1
|
Cypess AM, Cannon B, Nedergaard J, Kazak L, Chang DC, Krakoff J, Tseng YH, Schéele C, Boucher J, Petrovic N, Blondin DP, Carpentier AC, Virtanen KA, Kooijman S, Rensen PCN, Cero C, Kajimura S. Emerging debates and resolutions in brown adipose tissue research. Cell Metab 2025; 37:12-33. [PMID: 39644896 PMCID: PMC11710994 DOI: 10.1016/j.cmet.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/28/2024] [Accepted: 11/01/2024] [Indexed: 12/09/2024]
Abstract
Until two decades ago, brown adipose tissue (BAT) was studied primarily as a thermogenic organ of small rodents in the context of cold adaptation. The discovery of functional human BAT has opened new opportunities to understand its physiological role in energy balance and therapeutic applications for metabolic disorders. Significantly, the role of BAT extends far beyond thermogenesis, including glucose and lipid homeostasis, by releasing mediators that communicate with other cells and organs. The field has made major advances by using new model systems, ranging from subcellular studies to clinical trials, which have also led to debates. In this perspective, we identify six fundamental issues that are currently controversial and comprise dichotomous models. Each side presents supporting evidence and, critically, the necessary methods and falsifiable experiments that would resolve the dispute. With this collaborative approach, the field will continue to productively advance the understanding of BAT physiology, appreciate the importance of thermogenic adipocytes as a central area of ongoing research, and realize the therapeutic potential.
Collapse
Affiliation(s)
- Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Lawrence Kazak
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Douglas C Chang
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ 85016, USA
| | - Jonathan Krakoff
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ 85016, USA
| | - Yu-Hua Tseng
- Joslin Diabetes Center, Harvard Medical School, Boston, MA 02115, USA
| | - Camilla Schéele
- Novo Nordisk Foundation Center for Basic Metabolic Research, The Center of Inflammation and Metabolism and the Center for Physical Activity Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Natasa Petrovic
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Denis P Blondin
- Division of Neurology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Sander Kooijman
- Division of Endocrinology, Department of Medicine, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, the Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Medicine, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, the Netherlands
| | - Cheryl Cero
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
2
|
Keipert S, Gaudry MJ, Kutschke M, Keuper M, Dela Rosa MAS, Cheng Y, Monroy Kuhn JM, Laterveer R, Cotrim CA, Giere P, Perocchi F, Feederle R, Crichton PG, Lutter D, Jastroch M. Two-stage evolution of mammalian adipose tissue thermogenesis. Science 2024; 384:1111-1117. [PMID: 38843333 DOI: 10.1126/science.adg1947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 04/08/2024] [Indexed: 06/16/2024]
Abstract
Brown adipose tissue (BAT) is a heater organ that expresses thermogenic uncoupling protein 1 (UCP1) to maintain high body temperatures during cold stress. BAT thermogenesis is considered an overarching mammalian trait, but its evolutionary origin is unknown. We show that adipose tissue of marsupials, which diverged from eutherian mammals ~150 million years ago, expresses a nonthermogenic UCP1 variant governed by a partial transcriptomic BAT signature similar to that found in eutherian beige adipose tissue. We found that the reconstructed UCP1 sequence of the common eutherian ancestor displayed typical thermogenic activity, whereas therian ancestor UCP1 is nonthermogenic. Thus, mammalian adipose tissue thermogenesis may have evolved in two distinct stages, with a prethermogenic stage in the common therian ancestor linking UCP1 expression to adipose tissue and thermal stress. We propose that in a second stage, UCP1 acquired its thermogenic function specifically in eutherians, such that the onset of mammalian BAT thermogenesis occurred only after the divergence from marsupials.
Collapse
Affiliation(s)
- Susanne Keipert
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Michael J Gaudry
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Maria Kutschke
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Michaela Keuper
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Margeoux A S Dela Rosa
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Yiming Cheng
- Institute of Neuronal Cell Biology, Technical University of Munich, 80802 Munich, Germany
- Munich Cluster of Systems Neurology, 81377 Munich, Germany
- Institute for Diabetes and Obesity (IDO), Helmholtz Zentrum München, 85764 Munich, Germany
| | - José M Monroy Kuhn
- Computational Discovery Research, Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC), Helmholtz Zentrum Munich, German Research Center for Environmental Health, German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Rutger Laterveer
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Camila A Cotrim
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Peter Giere
- Museum für Naturkunde-Leibniz Institute for Evolution and Biodiversity Science, 10115 Berlin, Germany
| | - Fabiana Perocchi
- Institute of Neuronal Cell Biology, Technical University of Munich, 80802 Munich, Germany
- Munich Cluster of Systems Neurology, 81377 Munich, Germany
- Institute for Diabetes and Obesity (IDO), Helmholtz Zentrum München, 85764 Munich, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Paul G Crichton
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Dominik Lutter
- Computational Discovery Research, Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC), Helmholtz Zentrum Munich, German Research Center for Environmental Health, German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
3
|
Kim S, Yazawa T, Koide A, Yoneda E, Aoki R, Okazaki T, Tomita K, Watanabe H, Muroi Y, Testuka M, Muranishi Y. Potential Role of Pig UCP3 in Modulating Adipocyte Browning via the Beta-Adrenergic Receptor Signaling Pathway. BIOLOGY 2024; 13:284. [PMID: 38785767 PMCID: PMC11117546 DOI: 10.3390/biology13050284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Adipose tissue plays an important role in regulating body temperature and metabolism, with white adipocytes serving as storage units for energy. Recent research focused on the browning of white adipocytes (beige adipocytes), causing thermogenesis and lipolysis. The process of browning is linked to the activation of uncoupling protein (UCP) expression, which can be mediated by the β3 adrenergic receptor pathway. Transcriptional factors, such as peroxisome proliferator activated receptor γ (PPARγ) and PPARγ coactivator 1 alpha, play vital roles in cell fate determination for fat cells. Beige adipocytes have metabolic therapeutic potential to combat diseases such as obesity, diabetes mellitus, and dyslipidemia, owing to their significant impact on metabolic functions. However, the molecular mechanisms that cause the induction of browning are unclear. Therefore, research using animal models and primary culture is essential to provide an understanding of browning for further application in human metabolic studies. Pigs have physiological similarities to humans; hence, they are valuable models for research on adipose tissue. This study demonstrates the browning potential of pig white adipocytes through primary culture experiments. The results show that upregulation of UCP3 gene expression and fragmentation of lipid droplets into smaller particles occur due to isoproterenol stimulation, which activates beta-adrenergic receptor signaling. Furthermore, PPARγ and PGC-1α were found to activate the UCP3 promoter region, similar to that of UCP1. These findings suggest that pigs undergo metabolic changes that induce browning in white adipocytes, providing a promising approach for metabolic research with potential implications for human health. This study offers valuable insights into the mechanism of adipocyte browning using pig primary culture that can enhance our understanding of human metabolism, leading to cures for commonly occurring diseases.
Collapse
Affiliation(s)
- Sangwoo Kim
- School of Agriculture and Animal Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan (E.Y.); (R.A.); (T.O.); (K.T.); (H.W.); (Y.M.); (M.T.)
| | - Takashi Yazawa
- Department of Biochemistry, Asahikawa Medical University, Asahikawa 078-8510, Hokkaido, Japan;
| | - Akari Koide
- School of Agriculture and Animal Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan (E.Y.); (R.A.); (T.O.); (K.T.); (H.W.); (Y.M.); (M.T.)
| | - Erina Yoneda
- School of Agriculture and Animal Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan (E.Y.); (R.A.); (T.O.); (K.T.); (H.W.); (Y.M.); (M.T.)
| | - Risa Aoki
- School of Agriculture and Animal Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan (E.Y.); (R.A.); (T.O.); (K.T.); (H.W.); (Y.M.); (M.T.)
| | - Tatsuki Okazaki
- School of Agriculture and Animal Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan (E.Y.); (R.A.); (T.O.); (K.T.); (H.W.); (Y.M.); (M.T.)
| | - Kisaki Tomita
- School of Agriculture and Animal Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan (E.Y.); (R.A.); (T.O.); (K.T.); (H.W.); (Y.M.); (M.T.)
| | - Hiroyuki Watanabe
- School of Agriculture and Animal Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan (E.Y.); (R.A.); (T.O.); (K.T.); (H.W.); (Y.M.); (M.T.)
| | - Yoshikage Muroi
- School of Agriculture and Animal Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan (E.Y.); (R.A.); (T.O.); (K.T.); (H.W.); (Y.M.); (M.T.)
| | - Masafumi Testuka
- School of Agriculture and Animal Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan (E.Y.); (R.A.); (T.O.); (K.T.); (H.W.); (Y.M.); (M.T.)
| | - Yuki Muranishi
- School of Agriculture and Animal Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan (E.Y.); (R.A.); (T.O.); (K.T.); (H.W.); (Y.M.); (M.T.)
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita 565-0871, Osaka, Japan
| |
Collapse
|
4
|
Yang S, Ma H, Wang L, Wang F, Xia J, Liu D, Mu L, Yang X, Liu D. The Role of β3-Adrenergic Receptors in Cold-Induced Beige Adipocyte Production in Pigs. Cells 2024; 13:709. [PMID: 38667324 PMCID: PMC11049327 DOI: 10.3390/cells13080709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
After exposure to cold stress, animals enhance the production of beige adipocytes and expedite thermogenesis, leading to improved metabolic health. Although brown adipose tissue in rodents is primarily induced by β3-adrenergic receptor (ADRB3) stimulation, the activation of major β-adrenergic receptors (ADRBs) in pigs has been a topic of debate. To address this, we developed overexpression vectors for ADRB1, ADRB2, and ADRB3 and silenced the expression of these receptors to observe their effects on the adipogenic differentiation stages of porcine preadipocytes. Our investigation revealed that cold stress triggers the transformation of subcutaneous white adipose tissue to beige adipose tissue in pigs by modulating adrenergic receptor levels. Meanwhile, we found that ADRB3 promotes the transformation of white adipocytes into beige adipocytes. Notably, ADRB3 enhances the expression of beige adipose tissue marker genes, consequently influencing cellular respiration and metabolism by regulating lipolysis and mitochondrial expression. Therefore, ADRB3 may serve as a pivotal gene in animal husbandry and contribute to the improvement of cold intolerance in piglets.
Collapse
Affiliation(s)
- Shuo Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Hong Ma
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Liang Wang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Fang Wang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Jiqiao Xia
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066004, China
| | - Dongyu Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Linlin Mu
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Xiuqin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| |
Collapse
|
5
|
Gaudry MJ, Khudyakov J, Pirard L, Debier C, Crocker D, Crichton PG, Jastroch M. Terrestrial Birth and Body Size Tune UCP1 Functionality in Seals. Mol Biol Evol 2024; 41:msae075. [PMID: 38606905 PMCID: PMC11050727 DOI: 10.1093/molbev/msae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/18/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
The molecular evolution of the mammalian heater protein UCP1 is a powerful biomarker to understand thermoregulatory strategies during species radiation into extreme climates, such as aquatic life with high thermal conductivity. While fully aquatic mammals lost UCP1, most semiaquatic seals display intact UCP1 genes, apart from large elephant seals. Here, we show that UCP1 thermogenic activity of the small-bodied harbor seal is equally potent compared to terrestrial orthologs, emphasizing its importance for neonatal survival on land. In contrast, elephant seal UCP1 does not display thermogenic activity, not even when translating a repaired or a recently highlighted truncated version. Thus, the thermogenic benefits for neonatal survival during terrestrial birth in semiaquatic pinnipeds maintained evolutionary selection pressure on UCP1 function and were only outweighed by extreme body sizes among elephant seals, fully eliminating UCP1-dependent thermogenesis.
Collapse
Affiliation(s)
- Michael J Gaudry
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jane Khudyakov
- Department of Biological Sciences, University of the Pacific, Stockton, CA, USA
| | - Laura Pirard
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Cathy Debier
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Daniel Crocker
- Department of Biology, Sonoma State University, Rohnert Park, CA, USA
| | - Paul G Crichton
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
6
|
Gasch K, Hykollari A, Habe M, Haubensak P, Painer-Gigler J, Smith S, Stalder G, Arnold W. Summer fades, deer change: Photoperiodic control of cellular seasonal acclimatization of skeletal muscle. iScience 2024; 27:108619. [PMID: 38155774 PMCID: PMC10753075 DOI: 10.1016/j.isci.2023.108619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/23/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023] Open
Abstract
We found major seasonal changes of polyunsaturated fatty acids (PUFAs) in muscular phospholipids (PL) in a large non-hibernating mammal, the red deer (Cervus elaphus). Dietary supply of essential linoleic acid (LA) and α-linolenic acid (ALA) had no, or only weak influence, respectively. We further found correlations of PL PUFA concentrations with the activity of key metabolic enzymes, independent of higher winter expression. Activity of the sarcoplasmic reticulum (SR) Ca++-ATPase increased with SR PL concentrations of n-6 PUFA, and of cytochrome c oxidase and citrate synthase, indicators of ATP-production, with concentrations of eicosapentaenoic acid in mitochondrial PL. All detected cyclic molecular changes were controlled by photoperiod and are likely of general relevance for mammals living in seasonal environments, including humans. During winter, these changes at the molecular level presumably compensate for Arrhenius effects in the colder peripheral body parts and thus enable a thrifty life at lower body temperature.
Collapse
Affiliation(s)
- Kristina Gasch
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Alba Hykollari
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Manuela Habe
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Patricia Haubensak
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Johanna Painer-Gigler
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Steve Smith
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Gabrielle Stalder
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Walter Arnold
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| |
Collapse
|
7
|
Agata A, Nomura T. Thermal Adaptations in Animals: Genes, Development, and Evolution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:253-265. [PMID: 39289287 DOI: 10.1007/978-981-97-4584-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Thermal adaptation to environmental temperature is a driving force in animal evolution. This chapter presents thermal adaptation in ectotherms and endotherms from the perspective of developmental biology. In ectotherms, there are known examples of temperature influencing morphological characteristics, such as seasonal color change, melanization, and sex determination. Furthermore, the timing of embryonic development also varies with environmental temperature. This review will introduce the cellular and molecular mechanisms underlying temperature-dependent embryogenesis. The evolution of thermal adaptation in endotherms is also important for survival in cold climates. Recent genome-wide studies have revealed adaptive mutations in the genomes of extant humans as well as extinct species such as woolly mammoths and Neanderthals. These studies have shown that single-nucleotide polymorphisms in physiologically related genes (e.g., CPT1A, LRP5, THATA, PRKG1, and FADS1-3) allow humans to live in cold climates. At the end of this chapter, we present the remaining questions in terms of genetic assimilation, heat shock protein Hsp90, and embryonic development.
Collapse
Affiliation(s)
- Ako Agata
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tadashi Nomura
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
- Applied Biology, Kyoto Institute of Technology, Kyoto, Japan.
| |
Collapse
|
8
|
Ruf T, Vetter SG, Painer-Gigler J, Stalder G, Bieber C. Thermoregulation in the wild boar (Sus scrofa). J Comp Physiol B 2023; 193:689-697. [PMID: 37742299 PMCID: PMC10613136 DOI: 10.1007/s00360-023-01512-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/26/2023]
Abstract
The wild boar (Sus scrofa) originates from warm islands but now inhabits large areas of the world, with Antarctica as the only continent not inhabited by this species. One might be tempted to think that its wide distribution results from increasing environmental temperatures. However, any effect of temperature is only indirect: Abundant availability of critical food resources can fully compensate the negative effects of cold winters on population growth. Here, we asked if temperature as a habitat factor is unimportant compared with other habitat indices, simply because wild boars are excellent thermoregulators. We found that the thermoneutral zone in summer was approximately 6-24 °C. In winter, the thermoneutral zone was lowered to 0-7 °C. The estimated increase in the heart rate and energy expenditure in the cold was less than 30% per 10 °C temperature decline. This relatively small increase of energy expenditure during cold exposure places the wild boar in the realm of arctic animals, such as the polar bear, whereas tropical mammals raise their energy expenditure several fold. The response of wild boars to high Ta was weak across all seasons. In the heat, wild boars avoid close contact to conspecifics and particularly use wallowing in mud or other wet substrates to cool and prevent hyperthermia. Wild boars also rely on daily cycles, especially of rhythms in subcutaneous temperature that enables them to cheaply build large core-shell gradients, which serve to lower heat loss. We argue it is predominantly this ability which allowed wild boars to inhabit most climatically diverse areas in the world.
Collapse
Affiliation(s)
- Thomas Ruf
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstrasse 1, 1160, Vienna, Austria.
| | - Sebastian G Vetter
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstrasse 1, 1160, Vienna, Austria
- Department for Farm Animals and Veterinary Public Health, Institute of Animal Welfare Science, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Johanna Painer-Gigler
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstrasse 1, 1160, Vienna, Austria
| | - Gabrielle Stalder
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstrasse 1, 1160, Vienna, Austria
| | - Claudia Bieber
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstrasse 1, 1160, Vienna, Austria
| |
Collapse
|
9
|
Noriega L, Yang CY, Wang CH. Brown Fat and Nutrition: Implications for Nutritional Interventions. Nutrients 2023; 15:4072. [PMID: 37764855 PMCID: PMC10536824 DOI: 10.3390/nu15184072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Brown and beige adipocytes are renowned for their unique ability to generate heat through a mechanism known as thermogenesis. This process can be induced by exposure to cold, hormonal signals, drugs, and dietary factors. The activation of these thermogenic adipocytes holds promise for improving glucose metabolism, reducing fat accumulation, and enhancing insulin sensitivity. However, the translation of preclinical findings into effective clinical therapies poses challenges, warranting further research to identify the molecular mechanisms underlying the differentiation and function of brown and beige adipocytes. Consequently, research has focused on the development of drugs, such as mirabegron, ephedrine, and thyroid hormone, that mimic the effects of cold exposure to activate brown fat activity. Additionally, nutritional interventions have been explored as an alternative approach to minimize potential side effects. Brown fat and beige fat have emerged as promising targets for addressing nutritional imbalances, with the potential to develop strategies for mitigating the impact of metabolic diseases. Understanding the influence of nutritional factors on brown fat activity can facilitate the development of strategies to promote its activation and mitigate metabolic disorders.
Collapse
Affiliation(s)
- Lloyd Noriega
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 406040, Taiwan
| | - Cheng-Ying Yang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 406040, Taiwan
| | - Chih-Hao Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 406040, Taiwan
- Graduate Institute of Cell Biology, College of Life Sciences, China Medical University, Taichung 406040, Taiwan
| |
Collapse
|
10
|
Jin L, Wang D, Zhang J, Liu P, Wang Y, Lin Y, Liu C, Han Z, Long K, Li D, Jiang Y, Li G, Zhang Y, Bai J, Li X, Li J, Lu L, Kong F, Wang X, Li H, Huang Z, Ma J, Fan X, Shen L, Zhu L, Jiang Y, Tang G, Feng B, Zeng B, Ge L, Li X, Tang Q, Zhang Z, Li M. Dynamic chromatin architecture of the porcine adipose tissues with weight gain and loss. Nat Commun 2023; 14:3457. [PMID: 37308492 PMCID: PMC10258790 DOI: 10.1038/s41467-023-39191-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/02/2023] [Indexed: 06/14/2023] Open
Abstract
Using an adult female miniature pig model with diet-induced weight gain/weight loss, we investigated the regulatory mechanisms of three-dimensional (3D) genome architecture in adipose tissues (ATs) associated with obesity. We generated 249 high-resolution in situ Hi-C chromatin contact maps of subcutaneous AT and three visceral ATs, analyzing transcriptomic and chromatin architectural changes under different nutritional treatments. We find that chromatin architecture remodeling underpins transcriptomic divergence in ATs, potentially linked to metabolic risks in obesity development. Analysis of chromatin architecture among subcutaneous ATs of different mammals suggests the presence of transcriptional regulatory divergence that could explain phenotypic, physiological, and functional differences in ATs. Regulatory element conservation analysis in pigs and humans reveals similarities in the regulatory circuitry of genes responsible for the obesity phenotype and identified non-conserved elements in species-specific gene sets that underpin AT specialization. This work provides a data-rich tool for discovering obesity-related regulatory elements in humans and pigs.
Collapse
Grants
- National Natural Science Foundation of China (National Science Foundation of China)
- the National Key R & D Program of China (2020YFA0509500), the Sichuan Science and Technology Program (2021YFYZ0009 and 2021YFYZ0030)
- the National Key R & D Program of China (2021YFA0805903), the Tackling Project for Agricultural Key Core Technologies of China (NK2022110602), the Sichuan Science and Technology Program (2021ZDZX0008, 2022NZZJ0028 and 2022JDJQ0054), the Ya’an Science and Technology Program (21SXHZ0022)
- the Sichuan Science and Technology Program (2022NSFSC0056)
- the Sichuan Science and Technology Program (2022NSFSC1618)
- the National Key R & D Program of China (2021YFD1300800), the Sichuan Science and Technology Program (2021YFS0008 and 2022YFQ0022)
- the Opening Foundation of Key Laboratory of Pig Industry Sciences (22519C)
- the Sichuan Science and Technology Program (2021YFH0033), the Major Science and Technology Projects of Tibet Autonomous Region (XZ202101ZD0005N)
- the China Agriculture Research System (CARS-35-01A)
- the National Key R & D Program of China (2022YFF1000100), the Sichuan Science and Technology Program (2021ZDZX0008, 2022NZZJ0028 and 2022JDJQ0054)
- the Strategic Priority Research Program of CAS (XDA24020307), the Special Investigation on Science and Technology Basic Resources of the MOST of China (2019FY100102), the Beijing Natural Science Foundation (Z200021)
Collapse
Affiliation(s)
- Long Jin
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Danyang Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
- School of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China
- Sars-Fang Centre and MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266100, China
| | - Jiaman Zhang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pengliang Liu
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yujie Wang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu Lin
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Can Liu
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ziyin Han
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Molecular Design and Precise Breeding Key Laboratory of Guangdong Province, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Keren Long
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Guisen Li
- Institute of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yu Zhang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jingyi Bai
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaokai Li
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Li
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lu Lu
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fanli Kong
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xun Wang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hua Li
- Animal Molecular Design and Precise Breeding Key Laboratory of Guangdong Province, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jideng Ma
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaolan Fan
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linyuan Shen
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Zhu
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yanzhi Jiang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guoqing Tang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bin Feng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bo Zeng
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Ya'an Digital Economy Operation Company, Ya'an, 625014, China
| | - Liangpeng Ge
- Pig Industry Sciences Key Laboratory of Ministry of Agriculture and Rural Affairs, Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Xuewei Li
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qianzi Tang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhihua Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China.
- School of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Mingzhou Li
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
11
|
Yang C, Cao C, Liu J, Zhao Y, Pan J, Tao C, Wang Y. Distinct Transcriptional Responses of Skeletal Muscle to Short-Term Cold Exposure in Tibetan Pigs and Bama Pigs. Int J Mol Sci 2023; 24:ijms24087431. [PMID: 37108597 PMCID: PMC10139196 DOI: 10.3390/ijms24087431] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Piglets are susceptible to cold, and piglet death caused by cold stress leads to economic losses in the pig industry in cold areas. Skeletal muscle plays a key role in adaptive thermogenesis in mammals, but the related mechanism in pigs is unclear. In this study, cold-tolerant Tibetan pigs and cold-sensitive Bama pigs were subjected to either a cold environment (4 °C) or a room temperature environment (25 °C) for 3 days. The biceps femoris (BF) and longissimus dorsi muscle (LDM) were collected for phenotypic analysis, and the BF was used for genome-wide transcriptional profiling. Our results showed that Tibetan pigs had a higher body temperature than Bama pigs upon cold stimulation. RNA-seq data indicated a stronger transcriptional response in the skeletal muscle of Tibetan pigs upon cold stimulation, as more differentially expressed genes (DEGs) were identified with the same criteria (p < 0.05 and fold change > 2). In addition, distinct pathway signaling patterns in skeletal muscle upon cold exposure were found between the breeds of pigs. Mitochondrial beta-oxidation-related genes and pathways were significantly upregulated in Tibetan pigs, indicating that Tibetan pigs may use fatty acids as the primary fuel source to protect against cold. However, the significant upregulation of inflammatory response- and glycolysis-related genes and pathways in the skeletal muscle of Bama pigs suggested that these pigs may use glucose as the primary fuel source in cold environments. Together, our study revealed the distinct transcriptional responses of skeletal muscle to cold stimulation in Tibetan pigs and Bama pigs and provided novel insights for future investigation of the cold adaptation mechanism in pigs.
Collapse
Affiliation(s)
- Chunhuai Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Chunwei Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jiali Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ying Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianfei Pan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Cong Tao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanfang Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
12
|
Jastroch M. Novel UCP1 knockout models broaden our understanding of mammalian non-shivering thermogenesis. Acta Physiol (Oxf) 2023; 238:e13956. [PMID: 36867076 DOI: 10.1111/apha.13956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023]
Affiliation(s)
- Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
13
|
Abstract
Rather than serving as a mere onlooker, adipose tissue is a complex endocrine organ and active participant in disease initiation and progression. Disruptions of biological processes operating within adipose can disturb healthy systemic physiology, the sequelae of which include metabolic disorders such as obesity and type 2 diabetes. A burgeoning interest in the field of adipose research has allowed for the elucidation of regulatory networks underlying both adipose tissue function and dysfunction. Despite this progress, few diseases are treated by targeting maladaptation in the adipose, an oft-overlooked organ. In this review, we elaborate on the distinct subtypes of adipocytes, their developmental origins and secretory roles, and the dynamic interplay at work within the tissue itself. Central to this discussion is the relationship between adipose and disease states, including obesity, cachexia, and infectious diseases, as we aim to leverage our wealth of knowledge for the development of novel and targeted therapeutics.
Collapse
Affiliation(s)
- Christopher Auger
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA;
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA; .,Howard Hughes Medical Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
14
|
Diehl B, Oster M, Vernunft A, Wimmers K, Bostedt H. Intrinsic challenges of neonatal adaptation in swine. Arch Anim Breed 2022; 65:427-438. [PMID: 36531120 PMCID: PMC9752711 DOI: 10.5194/aab-65-427-2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 10/20/2022] [Indexed: 09/10/2024] Open
Abstract
The losses of piglets in commercial pig farming remain at concerning levels and need to be addressed through the implementation of new sustainable breeding and management strategies. In fact, piglets are especially at risk in the first days of life. Both genetics and the farrowing process have been shown to impact piglet vitality. In addition, knowledge of the animal-intrinsic responses in adapting to extra-uterine life is particularly important but is scarcely described in the scientific literature. In this review, the three phases that constitute neonatal adaptation in the pig are systematically presented. The first phase of early adaptation involves primarily the development of cardiorespiratory function (within the first 10 min of life) as well as thermoregulatory processes and acid-base balance (up to 24 h of life). In the second phase, homeostasis is established, and organ maturation takes place (up to 14 d post natum). The final third phase aims at the development of neurological, immunological and muscular features (up to 28 d of life). The involvement of aggravating and ameliorating factors such as dystocia, low colostrum yield and heat supply is key to the development of strategies to reduce piglet losses and increase vitality. The insights are of particular value in addressing current concerns in pig farming and to further improve animal welfare in pig production across different management types.
Collapse
Affiliation(s)
- Benjamin Diehl
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
- Clinic for Obstetrics, Gynecology and Andrology of Large and Small Animals with Veterinary Ambulance, Justus Liebig University, 35392 Giessen, Germany
| | - Michael Oster
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Andreas Vernunft
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
- Faculty of Agricultural and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
| | - Hartwig Bostedt
- Clinic for Obstetrics, Gynecology and Andrology of Large and Small Animals with Veterinary Ambulance, Justus Liebig University, 35392 Giessen, Germany
| |
Collapse
|
15
|
Hillock-Watling C, Gotlieb AI. The pathobiology of perivascular adipose tissue (PVAT), the fourth layer of the blood vessel wall. Cardiovasc Pathol 2022; 61:107459. [PMID: 35907442 DOI: 10.1016/j.carpath.2022.107459] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/24/2022] [Accepted: 07/21/2022] [Indexed: 12/21/2022] Open
Abstract
The perivascular adipose tissue (PVAT) is an adipose tissue depot which surrounds most human blood vessels. It is metabolically active and has both a protective and a pathogenic role in vascular biology and pathobiology. It regulates vascular homeostasis and promotes vascular dysfunction. The purpose of this review is to consider the origin, structure, function, and dysfunction of this unique adipose depot consisting of white (WAT), brown (BAT) and beige adipose tissue, to support the concept that PVAT may be considered the fourth layer of the normal arterial wall (tunica adiposa), in which dysfunction creates a microenvironment that regulates, in part, the initiation and growth of the fibro-inflammatory lipid atherosclerotic plaque. Experimental in-vivo and in-vitro studies and human investigations show that the adipocytes, extracellular matrix, nerve fibers and vasa vasorum found in PVAT form a functional adipose tissue unit adjacent to, but not anatomically separated from, the adventitia. PVAT maintains and regulates the structure and function of the normal arterial wall through autocrine and paracrine mechanisms, that include modulation of medial smooth muscle cell contractility and secretion of anti-inflammatory molecules. PVAT shows regional phenotypic heterogeneity which may be important in its effect on the wall of specific sections of the aorta and its muscular branches during perturbations and various injuries including obesity and diabetes. In atherosclerosis, a pan-vascular microenvironment is created that functionally links the intima-medial atherosclerotic plaque to the adventitia and PVAT beneath the plaque, highlighting the local impact of PVAT on atherogenesis. PVAT adipocytes have inflammatory effects which in response to injury show activation and phenotypic changes, some of which are considered to have direct and indirect effects on the intima and media during the initiation, growth, and development of complicated atherosclerotic plaques. Thus, it is important to maintain the integrity of the full vascular microenvironment so that design of experimental and human studies include investigation of PVAT. The era of discarding PVAT tissue in both experimental and human research and clinical vascular studies should end.
Collapse
Affiliation(s)
- Cassie Hillock-Watling
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Avrum I Gotlieb
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Randall JG, Gatesy J, Springer MS. Molecular evolutionary analyses of tooth genes support sequential loss of enamel and teeth in baleen whales (Mysticeti). Mol Phylogenet Evol 2022; 171:107463. [PMID: 35358696 DOI: 10.1016/j.ympev.2022.107463] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/16/2021] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
Abstract
The loss of teeth and evolution of baleen racks in Mysticeti was a profound transformation that permitted baleen whales to radiate and diversify into a previously underutilized ecological niche of bulk filter-feeding on zooplankton and other small prey. Ancestral state reconstructions suggest that postnatal teeth were lost in the common ancestor of crown Mysticeti. Genomic studies provide some support for this hypothesis and suggest that the genetic toolkit for enamel production was inactivated in the common ancestor of living baleen whales. However, molecular studies to date have not provided direct evidence for the complete loss of teeth, including their dentin component, on the stem mysticete branch. Given these results, several questions remain unanswered: (1) Were teeth lost in a single step or did enamel loss precede dentin loss? (2) Was enamel lost early or late on the stem mysticete branch? (3) If enamel and dentin/tooth loss were decoupled in the ancestry of baleen whales, did dentin loss occur on the stem mysticete branch or independently in different crown mysticete lineages? To address these outstanding questions, we compiled and analyzed complete protein-coding sequences for nine tooth-related genes from cetaceans with available genome data. Seven of these genes are associated with enamel formation (ACP4, AMBN, AMELX, AMTN, ENAM, KLK4, MMP20) whereas two other genes are either dentin-specific (DSPP) or tooth-specific (ODAPH) but not enamel-specific. Molecular evolutionary analyses indicate that all seven enamel-specific genes have inactivating mutations that are scattered across branches of the mysticete tree. Three of the enamel genes (ACP4, KLK4, MMP20) have inactivating mutations that are shared by all mysticetes. The two genes that are dentin-specific (DSPP) or tooth-specific (ODAPH) do not have any inactivating mutations that are shared by all mysticetes, but there are shared mutations in Balaenidae as well as in Plicogulae (Neobalaenidae + Balaenopteroidea). These shared mutations suggest that teeth were lost at most two times. Shared inactivating mutations and dN/dS analyses, in combination with cetacean divergence times, were used to estimate inactivation times of genes and by proxy enamel and tooth phenotypes at ancestral nodes. The results of these analyses are most compatible with a two-step model for the loss of teeth in the ancestry of living baleen whales: enamel was lost very early on the stem Mysticeti branch followed by the independent loss of dentin (and teeth) in the common ancestors of Balaenidae and Plicogulae, respectively. These results imply that some stem mysticetes, and even early crown mysticetes, may have had vestigial teeth comprised of dentin with no enamel. Our results also demonstrate that all odontocete species (in our study) with absent or degenerative enamel have inactivating mutations in one or more of their enamel genes.
Collapse
Affiliation(s)
- Jason G Randall
- Department of Evolution, Ecology, and Evolutionary Biology, University of California, Riverside, CA 92521, USA.
| | - John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA.
| | - Mark S Springer
- Department of Evolution, Ecology, and Evolutionary Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
17
|
Zhang Y, Sun L, Zhu R, Zhang S, Liu S, Wang Y, Wu Y, Xing S, Liao X, Mi J. Porcine gut microbiota in mediating host metabolic adaptation to cold stress. NPJ Biofilms Microbiomes 2022; 8:18. [PMID: 35383199 PMCID: PMC8983680 DOI: 10.1038/s41522-022-00283-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 03/03/2022] [Indexed: 12/19/2022] Open
Abstract
The gut microbiota plays a key role in host metabolic thermogenesis by activating UCP1 and increasing the browning process of white adipose tissue (WAT), especially in cold environments. However, the crosstalk between the gut microbiota and the host, which lacks functional UCP1, making them susceptible to cold stress, has rarely been illustrated. We used male piglets as a model to evaluate the host response to cold stress via the gut microbiota (four groups: room temperature group, n = 5; cold stress group, n = 5; cold stress group with antibiotics, n = 5; room temperature group with antibiotics, n = 3). We found that host thermogenesis and insulin resistance increased the levels of serum metabolites such as glycocholic acid (GCA) and glycochenodeoxycholate acid (GCDCA) and altered the compositions and functions of the cecal microbiota under cold stress. The gut microbiota was characterized by increased levels of Ruminococcaceae, Prevotellaceae, and Muribaculaceae under cold stress. We found that piglets subjected to cold stress had increased expression of genes related to bile acid and short-chain fatty acid (SCFA) metabolism in their liver and fat lipolysis genes in their fat. In addition, the fat lipolysis genes CLPS, PNLIPRP1, CPT1B, and UCP3 were significantly increased in the fat of piglets under cold stress. However, the use of antibiotics showed a weakened or strengthened cold tolerance phenotype, indicating that the gut microbiota plays important role in host thermogenesis. Our results demonstrate that the gut microbiota-blood-liver and fat axis may regulate thermogenesis during cold acclimation in piglets.
Collapse
Affiliation(s)
- Yu Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China
| | - Lan Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China
| | - Run Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China
| | - Shiyu Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China
| | - Shuo Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Sicheng Xing
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China
| | - Xindi Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China.
| | - Jiandui Mi
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
18
|
Grigg G, Nowack J, Bicudo JEPW, Bal NC, Woodward HN, Seymour RS. Whole-body endothermy: ancient, homologous and widespread among the ancestors of mammals, birds and crocodylians. Biol Rev Camb Philos Soc 2022; 97:766-801. [PMID: 34894040 PMCID: PMC9300183 DOI: 10.1111/brv.12822] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/31/2022]
Abstract
The whole-body (tachymetabolic) endothermy seen in modern birds and mammals is long held to have evolved independently in each group, a reasonable assumption when it was believed that its earliest appearances in birds and mammals arose many millions of years apart. That assumption is consistent with current acceptance that the non-shivering thermogenesis (NST) component of regulatory body heat originates differently in each group: from skeletal muscle in birds and from brown adipose tissue (BAT) in mammals. However, BAT is absent in monotremes, marsupials, and many eutherians, all whole-body endotherms. Indeed, recent research implies that BAT-driven NST originated more recently and that the biochemical processes driving muscle NST in birds, many modern mammals and the ancestors of both may be similar, deriving from controlled 'slippage' of Ca2+ from the sarcoplasmic reticulum Ca2+ -ATPase (SERCA) in skeletal muscle, similar to a process seen in some fishes. This similarity prompted our realisation that the capacity for whole-body endothermy could even have pre-dated the divergence of Amniota into Synapsida and Sauropsida, leading us to hypothesise the homology of whole-body endothermy in birds and mammals, in contrast to the current assumption of their independent (convergent) evolution. To explore the extent of similarity between muscle NST in mammals and birds we undertook a detailed review of these processes and their control in each group. We found considerable but not complete similarity between them: in extant mammals the 'slippage' is controlled by the protein sarcolipin (SLN), in birds the SLN is slightly different structurally and its role in NST is not yet proved. However, considering the multi-millions of years since the separation of synapsids and diapsids, we consider that the similarity between NST production in birds and mammals is consistent with their whole-body endothermy being homologous. If so, we should expect to find evidence for it much earlier and more widespread among extinct amniotes than is currently recognised. Accordingly, we conducted an extensive survey of the palaeontological literature using established proxies. Fossil bone histology reveals evidence of sustained rapid growth rates indicating tachymetabolism. Large body size and erect stature indicate high systemic arterial blood pressures and four-chambered hearts, characteristic of tachymetabolism. Large nutrient foramina in long bones are indicative of high bone perfusion for rapid somatic growth and for repair of microfractures caused by intense locomotion. Obligate bipedality appeared early and only in whole-body endotherms. Isotopic profiles of fossil material indicate endothermic levels of body temperature. These proxies led us to compelling evidence for the widespread occurrence of whole-body endothermy among numerous extinct synapsids and sauropsids, and very early in each clade's family tree. These results are consistent with and support our hypothesis that tachymetabolic endothermy is plesiomorphic in Amniota. A hypothetical structure for the heart of the earliest endothermic amniotes is proposed. We conclude that there is strong evidence for whole-body endothermy being ancient and widespread among amniotes and that the similarity of biochemical processes driving muscle NST in extant birds and mammals strengthens the case for its plesiomorphy.
Collapse
Affiliation(s)
- Gordon Grigg
- School of Biological SciencesUniversity of QueenslandBrisbaneQLD4072Australia
| | - Julia Nowack
- School of Biological and Environmental SciencesLiverpool John Moores UniversityJames Parsons Building, Byrom StreetLiverpoolL3 3AFU.K.
| | | | | | - Holly N. Woodward
- Oklahoma State University Center for Health SciencesTulsaOK74107U.S.A.
| | - Roger S. Seymour
- School of Biological SciencesUniversity of AdelaideAdelaideSA5005Australia
| |
Collapse
|
19
|
Le Duc D, Velluva A, Cassatt-Johnstone M, Olsen RA, Baleka S, Lin CC, Lemke JR, Southon JR, Burdin A, Wang MS, Grunewald S, Rosendahl W, Joger U, Rutschmann S, Hildebrandt TB, Fritsch G, Estes JA, Kelso J, Dalén L, Hofreiter M, Shapiro B, Schöneberg T. Genomic basis for skin phenotype and cold adaptation in the extinct Steller's sea cow. SCIENCE ADVANCES 2022; 8:eabl6496. [PMID: 35119923 PMCID: PMC8816345 DOI: 10.1126/sciadv.abl6496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Steller's sea cow, an extinct sirenian and one of the largest Quaternary mammals, was described by Georg Steller in 1741 and eradicated by humans within 27 years. Here, we complement Steller's descriptions with paleogenomic data from 12 individuals. We identified convergent evolution between Steller's sea cow and cetaceans but not extant sirenians, suggesting a role of several genes in adaptation to cold aquatic (or marine) environments. Among these are inactivations of lipoxygenase genes, which in humans and mouse models cause ichthyosis, a skin disease characterized by a thick, hyperkeratotic epidermis that recapitulates Steller's sea cows' reportedly bark-like skin. We also found that Steller's sea cows' abundance was continuously declining for tens of thousands of years before their description, implying that environmental changes also contributed to their extinction.
Collapse
Affiliation(s)
- Diana Le Duc
- Institute of Human Genetics, University Medical Center Leipzig, 04103 Leipzig, Germany
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Akhil Velluva
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Molly Cassatt-Johnstone
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Remi-Andre Olsen
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Box 1031 , SE-17121 Solna, Sweden
| | - Sina Baleka
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
- Faculty of Life and Environmental Sciences, University of Iceland, 102 Reykjavik, Iceland
| | - Chen-Ching Lin
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, 11221 Taipei, Taiwan
| | - Johannes R. Lemke
- Institute of Human Genetics, University Medical Center Leipzig, 04103 Leipzig, Germany
| | - John R. Southon
- Keck-CCAMS Group, Earth System Science Department, University of California, Irvine, Irvine, CA 92697, USA
| | - Alexander Burdin
- Kamchatka Branch of Pacific Geographical Institute, Russian Academy of Science, 683000 Petropavlovsk-Kamchatsky, Russia
| | - Ming-Shan Wang
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
- Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Sonja Grunewald
- Department of Dermatology, Venerology and Allergology, University Medical Center Leipzig, 04103 Leipzig, Germany
| | - Wilfried Rosendahl
- Reiss-Engelhorn-Museum and Curt-Engelhorn-Centre of Archaeometry, 68159 Mannheim, Germany
| | - Ulrich Joger
- State Museum of Natural History, 38106 Braunschweig, Germany
| | - Sereina Rutschmann
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Thomas B. Hildebrandt
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany
- Faculty of Veterinary Medicine, Free University Berlin, 14195 Berlin, Germany
| | - Guido Fritsch
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany
| | - James A. Estes
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Janet Kelso
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Love Dalén
- Centre for Palaeogenetics, SE-106 91 Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE-104 05 Stockholm, Sweden
- Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Michael Hofreiter
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
- Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
20
|
Evolution of pinniped UCP1 is not linked to aquatic life but to neonatal thermogenesis and body size. Proc Natl Acad Sci U S A 2022; 119:2118431119. [PMID: 35101988 PMCID: PMC8833166 DOI: 10.1073/pnas.2118431119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
Ikeda K, Tajima K, Tanabe Y, Poon ASY, Kajimura S. Activation of UCP1-Independent Ca 2+ Cycling Thermogenesis by Wireless Optogenetics. Methods Mol Biol 2022; 2448:131-139. [PMID: 35167095 PMCID: PMC9087983 DOI: 10.1007/978-1-0716-2087-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The identification of non-canonical UCP1-independent thermogenic mechanisms offers new opportunities to target such pathways to improve metabolic health. Based on our recent studies on Ca2+ futile cycling thermogenesis in beige fat, we applied the newly developed implantable wireless optogenetic system to activate Ca2+ cycling in an adipocyte-specific manner without external stimuli, i.e., fat-specific cold mimetics. Here, we describe the detailed methodology and application to the prevention of obesity.
Collapse
Affiliation(s)
- Kenji Ikeda
- Department of Molecular Endocrinology and Metabolism, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuki Tajima
- Department of Endocrinology and Metabolism, Yokohama Medical Center, Yokohama, Japan
| | - Yuji Tanabe
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Ada S Y Poon
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard, MA, USA.
| |
Collapse
|
22
|
Recurrent erosion of COA1/MITRAC15 exemplifies conditional gene dispensability in oxidative phosphorylation. Sci Rep 2021; 11:24437. [PMID: 34952909 PMCID: PMC8709867 DOI: 10.1038/s41598-021-04077-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/15/2021] [Indexed: 11/08/2022] Open
Abstract
Skeletal muscle fibers rely upon either oxidative phosphorylation or the glycolytic pathway with much less reliance on oxidative phosphorylation to achieve muscular contractions that power mechanical movements. Species with energy-intensive adaptive traits that require sudden bursts of energy have a greater dependency on glycolytic fibers. Glycolytic fibers have decreased reliance on OXPHOS and lower mitochondrial content compared to oxidative fibers. Hence, we hypothesized that gene loss might have occurred within the OXPHOS pathway in lineages that largely depend on glycolytic fibers. The protein encoded by the COA1/MITRAC15 gene with conserved orthologs found in budding yeast to humans promotes mitochondrial translation. We show that gene disrupting mutations have accumulated within the COA1 gene in the cheetah, several species of galliform birds, and rodents. The genomic region containing COA1 is a well-established evolutionary breakpoint region in mammals. Careful inspection of genome assemblies of closely related species of rodents and marsupials suggests two independent COA1 gene loss events co-occurring with chromosomal rearrangements. Besides recurrent gene loss events, we document changes in COA1 exon structure in primates and felids. The detailed evolutionary history presented in this study reveals the intricate link between skeletal muscle fiber composition and the occasional dispensability of the chaperone-like role of the COA1 gene.
Collapse
|
23
|
Emerling CA, Springer MS, Gatesy J, Jones Z, Hamilton D, Xia-Zhu D, Collin M, Delsuc F. Genomic evidence for the parallel regression of melatonin synthesis and signaling pathways in placental mammals. OPEN RESEARCH EUROPE 2021; 1:75. [PMID: 35967080 PMCID: PMC7613276 DOI: 10.12688/openreseurope.13795.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/25/2021] [Indexed: 11/20/2022]
Abstract
Background: The study of regressive evolution has yielded a wealth of examples where the underlying genes bear molecular signatures of trait degradation, such as pseudogenization or deletion. Typically, it appears that such disrupted genes are limited to the function of the regressed trait, whereas pleiotropic genes tend to be maintained by natural selection to support their myriad purposes. One such set of pleiotropic genes is involved in the synthesis ( AANAT, ASMT) and signaling ( MTNR1A, MTNR1B) of melatonin, a hormone secreted by the vertebrate pineal gland. Melatonin provides a signal of environmental darkness, thereby influencing the circadian and circannual rhythmicity of numerous physiological traits. Therefore, the complete loss of a pineal gland and the underlying melatonin pathway genes seems likely to be maladaptive, unless compensated by extrapineal sources of melatonin. Methods: We examined AANAT, ASMT, MTNR1A and MTNR1B in 123 vertebrate species, including pineal-less placental mammals and crocodylians. We searched for inactivating mutations and modelled selective pressures (dN/dS) to test whether the genes remain functionally intact. Results: We report that crocodylians retain intact melatonin genes and express AANAT and ASMT in their eyes, whereas all four genes have been repeatedly inactivated in the pineal-less xenarthrans, pangolins, sirenians, and whales. Furthermore, colugos have lost these genes, and several lineages of subterranean mammals have partial melatonin pathway dysfunction. These results are supported by the presence of shared inactivating mutations across clades and analyses of selection pressure based on the ratio of non-synonymous to synonymous substitutions (dN/dS), suggesting extended periods of relaxed selection on these genes. Conclusions: The losses of melatonin synthesis and signaling date to tens of millions of years ago in several lineages of placental mammals, raising questions about the evolutionary resilience of pleiotropic genes, and the causes and consequences of losing melatonin pathways in these species.
Collapse
Affiliation(s)
- Christopher A. Emerling
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, 94720, USA
- Institut des Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
- Biology Department, Reedley College, Reedley, CA, 93654, USA
| | - Mark S. Springer
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, 92521, USA
| | - John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY, 10024, USA
| | - Zachary Jones
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Deana Hamilton
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - David Xia-Zhu
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Matt Collin
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, 92521, USA
| | - Frédéric Delsuc
- Institut des Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| |
Collapse
|
24
|
Röszer T. Co-Evolution of Breast Milk Lipid Signaling and Thermogenic Adipose Tissue. Biomolecules 2021; 11:1705. [PMID: 34827703 PMCID: PMC8615456 DOI: 10.3390/biom11111705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022] Open
Abstract
Breastfeeding is a unique and defining behavior of mammals and has a fundamental role in nourishing offspring by supplying a lipid-rich product that is utilized to generate heat and metabolic fuel. Heat generation from lipids is a feature of newborn mammals and is mediated by the uncoupling of mitochondrial respiration in specific fat depots. Breastfeeding and thermogenic adipose tissue have a shared evolutionary history: both have evolved in the course of homeothermy evolution; breastfeeding mammals are termed "thermolipials", meaning "animals with warm fat". Beyond its heat-producing capacity, thermogenic adipose tissue is also necessary for proper lipid metabolism and determines adiposity in offspring. Recent advances have demonstrated that lipid metabolism in infants is orchestrated by breast milk lipid signals, which establish mother-to-child signaling and control metabolic development in the infant. Breastfeeding rates are declining worldwide, and are paralleled by an alarming increase in childhood obesity, which at least in part may have its roots in the impaired metabolic control by breast milk lipid signals.
Collapse
Affiliation(s)
- Tamás Röszer
- Institute of Neurobiology, Faculty of Science, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
25
|
Jastroch M, Polymeropoulos ET, Gaudry MJ. Pros and cons for the evidence of adaptive non-shivering thermogenesis in marsupials. J Comp Physiol B 2021; 191:1085-1095. [PMID: 33860348 PMCID: PMC8572181 DOI: 10.1007/s00360-021-01362-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 01/11/2023]
Abstract
The thermogenic mechanisms supporting endothermy are still not fully understood in all major mammalian subgroups. In placental mammals, brown adipose tissue currently represents the most accepted source of adaptive non-shivering thermogenesis. Its mitochondrial protein UCP1 (uncoupling protein 1) catalyzes heat production, but the conservation of this mechanism is unclear in non-placental mammals and lost in some placentals. Here, we review the evidence for and against adaptive non-shivering thermogenesis in marsupials, which diverged from placentals about 120-160 million years ago. We critically discuss potential mechanisms that may be involved in the heat-generating process among marsupials.
Collapse
Affiliation(s)
- Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden.
| | - Elias T Polymeropoulos
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, TAS, 7001, Australia
| | - Michael J Gaudry
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| |
Collapse
|
26
|
Brzęk P. Sex differences in nonshivering thermogenesis in the wild. Mol Cell Endocrinol 2021; 536:111402. [PMID: 34302908 DOI: 10.1016/j.mce.2021.111402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Nonshivering thermogenesis (NST) is a key mechanism that allows mammals to control their body temperature. Sex can frequently affect thermoregulatory requirements; therefore, males and females can be expected to differ significantly in their NST capacity. Several sex-related differences in NST have been described in laboratory animals and humans; however, these parameters are relatively rarely studied in animals living under natural conditions. Here, I briefly review factors that may be responsible for this disparity and point out two situations that should be particularly promising in searching for sex differences in NST under natural conditions: the lactation period and potential mitonuclear conflicts over NST control in species with genetic polymorphism.
Collapse
Affiliation(s)
- Paweł Brzęk
- Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245, Białystok, Poland.
| |
Collapse
|
27
|
Atypical for northern ungulates, energy metabolism is lowest during summer in female wild boars (Sus scrofa). Sci Rep 2021; 11:18310. [PMID: 34526603 PMCID: PMC8443605 DOI: 10.1038/s41598-021-97825-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/30/2021] [Indexed: 11/20/2022] Open
Abstract
Typically, large ungulates show a single seasonal peak of heart rate, a proxy of energy expenditure, in early summer. Different to other large ungulates, wild boar females had peak heart rates early in the year (at ~ April, 1), which likely indicates high costs of reproduction. This peak was followed by a trough over summer and a secondary summit in autumn/early winter, which coincided with the mast seeding of oak trees and the mating season. Wild boars counteracted the effects of cold temperatures by decreasing subcutaneous body temperature by peripheral vasoconstriction. They also passively gained solar radiation energy by basking in the sun. However, the shape of the seasonal rhythm in HR indicates that it was apparently not primarily caused by thermoregulatory costs but by the costs of reproduction. Wild boar farrow early in the year, visible in high HRs and sudden changes in intraperitoneal body temperature of females. Arguably, a prerequisite for this early reproduction as well as for high energy metabolism over winter is the broad variety of food consumed by this species, i.e., the omnivorous lifestyle. Extremely warm and dry summers, as experienced during the study years (2017, 2018), may increasingly become a bottleneck for food intake of wild boar.
Collapse
|
28
|
Comparative genomics provides insights into the aquatic adaptations of mammals. Proc Natl Acad Sci U S A 2021; 118:2106080118. [PMID: 34503999 PMCID: PMC8449357 DOI: 10.1073/pnas.2106080118] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 12/30/2022] Open
Abstract
Divergent lineages can respond to common environmental factors through convergent processes involving shared genomic components or pathways, but the molecular mechanisms are poorly understood. Here, we provide genomic resources and insights into the evolution of mammalian lineages adapting to aquatic life. Our data suggest convergent evolution, for example, in association with thermoregulation through genes associated with a surface heat barrier (NFIA) and internal heat exchange (SEMA3E). Combined with the support of previous reports showing that the UCP1 locus has been lost in many marine mammals independently, our results suggest that the thermostatic strategy of marine mammals shifted from enhancing heat production to limiting heat loss. The ancestors of marine mammals once roamed the land and independently committed to an aquatic lifestyle. These macroevolutionary transitions have intrigued scientists for centuries. Here, we generated high-quality genome assemblies of 17 marine mammals (11 cetaceans and six pinnipeds), including eight assemblies at the chromosome level. Incorporating previously published data, we reconstructed the marine mammal phylogeny and population histories and identified numerous idiosyncratic and convergent genomic variations that possibly contributed to the transition from land to water in marine mammal lineages. Genes associated with the formation of blubber (NFIA), vascular development (SEMA3E), and heat production by brown adipose tissue (UCP1) had unique changes that may contribute to marine mammal thermoregulation. We also observed many lineage-specific changes in the marine mammals, including genes associated with deep diving and navigation. Our study advances understanding of the timing, pattern, and molecular changes associated with the evolution of mammalian lineages adapting to aquatic life.
Collapse
|
29
|
Roscito JG, Subramanian K, Naumann R, Sarov M, Shevchenko A, Bogdanova A, Kurth T, Foerster L, Kreysing M, Hiller M. Recapitulating Evolutionary Divergence in a Single Cis-Regulatory Element Is Sufficient to Cause Expression Changes of the Lens Gene Tdrd7. Mol Biol Evol 2021; 38:380-392. [PMID: 32853335 PMCID: PMC7826196 DOI: 10.1093/molbev/msaa212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mutations in cis-regulatory elements play important roles for phenotypic changes during evolution. Eye degeneration in the blind mole rat (BMR; Nannospalax galili) and other subterranean mammals is significantly associated with widespread divergence of eye regulatory elements, but the effect of these regulatory mutations on eye development and function has not been explored. Here, we investigate the effect of mutations observed in the BMR sequence of a conserved noncoding element upstream of Tdrd7, a pleiotropic gene required for lens development and spermatogenesis. We first show that this conserved element is a transcriptional repressor in lens cells and that the BMR sequence partially lost repressor activity. Next, we recapitulated evolutionary changes in this element by precisely replacing the endogenous regulatory element in a mouse line by the orthologous BMR sequence with CRISPR-Cas9. Strikingly, this repressor replacement caused a more than 2-fold upregulation of Tdrd7 in the developing lens; however, increased mRNA level does not result in a corresponding increase in TDRD7 protein nor an obvious lens phenotype, possibly explained by buffering at the posttranscriptional level. Our results are consistent with eye degeneration in subterranean mammals having a polygenic basis where many small-effect mutations in different eye-regulatory elements collectively contribute to phenotypic differences.
Collapse
Affiliation(s)
- Juliana G Roscito
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology, Dresden, Germany
| | - Kaushikaram Subramanian
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Center for Systems Biology, Dresden, Germany
| | - Ronald Naumann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Mihail Sarov
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Anna Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Aliona Bogdanova
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering, Technology Platform, TU, Dresden, Germany
| | - Leo Foerster
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology, Dresden, Germany
| | - Moritz Kreysing
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Center for Systems Biology, Dresden, Germany.,Center of Excellence, Physics of Life, Technical University, Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology, Dresden, Germany
| |
Collapse
|
30
|
Cohen P, Kajimura S. The cellular and functional complexity of thermogenic fat. Nat Rev Mol Cell Biol 2021; 22:393-409. [PMID: 33758402 PMCID: PMC8159882 DOI: 10.1038/s41580-021-00350-0] [Citation(s) in RCA: 252] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 02/01/2023]
Abstract
Brown and beige adipocytes are mitochondria-enriched cells capable of dissipating energy in the form of heat. These thermogenic fat cells were originally considered to function solely in heat generation through the action of the mitochondrial protein uncoupling protein 1 (UCP1). In recent years, significant advances have been made in our understanding of the ontogeny, bioenergetics and physiological functions of thermogenic fat. Distinct subtypes of thermogenic adipocytes have been identified with unique developmental origins, which have been increasingly dissected in cellular and molecular detail. Moreover, several UCP1-independent thermogenic mechanisms have been described, expanding the role of these cells in energy homeostasis. Recent studies have also delineated roles for these cells beyond the regulation of thermogenesis, including as dynamic secretory cells and as a metabolic sink. This Review presents our current understanding of thermogenic adipocytes with an emphasis on their development, biological functions and roles in systemic physiology.
Collapse
Affiliation(s)
- Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA.
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Department of Cell and Tissue Biology, UCSF Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
31
|
Springer MS, Guerrero-Juarez CF, Huelsmann M, Collin MA, Danil K, McGowen MR, Oh JW, Ramos R, Hiller M, Plikus MV, Gatesy J. Genomic and anatomical comparisons of skin support independent adaptation to life in water by cetaceans and hippos. Curr Biol 2021; 31:2124-2139.e3. [PMID: 33798433 PMCID: PMC8154672 DOI: 10.1016/j.cub.2021.02.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/21/2021] [Accepted: 02/25/2021] [Indexed: 12/17/2022]
Abstract
The macroevolutionary transition from terra firma to obligatory inhabitance of the marine hydrosphere has occurred twice in the history of Mammalia: Cetacea and Sirenia. In the case of Cetacea (whales, dolphins, and porpoises), molecular phylogenies provide unambiguous evidence that fully aquatic cetaceans and semiaquatic hippopotamids (hippos) are each other's closest living relatives. Ancestral reconstructions suggest that some adaptations to the aquatic realm evolved in the common ancestor of Cetancodonta (Cetacea + Hippopotamidae). An alternative hypothesis is that these adaptations evolved independently in cetaceans and hippos. Here, we focus on the integumentary system and evaluate these hypotheses by integrating new histological data for cetaceans and hippos, the first genome-scale data for pygmy hippopotamus, and comprehensive genomic screens and molecular evolutionary analyses for protein-coding genes that have been inactivated in hippos and cetaceans. We identified eight skin-related genes that are inactivated in both cetaceans and hippos, including genes that are related to sebaceous glands, hair follicles, and epidermal differentiation. However, none of these genes exhibit inactivating mutations that are shared by cetaceans and hippos. Mean dates for the inactivation of skin genes in these two clades serve as proxies for phenotypic changes and suggest that hair reduction/loss, the loss of sebaceous glands, and changes to the keratinization program occurred ∼16 Ma earlier in cetaceans (∼46.5 Ma) than in hippos (∼30.5 Ma). These results, together with histological differences in the integument and prior analyses of oxygen isotopes from stem hippopotamids ("anthracotheres"), support the hypothesis that aquatic skin adaptations evolved independently in hippos and cetaceans.
Collapse
Affiliation(s)
- Mark S Springer
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA.
| | - Christian F Guerrero-Juarez
- Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Matthias Huelsmann
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany; Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Matthew A Collin
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA; Department of Botany & Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Kerri Danil
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA 92037, USA
| | - Michael R McGowen
- Department of Vertebrate Zoology, Smithsonian Museum of Natural History, 10th & Constitution Avenue NW, Washington, DC 20560, USA
| | - Ji Won Oh
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Korea; Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Korea; Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Korea
| | - Raul Ramos
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany; Center for Systems Biology Dresden, 01307 Dresden, Germany; LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany; Senckenberg Research Institute, 60325 Frankfurt, Germany; Faculty of Biosciences, Goethe-University, 60438 Frankfurt, Germany.
| | - Maksim V Plikus
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA.
| | - John Gatesy
- Division of Vertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA.
| |
Collapse
|
32
|
Gaudry MJ, Jastroch M. Comparative functional analyses of UCP1 to unravel evolution, ecophysiology and mechanisms of mammalian thermogenesis. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110613. [PMID: 33971349 DOI: 10.1016/j.cbpb.2021.110613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/23/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022]
Abstract
Brown adipose tissue (BAT), present in many placental mammals, provides adaptive nonshivering thermogenesis (NST) for body temperature regulation and has facilitated survival in diverse thermal niches on our planet. Intriguingly, several key details on the molecular mechanisms of NST and their potential ecophysiological adaptations are still unknown. Comparative studies at the whole animal level are unpragmatic, due to the diversity and complexity of thermoregulation among different species. We propose that the molecular evolution of mitochondrial uncoupling protein 1 (UCP1), a central component for BAT thermogenesis, represents a powerful opportunity to unravel key questions of mammalian thermoregulation. Comparative analysis of UCP1 may elucidate how its thermogenic function arose, how environmental selection has shaped protein function to support ecophysiological requirements, and how the enigmatic molecular mechanism of proton leak is governed. Several approaches for the assessment of UCP1 function in vitro have been introduced over the years. For comparative characterization of UCP1, we put forward the overexpression of UCP1 orthologues and mutated variants in a mammalian cell system as a primary strategy and discuss advantageous aspects in contrast to other experimental systems. In turn, we suggest how remaining experimental caveats can be solved by complimentary test systems before physiological consolidation in the animal model. Furthermore, we highlight the appropriate bioenergetic techniques to perform the functional analyses on UCP1. The comparative characterizations of diverse UCP1 variants may enable key insights into open questions surrounding the molecular basis of NST.
Collapse
Affiliation(s)
- Michael J Gaudry
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
33
|
Manger PR, Patzke N, Spocter MA, Bhagwandin A, Karlsson KÆ, Bertelsen MF, Alagaili AN, Bennett NC, Mohammed OB, Herculano-Houzel S, Hof PR, Fuxe K. Amplification of potential thermogenetic mechanisms in cetacean brains compared to artiodactyl brains. Sci Rep 2021; 11:5486. [PMID: 33750832 PMCID: PMC7970898 DOI: 10.1038/s41598-021-84762-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/19/2021] [Indexed: 01/25/2023] Open
Abstract
To elucidate factors underlying the evolution of large brains in cetaceans, we examined 16 brains from 14 cetartiodactyl species, with immunohistochemical techniques, for evidence of non-shivering thermogenesis. We show that, in comparison to the 11 artiodactyl brains studied (from 11 species), the 5 cetacean brains (from 3 species), exhibit an expanded expression of uncoupling protein 1 (UCP1, UCPs being mitochondrial inner membrane proteins that dissipate the proton gradient to generate heat) in cortical neurons, immunolocalization of UCP4 within a substantial proportion of glia throughout the brain, and an increased density of noradrenergic axonal boutons (noradrenaline functioning to control concentrations of and activate UCPs). Thus, cetacean brains studied possess multiple characteristics indicative of intensified thermogenetic functionality that can be related to their current and historical obligatory aquatic niche. These findings necessitate reassessment of our concepts regarding the reasons for large brain evolution and associated functional capacities in cetaceans.
Collapse
Affiliation(s)
- Paul R Manger
- School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Nina Patzke
- School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Institute for the Advancement of Higher Education, Hokkaido University, Sapporo, Japan
| | - Muhammad A Spocter
- School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Anatomy, Des Moines University, Des Moines, IA, USA
| | - Adhil Bhagwandin
- School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Division of Clinical Anatomy and Biological Anthropology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Karl Æ Karlsson
- Biomedical Engineering, Reykjavik University, Reykjavik, Iceland
| | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Abdulaziz N Alagaili
- KSU Mammals Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nigel C Bennett
- KSU Mammals Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Osama B Mohammed
- KSU Mammals Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Suzana Herculano-Houzel
- Department of Psychology, Department of Biological Sciences, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
34
|
Bal NC, Gupta SC, Pant M, Sopariwala DH, Gonzalez-Escobedo G, Turner J, Gunn JS, Pierson CR, Harper SQ, Rafael-Fortney JA, Periasamy M. Is Upregulation of Sarcolipin Beneficial or Detrimental to Muscle Function? Front Physiol 2021; 12:633058. [PMID: 33732165 PMCID: PMC7956958 DOI: 10.3389/fphys.2021.633058] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/21/2021] [Indexed: 11/25/2022] Open
Abstract
Sarcolipin (SLN) is a regulator of sarco/endo plasmic reticulum Ca2+-ATPase (SERCA) pump and has been shown to be involved in muscle nonshivering thermogenesis (NST) and energy metabolism. Interestingly, SLN expression is significantly upregulated both during muscle development and in several disease states. However, the significance of altered SLN expression in muscle patho-physiology is not completely understood. We have previously shown that transgenic over-expression of SLN in skeletal muscle is not detrimental, and can promote oxidative metabolism and exercise capacity. In contrast, some studies have suggested that SLN upregulation in disease states is deleterious for muscle function and ablation of SLN can be beneficial. In this perspective article, we critically examine both published and some new data to determine the relevance of SLN expression to disease pathology. The new data presented in this paper show that SLN levels are induced in muscle during systemic bacterial (Salmonella) infection or lipopolysaccharides (LPS) treatment. We also present data showing that SLN expression is significantly upregulated in different types of muscular dystrophies including myotubular myopathy. These data taken together reveal that upregulation of SLN expression in muscle disease is progressive and increases with severity. Therefore, we suggest that increased SLN expression should not be viewed as the cause of the disease; rather, it is a compensatory response to meet the higher energy demand of the muscle. We interpret that higher SLN/SERCA ratio positively modulate cytosolic Ca2+ signaling pathways to promote mitochondrial biogenesis and oxidative metabolism to meet higher energy demand in muscle.
Collapse
Affiliation(s)
- Naresh C Bal
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Subash C Gupta
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States.,Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Meghna Pant
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Danesh H Sopariwala
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Geoffrey Gonzalez-Escobedo
- Departments of Microbiology and Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Joanne Turner
- Departments of Microbiology and Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Texas Biomedical Research Institute, San Antonio, TX, United States
| | - John S Gunn
- Departments of Microbiology and Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Christopher R Pierson
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pathology, The Ohio State University, Columbus, OH, United States.,Department of Biomedical Education and Anatomy, The Ohio State University, Columbus, OH, United States
| | - Scott Q Harper
- Department of Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| | - Jill A Rafael-Fortney
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Muthu Periasamy
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States.,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
35
|
Koch RE, Buchanan KL, Casagrande S, Crino O, Dowling DK, Hill GE, Hood WR, McKenzie M, Mariette MM, Noble DWA, Pavlova A, Seebacher F, Sunnucks P, Udino E, White CR, Salin K, Stier A. Integrating Mitochondrial Aerobic Metabolism into Ecology and Evolution. Trends Ecol Evol 2021; 36:321-332. [PMID: 33436278 DOI: 10.1016/j.tree.2020.12.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022]
Abstract
Biologists have long appreciated the critical role that energy turnover plays in understanding variation in performance and fitness among individuals. Whole-organism metabolic studies have provided key insights into fundamental ecological and evolutionary processes. However, constraints operating at subcellular levels, such as those operating within the mitochondria, can also play important roles in optimizing metabolism over different energetic demands and time scales. Herein, we explore how mitochondrial aerobic metabolism influences different aspects of organismal performance, such as through changing adenosine triphosphate (ATP) and reactive oxygen species (ROS) production. We consider how such insights have advanced our understanding of the mechanisms underpinning key ecological and evolutionary processes, from variation in life-history traits to adaptation to changing thermal conditions, and we highlight key areas for future research.
Collapse
Affiliation(s)
- Rebecca E Koch
- Monash University, School of Biological Sciences, Clayton, VIC, 3800, Australia.
| | - Katherine L Buchanan
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds, VIC, 3228, Australia
| | - Stefania Casagrande
- Max Planck Institute for Ornithology, Evolutionary Physiology Group, Seewiesen, Eberhard-Gwinner-Str. Haus 5, 82319, Seewiesen, Germany
| | - Ondi Crino
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds, VIC, 3228, Australia
| | - Damian K Dowling
- Monash University, School of Biological Sciences, Clayton, VIC, 3800, Australia
| | - Geoffrey E Hill
- Auburn University, Department of Biological Sciences, Auburn, AL, 36849, USA
| | - Wendy R Hood
- Auburn University, Department of Biological Sciences, Auburn, AL, 36849, USA
| | - Matthew McKenzie
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds, VIC, 3228, Australia
| | - Mylene M Mariette
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds, VIC, 3228, Australia
| | - Daniel W A Noble
- The Australian National University, Division of Ecology and Evolution, Research School of Biology, Canberra, ACT, 2600, Australia
| | - Alexandra Pavlova
- Monash University, School of Biological Sciences, Clayton, VIC, 3800, Australia
| | - Frank Seebacher
- University of Sydney, School of Life and Environmental Sciences, Sydney, NSW, 2006, Australia
| | - Paul Sunnucks
- Monash University, School of Biological Sciences, Clayton, VIC, 3800, Australia
| | - Eve Udino
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds, VIC, 3228, Australia
| | - Craig R White
- Monash University, School of Biological Sciences, Clayton, VIC, 3800, Australia
| | - Karine Salin
- Université de Brest, Ifremer, CNRS, IRD, Laboratory of Environmental Marine Sciences, Plouzané, 29280, France
| | - Antoine Stier
- University of Turku, Department of Biology, Turku, Finland; University of Glasgow, Institute of Biodiversity, Animal Health and Comparative Medicine, Glasgow, UK
| |
Collapse
|
36
|
Sarcolipin Exhibits Abundant RNA Transcription and Minimal Protein Expression in Horse Gluteal Muscle. Vet Sci 2020; 7:vetsci7040178. [PMID: 33202832 PMCID: PMC7711957 DOI: 10.3390/vetsci7040178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/05/2020] [Indexed: 01/02/2023] Open
Abstract
Ca2+ regulation in equine muscle is important for horse performance, yet little is known about this species-specific regulation. We reported recently that horse encode unique gene and protein sequences for the sarcoplasmic reticulum (SR) Ca2+-transporting ATPase (SERCA) and the regulatory subunit sarcolipin (SLN). Here we quantified gene transcription and protein expression of SERCA and its inhibitory peptides in horse gluteus, as compared to commonly-studied rabbit skeletal muscle. RNA sequencing and protein immunoblotting determined that horse gluteus expresses the ATP2A1 gene (SERCA1) as the predominant SR Ca2+-ATPase isoform and the SLN gene as the most-abundant SERCA inhibitory peptide, as also found in rabbit skeletal muscle. Equine muscle expresses an insignificant level of phospholamban (PLN), another key SERCA inhibitory peptide expressed commonly in a variety of mammalian striated muscles. Surprisingly in horse, the RNA transcript ratio of SLN-to-ATP2A1 is an order of magnitude higher than in rabbit, while the corresponding protein expression ratio is an order of magnitude lower than in rabbit. Thus, SLN is not efficiently translated or maintained as a stable protein in horse muscle, suggesting a non-coding role for supra-abundant SLN mRNA. We propose that the lack of SLN and PLN inhibition of SERCA activity in equine muscle is an evolutionary adaptation that potentiates Ca2+ cycling and muscle contractility in a prey species domestically selected for speed.
Collapse
|
37
|
Patel BV, Yao F, Howenstine A, Takenaka R, Hyatt JA, Sears KE, Shewchuk BM. Emergent Coordination of the CHKB and CPT1B Genes in Eutherian Mammals: Implications for the Origin of Brown Adipose Tissue. J Mol Biol 2020; 432:6127-6145. [PMID: 33058877 DOI: 10.1016/j.jmb.2020.09.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 11/17/2022]
Abstract
Mitochondrial fatty acid oxidation (FAO) contributes to the proton motive force that drives ATP synthesis in many mammalian tissues. In eutherian (placental) mammals, brown adipose tissue (BAT) can also dissipate this proton gradient through uncoupling protein 1 (UCP1) to generate heat, but the evolutionary events underlying the emergence of BAT are unknown. An essential step in FAO is the transport of cytoplasmic long chain acyl-coenzyme A (acyl-CoA) into the mitochondrial matrix, which requires the action of carnitine palmitoyltransferase 1B (CPT1B) in striated muscle and BAT. In eutherians, the CPT1B gene is closely linked to the choline kinase beta (CHKB) gene, which is transcribed from the same DNA strand and terminates just upstream of CPT1B. CHKB is a rate-limiting enzyme in the synthesis of phosphatidylcholine (PC), a predominant mitochondrial membrane phospholipid, suggesting that the coordinated expression of CHKB and CPT1B may cooperatively enhance mitochondrial FAO. The present findings show that transcription of the eutherian CHKB and CPT1B genes is linked within a unitary epigenetic domain targeted to the CHKB gene, and that that this regulatory linkage appears to have resulted from an intergenic deletion in eutherians that significantly altered the distribution of CHKB and CPT1B expression. Informed by the timing of this event relative to the emergence of BAT, the phylogeny of CHKB-CPT1B synteny, and the insufficiency of UCP1 to account for eutherian BAT, these data support a mechanism for the emergence of BAT based on the acquisition of a novel capacity for adipocyte FAO in a background of extant UCP1.
Collapse
Affiliation(s)
- Bhavin V Patel
- Department of Biochemistry & Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Fanrong Yao
- Department of Biochemistry & Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Aidan Howenstine
- Department of Ecology & Evolutionary Biology, College of Life Sciences, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Risa Takenaka
- Department of Ecology & Evolutionary Biology, College of Life Sciences, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Jacob A Hyatt
- Department of Biochemistry & Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Karen E Sears
- Department of Ecology & Evolutionary Biology, College of Life Sciences, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Brian M Shewchuk
- Department of Biochemistry & Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States.
| |
Collapse
|
38
|
Fyda TJ, Spencer C, Jastroch M, Gaudry MJ. Disruption of thermogenic UCP1 predated the divergence of pigs and peccaries. J Exp Biol 2020; 223:jeb223974. [PMID: 32620708 DOI: 10.1242/jeb.223974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/30/2020] [Indexed: 11/20/2022]
Abstract
Uncoupling protein 1 (UCP1) governs non-shivering thermogenesis in brown adipose tissue. It has been estimated that pigs lost UCP1 ∼20 million years ago (MYA), dictating cold intolerance among piglets. Our current understanding of the root causes of UCP1 loss are, however, incomplete. Thus, examination of additional species can shed light on these fundamental evolutionary questions. Here, we investigated UCP1 in the Chacoan peccary (Catagonus wagneri), a member of the Tayassuid lineage that diverged from pigs during the late Eocene-mid Oligocene. Exons 1 and 2 have been deleted in peccary UCP1 and the remaining exons display additional inactivating mutations. A common nonsense mutation in exon 6 revealed that UCP1 was pseudogenized in a shared ancestor of pigs and peccaries. Our selection pressure analyses indicate that the inactivation occurred 36.2-44.3 MYA during the mid-late Eocene, which is much earlier than previously thought. Importantly, pseudogenized UCP1 provides the molecular rationale for cold sensitivity and current tropical biogeography of extant peccaries.
Collapse
Affiliation(s)
- Thomas Jacob Fyda
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Connor Spencer
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Michael J Gaudry
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
39
|
Alves LQ, Ruivo R, Fonseca MM, Lopes-Marques M, Ribeiro P, Castro L. PseudoChecker: an integrated online platform for gene inactivation inference. Nucleic Acids Res 2020; 48:W321-W331. [PMID: 32449938 PMCID: PMC7319564 DOI: 10.1093/nar/gkaa408] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/22/2020] [Accepted: 05/06/2020] [Indexed: 01/21/2023] Open
Abstract
The rapid expansion of high-quality genome assemblies, exemplified by ongoing initiatives such as the Genome-10K and i5k, demands novel automated methods to approach comparative genomics. Of these, the study of inactivating mutations in the coding region of genes, or pseudogenization, as a source of evolutionary novelty is mostly overlooked. Thus, to address such evolutionary/genomic events, a systematic, accurate and computationally automated approach is required. Here, we present PseudoChecker, the first integrated online platform for gene inactivation inference. Unlike the few existing methods, our comparative genomics-based approach displays full automation, a built-in graphical user interface and a novel index, PseudoIndex, for an empirical evaluation of the gene coding status. As a multi-platform online service, PseudoChecker simplifies access and usability, allowing a fast identification of disruptive mutations. An analysis of 30 genes previously reported to be eroded in mammals, and 30 viable genes from the same lineages, demonstrated that PseudoChecker was able to correctly infer 97% of loss events and 95% of functional genes, confirming its reliability. PseudoChecker is freely available, without login required, at http://pseudochecker.ciimar.up.pt.
Collapse
Affiliation(s)
- Luís Q Alves
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, U. Porto-University of Porto, Matosinhos, 4450-208, Portugal
| | - Raquel Ruivo
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, U. Porto-University of Porto, Matosinhos, 4450-208, Portugal
| | - Miguel M Fonseca
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, U. Porto-University of Porto, Matosinhos, 4450-208, Portugal
| | - Mónica Lopes-Marques
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, U. Porto-University of Porto, Matosinhos, 4450-208, Portugal
| | - Pedro Ribeiro
- CRACS & INESC-TEC Department of Computer Science, FCUP, Porto, 4169-007, Portugal
| | - L Filipe C Castro
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, U. Porto-University of Porto, Matosinhos, 4450-208, Portugal
- Department of Biology, FCUP, Porto, 4169-007, Portugal
| |
Collapse
|
40
|
Seebacher F. Is Endothermy an Evolutionary By-Product? Trends Ecol Evol 2020; 35:503-511. [PMID: 32396817 DOI: 10.1016/j.tree.2020.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/29/2020] [Accepted: 02/11/2020] [Indexed: 12/21/2022]
Abstract
Endothermy alters the energetic relationships between organisms and their environment and thereby influences fundamental niches. Endothermy is closely tied to energy metabolism. Regulation of energy balance is indispensable for all life and regulatory pathways increase in complexity from bacteria to vertebrates. Increasing complexity of metabolic networks also increase the probability for endothermic phenotypes to appear. Adaptive arguments are problematic epistemologically because the regulatory mechanisms enabling endothermy have not evolved for the 'purpose' of endothermy and the utility of current traits is likely to have changed over evolutionary time. It is most parsimonious to view endothermy as the evolutionary by-product of energy balance regulation rather than as an adaptation and interpret its evolution in the context of metabolic networks.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Life and Environmental Sciences, Heydon-Laurence Building A08, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
41
|
Neofunctionalization of the UCP1 mediated the non-shivering thermogenesis in the evolution of small-sized placental mammals. Genomics 2020; 112:2489-2498. [PMID: 32027956 DOI: 10.1016/j.ygeno.2020.01.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/14/2020] [Accepted: 01/31/2020] [Indexed: 12/25/2022]
Abstract
The acquisition of UCP1-mediated non-shivering thermogenesis (NST) was an important event during the evolution of mammals. Here, we assessed the thermogenic neofunctionalization that occurred in the mammalian UCP1, by performing detailed comparative evolutionary genomics analyses (including phylogenetic and selection analyses) of the UCP family members across all major vertebrate classes. Heterogeneously distributed positive selection signatures were found in several UCPs, being preferably located in the mitochondrial matrix domains. Additionally, comparisons with non-mammalian orthologs showed increased evolutionary rates of the mammalian UCP1, not observable in the phylogenetically related UCP2 and UCP3 paralogs. Also, parallel signatures of episodic positive selection (ω > 1) were found in the ancestral branches of both Glires (rodents and lagomorphs) and Afroinsectivores (afrosoricids and macroscelids), underlining the importance of the UCP1 thermogenic activity in these mammalian groups. Finally, we hypothesize that the independent positive selection events that occurred in these two lineages resulted in two UCP1-mediated NST approaches, namely the cold acute response in the Glires and the reproduction success enhancement in the Afroinsectivores.
Collapse
|
42
|
Jastroch M, Seebacher F. Importance of adipocyte browning in the evolution of endothermy. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190134. [PMID: 31928187 DOI: 10.1098/rstb.2019.0134] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endothermy changes the relationship between organisms and their environment fundamentally, and it is therefore of major ecological and evolutionary significance. Endothermy is characterized by non-shivering thermogenesis, that is metabolic heat production in the absence of muscular activity. In many eutherian mammals, brown adipose tissue (BAT) is an evolutionary innovation that facilitates non-shivering heat production in mitochondria by uncoupling food-derived substrate oxidation from chemical energy (ATP) production. Consequently, energy turnover is accelerated resulting in increased heat release. The defining characteristics of BAT are high contents of mitochondria and vascularization, and the presence of uncoupling protein 1. Recent insights, however, reveal that a range of stimuli such as exercise, diet and the immune system can cause the browning of white adipocytes, thereby increasing energy expenditure and heat production even in the absence of BAT. Here, we review the molecular mechanisms that cause browning of white adipose tissue, and their potential contribution to thermoregulation. The significance for palaeophysiology lies in the presence of adipose tissue and the mechanisms that cause its browning and uncoupling in all amniotes. Hence, adipocytes may have played a role in the evolution of endothermy beyond the more specific evolution of BAT in eutherians. This article is part of the theme issue 'Vertebrate palaeophysiology'.
Collapse
Affiliation(s)
- Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
43
|
Legendre LJ, Davesne D. The evolution of mechanisms involved in vertebrate endothermy. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190136. [PMID: 31928191 DOI: 10.1098/rstb.2019.0136] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Endothermy, i.e. the endogenous production of metabolic heat, has evolved multiple times among vertebrates, and several strategies of heat production have been studied extensively by physiologists over the course of the twentieth century. The independent acquisition of endothermy by mammals and birds has been the subject of many hypotheses regarding their origin and associated evolutionary constraints. Many groups of vertebrates, however, are thought to possess other mechanisms of heat production, and alternative ways to regulate thermogenesis that are not always considered in the palaeontological literature. Here, we perform a review of the mechanisms involved in heat production, with a focus on cellular and molecular mechanisms, in a phylogenetic context encompassing the entire vertebrate diversity. We show that endothermy in mammals and birds is not as well defined as commonly assumed by evolutionary biologists and consists of a vast array of physiological strategies, many of which are currently unknown. We also describe strategies found in other vertebrates, which may not always be considered endothermy, but nonetheless correspond to a process of active thermogenesis. We conclude that endothermy is a highly plastic character in vertebrates and provides a guideline on terminology and occurrences of the different types of heat production in vertebrate evolution. This article is part of the theme issue 'Vertebrate palaeophysiology'.
Collapse
Affiliation(s)
- Lucas J Legendre
- Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA
| | - Donald Davesne
- Department of Earth Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
44
|
Bal NC, Periasamy M. Uncoupling of sarcoendoplasmic reticulum calcium ATPase pump activity by sarcolipin as the basis for muscle non-shivering thermogenesis. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190135. [PMID: 31928193 DOI: 10.1098/rstb.2019.0135] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Thermogenesis in endotherms relies on both shivering and non-shivering thermogenesis (NST). The role of brown adipose tissue (BAT) in NST is well recognized, but the role of muscle-based NST has been contested. However, recent studies have provided substantial evidence for the importance of muscle-based NST in mammals. This review focuses primarily on the role of sarcoplasmic reticulum (SR) Ca2+-cycling in muscle NST; specifically, it will discuss recent data showing how uncoupling of sarcoendoplasmic reticulum calcium ATPase (SERCA) (inhibition of Ca2+ transport but not ATP hydrolysis) by sarcolipin (SLN) results in futile SERCA pump activity, increased ATP hydrolysis and heat production contributing to muscle NST. It will also critically examine how activation of muscle NST can be an important factor in regulating metabolic rate and whole-body energy homeostasis. In this regard, SLN has emerged as a powerful signalling molecule to promote mitochondrial biogenesis and oxidative metabolism in muscle. Furthermore, we will discuss the functional interplay between BAT and muscle, especially with respect to how reduced BAT function in mammals could be compensated by muscle-based NST. Based on the existing data, we argue that SLN-mediated thermogenesis is an integral part of muscle NST and that muscle NST potentially contributed to the evolution of endothermy within the vertebrate clade. This article is part of the theme issue 'Vertebrate palaeophysiology'.
Collapse
Affiliation(s)
- Naresh C Bal
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751021, India
| | - Muthu Periasamy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
45
|
Lu WH, Chang YM, Huang YS. Alternative Polyadenylation and Differential Regulation of Ucp1: Implications for Brown Adipose Tissue Thermogenesis Across Species. Front Pediatr 2020; 8:612279. [PMID: 33634052 PMCID: PMC7899972 DOI: 10.3389/fped.2020.612279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022] Open
Abstract
Brown adipose tissue (BAT) is a thermogenic organ owing to its unique expression of uncoupling protein 1 (UCP1), which is a proton channel in the inner mitochondrial membrane used to dissipate the proton gradient and uncouple the electron transport chain to generate heat instead of adenosine triphosphate. The discovery of metabolically active BAT in human adults, especially in lean people after cold exposure, has provoked the "thermogenic anti-obesity" idea to battle weight gain. Because BAT can expend energy through UCP1-mediated thermogenesis, the molecular mechanisms regulating UCP1 expression have been extensively investigated at both transcriptional and posttranscriptional levels. Of note, the 3'-untranslated region (3'-UTR) of Ucp1 mRNA is differentially processed between mice and humans that quantitatively affects UCP1 synthesis and thermogenesis. Here, we summarize the regulatory mechanisms underlying UCP1 expression, report the number of poly(A) signals identified or predicted in Ucp1 genes across species, and discuss the potential and caution in targeting UCP1 for enhancing thermogenesis and metabolic fitness.
Collapse
Affiliation(s)
- Wen-Hsin Lu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yao-Ming Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Shuian Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
46
|
Cairó M, Villarroya J. The role of autophagy in brown and beige adipose tissue plasticity. J Physiol Biochem 2019; 76:213-226. [PMID: 31811543 DOI: 10.1007/s13105-019-00708-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/10/2019] [Indexed: 01/04/2023]
Abstract
Since the rediscovery of active brown and beige adipose tissues in humans a decade ago, great efforts have been made to identify the mechanisms underlying the activation and inactivation of these tissues, with the hope of designing potential strategies to fight against obesity and associated metabolic disorders such as type 2 diabetes. Active brown/beige fat increases the energy expenditure and is associated with reduced hyperglycemia and hyperlipidemia, whereas its atrophy and inactivation have been associated with obesity and aging. Autophagy, which is the process by which intracellular components are degraded within the lysosomes, has recently emerged as an important regulatory mechanism of brown/beige fat plasticity. Studies have shown that autophagy participates in the intracellular remodeling events that occur during brown/beige adipogenesis, thermogenic activation, and inactivation. The autophagic degradation of mitochondria appears to be important for the inactivation of brown fat and the transition from beige-to-white adipose tissue. Moreover, autophagic dysregulation in adipose tissues has been associated with obesity. Thus, understanding the regulatory mechanisms that control autophagy in the physiology and pathophysiology of adipose tissues might suggest novel treatments against obesity and its associated metabolic diseases.
Collapse
Affiliation(s)
- Montserrat Cairó
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Avda Diagonal 643, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) Fisiopatologia de la Obesidad y Nutrición, 28029, Madrid, Spain
| | - Joan Villarroya
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Avda Diagonal 643, 08028, Barcelona, Spain.
- Infectious Diseases Unit, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain.
| |
Collapse
|
47
|
Glaves JP, Primeau JO, Gorski PA, Espinoza-Fonseca LM, Lemieux MJ, Young HS. Interaction of a Sarcolipin Pentamer and Monomer with the Sarcoplasmic Reticulum Calcium Pump, SERCA. Biophys J 2019; 118:518-531. [PMID: 31858977 DOI: 10.1016/j.bpj.2019.11.3385] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/30/2019] [Accepted: 11/18/2019] [Indexed: 11/27/2022] Open
Abstract
The sequential rise and fall of cytosolic calcium underlies the contraction-relaxation cycle of muscle cells. Whereas contraction is initiated by the release of calcium from the sarcoplasmic reticulum, muscle relaxation involves the active transport of calcium back into the sarcoplasmic reticulum. This reuptake of calcium is catalyzed by the sarcoendoplasmic reticulum Ca2+-ATPase (SERCA), which plays a lead role in muscle contractility. The activity of SERCA is regulated by small membrane protein subunits, the most well-known being phospholamban (PLN) and sarcolipin (SLN). SLN physically interacts with SERCA and differentially regulates contractility in skeletal and atrial muscle. SLN has also been implicated in skeletal muscle thermogenesis. Despite these important roles, the structural mechanisms by which SLN modulates SERCA-dependent contractility and thermogenesis remain unclear. Here, we functionally characterized wild-type SLN and a pair of mutants, Asn4-Ala and Thr5-Ala, which yielded gain-of-function behavior comparable to what has been found for PLN. Next, we analyzed two-dimensional crystals of SERCA in the presence of wild-type SLN by electron cryomicroscopy. The fundamental units of the crystals are antiparallel dimer ribbons of SERCA, known for decades as an assembly of calcium-free SERCA molecules induced by the addition of decavanadate. A projection map of the SERCA-SLN complex was determined to a resolution of 8.5 Å, which allowed the direct visualization of an SLN pentamer. The SLN pentamer was found to interact with transmembrane segment M3 of SERCA, although the interaction appeared to be indirect and mediated by an additional density consistent with an SLN monomer. This SERCA-SLN complex correlated with the ability of SLN to decrease the maximal activity of SERCA, which is distinct from the ability of PLN to increase the maximal activity of SLN. Protein-protein docking and molecular dynamics simulations provided models for the SLN pentamer and the novel interaction between SERCA and an SLN monomer.
Collapse
Affiliation(s)
- John Paul Glaves
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Joseph O Primeau
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Przemek A Gorski
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - L Michel Espinoza-Fonseca
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Howard S Young
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
48
|
Shao M, Wang QA, Song A, Vishvanath L, Busbuso NC, Scherer PE, Gupta RK. Cellular Origins of Beige Fat Cells Revisited. Diabetes 2019; 68:1874-1885. [PMID: 31540940 PMCID: PMC6754244 DOI: 10.2337/db19-0308] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/10/2019] [Indexed: 12/11/2022]
Abstract
Activated beige adipocytes have therapeutic potential due to their ability to improve glucose and lipid homeostasis. To date, the origin of beige adipocytes remains enigmatic. Whether beige cells arise through de novo differentiation from resident precursors or through reprogramming of mature white adipocytes has been a topic of intense discussion. Here, we offer our perspective on the natural origin of beige adipocytes in mice. In particular, we revisit recent lineage-tracing studies that shed light on this issue and offer new insight into how environmental housing temperatures early in life influence the mode of beige adipocyte biogenesis upon cold exposure later in life. We suggest a unified model in which beige adipocytes (UCP1+ multilocular cells) in rodents initially arise predominantly from progenitors (i.e., de novo beige adipogenesis) upon the first exposure to cold temperatures and then interconvert between "dormant beige" and "active beige" phenotypes (i.e., beige cell activation) upon subsequent changes in environmental temperature. Importantly, we highlight experimental considerations needed to visualize de novo adipogenesis versus beige cell activation in mice. A precise understanding of the cellular origins of beige adipocytes emanating in response to physiological and pharmacological stimuli may better inform therapeutic strategies to recruit beige adipocytes in vivo.
Collapse
Affiliation(s)
- Mengle Shao
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Qiong A Wang
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| | - Anying Song
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| | - Lavanya Vishvanath
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Napoleon C Busbuso
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Rana K Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
49
|
Huelsmann M, Hecker N, Springer MS, Gatesy J, Sharma V, Hiller M. Genes lost during the transition from land to water in cetaceans highlight genomic changes associated with aquatic adaptations. SCIENCE ADVANCES 2019; 5:eaaw6671. [PMID: 31579821 PMCID: PMC6760925 DOI: 10.1126/sciadv.aaw6671] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 08/28/2019] [Indexed: 05/22/2023]
Abstract
The transition from land to water in whales and dolphins (cetaceans) was accompanied by remarkable adaptations. To reveal genomic changes that occurred during this transition, we screened for protein-coding genes that were inactivated in the ancestral cetacean lineage. We found 85 gene losses. Some of these were likely beneficial for cetaceans, for example, by reducing the risk of thrombus formation during diving (F12 and KLKB1), erroneous DNA damage repair (POLM), and oxidative stress-induced lung inflammation (MAP3K19). Additional gene losses may reflect other diving-related adaptations, such as enhanced vasoconstriction during the diving response (mediated by SLC6A18) and altered pulmonary surfactant composition (SEC14L3), while loss of SLC4A9 relates to a reduced need for saliva. Last, loss of melatonin synthesis and receptor genes (AANAT, ASMT, and MTNR1A/B) may have been a precondition for adopting unihemispheric sleep. Our findings suggest that some genes lost in ancestral cetaceans were likely involved in adapting to a fully aquatic lifestyle.
Collapse
Affiliation(s)
- Matthias Huelsmann
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Nikolai Hecker
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Mark S. Springer
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - John Gatesy
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
- Division of Vertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| | - Virag Sharma
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Corresponding author.
| |
Collapse
|
50
|
Gaudry MJ, Keuper M, Jastroch M. Molecular evolution of thermogenic uncoupling protein 1 and implications for medical intervention of human disease. Mol Aspects Med 2019; 68:6-17. [DOI: 10.1016/j.mam.2019.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022]
|