1
|
Sreepadmanabh M, Ganesh M, Sanjenbam P, Kurzthaler C, Agashe D, Bhattacharjee T. Cell shape affects bacterial colony growth under physical confinement. Nat Commun 2024; 15:9561. [PMID: 39516204 PMCID: PMC11549454 DOI: 10.1038/s41467-024-53989-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Evidence from homogeneous liquid or flat-plate cultures indicates that biochemical cues are the primary modes of bacterial interaction with their microenvironment. However, these systems fail to capture the effect of physical confinement on bacteria in their natural habitats. Bacterial niches like the pores of soil, mucus, and infected tissues are disordered microenvironments with material properties defined by their internal pore sizes and shear moduli. Here, we use three-dimensional matrices that match the viscoelastic properties of gut mucus to test how altering the physical properties of their microenvironment influences the growth of bacteria under confinement. We find that low aspect ratio (spherical) bacteria form compact, spherical colonies under confinement while high aspect ratio (rod-shaped) bacteria push their progenies further outwards to create elongated colonies with a higher surface area, enabling increased access to nutrients. As a result, the population growth of high aspect ratio bacteria is, under the tested conditions, more robust to increased physical confinement compared to that of low aspect ratio bacteria. Thus, our experimental evidence supports that environmental physical constraints can play a selective role in bacterial growth based on cell shape.
Collapse
Affiliation(s)
- M Sreepadmanabh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Meenakshi Ganesh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- Indian Institute of Science Education and Research, Mohali, India
| | - Pratibha Sanjenbam
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Christina Kurzthaler
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
- Physics of Life, TU Dresden, Dresden, Germany
| | - Deepa Agashe
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Tapomoy Bhattacharjee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
| |
Collapse
|
2
|
Kaur M, Mozaheb N, Paiva TO, Herent MF, Goormaghtigh F, Paquot A, Terrasi R, Mignolet E, Décout JL, Lorent JH, Larondelle Y, Muccioli GG, Quetin-Leclercq J, Dufrêne YF, Mingeot-Leclercq MP. Insight into the outer membrane asymmetry of P. aeruginosa and the role of MlaA in modulating the lipidic composition, mechanical, biophysical, and functional membrane properties of the cell envelope. Microbiol Spectr 2024; 12:e0148424. [PMID: 39373473 PMCID: PMC11537012 DOI: 10.1128/spectrum.01484-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/14/2024] [Indexed: 10/08/2024] Open
Abstract
In Gram-negative bacteria, the outer membrane (OM) is asymmetric, with lipopolysaccharides (LPS) in the outer leaflet and glycerophospholipids (GPLs) in the inner leaflet. The asymmetry is maintained by the Mla system (MlaA-MlaBCDEF), which contributes to lipid homeostasis by removing mislocalized GPLs from the outer leaflet of the OM. Here, we ascribed how Pseudomonas aeruginosa ATCC 27853 coordinately regulates pathways to provide defense against the threats posed by the deletion of mlaA. Especially, we explored (i) the effects on membrane lipid composition including LPS, GPLs, and lysophospholipids, (ii) the biophysical properties of the OM such as stiffness and fluidity, and (iii) the impact of these changes on permeability, antibiotic susceptibility, and membrane vesicles (MVs) generation. Deletion of mlaA induced an increase in total GPLs and a decrease in LPS level while also triggering alterations in lipid A structures (arabinosylation and palmitoylation), likely to be induced by a two-component system (PhoPQ-PmrAB). Altered lipid composition may serve a physiological purpose in regulating the mechanobiological and functional properties of P. aeruginosa. We demonstrated an increase in cell stiffness without alteration of turgor pressure and inner membrane (IM) fluidity in ∆mlaA. In addition, membrane vesiculation increased without any change in OM/IM permeability. An amphiphilic aminoglycoside derivative (3',6-dinonyl neamine) that targets P. aeruginosa membranes induced an opposite effect on ∆mlaA strain with a trend toward a return to the situation observed for the WT strain. Efforts dedicated to understanding the crosstalk between the OM lipid composition, and the mechanical behavior of bacterial envelope, is one needed step for designing new targets or new drugs to fight P. aeruginosa infections.IMPORTANCEPseudomonas aeruginosa is a Gram-negative bacterium responsible for severe hospital-acquired infections. The outer membrane (OM) of Gram-negative bacteria acts as an effective barrier against toxic compounds, and therefore, compromising this structure could increase sensitivity to antibiotics. The OM is asymmetric with the highly packed lipopolysaccharide monolayer at the outer leaflet and glycerophospholipids at the inner leaflet. OM asymmetry is maintained by the Mla pathway resulting in the retrograde transport of glycerophospholipids from the OM to the inner membrane. In this study, we show that deleting mlaA, the membrane component of Mla system located at the OM, affects the mechanical and functional properties of P. aeruginosa cell envelope. Our results provide insights into the role of MlaA, involved in the Mla transport pathway in P. aeruginosa.
Collapse
Affiliation(s)
- M. Kaur
- UCLouvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology, Brussels, Belgium
| | - N. Mozaheb
- UCLouvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology, Brussels, Belgium
| | - T. O. Paiva
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, nanoBiophysics, Louvain-la-Neuve, Belgium
| | - M.-F. Herent
- UCLouvain, Louvain Drug Research Institute, Pharmacognosy, Brussels, Belgium
| | - F. Goormaghtigh
- UCLouvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology, Brussels, Belgium
| | - A. Paquot
- UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Brussels, Belgium
| | - R. Terrasi
- UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Brussels, Belgium
| | - E. Mignolet
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Biochemistry of Nutrition and Environmental Toxicology Louvain-la-Neuve, Brussels, Belgium
| | - J.-L. Décout
- Université Grenoble Alpes, CNRS, DPM, Grenoble, France
| | - J. H. Lorent
- UCLouvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology, Brussels, Belgium
| | - Y. Larondelle
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Biochemistry of Nutrition and Environmental Toxicology Louvain-la-Neuve, Brussels, Belgium
| | - G. G. Muccioli
- UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Brussels, Belgium
| | - J. Quetin-Leclercq
- UCLouvain, Louvain Drug Research Institute, Pharmacognosy, Brussels, Belgium
| | - Y. F. Dufrêne
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, nanoBiophysics, Louvain-la-Neuve, Belgium
| | - M.-P. Mingeot-Leclercq
- UCLouvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology, Brussels, Belgium
| |
Collapse
|
3
|
Jeong GJ, Khan F, Tabassum N, Cho KJ, Kim YM. Marine-derived bioactive materials as antibiofilm and antivirulence agents. Trends Biotechnol 2024; 42:1288-1304. [PMID: 38637243 DOI: 10.1016/j.tibtech.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024]
Abstract
Microbial infections are major human health issues, and, recently, the mortality rate owing to bacterial and fungal infections has been increasing. In addition to intrinsic and extrinsic antimicrobial resistance mechanisms, biofilm formation is a key adaptive resistance mechanism. Several bioactive compounds from marine organisms have been identified for use in biofilm therapy owing to their structural complexity, biocompatibility, and economic viability. In this review, we discuss recent trends in the application of marine natural compounds, marine-bioinspired nanomaterials, and marine polymer conjugates as possible therapeutic agents for controlling biofilms and virulence factors. We also comprehensively discuss the mechanisms underlying biofilm formation and inhibition of virulence factors by marine-derived materials and propose possible applications of novel and effective antibiofilm and antivirulence agents.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Institute of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea.
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Kyung-Jin Cho
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
4
|
Drakes N, Kondrikova G, Pytel D, Hamlett ED. Unveiling the Intricate Link Between Anaerobe Niche and Alzheimer Disease Pathogenesis. J Infect Dis 2024; 230:S117-S127. [PMID: 39255391 DOI: 10.1093/infdis/jiae312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
Dysbiosis within microbiomes has been increasingly implicated in many systemic illnesses, such as cardiovascular disease, metabolic syndrome, respiratory infections, and Alzheimer disease (Ad). The correlation between Ad and microbial dysbiosis has been repeatedly shown, yet the etiologic cause of microbial dysbiosis remains elusive. From a neuropathology perspective, abnormal (often age-related) changes in the brain, associated structures, and bodily lumens tend toward an accumulation of oxygen-depleted pathologic structures, which are anaerobically selective niches. These anaerobic environments may promote progressive change in the microbial community proximal to the brain and thus deserve further investigation. In this review, we identify and explore what is known about the anaerobic niche near or associated with the brain and the anaerobes that it is harbors. We identify the anaerobe stakeholders within microbiome communities and the impacts on the neurodegenerative processes associated with Ad. Chronic oral dysbiosis in anaerobic dental pockets and the composition of the gut microbiota from fecal stool are the 2 largest anaerobic niche sources of bacterial transference to the brain. At the blood-brain barrier, cerebral atherosclerotic plaques are predominated by anaerobic species intimately associated with the brain vasculature. Focal cerebritis/brain abscess and corpora amylacea may also establish chronic anaerobic niches in direct proximity to brain parenchyma. In exploring the anaerobic niche proximal to the brain, we identify research opportunities to explore potential sources of microbial dysbiosis associated with Ad.
Collapse
Affiliation(s)
- NyEmma Drakes
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina
- Department of Biology, College of Charleston
| | - Galina Kondrikova
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina
- Department of Veterans Affairs, Ralph H. Johnson VA Medical Center, Charleston, South Carolina
| | - Dariusz Pytel
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Poland
| | - Eric D Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina
| |
Collapse
|
5
|
Uberoi A, McCready-Vangi A, Grice EA. The wound microbiota: microbial mechanisms of impaired wound healing and infection. Nat Rev Microbiol 2024; 22:507-521. [PMID: 38575708 DOI: 10.1038/s41579-024-01035-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 04/06/2024]
Abstract
The skin barrier protects the human body from invasion by exogenous and pathogenic microorganisms. A breach in this barrier exposes the underlying tissue to microbial contamination, which can lead to infection, delayed healing, and further loss of tissue and organ integrity. Delayed wound healing and chronic wounds are associated with comorbidities, including diabetes, advanced age, immunosuppression and autoimmune disease. The wound microbiota can influence each stage of the multi-factorial repair process and influence the likelihood of an infection. Pathogens that commonly infect wounds, such as Staphylococcus aureus and Pseudomonas aeruginosa, express specialized virulence factors that facilitate adherence and invasion. Biofilm formation and other polymicrobial interactions contribute to host immunity evasion and resistance to antimicrobial therapies. Anaerobic organisms, fungal and viral pathogens, and emerging drug-resistant microorganisms present unique challenges for diagnosis and therapy. In this Review, we explore the current understanding of how microorganisms present in wounds impact the process of skin repair and lead to infection through their actions on the host and the other microbial wound inhabitants.
Collapse
Affiliation(s)
- Aayushi Uberoi
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amelia McCready-Vangi
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth A Grice
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Galeana-Cadena D, Ramirez-Martínez G, Alberto Choreño-Parra J, Silva-Herzog E, Margarita Hernández-Cárdenas C, Soberón X, Zúñiga J. Microbiome in the nasopharynx: Insights into the impact of COVID-19 severity. Heliyon 2024; 10:e31562. [PMID: 38826746 PMCID: PMC11141365 DOI: 10.1016/j.heliyon.2024.e31562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/04/2024] Open
Abstract
Background The respiratory tract harbors a variety of microbiota, whose composition and abundance depend on specific site factors, interaction with external factors, and disease. The aim of this study was to investigate the relationship between COVID-19 severity and the nasopharyngeal microbiome. Methods We conducted a prospective cohort study in Mexico City, collecting nasopharyngeal swabs from 30 COVID-19 patients and 14 healthy volunteers. Microbiome profiling was performed using 16S rRNA gene analysis. Taxonomic assignment, classification, diversity analysis, core microbiome analysis, and statistical analysis were conducted using R packages. Results The microbiome data analysis revealed taxonomic shifts within the nasopharyngeal microbiome in severe COVID-19. Particularly, we observed a significant reduction in the relative abundance of Lawsonella and Cutibacterium genera in critically ill COVID-19 patients (p < 0.001). In contrast, these patients exhibited a marked enrichment of Streptococcus, Actinomyces, Peptostreptococcus, Atopobium, Granulicatella, Mogibacterium, Veillonella, Prevotella_7, Rothia, Gemella, Alloprevotella, and Solobacterium genera (p < 0.01). Analysis of the core microbiome across all samples consistently identified the presence of Staphylococcus, Corynebacterium, and Streptococcus. Conclusions Our study suggests that the disruption of physicochemical conditions and barriers resulting from inflammatory processes and the intubation procedure in critically ill COVID-19 patients may facilitate the colonization and invasion of the nasopharynx by oral microorganisms.
Collapse
Affiliation(s)
- David Galeana-Cadena
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Gustavo Ramirez-Martínez
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
| | - José Alberto Choreño-Parra
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
| | - Eugenia Silva-Herzog
- Unidad de Vinculación Científica Facultad de Medicina UNAM-INMEGEN, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Carmen Margarita Hernández-Cárdenas
- Unidad de Cuidados Intensivos y Dirección General, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Ciudad de México, Mexico
| | - Xavier Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Joaquín Zúñiga
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| |
Collapse
|
7
|
Xiang Y, Yu Y, Wang J, Li W, Rong Y, Ling H, Chen Z, Qian Y, Han X, Sun J, Yang Y, Chen L, Zhao C, Li J, Chen K. Neural network establishes co-occurrence links between transformation products of the contaminant and the soil microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171287. [PMID: 38423316 DOI: 10.1016/j.scitotenv.2024.171287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/24/2024] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
It remains challenging to establish reliable links between transformation products (TPs) of contaminants and corresponding microbes. This challenge arises due to the sophisticated experimental regime required for TP discovery and the compositional nature of 16S rRNA gene amplicon sequencing and mass spectrometry datasets, which can potentially confound statistical inference. In this study, we present a new strategy by combining the use of 2H-labeled Stable Isotope-Assisted Metabolomics (2H-SIAM) with a neural network-based algorithm (i.e., MMvec) to explore links between TPs of pyrene and the soil microbiome. The links established by this novel strategy were further validated using different approaches. Briefly, a metagenomic study provided indirect evidence for the established links, while the identification of pyrene degraders from soils, and a DNA-based stable isotope probing (DNA-SIP) study offered direct evidence. The comparison among different approaches, including Pearson's and Spearman's correlations, further confirmed the superior performance of our strategy. In conclusion, we summarize the unique features of the combined use of 2H-SIAM and MMvec. This study not only addresses the challenges in linking TPs to microbes but also introduces an innovative and effective approach for such investigations. Environmental Implication: Taxonomically diverse bacteria performing successive metabolic steps of the contaminant were firstly depicted in the environmental matrix.
Collapse
Affiliation(s)
- Yuhui Xiang
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Yansong Yu
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Jiahui Wang
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Weiwei Li
- Hubei Key Laboratory of Pollution Damage Assessment and Environmental Health Risk Prevention and Control, Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430074, PR China
| | - Yu Rong
- Hubei Key Laboratory of Pollution Damage Assessment and Environmental Health Risk Prevention and Control, Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430074, PR China
| | - Haibo Ling
- Hubei Key Laboratory of Pollution Damage Assessment and Environmental Health Risk Prevention and Control, Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430074, PR China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Praha 16500, Czech Republic
| | - Yiguang Qian
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Xiaole Han
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Jie Sun
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Liang Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Chao Zhao
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Juying Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Ke Chen
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China.
| |
Collapse
|
8
|
Zhu S, Hong J, Wang T. Horizontal gene transfer is predicted to overcome the diversity limit of competing microbial species. Nat Commun 2024; 15:800. [PMID: 38280843 PMCID: PMC10821886 DOI: 10.1038/s41467-024-45154-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/17/2024] [Indexed: 01/29/2024] Open
Abstract
Natural microbial ecosystems harbor substantial diversity of competing species. Explaining such diversity is challenging, because in classic theories it is extremely infeasible for a large community of competing species to stably coexist in homogeneous environments. One important aspect mostly overlooked in these theories, however, is that microbes commonly share genetic materials with their neighbors through horizontal gene transfer (HGT), which enables the dynamic change of species growth rates due to the fitness effects of the mobile genetic elements (MGEs). Here, we establish a framework of species competition by accounting for the dynamic gene flow among competing microbes. Combining theoretical derivation and numerical simulations, we show that in many conditions HGT can surprisingly overcome the biodiversity limit predicted by the classic model and allow the coexistence of many competitors, by enabling dynamic neutrality of competing species. In contrast with the static neutrality proposed by previous theories, the diversity maintained by HGT is highly stable against random perturbations of microbial fitness. Our work highlights the importance of considering gene flow when addressing fundamental ecological questions in the world of microbes and has broad implications for the design and engineering of complex microbial consortia.
Collapse
Affiliation(s)
- Shiben Zhu
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Juken Hong
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Teng Wang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
9
|
Di Bonaventura G, Lupetti V, Di Giulio A, Muzzi M, Piccirilli A, Cariani L, Pompilio A. Repurposing High-Throughput Screening Identifies Unconventional Drugs with Antibacterial and Antibiofilm Activities against Pseudomonas aeruginosa under Experimental Conditions Relevant to Cystic Fibrosis. Microbiol Spectr 2023; 11:e0035223. [PMID: 37306577 PMCID: PMC10433973 DOI: 10.1128/spectrum.00352-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/13/2023] [Indexed: 06/13/2023] Open
Abstract
Pseudomonas aeruginosa is the most common pathogen infecting cystic fibrosis (CF) lungs, causing acute and chronic infections. Intrinsic and acquired antibiotic resistance allow P. aeruginosa to colonize and persist despite antibiotic treatment, making new therapeutic approaches necessary. Combining high-throughput screening and drug repurposing is an effective way to develop new therapeutic uses for drugs. This study screened a drug library of 3,386 drugs, mostly FDA approved, to identify antimicrobials against P. aeruginosa under physicochemical conditions relevant to CF-infected lungs. Based on the antibacterial activity, assessed spectrophotometrically against the prototype RP73 strain and 10 other CF virulent strains, and the toxic potential evaluated toward CF IB3-1 bronchial epithelial cells, five potential hits were selected for further analysis: the anti-inflammatory and antioxidant ebselen, the anticancer drugs tirapazamine, carmofur, and 5-fluorouracil, and the antifungal tavaborole. A time-kill assay showed that ebselen has the potential to cause rapid and dose-dependent bactericidal activity. The antibiofilm activity was evaluated by viable cell count and crystal violet assays, revealing carmofur and 5-fluorouracil as the most active drugs in preventing biofilm formation regardless of the concentration. In contrast, tirapazamine and tavaborole were the only drugs actively dispersing preformed biofilms. Tavaborole was the most active drug against CF pathogens other than P. aeruginosa, especially against Burkholderia cepacia and Acinetobacter baumannii, while carmofur, ebselen, and tirapazamine were particularly active against Staphylococcus aureus and B. cepacia. Electron microscopy and propidium iodide uptake assay revealed that ebselen, carmofur, and tirapazamine significantly damage cell membranes, with leakage and cytoplasm loss, by increasing membrane permeability. IMPORTANCE Antibiotic resistance makes it urgent to design new strategies for treating pulmonary infections in CF patients. The repurposing approach accelerates drug discovery and development, as the drugs' general pharmacological, pharmacokinetic, and toxicological properties are already well known. In the present study, for the first time, a high-throughput compound library screening was performed under experimental conditions relevant to CF-infected lungs. Among 3,386 drugs screened, the clinically used drugs from outside infection treatment ebselen, tirapazamine, carmofur, 5-fluorouracil, and tavaborole showed, although to different extents, anti-P. aeruginosa activity against planktonic and biofilm cells and broad-spectrum activity against other CF pathogens at concentrations not toxic to bronchial epithelial cells. The mode-of-action studies revealed ebselen, carmofur, and tirapazamine targeted the cell membrane, increasing its permeability with subsequent cell lysis. These drugs are strong candidates for repurposing for treating CF lung P. aeruginosa infections.
Collapse
Affiliation(s)
- Giovanni Di Bonaventura
- Department of Medical, Oral, and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Veronica Lupetti
- Department of Medical, Oral, and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | | | | | - Alessandra Piccirilli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L’Aquila, Italy
| | - Lisa Cariani
- Microbiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Arianna Pompilio
- Department of Medical, Oral, and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
10
|
Wang T, Wang XW, Lee-Sarwar KA, Litonjua AA, Weiss ST, Sun Y, Maslov S, Liu YY. Predicting metabolomic profiles from microbial composition through neural ordinary differential equations. NAT MACH INTELL 2023; 5:284-293. [PMID: 38223254 PMCID: PMC10786629 DOI: 10.1038/s42256-023-00627-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/03/2023] [Indexed: 03/14/2023]
Abstract
Characterizing the metabolic profile of a microbial community is crucial for understanding its biological function and its impact on the host or environment. Metabolomics experiments directly measuring these profiles are difficult and expensive, while sequencing methods quantifying the species composition of microbial communities are well-developed and relatively cost-effective. Computational methods that are capable of predicting metabolomic profiles from microbial compositions can save considerable efforts needed for metabolomic profiling experimentally. Yet, despite existing efforts, we still lack a computational method with high prediction power, general applicability, and great interpretability. Here we develop a method - mNODE (Metabolomic profile predictor using Neural Ordinary Differential Equations), based on a state-of-the-art family of deep neural network models. We show compelling evidence that mNODE outperforms existing methods in predicting the metabolomic profiles of human microbiomes and several environmental microbiomes. Moreover, in the case of human gut microbiomes, mNODE can naturally incorporate dietary information to further enhance the prediction of metabolomic profiles. Besides, susceptibility analysis of mNODE enables us to reveal microbe-metabolite interactions, which can be validated using both synthetic and real data. The presented results demonstrate that mNODE is a powerful tool to investigate the microbiome-diet-metabolome relationship, facilitating future research on precision nutrition.
Collapse
Affiliation(s)
- Tong Wang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xu-Wen Wang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kathleen A. Lee-Sarwar
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Augusto A. Litonjua
- Pediatric Pulmonology, Golisano Children’s Hospital, University of Rochester, Rochester, NY 14642, USA
| | - Scott T. Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yizhou Sun
- Department of Computer Science, University of California, Los Angeles, USA
| | - Sergei Maslov
- Center for Artificial Intelligence and Modeling, The Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Artificial Intelligence and Modeling, The Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
11
|
Inflammation and Infection in Cystic Fibrosis: Update for the Clinician. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9121898. [PMID: 36553341 PMCID: PMC9777099 DOI: 10.3390/children9121898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/09/2022]
Abstract
Inflammation and infection play an important role in the pathophysiology of cystic fibrosis, and they are significant causes of morbidity and mortality in CF. The presence of thick mucus in the CF airways predisposes to local hypoxia and promotes infection and inflammation. A vicious cycle of airway obstruction, inflammation, and infection is of critical importance for the progression of the disease, and new data elucidate the different factors that influence it. Recent research has been focused on improving infection and inflammation in addition to correcting the basic gene defect. This review aims to summarize important advances in infection and inflammation as well as the effect of new treatments modulating the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein. New approaches to target infection and inflammation are being studied, including gallium, nitric oxide, and phage therapy for infection, along with retinoids and neutrophil elastase inhibitors for inflammation.
Collapse
|
12
|
Abstract
Features of the airway microbiome in persons with cystic fibrosis (pwCF) are correlated with disease progression. Microbes have traditionally been classified for their ability to tolerate oxygen. It is unknown whether supplemental oxygen, a common medical intervention, affects the airway microbiome of pwCF. We hypothesized that hyperoxia significantly impacts the pulmonary microbiome in cystic fibrosis. In this study, we cultured spontaneously expectorated sputum from pwCF in artificial sputum medium under 21%, 50%, and 100% oxygen conditions using a previously validated model system that recapitulates microbial community composition in uncultured sputum. Culture aliquots taken at 24, 48, and 72 h, along with uncultured sputum, underwent shotgun metagenomic sequencing with absolute abundance values obtained with the use of spike-in bacteria. Raw sequencing files were processed using the bioBakery pipeline to determine changes in taxonomy, predicted function, antimicrobial resistance genes, and mobile genetic elements. Hyperoxia reduced absolute microbial load, species richness, and diversity. Hyperoxia reduced absolute abundance of specific microbes, including facultative anaerobes such as Rothia and some Streptococcus species, with minimal impact on canonical CF pathogens such as Pseudomonas aeruginosa and Staphylococcus aureus. The effect size of hyperoxia on predicted functional pathways was stronger than that on taxonomy. Large changes in microbial cooccurrence networks were noted. Hyperoxia exposure perturbs airway microbial communities in a manner well tolerated by key pathogens. Supplemental oxygen use may enable the growth of lung pathogens and should be further studied in the clinical setting. IMPORTANCE The airway microbiome in persons with cystic fibrosis (pwCF) is correlated with lung function and disease severity. Supplemental oxygen use is common in more advanced CF, yet its role in perturbing airway microbial communities is unknown. By culturing sputum samples from pwCF under normal and elevated oxygen conditions, we found that increased oxygen led to reduced total numbers and diversity of microbes, with relative sparing of common CF pathogens such as Pseudomonas aeruginosa and Staphylococcus aureus. Supplemental oxygen use may enable the growth of lung pathogens and should be further studied in the clinical setting.
Collapse
|
13
|
Ghuneim LAJ, Raghuvanshi R, Neugebauer KA, Guzior DV, Christian MH, Schena B, Feiner JM, Castillo-Bahena A, Mielke J, McClelland M, Conrad D, Klapper I, Zhang T, Quinn RA. Complex and unexpected outcomes of antibiotic therapy against a polymicrobial infection. THE ISME JOURNAL 2022; 16:2065-2075. [PMID: 35597889 PMCID: PMC9381758 DOI: 10.1038/s41396-022-01252-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 11/10/2022]
Abstract
Antibiotics are our primary approach to treating complex infections, yet we have a poor understanding of how these drugs affect microbial communities. To better understand antimicrobial effects on host-associated microbial communities we treated cultured sputum microbiomes from people with cystic fibrosis (pwCF, n = 24) with 11 different antibiotics, supported by theoretical and mathematical modeling-based predictions in a mucus-plugged bronchiole microcosm. Treatment outcomes we identified in vitro that were predicted in silico were: 1) community death, 2) community resistance, 3) pathogen killing, and 4) fermenter killing. However, two outcomes that were not predicted when antibiotics were applied were 5) community profile shifts with little change in total bacterial load (TBL), and 6) increases in TBL. The latter outcome was observed in 17.8% of samples with a TBL increase of greater than 20% and 6.8% of samples with an increase greater than 40%, demonstrating significant increases in community carrying capacity in the presence of an antibiotic. An iteration of the mathematical model showed that TBL increase was due to antibiotic-mediated release of pH-dependent inhibition of pathogens by anaerobe fermentation. These dynamics were verified in vitro when killing of fermenters resulted in a higher community carrying capacity compared to a no antibiotic control. Metagenomic sequencing of sputum samples during antibiotic therapy revealed similar dynamics in clinical samples. This study shows that the complex microbial ecology dictates the outcomes of antibiotic therapy against a polymicrobial infection.
Collapse
|
14
|
Liu C, Wu K, Sun T, Chen B, Yi Y, Ren R, Xie L, Xiao K. Effect of invasive mechanical ventilation on the diversity of the pulmonary microbiota. Crit Care 2022; 26:252. [PMID: 35996150 PMCID: PMC9394019 DOI: 10.1186/s13054-022-04126-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/02/2022] [Indexed: 11/10/2022] Open
Abstract
Pulmonary microbial diversity may be influenced by biotic or abiotic conditions (e.g., disease, smoking, invasive mechanical ventilation (MV), etc.). Specially, invasive MV may trigger structural and physiological changes in both tissue and microbiota of lung, due to gastric and oral microaspiration, altered body posture, high O2 inhalation-induced O2 toxicity in hypoxemic patients, impaired airway clearance and ventilator-induced lung injury (VILI), which in turn reduce the diversity of the pulmonary microbiota and may ultimately lead to poor prognosis. Furthermore, changes in (local) O2 concentration can reduce the diversity of the pulmonary microbiota by affecting the local immune microenvironment of lung. In conclusion, systematic literature studies have found that invasive MV reduces pulmonary microbiota diversity, and future rational regulation of pulmonary microbiota diversity by existing or novel clinical tools (e.g., lung probiotics, drugs) may improve the prognosis of invasive MV treatment and lead to more effective treatment of lung diseases with precision.
Collapse
Affiliation(s)
- Chang Liu
- College of Pulmonary & Critical Care Medicine, 8th Medical Center, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Kang Wu
- College of Pulmonary & Critical Care Medicine, 8th Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Tianyu Sun
- College of Pulmonary & Critical Care Medicine, 8th Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Bin Chen
- MatriDx Biotechnology Co., Ltd, Hangzhou, China
| | - Yaxing Yi
- MatriDx Biotechnology Co., Ltd, Hangzhou, China
| | - Ruotong Ren
- MatriDx Biotechnology Co., Ltd, Hangzhou, China.
- Foshan Branch, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Lixin Xie
- College of Pulmonary & Critical Care Medicine, 8th Medical Center, Chinese PLA General Hospital, Beijing, China.
- School of Medicine, Nankai University, Tianjin, China.
| | - Kun Xiao
- College of Pulmonary & Critical Care Medicine, 8th Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
15
|
Antibiotics Drive Expansion of Rare Pathogens in a Chronic Infection Microbiome Model. mSphere 2022; 7:e0031822. [PMID: 35972133 PMCID: PMC9599657 DOI: 10.1128/msphere.00318-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chronic (long-lasting) infections are globally a major and rising cause of morbidity and mortality. Unlike typical acute infections, chronic infections are ecologically diverse, characterized by the presence of a polymicrobial mix of opportunistic pathogens and human-associated commensals. To address the challenge of chronic infection microbiomes, we focus on a particularly well-characterized disease, cystic fibrosis (CF), where polymicrobial lung infections persist for decades despite frequent exposure to antibiotics. Epidemiological analyses point to conflicting results on the benefits of antibiotic treatment yet are confounded by the dependency of antibiotic exposures on prior pathogen presence, limiting their ability to draw causal inferences on the relationships between antibiotic exposure and pathogen dynamics. To address this limitation, we develop a synthetic infection microbiome model representing CF metacommunity diversity and benchmark on clinical data. We show that in the absence of antibiotics, replicate microbiome structures in a synthetic sputum medium are highly repeatable and dominated by oral commensals. In contrast, challenge with physiologically relevant antibiotic doses leads to substantial community perturbation characterized by multiple alternate pathogen-dominant states and enrichment of drug-resistant species. These results provide evidence that antibiotics can drive the expansion (via competitive release) of previously rare opportunistic pathogens and offer a path toward microbiome-informed conditional treatment strategies. IMPORTANCE We develop and clinically benchmark an experimental model of the cystic fibrosis (CF) lung infection microbiome to investigate the impacts of antibiotic exposures on chronic, polymicrobial infections. We show that a single experimental model defined by metacommunity data can partially recapitulate the diversity of individual microbiome states observed across a population of people with CF. In the absence of antibiotics, we see highly repeatable community structures, dominated by oral microbes. Under clinically relevant antibiotic exposures, we see diverse and frequently pathogen-dominated communities, and a nonevolutionary enrichment of antimicrobial resistance on the community scale, mediated by competitive release. The results highlight the potential importance of nonevolutionary (community-ecological) processes in driving the growing global crisis of increasing antibiotic resistance.
Collapse
|
16
|
Widder S, Zhao J, Carmody LA, Zhang Q, Kalikin LM, Schloss PD, LiPuma JJ. Association of bacterial community types, functional microbial processes and lung disease in cystic fibrosis airways. THE ISME JOURNAL 2022; 16:905-914. [PMID: 34689185 PMCID: PMC8941020 DOI: 10.1038/s41396-021-01129-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 12/30/2022]
Abstract
Bacterial infection and inflammation of the airways are the leading causes of morbidity and mortality in persons with cystic fibrosis (CF). The ecology of the bacterial communities inhabiting CF airways is poorly understood, especially with respect to how community structure, dynamics, and microbial metabolic activity relate to clinical outcomes. In this study, the bacterial communities in 818 sputum samples from 109 persons with CF were analyzed by sequencing bacterial 16S rRNA gene amplicons. We identified eight alternative community types (pulmotypes) by using a Dirichlet multinomial mixture model and studied their temporal dynamics in the cohort. Across patients, the pulmotypes displayed chronological patterns in the transition among each other. Furthermore, significant correlations between pulmotypes and patient clinical status were detected by using multinomial mixed effects models, principal components regression, and statistical testing. Constructing pulmotype-specific metabolic activity profiles, we found that pulmotype microbiota drive distinct community functions including mucus degradation or increased acid production. These results indicate that pulmotypes are the result of ordered, underlying drivers such as predominant metabolism, ecological competition, and niche construction and can form the basis for quantitative, predictive models supporting clinical treatment decisions.
Collapse
Affiliation(s)
- Stefanie Widder
- Department of Medicine 1, Research Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria.
- Konrad Lorenz Institute for Evolution and Cognition Research, Klosterneuburg, Austria.
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, 72701, USA.
| | - Lisa A Carmody
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Qingyang Zhang
- Department of Mathematical Science, Fulbright College of Art and Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Linda M Kalikin
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Patrick D Schloss
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - John J LiPuma
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
17
|
Michel‐Mata S, Wang X, Liu Y, Angulo MT. Predicting microbiome compositions from species assemblages through deep learning. IMETA 2022; 1:e3. [PMID: 35757098 PMCID: PMC9221840 DOI: 10.1002/imt2.3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 05/13/2023]
Abstract
Microbes can form complex communities that perform critical functions in maintaining the integrity of their environment or their hosts' well-being. Rationally managing these microbial communities requires improving our ability to predict how different species assemblages affect the final species composition of the community. However, making such a prediction remains challenging because of our limited knowledge of the diverse physical, biochemical, and ecological processes governing microbial dynamics. To overcome this challenge, we present a deep learning framework that automatically learns the map between species assemblages and community compositions from training data only, without knowing any of the above processes. First, we systematically validate our framework using synthetic data generated by classical population dynamics models. Then, we apply our framework to data from in vitro and in vivo microbial communities, including ocean and soil microbiota, Drosophila melanogaster gut microbiota, and human gut and oral microbiota. We find that our framework learns to perform accurate out-of-sample predictions of complex community compositions from a small number of training samples. Our results demonstrate how deep learning can enable us to understand better and potentially manage complex microbial communities.
Collapse
Affiliation(s)
- Sebastian Michel‐Mata
- Center for Applied Physics and Advanced TechnologyUniversidad Nacional Autónoma de MéxicoJuriquillaMexico
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
| | - Xu‐Wen Wang
- Channing Division of Network Medicine, Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Yang‐Yu Liu
- Channing Division of Network Medicine, Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Marco Tulio Angulo
- CONACyT—Institute of MathematicsUniversidad Nacional Autónoma de MéxicoJuriquillaMexico
| |
Collapse
|
18
|
Bhowmik P, Rajagopal S, Hmar RV, Singh P, Saxena P, Amar P, Thomas T, Ravishankar R, Nagaraj S, Katagihallimath N, Sarangapani RK, Ramachandran V, Datta S. Validated In Silico Model for Biofilm Formation in Escherichia coli. ACS Synth Biol 2022; 11:713-731. [PMID: 35025506 DOI: 10.1021/acssynbio.1c00445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using Escherichia coli as the representative biofilm former, we report here the development of an in silico model built by simulating events that transform a free-living bacterial entity into self-encased multicellular biofilms. Published literature on ∼300 genes associated with pathways involved in biofilm formation was curated, static maps were created, and suitably interconnected with their respective metabolites using ordinary differential equations. Precise interplay of genetic networks that regulate the transitory switching of bacterial growth pattern in response to environmental changes and the resultant multicomponent synthesis of the extracellular matrix were appropriately represented. Subsequently, the in silico model was analyzed by simulating time-dependent changes in the concentration of components by using the R and python environment. The model was validated by simulating and verifying the impact of key gene knockouts (KOs) and systematic knockdowns on biofilm formation, thus ensuring the outcomes were comparable with the reported literature. Similarly, specific gene KOs in laboratory and pathogenic E. coli were constructed and assessed. MiaA, YdeO, and YgiV were found to be crucial in biofilm development. Furthermore, qRT-PCR confirmed the elevation of expression in biofilm-forming clinical isolates. Findings reported in this study offer opportunities for identifying biofilm inhibitors with applications in multiple industries. The application of this model can be extended to the health care sector specifically to develop novel adjunct therapies that prevent biofilms in medical implants and reduce emergence of biofilm-associated resistant polymicrobial-chronic infections. The in silico framework reported here is open source and accessible for further enhancements.
Collapse
Affiliation(s)
- Purnendu Bhowmik
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka 560064, India
| | - Sreenath Rajagopal
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
| | - Rothangamawi Victoria Hmar
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
| | - Purnima Singh
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
| | - Pragya Saxena
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
| | - Prakruthi Amar
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
| | - Teby Thomas
- St. John’s Research Institute, Bengaluru, Karnataka 560034, India
| | - Rajani Ravishankar
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
| | - Savitha Nagaraj
- St. John’s Medical College, Bengaluru, Karnataka 560034, India
| | - Nainesh Katagihallimath
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka 560064, India
| | - Ramanujan Kadambi Sarangapani
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
| | - Vasanthi Ramachandran
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka 560064, India
| | - Santanu Datta
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
| |
Collapse
|
19
|
Jo J, Price-Whelan A, Dietrich LEP. Gradients and consequences of heterogeneity in biofilms. Nat Rev Microbiol 2022; 20:593-607. [PMID: 35149841 DOI: 10.1038/s41579-022-00692-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 12/15/2022]
Abstract
Historically, appreciation for the roles of resource gradients in biology has fluctuated inversely to the popularity of genetic mechanisms. Nevertheless, in microbiology specifically, widespread recognition of the multicellular lifestyle has recently brought new emphasis to the importance of resource gradients. Most microorganisms grow in assemblages such as biofilms or spatially constrained communities with gradients that influence, and are influenced by, metabolism. In this Review, we discuss examples of gradient formation and physiological differentiation in microbial assemblages growing in diverse settings. We highlight consequences of physiological heterogeneity in microbial assemblages, including division of labour and increased resistance to stress. Our impressions of microbial behaviour in various ecosystems are not complete without complementary maps of the chemical and physical geographies that influence cellular activities. A holistic view, incorporating these geographies and the genetically encoded functions that operate within them, will be essential for understanding microbial assemblages in their many roles and potential applications.
Collapse
Affiliation(s)
- Jeanyoung Jo
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Lars E P Dietrich
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| |
Collapse
|
20
|
Junkins EN, McWhirter JB, McCall LI, Stevenson BS. Environmental structure impacts microbial composition and secondary metabolism. ISME COMMUNICATIONS 2022; 2:15. [PMID: 37938679 PMCID: PMC9723690 DOI: 10.1038/s43705-022-00097-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/03/2022] [Accepted: 01/18/2022] [Indexed: 05/11/2023]
Abstract
Determining the drivers of microbial community assembly is a central theme of microbial ecology, and chemical ecologists seek to characterize how secondary metabolites mediate these assembly patterns. Environmental structure affects how communities assemble and what metabolic pathways aid in that assembly. Here, we bridged these two perspectives by addressing the chemical drivers of community assembly within a spatially structured landscape with varying oxygen availability. We hypothesized that structured environments would favor higher microbial diversity and metabolite diversity. We anticipated that the production of a compound would be more advantageous in a structured environment (less mixing) compared to an unstructured environment (more mixing), where the molecule would have a diminished local effect. We observed this to be partially true in our experiments: structured environments had similar microbial diversity compared to unstructured environments but differed significantly in the metabolites produced. We also found that structured environments selected for communities with higher evenness, rather than communities with higher richness. This supports the idea that when characterizing the drivers of community assembly, it matters less about who is there and more about what they are doing. Overall, these data contribute to a growing effort to approach microbial community assembly with interdisciplinary tools and perspectives.
Collapse
Affiliation(s)
- Emily N Junkins
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA.
| | - Joseph B McWhirter
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Laura-Isobel McCall
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Bradley S Stevenson
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
- Department of Earth and Planetary Science, Northwestern University, Chicago, IL, USA
| |
Collapse
|
21
|
Yu JS, Nothias LF, Wang M, Kim DH, Dorrestein PC, Kang KB, Yoo HH. Tandem Mass Spectrometry Molecular Networking as a Powerful and Efficient Tool for Drug Metabolism Studies. Anal Chem 2022; 94:1456-1464. [DOI: 10.1021/acs.analchem.1c04925] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jun Sang Yu
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
| | - Louis-Félix Nothias
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Mingxun Wang
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Dong Hyun Kim
- Department of Pharmacology, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Pieter C. Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Kyo Bin Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Republic of Korea
| | - Hye Hyun Yoo
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
22
|
Van den Bossche S, De Broe E, Coenye T, Van Braeckel E, Crabbé A. The cystic fibrosis lung microenvironment alters antibiotic activity: causes and effects. Eur Respir Rev 2021; 30:30/161/210055. [PMID: 34526313 DOI: 10.1183/16000617.0055-2021] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/23/2021] [Indexed: 01/08/2023] Open
Abstract
Chronic airway colonisation by Pseudomonas aeruginosa, a hallmark of cystic fibrosis (CF) lung disease, is associated with increased morbidity and mortality and despite aggressive antibiotic treatment, P. aeruginosa is able to persist in CF airways. In vitro antibiotic susceptibility assays are poor predictors of antibiotic efficacy to treat respiratory tract infections in the CF patient population and the selection of the antibiotic(s) is often made on an empirical base. In the current review, we discuss the factors that are responsible for the discrepancies between antibiotic activity in vitro and clinical efficacy in vivo We describe how the CF lung microenvironment, shaped by host factors (such as iron, mucus, immune mediators and oxygen availability) and the microbiota, influences antibiotic activity and varies widely between patients. A better understanding of the CF microenvironment and population diversity may thus help improve in vitro antibiotic susceptibility testing and clinical decision making, in turn increasing the success rate of antibiotic treatment.
Collapse
Affiliation(s)
| | - Emma De Broe
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Eva Van Braeckel
- Dept of Respiratory Medicine, Cystic Fibrosis Reference Centre, Ghent University Hospital, Ghent, Belgium.,Dept of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
23
|
Ticlla MR, Hella J, Hiza H, Sasamalo M, Mhimbira F, Rutaihwa LK, Droz S, Schaller S, Reither K, Hilty M, Comas I, Beisel C, Schmid CD, Fenner L, Gagneux S. The Sputum Microbiome in Pulmonary Tuberculosis and Its Association With Disease Manifestations: A Cross-Sectional Study. Front Microbiol 2021; 12:633396. [PMID: 34489876 PMCID: PMC8417804 DOI: 10.3389/fmicb.2021.633396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 07/09/2021] [Indexed: 12/31/2022] Open
Abstract
Each day, approximately 27,000 people become ill with tuberculosis (TB), and 4,000 die from this disease. Pulmonary TB is the main clinical form of TB, and affects the lungs with a considerably heterogeneous manifestation among patients. Immunomodulation by an interplay of host-, environment-, and pathogen-associated factors partially explains such heterogeneity. Microbial communities residing in the host's airways have immunomodulatory effects, but it is unclear if the inter-individual variability of these microbial communities is associated with the heterogeneity of pulmonary TB. Here, we investigated this possibility by characterizing the microbial composition in the sputum of 334 TB patients from Tanzania, and by assessing its association with three aspects of disease manifestations: sputum mycobacterial load, severe clinical findings, and chest x-ray (CXR) findings. Compositional data analysis of taxonomic profiles based on 16S-rRNA gene amplicon sequencing and on whole metagenome shotgun sequencing, and graph-based inference of microbial associations revealed that the airway microbiome of TB patients was shaped by inverse relationships between Streptococcus and two anaerobes: Selenomonas and Fusobacterium. Specifically, the strength of these microbial associations was negatively correlated with Faith's phylogenetic diversity (PD) and with the accumulation of transient genera. Furthermore, low body mass index (BMI) determined the association between abnormal CXRs and community diversity and composition. These associations were mediated by increased abundance of Selenomonas and Fusobacterium, relative to the abundance of Streptococcus, in underweight patients with lung parenchymal infiltrates and in comparison to those with normal chest x-rays. And last, the detection of herpesviruses and anelloviruses in sputum microbial assemblage was linked to co-infection with HIV. Given the anaerobic metabolism of Selenomonas and Fusobacterium, and the hypoxic environment of lung infiltrates, our results suggest that in underweight TB patients, lung tissue remodeling toward anaerobic conditions favors the growth of Selenomonas and Fusobacterium at the expense of Streptococcus. These new insights into the interplay among particular members of the airway microbiome, BMI, and lung parenchymal lesions in TB patients, add a new dimension to the long-known association between low BMI and pulmonary TB. Our results also drive attention to the airways virome in the context of HIV-TB coinfection.
Collapse
Affiliation(s)
- Monica R Ticlla
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jerry Hella
- University of Basel, Basel, Switzerland.,Ifakara Health Institute, Dar es Salaam, Tanzania
| | - Hellen Hiza
- Ifakara Health Institute, Dar es Salaam, Tanzania
| | | | | | - Liliana K Rutaihwa
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Ifakara Health Institute, Dar es Salaam, Tanzania
| | - Sara Droz
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Sarah Schaller
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Klaus Reither
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Inaki Comas
- Tuberculosis Genomics Unit, Biomedicine Institute of Valencia, Valencia, Spain
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Christoph D Schmid
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Lukas Fenner
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
24
|
Impact of artificial sputum media formulation on Pseudomonas aeruginosa secondary metabolite production. J Bacteriol 2021; 203:e0025021. [PMID: 34398662 PMCID: PMC8508215 DOI: 10.1128/jb.00250-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In vitro culture media are being developed to understand how host site-specific nutrient profiles influence microbial pathogenicity and ecology. To mimic the cystic fibrosis (CF) lung environment, a variety of artificial sputum media (ASM) have been created. However, the composition of these ASM vary in the concentration of key nutrients, including amino acids, lipids, DNA, and mucin. In this work, we used feature-based molecular networking (FBMN) to perform comparative metabolomics of Pseudomonas aeruginosa, the predominant opportunistic pathogen infecting the lungs of people with CF, cultured in nine different ASM. We found that the concentration of aromatic amino acids and iron from mucin added to the media contributes to differences in the production of P. aeruginosa virulence-associated secondary metabolites. IMPORTANCE Different media formulations aiming to replicate in vivo infection environments contain different nutrients, which affects interpretation of experimental results. Inclusion of undefined components, such as commercial porcine gastric mucin (PGM), in an otherwise chemically defined medium can alter the nutrient content of the medium in unexpected ways and influence experimental outcomes.
Collapse
|
25
|
Lin LP, Liu D, Qian JC, Wu L, Zhao Q, Tan RX. Post-ingestion conversion of dietary indoles into anticancer agents. Natl Sci Rev 2021; 9:nwab144. [PMID: 35505660 PMCID: PMC9053945 DOI: 10.1093/nsr/nwab144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/03/2021] [Accepted: 07/08/2021] [Indexed: 11/12/2022] Open
Abstract
There are health benefits from consuming cruciferous vegetables that release indole-3-carbinol (I3C), but the in vivo transformation of I3C-related indoles remains underinvestigated. Here we detail the post-ingestion conversion of I3C into antitumor agents, 2-(indol-3-ylmethyl)-3,3′-diindolylmethane (LTr1) and 3,3′-diindolylmethane (DIM), by conceptualizing and materializing the reaction flux derailing (RFD) approach as a means of unraveling these stepwise transformations to be non-enzymatic but pH-dependent and gut microbe-sensitive. In the upper (or acidic) gastrointestinal tract, LTr1 is generated through Michael addition of 3-methyleneindolium (3MI, derived in situ from I3C) to DIM produced from I3C via the formaldehyde-releasing (major) and CO2-liberating (minor) pathways. In the large intestine, ‘endogenous’ I3C and DIM can form, respectively, from couplings of formaldehyde with one and two molecules of indole (a tryptophan catabolite). Acid-producing gut bacteria such as Lactobacillus acidophilus facilitate the H+-promotable steps. This work updates our understanding of the merits of I3C consumption and identifies LTr1 as a drug candidate.
Collapse
Affiliation(s)
- Li Ping Lin
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing 210023, China
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Dan Liu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jia Cheng Qian
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Liang Wu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Quan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing 210023, China
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing 210023, China
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
26
|
Oberleitner D, Schmid R, Schulz W, Bergmann A, Achten C. Feature-based molecular networking for identification of organic micropollutants including metabolites by non-target analysis applied to riverbank filtration. Anal Bioanal Chem 2021; 413:5291-5300. [PMID: 34286355 PMCID: PMC8405475 DOI: 10.1007/s00216-021-03500-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 01/25/2023]
Abstract
Due to growing concern about organic micropollutants and their transformation products (TP) in surface and drinking water, reliable identification of unknowns is required. Here, we demonstrate how non-target liquid chromatography (LC)-high-resolution tandem mass spectrometry (MS/MS) and the feature-based molecular networking (FBMN) workflow provide insight into water samples from four riverbank filtration sites with different redox conditions. First, FBMN prioritized and connected drinking water relevant and seasonally dependent compounds based on a modification-aware MS/MS cosine similarity. Within the resulting molecular networks, forty-three compounds were annotated. Here, carbamazepine, sartans, and their respective TP were investigated exemplarily. With chromatographic information and spectral similarity, four additional TP (dealkylated valsartan, dealkylated irbesartan, two oxygenated irbesartan isomers) and olmesartan were identified and partly verified with an authentic standard. In this study, sartans and TP were investigated and grouped regarding their removal behavior under different redox conditions and seasons for the first time. Antihypertensives were grouped into compounds being well removed during riverbank filtration, those primarily removed under anoxic conditions, and rather persistent compounds. Observed seasonal variations were mainly limited to varying river water concentrations. FBMN is a powerful tool for identifying previously unknown or unexpected compounds and their TP in water samples by non-target analysis.
Collapse
Affiliation(s)
- Daniela Oberleitner
- Institute of Geology and Palaeontology - Applied Geology, University of Münster, Corrensstraße 24, 48149, Münster, Germany
| | - Robin Schmid
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 28/30, 48149, Münster, Germany
| | - Wolfgang Schulz
- Laboratory for Operation Control and Research, Zweckverb and Landeswasserversorgung, Am Spitzigen Berg 1, 89129, Langenau, Germany
| | - Axel Bergmann
- Rheinisch-Westfälische Wasserwerksgesellschaft mbH, Am Schloß Broich 1-3, 45479, Mülheim (Ruhr), Germany
| | - Christine Achten
- Institute of Geology and Palaeontology - Applied Geology, University of Münster, Corrensstraße 24, 48149, Münster, Germany.
| |
Collapse
|
27
|
Reiman D, Layden BT, Dai Y. MiMeNet: Exploring microbiome-metabolome relationships using neural networks. PLoS Comput Biol 2021; 17:e1009021. [PMID: 33999922 PMCID: PMC8158931 DOI: 10.1371/journal.pcbi.1009021] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 05/27/2021] [Accepted: 04/28/2021] [Indexed: 12/31/2022] Open
Abstract
The advance in microbiome and metabolome studies has generated rich omics data revealing the involvement of the microbial community in host disease pathogenesis through interactions with their host at a metabolic level. However, the computational tools to uncover these relationships are just emerging. Here, we present MiMeNet, a neural network framework for modeling microbe-metabolite relationships. Using ten iterations of 10-fold cross-validation on three paired microbiome-metabolome datasets, we show that MiMeNet more accurately predicts metabolite abundances (mean Spearman correlation coefficients increase from 0.108 to 0.309, 0.276 to 0.457, and -0.272 to 0.264) and identifies more well-predicted metabolites (increase in the number of well-predicted metabolites from 198 to 366, 104 to 143, and 4 to 29) compared to state-of-art linear models for individual metabolite predictions. Additionally, we demonstrate that MiMeNet can group microbes and metabolites with similar interaction patterns and functions to illuminate the underlying structure of the microbe-metabolite interaction network, which could potentially shed light on uncharacterized metabolites through “Guilt by Association”. Our results demonstrated that MiMeNet is a powerful tool to provide insights into the causes of metabolic dysregulation in disease, facilitating future hypothesis generation at the interface of the microbiome and metabolomics. The microbiome has shown to functionally interact with its host or environment at a metabolic level, however the exact nature of these interactions is not well understood. In addition, metabolic dysregulation caused by the microbiome is believed to contribute to the development of diseases such as inflammatory bowel disease, diabetes mellitus, and obesity. In this manuscript, we introduce a computational framework to integrate microbiome and metabolome data to uncover microbe-metabolite interactions in a data-driven manner. Our model uses neural networks to predict metabolite abundances from microbe abundances. The trained models are then used to derive microbe-metabolite feature scores, which are used for clustering microbes and metabolites into functional modules. These module-based interactions are useful in generating biological insights and facilitating hypothesis generation for the investigation of their roles in various metabolic diseases. The software of our model is made freely available to interested researchers.
Collapse
Affiliation(s)
- Derek Reiman
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Brian T. Layden
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, United States of America
| | - Yang Dai
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
28
|
Zajac M, Dreano E, Edwards A, Planelles G, Sermet-Gaudelus I. Airway Surface Liquid pH Regulation in Airway Epithelium Current Understandings and Gaps in Knowledge. Int J Mol Sci 2021; 22:3384. [PMID: 33806154 PMCID: PMC8037888 DOI: 10.3390/ijms22073384] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 12/22/2022] Open
Abstract
Knowledge on the mechanisms of acid and base secretion in airways has progressed recently. The aim of this review is to summarize the known mechanisms of airway surface liquid (ASL) pH regulation and their implication in lung diseases. Normal ASL is slightly acidic relative to the interstitium, and defects in ASL pH regulation are associated with various respiratory diseases, such as cystic fibrosis. Basolateral bicarbonate (HCO3-) entry occurs via the electrogenic, coupled transport of sodium (Na+) and HCO3-, and, together with carbonic anhydrase enzymatic activity, provides HCO3- for apical secretion. The latter mainly involves CFTR, the apical chloride/bicarbonate exchanger pendrin and paracellular transport. Proton (H+) secretion into ASL is crucial to maintain its relative acidity compared to the blood. This is enabled by H+ apical secretion, mainly involving H+/K+ ATPase and vacuolar H+-ATPase that carry H+ against the electrochemical potential gradient. Paracellular HCO3- transport, the direction of which depends on the ASL pH value, acts as an ASL protective buffering mechanism. How the transepithelial transport of H+ and HCO3- is coordinated to tightly regulate ASL pH remains poorly understood, and should be the focus of new studies.
Collapse
Affiliation(s)
- Miroslaw Zajac
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - Elise Dreano
- Institut Necker Enfants Malades, INSERM U1151, 75015 Paris, France;
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, 75006 Paris, France;
| | - Aurelie Edwards
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA;
| | - Gabrielle Planelles
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, 75006 Paris, France;
- Laboratoire de Physiologie rénale et Tubulopathies, CNRS ERL 8228, 75006 Paris, France
| | - Isabelle Sermet-Gaudelus
- Institut Necker Enfants Malades, INSERM U1151, 75015 Paris, France;
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, 75006 Paris, France;
- Centre de Référence Maladies Rares, Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, 75015 Paris, France
- Clinical Trial Network, European Cystic Fibrosis Society, BT2 Belfast, Ireland
- European Respiratory Network Lung, 75006 Paris, France
| |
Collapse
|
29
|
Cheaib B, Seghouani H, Llewellyn M, Vandal-Lenghan K, Mercier PL, Derome N. The yellow perch (Perca flavescens) microbiome revealed resistance to colonisation mostly associated with neutralism driven by rare taxa under cadmium disturbance. Anim Microbiome 2021; 3:3. [PMID: 33499999 PMCID: PMC7934398 DOI: 10.1186/s42523-020-00063-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/13/2020] [Indexed: 12/25/2022] Open
Abstract
Background Disentangling the dynamics of microbial interactions within communities improves our comprehension of metacommunity assembly of microbiota during host development and under perturbations. To assess the impact of stochastic variation of neutral processes on microbiota structure and composition under disturbance, two types of microbial habitats, free-living (water), and host-associated (skin and gut) were experimentally exposed to either a constant or gradual selection regime exerted by two sublethal cadmium chloride dosages (CdCl2). Yellow Perch (Perca flavescens) was used as a piscivorous ecotoxicological model. Using 16S rDNA gene based metataxonomics, quantitative diversity metrics of water, skin and gut microbial communities were characterized along with development and across experimental conditions. Results After 30 days, constant and gradual selection regimes drove a significant alpha diversity increase for both skin and gut microbiota. In the skin, pervasive negative correlations between taxa in both selection regimes in addition to the taxonomic convergence with the environmental bacterial community, suggest a loss of colonisation resistance resulting in the dysbiosis of yellow perch microbiota. Furthermore, the network connectivity in gut microbiome was exclusively maintained by rare (low abundance) OTUs, while most abundant OTUs were mainly composed of opportunistic invaders such as Mycoplasma and other genera related to fish pathogens such as Flavobacterium. Finally, the mathematical modelling of community assembly using both non-linear least squares models (NLS) based estimates of migration rates and normalized stochasticity ratios (NST) based beta-diversity distances suggested neutral processes drove by taxonomic drift in host and water communities for almost all treatments. The NLS models predicted higher demographic stochasticity in the cadmium-free host and water microbiomes, however, NST models suggested higher ecological stochasticity under perturbations. Conclusions Neutral models agree that water and host-microbiota assembly promoted by rare taxa have evolved predominantly under neutral processes with potential involvement of deterministic forces sourced from host filtering and cadmium selection. The early signals of perturbations in the skin microbiome revealed antagonistic interactions by a preponderance of negative correlations in the co-abundance networks. Our findings enhance our understanding of community assembly host-associated and free-living under anthropogenic selective pressure.
Collapse
Affiliation(s)
- Bachar Cheaib
- Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène Marchand, Université Laval, 1030, avenue de la Médecine, Québec, QC, G1V 0A6, Canada. .,Institute of Biodiversity, Animal Health and Comparative Medicine (BACHM), Glasgow, University of Glasgow, Glasgow, UK. .,School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Hamza Seghouani
- Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène Marchand, Université Laval, 1030, avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Martin Llewellyn
- Institute of Biodiversity, Animal Health and Comparative Medicine (BACHM), Glasgow, University of Glasgow, Glasgow, UK
| | - Katherine Vandal-Lenghan
- Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène Marchand, Université Laval, 1030, avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Pierre-Luc Mercier
- Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène Marchand, Université Laval, 1030, avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Nicolas Derome
- Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène Marchand, Université Laval, 1030, avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
30
|
Kessell AK, McCullough HC, Auchtung JM, Bernstein HC, Song HS. Predictive interactome modeling for precision microbiome engineering. Curr Opin Chem Eng 2020. [DOI: 10.1016/j.coche.2020.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
31
|
Fernández-Barat L, López-Aladid R, Torres A. Reconsidering ventilator-associated pneumonia from a new dimension of the lung microbiome. EBioMedicine 2020; 60:102995. [PMID: 32950001 PMCID: PMC7492164 DOI: 10.1016/j.ebiom.2020.102995] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Complex microbial communities that reside in the lungs, skin and gut are now appreciated for their role in maintaining organ, tissue and immune homoeostasis. As lungs are currently seen as an ecosystem, the shift in paradigm calls for the consideration of new algorithms related to lung ecology in pulmonology. Evidence of lung microbiota does not solely challenge the traditional physiopathology of ventilator-associated pneumonia (VAP); indeed, it also reinforces the need to include molecular techniques in VAP diagnosis and accelerate the use of immunomodulatory drugs, including corticosteroids, and other supplements such as probiotics for VAP prevention and/or treatment. With that stated, both microbiome and virome, including phageome, can lead to new opportunities in further understanding the relationship between health and dysbiosis in VAP. Previous knowledge may be, however, reconsidered at a microbiome scale.
Collapse
Affiliation(s)
- Laia Fernández-Barat
- Cellex Laboratory, CibeRes (Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, 06/06/0028), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain; School of Medicine, University of Barcelona, Barcelona, Spain.
| | - Ruben López-Aladid
- Cellex Laboratory, CibeRes (Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, 06/06/0028), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain
| | - Antoni Torres
- Cellex Laboratory, CibeRes (Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, 06/06/0028), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain; School of Medicine, University of Barcelona, Barcelona, Spain; Department of Pneumology, Thorax Institute, Hospital Clinic of Barcelona, Spain.
| |
Collapse
|
32
|
Bernatchez JA, McCall LI. Insights gained into respiratory infection pathogenesis using lung tissue metabolomics. PLoS Pathog 2020; 16:e1008662. [PMID: 32663224 PMCID: PMC7360053 DOI: 10.1371/journal.ppat.1008662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Jean A Bernatchez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, United States of America
- Center for Discovery and Innovation in Parasitic Diseases, University of California, San Diego, La Jolla, California, United States of America
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, United States of America
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, Oklahoma, United States of America
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma, United States of America
| |
Collapse
|
33
|
Aron AT, Gentry EC, McPhail KL, Nothias LF, Nothias-Esposito M, Bouslimani A, Petras D, Gauglitz JM, Sikora N, Vargas F, van der Hooft JJJ, Ernst M, Kang KB, Aceves CM, Caraballo-Rodríguez AM, Koester I, Weldon KC, Bertrand S, Roullier C, Sun K, Tehan RM, Boya P CA, Christian MH, Gutiérrez M, Ulloa AM, Tejeda Mora JA, Mojica-Flores R, Lakey-Beitia J, Vásquez-Chaves V, Zhang Y, Calderón AI, Tayler N, Keyzers RA, Tugizimana F, Ndlovu N, Aksenov AA, Jarmusch AK, Schmid R, Truman AW, Bandeira N, Wang M, Dorrestein PC. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat Protoc 2020; 15:1954-1991. [PMID: 32405051 DOI: 10.1038/s41596-020-0317-5] [Citation(s) in RCA: 329] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
Global Natural Product Social Molecular Networking (GNPS) is an interactive online small molecule-focused tandem mass spectrometry (MS2) data curation and analysis infrastructure. It is intended to provide as much chemical insight as possible into an untargeted MS2 dataset and to connect this chemical insight to the user's underlying biological questions. This can be performed within one liquid chromatography (LC)-MS2 experiment or at the repository scale. GNPS-MassIVE is a public data repository for untargeted MS2 data with sample information (metadata) and annotated MS2 spectra. These publicly accessible data can be annotated and updated with the GNPS infrastructure keeping a continuous record of all changes. This knowledge is disseminated across all public data; it is a living dataset. Molecular networking-one of the main analysis tools used within the GNPS platform-creates a structured data table that reflects the molecular diversity captured in tandem mass spectrometry experiments by computing the relationships of the MS2 spectra as spectral similarity. This protocol provides step-by-step instructions for creating reproducible, high-quality molecular networks. For training purposes, the reader is led through a 90- to 120-min procedure that starts by recalling an example public dataset and its sample information and proceeds to creating and interpreting a molecular network. Each data analysis job can be shared or cloned to disseminate the knowledge gained, thus propagating information that can lead to the discovery of molecules, metabolic pathways, and ecosystem/community interactions.
Collapse
Affiliation(s)
- Allegra T Aron
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Emily C Gentry
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kerry L McPhail
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Louis-Félix Nothias
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Mélissa Nothias-Esposito
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Amina Bouslimani
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Daniel Petras
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Julia M Gauglitz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Nicole Sikora
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Fernando Vargas
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | | | - Madeleine Ernst
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kyo Bin Kang
- College of Pharmacy, Sookmyung Women's University, Seoul, Korea
| | - Christine M Aceves
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | | | - Irina Koester
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Kelly C Weldon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Center of Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Samuel Bertrand
- Groupe Mer, Molécules, Santé-EA 2160, UFR des Sciences Pharmaceutiques et Biologiques, Université de Nantes, Nantes, France
- ThalassOMICS Metabolomics Facility, Plateforme Corsaire, Biogenouest, Nantes, France
| | - Catherine Roullier
- College of Pharmacy, Sookmyung Women's University, Seoul, Korea
- ThalassOMICS Metabolomics Facility, Plateforme Corsaire, Biogenouest, Nantes, France
| | - Kunyang Sun
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Richard M Tehan
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Cristopher A Boya P
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, Nagarjuna Nagar, India
| | - Martin H Christian
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
| | - Marcelino Gutiérrez
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
| | | | | | - Randy Mojica-Flores
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
- Departamento de Química, Universidad Autónoma de Chiriquí (UNACHI), David, Chiriquí, Panama
| | - Johant Lakey-Beitia
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
| | - Victor Vásquez-Chaves
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José, Costa Rica
| | - Yilue Zhang
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Angela I Calderón
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Nicole Tayler
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, Nagarjuna Nagar, India
| | - Robert A Keyzers
- School of Chemical & Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Fidele Tugizimana
- Centre for Plant Metabolomics Research, Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
- International R&D Division, Omnia Group (Pty) Ltd., Johannesburg, South Africa
| | - Nombuso Ndlovu
- Centre for Plant Metabolomics Research, Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Alexander A Aksenov
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Alan K Jarmusch
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Robin Schmid
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Andrew W Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Nuno Bandeira
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA.
| | - Mingxun Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
- Center for Computational Mass Spectrometry, University of California, San Diego, La Jolla, CA, USA.
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
34
|
Activity of Antibiotics against Pseudomonas aeruginosa in an In Vitro Model of Biofilms in the Context of Cystic Fibrosis: Influence of the Culture Medium. Antimicrob Agents Chemother 2020; 64:AAC.02204-19. [PMID: 32015047 DOI: 10.1128/aac.02204-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/24/2020] [Indexed: 12/28/2022] Open
Abstract
Pseudomonas aeruginosa is a major cause of respiratory biofilm-related infections in patients with cystic fibrosis. We developed an in vitro pharmacodynamic model to study the activity of antipseudomonal antibiotics against PAO1 biofilms grown in artificial sputum medium with agar [ASM(+)] versus that against biofilms grown in Trypticase soy broth supplemented with glucose and NaCl (TGN). We measured bacterial counts, metabolic activity (fluorescein diacetate [FDA] hydrolysis), and biomass (crystal violet absorbance). Biofilms grew slower in ASM(+) than in TGN but reached the same CFU counts and metabolic activity in both media and a slightly higher biomass after 48 h in ASM(+) than in TGN. The concentration-response curves of the antibiotics after 24 h of incubation with mature biofilms showed maximal effects ranging from a 3 (ciprofloxacin)- to a 1.5 (ceftazidime, meropenem)-log10-CFU decrease, with tobramycin and colistin showing intermediate values. These maximal reductions in the numbers of CFU were similar in both media for ciprofloxacin and β-lactams but lower in ASM(+) than in TGN for tobramycin and colistin; they were reached at concentrations lower than the human maximum concentration in plasma for ciprofloxacin and β-lactams only. The reductions in metabolic activity and in biomass were low in both media. Small-colony variants were selected by tobramycin in ASM(+) and by ciprofloxacin in both media. The model was then successfully applied to 4 isolates from patients with cystic fibrosis. These biofilms showed CFU counts similar to those of PAO1 biofilms in ASM(+) but a higher biomass than PAO1 biofilms in ASM(+) and moderate differences in their susceptibility to antibiotics from that of PAO1 biofilms grown in this medium. This model proved useful to establish the pharmacodynamic profile of drugs against P. aeruginosa biofilms in the context of cystic fibrosis.
Collapse
|
35
|
Morton JT, Aksenov AA, Nothias LF, Foulds JR, Quinn RA, Badri MH, Swenson TL, Van Goethem MW, Northen TR, Vazquez-Baeza Y, Wang M, Bokulich NA, Watters A, Song SJ, Bonneau R, Dorrestein PC, Knight R. Learning representations of microbe-metabolite interactions. Nat Methods 2019; 16:1306-1314. [PMID: 31686038 PMCID: PMC6884698 DOI: 10.1038/s41592-019-0616-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/19/2019] [Indexed: 12/26/2022]
Abstract
Integrating multiomics datasets is critical for microbiome research; however, inferring interactions across omics datasets has multiple statistical challenges. We solve this problem by using neural networks (https://github.com/biocore/mmvec) to estimate the conditional probability that each molecule is present given the presence of a specific microorganism. We show with known environmental (desert soil biocrust wetting) and clinical (cystic fibrosis lung) examples, our ability to recover microbe-metabolite relationships, and demonstrate how the method can discover relationships between microbially produced metabolites and inflammatory bowel disease.
Collapse
Affiliation(s)
- James T Morton
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Alexander A Aksenov
- Collaborative Mass Spectrometry Innovaftion Center, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Louis Felix Nothias
- Collaborative Mass Spectrometry Innovaftion Center, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - James R Foulds
- Department of Information Systems, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Robert A Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | | | - Tami L Swenson
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Marc W Van Goethem
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Trent R Northen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- DOE Joint Genome Institute, Walnut Creek, CA, USA
| | - Yoshiki Vazquez-Baeza
- Jacobs School of Engineering, University of California, San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - Mingxun Wang
- Collaborative Mass Spectrometry Innovaftion Center, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Nicholas A Bokulich
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Aaron Watters
- Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Se Jin Song
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - Richard Bonneau
- Department of Biology, New York University, New York, NY, USA
- Flatiron Institute, Simons Foundation, New York, NY, USA
- Computer Science Department, Courant Institute, New York, NY, USA
- Center For Data Science, New York University, New York, NY, USA
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovaftion Center, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
36
|
Interplay between host-microbe and microbe-microbe interactions in cystic fibrosis. J Cyst Fibros 2019; 19 Suppl 1:S47-S53. [PMID: 31685398 DOI: 10.1016/j.jcf.2019.10.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 11/22/2022]
Abstract
The respiratory tract of individuals with cystic fibrosis is host to polymicrobial infections that persist for decades and lead to significant morbidity and mortality. Improving our understanding of CF respiratory infections requires coordinated efforts from researchers in the fields of microbial physiology, genomics, and ecology, as well as epithelial biology and immunology. Here, we have highlighted examples from recent CF microbial pathogenesis literature of how the host nutritional environment, immune response, and microbe-microbe interactions can feedback onto each other, leading to diverse effects on lung disease pathogenesis in CF.
Collapse
|
37
|
Optimal Microbiome Networks: Macroecology and Criticality. ENTROPY 2019; 21:e21050506. [PMID: 33267220 PMCID: PMC7514995 DOI: 10.3390/e21050506] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/04/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022]
Abstract
The human microbiome is an extremely complex ecosystem considering the number of bacterial species, their interactions, and its variability over space and time. Here, we untangle the complexity of the human microbiome for the Irritable Bowel Syndrome (IBS) that is the most prevalent functional gastrointestinal disorder in human populations. Based on a novel information theoretic network inference model, we detected potential species interaction networks that are functionally and structurally different for healthy and unhealthy individuals. Healthy networks are characterized by a neutral symmetrical pattern of species interactions and scale-free topology versus random unhealthy networks. We detected an inverse scaling relationship between species total outgoing information flow, meaningful of node interactivity, and relative species abundance (RSA). The top ten interacting species are also the least relatively abundant for the healthy microbiome and the most detrimental. These findings support the idea about the diminishing role of network hubs and how these should be defined considering the total outgoing information flow rather than the node degree. Macroecologically, the healthy microbiome is characterized by the highest Pareto total species diversity growth rate, the lowest species turnover, and the smallest variability of RSA for all species. This result challenges current views that posit a universal association between healthy states and the highest absolute species diversity in ecosystems. Additionally, we show how the transitory microbiome is unstable and microbiome criticality is not necessarily at the phase transition between healthy and unhealthy states. We stress the importance of considering portfolios of interacting pairs versus single node dynamics when characterizing the microbiome and of ranking these pairs in terms of their interactions (i.e., species collective behavior) that shape transition from healthy to unhealthy states. The macroecological characterization of the microbiome is useful for public health and disease diagnosis and etiognosis, while species-specific analyses can detect beneficial species leading to personalized design of pre- and probiotic treatments and microbiome engineering.
Collapse
|
38
|
Abstract
The microbiome is emerging as a prominent factor affecting human health, and its dysbiosis is associated with various diseases. Compositional profiling of microbiome is increasingly being supplemented with functional characterization. Metaproteomics is intrinsically focused on functional changes and therefore will be an important tool in those studies of the human microbiome. In the past decade, development of new experimental and bioinformatic approaches for metaproteomics has enabled large-scale human metaproteomic studies. However, challenges still exist, and there remains a lack of standardizations and guidelines for properly performing metaproteomic studies on human microbiome. Herein, we provide a perspective of recent developments, the challenges faced, and the future directions of metaproteomics and its applications. In addition, we propose a set of guidelines/recommendations for performing and reporting the results from metaproteomic experiments for the study of human microbiomes. We anticipate that these guidelines will be optimized further as more metaproteomic questions are raised and addressed, and metaproteomic applications are published, so that they are eventually recognized and applied in the field.
Collapse
Affiliation(s)
- Xu Zhang
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine , University of Ottawa , Ottawa , Ontario K1H 8M5 , Canada
| | - Daniel Figeys
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine , University of Ottawa , Ottawa , Ontario K1H 8M5 , Canada
| |
Collapse
|
39
|
Cystic Fibrosis-Associated Stenotrophomonas maltophilia Strain-Specific Adaptations and Responses to pH. J Bacteriol 2019; 201:JB.00478-18. [PMID: 30642989 PMCID: PMC6416904 DOI: 10.1128/jb.00478-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 01/08/2019] [Indexed: 01/22/2023] Open
Abstract
Understanding bacterial responses to physiological conditions is an important priority for combating opportunistic infections. The majority of CF patients succumb to inflammation and necrosis in the airways, arising from chronic infection due to ineffective mucociliary clearance. Steep pH gradients characterize the CF airways but are not often incorporated in standard microbiology culture conditions. Stenotrophomonas maltophilia is a prevalent CF opportunistic pathogen also found in many disparate environments, yet this bacterium’s contribution to CF lung damage and its response to changing environmental factors remain largely understudied. Here, we show that pH impacts the physiology and antibiotic susceptibility of S. maltophilia, with implications for the development of relevant in vitro models and assessment of antibiotic sensitivity. The airway fluids of cystic fibrosis (CF) patients contain local pH gradients and are more acidic than those of healthy individuals. pH is a critical factor that is often overlooked in studies seeking to recapitulate the infection microenvironment. We sought to determine the impact of pH on the physiology of a ubiqituous yet understudied microbe, Stenotrophomonas maltophilia. Phylogenomics was first used to reconstruct evolutionary relationships between 74 strains of S. maltophilia (59 from CF patients). Neither the core genome (2,158 genes) nor the accessory genome (11,978 genes) distinguish the CF and non-CF isolates; however, strains from similar isolation sources grouped into the same subclades. We grew two human and six CF S. maltophilia isolates from different subclades at a range of pH values and observed impaired growth and altered antibiotic tolerances at pH 5. Transcriptomes revealed increased expression of both antibiotic resistance and DNA repair genes in acidic conditions. Although the gene expression profiles of S. maltophilia in lab cultures and CF sputum were distinct, we found that the same genes associated with low pH were also expressed during infection, and the higher pH cultures were more similar to sputum metatranscriptomes. Our findings suggest that S. maltophilia is not well adapted to acidity and may cope with low pH by expressing stress response genes and colonizing less acidic microenvironments. As a whole, our study underlines the impact of microenvironments on bacterial colonization and adaptation in CF infections. IMPORTANCE Understanding bacterial responses to physiological conditions is an important priority for combating opportunistic infections. The majority of CF patients succumb to inflammation and necrosis in the airways, arising from chronic infection due to ineffective mucociliary clearance. Steep pH gradients characterize the CF airways but are not often incorporated in standard microbiology culture conditions. Stenotrophomonas maltophilia is a prevalent CF opportunistic pathogen also found in many disparate environments, yet this bacterium’s contribution to CF lung damage and its response to changing environmental factors remain largely understudied. Here, we show that pH impacts the physiology and antibiotic susceptibility of S. maltophilia, with implications for the development of relevant in vitro models and assessment of antibiotic sensitivity.
Collapse
|