studies did not include all conditions and/or did not include female rodents. Therefore, in this study, we examined the effects of social versus single housing in standard versus non-standard housing conditions in male and female mice. Methods Adult C57BL/6 J mice were housed in either standard shoebox cages or in automated Herdsman 2 (HM2) cages and exposed to a two-bottle choice procedure with 3% or 6% ethanol versus water for 5 days. The HM2 cages use radiotracking devices to measure the fluid consumption of individual mice in an undisturbed and automated manner. In both housing conditions, mice were housed either at one or at four per cage. Results In standard cages, group housing of animals decreased alcohol consumption and water consumption. In HM2 cages, group housing significantly increased ethanol preference and decreased water intake. There were no significant differences in these effects between male and female animals. These observations were similar for 3 and 6% ethanol solutions but were more pronounced for the latter. The effects of social environment on ethanol preference in HM2 cages were accompanied by an increase in the number of approaches to the ethanol solution and a decrease in the number of approaches to water. The differences in ethanol intake could not be explained by differences in locomotor or exploratory activity as socially housed mice showed fewer non-consummatory visits to the ethanol solutions than single-housed animals. In addition, we observed that significant changes in behaviors measuring the approach to the fluid were not always accompanied by significant changes in fluid consumption, and vice versa, suggesting that it is important to assess both measures of motivation to consume alcohol. Conclusion Our results indicate that the direction of the effects of social environment on alcohol intake in mice depends on the non-social housing environment. Understanding mechanisms by which social and non-social housing conditions modulate alcohol intake could suggest approaches to counteract environmental factors enhancing hazardous alcohol consumption.
Collapse
Affiliation(s)
| | | | | | - Andrey E. Ryabinin
- Department of Behavioral Neuroscience, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
9
|
Rein B, Raymond K, Boustani C, Tuy S, Zhang J, St. Laurent R, Pomrenze MB, Boroon P, Heifets B, Smith M, Malenka RC. MDMA enhances empathy-like behaviors in mice via 5-HT release in the nucleus accumbens. SCIENCE ADVANCES 2024; 10:eadl6554. [PMID: 38657057 PMCID: PMC11042730 DOI: 10.1126/sciadv.adl6554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
MDMA (3,4-methylenedioxymethamphetamine) is a psychoactive drug with powerful prosocial effects. While MDMA is sometimes termed an "empathogen," empirical studies have struggled to clearly demonstrate these effects or pinpoint underlying mechanisms. Here, we paired the social transfer of pain and analgesia-behavioral tests modeling empathy in mice-with region-specific neuropharmacology, optogenetics, and transgenic manipulations to explore MDMA's action as an empathogen. We report that MDMA, given intraperitoneally or infused directly into the nucleus accumbens (NAc), robustly enhances the social transfer of pain and analgesia. Optogenetic stimulation of 5-HT release in the NAc recapitulates the effects of MDMA, implicating 5-HT signaling as a core mechanism. Last, we demonstrate that systemic MDMA or optogenetic stimulation of NAc 5-HT inputs restores deficits in empathy-like behaviors in the Shank3-deficient mouse model of autism. These findings demonstrate enhancement of empathy-related behaviors by MDMA and implicate 5-HT signaling in the NAc as a core mechanism mediating MDMA's empathogenic effects.
Collapse
Affiliation(s)
- Ben Rein
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kendall Raymond
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cali Boustani
- Department of Neurobiology, UC San Diego, La Jolla, CA 92093, USA
| | - Sabrena Tuy
- Department of Neurobiology, UC San Diego, La Jolla, CA 92093, USA
| | - Jie Zhang
- Department of Neurobiology, UC San Diego, La Jolla, CA 92093, USA
| | - Robyn St. Laurent
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew B. Pomrenze
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Parnaz Boroon
- Department of Neurobiology, UC San Diego, La Jolla, CA 92093, USA
| | - Boris Heifets
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Monique Smith
- Department of Neurobiology, UC San Diego, La Jolla, CA 92093, USA
| | - Robert C. Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
10
|
Han Y, Ai L, Sha S, Zhou J, Fu H, Sun C, Liu R, Li A, Cao JL, Hu A, Zhang H. The functional role of the visual and olfactory modalities in the development of socially transferred mechanical hypersensitivity in male C57BL/6J mice. Physiol Behav 2024; 277:114499. [PMID: 38378074 DOI: 10.1016/j.physbeh.2024.114499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/27/2024] [Accepted: 02/17/2024] [Indexed: 02/22/2024]
Abstract
An increasing body of evidence suggests that the state of hyperalgesia could be socially transferred from one individual to another through a brief empathetic social contact. However, how the social transfer of pain develops during social contact is not well-known. Utilizing a well-established mouse model, the present study aims to study the functional role of visual and olfactory cues in the development of socially-transferred mechanical hypersensitivity. Behavioral tests demonstrated that one hour of brief social contact with a conspecific mouse injected with complete Freund's adjuvant (CFA) was both sufficient and necessary for developing socially-transferred mechanical hypersensitivity. One hour of social contact with visual deprivation could not prevent the development of socially-transferred mechanical hypersensitivity, and screen observation of a CFA cagemate was not sufficient to develop socially-transferred mechanical hypersensitivity in bystanders. Methimazole-induced olfactory deprivation, a compound with reversible toxicity on the nasal olfactory epithelium, was sufficient to prevent the development of socially-transferred mechanical hypersensitivity. Intriguingly, repeated but not acute olfactory exposure to the CFA mouse bedding induced a robust decrease in 50 % paw withdrawal thresholds (50 %PWTs) to mechanical stimuli, an effect returned to the baseline level after two days of washout with clean bedding. The findings strongly indicate that the normal olfactory function is crucial for the induction of mechanical hypersensitivity through brief empathetic contact, offering valuable insights for animal housing in future pain research.
Collapse
Affiliation(s)
- Yi Han
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, PR China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, PR China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Lin Ai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, PR China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, PR China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Sha Sha
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, PR China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, PR China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Jingwei Zhou
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou 221004, PR China; Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Hanyu Fu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou 221004, PR China; Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Changcheng Sun
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou 221004, PR China; Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Ruiqi Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou 221004, PR China; Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou 221004, PR China; Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, PR China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, PR China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, PR China; Department of Anesthesiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Ankang Hu
- Laboratory Animal Center of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, PR China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, PR China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, PR China.
| |
Collapse
|
11
|
Zhang Y, Luo W, Heinricher MM, Ryabinin AE. CFA-treated mice induce hyperalgesia in healthy mice via an olfactory mechanism. Eur J Pain 2024; 28:578-598. [PMID: 37985943 PMCID: PMC10947942 DOI: 10.1002/ejp.2201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/04/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Social interactions with subjects experiencing pain can increase nociceptive sensitivity in observers, even without direct physical contact. In previous experiments, extended indirect exposure to soiled bedding from mice with alcohol withdrawal-related hyperalgesia enhanced nociception in their conspecifics. This finding suggested that olfactory cues could be sufficient for nociceptive hypersensitivity in otherwise untreated animals (also known as "bystanders"). AIM The current study addressed this possibility using an inflammation-based hyperalgesia model and long- and short-term exposure paradigms in C57BL/6J mice. MATERIALS & METHOD Adult male and female mice received intraplantar injection of complete Freund's adjuvant (CFA) and were used as stimulus animals to otherwise naïve same-sex bystander mice (BS). Another group of untreated mice (OLF) was simultaneously exposed to the bedding of the stimulus mice. RESULTS In the long-term, 15-day exposure paradigm, the presence of CFA mice or their bedding resulted in reduced von Frey threshold but not Hargreaves paw withdrawal latency in BS or OLF mice. In the short-term paradigm, 1-hr interaction with CFA conspecifics or 1-hr exposure to their bedding induced mechanical hypersensitivity in BS and OLF mice lasting for 3 hrs. Chemical ablation of the main olfactory epithelium prevented bedding-induced and stimulus mice-induced mechanical hypersensitivity. Gas chromatography-mass spectrometry (GC-MS) analysis of the volatile compounds in the bedding of experimental mice revealed that CFA-treated mice released an increased number of compounds indicative of disease states. DISCUSSION AND CONCLUSION These results demonstrate that CFA-induced inflammatory pain can modulate nociception in bystander mice via an olfactory mechanism involving dynamic changes in volatile compounds detectable in the rodent bedding. SIGNIFICANCE Social context can influence nociceptive sensitivity. Recent studies suggested involvement of olfaction in this influence. In agreement with this idea, the present study shows that the presence of mice with inflammatory pain produces nociceptive hypersensitivity in nearby conspecifics. This enhanced nociception occurs via olfactory cues present in the mouse bedding. Analysis of the bedding from mice with inflammatory pain identifies a number of compounds indicative of disease states. These findings demonstrate the importance of olfactory system in influencing pain states.
Collapse
Affiliation(s)
- Yangmiao Zhang
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | - Wentai Luo
- Department of Chemistry, Portland State University, Portland, OR 97207
| | - Mary M. Heinricher
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR 97239
| | - Andrey E. Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
12
|
Sant'Anna MB, Kimura LF, Vieira WF, Zambelli VO, Novaes LS, Hösch NG, Picolo G. Environmental factors and their impact on chronic pain development and maintenance. Phys Life Rev 2024; 48:176-197. [PMID: 38320380 DOI: 10.1016/j.plrev.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
It is more than recognized and accepted that the environment affects the physiological responses of all living things, from bacteria to superior vertebrates, constituting an important factor in the evolution of all species. Environmental influences range from natural processes such as sunlight, seasons of the year, and rest to complex processes like stress and other mood disorders, infections, and air pollution, being all of them influenced by how each creature deals with them. In this chapter, it will be discussed how some of the environmental elements affect directly or indirectly neuropathic pain, a type of chronic pain caused by a lesion or disease of the somatosensory nervous system. For that, it was considered the edge of knowledge in translational research, thus including data from human and experimental animals as well as the applicability of such findings.
Collapse
Affiliation(s)
| | - Louise Faggionato Kimura
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, Brazil; Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Willians Fernando Vieira
- Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | | | - Leonardo Santana Novaes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Gisele Picolo
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, Brazil.
| |
Collapse
|
13
|
Aguilar J, De Carvalho LM, Chen H, Condon R, Lasek AW, Pradhan AA. Histone deacetylase inhibitor decreases hyperalgesia in a mouse model of alcohol withdrawal-induced hyperalgesia. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:478-487. [PMID: 38378262 PMCID: PMC10940188 DOI: 10.1111/acer.15273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Alcohol withdrawal-induced hyperalgesia (AWH) is characterized as an increased pain sensitivity observed after cessation of chronic alcohol use. Alcohol withdrawal-induced hyperalgesia can contribute to the negative affective state associated with abstinence and can increase susceptibility to relapse. We aimed to characterize pain sensitivity in mice during withdrawal from two different models of alcohol exposure: chronic drinking in the dark (DID) and the Lieber-DeCarli liquid diet. We also investigated whether treatment with a histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA), could ameliorate AWH in mice treated with the Lieber-DeCarli diet. METHODS Male and female C57BL/6J mice were used for these studies. In the DID model, mice received bottles of 20% ethanol or water during the dark cycle for 4 h per day on four consecutive days per week for 6 weeks. Peripheral mechanical sensitivity was measured weekly the morning of Day 5 using von Frey filaments. In the Lieber-DeCarli model, mice received ethanol (5% v/v) or control liquid diet for 10 days, along with a single binge ethanol gavage (5 g/kg) or control gavage, respectively, on Day 10. Peripheral mechanical sensitivity was measured during the liquid diet administration and at 24 and 72 h into ethanol withdrawal. An independent group of mice that received the Lieber-DeCarli diet were administered SAHA (50 mg/kg, i.p.) during withdrawal. RESULTS Male mice exhibited mechanical hypersensitivity after consuming ethanol for 5 weeks in the DID procedure. In the Lieber-DeCarli model, ethanol withdrawal led to hyperalgesia in both sexes. Suberoylanilide hydroxamic acid treatment during withdrawal from the ethanol liquid diet alleviated AWH. CONCLUSIONS These results demonstrate AWH in mice after chronic binge drinking in males and after Lieber-DeCarli liquid diet administration in both sexes. Like previous findings in rats, HDAC inhibition reduced AWH in mice, suggesting that epigenetic mechanisms are involved in AWH.
Collapse
Affiliation(s)
- Jhoan Aguilar
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago IL USA
| | - Luana Martins De Carvalho
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago IL USA
| | - Hu Chen
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago IL USA
| | - Ryan Condon
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago IL USA
| | - Amy W. Lasek
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago IL USA
| | - Amynah A. Pradhan
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago IL USA
| |
Collapse
|
14
|
Pluma-Pluma A, García G, Murbartián J. Chronic restraint stress and social transfer of stress produce tactile allodynia mediated by the HMGB1/TNFα/TNFR1 pathway in female and male rats. Physiol Behav 2024; 274:114418. [PMID: 38042454 DOI: 10.1016/j.physbeh.2023.114418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/17/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Previous studies have shown the relevance of high mobility group box 1 protein (HMGB1) and tumor necrosis factor α (TNFα) in nerve or tissue injury-induced nociception. However, the role of these proteins in chronic stress and social transfer of stress (STS)-induced dysfunctional pain is not entirely known. The aim of this study was to determine the participation of the spinal HMGB1-TNFα signaling pathway and TNFα receptor 1 (TNFR1) in rats subjected to chronic restraint stress (CRS) and STS. Non-stressed female and male rats in contact with CRS rats increased sniffing behavior of the anogenital area, behavior related to STS. Rats subjected to CRS and STS reduced 50 % withdrawal threshold and reached the value of tactile allodynia after 21 days of stress. Rats return to the basal withdrawal threshold after 30 days without stress and return to allodynia values in only 5 days of stress sessions (priming). Female and male rats subjected to 28 days of CRS or STS were intrathecal injected with glycyrrhizin (inhibitor of HMGB1), thalidomide (inhibitor of the TNFα synthesis), and R7050 (TNFR1 antagonist), in all the cases, an antiallodynic effect was observed. Rats under CRS or STS enhanced HMGB1 and TNFR1 protein expression in DRG and dorsal spinal cord. Data suggest that the spinal HMGB1/TNFα/TNFR1 signaling pathway plays a relevant role in the maintenance of CRS and STS-induced nociceptive hypersensitivity in rats. These proteins could be helpful in developing pain treatments for fibromyalgia in humans.
Collapse
Affiliation(s)
- Alejandro Pluma-Pluma
- Departamento de Farmacobiología, Cinvestav, Calzada de los Tenorios 235, Colonia Granjas Coapa, 14330, South Campus, Mexico City, Mexico
| | - Guadalupe García
- Departamento de Farmacobiología, Cinvestav, Calzada de los Tenorios 235, Colonia Granjas Coapa, 14330, South Campus, Mexico City, Mexico
| | - Janet Murbartián
- Departamento de Farmacobiología, Cinvestav, Calzada de los Tenorios 235, Colonia Granjas Coapa, 14330, South Campus, Mexico City, Mexico.
| |
Collapse
|
15
|
Ueno H, Takahashi Y, Mori S, Murakami S, Wani K, Matsumoto Y, Okamoto M, Ishihara T. Mice Recognise Mice in Neighbouring Rearing Cages and Change Their Social Behaviour. Behav Neurol 2024; 2024:9215607. [PMID: 38264671 PMCID: PMC10805542 DOI: 10.1155/2024/9215607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024] Open
Abstract
Mice are social animals that change their behaviour primarily in response to visual, olfactory, and auditory information from conspecifics. Rearing conditions such as cage size and colour are important factors influencing mouse behaviour. In recent years, transparent plastic cages have become standard breeding cages. The advantage of using a transparent cage is that the experimenter can observe the mouse from outside the cage without touching the cage. However, mice may recognise the environment outside the cage and change their behaviour. We speculated that mice housed in transparent cages might recognise mice in neighbouring cages. We used only male mice in this experiment. C57BL/6 mice were kept in transparent rearing cages with open lids, and the cage positions were maintained for 3 weeks. Subsequently, we examined how mice behaved toward cagemate mice, mice from neighbouring cages, and mice from distant cages. We compared the level of interest in mice using a social preference test. Similar to previous reports, subject mice showed a high degree of interest in unfamiliar mice from distant cages. By contrast, subject mice reacted to mice from neighbouring cages as familiar mice, similar to cagemate mice. This suggests that mice housed in transparent cages with open lids perceive the external environment and identify mice in neighbouring cages. Researchers should pay attention to the environment outside the mouse cage, especially for the social preference test.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Medical Technology, Kawasaki University of Medical Welfare, Okayama 701-0193, Japan
| | - Yu Takahashi
- Department of Psychiatry, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Sachiko Mori
- Department of Psychiatry, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Shinji Murakami
- Department of Psychiatry, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Kenta Wani
- Department of Psychiatry, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Yosuke Matsumoto
- Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama 700-8558, Japan
| | - Takeshi Ishihara
- Department of Psychiatry, Kawasaki Medical School, Kurashiki 701-0192, Japan
| |
Collapse
|
16
|
Ueno H, Takahashi Y, Murakami S, Wani K, Matsumoto Y, Okamoto M, Ishihara T. Effects of home-cage elevation on behavioral tests in mice. Brain Behav 2023; 14:e3269. [PMID: 38064177 PMCID: PMC10897499 DOI: 10.1002/brb3.3269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/06/2023] [Accepted: 09/24/2023] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Research reproducibility is a common problem in preclinical behavioral science. Mice are an important animal model for studying human behavioral disorders. Experimenters, processing methods, and rearing environments are the main causes of data variability in behavioral neuroscience. It is likely that mice adapt their behavior according to the environment outside the breeding cage. We speculated that mice housed on elevated shelves and mice housed on low shelves might have differently altered anxiety-like behavior toward heights. PURPOSE The purpose of this study was to investigate potential behavioral changes in mice raised at different heights for 3 weeks. Changes in behavior were examined using various experimental tests. RESULTS Mice housed on elevated shelves showed reduced anxiety-like behavior in a light/dark traffic test compared with mice housed on low shelves. There were no significant differences between the two groups in terms of activity, exploratory behavior, muscle strength, or depression-like behavior. CONCLUSIONS Our results indicate that different cage heights and corresponding light exposure may alter the anxiety-like behavior of mice in response to brightness. Researchers need to carefully control the cage height and light intensity experienced by the mice to produce reproducible test results.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Medical TechnologyKawasaki University of Medical WelfareOkayamaJapan
| | - Yu Takahashi
- Department of PsychiatryKawasaki Medical SchoolKurashikiJapan
| | - Shinji Murakami
- Department of PsychiatryKawasaki Medical SchoolKurashikiJapan
| | - Kenta Wani
- Department of PsychiatryKawasaki Medical SchoolKurashikiJapan
| | - Yosuke Matsumoto
- Department of Neuropsychiatry, Graduate School of MedicineDentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health SciencesOkayama UniversityOkayamaJapan
| | | |
Collapse
|
17
|
Keysers C, Gazzola V. Vicarious Emotions of Fear and Pain in Rodents. AFFECTIVE SCIENCE 2023; 4:662-671. [PMID: 38156261 PMCID: PMC10751282 DOI: 10.1007/s42761-023-00198-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/24/2023] [Indexed: 12/30/2023]
Abstract
Affective empathy, the ability to share the emotions of others, is an important contributor to the richness of our emotional experiences. Here, we review evidence that rodents show signs of fear and pain when they witness the fear and pain of others. This emotional contagion creates a vicarious emotion in the witness that mirrors some level of detail of the emotion of the demonstrator, including its valence and the vicinity of threats, and depends on brain regions such as the cingulate, amygdala, and insula that are also at the core of human empathy. Although it remains impossible to directly know how witnessing the distress of others feels for rodents, and whether this feeling is similar to the empathy humans experience, the similarity in neural structures suggests some analogies in emotional experience across rodents and humans. These neural homologies also reveal that feeling distress while others are distressed must serve an evolutionary purpose strong enough to warrant its stability across ~ 100 millions of years. We propose that it does so by allowing observers to set in motion the very emotions that have evolved to prepare them to deal with threats - with the benefit of triggering them socially, by harnessing conspecifics as sentinels, before the witness personally faces that threat. Finally, we discuss evidence that rodents can engage in prosocial behaviors that may be motivated by vicarious distress or reward.
Collapse
Affiliation(s)
- Christian Keysers
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Valeria Gazzola
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Jiang J, Tan S, Feng X, Peng Y, Long C, Yang L. Distinct ACC Neural Mechanisms Underlie Authentic and Transmitted Anxiety Induced by Maternal Separation in Mice. J Neurosci 2023; 43:8201-8218. [PMID: 37845036 PMCID: PMC10697407 DOI: 10.1523/jneurosci.0558-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/18/2023] Open
Abstract
It is known that humans and rodents are capable of transmitting stress to their naive partners via social interaction. However, a comprehensive understanding of transmitted stress, which may differ from authentic stress, thus revealing unique neural mechanisms of social interaction resulting from transmitted stress and the associated anxiety, is missing. We used, in the present study, maternal separation (MS) as a stress model to investigate whether MS causes abnormal behavior in adolescence. A key concern in the analysis of stress transmission is whether the littermates of MS mice who only witness MS stress ("Partners") exhibit behavioral abnormalities similar to those of MS mice themselves. Of special interest is the establishment of the neural mechanisms underlying transmitted stress and authentic stress. The results show that Partners, similar to MS mice, exhibit anxiety-like behavior and hyperalgesia after witnessing littermates being subjected to early-life repetitive MS. Electrophysiological analysis revealed that mice subjected to MS demonstrate a reduction in both the excitatory and inhibitory synaptic activities of parvalbumin interneurons (PVINs) in the anterior cingulate cortex (ACC). However, Partners differed from MS mice in showing an increase in the number and excitability of GABAergic PVINs in the ACC and in the ability of chemogenetic PVIN inactivation to eliminate abnormal behavior. Furthermore, the social transfer of anxiety-like behavior required intact olfactory, but not visual, perception. This study suggests a functional involvement of ACC PVINs in mediating the distinct neural basis of transmitted anxiety.SIGNIFICANCE STATEMENT The anterior cingulate cortex (ACC) is a critical brain area in physical and social pain and contributes to the exhibition of abnormal behavior. ACC glutamatergic neurons have been shown to encode transmitted stress, but it remains unclear whether inhibitory ACC neurons also play a role. We evaluate, in this study, ACC neuronal, synaptic and network activities and uncover a critical role of parvalbumin interneurons (PVINs) in the expression of transmitted stress in adolescent mice who had witnessed MS of littermates in infancy. Furthermore, inactivation of ACC PVINs blocks transmitted stress. The results suggest that emotional contagion has a severe effect on brain function, and identify a potential target for the treatment of transmitted anxiety.
Collapse
Affiliation(s)
- Jinxiang Jiang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shuyi Tan
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaoyi Feng
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yigang Peng
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Li Yang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
19
|
de C Williams AC. Pain: Behavioural expression and response in an evolutionary framework. Evol Med Public Health 2023; 11:429-437. [PMID: 38022798 PMCID: PMC10656790 DOI: 10.1093/emph/eoad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
An evolutionary perspective offers insights into the major public health problem of chronic (persistent) pain; behaviours associated with it perpetuate both pain and disability. Pain is motivating, and pain-related behaviours promote recovery by immediate active or passive defence; subsequent protection of wounds; suppression of competing responses; energy conservation; vigilance to threat; and learned avoidance of associated cues. When these persist beyond healing, as in chronic pain, they are disabling. In mammals, facial and bodily expression of pain is visible and identifiable by others, while social context, including conspecifics' responses, modulate pain. Studies of responses to pain emphasize onlooker empathy, but people with chronic pain report feeling disbelieved and stigmatized. Observers frequently discount others' pain, best understood in terms of cheater detection-alertness to free riders that underpins the capacity for prosocial behaviours. These dynamics occur both in everyday life and in clinical encounters, providing an account of the adaptiveness of pain-related behaviours.
Collapse
Affiliation(s)
- Amanda C de C Williams
- Research Department of Clinical, Educational & Health Psychology, University College London, Gower St, London WC1E 6BT, UK
| |
Collapse
|
20
|
Misiołek K, Klimczak M, Chrószcz M, Szumiec Ł, Bryksa A, Przyborowicz K, Rodriguez Parkitna J, Harda Z. Prosocial behavior, social reward and affective state discrimination in adult male and female mice. Sci Rep 2023; 13:5583. [PMID: 37019941 PMCID: PMC10076499 DOI: 10.1038/s41598-023-32682-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Prosocial behavior, defined as voluntary behavior intended to benefit another, has long been regarded as a primarily human characteristic. In recent years, it was reported that laboratory animals also favor prosocial choices in various experimental paradigms, thus demonstrating that prosocial behaviors are evolutionarily conserved. Here, we investigated prosocial choices in adult male and female C57BL/6 laboratory mice in a task where a subject mouse was equally rewarded for entering any of the two compartments of the experimental cage, but only entering of the compartment designated as "prosocial" rewarded an interaction partner. In parallel we have also assessed two traits that are regarded as closely related to prosociality: sensitivity to social reward and the ability to recognize the affective state of another individual. We found that female, but not male, mice increased frequency of prosocial choices from pretest to test. However, both sexes showed similar rewarding effects of social contact in the conditioned place preference test, and similarly, there was no effect of sex on affective state discrimination measured as the preference for interaction with a hungry or relieved mouse over a neutral animal. These observations bring interesting parallels to differences between sexes observed in humans, and are in line with reported higher propensity for prosocial behavior in human females, but differ with regard to sensitivity to social stimuli in males.
Collapse
Affiliation(s)
- Klaudia Misiołek
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland
| | - Marta Klimczak
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland
| | - Magdalena Chrószcz
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland
| | - Łukasz Szumiec
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland
| | - Anna Bryksa
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Karolina Przyborowicz
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland
| | - Jan Rodriguez Parkitna
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland.
| | - Zofia Harda
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland.
| |
Collapse
|
21
|
Chronic stress and stressful emotional contagion affect the empathy-like behavior of rats. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023:10.3758/s13415-023-01081-9. [PMID: 36899132 DOI: 10.3758/s13415-023-01081-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 03/12/2023]
Abstract
Empathy is a potential motivation for prosocial behaviors that is related to many psychiatric diseases, such as major depressive disorder; however, its neural mechanisms remain unclear. To elucidate the relationship between empathy and stress, we established a chronic stress contagion (SC) procedure combined with chronic unpredictable mild stress (CUMS) to investigate (1) whether depressive rats show impaired empathy-like behavior toward fearful conspecifics, (2) whether frequent social contact with normal familiar conspecifics (social support) alleviates the negative effects of CUMS, and (3) the effect of long-term exposure to a depressed partner on emotional and empathic responses in normal rats. We found that the CUMS group showed less empathy-like behavior in the social transfer of fear model (STFM), as indicated by less social interaction with the demonstrator and reduced freezing behavior in the fear-expression test. Social contact partially alleviated depression-like behaviors and the negative effect of CUMS in the fear-transfer test. The normal rats who experienced stress contagion from daily exposure to a depressed partner for 3 weeks showed lower anxiety and increased social response in the fear-transfer test than the control group. We concluded that chronic stress impairs empathy-like behaviors, while social contact partially buffers the effect of CUMS. Thus, social contact or contagion of stress is mutually beneficial to both stressed individuals and nonstressed partners. Higher dopamine and lower norepinephrine levels in the basolateral amygdala probably contributed to these beneficial effects.
Collapse
|
22
|
Behavioral Voluntary and Social Bioassays Enabling Identification of Complex and Sex-Dependent Pain-(-Related) Phenotypes in Rats with Bone Cancer. Cancers (Basel) 2023; 15:cancers15051565. [PMID: 36900357 PMCID: PMC10000428 DOI: 10.3390/cancers15051565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/06/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Cancer-induced bone pain (CIBP) is a common and devastating symptom with limited treatment options in patients, significantly affecting their quality of life. The use of rodent models is the most common approach to uncovering the mechanisms underlying CIBP; however, the translation of results to the clinic may be hindered because the assessment of pain-related behavior is often based exclusively on reflexive-based methods, which are only partially indicative of relevant pain in patients. To improve the accuracy and strength of the preclinical, experimental model of CIBP in rodents, we used a battery of multimodal behavioral tests that were also aimed at identifying rodent-specific behavioral components by using a home-cage monitoring assay (HCM). Rats of all sexes received an injection with either heat-deactivated (sham-group) or potent mammary gland carcinoma Walker 256 cells into the tibia. By integrating multimodal datasets, we assessed pain-related behavioral trajectories of the CIBP-phenotype, including evoked and non-evoked based assays and HCM. Using principal component analysis (PCA), we discovered sex-specific differences in establishing the CIBP-phenotype, which occurred earlier (and differently) in males. Additionally, HCM phenotyping revealed the occurrence of sensory-affective states manifested by mechanical hypersensitivity in sham when housed with a tumor-bearing cagemate (CIBP) of the same sex. This multimodal battery allows for an in-depth characterization of the CIBP-phenotype under social aspects in rats. The detailed, sex-specific, and rat-specific social phenotyping of CIBP enabled by PCA provides the basis for mechanism-driven studies to ensure robustness and generalizability of results and provide information for targeted drug development in the future.
Collapse
|
23
|
Wu WY, Cheng Y, Liang KC, Lee RX, Yen CT. Affective mirror and anti-mirror neurons relate to prosocial help in rats. iScience 2023; 26:105865. [PMID: 36632059 PMCID: PMC9826941 DOI: 10.1016/j.isci.2022.105865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/12/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Although empathic emotion is closely related to prosocial behavior, neuronal substrate that accounts for empathy-associated prosocial action remains poorly understood. We recorded neurons in the anterior cingulate cortex (ACC) and insular cortex (InC) in rats when they observed another rat in pain. We discovered neurons with anti-mirror properties in the ACC and InC, in addition to those with mirror properties. ACC neurons show higher coupling between activation of self-in-pain and others-in-pain, whereas the InC has a higher ratio of neurons with anti-mirror properties. During others-in-pain, ACC neurons activated more when actively nose-poking toward others and InC neurons activated more when freezing. To further illustrate prosocial function, we examined neuronal activities in the helping behavior test. Both ACC and InC neurons showed specific activation to rat rescuing which is contributed by mirror, but not anti-mirror neurons. Our work indicates the functional involvement of mirror neuron system in prosocial behaviors.
Collapse
Affiliation(s)
- Wen-Yi Wu
- Department of Psychology, Cornell University, Ithaca, NY 14850, USA
| | - Yawei Cheng
- Institute of Neuroscience, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Keng-Chen Liang
- Department of Psychology, National Taiwan University, Taipei 10617, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei 10617, Taiwan
| | - Ray X. Lee
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St, Cambridge, MA 02139, USA
- Program in Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Chen-Tung Yen
- Department of Life Science, National Taiwan University, 1 Roosevelt Road Sec. 4, Taipei 10617, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
24
|
Walsh JJ, Christoffel DJ, Malenka RC. Neural circuits regulating prosocial behaviors. Neuropsychopharmacology 2023; 48:79-89. [PMID: 35701550 PMCID: PMC9700801 DOI: 10.1038/s41386-022-01348-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 11/09/2022]
Abstract
Positive, prosocial interactions are essential for survival, development, and well-being. These intricate and complex behaviors are mediated by an amalgamation of neural circuit mechanisms working in concert. Impairments in prosocial behaviors, which occur in a large number of neuropsychiatric disorders, result from disruption of the coordinated activity of these neural circuits. In this review, we focus our discussion on recent findings that utilize modern approaches in rodents to map, monitor, and manipulate neural circuits implicated in a variety of prosocial behaviors. We highlight how modulation by oxytocin, serotonin, and dopamine of excitatory and inhibitory synaptic transmission in specific brain regions is critical for regulation of adaptive prosocial interactions. We then describe how recent findings have helped elucidate pathophysiological mechanisms underlying the social deficits that accompany neuropsychiatric disorders. We conclude by discussing approaches for the development of more efficacious and targeted therapeutic interventions to ameliorate aberrant prosocial behaviors.
Collapse
Affiliation(s)
- Jessica J Walsh
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27514, USA.
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA.
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27514, USA.
| | - Daniel J Christoffel
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27514, USA
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Robert C Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5453, USA.
| |
Collapse
|
25
|
Morgan A, Adank D, Johnson K, Butler E, Patel S. 2-Arachidonoylglycerol-mediated endocannabinoid signaling modulates mechanical hypersensitivity associated with alcohol withdrawal in mice. Alcohol Clin Exp Res 2022; 46:2010-2024. [PMID: 36125319 PMCID: PMC10091740 DOI: 10.1111/acer.14949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Alcohol use disorder (AUD) commonly occurs in patients with chronic pain, and a major barrier to achieving abstinence and preventing relapse is the emergence of hyperalgesia during alcohol withdrawal. Elucidating novel therapeutic approaches to target hyperalgesia associated with alcohol withdrawal could have important implications for treating AUD. Here, we examined the role of 2-arachidonoylglycerol (2-AG)-mediated endocannabinoid (eCB) signaling in the regulation of hyperalgesia associated with alcohol withdrawal in mice. We tested the hypothesis that pharmacological augmentation of 2-AG signaling could reduce hyperalgesia during withdrawal. METHODS Male and female C57BL/6J mice were tested during withdrawal from a continuous access two-bottle choice (2BC) paradigm to investigate how eCB signaling modulates mechanical and thermal sensitivity during withdrawal. Mice were pretreated with the monoacylglycerol lipase (MAGL) inhibitor JZL184 to elevate levels of 2-AG. Rimonabant or AM630 were given to block CB1 and CB2 receptor activity, respectively. DO34 was given to reduce 2-AG by inhibiting the 2-AG synthetic enzyme diacylglycerol lipase (DAGL). RESULTS After 72 h of withdrawal, male and female mice exhibited increased mechanical, but not thermal, hypersensitivity, which normalized by 7 days. This effect was reversed by pretreatment with JZL184. The effects of JZL184 were prevented by coadministration of either the CB1 or the CB2 antagonist. DO34, Rimonabant, and AM630 exacerbated mechanical hypersensitivity during alcohol withdrawal, causing an earlier onset and persistent hypersensitivity even 1 week into withdrawal. CONCLUSIONS Our findings demonstrate the critical role of 2-AG signaling in the bidirectional regulation of mechanical sensitivity during alcohol withdrawal, with enhancement of 2-AG levels reducing sensitivity, and inhibition of 2-AG signaling exacerbating sensitivity. These data suggest that 2-AG augmentation represents a novel approach to the treatment of alcohol withdrawal-associated hyperalgesia and AUD in patients with comorbid pain disorders.
Collapse
Affiliation(s)
- Amanda Morgan
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Danielle Adank
- Vanderbilt Brain Institute, Vanderbilt UniversityNashvilleTennesseeUSA
| | - Keenan Johnson
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Emily Butler
- Interdisciplinary Program in NeuroscienceVanderbilt UniversityNashvilleTennesseeUSA
| | - Sachin Patel
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| |
Collapse
|
26
|
Rein B, Jones E, Tuy S, Boustani C, Johnson JA, Malenka RC, Smith ML. Protocols for the social transfer of pain and analgesia in mice. STAR Protoc 2022; 3:101756. [PMID: 36227742 PMCID: PMC9576629 DOI: 10.1016/j.xpro.2022.101756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 09/16/2022] [Indexed: 11/05/2022] Open
Abstract
We provide protocols for the social transfer of pain and analgesia in mice. We describe the steps to induce pain or analgesia (pain relief) in bystander mice with a 1-h social interaction with a partner injected with CFA (complete Freund's adjuvant) or CFA and morphine, respectively. We detail behavioral tests to assess pain or analgesia in the untreated bystander mice. This protocol has been validated in mice and rats and can be used for investigating mechanisms of empathy. For complete details on the use and execution of this protocol, please refer to Smith et al. (2021).
Collapse
Affiliation(s)
- Benjamin Rein
- Nancy Pritzker Laboratory, Department of Psychiatry & Behavioral Sciences, Stanford University, Palo Alto, CA 94306, USA
| | - Erin Jones
- Department of Psychological Sciences, University of San Diego, San Diego, CA 92110, USA
| | - Sabrena Tuy
- Department of Psychological Sciences, University of San Diego, San Diego, CA 92110, USA
| | - Cali Boustani
- Department of Psychological Sciences, University of San Diego, San Diego, CA 92110, USA
| | - Julia A. Johnson
- Department of Psychological Sciences, University of San Diego, San Diego, CA 92110, USA
| | - Robert C. Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry & Behavioral Sciences, Stanford University, Palo Alto, CA 94306, USA
| | - Monique L. Smith
- Nancy Pritzker Laboratory, Department of Psychiatry & Behavioral Sciences, Stanford University, Palo Alto, CA 94306, USA,Corresponding author
| |
Collapse
|
27
|
Jhumka ZA, Abdus-Saboor IJ. Next generation behavioral sequencing for advancing pain quantification. Curr Opin Neurobiol 2022; 76:102598. [PMID: 35780688 DOI: 10.1016/j.conb.2022.102598] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022]
Abstract
With symptoms such as spontaneous pain and pathologically heightened sensitivity to stimuli, chronic pain accounts for about 20% of physician visits and up to 2/3 of patients are dissatisfied with current treatments. Much of our knowledge on pain processing and analgesics has emerged from behavioral studies performed on animals presenting the same symptoms under pathological conditions. While humans can verbally describe their pain, studies on rodents have relied on behavioral assays providing non-exhaustive characterization or altering animals' original sensitivity through repetitive stimulations. The emergence of what we term "next-generation behavioral sequencing" is now permitting us to quantitatively describe behavioral features on millisecond to minutes long timescales that lie beyond easy detection with the unaided eye. Here, we summarize emerging videography and computational based behavioral approaches that have the potential to significantly improve pain research.
Collapse
Affiliation(s)
- Z Anissa Jhumka
- Zuckerman Mind Brain Behavior Institute and Department of Biological Sciences, Columbia University, New York, NY, USA. https://twitter.com/AnissaJhumka
| | - Ishmail J Abdus-Saboor
- Zuckerman Mind Brain Behavior Institute and Department of Biological Sciences, Columbia University, New York, NY, USA. ia2458columbia.edu
| |
Collapse
|
28
|
Can olfactory training change the psychosocial aspects of chronic pain? Explore (NY) 2022:S1550-8307(22)00196-3. [DOI: 10.1016/j.explore.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/24/2022]
|
29
|
Toyoshima M, Okuda E, Hasegawa N, Kaseda K, Yamada K. Socially Transferred Stress Experience Modulates Social Affective Behaviors in Rats. Neuroscience 2022; 502:68-76. [PMID: 36064051 DOI: 10.1016/j.neuroscience.2022.08.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022]
Abstract
Social communication of affective states between individuals, as well as actual experiences, influences their internal states and behaviors. Although prior stress experiences promote empathy-like behaviors, it remains unclear whether the social transmission of stress events modulates these behaviors. Here, we provide evidence that transferred stress experiences from cage mates modulate socioaffective approach-avoidance behaviors in rats. Male Wistar-Imamichi rats were assigned to one of five experimental groups (Control (n = 15); no shock with shocked cage mates (n = 15); low (0.1 mA, n = 15), middle (0.5 mA, n = 14), and high shock (1.0 mA, n = 14)). Except for the naïve and housed with stressed mate groups, rats received two foot-shocks (5 s for each). The next day, the subjects were allowed to explore two unfamiliar conspecifics; one was a naïve, while the other was a distressed conspecific that received two foot-shocks (1.0 mA, 5 s) immediately before the test. Rats that were housed with stressed mates, as well as those that experienced a higher intensity of foot-shocks, were more likely to approach, while naïve rats avoided, a distressed conspecific. These results suggest that socially transferred stress shifts socioaffective response styles from avoidance to approach toward a stressed conspecific in rats.
Collapse
Affiliation(s)
- Michimasa Toyoshima
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan; JSPS Research Fellow, Japan Society for the Promotion of Science, Chiyoda, Tokyo 102-0083, Japan.
| | - Eri Okuda
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Natsu Hasegawa
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Kodai Kaseda
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Kazuo Yamada
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan.
| |
Collapse
|
30
|
Keysers C, Knapska E, Moita MA, Gazzola V. Emotional contagion and prosocial behavior in rodents. Trends Cogn Sci 2022; 26:688-706. [PMID: 35667978 DOI: 10.1016/j.tics.2022.05.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 01/09/2023]
Abstract
Empathy is critical to adjusting our behavior to the state of others. The past decade dramatically deepened our understanding of the biological origin of this capacity. We now understand that rodents robustly show emotional contagion for the distress of others via neural structures homologous to those involved in human empathy. Their propensity to approach others in distress strengthens this effect. Although rodents can also learn to favor behaviors that benefit others via structures overlapping with those of emotional contagion, they do so less reliably and more selectively. Together, this suggests evolution selected mechanisms for emotional contagion to prepare animals for dangers by using others as sentinels. Such shared emotions additionally can, under certain circumstances, promote prosocial behavior.
Collapse
Affiliation(s)
- Christian Keysers
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Amsterdam, the Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands.
| | - Ewelina Knapska
- Laboratory of Emotions' Neurobiology, Center of Excellence for Neural Plasticity and Brain Disorders BRAINCITY, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marta A Moita
- Champalimaud Neuroscience Progamme, Champalimaud Foundation, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Valeria Gazzola
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Amsterdam, the Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
31
|
Ueno H, Takahashi Y, Murakami S, Wani K, Matsumoto Y, Okamoto M, Ishihara T. Effect of simultaneous testing of two mice in the tail suspension test and forced swim test. Sci Rep 2022; 12:9224. [PMID: 35654971 PMCID: PMC9163059 DOI: 10.1038/s41598-022-12986-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022] Open
Abstract
In mouse studies, the results of behavioural experiments are greatly affected by differences in the experimental environment and handling methods. The Porsolt forced swim test and tail suspension test are widely used to evaluate predictive models of depression-like behaviour in mice. It has not been clarified how the results of these tests are affected by testing single or multiple mice simultaneously. Therefore, this study evaluated the differences between testing two mice simultaneously or separately. To investigate the effect of testing multiple mice simultaneously, the Porsolt forced swim test and tail suspension test were performed in three patterns: (1) testing with an opaque partition between two mice, (2) testing without a partition between two mice, and (3) testing a single mouse. In the Porsolt forced swim test, the mice tested simultaneously without a partition demonstrated increased immobility time as compared to mice tested alone. No difference in immobility time was observed between the three groups in the tail suspension test. Our results showed that the environment of behavioural experiments investigating depression-like behaviour in mice can cause a difference in depression-like behaviour. The results of this experiment indicated that it is necessary to describe the method used for behavioural testing in detail.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Medical Technology, Kawasaki University of Medical Welfare, 288, Matsushima, Kurashiki, Okayama, 701-0193, Japan.
| | - Yu Takahashi
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Shinji Murakami
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Kenta Wani
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Yosuke Matsumoto
- Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Takeshi Ishihara
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| |
Collapse
|
32
|
Alavi M, Ryabinin AE, Helms ML, Nipper MA, Devaud LL, Finn DA. Sensitivity and Resilience to Predator Stress-Enhanced Ethanol Drinking Is Associated With Sex-Dependent Differences in Stress-Regulating Systems. Front Behav Neurosci 2022; 16:834880. [PMID: 35645747 PMCID: PMC9132579 DOI: 10.3389/fnbeh.2022.834880] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/19/2022] [Indexed: 12/02/2022] Open
Abstract
Stress can increase ethanol drinking, and evidence confirms an association between post-traumatic stress disorder (PTSD) and the development of alcohol use disorder (AUD). Exposure to predator odor is considered a traumatic stressor, and predator stress (PS) has been used extensively as an animal model of PTSD. Our prior work determined that repeated exposure to intermittent PS significantly increased anxiety-related behavior, corticosterone levels, and neuronal activation in the hippocampus and prefrontal cortex in naïve male and female C57BL/6J mice. Intermittent PS exposure also increased subsequent ethanol drinking in a subgroup of animals, with heterogeneity of responses as seen with comorbid PTSD and AUD. The present studies built upon this prior work and began to characterize “sensitivity” and “resilience” to PS-enhanced drinking. Ethanol drinking was measured during baseline, intermittent PS exposure, and post-stress; mice were euthanized after 24-h abstinence. Calculation of median and interquartile ranges identified “sensitive” (>20% increase in drinking over baseline) and “resilient” (no change or decrease in drinking from baseline) subgroups. Intermittent PS significantly increased subsequent ethanol intake in 24% of male (↑60%) and in 20% of female (↑71%) C57BL/6J mice in the “sensitive” subgroup. Plasma corticosterone levels were increased significantly after PS in both sexes, but levels were lower in the “sensitive” vs. “resilient” subgroups. In representative mice from “sensitive” and “resilient” subgroups, prefrontal cortex and hippocampus were analyzed by Western Blotting for levels of corticotropin releasing factor (CRF) receptor 1, CRF receptor 2, CRF binding protein, and glucocorticoid receptor, vs. separate naïve age-matched mice. In prefrontal cortex, CRF receptor 1, CRF receptor 2, CRF binding protein, and glucocorticoid receptor levels were significantly higher in “sensitive” vs. naïve and “resilient” mice only in females. In hippocampus, CRF receptor 1, CRF receptor 2 and glucocorticoid receptor levels were significantly lower in “resilient” vs. naïve and “sensitive” mice across both sexes. These results indicate that sex strongly influences the effects of ethanol drinking and stress on proteins regulating stress and anxiety responses. They further suggest that targeting the CRF system and glucocorticoid receptors in AUD needs to consider the comorbidity of PTSD with AUD and sex of treated individuals.
Collapse
Affiliation(s)
- Mehrdad Alavi
- School of Pharmacy, Pacific University, Hillsboro, OR, United States
| | - Andrey E. Ryabinin
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Melinda L. Helms
- Department of Research, VA Portland Health Care System, Portland, OR, United States
| | - Michelle A. Nipper
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Leslie L. Devaud
- School of Pharmacy, Pacific University, Hillsboro, OR, United States
| | - Deborah A. Finn
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
- Department of Research, VA Portland Health Care System, Portland, OR, United States
- *Correspondence: Deborah A. Finn,
| |
Collapse
|
33
|
Sadler KE, Mogil JS, Stucky CL. Innovations and advances in modelling and measuring pain in animals. Nat Rev Neurosci 2022; 23:70-85. [PMID: 34837072 PMCID: PMC9098196 DOI: 10.1038/s41583-021-00536-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 12/12/2022]
Abstract
Best practices in preclinical algesiometry (pain behaviour testing) have shifted over the past decade as a result of technological advancements, the continued dearth of translational progress and the emphasis that funding institutions and journals have placed on rigour and reproducibility. Here we describe the changing trends in research methods by analysing the methods reported in preclinical pain publications from the past 40 years, with a focus on the last 5 years. We also discuss how the status quo may be hampering translational success. This discussion is centred on four fundamental decisions that apply to every pain behaviour experiment: choice of subject (model organism), choice of assay (pain-inducing injury), laboratory environment and choice of outcome measures. Finally, we discuss how human tissues, which are increasingly accessible, can be used to validate the translatability of targets and mechanisms identified in animal pain models.
Collapse
Affiliation(s)
- Katelyn E Sadler
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jeffrey S Mogil
- Department of Psychology, McGill University, Montreal, QC, Canada
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
34
|
Rieger NS, Worley NB, Ng AJ, Christianson JP. Insular cortex modulates social avoidance of sick rats. Behav Brain Res 2022; 416:113541. [PMID: 34425184 PMCID: PMC8492531 DOI: 10.1016/j.bbr.2021.113541] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/29/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023]
Abstract
Avoidance of sick individuals is vital to the preservation of one's health and preventing transmission of communicable diseases. To do this successfully, one must identify social cues for sickness, which include sickness behaviors and chemosignals, and use this information to orchestrate social interactions. While many social species are highly capable with this process, the neural mechanisms that provide for social responses to sick individuals are only partially understood. To this end, we used a task in which experimental rats were allowed to investigate two conspecifics, one healthy and one sick. To imitate sickness, one conspecific received the viral mimic Polyinosinic:polycytidylic acid (Poly I:C) and the other saline. In a 5-minute social preference test, experimental male and female adult rats avoided Poly I:C treated adult conspecifics but did not adjust social interaction in response to Poly I:C treated juvenile conspecifics. Seeking a neural locus of this behavior, we inhibited the insular cortex, a region necessary for social behaviors directed toward conspecifics in distress. Insular cortex inactivation via administration of the GABAA agonist muscimol to experimental rats prior to social preference tests eliminated the preference to avoid sick adult conspecifics. These results suggest that some aspect of conspecific illness may be encoded in the insular cortex which is anatomically positioned to coordinate a situationally appropriate social response.
Collapse
Affiliation(s)
- Nathaniel S Rieger
- Department of Psychology and Neuroscience, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA, 02467 USA
| | - Nicholas B Worley
- Department of Psychology and Neuroscience, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA, 02467 USA
| | - Alexandra J Ng
- Department of Psychology and Neuroscience, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA, 02467 USA
| | - John P Christianson
- Department of Psychology and Neuroscience, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA, 02467 USA.
| |
Collapse
|
35
|
Sex-Specific Social Effects on Depression-Related Behavioral Phenotypes in Mice. Life (Basel) 2021; 11:life11121327. [PMID: 34947858 PMCID: PMC8705323 DOI: 10.3390/life11121327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Social interaction and empathy play critical roles in determining the emotional well-being of humans. Stress-related depression and anxiety can be exacerbated or mitigated depending on specific social conditions. Although rodents are well known to exhibit emotional contagion and consolation behavior, the effects of group housing on stress-induced phenotypes in both males and females are not well established. Here, we investigated how the presence of stressed or unstressed conspecifics within a cage impact depression-related phenotypes. We housed male and female C57BL/6J mice in same-sex groups and subjected them to either gentle handling (GH) or the daily administration of corticosterone (CORT) for 10 days. The GH and CORT treatment groups were divided into cages of unmixed (GH or CORT) and mixed (GH and CORT) treatments. Depression-related phenotypes were measured using the forced swim test (FST) and sucrose preference test (SPT). We found that mixed housing alters FST behavior in a sex-specific manner. Male mice given chronic corticosterone (CORT) that were housed in the same cage as gently handled animals (GH) exhibited increased immobility, whereas GH females housed with CORT females demonstrated the opposite effect. This study underscores the importance of social housing conditions when evaluating stress-induced behavioral phenotypes and suggests that mixed cages of GH and CORT animals yield the greatest difference between treatment groups. The latter finding has important implications for identifying therapeutics capable of rescuing stress-induced behavioral deficits in the FST.
Collapse
|
36
|
Puścian A, Bryksa A, Kondrakiewicz L, Kostecki M, Winiarski M, Knapska E. Ability to share emotions of others as a foundation of social learning. Neurosci Biobehav Rev 2021; 132:23-36. [PMID: 34838526 DOI: 10.1016/j.neubiorev.2021.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/25/2023]
Abstract
The natural habitats of most species are far from static, forcing animals to adapt to continuously changing conditions. Perhaps the most efficient strategy addressing this challenge consists of obtaining and acting upon pertinent information from others through social learning. We discuss how animals transfer information via social channels and what are the benefits of such exchanges, playing out on different levels, from theperception of socially delivered information to emotional sharing, manifesting themselves across different taxa of increasing biological complexity. We also discuss how social learning is influenced by different factors including pertinence of information for survival, the complexity of the environment, sex, genetic relatedness, and most notably, the relationship between interacting partners. The results appear to form a consistent picture once we shift our focus from emotional contagion as a prerequisite for empathy onto the role of shared emotions in providing vital information about the environment. From this point of view, we can propose approaches that are the most promising for further investigation of complex social phenomena, including learning from others.
Collapse
Affiliation(s)
- A Puścian
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - A Bryksa
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - L Kondrakiewicz
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - M Kostecki
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - M Winiarski
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - E Knapska
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
37
|
Prior stress experience modulates social preference for stressed conspecifics in male rats. Neurosci Lett 2021; 765:136253. [PMID: 34537315 DOI: 10.1016/j.neulet.2021.136253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 11/21/2022]
Abstract
Adult male rats tend to avoid adult conspecifics in distress. In this study, we asked whether prior stress experience would modulate social preference for a stressed conspecific using a social affective preference (SAP) test. Male Long-Evans adult rats were assigned to the shocked and non-shocked groups. In the shocked group, rats were acutely subjected to foot shocks (1.0 mA, 5 s duration × 2) 24 h before the SAP test. During the SAP test, the experimental rats were placed in an arena where two adult conspecific stimuli, one of which received the foot shocks immediately before the SAP test, were presented at both ends and allowed to explore freely for 5 min. We measured sniffing behavior toward each conspecific as an index of social preference. Non-shocked adult rats avoided, while shocked rats approached, the stressed conspecifics more than the non-stressed ones. These results suggest that prior stress promotes social preference for a stressed conspecific in adult male rats.
Collapse
|
38
|
Chuinsiri N, Edwards D, Telezhkin V, Nile CJ, Van der Cruyssen F, Durham J. Exploring the roles of neuropeptides in trigeminal neuropathic pain: A systematic review and narrative synthesis of animal studies. Arch Oral Biol 2021; 130:105247. [PMID: 34454375 DOI: 10.1016/j.archoralbio.2021.105247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/02/2021] [Accepted: 08/22/2021] [Indexed: 12/09/2022]
Abstract
OBJECTIVE This systematic review aims to explore the changes in expression of neuropeptides and/or their receptors following experimental trigeminal neuropathic pain in animals. DESIGN MEDLINE, Embase, and Scopus were searched for publications up to 31st March 2021. Study selection and data extraction were completed by two independent reviewers based on the eligibility criteria. The quality of articles was judged based on the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) risk-of-bias tool. RESULTS A total of 19 studies satisfied the eligibility criteria and were included for narrative synthesis. Methods of trigeminal neuropathic pain induction were nerve ligation, nerve compression/crush, nerve transection and dental pulp injury. Animal behaviours used for pain verification were evoked responses to mechanical and thermal stimuli. Non-evoked behaviours, including vertical exploration, grooming and food consumption, were also employed in some studies. Calcitonin gene-related peptide (CGRP) and substance P were the most frequently reported neuropeptides. Overall, unclear to high risk of bias was identified in the included studies. CONCLUSIONS Limited evidence has suggested the pro-nociceptive role of CGRP in trigeminal neuropathic pain. In order to further translational pain research, animal models of trigeminal neuropathic pain and pain validation methods need to be optimised. Complete reporting of future studies based on available guidelines to improve confidence in research is encouraged.
Collapse
Affiliation(s)
- Nontawat Chuinsiri
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - David Edwards
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Vsevolod Telezhkin
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Christopher J Nile
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Fréderic Van der Cruyssen
- Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium; OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University Leuven, Leuven, Belgium
| | - Justin Durham
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
39
|
You DS, Hahn HA, Welsh TH, Meagher MW. Hyperalgesia after a Drinking Episode in Young Adult Binge Drinkers: A Cross-Sectional Study. Alcohol Alcohol 2021; 55:608-615. [PMID: 32476005 DOI: 10.1093/alcalc/agaa035] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 11/13/2022] Open
Abstract
AIMS Rodent studies propose potential mechanisms linking excessive drinking and pain hypersensitivity (hyperalgesia), such that stress hormones (i.e. epinephrine and cortisol) mediate induction and maintenance of alcohol withdrawal-induced hyperalgesia. The first aim of this study was to examine whether hyperalgesia would occur within 48 h after a drinking episode in healthy young adult binge drinkers. The second was to examine whether stress hormones and negative effect would be associated with binge drinking or alcohol withdrawal-associated hyperalgesia. METHODS A cross-sectional experiment was conducted in five groups with naturally occurring drinking (mean age = 19.6, range 18-29 years): abstainers (n = 43, 54% female), moderate drinkers with (n = 50, 50% female) or without recent drinking (i.e. within 48 h, n = 23, 26% female) and binge drinkers with (n = 36, 58% female) or without recent drinking (n = 25, 44% female). All types of drinkers endorsed drinking about 2-3 times a month and 2-3 years of drinking history. RESULTS Muscle pressure pain thresholds were significantly lower in the binge group with recent drinking compared to other groups, but cutaneous mechanical and heat pain thresholds were not significantly different across the five groups. Basal epinephrine levels were significantly higher in binge groups regardless of recent drinking, but cortisol and negative effect were not significantly different across the five groups. CONCLUSIONS This is the first study to show that alcohol withdrawal-associated muscle hyperalgesia may occur in healthy episodic binge drinkers with only 2-3 years of drinking history, and epinephrine may play a role in binge drinking-associated hyperalgesia.
Collapse
Affiliation(s)
- Dokyoung S You
- Department of Psychology, Texas A&M University, 425 Ross Street, College Station, TX 77843-4235, USA
| | - Hunter A Hahn
- Department of Psychology, Texas A&M University, 425 Ross Street, College Station, TX 77843-4235, USA
| | - Thomas H Welsh
- Departments of Animal Science and Veterinary Integrative Biosciences, Texas A&M University, 474 Olsen Blvd, College Station, TX 77843-2471, USA
| | - Mary W Meagher
- Department of Psychology, Texas A&M University, 425 Ross Street, College Station, TX 77843-4235, USA
| |
Collapse
|
40
|
Alcohol and oxytocin: Scrutinizing the relationship. Neurosci Biobehav Rev 2021; 127:852-864. [PMID: 34102150 DOI: 10.1016/j.neubiorev.2021.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023]
Abstract
The initial enthusiasm towards oxytocin (OXT) as a potential treatment for alcohol use disorder has been recently tempered by recognizing existing gaps in literature and the recent appearance of a relatively small number of clinical studies with negative outcomes. On the other hand, several new studies continue to support the OXT system's potential for such treatment. In this review, we thoroughly analyze existing literature assessing both alcohol's effects on the OXT system and OXT's effects on alcohol-related behaviors. Both rodent and clinical research is discussed. We identify areas that have been studied extensively and those that have been undeservingly understudied. OXT's potential effects on tolerance, withdrawal, craving, anxiety and social behaviors, and how these processes ultimately affect alcohol consumption, are critically explored. We conclude that while OXT can affect alcohol consumption in males and females, more comprehensive studies on OXT's effects on alcohol-related tolerance, withdrawal, craving, anxiety and social affiliations in subjects of both sexes and across several levels of analyses are needed.
Collapse
|
41
|
Meade GM, Charron LS, Kilburn LW, Pei Z, Wang HY, Robinson S. A model of negative emotional contagion between male-female rat dyads: Effects of voluntary exercise on stress-induced behavior and BDNF-TrkB signaling. Physiol Behav 2021; 234:113286. [DOI: 10.1016/j.physbeh.2020.113286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022]
|
42
|
Lidhar NK, Darvish-Ghane S, Sivaselvachandran S, Khan S, Wasif F, Turner H, Sivaselvachandran M, Fournier NM, Martin LJ. Prelimbic cortex glucocorticoid receptors regulate the stress-mediated inhibition of pain contagion in male mice. Neuropsychopharmacology 2021; 46:1183-1193. [PMID: 33223518 PMCID: PMC8115346 DOI: 10.1038/s41386-020-00912-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 12/29/2022]
Abstract
Experiencing pain with a familiar individual can enhance one's own pain sensitivity, a process known as pain contagion. When experiencing pain with an unfamiliar individual, pain contagion is suppressed in males by activating the endocrine stress response. Here, we coupled a histological investigation with pharmacological and behavioral experiments to identify enhanced glucocorticoid receptor activity in the prelimbic subdivision of the medial prefrontal cortex as a candidate mechanism for suppressing pain contagion in stranger mice. Acute inhibition of glucocorticoid receptors in the prelimbic cortex was sufficient to elicit pain contagion in strangers, while their activation prevented pain contagion in cagemate dyads. Slice physiology recordings revealed enhanced excitatory transmission in stranger mice, an effect that was reversed by pre-treating mice with the corticosterone synthesis inhibitor metyrapone. Following removal from dyadic testing, stranger mice displayed enhanced affective-motivational pain behaviors when placed on an inescapable thermal stimulus, which were reversed by metyrapone. Together, our data suggest that the prelimbic cortex may play an integral role in modulating pain behavior within a social context and provide novel evidence towards the neural mechanism underlying the prevention of pain contagion.
Collapse
Affiliation(s)
- Navdeep K. Lidhar
- grid.17063.330000 0001 2157 2938Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6 Canada
| | - Soroush Darvish-Ghane
- grid.17063.330000 0001 2157 2938Department of Cell and Systems Biology, University of Toronto Mississauga, Mississauga, ON L5L1C6 Canada
| | - Sivaani Sivaselvachandran
- grid.17063.330000 0001 2157 2938Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6 Canada
| | - Sana Khan
- grid.17063.330000 0001 2157 2938Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6 Canada
| | - Fatima Wasif
- grid.17063.330000 0001 2157 2938Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6 Canada
| | - Holly Turner
- grid.52539.380000 0001 1090 2022Department of Psychology, Trent University, Peterborough, ON K9J 7B8 Canada
| | - Meruba Sivaselvachandran
- grid.17063.330000 0001 2157 2938Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6 Canada
| | - Neil M. Fournier
- grid.52539.380000 0001 1090 2022Department of Psychology, Trent University, Peterborough, ON K9J 7B8 Canada
| | - Loren J. Martin
- grid.17063.330000 0001 2157 2938Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6 Canada ,grid.17063.330000 0001 2157 2938Department of Cell and Systems Biology, University of Toronto Mississauga, Mississauga, ON L5L1C6 Canada
| |
Collapse
|
43
|
Fu R, Tang Y, Li W, Ren Z, Li D, Zheng J, Zuo W, Chen X, Zuo QK, Tam KL, Zou Y, Bachmann T, Bekker A, Ye JH. Endocannabinoid signaling in the lateral habenula regulates pain and alcohol consumption. Transl Psychiatry 2021; 11:220. [PMID: 33854035 PMCID: PMC8046806 DOI: 10.1038/s41398-021-01337-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/10/2021] [Accepted: 03/31/2021] [Indexed: 02/02/2023] Open
Abstract
Hyperalgesia, which often occurs in people suffering from alcohol use disorder, may drive excessive drinking and relapse. Emerging evidence suggests that the lateral habenula (LHb) may play a significant role in this condition. Previous research suggests that endocannabinoid signaling (eCBs) is involved in drug addiction and pain, and that the LHb contains core components of the eCBs machinery. We report here our findings in rats subjected to chronic ethanol vapor exposure. We detected a substantial increase in endocannabinoid-related genes, including Mgll and Daglb mRNA levels, as well as monoacylglycerol lipase (MAGL) protein levels, as well as a decrease in Cnr1 mRNA and type-1 cannabinoid receptor (CB1R) protein levels, in the LHb of ethanol-exposed rats. Also, rats withdrawing from ethanol exposure displayed hypersensitivity to mechanical and thermal nociceptive stimuli. Conversely, intra-LHb injection of the MAGL inhibitor JZL184, the fatty acid amide hydrolase inhibitor URB597, or the CB1R agonist WIN55,212-2 produced an analgesic effect, regardless of ethanol or air exposure history, implying that alcohol exposure does not change eCB pain responses. Intra-LHb infusion of the CB1R inverse agonist rimonabant eliminated the analgesic effect of these chemicals. Rimonabant alone elicited hyperalgesia in the air-, but not ethanol-exposed animals. Moreover, intra-LHb JZL184, URB597, or WIN55,212-2 reduced ethanol consumption in both homecages and operant chambers in rats exposed to ethanol vapor but not air. These findings suggest that LHb eCBs play a pivotal role in nociception and facilitating LHb eCBs may attenuate pain in drinkers.
Collapse
Affiliation(s)
- Rao Fu
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
- Department of Anatomy, School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Ying Tang
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Wenfu Li
- Department of Anatomy, School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Zhiheng Ren
- Department of Anatomy, School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Ding Li
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Jiayi Zheng
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Wanhong Zuo
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Xuejun Chen
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Qi Kang Zuo
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Kelsey L Tam
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Yucong Zou
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Thomas Bachmann
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Alex Bekker
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA.
| |
Collapse
|
44
|
Abstract
Empathy is a complex phenomenon critical for group survival and societal bonds. In addition, there is mounting evidence demonstrating empathic behaviors are dysregulated in a multitude of psychiatric disorders ranging from autism spectrum disorder, substance use disorders, and personality disorders. Therefore, understanding the underlying drive and neurobiology of empathy is paramount for improving the treatment outcomes and quality of life for individuals suffering from these psychiatric disorders. While there is a growing list of human studies, there is still much about empathy to understand, likely due to both its complexity and the inherent limitations of imaging modalities. It is therefore imperative to develop, validate, and utilize rodent models of empathic behaviors as translational tools to explore this complex topic in ways human research cannot. This review outlines some of the more prevailing theories of empathy, lists some of the psychiatric disorders with disrupted empathic processes, describes rat and mouse models of empathic behaviors currently used, and discusses ways in which these models have elucidated social, environmental, and neurobiological factors that may modulate empathy. The research tools afforded to rodent models will provide an increasingly clear translational understanding of empathic processes and consequently result in improvements in care for those diagnosed with any one of the many psychiatric disorders.
Collapse
Affiliation(s)
- Stewart S. Cox
- Medical University of South Carolina, Charleston SC, USA
| | | |
Collapse
|
45
|
Smith ML, Asada N, Malenka RC. Anterior cingulate inputs to nucleus accumbens control the social transfer of pain and analgesia. Science 2021; 371:153-159. [PMID: 33414216 DOI: 10.1126/science.abe3040] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/05/2020] [Indexed: 02/02/2023]
Abstract
Empathy is an essential component of social communication that involves experiencing others' sensory and emotional states. We observed that a brief social interaction with a mouse experiencing pain or morphine analgesia resulted in the transfer of these experiences to its social partner. Optogenetic manipulations demonstrated that the anterior cingulate cortex (ACC) and its projections to the nucleus accumbens (NAc) were selectively involved in the social transfer of both pain and analgesia. By contrast, the ACC→NAc circuit was not necessary for the social transfer of fear, which instead depended on ACC projections to the basolateral amygdala. These findings reveal that the ACC, a brain area strongly implicated in human empathic responses, mediates distinct forms of empathy in mice by influencing different downstream targets.
Collapse
Affiliation(s)
- Monique L Smith
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Naoyuki Asada
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Robert C Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
46
|
Towards a unified theory of emotional contagion in rodents—A meta-analysis. Neurosci Biobehav Rev 2020; 132:1229-1248. [DOI: 10.1016/j.neubiorev.2020.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/30/2020] [Accepted: 09/06/2020] [Indexed: 12/13/2022]
|
47
|
Lovasz RM, Marks DL, Chan BK, Saunders KE. Effects on Mouse Food Consumption After Exposure to Bedding from Sick Mice or Healthy Mice. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2020; 59:687-694. [PMID: 32859281 DOI: 10.30802/aalas-jaalas-19-000154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Control mice housed in the same room as mice with pancreatic ductal adenocarcinoma (PDAC) demonstrate decreased food intake coincident with the cachexia experienced by the mice with PDAC. Mice are considered an empathetic species, and we hypothesized that the reduced food intake in normal mice was an "empathy state" that was mediated by olfactory cues. Naïve male and female C57BL/6 mice were exposed to soiled bedding from mice experiencing PDAC induced cachexia or from control mice in the PDAC study. Body weight, food intake, and food spillage were measured across 48 h. Statistically significant differences in food consumption were found at various time points in both positive and negative directions for the 2 bedding conditions, and the direction of effect was opposite for males and females. Although analysis of data from previous PDAC studies showed differences in food spillage between PDAC mice and their controls, in this study we found no correlation between food consumption and food spillage based on bedding type. Disruption of food intake due to the "empathy state" requires testing larger numbers of animals to attain appropriate statistical power, which is contrary to the goal of using fewer animals. Empathy effects require careful consideration of sample size and cautious interpretation of results. This study also highlights the importance of sex as a biologic variable and why quantifying food spillage is important in studies of food intake.
Collapse
Affiliation(s)
- Rebecca M Lovasz
- Department of Comparative Medicine, Oregon Health & Science University, Portland, Oregon;,
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon
| | - Benjamin K Chan
- Biostatistics and Design Program, Oregon Health & Science University, Portland, Oregon
| | - Kim E Saunders
- Department of Comparative Medicine, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
48
|
Whittaker AL, Hickman DL. The Impact of Social and Behavioral Factors on Reproducibility in Terrestrial Vertebrate Models. ILAR J 2020; 60:252-269. [PMID: 32720675 DOI: 10.1093/ilar/ilaa005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 01/30/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
The use of animal models remains critical in preclinical and translational research. The reliability of the animal models and aspects of their validity is likely key to effective translation of findings to medicine. However, despite considerable uniformity in animal models brought about by control of genetics, there remain a number of social as well as innate and acquired behavioral characteristics of laboratory animals that may impact on research outcomes. These include the effects of strain and genetics, age and development, sex, personality and affective states, and social factors largely brought about by housing and husbandry. In addition, aspects of the testing environment may also influence research findings. A number of considerations resulting from the animals' innate and acquired behavioral characteristics as well as their social structures are described. Suggestions for minimizing the impact of these factors on research are provided.
Collapse
Affiliation(s)
- Alexandra L Whittaker
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, South Australia, Australia
| | - Debra L Hickman
- Laboratory Animal Resource Center, Indiana University, Indianapolis, Indiana
| |
Collapse
|
49
|
Mogil JS, Pang DSJ, Silva Dutra GG, Chambers CT. The development and use of facial grimace scales for pain measurement in animals. Neurosci Biobehav Rev 2020; 116:480-493. [PMID: 32682741 DOI: 10.1016/j.neubiorev.2020.07.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/25/2020] [Accepted: 07/14/2020] [Indexed: 12/20/2022]
Abstract
The measurement of pain in animals is surprisingly complex, and remains a critical issue in veterinary care and biomedical research. Based on the known utility of pain measurement via facial expression in verbal and especially non-verbal human populations, "grimace scales" were first developed a decade ago for use in rodents and now exist for 10 different mammalian species. This review details the background context, historical development, features (including duration), psychometric properties, modulatory factors, and impact of animal grimace scales for pain.
Collapse
Affiliation(s)
- Jeffrey S Mogil
- Depts. of Psychology and Anesthesia, Alan Edwards Centre for Research on Pain McGill University, Montreal, QC, Canada.
| | - Daniel S J Pang
- Veterinary Clinical and Diagnostic Services, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Gabrielle Guanaes Silva Dutra
- Depts. of Psychology and Anesthesia, Alan Edwards Centre for Research on Pain McGill University, Montreal, QC, Canada
| | | |
Collapse
|
50
|
Affective dimensions of pain and region -specific involvement of nitric oxide in the development of empathic hyperalgesia. Sci Rep 2020; 10:10141. [PMID: 32576847 PMCID: PMC7311399 DOI: 10.1038/s41598-020-66930-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/01/2020] [Indexed: 01/10/2023] Open
Abstract
Empathy for pain depends on the ability to feel, recognize, comprehend and share painful emotional conditions of others. In this study, we investigated the role of NO in a rat model of empathic pain. Pain was socially transferred from the sibling demonstrator (SD) who experienced five formalin injection to the naïve sibling observer (SO) through observation. SO rats received L-NAME (a nonspecific NO synthase inhibitor) or L-arginine (a precursor of NO) prior to observing the SD. Nociception, and concentrations of NO metabolites (NOx) in the serum, left and right hippocampus, prefrontal cortex, and cerebellum were evaluated. Nociceptive responses were significantly increased in the pain-observing groups. NOx levels measured 24 h after the last pain observation using the Griess method, were indicative of NOx concentration decreases and increases in the left hippocampus and cerebellum, respectively. There was an increase in tissue concentration of NOx in cerebellum and prefrontal cortex in both pain and observer groups 7 days after the fifth formalin injection. Our results suggest that NO is involved in development of empathic hyperalgesia, and observation of sibling’s pain can change NO metabolites in different brain regions in observer rats.
Collapse
|