1
|
Kim JK, Sapkota A, Roh T, Jo EK. The intricate interactions between inflammasomes and bacterial pathogens: Roles, mechanisms, and therapeutic potentials. Pharmacol Ther 2025; 265:108756. [PMID: 39581503 DOI: 10.1016/j.pharmthera.2024.108756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/06/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
Inflammasomes are intracellular multiprotein complexes that consist of a sensor, an adaptor, and a caspase enzyme to cleave interleukin (IL)-1β and IL-18 into their mature forms. In addition, caspase-1 and -11 activation results in the cleavage of gasdermin D to form pores, thereby inducing pyroptosis. Activation of the inflammasome and pyroptosis promotes host defense against pathogens, whereas dysregulation of the inflammasome can result in various pathologies. Inflammasomes exhibit versatile microbial signal detection, directly or indirectly, through cellular processes, such as ion fluctuations, reactive oxygen species generation, and the disruption of intracellular organelle function; however, bacteria have adaptive strategies to manipulate the inflammasome by altering microbe-associated molecular patterns, intercepting innate pathways with secreted effectors, and attenuating inflammatory and cell death responses. In this review, we summarize recent advances in the diverse roles of the inflammasome during bacterial infections and discuss how bacteria exploit inflammasome pathways to establish infections or persistence. In addition, we highlight the therapeutic potential of harnessing bacterial immune subversion strategies against acute and chronic bacterial infections. A more comprehensive understanding of the significance of inflammasomes in immunity and their intricate roles in the battle between bacterial pathogens and hosts will lead to the development of innovative strategies to address emerging threats posed by the expansion of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Asmita Sapkota
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Taylor Roh
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
| |
Collapse
|
2
|
Ziliotto M, Ellwanger JH, Kulmann-Leal B, Pontillo A, Chies JAB. Role of C-C chemokine receptor type 5 in pathogenesis of malaria and its severe forms. Int J Immunogenet 2024; 51:369-379. [PMID: 39449652 DOI: 10.1111/iji.12700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/19/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Malaria is a mosquito-borne disease caused by Plasmodium parasites, responsible for a significant impact on public health in several tropical and sub-tropical countries. The majority of infection cases are classified as uncomplicated malaria, causing mild symptoms such as fever and headache. However, the disease may progress to severe malaria and death if the infection is not properly treated. Furthermore, malaria poses a major concern for children, pregnant women and immunosuppressed individuals. Exacerbated inflammation is characteristic of severe malaria cases. The C-C chemokine receptor type 5 (CCR5) is an important molecule for leukocyte migration and regulation of inflammation. Although widely known as an HIV-1 co-receptor, CCR5 also affects the susceptibility and progression of autoimmune and inflammatory diseases. There is evidence supporting the participation of CCR5 in malaria manifestations, with the evaluation of CCR5 gene expression levels suggested as a marker to monitor malaria severity. Certain genetic variants in the CCR5 gene affect CCR5 expression, potentially altering CCR5-mediated inflammatory responses during malaria infection. However, the complex influences of CCR5 on malaria remain underexplored. Therefore, this review examines and updates the role of CCR5 in various contexts of malaria infection, including uncomplicated malaria, Plasmodium/HIV co-infection, pregnancy and severe (cerebral) malaria.
Collapse
Affiliation(s)
- Marina Ziliotto
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Joel Henrique Ellwanger
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Bruna Kulmann-Leal
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Alessandra Pontillo
- Laboratory of Immunogenetics, Department of Immunology, Universidade de São Paulo (USP), São Paulo, São Paulo, Brazil
| | - José Artur Bogo Chies
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
3
|
Wang ZX, Jiao WJ, Yang Y, Liu HL, Wang HL. Role of inflammasomes in Toxoplasma and Plasmodium infections. Parasit Vectors 2024; 17:466. [PMID: 39548522 PMCID: PMC11566176 DOI: 10.1186/s13071-024-06529-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/08/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND The detection of pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) by multimeric protein complexes, known as inflammasomes, triggers an inflammatory response, which is a critical component of the innate immune system. This inflammatory response plays a pivotal role in host resistance against parasitic infections, presenting a significant global health challenge. METHODS We systematically searched for relevant articles from the Pubmed and the Web of Science database to summarize current insights into how inflammasomes function in preventing infections caused by the apicomplexan parasites Toxoplasma and Plasmodium. RESULTS In vivo and in vitro studies have extensively explored inflammasomes such as the absent in melanoma 2 (AIM2), NLR family pyrin-containing protein 1 (NLRP1), NLRP3, and NLRP12 inflammasomes, alongside noncanonical inflammasomes, with particular emphasis on the NLRP1 and the NLRP3 inflammasome during Toxoplasma gondii infection or the AIM2 and the NLRP3 inflammasome at various stages of Plasmodium infection. Toxoplasma gondii interacts with inflammasomes to activate or inhibit immune responses. CONCLUSIONS Inflammasomes control parasite burden and parasite-induced cell death, contribute to immune recognition and inflammatory responses and thus influence apicomplexan parasite-associated pathogenesis and the severity of clinical outcomes. Hence, inflammasomes play crucial roles in the progression and outcomes of toxoplasmosis and malaria. A comprehensive understanding of how parasitic infections modulate inflammasome activity enhances insight into host immune responses against parasites.
Collapse
Affiliation(s)
- Zhi-Xin Wang
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, Jinzhong, 030600, Shanxi, China
| | - Wan-Jun Jiao
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, Jinzhong, 030600, Shanxi, China
| | - Yong Yang
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, Jinzhong, 030600, Shanxi, China
| | - Hong-Li Liu
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, Jinzhong, 030600, Shanxi, China.
| | - Hai-Long Wang
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, Jinzhong, 030600, Shanxi, China.
| |
Collapse
|
4
|
Parletta AC, Cerri GC, Gasparini CRB, Panico K, Vieira-Junior DN, Zacarias-Rodrigues LM, Senger N, de Almeida Silva A, Fevereiro M, Diniz GP, Irigoyen MCC, Barreto-Chaves MLM. Cardiac hypertrophy that affects hyperthyroidism occurs independently of the NLRP3 inflammasome. Pflugers Arch 2024; 476:1065-1075. [PMID: 38679646 DOI: 10.1007/s00424-024-02965-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
Cardiac hypertrophy (CH) is an adaptive response to maintain cardiac function; however, persistent stress responses lead to contractile dysfunction and heart failure. Although inflammation is involved in these processes, the mechanisms that control cardiac inflammation and hypertrophy still need to be clarified. The NLRP3 inflammasome is a cytosolic multiprotein complex that mediates IL-1β production. The priming step of NLRP3 is essential for increasing the expression of its components and occurs following NF-κB activation. Hyperthyroidism triggers CH, which can progress to maladaptive CH and even heart failure. We have shown in a previous study that thyroid hormone (TH)-induced CH is linked to the upregulation of S100A8, leading to NF-κB activation. Therefore, we aimed to investigate whether the NLRP3 inflammasome is involved in TH-induced CH and its potential role in CH pathophysiology. Hyperthyroidism was induced in NLRP3 knockout (NLRP3-KO), Caspase-1-KO and Wild Type (WT) male mice of the C57Bl/6J strain, aged 8-12 weeks, by triiodothyronine (7 μg/100 g BW, i.p.) administered daily for 14 days. Morphological and cardiac functional analysis besides molecular assays showed, for the first time, that TH-induced CH is accompanied by reduced NLRP3 expression in the heart and that it occurs independently of the NLRP3 inflammasome and caspase 1-related pathways. However, NLRP3 is important for the maintenance of basal cardiac function since NLRP3-KO mice had impaired diastolic function and reduced heart rate, ejection fraction, and fractional shortening compared with WT mice.
Collapse
Affiliation(s)
- Aline Cristina Parletta
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415, Butanta, Sao Paulo, 05508-000, Brazil
| | - Gabriela Cavazza Cerri
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415, Butanta, Sao Paulo, 05508-000, Brazil
| | - Claudia Ribeiro Borba Gasparini
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415, Butanta, Sao Paulo, 05508-000, Brazil
| | - Karine Panico
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415, Butanta, Sao Paulo, 05508-000, Brazil
| | - Denival Nascimento Vieira-Junior
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415, Butanta, Sao Paulo, 05508-000, Brazil
| | - Larissa Maria Zacarias-Rodrigues
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415, Butanta, Sao Paulo, 05508-000, Brazil
| | - Nathalia Senger
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415, Butanta, Sao Paulo, 05508-000, Brazil
| | - Amanda de Almeida Silva
- Department of Cardiopneumology, Heart Institute, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Marina Fevereiro
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415, Butanta, Sao Paulo, 05508-000, Brazil
| | - Gabriela Placoná Diniz
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415, Butanta, Sao Paulo, 05508-000, Brazil
- Center for Regenerative Medicine, University of South Florida Health Heart Institute, Morsani School of Medicine, University of South Florida, Tampa, FL, USA
| | - Maria Cláudia Costa Irigoyen
- Department of Cardiopneumology, Heart Institute, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Luiza Morais Barreto-Chaves
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415, Butanta, Sao Paulo, 05508-000, Brazil.
| |
Collapse
|
5
|
Romero DVL, Balendran T, Hasang W, Rogerson SJ, Aitken EH, Achuthan AA. Epigenetic and transcriptional regulation of cytokine production by Plasmodium falciparum-exposed monocytes. Sci Rep 2024; 14:2949. [PMID: 38316918 PMCID: PMC10844200 DOI: 10.1038/s41598-024-53519-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/01/2024] [Indexed: 02/07/2024] Open
Abstract
Plasmodium falciparum infection causes the most severe form of malaria, where excessive production of proinflammatory cytokines can drive the pathogenesis of the disease. Monocytes play key roles in host defense against malaria through cytokine production and phagocytosis; however, they are also implicated in pathogenesis through excessive proinflammatory cytokine production. Understanding the underlying molecular mechanisms that contribute to inflammatory cytokine production in P. falciparum-exposed monocytes is key towards developing better treatments. Here, we provide molecular evidence that histone 3 lysine 4 (H3K4) methylation is key for inflammatory cytokine production in P. falciparum-exposed monocytes. In an established in vitro system that mimics blood stage infection, elevated proinflammatory TNF and IL-6 cytokine production is correlated with increased mono- and tri-methylated H3K4 levels. Significantly, we demonstrate through utilizing a pharmacological inhibitor of H3K4 methylation that TNF and IL-6 expression can be suppressed in P. falciparum-exposed monocytes. This elucidated epigenetic regulatory mechanism, controlling inflammatory cytokine production, potentially provides new therapeutic options for future malaria treatment.
Collapse
Affiliation(s)
- David V L Romero
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, 1F Royal Parade, Parkville, VIC, 3010, Australia
| | - Thivya Balendran
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, 1F Royal Parade, Parkville, VIC, 3010, Australia
| | - Wina Hasang
- Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Stephen J Rogerson
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, 1F Royal Parade, Parkville, VIC, 3010, Australia
- Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Elizabeth H Aitken
- Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Adrian A Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, 1F Royal Parade, Parkville, VIC, 3010, Australia.
| |
Collapse
|
6
|
Amaral MP, Cardoso FD, de Farias IS, de Souza RQ, Matteucci KC, Torrecilhas AC, Bortoluci KR. NAIP/NLRC4 inflammasome participates in macrophage responses to Trypanosoma cruzi by a mechanism that relies on cathepsin-dependent caspase-1 cleavage. Front Immunol 2023; 14:1282856. [PMID: 38124741 PMCID: PMC10731265 DOI: 10.3389/fimmu.2023.1282856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Inflammasomes are large protein complexes that, once activated, initiate inflammatory responses by activating the caspase-1 protease. They play pivotal roles in host defense against pathogens. The well-established role of NAIP/NLRC4 inflammasome in bacterial infections involves NAIP proteins functioning as sensors for their ligands. However, recent reports have indicated the involvement of NLRC4 in non-bacterial infections and sterile inflammation, even though the role of NAIP proteins and the exact molecular mechanisms underlying inflammasome activation in these contexts remain to be elucidated. In this study, we investigated the activation of the NAIP/NLRC4 inflammasome in response to Trypanosoma cruzi, the protozoan parasite responsible for causing Chagas disease. This parasite has been previously demonstrated to activate NLRP3 inflammasomes. Here we found that NAIP and NLRC4 proteins are also required for IL-1β and Nitric Oxide (NO) release in response to T. cruzi infection, with their absence rendering macrophages permissive to parasite replication. Moreover, Nlrc4 -/- and Nlrp3 -/- macrophages presented similar impaired responses to T. cruzi, underscoring the non-redundant roles played by these inflammasomes during infection. Notably, it was the live trypomastigotes rather than soluble antigens or extracellular vesicles (EVs) secreted by them, that activated inflammasomes in a cathepsins-dependent manner. The inhibition of cathepsins effectively abrogated caspase-1 cleavage, IL-1β and NO release, mirroring the phenotype observed in Nlrc4 -/-/Nlrp3 -/- double knockout macrophages. Collectively, our findings shed light on the pivotal role of the NAIP/NLRC4 inflammasome in macrophage responses to T. cruzi infection, providing new insights into its broader functions that extend beyond bacterial infections.
Collapse
Affiliation(s)
- Marcelo Pires Amaral
- Departamento de Farmacologia, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, SP, Brazil
| | - Felipe Daniel Cardoso
- Departamento de Farmacologia, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, SP, Brazil
| | - Ingrid Sancho de Farias
- Departamento de Farmacologia, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, SP, Brazil
| | - Rafael Queiroz de Souza
- Departamento de Farmacologia, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, SP, Brazil
| | - Kely Catarine Matteucci
- Plataforma de Medicina Translacional, Fundação Oswaldo Cruz (FIOCRUZ), Faculdade de Medicina de Ribeirão Preto (FMRP), Ribeirão Preto, SP, Brazil
| | - Ana Claudia Torrecilhas
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), Diadema, SP, Brazil
| | - Karina Ramalho Bortoluci
- Departamento de Farmacologia, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, SP, Brazil
| |
Collapse
|
7
|
Burucúa MM, Risalde MA, Cheuquepán FA, Quintana S, Pérez SE, Cantón GJ, Moore DP, Odeón AC, Agulló-Ros I, Scioli MV, Barbeito C, Morrell EL, Marín MS. Transplacental infection by bovine alphaherpesvirus type 1 induces protein expression of COX-2, iNOS and inflammatory cytokines in fetal lungs and placentas. Vet Microbiol 2023; 287:109912. [PMID: 37952263 DOI: 10.1016/j.vetmic.2023.109912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
Bovine alphaherpesvirus type 1 (BoAHV-1) is associated with respiratory and reproductive syndromes. Until present the immunologic mechanisms involved in BoAHV-1 abortion are partially known. We studied key elements of the innate immune response in the placentas and fetal lungs from cattle experimentally-inoculated with BoAHV-1. These tissues were analyzed by histopathology. Furthermore, virus identification was performed by qPCR and the expression of the inflammatory cytokines such as tumor necrosis factor-alpha, interleukin 1-alpha and inflammatory mediators like inducible nitric oxide synthase and cyclooxeganse-2 was evaluated by immunohistochemistry. The viral transplacental infection was confirmed by the detection of BoAHV-1 by qPCR in the placenta and fetal organs, which revealed mild inflammatory lesions. Inducible nitric oxide synthase immunolabelling was high in the lungs of infected fetuses and placentas, as well as for tumor necrosis factor-alpha in the pulmonary parenchyma and cyclooxeganse-2 in fetal annexes. However, the expression of interleukin 1-alpha was weak in these organs. To our knowledge, this is the first study that provides strong evidence of an early immune response to BoAHV-1 infection in the conceptus. Advances in the knowledge of the complex immunological interactions at the feto-maternal unit during BoAHV-1 infection are needed to clarify the pathogenesis of abortion.
Collapse
Affiliation(s)
- Mercedes M Burucúa
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), INTA-CONICET, Balcarce, Buenos Aires, Argentina
| | - María A Risalde
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Grupo de Investigación GISAZ, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
| | - Felipe A Cheuquepán
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), INTA-CONICET, Balcarce, Buenos Aires, Argentina
| | - Silvina Quintana
- Instituto de Investigaciones de Producción, Sanidad y Ambiente (IIPROSAM), FCEyN, UNMDP-CONICET, Mar del Plata, Buenos Aires, Argentina; Instituto de Biología Molecular Aplicada, Mar del Plata, Buenos Aires, Argentina
| | - Sandra E Pérez
- Centro de Investigaciones Veterinarias de Tandil (CIVETAN) - CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Buenos Aires, Argentina
| | - Germán J Cantón
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), INTA-CONICET, Balcarce, Buenos Aires, Argentina
| | - Dadin P Moore
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), INTA-CONICET, Balcarce, Buenos Aires, Argentina; Facultad de Ciencias Agrarias, UNMdP, Balcarce, Buenos Aires, Argentina
| | - Anselmo C Odeón
- Facultad de Ciencias Agrarias, UNMdP, Balcarce, Buenos Aires, Argentina
| | - Irene Agulló-Ros
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Grupo de Investigación GISAZ, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
| | - María Valeria Scioli
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), INTA-CONICET, Balcarce, Buenos Aires, Argentina
| | - Claudio Barbeito
- Laboratorio de Histología y Embriología Descriptiva Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, UNLP, CONICET, Buenos Aires, Argentina
| | - Eleonora L Morrell
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), INTA-CONICET, Balcarce, Buenos Aires, Argentina.
| | - Maia S Marín
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), INTA-CONICET, Balcarce, Buenos Aires, Argentina
| |
Collapse
|
8
|
Yao K, Fang L, Sun Y. The transcriptional foundations of interferon-λ-mediated endometrial cell to uterine receptivity. Am J Reprod Immunol 2023; 90:e13718. [PMID: 37382172 DOI: 10.1111/aji.13718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/29/2023] [Accepted: 05/16/2023] [Indexed: 06/30/2023] Open
Abstract
PROBLEM Interferon-λ (IFN-λ) is a novel non-redundant regulator that participates in the fetal-maternal immune interaction, including immune regulation, uterine receptivity, cell migration and adhesion, and endometrium apoptosis. However, the exact transcriptional foundation for endometrial signaling of IFN-λ is not completely understood, and studies regarding IFN-λ to implantation failure in vivo are limited. METHOD OF STUDY The gene expression profile of human endometrial Ishikawa cell line treated with IFN-λ or IFN-α (100 ng/mL) for 6 h was analyzed using RNA-sequencing. Real-time qPCR, western blotting, and enzyme-linked immunosorbent assay (ELISA) tests were used to validate these sequencing data. An in vivo IFN-λ knock-down mouse pregnancy model was performed, and the phenotype analysis and the intrauterine biomarkers detection were applied with the uterus samples. RESULTS High levels of messenger RNA (mRNA) were detected for genes previously associated with endometrial receptivity, including LIF, AXL, CRYAB, EPHB2, CCL5, and DDX58, following IFN-λ treatment. Moreover, the data indicated IFN-λ reduced pro-inflammatory gene activity compared with IFN-α, including members of the ISG, TNF, SP100 and interleukin genes. The in vivo mouse pregnancy model showed that inhibition of intrauterine IFN-λ results in aberrant epithelial phenotype and significantly decreases the embryo implantation rates and derails normal uterine receptivity. CONCLUSIONS These findings demonstrate the antagonistic and agonistic roles of IFNs in the endometrial cell, suggesting a selective role of IFN-λ in endometrial receptivity and immunological tolerance regulation. Moreover, the findings provide valuable insight into potential biomarkers related to endometrial receptivity and facilitate an understanding of the molecular changes observed during infertility treatment and contraception usage.
Collapse
Affiliation(s)
- Kezhen Yao
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Fang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Sun
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Nguyen ST, Du D, Wychrij D, Cain MD, Wu Q, Klein RS, Russo I, Goldberg DE. Histidine-rich protein II nanoparticle delivery of heme iron load drives endothelial inflammation in cerebral malaria. Proc Natl Acad Sci U S A 2023; 120:e2306318120. [PMID: 37307435 PMCID: PMC10293821 DOI: 10.1073/pnas.2306318120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/19/2023] [Indexed: 06/14/2023] Open
Abstract
Histidine-rich protein II (HRPII) is secreted by Plasmodium falciparum during the blood stage of malaria infection. High plasma levels of HRPII are associated with cerebral malaria, a severe and highly fatal complication of malaria. HRPII has been shown to induce vascular leakage, the hallmark of cerebral malaria, in blood-brain barrier (BBB) and animal models. We have discovered an important mechanism for BBB disruption that is driven by unique features of HRPII. By characterizing serum from infected patients and HRPII produced by P. falciparum parasites in culture, we found that HRPII exists in large multimeric particles of 14 polypeptides that are richly laden with up to 700 hemes per particle. Heme loading of HRPII is required for efficient binding and internalization via caveolin-mediated endocytosis in hCMEC/D3 cerebral microvascular endothelial cells. Upon acidification of endolysosomes, two-thirds of the hemes are released from acid-labile binding sites and metabolized by heme oxygenase 1, generating ferric iron and reactive oxygen species. Subsequent activation of the NLRP3 inflammasome and IL-1β secretion resulted in endothelial leakage. Inhibition of these pathways with heme sequestration, iron chelation, or anti-inflammatory drugs protected the integrity of the BBB culture model from HRPII:heme. Increased cerebral vascular permeability was seen after injection of young mice with heme-loaded HRPII (HRPII:heme) but not with heme-depleted HRPII. We propose that during severe malaria infection, HRPII:heme nanoparticles in the bloodstream deliver an overwhelming iron load to endothelial cells to cause vascular inflammation and edema. Disrupting this process is an opportunity for targeted adjunctive therapies to reduce the morbidity and mortality of cerebral malaria.
Collapse
Affiliation(s)
- Suong T. Nguyen
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO63110
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Daniel Du
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Daniel Wychrij
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Matthew D. Cain
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Qingping Wu
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Robyn S. Klein
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Ilaria Russo
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Daniel E. Goldberg
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
10
|
Liu J, Liu Y, Kirschen G, Liu A, Lei J, Burd I. Sex-specific differences in T-cell immune dysregulation and aberrant response to inflammatory stimuli in offspring exposed to maternal chronic inflammation. Am J Reprod Immunol 2023; 89:e13665. [PMID: 36504421 DOI: 10.1111/aji.13665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
PROBLEMS Maternal chronic inflammation (MI) can adversely affect offspring's immune development resulting in dysregulation of splenic T cells. Interleukin 1 beta (IL-1β) contributes to mediating inflammation in the placenta to induce fetal toxicity and cause long-term postnatal sequelae. In this study, we investigated how MI affects the T-cell immune development from the fetal to the neonatal period and how offspring responded to postnatal IL-1β challenge when exposed to an adverse intrauterine environment. We also extend these studies to examine the sex-specific differences. METHODS OF STUDY Time-pregnant CD1 dams were administrated with four consecutive injections of mouse recombinant Interleukin-1β (rIL-1β) or phosphate-buffered saline (PBS) from embryonic day (E)14 to E17. Pups were treated with rIL-1β or PBS at postnatal day (PND)11 (pre-weaning) or PND24 (post-weaning). Pups' splenic immune cells were isolated and then characterized using flow cytometry. RESULTS At PND12, no differences were observed either in Ctrl or MI offspring. At PND25, we observed elevated amount of CD8+ T cells, descending CD4+ /CD8+ and Treg/Teff ratio in MI offspring. Pre-weaning rIL-1β administration did not affect T-cell subpopulation in Ctrl pups while post-weaning rIL-1β administration increased T cells and CD8+ T cells and decreased CD4+ /CD8+ and Treg/Teff ratio in Ctrl offspring. Furthermore, pre-weaning rIL-1β administration decreased the frequency of T cells and Treg/Teff ratio in MI pups while post-weaning rIL-1β administration increased Tregs and Treg/Teff in MI pups. Regarding sex-specific changes, we observed that at PND12, MI females exhibited higher CD4+ /CD8+ and Treg/Teff ratio than Ctrl females. At PND25, we observed elevated amount of CD8+ T cells, descending CD4+ /CD8+ and Treg/Teff ratio in MI Females, while MI males did not show any changes in T-cell population. Pre-weaning rIL-1β administration decreased T-cell frequency in both MI males and females and decreased Treg/Teff ratio only in MI females. Post-weaning rIL-1β administration increased Tregs and Treg/Teff ratio, and decreased CD4+ /CD8+ ratio in MI females. CONCLUSIONS Prenatal-inflammation-exposed offspring exhibited dysfunctional T-cell immunity and regulatory immune responses to postnatal challenges, showing both sex-specific and age-dependent differences. It could be speculated from our results that experiencing environmental challenges or adverse stimuli during the vulnerable intrauterine period, such as maternal chronic inflammation, stress, preterm birth, and chronic infections, might induce fetal immune reprogramming and potentially cause long-term adverse immune consequences, such as a predisposition to allergic diseases, autoimmune diseases, asthma and pediatric mortality of unknown etiology.
Collapse
Affiliation(s)
- Jin Liu
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yang Liu
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gregory Kirschen
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anguo Liu
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jun Lei
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Irina Burd
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland, Baltimore, USA
| |
Collapse
|
11
|
Cariaco Y, Durán-Rodriguez AT, Almeida MPO, Silva NM. CCR5 contributes to adverse outcomes during malaria in pregnancy. Cytokine 2023; 162:156110. [PMID: 36565608 DOI: 10.1016/j.cyto.2022.156110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/12/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
CCR5 is a chemokine receptor that mediates cell recruitment to sites of inflammation. It has been previously reported that the expression of CCR5 is increased in the placentas of women with malaria, a disease characterized by causing deliveries with low birth weight among other complications. CCR5 has been associated with pathology of protozoan infections during pregnancy but its role during malaria in pregnancy has not been elucidated. In the present work, we assessed the pregnancy outcome, placental structure, and levels of inflammatory markers of pregnant C57BL/6 and CCR5-/- mice infected or not with Plasmodium berghei NK65, with the purpose of determine the role of CCR5 in pregnancy associated malaria complications. We demonstrated that the expression of CCR5 mRNA increases in late pregnancy placentas of C57BL/6 when compared to uninfected controls. Infected pregnant C57BL/6 mice showed preterm birth, decreased fetal weight, placental inefficiency, and reduced placental vascular space. On the other hand, CCR5 deficiency led to increased levels of maternal parasitemia, reduced fetal weight and placental inefficiency compared to C57BL/6 mice. However, the infection did not cause additional changes in these parameters or in the incidence of preterm delivery in infected CCR5-/- mice in relation to C57BL/6 mice, showing that CCR5 may contribute to the adverse effects caused by infection during pregnancy. This improvement in pregnancy outcome, observed in infected CCR5-/- mice, was accompanied by lower placental levels of the inflammatory markers, such as TNF and NAG. Furthermore, it was observed that the placentas of CCR5-/- animals showed structural differences in relation to C57BL/6 mice, which could improve the efficiency of maternal-fetal exchanges, reflecting on fetal weight. Taken together, these results indicate that CCR5 expression contributes to the adverse outcomes caused by malaria in late pregnancy.
Collapse
Affiliation(s)
- Yusmaris Cariaco
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Andrea Tatiana Durán-Rodriguez
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Marcos Paulo Oliveira Almeida
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Neide Maria Silva
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
12
|
Elkin ER, Su AL, Dou JF, Colacino JA, Bridges D, Padmanabhan V, Harris SM, Boldenow E, Loch-Caruso R, Bakulski KM. Sexually concordant and dimorphic transcriptional responses to maternal trichloroethylene and/or N-acetyl cysteine exposure in Wistar rat placental tissue. Toxicology 2023; 483:153371. [PMID: 36396003 PMCID: PMC10078828 DOI: 10.1016/j.tox.2022.153371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022]
Abstract
Numerous Superfund sites are contaminated with the volatile organic chemical trichloroethylene (TCE). In women, exposure to TCE in pregnancy is associated with reduced birth weight. Our previous study reported that TCE exposure in pregnant rats decreased fetal weight and elevated oxidative stress biomarkers in placentae, suggesting placental injury as a potential mechanism of TCE-induced adverse birth outcomes. In this study, we investigated if co-exposure with the antioxidant N-acetylcysteine (NAC) attenuates TCE exposure effects on RNA expression. Timed-pregnant Wistar rats were exposed orally to 480 mg TCE/kg/day on gestation days 6-16. Exposure of 200 mg NAC/kg/day alone or as a pre/co-exposure with TCE occurred on gestation days 5-16 to stimulate antioxidant genes prior to TCE exposure. Tissue was collected on gestation day 16. In male and female placentae, we evaluated TCE- and/or NAC-induced changes to gene expression and pathway enrichment analyses using false discovery rate (FDR) and fold-change criteria. In female placentae, exposure to TCE caused significant differential expression 129 genes while the TCE+NAC altered 125 genes, compared with controls (FDR< 0.05 + fold-change >1). In contrast, in male placentae TCE exposure differentially expressed 9 genes and TCE+NAC differentially expressed 35 genes, compared with controls (FDR< 0.05 + fold-change >1). NAC alone did not significantly alter gene expression in either sex. Differentially expressed genes observed with TCE exposure were enriched in mitochondrial biogenesis and oxidative phosphorylation pathways in females whereas immune system pathways and endoplasmic reticulum stress pathways were differentially expressed in both sexes (FDR<0.05). TCE treatment was differentially enriched for genes regulated by the transcription factors ATF6 (both sexes) and ATF4 (males only), indicating a cellular condition triggered by misfolded proteins during endoplasmic reticulum stress. This study demonstrates novel genes and pathways involved in TCE-induced placental injury and showed antioxidant co-treatment largely did not attenuate TCE exposure effects.
Collapse
Affiliation(s)
- Elana R Elkin
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA.
| | - Anthony L Su
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - John F Dou
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA; Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Dave Bridges
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Vasantha Padmanabhan
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA; Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA; Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA; Department of Obstetrics and Gynecology, Michigan Medicine, Ann Arbor, MI, USA
| | - Sean M Harris
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Erica Boldenow
- Department of Biology, Calvin University, Grand Rapids, MI, USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Kelly M Bakulski
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Storm J, Camarda G, Haley MJ, Brough D, Couper KN, Craig AG. Plasmodium falciparum-infected erythrocyte co-culture with the monocyte cell line THP-1 does not trigger production of soluble factors reducing brain microvascular barrier function. PLoS One 2023; 18:e0285323. [PMID: 37141324 PMCID: PMC10159134 DOI: 10.1371/journal.pone.0285323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023] Open
Abstract
Monocytes contribute to the pro-inflammatory immune response during the blood stage of a Plasmodium falciparum infection, but their precise role in malaria pathology is not clear. Besides phagocytosis, monocytes are activated by products from P. falciparum infected erythrocytes (IE) and one of the activation pathways is potentially the NLR family pyrin domain containing 3 (NLRP3) inflammasome, a multi-protein complex that leads to the production of interleukin (IL)-1β. In cerebral malaria cases, monocytes accumulate at IE sequestration sites in the brain microvascular and the locally produced IL-1β, or other secreted molecules, could contribute to leakage of the blood-brain barrier. To study the activation of monocytes by IE within the brain microvasculature in an in vitro model, we co-cultured IT4var14 IE and the monocyte cell line THP-1 for 24 hours and determined whether generated soluble molecules affect barrier function of human brain microvascular endothelial cells, measured by real time trans-endothelial electrical resistance. The medium produced after co-culture did not affect endothelial barrier function and similarly no effect was measured after inducing oxidative stress by adding xanthine oxidase to the co-culture. While IL-1β does decrease barrier function, barely any IL-1β was produced in the co- cultures, indicative of a lack of or incomplete THP-1 activation by IE in this co-culture model.
Collapse
Affiliation(s)
- Janet Storm
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Grazia Camarda
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Michael J Haley
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - David Brough
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Kevin N Couper
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Alister G Craig
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
14
|
Owen JC, Garrick SP, Peterson BM, Berger PJ, Nold MF, Sehgal A, Nold-Petry CA. The role of interleukin-1 in perinatal inflammation and its impact on transitional circulation. Front Pediatr 2023; 11:1130013. [PMID: 36994431 PMCID: PMC10040554 DOI: 10.3389/fped.2023.1130013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 03/31/2023] Open
Abstract
Preterm birth is defined as delivery at <37 weeks of gestational age (GA) and exposes 15 million infants worldwide to serious early life diseases. Lowering the age of viability to 22 weeks GA entailed provision of intensive care to a greater number of extremely premature infants. Moreover, improved survival, especially at extremes of prematurity, comes with a rising incidence of early life diseases with short- and long-term sequelae. The transition from fetal to neonatal circulation is a substantial and complex physiologic adaptation, which normally happens rapidly and in an orderly sequence. Maternal chorioamnionitis or fetal growth restriction (FGR) are two common causes of preterm birth that are associated with impaired circulatory transition. Among many cytokines contributing to the pathogenesis of chorioamnionitis-related perinatal inflammatory diseases, the potent pro-inflammatory interleukin (IL)-1 has been shown to play a central role. The effects of utero-placental insufficiency-related FGR and in-utero hypoxia may also be mediated, in part, via the inflammatory cascade. In preclinical studies, blocking such inflammation, early and effectively, holds great promise for improving the transition of circulation. In this mini-review, we outline the mechanistic pathways leading to abnormalities in transitional circulation in chorioamnionitis and FGR. In addition, we explore the therapeutic potential of targeting IL-1 and its influence on perinatal transition in the context of chorioamnionitis and FGR.
Collapse
Affiliation(s)
- Josephine C. Owen
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Steven P. Garrick
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Briana M. Peterson
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Philip J. Berger
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Marcel F. Nold
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Monash Newborn, Monash Children’s Hospital, Melbourne, VIC, Australia
| | - Arvind Sehgal
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Monash Newborn, Monash Children’s Hospital, Melbourne, VIC, Australia
| | - Claudia A. Nold-Petry
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Correspondence: Claudia A. Nold-Petry
| |
Collapse
|
15
|
Gao Y, Zhou M, Zhang W, Jiang J, Ouyang Z, Zhu Y, Li N. NLRP3 mediates trophoblastic inflammasome activation and protects against Listeria monocytogenes infection during pregnancy. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1202. [PMID: 36544643 PMCID: PMC9761141 DOI: 10.21037/atm-22-4120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/21/2022] [Indexed: 11/21/2022]
Abstract
Background Intrauterine Listeria monocytogenes (L. monocytogenes) infections pose a major threat during pregnancy via affecting placental immune responses. However, the underlying mechanisms of placental defense against this pathogen remain ill-defined. Therefore, this study aims to investigate the function and the mechanism of inflammasomes on against L. monocytogenes infection during pregnancy. Methods A listeriosis murine model and cell culture system was used to investigate the role of trophoblastic nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) in orchestrating innate immune responses to L. monocytogenes infection. Caspase-1 activity was determined using a caspase-1 activity colorimetric kit. NLRP3 and apoptosis-associated speck-like protein containing a CARD (ASC) in placental tissue was detected by immunohistochemistry. NLRP3 in HTR-8/SVneo cells was also detected by immunofluorescence. The expression of interleukin 1β (IL-1β), NLRP3, ASC, and caspase-1 was detected by Western blot. We characterized the NLRP3 inflammasome in trophoblast cells according to whether L. monocytogenes infection increased the activation of caspase-1 and the release of IL-1β. For human or mouse IL-1β in the culture supernatants and mouse tissue lysates were analyzed using ELISA Kits. Results Trophoblast cells constitutively expressed the components of the NLRP3 inflammasome. In vitro, L. monocytogenes triggers NLRP3 inflammasome activation in trophoblast cells by inducing caspase-1 activation, increasing the NLRP3 protein levels, IL-1β maturation and secretion in HTR-8/SVneo cells. In vivo, L. monocytogenes induces fetal resorption and IL-1β processing in pregnant mice. In addition, NLRP3-deficient mice were more prone to fetal loss than their wild-type counterparts following infection with L. monocytogenes at a lower infective dose. Conclusions We conclude that trophoblast cells respond to L. monocytogenes infection through the NLRP3 receptor, resulting in inflammasome activation and IL-1β production, which prevents listeriosis during pregnancy.
Collapse
Affiliation(s)
- Yu Gao
- Obstetrics and Gynecology, The Second Clinical Medical College (Shenzhen People’s Hospital), Jinan University, Shenzhen, China
| | - Min Zhou
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China;,School of Life Sciences, Tsinghua University, Beijing, China
| | - Wen Zhang
- Emergency Department, The Second Clinical Medical College (Shenzhen People’s Hospital), Jinan University, Shenzhen, China
| | - Jinxing Jiang
- Cytotherapy Laboratory, The Second Clinical Medical College (Shenzhen People’s Hospital), Jinan University, Shenzhen, China
| | - Zhibin Ouyang
- Cytotherapy Laboratory, The Second Clinical Medical College (Shenzhen People’s Hospital), Jinan University, Shenzhen, China
| | - Yuanfang Zhu
- Obstetrics and Gynecology, Shenzhen Bao’an Maternal and Child Health Hospital Affiliated to Jinan University, Jinan University, Shenzhen, China;,Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Ning Li
- Biotherapy Research Center, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China;,Biotherapy Research Center, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen, China
| |
Collapse
|
16
|
Sánchez KE, Bhaskar K, Rosenberg GA. Apoptosis-associated speck-like protein containing a CARD-mediated release of matrix metalloproteinase 10 stimulates a change in microglia phenotype. Front Mol Neurosci 2022; 15:976108. [PMID: 36305000 PMCID: PMC9595131 DOI: 10.3389/fnmol.2022.976108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammation contributes to amyloid-β and tau pathology in Alzheimer's disease (AD). Microglia facilitate an altered immune response that includes microgliosis, upregulation of inflammasome proteins, and elevation of matrix-metalloproteinases (MMPs). Studies of cerebrospinal fluid (CSF) and blood in dementia patients show upregulation of two potential biomarkers of inflammation at the cellular level, MMP10 and apoptosis-associated speck-like protein containing a CARD (ASC). However, little is known about their relationship in the context of brain inflammation. Therefore, we stimulated microglia cultures with purified insoluble ASC speck aggregates and MMP10 to elucidate their role. We found that ASC specks altered microglia shape and stimulated the release of MMP3 and MMP10. Furthermore, MMP10 stimulated microglia released additional MMP10 along with the inflammatory cytokines, tumor-necrosis factor-α (TNFα), Interleukin 6 (IL-6), and CXCL1 CXC motif chemokine ligand 1 (CXCL1). A broad-spectrum MMP inhibitor, GM6001, prevented TNFα release. With these results, we conclude that MMP10 and ASC specks act on microglial cells to propagate inflammation.
Collapse
Affiliation(s)
- Kathryn E. Sánchez
- Center for Memory and Aging, University of New Mexico, Albuquerque, NM, United States
| | - Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM, United States
- Department of Neurology, University of New Mexico, Albuquerque, NM, United States
| | - Gary A. Rosenberg
- Center for Memory and Aging, University of New Mexico, Albuquerque, NM, United States
- Department of Neurology, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
17
|
Duan L, Reisch B, Mach P, Kimmig R, Gellhaus A, Iannaccone A. The immunological role of b7-h4 in pregnant women with sars-cov2 infection. Am J Reprod Immunol 2022; 88:e13626. [PMID: 36121927 PMCID: PMC9538547 DOI: 10.1111/aji.13626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022] Open
Abstract
Problem T‐cells are key players in fighting the coronavirus disease 2019 (COVID‐19). The checkpoint molecule B7‐H4, a member of the B7 family, can inhibit T‐cell activation and proliferation by inhibiting NF‐kb expression. We aimed to elucidate the immunological role of soluble B7‐H4 (sB7‐H4) and B7‐H4 in pregnant women suffered from an acute Sars‐Cov2 infection. Methods Expression levels of sB7‐H4 and cytokines were detected by enzyme linked immunosorbent assay. B7‐H4 and cytokines mRNA expression was analyzed by qPCR, and B7‐H4 and NF‐κb (p65) protein levels were investigated by western blot and immunofluorescence staining in placenta chorionic villous and decidual basalis tissues of COVID‐19 affected women and healthy controls. Results Fibrinoid necrosis in the periphery of placental villi was increased in the COVID‐19‐affected patients. sB7‐H4 protein in maternal and cord blood serum and IL‐6/IL‐10 were increased while leukocytes were decreased during SARS‐CoV‐2 infection. Serum sB7‐H4 level was increased according to the severity of SARS‐Cov‐2 infection. Cytokines (IL‐6, IL‐18, IL‐1β, TNF‐α), B7‐H4 mRNA and protein in the decidual basalis tissues of COVID‐19‐infected pregnant women were significantly increased compared to healthy controls. IL‐18 and IL‐1β were significantly increased in the placenta chorionic villous samples of COVID‐19 affected patients, while NF‐κb (p65) expression was decreased. Conclusions The expression of the immunological marker sB7‐H4 correlated with the severity of COVID‐19 disease in pregnant women. sB7‐H4 and B7‐H4 can be used to monitor the progression of COVID‐19 infection during pregnancy, and for evaluating of the maternal immune status.
Collapse
Affiliation(s)
- Liyan Duan
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
| | - Beatrix Reisch
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
| | - Pawel Mach
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
| | - Antonella Iannaccone
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
18
|
Barateiro A, Junior ARC, Epiphanio S, Marinho CRF. Homeostasis Maintenance in Plasmodium-Infected Placentas: Is There a Role for Placental Autophagy During Malaria in Pregnancy? Front Immunol 2022; 13:931034. [PMID: 35898514 PMCID: PMC9309427 DOI: 10.3389/fimmu.2022.931034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
Malaria represents a significant public health burden to populations living in developing countries. The disease takes a relevant toll on pregnant women, who are more prone to developing severe clinical manifestations. Inflammation triggered in response to P. falciparum sequestration inside the placenta leads to physiological and structural changes in the organ, reflecting locally disrupted homeostasis. Altogether, these events have been associated with poor gestational outcomes, such as intrauterine growth restriction and premature delivery, contributing to the parturition of thousands of African children with low birth weight. Despite significant advances in the field, the molecular mechanisms that govern these outcomes are still poorly understood. Herein, we discuss the idea of how some housekeeping molecular mechanisms, such as those related to autophagy, might be intertwined with the outcomes of malaria in pregnancy. We contextualize previous findings suggesting that placental autophagy is dysregulated in P. falciparum-infected pregnant women with complementary research describing the importance of autophagy in healthy pregnancies. Since the functional role of autophagy in pregnancy outcomes is still unclear, we hypothesize that autophagy might be essential for circumventing inflammation-induced stress in the placenta, acting as a cytoprotective mechanism that attempts to ensure local homeostasis and better gestational prognosis in women with malaria in pregnancy.
Collapse
Affiliation(s)
- André Barateiro
- Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | | | - Sabrina Epiphanio
- School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analysis, University of São Paulo, São Paulo, Brazil
| | - Claudio Romero Farias Marinho
- Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
- *Correspondence: Claudio Romero Farias Marinho,
| |
Collapse
|
19
|
Shao X, Yu W, Yang Y, Wang F, Yu X, Wu H, Ma Y, Cao B, Wang YL. The mystery of the life tree: the placenta. Biol Reprod 2022; 107:301-316. [PMID: 35552600 DOI: 10.1093/biolre/ioac095] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/20/2022] [Accepted: 05/21/2022] [Indexed: 11/13/2022] Open
Abstract
The placenta is the interface between the fetal and maternal environments during mammalian gestation, critically safeguarding the health of the developing fetus and the mother. Placental trophoblasts origin from embryonic trophectoderm that differentiates into various trophoblastic subtypes through villous and extravillous pathways. The trophoblasts actively interact with multiple decidual cells and immune cells at the maternal-fetal interface and thus construct fundamental functional units, which are responsible for blood perfusion, maternal-fetal material exchange, placental endocrine, immune tolerance, and adequate defense barrier against pathogen infection. Various pregnant complications are tightly associated with the defects in placental development and function maintenance. In this review, we summarize the current views and our recent progress on the mechanisms underlying the formation of placental functional units, the interactions among trophoblasts and various uterine cells, as well as the placental barrier against pathogen infections during pregnancy. The involvement of placental dysregulation in adverse pregnancy outcomes is discussed.
Collapse
Affiliation(s)
- Xuan Shao
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Wenzhe Yu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yun Yang
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Feiyang Wang
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Xin Yu
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Hongyu Wu
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Yeling Ma
- Medical College, Shaoxing University, Shaoxing, China
| | - Bin Cao
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Sánchez KE, Rosenberg GA. Shared Inflammatory Pathology of Stroke and COVID-19. Int J Mol Sci 2022; 23:5150. [PMID: 35563537 PMCID: PMC9101120 DOI: 10.3390/ijms23095150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Though COVID-19 is primarily characterized by symptoms in the periphery, it can also affect the central nervous system (CNS). This has been established by the association between stroke and COVID-19. However, the molecular mechanisms that cause stroke related to a COVID-19 infection have not been fully explored. More specifically, stroke and COVID-19 exhibit an overlap of molecular mechanisms. These similarities provide a way to better understand COVID-19 related stroke. We propose here that peripheral macrophages upregulate inflammatory proteins such as matrix metalloproteinases (MMPs) in response to SARS-CoV-2 infection. These inflammatory molecules and the SARS-CoV-2 virus have multiple negative effects related to endothelial dysfunction that results in the disruption of the blood-brain barrier (BBB). Finally, we discuss how the endothelial blood-brain barrier injury alters central nervous system function by leading to astrocyte dysfunction and inflammasome activation. Our goal is to elucidate such inflammatory pathways, which could provide insight into therapies to combat the negative neurological effects of COVID-19.
Collapse
Affiliation(s)
- Kathryn E. Sánchez
- Center for Memory and Aging, University of New Mexico, Albuquerque, NM 87106, USA;
| | - Gary A. Rosenberg
- Center for Memory and Aging, University of New Mexico, Albuquerque, NM 87106, USA;
- Department of Neurology, University of New Mexico, Albuquerque, NM 87106, USA
| |
Collapse
|
21
|
Kobia FM, Maiti K, Obimbo MM, Smith R, Gitaka J. Potential pharmacologic interventions targeting TLR signaling in placental malaria. Trends Parasitol 2022; 38:513-524. [DOI: 10.1016/j.pt.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
|
22
|
Alfian I, Chakraborty A, Yong HEJ, Saini S, Lau RWK, Kalionis B, Dimitriadis E, Alfaidy N, Ricardo SD, Samuel CS, Murthi P. The Placental NLRP3 Inflammasome and Its Downstream Targets, Caspase-1 and Interleukin-6, Are Increased in Human Fetal Growth Restriction: Implications for Aberrant Inflammation-Induced Trophoblast Dysfunction. Cells 2022; 11:1413. [PMID: 35563719 PMCID: PMC9102093 DOI: 10.3390/cells11091413] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/30/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
Fetal growth restriction (FGR) is commonly associated with placental insufficiency and inflammation. Nonetheless, the role played by inflammasomes in the pathogenesis of FGR is poorly understood. We hypothesised that placental inflammasomes are differentially expressed and contribute to the aberrant trophoblast function. Inflammasome gene expression profiles were characterised by real-time PCR on human placental tissues collected from third trimester FGR and gestation-matched control pregnancies (n = 25/group). The functional significance of a candidate inflammasome was then investigated using lipopolysaccharide (LPS)-induced models of inflammation in human trophoblast organoids, BeWo cells in vitro, and a murine model of FGR in vivo. Placental mRNA expression of NLRP3, caspases 1, 3, and 8, and interleukin 6 increased (>2-fold), while that of the anti-inflammatory cytokine, IL-10, decreased (<2-fold) in FGR compared with control pregnancies. LPS treatment increased NLRP3 and caspase-1 expression (>2-fold) in trophoblast organoids and BeWo cell cultures in vitro, and in the spongiotrophoblast and labyrinth in the murine model of FGR. However, the LPS-induced rise in NLRP3 was attenuated by its siRNA-induced down-regulation in BeWo cell cultures, which correlated with reduced activity of the apoptotic markers, caspase-3 and 8, compared to the control siRNA-treated cells. Our findings support the role of the NLRP3 inflammasome in the inflammation-induced aberrant trophoblast function, which may contribute to FGR.
Collapse
Affiliation(s)
- Irvan Alfian
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (I.A.); (A.C.); (S.S.); (R.W.K.L.); (S.D.R.)
- Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya 6, Jakarta Pusat 10160, Indonesia
| | - Amlan Chakraborty
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (I.A.); (A.C.); (S.S.); (R.W.K.L.); (S.D.R.)
| | - Hannah E. J. Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore 117609, Singapore;
| | - Sheetal Saini
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (I.A.); (A.C.); (S.S.); (R.W.K.L.); (S.D.R.)
| | - Ricky W. K. Lau
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (I.A.); (A.C.); (S.S.); (R.W.K.L.); (S.D.R.)
| | - Bill Kalionis
- Department of Maternal-Fetal Medicine Pregnancy Research Centre, The Royal Women’s Hospital, Melbourne, VIC 3052, Australia;
- Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, VIC 3052, Australia;
| | - Evdokia Dimitriadis
- Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Gynaecology Research Centre, The Royal Women’s Hospital, Melbourne, VIC 3052, Australia
| | - Nadia Alfaidy
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France;
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Sharon D. Ricardo
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (I.A.); (A.C.); (S.S.); (R.W.K.L.); (S.D.R.)
| | - Chrishan S. Samuel
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (I.A.); (A.C.); (S.S.); (R.W.K.L.); (S.D.R.)
| | - Padma Murthi
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (I.A.); (A.C.); (S.S.); (R.W.K.L.); (S.D.R.)
- Department of Maternal-Fetal Medicine Pregnancy Research Centre, The Royal Women’s Hospital, Melbourne, VIC 3052, Australia;
- Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, VIC 3052, Australia;
| |
Collapse
|
23
|
Andrew AK, Cooper CA, Moore JM. A novel murine model of post-implantation malaria-induced preterm birth. PLoS One 2022; 17:e0256060. [PMID: 35312688 PMCID: PMC8936457 DOI: 10.1371/journal.pone.0256060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/07/2022] [Indexed: 11/19/2022] Open
Abstract
Despite major advances made in malaria treatment and control over recent decades, the development of new models for studying disease pathogenesis remains a vital part of malaria research efforts. The study of malaria infection during pregnancy is particularly reliant on mouse models, as a means of circumventing many challenges and costs associated with pregnancy studies in endemic human populations. Here, we introduce a novel murine model that will further our understanding of how malaria infection affects pregnancy outcome. When C57BL/6J (B6) mice are infected with Plasmodium chabaudi chabaudi AS on either embryonic day (E) 6.5, 8.5, or 10.5, preterm birth occurs in all animals by E16.5, E17.5, or E18.5 respectively, with no evidence of intrauterine growth restriction. Despite having the same outcome, we found that the time to delivery, placental inflammatory and antioxidant transcript upregulation, and the relationships between parasitemia and transcript expression prior to preterm birth differed based on the embryonic day of infection. On the day before preterm delivery, E6.5 infected mice did not experience significant upregulation of the inflammatory or antioxidant gene transcripts examined; however, peripheral and placental parasitemia correlated positively with Il1β, Cox1, Cat, and Hmox1 placental transcript abundance. E8.5 infected mice had elevated transcripts for Ifnγ, Tnf, Il10, Cox1, Cox2, Sod1, Sod2, Cat, and Nrf2, while Sod3 was the only transcript that correlated with parasitemia. Finally, E10.5 infected mice had elevated transcripts for Ifnγ only, with a tendency for Tnf transcripts to correlate with peripheral parasitemia. Tumor necrosis factor deficient (TNF-/-) and TNF receptor 1 deficient (TNFR1-/-) mice infected on E8.5 experienced preterm birth at the same time as B6 controls. Further characterization of this model is necessary to discover the mechanism(s) and/or trigger(s) responsible for malaria-driven preterm birth caused by maternal infection during early pregnancy.
Collapse
Affiliation(s)
- Alicer K. Andrew
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Caitlin A. Cooper
- Department of Cellular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Julie M. Moore
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
24
|
Liu H, Wang LL, Xu QH, Wang J, Zhang YJ, Luo J, Liao AH. UHRF1 shapes both the trophoblast invasion and decidual macrophage differentiation in early pregnancy. FASEB J 2022; 36:e22247. [PMID: 35262949 DOI: 10.1096/fj.202101647rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/04/2022] [Accepted: 02/23/2022] [Indexed: 11/11/2022]
Abstract
Trophoblasts play critical roles in establishment and maintenance of a normal pregnancy. Their dysfunction in early pregnancy is closely related to pregnancy-related diseases, including recurrent pregnancy loss (RPL). Epigenetic modifications dynamically change during pregnancy; however, the role of the epigenetic modifier UHRF1 in trophoblast regulation remains unknown. This is the first study to show that UHRF1 expression was localized in the cytoplasm of cytotrophoblasts, syncytiotrophoblasts, and villi columns, and decreased in the villi of patients with RPL. The invasion and cell viability in a UHRF1 knockdown trophoblast cell line were significantly decreased. In addition, the mRNA expression profiles of Swan71 cells were partially altered by UHRF1 knockdown. The altered immune-related genes were screened out and the pro-inflammatory TH1-type chemokine/cytokines CXCL2 and IL-1β were identified as the most promising targets of UHRF1 in the trophoblasts, which were significantly increased in the UHRF1 knockdown Swan71 cells, villi, and serum from patients with RPL. The macrophages treated with the supernatants of UHRF1 knockdown Swan71 cells were polarized to the M1 phenotype and secreted high levels of pro-inflammatory cytokines, which might be driven by the activated MyD88/NF-κB signaling pathway and mediated by the increased expression of CXCR2 and IL-1R1 (CXCL2 and IL-1β receptors, respectively). In addition, the supernatants of UHRF1 knockdown Swan71 cells showed stronger chemotaxis to macrophages than those from the controls. Our findings highlight the previously unknown roles of UHRF1 as one of the key regulators on the trophoblasts and their cross-talk with local immune cells, and demonstrate a potential approach for RPL intervention.
Collapse
Affiliation(s)
- Hong Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Li-Ling Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Qian-Han Xu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jing Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yu-Jing Zhang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jing Luo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
25
|
Sánchez KE, Spencer LM. Pregnancy-associated malaria: Effects of cytokine and chemokine expression. Travel Med Infect Dis 2022; 47:102282. [DOI: 10.1016/j.tmaid.2022.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/19/2021] [Accepted: 02/23/2022] [Indexed: 11/15/2022]
|
26
|
Sercundes MK, Ortolan LS, da Silva Julio V, Bella LM, de Castro Quirino T, Debone D, Carneiro-Ramos MS, Christoffolete MA, Martins JO, D'Império Lima MR, Alvarez JM, Amarante-Mendes GP, Gonçalves LA, Marinho CRF, Epiphanio S. Blockade of caspase cascade overcomes malaria-associated acute respiratory distress syndrome in mice. Cell Death Dis 2022; 13:144. [PMID: 35145061 PMCID: PMC8831525 DOI: 10.1038/s41419-022-04582-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/02/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022]
Abstract
Malaria is an enormous burden on global health that caused 409,000 deaths in 2019. Severe malaria can manifest in the lungs, an illness known as acute respiratory distress syndrome (ARDS). Not much is known about the development of malaria-associated ARDS (MA-ARDS), especially regarding cell death in the lungs. We had previously established a murine model that mimics various human ARDS aspects, such as pulmonary edema, hemorrhages, pleural effusion, and hypoxemia, using DBA/2 mice infected with Plasmodium berghei ANKA. Here, we explored the mechanisms and the involvement of apoptosis in this syndrome. We found that apoptosis contributes to the pathogenesis of MA-ARDS, primarily as facilitators of the alveolar-capillary barrier breakdown. The protection of pulmonary endothelium by inhibiting caspase activation could be a promising therapeutic strategy to prevent the pathogenicity of MA-ARDS. Therefore, intervention in the programmed death cell mechanism could help patients not to develop severe malaria.
Collapse
Affiliation(s)
- Michelle K Sercundes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Luana S Ortolan
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- Center for Global Infectious Disease, Seattle Children's Research Institute, Seattle, WA, USA
| | - Viviane da Silva Julio
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Leonardo M Bella
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Thatyane de Castro Quirino
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Daniela Debone
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Joilson O Martins
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | | | - José M Alvarez
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Gustavo P Amarante-Mendes
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (INCT-iii), São Paulo, Brazil
| | - Lígia Antunes Gonçalves
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Claudio R F Marinho
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Sabrina Epiphanio
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
27
|
Dalapati T, Moore JM. Hemozoin: a Complex Molecule with Complex Activities. CURRENT CLINICAL MICROBIOLOGY REPORTS 2022; 8:87-102. [PMID: 35096512 DOI: 10.1007/s40588-021-00166-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Purpose of Review Malaria is a disease caused by parasites that reside in host red blood cells and use hemoglobin as a nutrient source. Heme released by hemoglobin catabolism is modified by the parasite to produce hemozoin (HZ), which has toxic effects on the host. Experimentation aiming to elucidate how HZ contributes to malaria pathogenesis has utilized different preparations of this molecule, complicating interpretation and comparison of findings. We examine natural synthesis and isolation of HZ and highlight studies that have used multiple preparations, including synthetic forms, in a comparative fashion. Recent Findings Recent work utilizing sophisticated imaging and detection techniques reveals important molecular characteristics of HZ synthesis and biochemistry. Other recent studies further refine understanding of contributions of HZ to malaria pathogenesis yet highlight the continuing need to characterize HZ preparations and contextualize experimental conditions in the in vivo infection milieu. Summary This review highlights the necessity of collectively determining what is physiologically relevant HZ. Characterization of isolated natural HZ and use of multiple preparations in each study are recommended with application of in vivo studies whenever possible. Adoption of such practices is expected to improve reproducibility of results and elucidate the myriad of ways that HZ participates in malaria pathogenesis.
Collapse
Affiliation(s)
- Trisha Dalapati
- Duke University School of Medicine, Duke University, Durham, NC, USA
| | - Julie M Moore
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
28
|
Megli CJ, Coyne CB. Infections at the maternal-fetal interface: an overview of pathogenesis and defence. Nat Rev Microbiol 2022; 20:67-82. [PMID: 34433930 PMCID: PMC8386341 DOI: 10.1038/s41579-021-00610-y] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2021] [Indexed: 02/08/2023]
Abstract
Infections are a major threat to human reproductive health, and infections in pregnancy can cause prematurity or stillbirth, or can be vertically transmitted to the fetus leading to congenital infection and severe disease. The acronym 'TORCH' (Toxoplasma gondii, other, rubella virus, cytomegalovirus, herpes simplex virus) refers to pathogens directly associated with the development of congenital disease and includes diverse bacteria, viruses and parasites. The placenta restricts vertical transmission during pregnancy and has evolved robust mechanisms of microbial defence. However, microorganisms that cause congenital disease have likely evolved diverse mechanisms to bypass these defences. In this Review, we discuss how TORCH pathogens access the intra-amniotic space and overcome the placental defences that protect against microbial vertical transmission.
Collapse
Affiliation(s)
- Christina J Megli
- Division of Maternal-Fetal Medicine, Division of Reproductive Infectious Disease, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine and the Magee Womens Research Institute, Pittsburgh, PA, USA.
| | - Carolyn B Coyne
- Department of Molecular Genetics and Microbiology and the Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
29
|
Semmes EC, Coyne CB. Innate immune defenses at the maternal-fetal interface. Curr Opin Immunol 2022; 74:60-67. [PMID: 34768027 PMCID: PMC11063961 DOI: 10.1016/j.coi.2021.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 12/19/2022]
Abstract
The human maternal-fetal interface is an immunologically complex environment that must balance the divergent demands of tolerance towards the developing fetus with anti-pathogen defense. The innate immune responses at the maternal-fetal interface that function in anti-microbial defense have been understudied to-date and how 'TORCH' pathogens evade maternal innate immunity to infect the fetus remains poorly understood. Herein, we discuss how newly described decidual innate lymphoid cells and maternal placenta-associated macrophage subsets may be involved in anti-pathogen defense. Moreover, we outline recent advances in our understanding of how placental trophoblasts and fetal-derived macrophages (Hofbauer cells) function in anti-microbial defense. In summary, we highlight current gaps in knowledge and describe novel experimental models of the human decidua and placenta that are poised to advance our knowledge of innate immune defenses at the maternal-fetal interface.
Collapse
Affiliation(s)
- Eleanor C Semmes
- Medical Scientist Training Program, Duke University, Durham, NC, USA; Molecular Genetics and Microbiology Department, Duke University, Durham, NC, USA; Duke Human Vaccine Institute, Duke University, Durham, NC, USA
| | - Carolyn B Coyne
- Molecular Genetics and Microbiology Department, Duke University, Durham, NC, USA; Duke Human Vaccine Institute, Duke University, Durham, NC, USA.
| |
Collapse
|
30
|
Yu W, Hu X, Cao B. Viral Infections During Pregnancy: The Big Challenge Threatening Maternal and Fetal Health. MATERNAL-FETAL MEDICINE 2022; 4:72-86. [PMID: 35187500 PMCID: PMC8843053 DOI: 10.1097/fm9.0000000000000133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/11/2021] [Indexed: 12/18/2022] Open
Abstract
Viral infections during pregnancy are associated with adverse pregnancy outcomes, including maternal and fetal mortality, pregnancy loss, premature labor, and congenital anomalies. Mammalian gestation encounters an immunological paradox wherein the placenta balances the tolerance of an allogeneic fetus with protection against pathogens. Viruses cannot easily transmit from mother to fetus due to physical and immunological barriers at the maternal-fetal interface posing a restricted threat to the fetus and newborns. Despite this, the unknown strategies utilized by certain viruses could weaken the placental barrier to trigger severe maternal and fetal health issues especially through vertical transmission, which was not fully understood until now. In this review, we summarize diverse aspects of the major viral infections relevant to pregnancy, including the characteristics of pathogenesis, related maternal-fetal complications, and the underlying molecular and cellular mechanisms of vertical transmission. We highlight the fundamental signatures of complex placental defense mechanisms, which will prepare us to fight the next emerging and re-emerging infectious disease in the pregnancy population.
Collapse
Affiliation(s)
- Wenzhe Yu
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaoqian Hu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Bin Cao
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
31
|
Brien ME, Gaudreault V, Hughes K, Hayes DJL, Heazell AEP, Girard S. A Systematic Review of the Safety of Blocking the IL-1 System in Human Pregnancy. J Clin Med 2021; 11:jcm11010225. [PMID: 35011965 PMCID: PMC8745599 DOI: 10.3390/jcm11010225] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Blockade of the interleukin-1 (IL-1) pathway has been used therapeutically in several inflammatory diseases including arthritis and cryopyrin-associated periodic syndrome (CAPS). These conditions frequently affect women of childbearing age and continued usage of IL-1 specific treatments throughout pregnancy has been reported. IL-1 is involved in pregnancy complications and its blockade could have therapeutic potential. We systematically reviewed all reported cases of IL-1 blockade in human pregnancy to assess safety and perinatal outcomes. We searched several databases to find reports of specific blockade of the IL-1 pathway at any stage of pregnancy, excluding broad spectrum or non-specific anti-inflammatory intervention. Our literature search generated 2439 references of which 22 studies included, following extensive review. From these, 88 different pregnancies were assessed. Most (64.8%) resulted in healthy term deliveries without any obstetrical/neonatal complications. Including pregnancy exposed to Anakinra or Canakinumab, 12 (15.0%) resulted in preterm birth and one stillbirth occurred. Regarding neonatal complications, 2 cases of renal agenesis (2.5%) were observed, and 6 infants were diagnosed with CAPS (7.5%). In conclusion, this systematic review describes that IL-1 blockade during pregnancy is not associated with increased adverse perinatal outcomes, considering that treated women all presented an inflammatory disease associated with elevated risk of pregnancy complications.
Collapse
Affiliation(s)
- Marie-Eve Brien
- Ste-Justine Hospital Research Center, Montreal, QC H3T 1C5, Canada; (M.-E.B.); (V.G.); (K.H.)
| | - Virginie Gaudreault
- Ste-Justine Hospital Research Center, Montreal, QC H3T 1C5, Canada; (M.-E.B.); (V.G.); (K.H.)
| | - Katia Hughes
- Ste-Justine Hospital Research Center, Montreal, QC H3T 1C5, Canada; (M.-E.B.); (V.G.); (K.H.)
| | - Dexter J. L. Hayes
- Maternal and Fetal Health Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK; (D.J.L.H.); (A.E.P.H.)
| | - Alexander E. P. Heazell
- Maternal and Fetal Health Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK; (D.J.L.H.); (A.E.P.H.)
| | - Sylvie Girard
- Department of Obstetrics and Gynecology, Universite de Montreal, Montreal, QC H3T 1J4, Canada
- Department of Obstetrics and Gynecology, Department of Immunology, Mayo Clinic, Rochester, MN 55902, USA
- Correspondence: ; Tel.: +1-507-284-0545
| |
Collapse
|
32
|
Lv Z, Xiong LL, Qin X, Zhang H, Luo X, Peng W, Kilby MD, Saffery R, Baker PN, Qi HB. Role of GRK2 in Trophoblast Necroptosis and Spiral Artery Remodeling: Implications for Preeclampsia Pathogenesis. Front Cell Dev Biol 2021; 9:694261. [PMID: 34917606 PMCID: PMC8670385 DOI: 10.3389/fcell.2021.694261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Impaired invasion of extravillous trophoblasts and severe oxidative stress manifest the poor placentation in preeclampsia, which is life-threatening and more than a hypertensive disease of pregnancy. Previous studies have reported that G protein-coupled receptor kinases (GRKs) play a key role in initiating hypertension and hypertensive renal damage, yet little evidence so far suggests a link between GRKs and preeclampsia-related hypertension. Here, we demonstrate GRK2 expression is significantly downregulated (P < 0.0001) in preeclamptic placentae compared to normotensive controls. Knockdown or inhibition of GRK2 in placentae caused insufficient arterial remodeling and elevated trophoblast necroptosis in vivo. These further induced preeclampsia-like phenotype in mice: hypertension, proteinuria, and elevated pro-angiogenic cytokines. By human extra-villous invasive trophoblast cell line (HTR8/SVneo cells), we revealed the knockdown or inhibition of GRK2 triggered excessive death with typical necroptotic characteristics: nuclear envelope rupture and the activation of RIPK1, RIPK3, and MLKL. Necrostatin-1, an inhibitor of RIPK1, is able to restore the survival of trophoblasts. Together, our findings demonstrated that insufficient GRK2 activity compromises spiral artery remodeling and initiates necrotic events in placentae, thereby leading to preeclampsia. These findings advance our understanding of GRK2 in the pathogenesis of preeclampsia and could shed light on a potential treatment for preeclampsia.
Collapse
Affiliation(s)
- Zi Lv
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Li-Ling Xiong
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xian Qin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Zhang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xin Luo
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Wei Peng
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Mark D Kilby
- Centre for Women's and New Born Health, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Richard Saffery
- Cancer, Disease and Developmental Epigenetics, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Philip N Baker
- College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, United Kingdom
| | - Hong-Bo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
33
|
Prenatal administration of IL-1Ra attenuate the neurodevelopmental impacts following non-pathogenic inflammation during pregnancy. Sci Rep 2021; 11:23404. [PMID: 34862457 PMCID: PMC8642433 DOI: 10.1038/s41598-021-02927-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/24/2021] [Indexed: 01/20/2023] Open
Abstract
Prenatal inflammation negatively affects placental function, subsequently altering fetal development. Pathogen-associated molecular patterns (PAMPs) are used to mimics infections in preclinical models but rarely detected during pregnancy. Our group previously developed an animal model of prenatal exposure to uric acid (endogenous mediator), leading to growth restriction alongside IL-1-driven placental inflammation (Brien et al. in J Immunol 198(1):443–451, 2017). Unlike PAMPs, the postnatal impact of prenatal non-pathogenic inflammation is still poorly understood. Therefore, we investigated the effects of prenatal uric acid exposure on postnatal neurodevelopment and the therapeutic potential of the IL-1 receptor antagonist; IL-1Ra. Uric acid induced growth restriction and placental inflammation, which IL-1Ra protected against. Postnatal evaluation of both structural and functional aspects of the brain revealed developmental changes. Both astrogliosis and microgliosis were observed in the hippocampus and white matter at postnatal day (PND)7 with IL-1Ra being protective. Decreased myelin density was observed at PND21, and reduced amount of neuronal precursor cells was observed in the Dentate Gyrus at PND35. Functionally, motor impairments were observed as evaluated with the increased time to fully turn upward (180 degrees) on the inclined plane and the pups were weaker on the grip strength test. Prenatal exposure to sterile inflammation, mimicking most clinical situation, induced growth restriction with negative impact on neurodevelopment. Targeted anti-inflammatory intervention prenatally could offer a strategy to protect brain development during pregnancy.
Collapse
|
34
|
Chua CLL, Khoo SKM, Ong JLE, Ramireddi GK, Yeo TW, Teo A. Malaria in Pregnancy: From Placental Infection to Its Abnormal Development and Damage. Front Microbiol 2021; 12:777343. [PMID: 34867919 PMCID: PMC8636035 DOI: 10.3389/fmicb.2021.777343] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/20/2021] [Indexed: 11/24/2022] Open
Abstract
Malaria remains a global health burden with Plasmodium falciparum accounting for the highest mortality and morbidity. Malaria in pregnancy can lead to the development of placental malaria, where P. falciparum-infected erythrocytes adhere to placental receptors, triggering placental inflammation and subsequent damage, causing harm to both mother and her infant. Histopathological studies of P. falciparum-infected placentas revealed various placental abnormalities such as excessive perivillous fibrinoid deposits, breakdown of syncytiotrophoblast integrity, trophoblast basal lamina thickening, increased syncytial knotting, and accumulation of mononuclear immune cells within intervillous spaces. These events in turn, are likely to impair placental development and function, ultimately causing placental insufficiency, intrauterine growth restriction, preterm delivery and low birth weight. Hence, a better understanding of the mechanisms behind placental alterations and damage during placental malaria is needed for the design of effective interventions. In this review, using evidence from human studies and murine models, an integrated view on the potential mechanisms underlying placental pathologies in malaria in pregnancy is provided. The molecular, immunological and metabolic changes in infected placentas that reflect their responses to the parasitic infection and injury are discussed. Finally, potential models that can be used by researchers to improve our understanding on the pathogenesis of malaria in pregnancy and placental pathologies are presented.
Collapse
Affiliation(s)
| | | | - Jun Long Ernest Ong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | | | - Tsin Wen Yeo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- National Center for Infectious Diseases, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Andrew Teo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Medicine at Royal Melbourne Hospital, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
35
|
Rojas-Pirela M, Medina L, Rojas MV, Liempi AI, Castillo C, Pérez-Pérez E, Guerrero-Muñoz J, Araneda S, Kemmerling U. Congenital Transmission of Apicomplexan Parasites: A Review. Front Microbiol 2021; 12:751648. [PMID: 34659187 PMCID: PMC8519608 DOI: 10.3389/fmicb.2021.751648] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022] Open
Abstract
Apicomplexans are a group of pathogenic protists that cause various diseases in humans and animals that cause economic losses worldwide. These unicellular eukaryotes are characterized by having a complex life cycle and the ability to evade the immune system of their host organism. Infections caused by some of these parasites affect millions of pregnant women worldwide, leading to various adverse maternal and fetal/placental effects. Unfortunately, the exact pathogenesis of congenital apicomplexan diseases is far from being understood, including the mechanisms of how they cross the placental barrier. In this review, we highlight important aspects of the diseases caused by species of Plasmodium, Babesia, Toxoplasma, and Neospora, their infection during pregnancy, emphasizing the possible role played by the placenta in the host-pathogen interaction.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.,Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, Venezuela
| | - Lisvaneth Medina
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Maria Verónica Rojas
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Ana Isabel Liempi
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Christian Castillo
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Núcleo de Investigación Aplicada en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | | | - Jesús Guerrero-Muñoz
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sebastian Araneda
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Facultad de Salud y Odontología, Universidad Diego Portales, Santiago, Chile
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
36
|
Agbayani G, Clark K, Sandhu JK, Hewitt M, Sad S, Murphy SP, Krishnan L. IFN-alpha receptor deficiency enhances host resistance to oral Salmonella enterica serovar Typhimurium infection during murine pregnancy. Am J Reprod Immunol 2021; 86:e13454. [PMID: 33991140 DOI: 10.1111/aji.13454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
PROBLEM Maternal tolerance during pregnancy increases the risk of infection with certain intracellular pathogens. Systemic Salmonella enterica serovar Typhimurium (S.Tm) infection during pregnancy in normally resistant 129X1/SvJ mice leads to severe placental infection, as well as fetal and maternal deaths. However, the effect of oral infection with S.Tm in pregnant mice and the roles of infection-induced inflammation and cell death pathways in contributing to susceptibility to infection are unclear. METHOD OF STUDY Non-pregnant and pregnant C57BL/6J wild-type (WT) and cell death pathway-altered mice (IFNAR1-/- , Caspase-1, 11-/- , RIP3-/- ) were infected orally with S.Tm. Host survival and fetal resorption were determined. Bacterial burden in mesenteric lymph nodes (MLNs), spleen, liver, and placentas was enumerated at various time points post-infection. Serum cytokine expression was measured through cytometric bead array. RESULTS Oral infection of WT mice with S.Tm on days 9-10 of gestation resulted in systemic dissemination of the bacteria, substantial placental colonization, and fetal loss 5 days post-infection. Histopathological examination of the placentas indicated that infection-induced widespread focal necrosis and neutrophil infiltration throughout the spongiotrophoblast (SpT) layer. In the non-pregnant state, IFNAR1-/- mice exhibited increased survival following oral S.Tm infection relative to Caspase-1, 11-/- , RIP3-/- , and WT mice. The increased resistance to S.Tm infection in IFNAR1-/- mice was seen during pregnancy as well, with decreased bacterial burden within MLNs, spleen, and placenta, which correlated with the decreased resorptions relative to WT and Caspase-1, 11-/- mice. CONCLUSION Oral S.Tm exposure leads to placental infection, inflammation, and resorption, whereas IFNAR1 deficiency enhances host resistance both in the non-pregnant and pregnant states.
Collapse
Affiliation(s)
- Gerard Agbayani
- Division of Life Sciences, Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Kristina Clark
- Division of Life Sciences, Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Jagdeep K Sandhu
- Division of Life Sciences, Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Melissa Hewitt
- Division of Life Sciences, Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Subash Sad
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Shawn P Murphy
- Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA.,Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Lakshmi Krishnan
- Division of Life Sciences, Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
37
|
Sena-dos-Santos C, Braga-da-Silva C, Marques D, Azevedo dos Santos Pinheiro J, Ribeiro-dos-Santos Â, Cavalcante GC. Unraveling Cell Death Pathways during Malaria Infection: What Do We Know So Far? Cells 2021; 10:479. [PMID: 33672278 PMCID: PMC7926694 DOI: 10.3390/cells10020479] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022] Open
Abstract
Malaria is a parasitic disease (caused by different Plasmodium species) that affects millions of people worldwide. The lack of effective malaria drugs and a vaccine contributes to this disease, continuing to cause major public health and socioeconomic problems, especially in low-income countries. Cell death is implicated in malaria immune responses by eliminating infected cells, but it can also provoke an intense inflammatory response and lead to severe malaria outcomes. The study of the pathophysiological role of cell death in malaria in mammalians is key to understanding the parasite-host interactions and design prophylactic and therapeutic strategies for malaria. In this work, we review malaria-triggered cell death pathways (apoptosis, autophagy, necrosis, pyroptosis, NETosis, and ferroptosis) and we discuss their potential role in the development of new approaches for human malaria therapies.
Collapse
Affiliation(s)
- Camille Sena-dos-Santos
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66.075-110, Brazil; (C.S.-d.-S.); (C.B.-d.-S.); (D.M.); (J.A.d.S.P.); (Â.R.-d.-S.)
| | - Cíntia Braga-da-Silva
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66.075-110, Brazil; (C.S.-d.-S.); (C.B.-d.-S.); (D.M.); (J.A.d.S.P.); (Â.R.-d.-S.)
| | - Diego Marques
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66.075-110, Brazil; (C.S.-d.-S.); (C.B.-d.-S.); (D.M.); (J.A.d.S.P.); (Â.R.-d.-S.)
| | - Jhully Azevedo dos Santos Pinheiro
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66.075-110, Brazil; (C.S.-d.-S.); (C.B.-d.-S.); (D.M.); (J.A.d.S.P.); (Â.R.-d.-S.)
| | - Ândrea Ribeiro-dos-Santos
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66.075-110, Brazil; (C.S.-d.-S.); (C.B.-d.-S.); (D.M.); (J.A.d.S.P.); (Â.R.-d.-S.)
- Programa de Pós-Graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66.075-110, Brazil
| | - Giovanna C. Cavalcante
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66.075-110, Brazil; (C.S.-d.-S.); (C.B.-d.-S.); (D.M.); (J.A.d.S.P.); (Â.R.-d.-S.)
| |
Collapse
|
38
|
Pham TT, Lamb TJ, Deroost K, Opdenakker G, Van den Steen PE. Hemozoin in Malarial Complications: More Questions Than Answers. Trends Parasitol 2020; 37:226-239. [PMID: 33223096 DOI: 10.1016/j.pt.2020.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
Plasmodium parasites contain various virulence factors that modulate the host immune response. Malarial pigment, or hemozoin (Hz), is an undegradable crystalline product of the hemoglobin degradation pathway in the parasite and possesses immunomodulatory properties. An association has been found between Hz accumulation and severe malaria, suggesting that the effects of Hz on the host immune response may contribute to the development of malarial complications. Although the immunomodulatory roles of Hz have been widely investigated, many conflicting data exist, likely due to the variability between experimental set-ups and technical limitations of Hz generation and isolation methods. Here, we critically assess the potential immunomodulatory effects of Hz, its role in malarial complications, and its potential effects after parasite clearance.
Collapse
Affiliation(s)
- Thao-Thy Pham
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Tracey J Lamb
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Katrien Deroost
- Malaria Immunology Laboratory, The Francis Crick Institute, London, UK
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
39
|
Abstract
Purpose of Review Placental malaria is the primary mechanism through which malaria in pregnancy causes adverse perinatal outcomes. This review summarizes recent work on the significance, pathogenesis, diagnosis, and prevention of placental malaria. Recent Findings Placental malaria, characterized by the accumulation of Plasmodium-infected red blood cells in the placental intervillous space, leads to adverse perinatal outcomes such as stillbirth, low birth weight, preterm birth, and small-for-gestational-age neonates. Placental inflammatory responses may be primary drivers of these complications. Associated factors contributing to adverse outcomes include maternal gravidity, timing of perinatal infection, and parasite burden. Summary Placental malaria is an important cause of adverse birth outcomes in endemic regions. The main strategy to combat this is intermittent preventative treatment in pregnancy; however, increasing drug resistance threatens the efficacy of this approach. There are studies dissecting the inflammatory response to placental malaria, alternative preventative treatments, and in developing a vaccine for placental malaria.
Collapse
|
40
|
Hoo R, Nakimuli A, Vento-Tormo R. Innate Immune Mechanisms to Protect Against Infection at the Human Decidual-Placental Interface. Front Immunol 2020; 11:2070. [PMID: 33013876 PMCID: PMC7511589 DOI: 10.3389/fimmu.2020.02070] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/29/2020] [Indexed: 12/25/2022] Open
Abstract
During pregnancy, the placenta forms the anatomical barrier between the mother and developing fetus. Infectious agents can potentially breach the placental barrier resulting in pathogenic transmission from mother to fetus. Innate immune responses, orchestrated by maternal and fetal cells at the decidual-placental interface, are the first line of defense to avoid vertical transmission. Here, we outline the anatomy of the human placenta and uterine lining, the decidua, and discuss the potential capacity of pathogen pattern recognition and other host defense strategies present in the innate immune cells at the placental-decidual interface. We consider major congenital infections that access the placenta from hematogenous or decidual route. Finally, we highlight the challenges in studying human placental responses to pathogens and vertical transmission using current experimental models and identify gaps in knowledge that need to be addressed. We further propose novel experimental strategies to address such limitations.
Collapse
Affiliation(s)
- Regina Hoo
- Wellcome Sanger Institute, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Annettee Nakimuli
- Wellcome Sanger Institute, Cambridge, United Kingdom
- Department of Obstetrics and Gynecology, School of Medicine, Makerere University, Kampala, Uganda
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
41
|
Macedo-da-Silva J, Marinho CRF, Palmisano G, Rosa-Fernandes L. Lights and Shadows of TORCH Infection Proteomics. Genes (Basel) 2020; 11:E894. [PMID: 32764347 PMCID: PMC7464470 DOI: 10.3390/genes11080894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/25/2022] Open
Abstract
Congenital abnormalities cause serious fetal consequences. The term TORCH is used to designate the most common perinatal infections, where: (T) refers to toxoplasmosis, (O) means "others" and includes syphilis, varicella-zoster, parvovirus B19, zika virus (ZIKV), and malaria among others, (R) refers to rubella, (C) relates to cytomegalovirus infection, and (H) to herpes simplex virus infections. Among the main abnormalities identified in neonates exposed to congenital infections are central nervous system (CNS) damage, microcephaly, hearing loss, and ophthalmological impairment, all requiring regular follow-up to monitor its progression. Protein changes such as mutations, post-translational modifications, abundance, structure, and function may indicate a pathological condition before the onset of the first symptoms, allowing early diagnosis and understanding of a particular disease or infection. The term "proteomics" is defined as the science that studies the proteome, which consists of the total protein content of a cell, tissue or organism in a given space and time, including post-translational modifications (PTMs) and interactions between proteins. Currently, quantitative bottom-up proteomic strategies allow rapid and high throughput characterization of complex biological mixtures. Investigating proteome modulation during host-pathogen interaction helps in elucidating the mechanisms of infection and in predicting disease progression. This "molecular battle" between host and pathogen is a key to identify drug targets and diagnostic markers. Here, we conducted a survey on proteomic techniques applied to congenital diseases classified in the terminology "TORCH", including toxoplasmosis, ZIKV, malaria, syphilis, human immunodeficiency virus (HIV), herpes simplex virus (HSV) and human cytomegalovirus (HCVM). We have highlighted proteins and/or protein complexes actively involved in the infection. Most of the proteomic studies reported have been performed in cell line models, and the evaluation of tissues (brain, muscle, and placenta) and biofluids (plasma, serum and urine) in animal models is still underexplored. Moreover, there are a plethora of studies focusing on the pathogen or the host without considering the triad mother-fetus-pathogen as a dynamic and interconnected system.
Collapse
Affiliation(s)
- Janaina Macedo-da-Silva
- Glycoproteomics Laboratory, Department of Parasitology, University of Sao Paulo, Sao Paulo 05508-000, Brazil;
| | - Claudio Romero Farias Marinho
- Laboratory of Experimental Immunoparasitology, Department of Parasitology, University of Sao Paulo, Sao Paulo 05508-000, Brazil;
| | - Giuseppe Palmisano
- Glycoproteomics Laboratory, Department of Parasitology, University of Sao Paulo, Sao Paulo 05508-000, Brazil;
| | - Livia Rosa-Fernandes
- Glycoproteomics Laboratory, Department of Parasitology, University of Sao Paulo, Sao Paulo 05508-000, Brazil;
- Laboratory of Experimental Immunoparasitology, Department of Parasitology, University of Sao Paulo, Sao Paulo 05508-000, Brazil;
| |
Collapse
|
42
|
Guan H, Wang C, Zhang X. Increased Serum Expression of Inflammatory Cytokines may Serve as Potential Diagnostic Biomarker for Bilirubin Encephalopathy. Clinics (Sao Paulo) 2020; 75:e1868. [PMID: 33263631 PMCID: PMC7688072 DOI: 10.6061/clinics/2020/e1868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/25/2020] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES The present study was designed to explore the roles of inflammatory cytokines interleukin-1β (IL-1β) and Tumor growth factor-β (TGF-β) in the diagnosis and treatment of neonate bilirubin encephalopathy (BE). METHODS A total of 128 BE neonates and 128 normal neonates were included. The serum samples of the BE children and controls were collected, and the levels of IL-1β and TGF-β were examined. Moreover, the correlation between the level of bilirubin and serum expression of IL-1β or TGF-β in BE patients was analyzed. Finally, receiver operating characteristic (ROC) curves were generated to determine the diagnostic value of the cytokines. RESULTS IL-1β and TGF-β levels were higher in the serum of BE patients than those in non-BE patients, and the expression of either IL-1β or TGF-β showed a strong positive correlation with the serum expression of bilirubin in BE patients. Moreover, the results of ROC analysis showed that either IL-1β or TGF-β could distinguish BE patients from healthy controls. CONCLUSION IL-1β and TGF-β levels were upregulated in BE and might function as potential biomarkers or therapeutic targets for BE patients.
Collapse
Affiliation(s)
- Hanzhou Guan
- Department of Neonatology, Shanxi Provincial Children’s Hospital, Taiyuan, China
| | - Chenghu Wang
- Department of Neonatology, Shanxi Provincial Children’s Hospital, Taiyuan, China
| | - Xinhua Zhang
- Department of Neonatology, Shanxi Provincial Children’s Hospital, Taiyuan, China
- *Corresponding author. E-mail:
| |
Collapse
|