1
|
Sahu D, Debnath S, Ghosal S, Giri PK. 2D Printed Plasmonic Nanoparticle Array Incorporated Formamidinium-Based High-Performance Self-Biased Perovskite Photodetector. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49544-49555. [PMID: 39231379 DOI: 10.1021/acsami.4c12822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Utilizing noble metal nanoparticles through novel technologies is a promising avenue for enhancing the performance of organic/inorganic photodetectors. This study investigates the performance enhancement of Formamidinium-based perovskite (Pe) photodetectors (PDs) through the incorporation of plasmonic silver nanoparticles (Ag NPs) arrays using a 2D printing technique. The incorporation of plasmonic Ag NPs leads to a major improvement in the performance of the planar PD device, which is attributed to increased light absorption, hot electron generation, and more efficient charge extraction and transport. The unique aspect of this study lies in the method of incorporating plasmonic NPs using a two-dimensional printing technology. This approach offers several advantages over traditional methods, including lower cost, nonvacuum operation, and compatibility with room temperature fabrication. The printed plasmon-enhanced optimized perovskite PD exhibits remarkable performance metrics, including a peak responsivity of 1.03 A/W at 5 V external bias, which is significantly high compared to the reported devices. Moreover, the PD demonstrates exceptional detectivity with a peak value of 3.7 × 1012 Jones at 5 V, highlighting its capability to detect ultralow light signals with high precision. The device can be reversibly switched between low and high conductance states, yielding a stable and repeatable Ilight/Idark ratio of 1.06 × 104. In addition, the integration of plasmonic nanoparticles imparts remarkable photovoltaic characteristics to the perovskite photodetector, enabling it to function as a self-biased device. The hybrid device demonstrates a peak responsivity of 15 mA/W, a high detectivity of 2.15 × 1011 Jones, and a significant on-off ratio of 2.23 × 103, all achieved at zero external bias. Overall, this study presents a significant advancement in the field of plasmon-enhanced Pe photodetection technology. By utilizing the benefits of printing technology to incorporate NPs, we have developed a high-performance PD that combines cost-effectiveness with exceptional performance. Thus, we believe that this study will pave the way for the development of a low-cost, high-performance plasmon-enhanced Pe-based PD.
Collapse
Affiliation(s)
- Debabrata Sahu
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Subhankar Debnath
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Sirsendu Ghosal
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - P K Giri
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
2
|
Dong S, Hu Y, Zhang X, Guo Z, Chen R, Mao L. Anisotropy of Anion Diffusion in All-Inorganic Perovskite Single Crystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307360. [PMID: 38217294 DOI: 10.1002/smll.202307360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/02/2024] [Indexed: 01/15/2024]
Abstract
Ion diffusion is a fundamentally important process in understanding and manipulating the optoelectronic properties of semiconductors. Most current studies on ionic diffusion have been focusing on perovskite polycrystalline thin films and nanocrystals. However, the random orientation and grain boundaries can heavily interfere with the kinetics of ion diffusion, where the experimental results only reveal the average ion exchange kinetics and the actual ion diffusion mechanisms perpendicular to the direction of individual crystal facets remain unclear. Here, the anion (Cl, I) diffusion anisotropy on (111) and (100) facets of CsPbBr3 single crystals is demonstrated. The as-grown single crystals with (111) and (100) facets exhibit anisotropic growth with different halide incorporation, which lead to different resulting optoelectronic properties. Combined experimental characterizations and theoretical calculations reveal that the (111) CsPbBr3 shows a faster anion diffusion behavior compared with that of the (100) CsPbBr3, with a lower diffusion energy barrier, a larger built-in electric field, and lower inverse defect formation energy. The work highlights the anion diffusion anisotropic mechanisms perpendicular to the direction of individual crystal facets for optimizing and designing perovskite optoelectronic devices.
Collapse
Affiliation(s)
- Shunhong Dong
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Yaoqiao Hu
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Xuanyu Zhang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Zhu Guo
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Rui Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Lingling Mao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
3
|
Jiang X, Zhou Q, Lu Y, Liang H, Li W, Wei Q, Pan M, Wen X, Wang X, Zhou W, Yu D, Wang H, Yin N, Chen H, Li H, Pan T, Ma M, Liu G, Zhou W, Su Z, Chen Q, Fan F, Zheng F, Gao X, Ji Q, Ning Z. Surface heterojunction based on n-type low-dimensional perovskite film for highly efficient perovskite tandem solar cells. Natl Sci Rev 2024; 11:nwae055. [PMID: 38577668 PMCID: PMC10989298 DOI: 10.1093/nsr/nwae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/26/2024] [Accepted: 02/04/2024] [Indexed: 04/06/2024] Open
Abstract
Enhancing the quality of junctions is crucial for optimizing carrier extraction and suppressing recombination in semiconductor devices. In recent years, metal halide perovskite has emerged as the most promising next-generation material for optoelectronic devices. However, the construction of high-quality perovskite junctions, as well as characterization and understanding of their carrier polarity and density, remains a challenge. In this study, using combined electrical and spectroscopic characterization techniques, we investigate the doping characteristics of perovskite films by remote molecules, which is corroborated by our theoretical simulations indicating Schottky defects consisting of double ions as effective charge dopants. Through a post-treatment process involving a combination of biammonium and monoammonium molecules, we create a surface layer of n-type low-dimensional perovskite. This surface layer forms a heterojunction with the underlying 3D perovskite film, resulting in a favorable doping profile that enhances carrier extraction. The fabricated device exhibits an outstanding open-circuit voltage (VOC) up to 1.34 V and achieves a certified efficiency of 19.31% for single-junction wide-bandgap (1.77 eV) perovskite solar cells, together with significantly enhanced operational stability, thanks to the improved separation of carriers. Furthermore, we demonstrate the potential of this wide-bandgap device by achieving a certified efficiency of 27.04% and a VOC of 2.12 V in a perovskite/perovskite tandem solar cell configuration.
Collapse
Affiliation(s)
- Xianyuan Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qilin Zhou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yue Lu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hao Liang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenzhuo Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qi Wei
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Mengling Pan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xin Wen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xingzhi Wang
- Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
| | - Wei Zhou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Danni Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hao Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ni Yin
- i-Lab, CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Suzhou 215123, China
| | - Hao Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hansheng Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ting Pan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Mingyu Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Gaoqi Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenjia Zhou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhenhuang Su
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Qi Chen
- i-Lab, CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Suzhou 215123, China
| | - Fengjia Fan
- Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
| | - Fan Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xingyu Gao
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Qingqing Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhijun Ning
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
4
|
Yang W, Zhang K, Yuan W, Zhang L, Qin C, Wang H. Enhancing Stability and Performance in Tin-Based Perovskite Field-Effect Transistors Through Hydrogen Bond Suppression of Organic Cation Migration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313461. [PMID: 38532710 DOI: 10.1002/adma.202313461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/06/2024] [Indexed: 03/28/2024]
Abstract
Ion migration poses a substantial challenge in perovskite transistors, exerting detrimental effects on hysteresis and operational stability. This study focuses on elucidating the influence of ion migration on the performance of tin-based perovskite field-effect transistors (FETs). It is revealed that the high background carrier density in FASnI3 FETs arises not only from the oxidation of Sn2+ but also from the migration of FA+ ions. The formation of hydrogen bonding between FA+ and F- ions efficiently inhibits ion migration, leading to a reduction in background carrier density and an improvement in the operational stability of the transistors. The strategy of hydrogen bond is extended to fluorine-substituted additives to improve device performance. The incorporation of 4-fluorophenethylammonium iodide additives into FETs significantly minimizes the shift of turn-on voltage during cyclic measurements. Notably, an effective mobility of up to 30 cm2 V-1 s-1 with an Ion/off ratio of 107 is achieved. These findings hold promising potential for advancing tin-based perovskite technology in the field of electronics.
Collapse
Affiliation(s)
- Wenshu Yang
- Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Kai Zhang
- Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Wei Yuan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Lijun Zhang
- Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Chuanjiang Qin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Haibo Wang
- Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
5
|
Wang S, Kalyanasundaram S, Gao L, Ling Z, Zhou Z, Bonn M, Blom PWM, Wang HI, Pisula W, Marszalek T. Unveiling the role of linear alkyl organic cations in 2D layered tin halide perovskite field-effect transistors. MATERIALS HORIZONS 2024; 11:1177-1187. [PMID: 38323649 DOI: 10.1039/d3mh01883k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Two-dimensional (2D) tin halide perovskites are promising semiconductors for field-effect transistors (FETs) owing to their fascinating electronic properties. However, the correlation between the chemical nature of organic cations and charge carrier transport is still far from understanding. In this study, the influence of chain length of linear alkyl ammonium cations on film morphology, crystallinity, and charge transport in 2D tin halide perovskites is investigated. The carbon chain lengths of the organic spacers vary from propylammonium to heptanammonium. The increase of alkyl chain length leads to enhanced local charge carrier transport in the perovskite film with mobilities of up to 8 cm2 V-1 s-1, as confirmed by optical-pump terahertz spectroscopy. A similar improved macroscopic charge transport is also observed in FETs, only to the chain length of HA, due to the synergistic enhancement of film morphology and molecular organization. While the mobility increases with the temperature rise from 100 K to 200 K due to the thermally activated transport mechanism, the device performance decreases in the temperature range of 200 K to 295 K because of ion migration. These results provide guidelines on rational design principles of organic spacer cations for 2D tin halide perovskites and contribute to other optoelectronic applications.
Collapse
Affiliation(s)
- Shuanglong Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | | | - Lei Gao
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Zhitian Ling
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Zhiwen Zhou
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Paul W M Blom
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Hai I Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Wojciech Pisula
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Tomasz Marszalek
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
6
|
Cheng M, Jiang J, Yan C, Lin Y, Mortazavi M, Kaul AB, Jiang Q. Progress and Application of Halide Perovskite Materials for Solar Cells and Light Emitting Devices. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:391. [PMID: 38470722 PMCID: PMC10933891 DOI: 10.3390/nano14050391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Halide perovskite materials have attracted worldwide attention in the photovoltaic area due to the rapid improvement in efficiency, from less than 4% in 2009 to 26.1% in 2023 with only a nanometer lever photo-active layer. Meanwhile, this nova star found applications in many other areas, such as light emitting, sensor, etc. This review started with the fundamentals of physics and chemistry behind the excellent performance of halide perovskite materials for photovoltaic/light emitting and the methods for preparing them. Then, it described the basic principles for solar cells and light emitting devices. It summarized the strategies including nanotechnology to improve the performance and the application of halide perovskite materials in these two areas: from structure-property relation to how each component in the devices affects the overall performance. Moreover, this review listed the challenges for the future applications of halide perovskite materials.
Collapse
Affiliation(s)
- Maoding Cheng
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Department of Chemistry and Physics, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601, USA
| | - Jingtian Jiang
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Chao Yan
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Yuankun Lin
- Department of Physics, University of North Texas, Denton, TX 76203, USA
| | - Mansour Mortazavi
- Department of Chemistry and Physics, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601, USA
| | - Anupama B Kaul
- Department of Electrical Engineering, University of North Texas, Denton, TX 76207, USA
| | - Qinglong Jiang
- Department of Chemistry and Physics, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601, USA
| |
Collapse
|
7
|
Zhang F, Shao M, Wang C, Wen W, Shi W, Qin M, Huang H, Wei X, Guo Y, Liu Y. Photoinduced Nonvolatile Memory Transistor Based on Lead-Free Perovskite Incorporating Fused π-Conjugated Organic Ligands. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307326. [PMID: 37849381 DOI: 10.1002/adma.202307326] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Perovskites field-effect transistors (PeFETs) have been intensively investigated for their application in detector and synapse. However, synapse based on PeFETs is still very difficult to integrate excellent charge carrier transporting ability, photosensitivity, and nonvolatile memory effects into one device, which is very important for developing bionic electronic devices and edge computing. Here, two-dimensional (2D) perovskites are synthesized by incorporating fused π-conjugated pyrene-O-ethyl-ammonium (POE) ligands and a systematic study is conducted to obtain enhanced performance and reliable PeFETs. The optimized (POE)2 SnI4 transistors display the hole mobility over 0.3 cm2 V-1 s-1 , high repeatability, and operational stability. Meanwhile, the derived photo memory devices show remarkable photoresponse, with a switching ratio higher than 105 , high visible light responsivity (>4 × 104 A W-1 ), and stable storage-erase cycles, as well as competitive retention performance (104 s). The photoinduced memory behavior can be benefiting from the insulating nature of quantum-well in 2D perovskite under dark and its excellent light sensitivity. The excellent photo memory behaviors have been maintained after 40 days in a N2 atmosphere. Finally, a 2D perovskite-only transistors with a multi-level memory behavior (16 distinct states) is described by controlling incident light pulse. This work provides broader attention toward 2D perovskite and optoelectronic application.
Collapse
Affiliation(s)
- Fan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Mingchao Shao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Chengyu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wei Wen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wenkang Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Mingcong Qin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Haojie Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiaofang Wei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yunlong Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
8
|
Zhong Y, Yang J, Wang X, Liu Y, Cai Q, Tan L, Chen Y. Inhibition of Ion Migration for Highly Efficient and Stable Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302552. [PMID: 37067957 DOI: 10.1002/adma.202302552] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/13/2023] [Indexed: 06/19/2023]
Abstract
In recent years, organic-inorganic halide perovskites are now emerging as the most attractive alternatives for next-generation photovoltaic devices, due to their excellent optoelectronic characteristics and low manufacturing cost. However, the resultant perovskite solar cells (PVSCs) are intrinsically unstable owing to ion migration, which severely impedes performance enhancement, even with device encapsulation. There is no doubt that the investigation of ion migration and the summarization of recent advances in inhibition strategies are necessary to develop "state-of-the-art" PVSCs with high intrinsic stability for accelerated commercialization. This review systematically elaborates on the generation and fundamental mechanisms of ion migration in PVSCs, the impact of ion migration on hysteresis, phase segregation, and operational stability, and the characterizations for ion migration in PVSCs. Then, many related works on the strategies for inhibiting ion migration toward highly efficient and stable PVSCs are summarized. Finally, the perspectives on the current obstacles and prospective strategies for inhibition of ion migration in PVSCs to boost operational stability and meet all of the requirements for commercialization success are summarized.
Collapse
Affiliation(s)
- Yang Zhong
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Jia Yang
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xueying Wang
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yikun Liu
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Qianqian Cai
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Licheng Tan
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, China
| | - Yiwang Chen
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, China
| |
Collapse
|
9
|
Qiu X, Xia J, Liu Y, Chen PA, Huang L, Wei H, Ding J, Gong Z, Zeng X, Peng C, Chen C, Wang X, Jiang L, Liao L, Hu Y. Ambient-Stable 2D Dion-Jacobson Phase Tin Halide Perovskite Field-Effect Transistors with Mobility over 1.6 Cm 2 V -1 s -1. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305648. [PMID: 37603829 DOI: 10.1002/adma.202305648] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/10/2023] [Indexed: 08/23/2023]
Abstract
Solution-processed metal halide perovskites hold immense potential for the advancement of next-generation field-effect transistors (FETs). However, the instability of perovskite-based transistors has impeded their progress and practical applications. Here, ambient-stable high-performance FETs based on 2D Dion-Jacobson phase tin halide perovskite BDASnI4 , which has high film quality and excellent electrical properties, are reported. The perovskite channels are established by engineering the film crystallization process via the employment of ammonium salt interlayers and the incorporation of NH4 SCN additives within the precursor solution. The refined FETs demonstrate field-effect hole mobilities up to 1.61 cm2 V-1 s-1 and an on/off ratio surpassing 106 . Moreover, the devices show impressive operational and environmental stability and retain their functional performance even after being exposed to ambient conditions with a temperature of 45 °C and humidity of 45% for over 150 h.
Collapse
Affiliation(s)
- Xincan Qiu
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
- Key Laboratory of Hunan Province for 3D Scene Visualization and Intelligence Education (2023TP1038), School of Electronic Information, Hunan First Normal University, Changsha, 410205, China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Jiangnan Xia
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Yu Liu
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Ping-An Chen
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Lanyu Huang
- School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Huan Wei
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Jiaqi Ding
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Zhenqi Gong
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Xi Zeng
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Chengyuan Peng
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Chen Chen
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410000, China
| | - Xiao Wang
- School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Lang Jiang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Lei Liao
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Yuanyuan Hu
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| |
Collapse
|
10
|
Zhang Y, Ummadisingu A, Shivanna R, Tjhe DHL, Un H, Xiao M, Friend RH, Senanayak SP, Sirringhaus H. Direct Observation of Contact Reaction Induced Ion Migration and its Effect on Non-Ideal Charge Transport in Lead Triiodide Perovskite Field-Effect Transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302494. [PMID: 37300316 PMCID: PMC11475287 DOI: 10.1002/smll.202302494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/22/2023] [Indexed: 06/12/2023]
Abstract
The migration of ionic defects and electrochemical reactions with metal electrodes remains one of the most important research challenges for organometal halide perovskite optoelectronic devices. There is still a lack of understanding of how the formation of mobile ionic defects impact charge carrier transport and operational device stability, particularly in perovskite field-effect transistors (FETs), which tend to exhibit anomalous device characteristics. Here, the evolution of the n-type FET characteristics of one of the most widely studied materials, Cs0.05 FA0.17 MA0.78 PbI3, is investigated during repeated measurement cycles as a function of different metal source-drain contacts and precursor stoichiometry. The channel current increases for high work function metals and decreases for low work function metals when multiple cycles of transfer characteristics are measured. The cycling behavior is also sensitive to the precursor stoichiometry. These metal/stoichiometry-dependent device non-idealities are correlated with the quenching of photoluminescence near the positively biased electrode. Based on elemental analysis using electron microscopy the observations can be understood by an n-type doping effect of metallic ions that are created by an electrochemical interaction at the metal-semiconductor interface and migrate into the channel. The findings improve the understanding of ion migration, contact reactions, and the origin of non-idealities in lead triiodide perovskite FETs.
Collapse
Affiliation(s)
- Youcheng Zhang
- Optoelectronics GroupCavendish LaboratoryUniversity of CambridgeJ.J. Thomson AvenueCambridgeCB3 0HEUK
- Cambridge Graphene CentreDepartment of EngineeringUniversity of Cambridge9 JJ Thomson AveCambridgeCB3 0FAUK
| | - Amita Ummadisingu
- Optoelectronics GroupCavendish LaboratoryUniversity of CambridgeJ.J. Thomson AvenueCambridgeCB3 0HEUK
| | | | | | - Hio‐Ieng Un
- Optoelectronics GroupCavendish LaboratoryUniversity of CambridgeJ.J. Thomson AvenueCambridgeCB3 0HEUK
| | - Mingfei Xiao
- Optoelectronics GroupCavendish LaboratoryUniversity of CambridgeJ.J. Thomson AvenueCambridgeCB3 0HEUK
| | - Richard H. Friend
- Optoelectronics GroupCavendish LaboratoryUniversity of CambridgeJ.J. Thomson AvenueCambridgeCB3 0HEUK
| | - Satyaprasad P. Senanayak
- Nanoelectronics and Device Physics LabSchool of Physical SciencesNational Institute of Science Education and ResearchAn OCC of HBNIJatni752050India
| | - Henning Sirringhaus
- Optoelectronics GroupCavendish LaboratoryUniversity of CambridgeJ.J. Thomson AvenueCambridgeCB3 0HEUK
| |
Collapse
|
11
|
Vats G, Hodges B, Ferguson AJ, Wheeler LM, Blackburn JL. Optical Memory, Switching, and Neuromorphic Functionality in Metal Halide Perovskite Materials and Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205459. [PMID: 36120918 DOI: 10.1002/adma.202205459] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Metal halide perovskite based materials have emerged over the past few decades as remarkable solution-processable optoelectronic materials with many intriguing properties and potential applications. These emerging materials have recently been considered for their promise in low-energy memory and information processing applications. In particular, their large optical cross-sections, high photoconductance contrast, large carrier-diffusion lengths, and mixed electronic/ionic transport mechanisms are attractive for enabling memory elements and neuromorphic devices that are written and/or read in the optical domain. Here, recent progress toward memory and neuromorphic functionality in metal halide perovskite materials and devices where photons are used as a critical degree of freedom for switching, memory, and neuromorphic functionality is reviewed.
Collapse
Affiliation(s)
- Gaurav Vats
- National Renewable Energy Laboratory, Golden, CO, 80401, USA
- Department of Physics and Astronomy, Katholieke Universiteit Leuven, Celestijnenlaan 200D, Leuven, B-3001, Belgium
| | - Brett Hodges
- National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | | | - Lance M Wheeler
- National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | | |
Collapse
|
12
|
Gao Y, Dong X, Liu Y. Recent Progress of Layered Perovskite Solar Cells Incorporating Aromatic Spacers. NANO-MICRO LETTERS 2023; 15:169. [PMID: 37407722 PMCID: PMC10323068 DOI: 10.1007/s40820-023-01141-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/07/2023] [Indexed: 07/07/2023]
Abstract
Layered two dimensional (2D) or quasi-2D perovskites are emerging photovoltaic materials due to their superior environment and structure stability in comparison with their 3D counterparts. The typical 2D perovskites can be obtained by cutting 3D perovskites along < 100 > orientation by incorporation of bulky organic spacers, which play a key role in the performance of 2D perovskite solar cells (PSCs). Compared with aliphatic spacers, aromatic spacers with high dielectric constant have the potential to decrease the dielectric and quantum confinement effect of 2D perovskites, promote efficient charge transport and reduce the exciton binding energy, all of which are beneficial for the photovoltaic performance of 2D PSCs. In this review, we aim to provide useful guidelines for the design of aromatic spacers for 2D perovskites. We systematically reviewed the recent progress of aromatic spacers used in 2D PSCs. Finally, we propose the possible design strategies for aromatic spacers that may lead to more efficient and stable 2D PSCs.
Collapse
Affiliation(s)
- Yuping Gao
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Xiyue Dong
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Yongsheng Liu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China.
- Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
13
|
Xia J, Qiu X, Liu Y, Chen P, Guo J, Wei H, Ding J, Xie H, Lv Y, Li F, Li W, Liao L, Hu Y. Ferroelectric Wide-Bandgap Metal Halide Perovskite Field-Effect Transistors: Toward Transparent Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300133. [PMID: 36703612 PMCID: PMC10074105 DOI: 10.1002/advs.202300133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Indexed: 06/18/2023]
Abstract
Transparent field-effect transistors (FETs) are attacking intensive interest for constructing fancy "invisible" electronic products. Presently, the main technology for realizing transparent FETs is based on metal oxide semiconductors, which have wide-bandgap but generally demand sputtering technique or high-temperature (>350 °C) solution process for fabrication. Herein, a general device fabrication strategy for metal halide perovskite (MHP) FETs is shown, by which transparent perovskite FETs are successfully obtained using low-temperature (<150 °C) solution process. This strategy involves the employment of ferroelectric copolymer poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) as the dielectric, which conquers the challenging issue of gate-electric-field screening effect in MHP FETs. Additionally, an ultra-thin SnO2 is inserted between the source/drain electrodes and MHPs to facilitate electron injection. Consequently, n-type semi-transparent MAPbBr3 FETs and fully transparent MAPbCl3 FETs which can operate well at room temperature with mobility over 10-3 cm2 V-1 s-1 and on/off ratio >103 are achieved for the first time. The low-temperature solution processability of these FETs makes them particularly attractive for applications in low-cost, large-area transparent electronics.
Collapse
Affiliation(s)
- Jiangnan Xia
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of EducationSchool of Physics and ElectronicsHunan UniversityChangsha410082China
- Shenzhen Research Institute of Hunan UniversityShenzhen518063China
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan ProvinceCollege of Semiconductors (College of Integrated Circuits)Hunan UniversityChangsha410082China
| | - Xincan Qiu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of EducationSchool of Physics and ElectronicsHunan UniversityChangsha410082China
| | - Yu Liu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of EducationSchool of Physics and ElectronicsHunan UniversityChangsha410082China
| | - Ping‐An Chen
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of EducationSchool of Physics and ElectronicsHunan UniversityChangsha410082China
| | - Jing Guo
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of EducationSchool of Physics and ElectronicsHunan UniversityChangsha410082China
| | - Huan Wei
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of EducationSchool of Physics and ElectronicsHunan UniversityChangsha410082China
| | - Jiaqi Ding
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of EducationSchool of Physics and ElectronicsHunan UniversityChangsha410082China
| | - Haihong Xie
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of EducationSchool of Physics and ElectronicsHunan UniversityChangsha410082China
| | - Yawei Lv
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of EducationSchool of Physics and ElectronicsHunan UniversityChangsha410082China
| | - Fuxiang Li
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of EducationSchool of Physics and ElectronicsHunan UniversityChangsha410082China
| | - Wenwu Li
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and PerceptionInstitute of OptoelectronicsDepartment of Materials ScienceFudan UniversityShanghai200433China
| | - Lei Liao
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan ProvinceCollege of Semiconductors (College of Integrated Circuits)Hunan UniversityChangsha410082China
| | - Yuanyuan Hu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of EducationSchool of Physics and ElectronicsHunan UniversityChangsha410082China
- Shenzhen Research Institute of Hunan UniversityShenzhen518063China
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan ProvinceCollege of Semiconductors (College of Integrated Circuits)Hunan UniversityChangsha410082China
| |
Collapse
|
14
|
Senanayak SP, Dey K, Shivanna R, Li W, Ghosh D, Zhang Y, Roose B, Zelewski SJ, Andaji-Garmaroudi Z, Wood W, Tiwale N, MacManus-Driscoll JL, Friend RH, Stranks SD, Sirringhaus H. Charge transport in mixed metal halide perovskite semiconductors. NATURE MATERIALS 2023; 22:216-224. [PMID: 36702888 DOI: 10.1038/s41563-022-01448-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/24/2022] [Indexed: 06/18/2023]
Abstract
Investigation of the inherent field-driven charge transport behaviour of three-dimensional lead halide perovskites has largely remained challenging, owing to undesirable ionic migration effects near room temperature and dipolar disorder instabilities prevalent specifically in methylammonium-and-lead-based high-performing three-dimensional perovskite compositions. Here, we address both these challenges and demonstrate that field-effect transistors based on methylammonium-free, mixed metal (Pb/Sn) perovskite compositions do not suffer from ion migration effects as notably as their pure-Pb counterparts and reliably exhibit hysteresis-free p-type transport with a mobility reaching 5.4 cm2 V-1 s-1. The reduced ion migration is visualized through photoluminescence microscopy under bias and is manifested as an activated temperature dependence of the field-effect mobility with a low activation energy (~48 meV) consistent with the presence of the shallow defects present in these materials. An understanding of the long-range electronic charge transport in these inherently doped mixed metal halide perovskites will contribute immensely towards high-performance optoelectronic devices.
Collapse
Affiliation(s)
- Satyaprasad P Senanayak
- Nanoelectronics and Device Physics Lab, National Institute of Science Education and Research, School of Physical Sciences, HBNI, Jatni, India.
| | - Krishanu Dey
- Optoelectronics Group, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Ravichandran Shivanna
- Optoelectronics Group, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Department of Physics, Indian Institute of Technology Madras, Chennai, India
| | - Weiwei Li
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Dibyajyoti Ghosh
- Department of Materials Science and Engineering, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, India
| | - Youcheng Zhang
- Optoelectronics Group, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Cambridge Graphene Centre, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Bart Roose
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Szymon J Zelewski
- Optoelectronics Group, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Department of Semiconductor Materials Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wrocław, Poland
| | - Zahra Andaji-Garmaroudi
- Optoelectronics Group, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - William Wood
- Optoelectronics Group, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Nikhil Tiwale
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA
| | | | - Richard H Friend
- Optoelectronics Group, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Samuel D Stranks
- Optoelectronics Group, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK.
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.
| | - Henning Sirringhaus
- Optoelectronics Group, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
15
|
Klein M, Wang Y, Tian J, Ha ST, Paniagua-Domínguez R, Kuznetsov AI, Adamo G, Soci C. Polarization-Tunable Perovskite Light-Emitting Metatransistor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207317. [PMID: 36308036 DOI: 10.1002/adma.202207317] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Emerging immersive visual communication technologies require light sources with complex functionality for dynamic control of polarization, directivity, wavefront, spectrum, and intensity of light. Currently, this is mostly achieved by free space bulk optic elements, limiting the adoption of these technologies. Flat optics based on artificially structured metasurfaces that operate at the sub-wavelength scale are a viable solution, however, their integration into electrically driven devices remains challenging. Here, a radically new approach to monolithic integration of a dielectric metasurface into a perovskite light-emitting transistor is demonstrated. It is shown that nanogratings directly structured on top of the transistor channel yield an 8-fold increase of electroluminescence intensity and dynamic tunability of polarization. This new light-emitting metatransistor device concept opens unlimited opportunities for light management strategies based on metasurface design and integration.
Collapse
Affiliation(s)
- Maciej Klein
- Centre for Disruptive Photonic Technologies, TPI, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Yutao Wang
- Centre for Disruptive Photonic Technologies, TPI, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
- Interdisciplinary Graduate School, Energy Research Institute @NTU (ERI@N), Nanyang Technological University, 50 Nanyang Drive, 637553, Singapore, Singapore
| | - Jingyi Tian
- Centre for Disruptive Photonic Technologies, TPI, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Son Tung Ha
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore, Singapore
| | - Ramón Paniagua-Domínguez
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore, Singapore
| | - Arseniy I Kuznetsov
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore, Singapore
| | - Giorgio Adamo
- Centre for Disruptive Photonic Technologies, TPI, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Cesare Soci
- Centre for Disruptive Photonic Technologies, TPI, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| |
Collapse
|
16
|
Chen XY, Yang JL, Chen LF, Xu HK, Chen JM, Lai GX, Xu XF, Ji H, Tang JJ, Zhao YJ. Theoretical study on ferroelectric nitrides with super-wurtzite structures for solar energy conversion applications. Phys Chem Chem Phys 2022; 24:29570-29578. [PMID: 36448558 DOI: 10.1039/d2cp04437d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Polarized structured nitride semiconductors are attractive due to their unique and environment-friendly electronic properties. The stability, ferroelectricity and photocatalytic and photovoltaic properties of super-wurtzite Mg2XN3 (X = Bi, Mo, Nb, Sb, Ta, Tc and W) were determined based on first principles calculations in this study. The calculated results indicate that Mg2XN3 (X = Sb, Ta, Bi and Nb) are stable polar nitrides by phonon frequencies, elastic coefficients and ferroelectric analysis. Mg2XN3 (X = Sb, Ta and Nb) with large ferroelectric polarization strength could absorb ultraviolet light to promote photocatalytic water splitting for hydrogen production. Mg2BiN3 is a new excellent photovoltaic candidate due to its ideal energy band, high electron mobility, high absorption coefficient and large ferroelectric polarization strength.
Collapse
Affiliation(s)
- Xing-Yuan Chen
- Department of Physics, School of Science, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China.
| | - Jin-Long Yang
- Department of Physics, School of Science, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China.
| | - Li-Fang Chen
- Department of Physics, School of Science, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China.
| | - Hua-Kai Xu
- Department of Physics, School of Science, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China.
| | - Jin-Man Chen
- Department of Physics, School of Science, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China.
| | - Guo-Xia Lai
- Department of Physics, School of Science, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China.
| | - Xiang-Fu Xu
- Department of Physics, School of Science, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China.
| | - Hong Ji
- Department of Physics, School of Science, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China.
| | - Jia-Jun Tang
- School of Physics, South China University of Technology, Guangzhou, 510640, P. R. China.
| | - Yu-Jun Zhao
- School of Physics, South China University of Technology, Guangzhou, 510640, P. R. China.
| |
Collapse
|
17
|
Wang H, Sun Y, Chen J, Wang F, Han R, Zhang C, Kong J, Li L, Yang J. A Review of Perovskite-Based Photodetectors and Their Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4390. [PMID: 36558241 PMCID: PMC9784743 DOI: 10.3390/nano12244390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Perovskite photodetectors have attracted much research and attention because of their outstanding photoelectric characteristics, such as good light harvesting capability, excellent carrier migration behavior, tunable band gap, and so on. Recently, the reported studies mainly focus on materials synthesis, device structure design, interface engineering and physical mechanism analysis to improve the device characteristics, including stability, sensitivity, response speed, device noise, etc. This paper systematically summarizes the application fields and device structures of several perovskite photodetectors, including perovskite photoconductors, perovskite photodiodes, and perovskite phototransistors. Moreover, based on their molecular structure, 3D, 2D, 1D, and 0D perovskite photodetectors are introduced in detail. The research achievements and applications of perovskite photodetectors are summarized. Eventually, the future research directions and main challenges of perovskite photodetectors are prospected, and some possible solutions are proposed. The aim of the work is to provide a new thinking direction for further improving the performance of perovskite photodetectors.
Collapse
Affiliation(s)
| | | | - Jin Chen
- College of Sciences, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Fengchao Wang
- College of Sciences, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | | | | | | | | | | |
Collapse
|
18
|
Thakur D, Ke QB, Chiang SE, Tseng TH, Cai KB, Yuan CT, Wang JS, Chang SH. Stable and efficient soft perovskite crystalline film based solar cells prepared with a facile encapsulation method. NANOSCALE 2022; 14:17625-17632. [PMID: 36412495 DOI: 10.1039/d2nr04917a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The quasi Fermi level for electrons in a soft perovskite crystalline thin film and the contact qualities at the PCBM/perovskite and perovskite/P3CT-Na interfaces can be increased using a facile encapsulation method, which improves the device performance and stability of the resultant perovskite solar cells. In the encapsulated perovskite solar cells, the averaged open-circuit voltage (VOC) largely increases from 0.981 V to 1.090 V after 9 days mainly due to the increased quasi Fermi levels. Besides, the reflectance and photoluminescence (PL) spectra show improved contact qualities at the PCBM/perovskite and perovskite/P3CT-Na interfaces, which can be used to explain the increase in the short-circuit current density (JSC) from 21.68 mA cm-2 to 23.48 mA cm-2 after the encapsulation process. Besides, nanosecond time-resolved PL and temperature-dependent PL spectra can be used to explain the increased VOC, which is mainly due to the increased shallow defect density and thereby increasing the exciton binding energy of the encapsulated perovskite sample. It is noted that the averaged power conversion efficiency (PCE) slowly decreases from 18.24% to 16.52% within 45 days.
Collapse
Affiliation(s)
- Diksha Thakur
- Department of Physics, Chung Yuan Christian University, Taoyuan 320314, Taiwan, Republic of China.
- Center for Nano Technology and R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan, Republic of China
| | - Qi Bin Ke
- Department of Physics, Chung Yuan Christian University, Taoyuan 320314, Taiwan, Republic of China.
- Research Center for Semiconductor Materials and Advanced Optics, Taoyuan 320314, Taiwan, Republic of China
- Center for Nano Technology and R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan, Republic of China
| | - Shou-En Chiang
- Department of Physics, Chung Yuan Christian University, Taoyuan 320314, Taiwan, Republic of China.
- Research Center for Semiconductor Materials and Advanced Optics, Taoyuan 320314, Taiwan, Republic of China
- Center for Nano Technology and R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan, Republic of China
| | - Tzu-Han Tseng
- Department of Physics, Chung Yuan Christian University, Taoyuan 320314, Taiwan, Republic of China.
| | - Kun-Bin Cai
- Department of Physics, Chung Yuan Christian University, Taoyuan 320314, Taiwan, Republic of China.
| | - Chi-Tsu Yuan
- Department of Physics, Chung Yuan Christian University, Taoyuan 320314, Taiwan, Republic of China.
- Research Center for Semiconductor Materials and Advanced Optics, Taoyuan 320314, Taiwan, Republic of China
| | - Jyh-Shyang Wang
- Department of Physics, Chung Yuan Christian University, Taoyuan 320314, Taiwan, Republic of China.
- Research Center for Semiconductor Materials and Advanced Optics, Taoyuan 320314, Taiwan, Republic of China
| | - Sheng Hsiung Chang
- Department of Physics, Chung Yuan Christian University, Taoyuan 320314, Taiwan, Republic of China.
- Research Center for Semiconductor Materials and Advanced Optics, Taoyuan 320314, Taiwan, Republic of China
- Center for Nano Technology and R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan, Republic of China
| |
Collapse
|
19
|
Li D, Dong X, Cheng P, Song L, Wu Z, Chen Y, Huang W. Metal Halide Perovskite/Electrode Contacts in Charge-Transporting-Layer-Free Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203683. [PMID: 36319474 PMCID: PMC9798992 DOI: 10.1002/advs.202203683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Metal halide perovskites have drawn substantial interest in optoelectronic devices in the past decade. Perovskite/electrode contacts are crucial for constructing high-performance charge-transporting-layer-free perovskite devices, such as solar cells, field-effect transistors, artificial synapses, memories, etc. Many studies have evidenced that the perovskite layer can directly contact the electrodes, showing abundant physicochemical, electronic, and photoelectric properties in charge-transporting-layer-free perovskite devices. Meanwhile, for perovskite/metal contacts, some critical interfacial physical and chemical processes are reported, including band bending, interface dipoles, metal halogenation, and perovskite decomposition induced by metal electrodes. Thus, a systematic summary of the role of metal halide perovskite/electrode contacts on device performance is essential. This review summarizes and discusses charge carrier dynamics, electronic band engineering, electrode corrosion, electrochemical metallization and dissolution, perovskite decomposition, and interface engineering in perovskite/electrode contacts-based electronic devices for a comprehensive understanding of the contacts. The physicochemical, electronic, and morphological properties of various perovskite/electrode contacts, as well as relevant engineering techniques, are presented. Finally, the current challenges are analyzed, and appropriate recommendations are put forward. It can be expected that further research will lead to significant breakthroughs in their application and promote reforms and innovations in future solid-state physics and materials science.
Collapse
Affiliation(s)
- Deli Li
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and EngineeringNorthwestern Polytechnical University127 West Youyi RoadXi'an710072P. R. China
- Fujian cross Strait Institute of Flexible Electronics (Future Technologies)Fujian Normal UniversityFuzhou350117P. R. China
| | - Xue Dong
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and EngineeringNorthwestern Polytechnical University127 West Youyi RoadXi'an710072P. R. China
| | - Peng Cheng
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and EngineeringNorthwestern Polytechnical University127 West Youyi RoadXi'an710072P. R. China
| | - Lin Song
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and EngineeringNorthwestern Polytechnical University127 West Youyi RoadXi'an710072P. R. China
| | - Zhongbin Wu
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and EngineeringNorthwestern Polytechnical University127 West Youyi RoadXi'an710072P. R. China
| | - Yonghua Chen
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjingJiangsu211816P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and EngineeringNorthwestern Polytechnical University127 West Youyi RoadXi'an710072P. R. China
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjingJiangsu211816P. R. China
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced MaterialsNanjing University of Posts and TelecommunicationsNanjing210023P. R. China
| |
Collapse
|
20
|
Wang L, Wang P, Huang J, Peng B, Jia C, Qian Q, Zhou J, Xu D, Huang Y, Duan X. A general one-step plug-and-probe approach to top-gated transistors for rapidly probing delicate electronic materials. NATURE NANOTECHNOLOGY 2022; 17:1206-1213. [PMID: 36266508 DOI: 10.1038/s41565-022-01221-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023]
Abstract
The miniaturization of silicon-based electronics has motivated considerable efforts in exploring new electronic materials, including two-dimensional semiconductors and halide perovskites, which are usually too delicate to maintain their intrinsic properties during the harsh device fabrication steps. Here we report a convenient plug-and-probe approach for one-step simultaneous van der Waals integration of high-k dielectrics and contacts to enable top-gated transistors with atomically clean and electronically sharp dielectric and contact interfaces. By applying the plug-and-probe top-gate transistor stacks on two-dimensional semiconductors, we demonstrate an ideal subthreshold swing of 60 mV per decade. Using this approach on delicate lead halide perovskite, we realize a high-k top-gate CsPbBr3 transistor with a low operating voltage and a very high two-terminal field-effect mobility of 32 cm2 V-1 s-1. This approach can be extended to centimetre-scale MoS2 and perovskite and generate top-gated transistor arrays, offering a rapid and convenient way of accessing intrinsic properties of delicate emerging materials.
Collapse
Affiliation(s)
- Laiyuan Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peiqi Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jin Huang
- Department of Material Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bosi Peng
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chuancheng Jia
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Qi Qian
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jingyuan Zhou
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Dong Xu
- Department of Material Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yu Huang
- Department of Material Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- California Nanosystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA, USA
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
- California Nanosystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
21
|
Wang S, Frisch S, Zhang H, Yildiz O, Mandal M, Ugur N, Jeong B, Ramanan C, Andrienko D, Wang HI, Bonn M, Blom PWM, Kivala M, Pisula W, Marszalek T. Grain engineering for improved charge carrier transport in two-dimensional lead-free perovskite field-effect transistors. MATERIALS HORIZONS 2022; 9:2633-2643. [PMID: 35997011 DOI: 10.1039/d2mh00632d] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Controlling crystal growth and reducing the number of grain boundaries are crucial to maximize the charge carrier transport in organic-inorganic perovskite field-effect transistors (FETs). Herein, the crystallization and growth kinetics of a Sn(II)-based 2D perovskite, using 2-thiopheneethylammonium (TEA) as the organic cation spacer, were effectively regulated by the hot-casting method. With increasing crystalline grain size, the local charge carrier mobility is found to increase moderately from 13 cm2 V-1 s-1 to 16 cm2 V-1 s-1, as inferred from terahertz (THz) spectroscopy. In contrast, the FET operation parameters, including mobility, threshold voltage, hysteresis, and subthreshold swing, improve substantially with larger grain size. The optimized 2D (TEA)2SnI4 transistor exhibits hole mobility of up to 0.34 cm2 V-1 s-1 at 295 K and a higher value of 1.8 cm2 V-1 s-1 at 100 K. Our work provides an important insight into the grain engineering of 2D perovskites for high-performance FETs.
Collapse
Affiliation(s)
- Shuanglong Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Sabine Frisch
- Organisch-Chemisches Institut, Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| | - Heng Zhang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Okan Yildiz
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Mukunda Mandal
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Naz Ugur
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Beomjin Jeong
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Charusheela Ramanan
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands
| | - Denis Andrienko
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Hai I Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Paul W M Blom
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Milan Kivala
- Organisch-Chemisches Institut, Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| | - Wojciech Pisula
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Tomasz Marszalek
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
22
|
Srivastava P, Kumar R, Ronchiya H, Bag M. Intensity modulated photocurrent spectroscopy to investigate hidden kinetics at hybrid perovskite–electrolyte interface. Sci Rep 2022; 12:14212. [PMID: 35987774 PMCID: PMC9392765 DOI: 10.1038/s41598-022-16353-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/08/2022] [Indexed: 12/01/2022] Open
Abstract
The numerous assorted accounts of the fundamental questions of ion migration in hybrid perovskites are making the picture further intricate. The review of photo-induced ion migration using small perturbation frequency domain techniques other than impedance spectroscopy is more crucial now. Herein, we probe into this by investigating perovskite–electrolyte (Pe–E) and polymer-aqueous electrolyte (Po–aqE) interface using intensity modulated photocurrent spectroscopy (IMPS) in addition to photoelectrochemical impedance spectroscopy (PEIS). We reported that the electronic-ionic interaction in hybrid perovskites including the low-frequency ion/charge transfer and recombination kinetics at the interface leads to the spiral feature in IMPS Nyquist plot of perovskite-based devices. This spiral trajectory for the perovskite-electrolyte interface depicts three distinct ion kinetics going on at the different time scales which can be more easily unveiled by IMPS rather than PEIS. Hence, IMPS is a promising alternative to PEIS. We used Peter’s method of interpretation of IMPS plot in photoelectrochemistry to estimate charge transfer efficiency \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$({Q}_{ste})$$\end{document}(Qste) from the Rate Constant Model. The \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${Q}_{ste}$$\end{document}Qste at low-frequency for Pe–E interface exceeds unity due to ion migration induced modified potential across the perovskite active layer. Hence, ion migration and mixed electronic-ionic conductivity of hybrid perovskites are responsible for the extraordinary properties of this material.
Collapse
|
23
|
Yadav P, Khurana S, Sapra S. Doping Mn 2+in hybrid Ruddlesden-Popper phase of layered double perovskite (BA) 4AgBiBr 8. NANOTECHNOLOGY 2022; 33:415706. [PMID: 35793603 DOI: 10.1088/1361-6528/ac7ed0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The layered hybrid double perovskites emerged as excellent semiconductor materials owing to their environment compatibility and stability. However, these materials are weakly luminescent, and their photoluminescence (PL) properties can be modulated via doping. While Mn2+doping in perovskites is well known, but to the best of our knowledge the doping of Mn2+in layered double perovskites (LDPs) is yet to be explored. Herein, for the first time, we demonstrate the doping of Mn2+in hybrid inorganic-organic two-dimensional (2D) LDPs, (BA)4AgBiBr8(BA = n-butyl amine) via a simple solid-state mechanochemical route. The powder x-ray diffraction pattern, and electron paramagnetic resonance analysis confirm the successful incorporation of Mn2+ions inside (BA)4AgBiBr8lattice. The Mn2+doped 2D LDP shows energy transfer from host excitons to d-electrons of Mn2+ions, which results in red-shifted broad Mn2+emission band centered at 625 nm, attributed to thespin-forbidden4T1to6A1internal transition. This work opens up new possibilities to dope metal ions in 2D LDPs to tune the optical as well as magnetic properties.
Collapse
Affiliation(s)
- Priyesh Yadav
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Swati Khurana
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sameer Sapra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
24
|
Abiram G, Thanihaichelvan M, Ravirajan P, Velauthapillai D. Review on Perovskite Semiconductor Field-Effect Transistors and Their Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2396. [PMID: 35889621 PMCID: PMC9322712 DOI: 10.3390/nano12142396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 12/10/2022]
Abstract
Perovskite materials are considered as the most alluring successor to the conventional semiconductor materials to fabricate solar cells, light emitting diodes and electronic displays. However, the use of the perovskite semiconductors as a channel material in field effect transistors (FET) are much lower than expected due to the poor performance of the devices. Despite low attention, the perovskite FETs are used in widespread applications on account of their unique opto-electrical properties. This review focuses on the previous works on perovskite FETs which are summarized into tables based on their structures and electrical properties. Further, this review focuses on the applications of perovskite FETs in photodetectors, phototransistors, light emitting FETs and memory devices. Moreover, this review highlights the challenges faced by the perovskite FETs to meet the current standards along with the future directions of these FETs. Overall, the review summarizes all the available information on existing perovskite FET works and their applications reported so far.
Collapse
Affiliation(s)
- Gnanasampanthan Abiram
- Department of Physics, University of Jaffna, Jaffna 40 000, Sri Lanka; (G.A.); (P.R.)
- Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, Inndalsveien 28, 5063 Bergen, Norway
| | | | | | - Dhayalan Velauthapillai
- Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, Inndalsveien 28, 5063 Bergen, Norway
| |
Collapse
|
25
|
Cuzzupè DT, Ünlü F, Lê K, Bernhardt R, Wilhelm M, Grosch M, Weißing R, Fischer T, van Loosdrecht PHM, Mathur S. Thermally-induced drift of A-site cations at solid-solid interface in physically paired lead halide perovskites. Sci Rep 2022; 12:10241. [PMID: 35715528 PMCID: PMC9205985 DOI: 10.1038/s41598-022-14452-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
The promise of hybrid organic-inorganic halide perovskite solar cells rests on their exceptional power conversion efficiency routinely exceeding 25% in laboratory scale devices. While the migration of halide ions in perovskite thin films has been extensively investigated, the understanding of cation diffusion remains elusive. In this study, a thermal migration of A‑site cations at the solid-solid interface, formed by two physically paired MAPbI3 and FAPbI3 perovskite thin films casted on FTO, is demonstrated through continuous annealing at comparably low temperature (100 °C). Diffusion of methylammonium (CH3NH3+, MA+) cations into the low‑symmetry yellow δ‑FAPbI3 phase triggers a transition from the yellow (δ) to black (α) phase evident in the distinctive color change and verified by shifts in absorption bands and X‑ray diffraction patterns. Intermixing of the A‑site cations MA+ and FA+ (CH(NH2)2+) occurred for both systems, α‑MAPbI3/δ‑FAPbI3 and α‑MAPbI3/α‑FAPbI3. The structural and compositional changes in both cases support a thermally activated ion drift unambiguously demonstrated through changes in the absorption and X-ray photoelectron spectra. Moreover, the physical contact annealing (PCA) leads to healing of defects and pinholes in α‑MAPbI3 thin films, which was correlated to longer recombination lifetimes in mixed MAxFA1-xPbI3 thin films obtained after PCA and probed by ultrafast transient absorption spectroscopy.
Collapse
Affiliation(s)
- Daniele T Cuzzupè
- Chemistry Department, Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939, Cologne, Germany.,Department of Physics, University of Konstanz, 78457, Constance, Germany
| | - Feray Ünlü
- Chemistry Department, Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939, Cologne, Germany
| | - Khan Lê
- Chemistry Department, Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939, Cologne, Germany
| | - Robin Bernhardt
- Institute of Physics 2, University of Cologne, Zülpicher Str. 77, 50937, Cologne, Germany
| | - Michael Wilhelm
- Chemistry Department, Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939, Cologne, Germany
| | - Matthias Grosch
- Chemistry Department, Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939, Cologne, Germany
| | - Rene Weißing
- Chemistry Department, Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939, Cologne, Germany
| | - Thomas Fischer
- Chemistry Department, Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939, Cologne, Germany
| | | | - Sanjay Mathur
- Chemistry Department, Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939, Cologne, Germany.
| |
Collapse
|
26
|
Anwar H, Johnston A, Mahesh S, Singh K, Wang Z, Kuntz DA, Tamblyn I, Voznyy O, Privé GG, Sargent EH. High-Throughput Evaluation of Emission and Structure in Reduced-Dimensional Perovskites. ACS CENTRAL SCIENCE 2022; 8:571-580. [PMID: 35647281 PMCID: PMC9136976 DOI: 10.1021/acscentsci.2c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Indexed: 06/15/2023]
Abstract
High-throughput experimentation (HTE) seeks to accelerate the exploration of materials space by uniting robotics, combinatorial methods, and parallel processing. HTE is particularly relevant to metal halide perovskites (MHPs), a diverse class of optoelectronic materials with a large chemical space. Here we develop an HTE workflow to synthesize and characterize light-emitting MHP single crystals, allowing us to generate the first reported data set of experimentally derived photoluminescence spectra for low-dimensional MHPs. We leverage the accelerated workflow to optimize the synthesis and emission of a new MHP, methoxy-phenethylammonium lead iodide ((4-MeO-PEAI)2-PbI2). We then synthesize 16 000 MHP single crystals and measure their photoluminescence to study the effects of synthesis parameters and compositional engineering on the emission intensity of 54 distinct MHPs: we achieve an acceleration factor of more than 100 times over previously reported HTE MHP synthesis and characterization methods. Using insights derived from this analysis, we screen an existing database for new, potentially emissive MHPs. On the basis of the Tanimoto similarity of the bright available emitters, we present our top candidates for future exploration. As a proof of concept, we use one of these (3,4-difluorophenylmethanamine) to synthesize an MHP which we find has a photoluminescence quantum yield of 10%.
Collapse
Affiliation(s)
- Husna Anwar
- The
Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G4
| | - Andrew Johnston
- The
Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G4
| | - Suhas Mahesh
- The
Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G4
| | - Kamalpreet Singh
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, Scarborough, Ontario, Canada M1C 1A4
| | - Zhibo Wang
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, Scarborough, Ontario, Canada M1C 1A4
| | - Douglas A. Kuntz
- Princess
Margaret Cancer Centre, University Health
Network, Toronto, Ontario, Canada M5G 1L7
| | - Isaac Tamblyn
- Department
of Physics, University of Ottawa, Vector
Institute for Artificial Intelligence, Ottawa, Ontario, Canada K1N 6N5
| | - Oleksandr Voznyy
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, Scarborough, Ontario, Canada M1C 1A4
| | - Gilbert G. Privé
- Princess
Margaret Cancer Centre, University Health
Network, Toronto, Ontario, Canada M5G 1L7
- Department
of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 1L7
- Department
of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Edward H. Sargent
- The
Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G4
| |
Collapse
|
27
|
Lin CH, Hu L, Guan X, Kim J, Huang CY, Huang JK, Singh S, Wu T. Electrode Engineering in Halide Perovskite Electronics: Plenty of Room at the Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108616. [PMID: 34995372 DOI: 10.1002/adma.202108616] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Contact engineering is a prerequisite for achieving desirable functionality and performance of semiconductor electronics, which is particularly critical for organic-inorganic hybrid halide perovskites due to their ionic nature and highly reactive interfaces. Although the interfaces between perovskites and charge-transporting layers have attracted lots of attention due to the photovoltaic and light-emitting diode applications, achieving reliable perovskite/electrode contacts for electronic devices, such as transistors and memories, remains as a bottleneck. Herein, a critical review on the elusive nature of perovskite/electrode interfaces with a focus on the interfacial electrochemistry effects is presented. The basic guidelines of electrode selection are given for establishing non-polarized interfaces and optimal energy level alignment for perovskite materials. Furthermore, state-of-the-art strategies on interface-related electrode engineering are reviewed and discussed, which aim at achieving ohmic transport and eliminating hysteresis in perovskite devices. The role and multiple functionalities of self-assembled monolayers that offer a unique approach toward improving perovskite/electrode contacts are also discussed. The insights on electrode engineering pave the way to advancing stable and reliable perovskite devices in diverse electronic applications.
Collapse
Affiliation(s)
- Chun-Ho Lin
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Long Hu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Xinwei Guan
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Jiyun Kim
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Chien-Yu Huang
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Jing-Kai Huang
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Simrjit Singh
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Tom Wu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| |
Collapse
|
28
|
Liu Y, Chen PA, Qiu X, Guo J, Xia J, Wei H, Xie H, Hou S, He M, Wang X, Zeng Z, Jiang L, Liao L, Hu Y. Doping of Sn-based two-dimensional perovskite semiconductor for high-performance field-effect transistors and thermoelectric devices. iScience 2022; 25:104109. [PMID: 35402868 PMCID: PMC8983347 DOI: 10.1016/j.isci.2022.104109] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/25/2022] [Accepted: 03/14/2022] [Indexed: 11/15/2022] Open
Abstract
Doping is an important technique for semiconductor materials and devices, yet effective and controllable doping of organic-inorganic halide perovskites is still a challenge. Here, we demonstrate a facile way to dope two-dimensional Sn-based perovskite (PEA)2SnI4 by incorporating SnI4 in the precursor solutions. It is observed that Sn4+ produces p-doping effect on the perovskite, which increases the electrical conductivity by 105 times. The dopant SnI4 is also found to improve the film morphology of (PEA)2SnI4, leading to reduced trap states. This doping technique allows us to improve the room temperature mobility of (PEA)2SnI4 field-effect transistors from 0.25 to 0.68 cm2 V-1 s-1 thanks to reduced trapping effects in the doped devices. Moreover, the doping technique enables the characterization and improvement of the thermoelectric performance of (PEA)2SnI4 films, which show a high power factor of 3.92 μW m-1 K-2 at doping ratio of 5 mol %.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen 518063, China
| | - Ping-An Chen
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Xincan Qiu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Jing Guo
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Jiangnan Xia
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Huan Wei
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Haihong Xie
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Shijin Hou
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Mai He
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Xiao Wang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lang Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Liao
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yuanyuan Hu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen 518063, China
| |
Collapse
|
29
|
Guo S, Qiao S, Liu J, Ma J, Wang S. Greatly improved photoresponse in the MAPbBr 3/Si heterojunction by introducing an ITO layer and optimizing MAPbBr 3 layer thickness. OPTICS EXPRESS 2022; 30:11536-11548. [PMID: 35473096 DOI: 10.1364/oe.453909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
In this paper, a CH3NH3(MA)PbBr3/Si heterojunction photodetector (PD) is prepared, and a simple method is proposed to improve the performance by introducing an ITO conductive layer and modulating thickness of the MAPbBr3 layer. The results indicate that the MAPbBr3/Si heterojunction PD exhibits an ultra-broadband photoresponse ranging from 405 to 1064 nm, and excellent performances with the responsivity (R) of 0.394 mA/W, detectivity (D) of 0.11×1010 Jones, and response times of ∼2176/∼257 ms. When adding the ITO layer, the R and D are greatly improved to 0.426 A/W and 5.17×1010 Jones, which gets an increment of 1.08×105% and 4.7×103%, respectively. Meanwhile, the response times are reduced to ∼130/∼125 ms, and a good environmental stability is obtained. Moreover, it is found that the photoresponse is strongly dependent on the thickness of the MAPbBr3 layer. By modulating the MAPbBr3 layer thickness from ∼85 to ∼590 nm, the performances are further improved with the best R of ∼0.87 A/W, D of ∼1.92×1011 Jones, and response times of ∼129/∼130 ms achieved in the ∼215 nm-thick PD.
Collapse
|
30
|
Abiram G, Gourji FH, Pitchaiya S, Ravirajan P, Murugathas T, Velauthapillai D. Air processed Cs 2AgBiBr 6 lead-free double perovskite high-mobility thin-film field-effect transistors. Sci Rep 2022; 12:2455. [PMID: 35165320 PMCID: PMC8844394 DOI: 10.1038/s41598-022-06319-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
Abstract
This study focuses on the fabrication and characterization of Cs2AgBiBr6 double perovskite thin film for field-effect transistor (FET) applications. The Cs2AgBiBr6 thin films were fabricated using a solution process technique and the observed XRD patterns demonstrate no diffraction peaks of secondary phases, which confirm the phase-pure crystalline nature. The average grain sizes of the spin-deposited film were also calculated by analysing the statistics of grain size in the SEM image and was found to be around 412 (± 44) nm, and larger grain size was also confirmed by the XRD measurements. FETs with different channel lengths of Cs2AgBiBr6 thin films were fabricated, under ambient conditions, on heavily doped p-type Si substrate with a 300 nm thermally grown SiO2 dielectric. The fabricated Cs2AgBiBr6 FETs showed a p-type nature with a positive threshold voltage. The on-current, threshold voltage and hole-mobility of the FETs decreased with increasing channel length. A high average hole mobility of 0.29 cm2 s-1 V-1 was obtained for the FETs with a channel length of 30 µm, and the hole-mobility was reduced by an order of magnitude (0.012 cm2 s-1 V-1) when the channel length was doubled. The on-current and hole-mobility of Cs2AgBiBr6 FETs followed a power fit, which confirmed the dominance of channel length in electrostatic gating in Cs2AgBiBr6 FETs. A very high-hole mobility observed in FET could be attributed to the much larger grain size of the Cs2AgBiBr6 film made in this work.
Collapse
Affiliation(s)
- Gnanasampanthan Abiram
- Department of Physics, Faculty of Science, University of Jaffna, Jaffna, 40000, Sri Lanka
- Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, Inndalsveien 28, 5063, Bergen, Norway
| | - Fatemeh Heidari Gourji
- Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, Inndalsveien 28, 5063, Bergen, Norway
| | - Selvakumar Pitchaiya
- Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, Inndalsveien 28, 5063, Bergen, Norway
| | | | | | - Dhayalan Velauthapillai
- Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, Inndalsveien 28, 5063, Bergen, Norway.
| |
Collapse
|
31
|
Li L, Chen Y, Cai C, Ma P, Ji H, Zou G. Single Crystal Halide Perovskite Film for Nonlinear Resistive Memory with Ultrahigh Switching Ratio. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103881. [PMID: 34816558 DOI: 10.1002/smll.202103881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Morre's law is coming to an end only if the memory industry can keep stuffing the devices with new functionality. Halide perovskite acts as a promising candidate for application in next-generation nonvolatile memory. As is well known, the switching ratio is the key device requirement of resistive memory to improve recognition accuracy. Here, the authors introduce an all-inorganic halide perovskite CsPbBr3 single crystal film (SCF) into resistive memory as an active layer. The Ag/CsPbBr3 /Ag memory cells exhibit reproducible resistive switching with an ultrahigh switching ratio (over 109 ) and a fast switching speed (1.8 µs). It is studied that the Schottky barrier of metal/CsPbBr3 SCF contact follows the tendency of Schottky-Mott theory, and the Fermi level pinning effect is effectively reduced. The interface S parameter of metal/CsPbBr3 SCF contact is 0.50, suggesting a great interface contact is formed. The great interface contact contributes to the steady high resistance state (HRS), and then the steady HRS leads to an ultrahigh resistive switching ratio. This work demonstrates high performance from halide perovskite SCF-based memory. The introduction of halide perovskite SCF in resistive random access memory provides great potential as an alternative in future computing systems.
Collapse
Affiliation(s)
- Lutao Li
- College of Energy, Soochow Institute for Energy and Materials Innovations, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215000, China
| | - Yuan Chen
- College of Energy, Soochow Institute for Energy and Materials Innovations, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215000, China
| | - Changming Cai
- Suzhou O-Light Optical Technology Co., Ltd., Suzhou, 215000, China
| | - Peipei Ma
- College of Energy, Soochow Institute for Energy and Materials Innovations, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215000, China
| | - Huayong Ji
- Suzhou O-Light Optical Technology Co., Ltd., Suzhou, 215000, China
| | - Guifu Zou
- College of Energy, Soochow Institute for Energy and Materials Innovations, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215000, China
| |
Collapse
|
32
|
Kaiser W, Carignano M, Alothman AA, Mosconi E, Kachmar A, Goddard WA, De Angelis F. First-Principles Molecular Dynamics in Metal-Halide Perovskites: Contrasting Generalized Gradient Approximation and Hybrid Functionals. J Phys Chem Lett 2021; 12:11886-11893. [PMID: 34875174 DOI: 10.1021/acs.jpclett.1c03428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
First-principles molecular dynamics (FPMD) represents a valuable tool to probe dynamical properties of metal-halide perovskites (MHPs) which are key to their success in optoelectronic devices. Most FPMD studies rely on generalized gradient approximation (GGA) functionals for computational efficiency matters, while hybrid functionals, although computationally demanding, are usually needed to accurately describe structural and electronic properties of MHPs. This Letter reports FPMD simulations on CsPbI3 based on the hybrid PBE0 functional. Our results demonstrate that PBE0 leads to lattice parameters and phonon modes in excellent agreement with experimental data, while GGA results overestimate the lattice parameter and the electronic band gap and underestimate the phonon energies. Our FPMD results also shed light on anharmonic effects and double-well instabilities in the octahedral tilting, highlighting a lowered free energy barrier for PBE0 and farther separated potential wells. Our results suggest that hybrid functionals are required to accurately describe crystal structure, lattice dynamics, and anharmonicity in MHPs.
Collapse
Affiliation(s)
- Waldemar Kaiser
- Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche "Giulio Natta" (CNR-SCITEC), Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Marcelo Carignano
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Asma A Alothman
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Edoardo Mosconi
- Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche "Giulio Natta" (CNR-SCITEC), Via Elce di Sotto 8, 06123 Perugia, Italy
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Ali Kachmar
- Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche "Giulio Natta" (CNR-SCITEC), Via Elce di Sotto 8, 06123 Perugia, Italy
| | - William A Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Filippo De Angelis
- Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche "Giulio Natta" (CNR-SCITEC), Via Elce di Sotto 8, 06123 Perugia, Italy
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
- CompuNet, Istituto Italiano di Tecnologia, Genova 16163, Italy
| |
Collapse
|
33
|
Annohene G, Tepper G. Moisture Stability of Perovskite Solar Cells Processed in Supercritical Carbon Dioxide. Molecules 2021; 26:7570. [PMID: 34946650 PMCID: PMC8706609 DOI: 10.3390/molecules26247570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 11/16/2022] Open
Abstract
Performance degradation under environmental conditions currently limits the practical utility of perovskite-based solar cells. The moisture stability of CH3NH3PbI3 perovskite films and solar cells was measured during exposure to three different levels of relative humidity. The films were crystallized at two different temperatures with and without simultaneous exposure to supercritical carbon dioxide. The film crystallinity, optical absorption, and device photoconversion efficiency was measured over time for three relative humidity levels and both crystallization methods. It was determined that film crystallization in supercritical CO2 resulted in significant improvement in moisture stability for films processed at 50 °C, but negligible improvement in stability for films processed at 100 °C.
Collapse
Affiliation(s)
| | - Gary Tepper
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA;
| |
Collapse
|
34
|
Shin J, Baek KY, Lee J, Lee W, Kim J, Jang J, Park J, Kang K, Cho K, Lee T. Proton irradiation effects on mechanochemically synthesized and flash-evaporated hybrid organic-inorganic lead halide perovskites. NANOTECHNOLOGY 2021; 33:065706. [PMID: 34715679 DOI: 10.1088/1361-6528/ac34a7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
A hybrid organic-inorganic halide perovskite is a promising material for developing efficient solar cell devices, with potential applications in space science. In this study, we synthesized methylammonium lead iodide (MAPbI3) perovskites via two methods: mechanochemical synthesis and flash evaporation. We irradiated these perovskites with highly energetic 10 MeV proton-beam doses of 1011, 1012, 1013, and 4 × 1013protons cm-2and examined the proton irradiation effects on the physical properties of MAPbI3perovskites. The physical properties of the mechanochemically synthesized MAPbI3perovskites were not considerably affected after proton irradiation. However, the flash-evaporated MAPbI3perovskites showed a new peak in x-ray diffraction and an increased fluorescence lifetime in time-resolved photoluminescence under high-dose conditions, indicating considerable changes in their physical properties. This difference in behavior between MAPbI3perovskites synthesized via the abovementioned two methods may be attributed to differences in radiation hardness associated with the bonding strength of the constituents, particularly Pb-I bonds. Our study will help to understand the radiation effect of proton beams on organometallic halide perovskite materials.
Collapse
Affiliation(s)
- Jiwon Shin
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyeong-Yoon Baek
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Jonghoon Lee
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Woocheol Lee
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaeyoung Kim
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Juntae Jang
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaehyoung Park
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Keehoon Kang
- Department of Materials Science & Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Kyungjune Cho
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Takhee Lee
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
35
|
Ma C, Chen H, Yengel E, Faber H, Khan JI, Tang MC, Li R, Loganathan K, Lin Y, Zhang W, Laquai F, McCulloch I, Anthopoulos TD. Printed Memtransistor Utilizing a Hybrid Perovskite/Organic Heterojunction Channel. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51592-51601. [PMID: 34696578 DOI: 10.1021/acsami.1c08583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Neuromorphic computing has the potential to address the inherent limitations of conventional integrated circuit technology, ranging from perception, pattern recognition, to memory and decision-making ( Acc. Chem. Res. 2019, 52 (4), 964-974) ( Nature 2004, 431 (7010), 796-803) ( Nat. Nanotechnol. 2013, 8 (1), 13-24). Despite their low power consumption ( Nano Lett. 2016, 16 (11), 6724-6732), traditional two-terminal memristors can perform only a single function while lacking heterosynaptic plasticity ( Nanotechnology 2013, 24 (38), 382001). Inspired by the unconditioned reflex, multiterminal memristive transistors (memtransistor) were developed to realize complex functions, such as multiterminal modulation and heterosynaptic plasticity ( Nature 2018, 554, (7693), 500-504). Here we combine a hybrid metal halide perovskite with an organic conjugated polymer to form heterojunction transistors that are responsive to both electrical and optical stimuli. We show that the synergistic effects of photoinduced ion migration in the perovskite and electronic transport in the polymer layers can be exploited to realize memristive functions. The device combines reversible, nonvolatile conductance modulation with large switching current ratios, high endurance, and long retention times. Using in situ scanning Kelvin probe microscopy and variable-temperature charge transport measurement, we correlate the collective effects of bias-induced and photoinduced ion migration with the heterosynaptic behavior observed in this hybrid memtransistor. The hybrid heterojunction channel concept is expected to be applicable to other material combinations making it a promising platform for deployment in innovative neuromorphic devices of the future.
Collapse
Affiliation(s)
- Chun Ma
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal 23955-6900, Saudi Arabia
| | - Hu Chen
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal 23955-6900, Saudi Arabia
| | - Emre Yengel
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal 23955-6900, Saudi Arabia
| | - Hendrik Faber
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal 23955-6900, Saudi Arabia
| | - Jafar I Khan
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal 23955-6900, Saudi Arabia
| | - Ming-Chun Tang
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal 23955-6900, Saudi Arabia
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Kalaivanan Loganathan
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal 23955-6900, Saudi Arabia
| | - Yuanbao Lin
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal 23955-6900, Saudi Arabia
| | - Weimin Zhang
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal 23955-6900, Saudi Arabia
| | - Frédéric Laquai
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal 23955-6900, Saudi Arabia
| | - Iain McCulloch
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal 23955-6900, Saudi Arabia
| | - Thomas D Anthopoulos
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
36
|
Pininti AR, Ball JM, Albaqami MD, Petrozza A, Caironi M. Time-Dependent Field Effect in Three-Dimensional Lead-Halide Perovskite Semiconductor Thin Films. ACS APPLIED ENERGY MATERIALS 2021; 4:10603-10609. [PMID: 34723138 PMCID: PMC8552216 DOI: 10.1021/acsaem.1c01558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Indexed: 06/13/2023]
Abstract
Charge transport in three-dimensional metal-halide perovskite semiconductors is due to a complex combination of ionic and electronic contributions, and its study is particularly relevant in light of their successful applications in photovoltaics as well as other opto- and microelectronic applications. Interestingly, the observation of field effect at room temperature in transistors based on solution-processed, polycrystalline, three-dimensional perovskite thin films has been elusive. In this work, we study the time-dependent electrical characteristics of field-effect transistors based on the model methylammonium lead iodide semiconductor and observe the drastic variations in output current, and therefore of apparent charge carrier mobility, as a function of the applied gate pulse duration. We infer this behavior to the accumulation of ions at the grain boundaries, which hamper the transport of carriers across the FET channel. This study reveals the dynamic nature of the field effect in solution-processed metal-halide perovskites and offers an investigation methodology useful to characterize charge carrier transport in such emerging semiconductors.
Collapse
Affiliation(s)
- Anil Reddy Pininti
- Center
for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via G. Pascoli 70/3, Milano 20133, Italy
- Physics
Department, Politecnico di Milano, Piazza L. da Vinci, 32, Milano 20133, Italy
| | - James M. Ball
- Center
for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via G. Pascoli 70/3, Milano 20133, Italy
| | - Munirah D. Albaqami
- Chemistry
Department, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Annamaria Petrozza
- Center
for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via G. Pascoli 70/3, Milano 20133, Italy
- Chemistry
Department, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Mario Caironi
- Center
for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via G. Pascoli 70/3, Milano 20133, Italy
| |
Collapse
|
37
|
Ricciardulli AG, Yang S, Smet JH, Saliba M. Emerging perovskite monolayers. NATURE MATERIALS 2021; 20:1325-1336. [PMID: 34112976 DOI: 10.1038/s41563-021-01029-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 04/28/2021] [Indexed: 05/26/2023]
Abstract
The library of two-dimensional (2D) materials has been enriched over recent years with novel crystal architectures endowed with diverse exciting functionalities. Bulk perovskites, including metal-halide and oxide systems, provide access to a myriad of properties through molecular engineering. Their tunable electronic structure offers remarkable features from long carrier-diffusion lengths and high absorption coefficients in metal-halide perovskites to high-temperature superconductivity, magnetoresistance and ferroelectricity in oxide perovskites. Emboldened by the 2D materials research, perovskites down to the monolayer limit have recently emerged. Like other 2D species, perovskites with reduced dimensionality are expected to exhibit new physics and to herald next-generation multifunctional devices. In this Review, we critically assess the preliminary studies on the synthetic routes and inherent properties of monolayer perovskite materials. We also discuss how to exploit them for widespread applications and provide an outlook on the challenges and opportunities that lie ahead for this enticing class of 2D materials.
Collapse
Affiliation(s)
- Antonio Gaetano Ricciardulli
- Technical University of Darmstadt, Darmstadt, Germany
- Université de Strasbourg, CNRS, ISIS UMR 7006, Strasbourg, France
| | - Sheng Yang
- Max Planck Institute for Solid State Research, Stuttgart, Germany.
| | - Jurgen H Smet
- Max Planck Institute for Solid State Research, Stuttgart, Germany.
| | - Michael Saliba
- Technical University of Darmstadt, Darmstadt, Germany.
- Institute for Photovoltaics, University of Stuttgart, Stuttgart, Germany.
- Helmholtz Young Investigator Group FRONTRUNNER, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
38
|
Wang G, Mei S, Liao J, Wang W, Tang Y, Zhang Q, Tang Z, Wu B, Xing G. Advances of Nonlinear Photonics in Low-Dimensional Halide Perovskites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100809. [PMID: 34121324 DOI: 10.1002/smll.202100809] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Hybrid halide perovskites emerging as a highly promising class of functional materials for semiconductor optoelectronic applications have drawn great attention from worldwide researchers. In the past few years, prominent nonlinear optical properties have been demonstrated in perovskite bulk structures indicating their bright prospect in the field of nonlinear optics (NLO). Following the surge of 3D perovskites, more recently, the low-dimensional perovskites (LDPs) materials ranging from two-, one-, to zero-dimension such as quantum-wells or colloidal nanostructures have displayed unexpectedly attractive NLO response due to the strong quantum confinement, remarkable exciton effect, and structural diversity. In this perspective, the current state of the art is reviewed in the field of NLO for LDP materials. The relationship between confinement effect and NLO is analyzed systematically to give a comprehensive understanding of the function of dimension reduction. Furthermore, future directions and challenges toward the improvement of the NLO in LDP materials are discussed to provide an outlook in this rapidly developing field.
Collapse
Affiliation(s)
- Gang Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, P. R. China
| | - Shiliang Mei
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, P. R. China
| | - Jinfeng Liao
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, P. R. China
| | - Wei Wang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Yuxin Tang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Qing Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zikang Tang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, P. R. China
| | - Bo Wu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, P. R. China
| |
Collapse
|
39
|
Jeong B, Veith L, Smolders TJAM, Wolf MJ, Asadi K. Room-Temperature Halide Perovskite Field-Effect Transistors by Ion Transport Mitigation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100486. [PMID: 34387400 PMCID: PMC11468016 DOI: 10.1002/adma.202100486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/26/2021] [Indexed: 06/13/2023]
Abstract
Solution-processed halide perovskites have emerged as excellent optoelectronic materials for applications in photovoltaic solar cells and light-emitting diodes. However, the presence of mobile ions in the material hinders the development of perovskite field-effect transistors (FETs) due to screening of the gate potential in the nearby perovskite channel, and the resulting impediment to achieving gate modulation of an electronic current at room temperature. Here, room-temperature operation is demonstrated in cesium lead tribromide (CsPbBr3 ) perovskite-based FETs using an auxiliary ferroelectric gate of poly(vinylidenefluoride-co-trifluoroethylene) [P(VDF-TrFE)], to electrostatically fixate the mobile ions. The large interfacial polarization of the ferroelectric gate attracts the mobile ions away from the main nonferroelectric gate interface, thereby enabling modulation of the electronic current through the channel by the main gate. This strategy allows for realization of the p-type CsPbBr3 channel and revealing the thermally activated nature of the hole charge transport. The proposed strategy is generic and can be applied for regulating ions in a variety of ionic-electronic mixed semiconductors.
Collapse
Affiliation(s)
- Beomjin Jeong
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Lothar Veith
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | | | - Matthew J. Wolf
- Department of PhysicsUniversity of BathClaverton DownBathBA2 7AYUK
| | - Kamal Asadi
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Department of PhysicsUniversity of BathClaverton DownBathBA2 7AYUK
- Centre for Therapeutic InnovationUniversity of BathBathBA2 7AYUK
| |
Collapse
|
40
|
Liang A, Gao Y, Asadpour R, Wei Z, Finkenauer BP, Jin L, Yang J, Wang K, Chen K, Liao P, Zhu C, Huang L, Boudouris BW, Alam MA, Dou L. Ligand-Driven Grain Engineering of High Mobility Two-Dimensional Perovskite Thin-Film Transistors. J Am Chem Soc 2021; 143:15215-15223. [PMID: 34516736 DOI: 10.1021/jacs.1c06337] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Controlling grain growth is of great importance in maximizing the charge carrier transport for polycrystalline thin-film electronic devices. The thin-film growth of halide perovskite materials has been manipulated via a number of approaches including solvent engineering, composition engineering, and post-treatment processes. However, none of these methods lead to large-scale atomically flat thin films with extremely large grain size and high charge carrier mobility. Here, we demonstrate a novel π-conjugated ligand design approach for controlling the thin-film nucleation and growth kinetics in two-dimensional (2D) halide perovskites. By extending the π-conjugation and increasing the planarity of the semiconducting ligand, nucleation density can be decreased by more than 5 orders of magnitude. As a result, wafer-scale 2D perovskite thin films with highly ordered crystalline structures and extremely large grain size are readily obtained. We demonstrate high-performance field-effect transistors with hole mobility approaching 10 cm2 V-1 s-1 with ON/OFF current ratios of ∼106 and excellent stability and reproducibility. Our modeling analysis further confirms the origin of enhanced charge transport and field and temperature dependence of the observed mobility, which allows for clear deciphering of the structure-property relationships in these nascent 2D semiconductor systems.
Collapse
Affiliation(s)
- Aihui Liang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.,Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yao Gao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Reza Asadpour
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zitang Wei
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Blake P Finkenauer
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Linrui Jin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jiaqi Yang
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kang Wang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ke Chen
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Peilin Liao
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Libai Huang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Bryan W Boudouris
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States.,Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Muhammad Ashraf Alam
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States.,Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
41
|
Kim EB, Akhtar MS, Shin HS, Ameen S, Nazeeruddin MK. A review on two-dimensional (2D) and 2D-3D multidimensional perovskite solar cells: Perovskites structures, stability, and photovoltaic performances. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100405] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Ma X, Zhang F, Chu Z, Hao J, Chen X, Quan J, Huang Z, Wang X, Li X, Yan Y, Zhu K, Lai K. Superior photo-carrier diffusion dynamics in organic-inorganic hybrid perovskites revealed by spatiotemporal conductivity imaging. Nat Commun 2021; 12:5009. [PMID: 34408145 PMCID: PMC8373981 DOI: 10.1038/s41467-021-25311-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/04/2021] [Indexed: 11/09/2022] Open
Abstract
The outstanding performance of organic-inorganic metal trihalide solar cells benefits from the exceptional photo-physical properties of both electrons and holes in the material. Here, we directly probe the free-carrier dynamics in Cs-doped FAPbI3 thin films by spatiotemporal photoconductivity imaging. Using charge transport layers to selectively quench one type of carriers, we show that the two relaxation times on the order of 1 μs and 10 μs correspond to the lifetimes of electrons and holes in FACsPbI3, respectively. Strikingly, the diffusion mapping indicates that the difference in electron/hole lifetimes is largely compensated by their disparate mobility. Consequently, the long diffusion lengths (3~5 μm) of both carriers are comparable to each other, a feature closely related to the unique charge trapping and de-trapping processes in hybrid trihalide perovskites. Our results unveil the origin of superior diffusion dynamics in this material, crucially important for solar-cell applications.
Collapse
Affiliation(s)
- Xuejian Ma
- Department of Physics, University of Texas at Austin, Austin, TX, USA
| | - Fei Zhang
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado, CO, USA
| | - Zhaodong Chu
- Department of Physics, University of Texas at Austin, Austin, TX, USA
| | - Ji Hao
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado, CO, USA
| | - Xihan Chen
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado, CO, USA
| | - Jiamin Quan
- Department of Physics, University of Texas at Austin, Austin, TX, USA
| | - Zhiyuan Huang
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado, CO, USA
| | - Xiaoming Wang
- Department of Physics and Astronomy, University of Toledo, Toledo, OH, USA
| | - Xiaoqin Li
- Department of Physics, University of Texas at Austin, Austin, TX, USA
| | - Yanfa Yan
- Department of Physics and Astronomy, University of Toledo, Toledo, OH, USA
| | - Kai Zhu
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado, CO, USA.
| | - Keji Lai
- Department of Physics, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
43
|
Mobile ions determine the luminescence yield of perovskite light-emitting diodes under pulsed operation. Nat Commun 2021; 12:4899. [PMID: 34385427 PMCID: PMC8361013 DOI: 10.1038/s41467-021-25016-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
The external quantum efficiency of perovskite light-emitting diodes (PeLEDs) has advanced quickly during the past few years. However, under pulsed operation, an operation mode which is important for display and visible light communication, the performance of PeLEDs changes a lot and requires in-depth understanding to facilitate these applications. Here, we report the response of PeLEDs under pulsed operation in the range of 10 Hz to 20 kHz. Beyond transient effects in the low frequencies, we find that for higher frequencies (>500 Hz) the transient electroluminescence intensity depends strongly on the duty cycle. This feature is much more pronounced and of different origin than that in conventional LEDs. We rationalise our experimental observations using a mathematical model and assign these features to the effect of mobile ionic charges in the perovskite. Our work also provides important implications for the operation of PeLEDs under the steady state, where accumulation of mobile ions at the interfaces could be beneficial for high electroluminescence yields but harmful for the long-term stability.
Collapse
|
44
|
Yang T, Jin C, Qu J, Darvish AA, Sabatini R, Zhang X, Chen H, Ringer SP, Lakhwani G, Li F, Cairney J, Liu X, Zheng R. Solution Epitaxy of Halide Perovskite Thin Single Crystals for Stable Transistors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37840-37848. [PMID: 34314169 DOI: 10.1021/acsami.1c08800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Halide perovskites hold promise for energy and optoelectronic applications due to their fascinating photophysical properties and facile processing. Among various forms, epitaxial thin single crystals (TSCs) are highly desirable due to their high crystallinity, reduced defects, and easy epitaxial integration with other materials. However, a cost-effective method for obtaining TSCs with perfect epitaxial features remains elusive. Here, we demonstrate a direct epitaxial growth of high-quality all-inorganic perovskite CsPbBr3 TSCs on various substrates through a facile solution process under near-ambient conditions. Structural characterizations reveal a high-quality epitaxy between the obtained perovskite TSCs and substrates, thus leading to efficiently reduced defects. The resultant TSCs display a low trap density (∼1011 cm-3) and a long carrier lifetime (∼10.16 ns). Top-gate/top-contact transistors based on these TSCs exhibit high on/off ratios of over 105, an optimal hole mobility of 3.9 cm2 V-1 s-1, almost hysteresis-free operation, and high stability at room temperature. Such a facile approach for the high-yield production of perovskite epitaxial TSCs will enable a broad range of high-performance electronic applications.
Collapse
Affiliation(s)
- Tiebin Yang
- School of Physics, Australian Centre for Microscopy and Microanalysis, Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Chao Jin
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Processing Technology, School of Science, Tianjin University, Tianjin 300350, China
| | - Jiangtao Qu
- School of Aerospace, Mechanical and Mechatronic Engineering, Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Amir Asadpoor Darvish
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Randy Sabatini
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Xingmo Zhang
- School of Physics, Australian Centre for Microscopy and Microanalysis, Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Hansheng Chen
- School of Aerospace, Mechanical and Mechatronic Engineering, Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Simon P Ringer
- School of Aerospace, Mechanical and Mechatronic Engineering, Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Girish Lakhwani
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Feng Li
- School of Physics, Australian Centre for Microscopy and Microanalysis, Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Julie Cairney
- School of Aerospace, Mechanical and Mechatronic Engineering, Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Rongkun Zheng
- School of Physics, Australian Centre for Microscopy and Microanalysis, Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
45
|
Tailor NK, Senanayak SP, Abdi-Jalebi M, Satapathi S. Low-frequency carrier kinetics in triple cation perovskite solar cells probed by impedance and modulus spectroscopy. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138430] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
Gao J, Lv Q. Ambipolar Field‐Effect Transistor Based on CH
3
NH
3
PbI
3
Microwires. ChemistrySelect 2021. [DOI: 10.1002/slct.202101483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jinghan Gao
- Department of Applied Chemistry School of Biotechnology and Food Science Tianjin University of Commerce Tianjin 300134 China
| | - Qianrui Lv
- School of Science Beijing Jiaotong University Beijing 100044 China
| |
Collapse
|
47
|
Lee S, Wolfe S, Torres J, Yun M, Lee JK. Asymmetric Bipolar Resistive Switching of Halide Perovskite Film in Contact with TiO 2 Layer. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27209-27216. [PMID: 34080828 DOI: 10.1021/acsami.1c06278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Halide perovskite materials such as methylammonium lead iodide (CH3NH3PbI3) have attracted considerable interest for the resistive random-access memory applications, which exploit a dramatic change in the resistance by an external electric bias. In many semiconductor films, the drift, accumulation, and chain formation of defects explain the change in the resistance by an external bias. This study demonstrates that the interface of CH3NH3PbI3 with TiO2 has a significant impact on the formation and rupture of defect chains and causes the asymmetric bipolar resistive switching in the Au/CH3NH3PbI3/TiO2/FTO device (FTO = fluorine-doped tin oxide). When a negative bias is applied to the Au electrode, iodine interstitials with the lowest migration activation energy move toward TiO2 in the CH3NH3PbI3 layer and pile up at the CH3NH3PbI3-TiO2 interface. Under the same condition, oxygen vacancies in the TiO2 layer also travel to the CH3NH3PbI3-TiO2 interface and strongly attract iodine interstitials. As a result, a Schottky barrier appears at the CH3NH3PbI3-TiO2 interface, and the resistance of Au/CH3NH3PbI3/TiO2/FTO becomes much larger than that of Au/CH3NH3PbI3/FTO in the high resistance state. The frequency dependence of the capacitance confirms the asymmetric appearance of a large space charge polarization at the CH3NH3PbI3-TiO2 interface, which causes the unique bipolar resistive switching behavior with the on/off ratio (103) and retention time (>104 seconds) at -0.85 V in Au/CH3NH3PbI3/TiO2/FTO film.
Collapse
Affiliation(s)
- Seongha Lee
- Department of Mechanical Engineering & Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Sarah Wolfe
- Department of Mechanical Engineering & Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Jorge Torres
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Minhee Yun
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Jung-Kun Lee
- Department of Mechanical Engineering & Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
48
|
Lin P, Meng Q, Chen H, Hu H, Fang D, Xu L, Wang P, Cui C. Variational hysteresis and photoresponse behavior of MAPb X3( X= I, Br, Cl) perovskite single crystals. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:285703. [PMID: 33971631 DOI: 10.1088/1361-648x/abff92] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
High-quality MAPbX3(X= I, Br, Cl) single crystals with a desirable size were grown through an inverse temperature crystallization method. Systematically measurements of current-voltage (I-V) hysteresis show that the hysteresis is strongly dependent on the measuring protocol, including scan rate and light illumination condition, which reveals the competition of three main factors that influence the charge dynamics in different regimes, defect trap, MA+dipoles rotation, and ion migration. In the dark, defect trapping is the dominant charge transport dynamics at low bias in the MAPbI3, while the MA+dipole rotation is significant in MAPbBr3, and ion migration occurs in MAPbCl3. However, as bias increases, MA+dipole rotation plays a crucial role in the conductivity either in the dark or under light illumination. The time-dependent photoresponse exhibits different tendencies under various biases. The slow rising dynamics of photoresponse in MAPbX3is attributed to the slow rotation of MA+dipoles, while an immediate overshoot followed by a decay suggests significant ion migration contribution at high external bias. The results serve as comprehensive experimental support to understand the hysteresis behaviors and slow photoresponse in MAPbX3, particularly in MAPbCl3, and provide a guide for future work in MAPbX3based optoelectronic devices.
Collapse
Affiliation(s)
- Ping Lin
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Qingyu Meng
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Hang Chen
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Haihua Hu
- Zhejiang University City College, Hangzhou 310015, People's Republic of China
| | - Desheng Fang
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Lingbo Xu
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
- State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Peng Wang
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
- State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Can Cui
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
- State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China
| |
Collapse
|
49
|
Hsieh TC, Shih CY, Chao YC, Cheng IC, Chen JZ. Improved efficiency and air stability of two-dimensional p-i-n inverted perovskite solar cells by Cs doping. RSC Adv 2021; 11:20200-20206. [PMID: 35479908 PMCID: PMC9033986 DOI: 10.1039/d1ra02574k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/30/2021] [Indexed: 11/21/2022] Open
Abstract
Two-dimensional perovskite solar cells (2-D PSCs) have attracted much research attention in recent years because they are more stable in a regular environment than three-dimensional (3-D) ones are. In this study, we doped Cs into 2D perovskite (BA2(MA)2Pb3I10) films as the absorbing layers of the 2-D p-i-n inverted PSCs to investigate the influence of the Cs doping concentration on the properties of the 2-D perovskite films and the fabricated solar cells. Cs doping clearly improves the power conversion efficiency (PCE) and air stability of the PSCs. Doping perovskite with 10% Cs (the best doping concentration in this study) can increase the PSC efficiency from 7.98% to 10.11%. Scanning electron microscopy indicates the improved surface quality and crystallinity by Cs doping. However, excess Cs doping degrades the PCE of the PSCs. Furthermore, 10% Cs doped PSCs show air stability superior to that of undoped ones in unpackaged humidity environments. After exposure to 55% relative humidity (RH) in 19 °C air for 300 h, the PCE of the PSC decreased by only 39%, in contrast to 84% for the undoped PSC.
Collapse
Affiliation(s)
- Tzu-Chien Hsieh
- Graduate Institute of Applied Mechanics, National Taiwan University Taipei City 10617 Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University Taipei City 10617 Taiwan
| | - Chung-Yueh Shih
- Graduate Institute of Applied Mechanics, National Taiwan University Taipei City 10617 Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University Taipei City 10617 Taiwan
| | - Yu-Chiang Chao
- Department of Physics, National Taiwan Normal University Taipei City 11677 Taiwan
| | - I-Chun Cheng
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University Taipei City 10617 Taiwan
- Department of Electrical Engineering, National Taiwan University Taipei City 10617 Taiwan
- Innovative Photonics Advanced Research Center (i-PARC), National Taiwan University Taipei City 10617 Taiwan
| | - Jian-Zhang Chen
- Graduate Institute of Applied Mechanics, National Taiwan University Taipei City 10617 Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University Taipei City 10617 Taiwan
- Innovative Photonics Advanced Research Center (i-PARC), National Taiwan University Taipei City 10617 Taiwan
| |
Collapse
|
50
|
Younis A, Lin CH, Guan X, Shahrokhi S, Huang CY, Wang Y, He T, Singh S, Hu L, Retamal JRD, He JH, Wu T. Halide Perovskites: A New Era of Solution-Processed Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005000. [PMID: 33938612 DOI: 10.1002/adma.202005000] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/29/2020] [Indexed: 05/26/2023]
Abstract
Organic-inorganic mixed halide perovskites have emerged as an excellent class of materials with a unique combination of optoelectronic properties, suitable for a plethora of applications ranging from solar cells to light-emitting diodes and photoelectrochemical devices. Recent works have showcased hybrid perovskites for electronic applications through improvements in materials design, processing, and device stability. Herein, a comprehensive up-to-date review is presented on hybrid perovskite electronics with a focus on transistors and memories. These applications are supported by the fundamental material properties of hybrid perovskite semiconductors such as tunable bandgap, ambipolar charge transport, reasonable mobility, defect characteristics, and solution processability, which are highlighted first. Then, recent progresses on perovskite-based transistors are reviewed, covering aspects of fabrication process, patterning techniques, contact engineering, 2D versus 3D material selection, and device performance. Furthermore, applications of perovskites in nonvolatile memories and artificial synaptic devices are presented. The ambient instability of hybrid perovskites and the strategies to tackle this bottleneck are also discussed. Finally, an outlook and opportunities to develop perovskite-based electronics as a competitive and feasible technology are highlighted.
Collapse
Affiliation(s)
- Adnan Younis
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Department of Physics, College of Science, University of Bahrain, P.O. Box 32038, Sakhir Campus, Zallaq, Kingdom of Bahrain
| | - Chun-Ho Lin
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Xinwei Guan
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shamim Shahrokhi
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chien-Yu Huang
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yutao Wang
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Tengyue He
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Simrjit Singh
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Long Hu
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jose Ramon Duran Retamal
- Computer, Electrical and Mathematical Sciences and Engineering, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Jr-Hau He
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Tom Wu
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|