1
|
Rivera-Olvera A, Houwing DJ, Ellegood J, Masifi S, Martina SL, Silberfeld A, Pourquie O, Lerch JP, Francks C, Homberg JR, van Heukelum S, Grandjean J. The universe is asymmetric, the mouse brain too. Mol Psychiatry 2025; 30:489-496. [PMID: 39107583 DOI: 10.1038/s41380-024-02687-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 01/22/2025]
Abstract
Hemispheric brain asymmetry is a basic organizational principle of the human brain and has been implicated in various psychiatric conditions, including autism spectrum disorder. Brain asymmetry is not a uniquely human feature and is observed in other species such as the mouse. Yet, asymmetry patterns are generally nuanced, and substantial sample sizes are required to detect these patterns. In this pre-registered study, we use a mouse dataset from the Province of Ontario Neurodevelopmental Network, which comprises structural MRI data from over 2000 mice, including genetic models for autism spectrum disorder, to reveal the scope and magnitude of hemispheric asymmetry in the mouse. Our findings demonstrate the presence of robust hemispheric asymmetry in the mouse brain, such as larger right hemispheric volumes towards the anterior pole and larger left hemispheric volumes toward the posterior pole, opposite to what has been shown in humans. This suggests the existence of species-specific traits. Further clustering analysis identified distinct asymmetry patterns in autism spectrum disorder models, a phenomenon that is also seen in atypically developing participants. Our study shows potential for the use of mouse models to understand the biological bases of typical and atypical brain asymmetry but also warrants caution as asymmetry patterns seem to differ between humans and mice.
Collapse
Affiliation(s)
| | - Danielle J Houwing
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, M5T 3H7, Canada
| | - Shang Masifi
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
| | - Stephany Ll Martina
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
| | - Andrew Silberfeld
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Olivier Pourquie
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, M5T 3H7, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, Oxfordshire, OX39DU, UK
| | - Clyde Francks
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Judith R Homberg
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
| | - Sabrina van Heukelum
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
| | - Joanes Grandjean
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands.
- Department for Medical Imaging, Radboud University Medical Center, PO Box 9101, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Lv Z, Yu S, Jin X, Liu X, Dai M, Yun L, Chen Z. EEG reveals key features of binocular color fusion and rivalry. Brain Cogn 2025; 184:106268. [PMID: 39808956 DOI: 10.1016/j.bandc.2025.106268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/22/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Differences in the brain sensitivity to color responses may cause significant differences in the latency and amplitude of the electroencephalographic (EEG) component. This paper investigated the electroencephalography features of binocular color fusion and binocular color rivalry when watching stereoscopic three-dimensional (3D) displays. EEG experiments were conducted on a conventional 3D display platform. Eight subjects were involved to analyze differences in the event-related potential (ERP) and power spectrum when the brain perceived binocular color fusion and binocular color rivalry. Results show that: 1) the latencies of ERP components N1 and P2 of binocular color fusion were shorter than that of binocular color rivalry, 2) the amplitudes of the ERP components P2 and P3 of binocular color fusion were greater than that that of color rivalry, and 3) the left hemisphere was dominant for binocular color rivalry while the right hemisphere was greater involved in binocular color fusion. These results indicate that during the initial and mid-term cognitive processing, the brain response to binocular color fusion is faster than binocular color rivalry. Both binocular color fusion and rivalry involve visual post-processing, but binocular color fusion requires a greater allocation of neural resources. Power spectrum analysis revealed the cerebral lateralization in binocular color fusion and rivalry, it suggested that the way the brain processes this binocular input can have effects on its function.
Collapse
Affiliation(s)
- Zhineng Lv
- Yunnan Key Laboratory of Optoelectronic Information Technology, Kunming, China; Yuxi Key Laboratory of Mental Health Examination, Yuxi 653100, Yunnan, China; Engineering Research Center of Computer Vision and Intelligent Control Technology, Department of Education of Yunnan Province, Kunming, China
| | - Shisheng Yu
- School of Information Science and Technology, Yunnan Normal University, Kunming, China
| | - Xuesong Jin
- Yuxi Key Laboratory of Mental Health Examination, Yuxi 653100, Yunnan, China; Engineering Research Center of Computer Vision and Intelligent Control Technology, Department of Education of Yunnan Province, Kunming, China
| | - Xiang Liu
- Yunnan Key Laboratory of Optoelectronic Information Technology, Kunming, China; Yuxi Key Laboratory of Mental Health Examination, Yuxi 653100, Yunnan, China
| | - Mengshi Dai
- Yunnan Key Laboratory of Optoelectronic Information Technology, Kunming, China
| | - Lijun Yun
- Yuxi Key Laboratory of Mental Health Examination, Yuxi 653100, Yunnan, China; Engineering Research Center of Computer Vision and Intelligent Control Technology, Department of Education of Yunnan Province, Kunming, China
| | - Zaiqing Chen
- School of Information Science and Technology, Yunnan Normal University, Kunming, China; Yuxi Key Laboratory of Mental Health Examination, Yuxi 653100, Yunnan, China; Engineering Research Center of Computer Vision and Intelligent Control Technology, Department of Education of Yunnan Province, Kunming, China.
| |
Collapse
|
3
|
Chen C, Jiang Y, Wu Y, Cao L, Liao W. Exploring Brain Size Asymmetry and Its Relationship with Predation Risk Among Chinese Anurans. BIOLOGY 2025; 14:38. [PMID: 39857269 PMCID: PMC11762737 DOI: 10.3390/biology14010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025]
Abstract
Brain size asymmetry differs considerably across species, including humans, vertebrates, and invertebrates. The subtle structural, functional, or size differences between the two brain sides are associated with processing specific cognitive tasks. To evaluate the differences between the sizes of the left and right sides of the whole brain and brain regions and the effect of predation risk (i.e., snake density) on brain size asymmetry among Chinese anurans, we compared the differences between the left and right hemisphere sizes of the whole brain and brain regions among anuran species and analyzed the correlations between the predation risk and size asymmetry index of the brain and brain regions. We found that when one side of the brain was consistently larger than the other, there was a significant difference between the sizes of the left and right sides of the brain and brain regions, displaying directional asymmetry of the whole brain and brain regions. We also found that total brain size was positively correlated with the size asymmetry index of the olfactory bulb and optic tecta when the left hemispheres of the whole brain and brain regions were larger than the right ones. Meanwhile, the index of telencephalon size asymmetry was positively correlated with predation risk when the right hemispheres of the brain and brain regions were larger than the left ones. However, there were non-significant differences between the sizes of the left and right sides of the brain and brain regions across 99 species of anurans. Our findings suggest that an increased predation risk linked to sociality is likely to drive an increase in right telencephalon size.
Collapse
Affiliation(s)
- Chuan Chen
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China; (C.C.); (Y.J.); (Y.W.); (L.C.)
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Ying Jiang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China; (C.C.); (Y.J.); (Y.W.); (L.C.)
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yiming Wu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China; (C.C.); (Y.J.); (Y.W.); (L.C.)
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong 637009, China
- College of Panda, China West Normal University, Nanchong 637009, China
| | - Lingsen Cao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China; (C.C.); (Y.J.); (Y.W.); (L.C.)
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong 637009, China
- College of Panda, China West Normal University, Nanchong 637009, China
| | - Wenbo Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China; (C.C.); (Y.J.); (Y.W.); (L.C.)
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong 637009, China
- College of Panda, China West Normal University, Nanchong 637009, China
| |
Collapse
|
4
|
Mahon S. Variation and convergence in the morpho-functional properties of the mammalian neocortex. Front Syst Neurosci 2024; 18:1413780. [PMID: 38966330 PMCID: PMC11222651 DOI: 10.3389/fnsys.2024.1413780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
Man's natural inclination to classify and hierarchize the living world has prompted neurophysiologists to explore possible differences in brain organisation between mammals, with the aim of understanding the diversity of their behavioural repertoires. But what really distinguishes the human brain from that of a platypus, an opossum or a rodent? In this review, we compare the structural and electrical properties of neocortical neurons in the main mammalian radiations and examine their impact on the functioning of the networks they form. We discuss variations in overall brain size, number of neurons, length of their dendritic trees and density of spines, acknowledging their increase in humans as in most large-brained species. Our comparative analysis also highlights a remarkable consistency, particularly pronounced in marsupial and placental mammals, in the cell typology, intrinsic and synaptic electrical properties of pyramidal neuron subtypes, and in their organisation into functional circuits. These shared cellular and network characteristics contribute to the emergence of strikingly similar large-scale physiological and pathological brain dynamics across a wide range of species. These findings support the existence of a core set of neural principles and processes conserved throughout mammalian evolution, from which a number of species-specific adaptations appear, likely allowing distinct functional needs to be met in a variety of environmental contexts.
Collapse
Affiliation(s)
- Séverine Mahon
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| |
Collapse
|
5
|
Chen YC, Tiego J, Segal A, Chopra S, Holmes A, Suo C, Pang JC, Fornito A, Aquino KM. A multiscale characterization of cortical shape asymmetries in early psychosis. Brain Commun 2024; 6:fcae015. [PMID: 38347944 PMCID: PMC10859637 DOI: 10.1093/braincomms/fcae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/29/2023] [Accepted: 01/19/2024] [Indexed: 02/15/2024] Open
Abstract
Psychosis has often been linked to abnormal cortical asymmetry, but prior results have been inconsistent. Here, we applied a novel spectral shape analysis to characterize cortical shape asymmetries in patients with early psychosis across different spatial scales. We used the Human Connectome Project for Early Psychosis dataset (aged 16-35), comprising 56 healthy controls (37 males, 19 females) and 112 patients with early psychosis (68 males, 44 females). We quantified shape variations of each hemisphere over different spatial frequencies and applied a general linear model to compare differences between healthy controls and patients with early psychosis. We further used canonical correlation analysis to examine associations between shape asymmetries and clinical symptoms. Cortical shape asymmetries, spanning wavelengths from about 22 to 75 mm, were significantly different between healthy controls and patients with early psychosis (Cohen's d = 0.28-0.51), with patients showing greater asymmetry in cortical shape than controls. A single canonical mode linked the asymmetry measures to symptoms (canonical correlation analysis r = 0.45), such that higher cortical asymmetry was correlated with more severe excitement symptoms and less severe emotional distress. Significant group differences in the asymmetries of traditional morphological measures of cortical thickness, surface area, and gyrification, at either global or regional levels, were not identified. Cortical shape asymmetries are more sensitive than other morphological asymmetries in capturing abnormalities in patients with early psychosis. These abnormalities are expressed at coarse spatial scales and are correlated with specific symptom domains.
Collapse
Affiliation(s)
- Yu-Chi Chen
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, and Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
- Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
- Monash Data Futures Institute, Monash University, Melbourne 3800, Australia
- Brain and Mind Centre, University of Sydney, Sydney 2050, Australia
- Brain Dynamic Centre, Westmead Institute for Medical Research, University of Sydney, Sydney 2145, Australia
| | - Jeggan Tiego
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, and Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
- Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
| | - Ashlea Segal
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, and Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
- Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
- Department of Psychology, Yale University, New Haven, CT 06511, USA
| | - Sidhant Chopra
- Department of Psychology, Yale University, New Haven, CT 06511, USA
| | - Alexander Holmes
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, and Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
- Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
| | - Chao Suo
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, and Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
- Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
- BrainPark, School of Psychological Sciences, Monash University, Melbourne 3800, Australia
| | - James C Pang
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, and Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
- Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
| | - Alex Fornito
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, and Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
- Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
| | - Kevin M Aquino
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, and Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
- Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
- School of Physics, University of Sydney, Sydney 2050, Australia
- Center of Excellence for Integrative Brain Function, University of Sydney, Sydney 2050, Australia
- BrainKey Inc, San Francisco, CA 94103, USA
| |
Collapse
|
6
|
Rappaport MB, Corbally CJ. Toward an Etiology of Spaceflight Neuroplastic Syndrome: Evolutionary Science Leads to New Hypotheses and Program Priorities. NEUROSCI 2023; 4:247-262. [PMID: 39484176 PMCID: PMC11523727 DOI: 10.3390/neurosci4040021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 11/03/2024] Open
Abstract
Evolutionary theory is applied to recent neuroscientific findings on factors associated with risk-and-reward systems, and consequently, aspects of human decision making in spaceflight. Factors include enzymes aiding metabolic pathways of dopamine and serotonin; neurotrophic factors supporting neuronal functioning and plasticity; and genes associated with serotonin and dopamine systems. Not all factors are at risk in spaceflight. Some remain stable. It is hypothesized that neural deconditioning in spaceflight arises from faulty signals sent to the brain and gut in attempting to adapt phenotypically to a novel space environment. There is a mismatch between terrestrial selection pressures during human evolution and conditions of cosmic radiation, microgravity, and higher CO2, which together cause scattered results. A contrary question is broached: Given these findings, why are human sequelae not worse? Discussion of programmatic issues then focuses on methodologies to determine the suitability of civilians for spaceflight, an issue that grows more pressing while more varied populations prepare for spaceflight in LEO and on, and in orbit around the Moon.
Collapse
|
7
|
Zhou W, Qin C, Chang J, Liu Y, Chen Y, Feng M, Wang R, Yang W, Yao J. Standardized measurement of mid-surface shift of brain based on deep Hough transform. Comput Med Imaging Graph 2023; 108:102284. [PMID: 37567044 DOI: 10.1016/j.compmedimag.2023.102284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023]
Abstract
The measurement of mid-surface shift (MSS), the geometric displacement between the actual mid-surface and the ideal midsagittal plane (iMSP), is of great significance for accurate diagnosis, treatment and prognosis of patients with intracranial hemorrhage (ICH). Most previous studies are subject to inherent inaccuracy on account of calculating midline shift (MLS) based on 2D slices and ignoring pathological conditions. In this study, we propose a novel standardized measurement model to quantify the distance and the overall volume of mid-surface shift (MSS-D, MSS-V). Our work has four highlights. First, we develop an end-to-end network architecture with multiple sub-tasks including the actual mid-surface segmentation, hematoma segmentation and iMSP detection, which significantly improves the efficiency and accuracy of MSS measurement by taking advantage of the common properties among tasks. Second, an efficient iMSP detection scheme is proposed based on the differentiable deep Hough transform (DHT), which converts and simplifies the plane detection problem in the image space into a keypoint detection problem in the Hough space. Third, we devise a sparse DHT strategy and a weighted least square (WLS) method to increase the sparsity of features, improving inference speed and greatly reducing computation cost. Fourth, we design a joint loss function to comprehensively consider the correlation of features between multi-tasks and multi-domains. Extensive validation on our large in-house dataset (519 patients) and the public CQ500 dataset (491 patients), demonstrates the superiority of our method over the state-of-the-art methods.
Collapse
Affiliation(s)
- Wenxue Zhou
- Tencent AI Lab, Shenzhen, China; Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | | | - Jianbo Chang
- Peking Union Medical College Hospital, Beijing, China
| | | | - Yihao Chen
- Peking Union Medical College Hospital, Beijing, China
| | - Ming Feng
- Peking Union Medical College Hospital, Beijing, China
| | - Renzhi Wang
- Peking Union Medical College Hospital, Beijing, China
| | - Wenming Yang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | | |
Collapse
|
8
|
Wang J, Ma S, Yu P, He X. Evolution of Human Brain Left-Right Asymmetry: Old Genes with New Functions. Mol Biol Evol 2023; 40:msad181. [PMID: 37561991 PMCID: PMC10473864 DOI: 10.1093/molbev/msad181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/21/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
The human brain is generally anatomically symmetrical, boasting mirror-like brain regions in the left and right hemispheres. Despite this symmetry, fine-scale structural asymmetries are prevalent and are believed to be responsible for distinct functional divisions within the brain. Prior studies propose that these asymmetric structures are predominantly primate specific or even unique to humans, suggesting that the genes contributing to the structural asymmetry of the human brain might have evolved recently. In our study, we identified approximately 1,500 traits associated with human brain asymmetry by collecting paired brain magnetic resonance imaging features from the UK Biobank. Each trait is measured in a specific region of one hemisphere and mirrored in the corresponding region of the other hemisphere. Conducting genome-wide association studies on these traits, we identified over 1,000 quantitative trait loci. Around these index single nucleotide polymorphisms, we found approximately 200 genes that are enriched in brain-related Gene Ontology terms and are predominantly upregulated in brain tissues. Interestingly, most of these genes are evolutionarily old, originating just prior to the emergence of Bilateria (bilaterally symmetrical animals) and Euteleostomi (bony vertebrates with a brain), at a significantly higher ratio than expected. Further analyses of these genes reveal a brain-specific upregulation in humans relative to other mammalian species. This suggests that the structural asymmetry of the human brain has been shaped by evolutionarily ancient genes that have assumed new functions over time.
Collapse
Affiliation(s)
- Jianguo Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Sidi Ma
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Peijie Yu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | | |
Collapse
|
9
|
Kozol RA, Conith AJ, Yuiska A, Cree-Newman A, Tolentino B, Benesh K, Paz A, Lloyd E, Kowalko JE, Keene AC, Albertson C, Duboue ER. A brain-wide analysis maps structural evolution to distinct anatomical module. eLife 2023; 12:e80777. [PMID: 37498318 PMCID: PMC10435234 DOI: 10.7554/elife.80777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/26/2023] [Indexed: 07/28/2023] Open
Abstract
The vertebrate brain is highly conserved topologically, but less is known about neuroanatomical variation between individual brain regions. Neuroanatomical variation at the regional level is hypothesized to provide functional expansion, building upon ancestral anatomy needed for basic functions. Classically, animal models used to study evolution have lacked tools for detailed anatomical analysis that are widely used in zebrafish and mice, presenting a barrier to studying brain evolution at fine scales. In this study, we sought to investigate the evolution of brain anatomy using a single species of fish consisting of divergent surface and cave morphs, that permits functional genetic testing of regional volume and shape across the entire brain. We generated a high-resolution brain atlas for the blind Mexican cavefish Astyanax mexicanus and coupled the atlas with automated computational tools to directly assess variability in brain region shape and volume across all populations. We measured the volume and shape of every grossly defined neuroanatomical region of the brain and assessed correlations between anatomical regions in surface fish, cavefish, and surface × cave F2 hybrids, whose phenotypes span the range of surface to cave. We find that dorsal regions of the brain are contracted, while ventral regions have expanded, with F2 hybrid data providing support for developmental constraint along the dorsal-ventral axis. Furthermore, these dorsal-ventral relationships in anatomical variation show similar patterns for both volume and shape, suggesting that the anatomical evolution captured by these two parameters could be driven by similar developmental mechanisms. Together, these data demonstrate that A. mexicanus is a powerful system for functionally determining basic principles of brain evolution and will permit testing how genes influence early patterning events to drive brain-wide anatomical evolution.
Collapse
Affiliation(s)
- Robert A Kozol
- Jupiter Life Science Initiative, Florida Atlantic UniversityJupiterUnited States
| | - Andrew J Conith
- Department of Biology, University of Massachusetts AmherstAmherstUnited States
| | - Anders Yuiska
- Jupiter Life Science Initiative, Florida Atlantic UniversityJupiterUnited States
| | - Alexia Cree-Newman
- Jupiter Life Science Initiative, Florida Atlantic UniversityJupiterUnited States
| | - Bernadeth Tolentino
- Jupiter Life Science Initiative, Florida Atlantic UniversityJupiterUnited States
| | - Kasey Benesh
- Jupiter Life Science Initiative, Florida Atlantic UniversityJupiterUnited States
| | - Alexandra Paz
- Jupiter Life Science Initiative, Florida Atlantic UniversityJupiterUnited States
| | - Evan Lloyd
- Department of Biology, Texas A&M UniversityCollege StationUnited States
| | - Johanna E Kowalko
- Department of Biological Sciences, Lehigh UniversityBethlehemUnited States
| | - Alex C Keene
- Department of Biology, Texas A&M UniversityCollege StationUnited States
| | - Craig Albertson
- Department of Biology, University of Massachusetts AmherstAmherstUnited States
| | - Erik R Duboue
- Jupiter Life Science Initiative, Florida Atlantic UniversityJupiterUnited States
| |
Collapse
|
10
|
Roe JM, Vidal-Pineiro D, Amlien IK, Pan M, Sneve MH, Thiebaut de Schotten M, Friedrich P, Sha Z, Francks C, Eilertsen EM, Wang Y, Walhovd KB, Fjell AM, Westerhausen R. Tracing the development and lifespan change of population-level structural asymmetry in the cerebral cortex. eLife 2023; 12:e84685. [PMID: 37335613 PMCID: PMC10368427 DOI: 10.7554/elife.84685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/16/2023] [Indexed: 06/21/2023] Open
Abstract
Cortical asymmetry is a ubiquitous feature of brain organization that is subtly altered in some neurodevelopmental disorders, yet we lack knowledge of how its development proceeds across life in health. Achieving consensus on the precise cortical asymmetries in humans is necessary to uncover the developmental timing of asymmetry and the extent to which it arises through genetic and later influences in childhood. Here, we delineate population-level asymmetry in cortical thickness and surface area vertex-wise in seven datasets and chart asymmetry trajectories longitudinally across life (4-89 years; observations = 3937; 70% longitudinal). We find replicable asymmetry interrelationships, heritability maps, and test asymmetry associations in large-scale data. Cortical asymmetry was robust across datasets. Whereas areal asymmetry is predominantly stable across life, thickness asymmetry grows in childhood and peaks in early adulthood. Areal asymmetry is low-moderately heritable (max h2SNP ~19%) and correlates phenotypically and genetically in specific regions, indicating coordinated development of asymmetries partly through genes. In contrast, thickness asymmetry is globally interrelated across the cortex in a pattern suggesting highly left-lateralized individuals tend towards left-lateralization also in population-level right-asymmetric regions (and vice versa), and exhibits low or absent heritability. We find less areal asymmetry in the most consistently lateralized region in humans associates with subtly lower cognitive ability, and confirm small handedness and sex effects. Results suggest areal asymmetry is developmentally stable and arises early in life through genetic but mainly subject-specific stochastic effects, whereas childhood developmental growth shapes thickness asymmetry and may lead to directional variability of global thickness lateralization in the population.
Collapse
Affiliation(s)
- James M Roe
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of OsloOsloNorway
| | - Didac Vidal-Pineiro
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of OsloOsloNorway
| | - Inge K Amlien
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of OsloOsloNorway
| | - Mengyu Pan
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of OsloOsloNorway
| | - Markus H Sneve
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of OsloOsloNorway
| | - Michel Thiebaut de Schotten
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of BordeauxBordeauxFrance
- Brian Connectivity and Behaviour Laboratory, Sorbonne UniversityParisFrance
| | - Patrick Friedrich
- Institute of Neuroscience and Medicine, Research Centre JülichJülichGermany
| | - Zhiqiang Sha
- Language and Genetics Department, Max Planck Institute for PsycholinguisticsNijmegenNetherlands
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for PsycholinguisticsNijmegenNetherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud UniversityNijmegenNetherlands
- Department of Human Genetics, Radboud University Medical CenterNijmegenNetherlands
| | - Espen M Eilertsen
- PROMENTA Research Center, Department of Psychology, University of OsloOsloNorway
| | - Yunpeng Wang
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of OsloOsloNorway
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of OsloOsloNorway
- Department of Radiology and Nuclear Medicine, Oslo University HospitalOsloNorway
| | - Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of OsloOsloNorway
- Department of Radiology and Nuclear Medicine, Oslo University HospitalOsloNorway
| | - René Westerhausen
- Section for Cognitive and Clinical Neuroscience, Department of Psychology, University of OsloOsloNorway
| |
Collapse
|
11
|
de Sousa AA, Beaudet A, Calvey T, Bardo A, Benoit J, Charvet CJ, Dehay C, Gómez-Robles A, Gunz P, Heuer K, van den Heuvel MP, Hurst S, Lauters P, Reed D, Salagnon M, Sherwood CC, Ströckens F, Tawane M, Todorov OS, Toro R, Wei Y. From fossils to mind. Commun Biol 2023; 6:636. [PMID: 37311857 PMCID: PMC10262152 DOI: 10.1038/s42003-023-04803-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/04/2023] [Indexed: 06/15/2023] Open
Abstract
Fossil endocasts record features of brains from the past: size, shape, vasculature, and gyrification. These data, alongside experimental and comparative evidence, are needed to resolve questions about brain energetics, cognitive specializations, and developmental plasticity. Through the application of interdisciplinary techniques to the fossil record, paleoneurology has been leading major innovations. Neuroimaging is shedding light on fossil brain organization and behaviors. Inferences about the development and physiology of the brains of extinct species can be experimentally investigated through brain organoids and transgenic models based on ancient DNA. Phylogenetic comparative methods integrate data across species and associate genotypes to phenotypes, and brains to behaviors. Meanwhile, fossil and archeological discoveries continuously contribute new knowledge. Through cooperation, the scientific community can accelerate knowledge acquisition. Sharing digitized museum collections improves the availability of rare fossils and artifacts. Comparative neuroanatomical data are available through online databases, along with tools for their measurement and analysis. In the context of these advances, the paleoneurological record provides ample opportunity for future research. Biomedical and ecological sciences can benefit from paleoneurology's approach to understanding the mind as well as its novel research pipelines that establish connections between neuroanatomy, genes and behavior.
Collapse
Affiliation(s)
| | - Amélie Beaudet
- Laboratoire de Paléontologie, Évolution, Paléoécosystèmes et Paléoprimatologie (PALEVOPRIM), UMR 7262 CNRS & Université de Poitiers, Poitiers, France.
- University of Cambridge, Cambridge, UK.
| | - Tanya Calvey
- Division of Clinical Anatomy and Biological Anthropology, University of Cape Town, Cape Town, South Africa.
| | - Ameline Bardo
- UMR 7194, CNRS-MNHN, Département Homme et Environnement, Musée de l'Homme, Paris, France
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Julien Benoit
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Christine J Charvet
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Colette Dehay
- University of Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, F-69500, Bron, France
| | | | - Philipp Gunz
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103, Leipzig, Germany
| | - Katja Heuer
- Institut Pasteur, Université Paris Cité, Unité de Neuroanatomie Appliquée et Théorique, F-75015, Paris, France
| | | | - Shawn Hurst
- University of Indianapolis, Indianapolis, IN, USA
| | - Pascaline Lauters
- Institut royal des Sciences naturelles, Direction Opérationnelle Terre et Histoire de la Vie, Brussels, Belgium
| | - Denné Reed
- Department of Anthropology, University of Texas at Austin, Austin, TX, USA
| | - Mathilde Salagnon
- CNRS, CEA, IMN, GIN, UMR 5293, Université Bordeaux, Bordeaux, France
- PACEA UMR 5199, CNRS, Université Bordeaux, Pessac, France
| | - Chet C Sherwood
- Department of Anthropology, The George Washington University, Washington, DC, USA
| | - Felix Ströckens
- C. & O. Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Mirriam Tawane
- Ditsong National Museum of Natural History, Pretoria, South Africa
| | - Orlin S Todorov
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Roberto Toro
- Institut Pasteur, Université Paris Cité, Unité de Neuroanatomie Appliquée et Théorique, F-75015, Paris, France
| | - Yongbin Wei
- Beijing University of Posts and Telecommunications, Beijing, China
| |
Collapse
|
12
|
van den Heuvel MP, Ardesch DJ, Scholtens LH, de Lange SC, van Haren NEM, Sommer IEC, Dannlowski U, Repple J, Preuss TM, Hopkins WD, Rilling JK. Human and chimpanzee shared and divergent neurobiological systems for general and specific cognitive brain functions. Proc Natl Acad Sci U S A 2023; 120:e2218565120. [PMID: 37216540 PMCID: PMC10235977 DOI: 10.1073/pnas.2218565120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/03/2023] [Indexed: 05/24/2023] Open
Abstract
A long-standing topic of interest in human neurosciences is the understanding of the neurobiology underlying human cognition. Less commonly considered is to what extent such systems may be shared with other species. We examined individual variation in brain connectivity in the context of cognitive abilities in chimpanzees (n = 45) and humans in search of a conserved link between cognition and brain connectivity across the two species. Cognitive scores were assessed on a variety of behavioral tasks using chimpanzee- and human-specific cognitive test batteries, measuring aspects of cognition related to relational reasoning, processing speed, and problem solving in both species. We show that chimpanzees scoring higher on such cognitive skills display relatively strong connectivity among brain networks also associated with comparable cognitive abilities in the human group. We also identified divergence in brain networks that serve specialized functions across humans and chimpanzees, such as stronger language connectivity in humans and relatively more prominent connectivity between regions related to spatial working memory in chimpanzees. Our findings suggest that core neural systems of cognition may have evolved before the divergence of chimpanzees and humans, along with potential differential investments in other brain networks relating to specific functional specializations between the two species.
Collapse
Affiliation(s)
- Martijn P. van den Heuvel
- Department of Complex Traits Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam1081 HV, the Netherlands
- Department of Child Psychiatry, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam1081 HV, the Netherlands
| | - Dirk Jan Ardesch
- Department of Complex Traits Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam1081 HV, the Netherlands
| | - Lianne H. Scholtens
- Department of Complex Traits Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam1081 HV, the Netherlands
| | - Siemon C. de Lange
- Department of Complex Traits Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam1081 HV, the Netherlands
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, An institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam1105 BA, the Netherlands
| | - Neeltje E. M. van Haren
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht3584 CX, the Netherlands
- Department of Child and Adolescent Psychiatry, Erasmus Medical Center, Rotterdam3015 CE, the Netherlands
| | - Iris E. C. Sommer
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen9700 RB, the Netherlands
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster48149, Germany
| | - Jonathan Repple
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt60438, Germany
| | - Todd M. Preuss
- Emory National Primate Research Center, Emory University, Atlanta, GA30329
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA30307
| | - William D. Hopkins
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, University of Texas MD Anderson Cancer Center, Bastrop, TX77030
| | - James K. Rilling
- Emory National Primate Research Center, Emory University, Atlanta, GA30329
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA30329
- Department of Anthropology, Emory University, Atlanta, GA30322
- Silvio O. Conte Center for Oxytocin and Social Cognition, Emory University, Atlanta, GA30322
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA30322
| |
Collapse
|
13
|
Pearson A, Bruner E, Polly PD. Updated imaging and phylogenetic comparative methods reassess relative temporal lobe size in anthropoids and modern humans. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 180:768-776. [PMID: 36789740 DOI: 10.1002/ajpa.24712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 12/13/2022] [Accepted: 01/24/2023] [Indexed: 02/16/2023]
Abstract
OBJECTIVES Two decades ago, Rilling and Seligman, hereafter abbreviated to RAS Study, suggested modern humans had relatively larger temporal lobes for brain size compared to other anthropoids. Despite many subsequent studies drawing conclusions about the evolutionary implications for the emergence of unique cerebral specializations in Homo sapiens, no re-assessment has occurred using updated methodologies. METHODS We reassessed the association between right temporal lobe volume (TLV) and right hemisphere volume (HV) in the anthropoid brain. In a sample compiled de novo by us, T1-weighted in vivo Magnetic Resonance Imaging (MRI) scans of 11 extant anthropoid species were calculated by-voxel from the MRI and the raw data from RAS Study directly compared to our sample. Phylogenetic Generalized Least-Squares (PGLS) regression and trait-mapping using Blomberg's K (kappa) tested the correlation between HV and TLV accounting for anthropoid phylogeny, while bootstrapped PGLS regressions tested difference in slopes and intercepts between monkey and ape subsamples. RESULTS PGLS regressions indicated statistically significant correlations (r2 < 0.99; p ≤ 0.0001) between TLV and HV with moderate influence from phylogeny (K ≤ 0.42). Bootstrapped PGLS regression did not show statistically significant differences in slopes between monkeys and apes but did for intercepts. In our sample, human TLV was not larger than expected for anthropoids. DISCUSSION Updated imaging, increased sample size and advanced statistical analyses did not find statistically significant results that modern humans possessed a disproportionately large temporal lobe volume compared to the general anthropoid trend. This has important implications for human and non-human primate brain evolution.
Collapse
Affiliation(s)
- Alannah Pearson
- School of Archaeology and Anthropology, The Australian National University, Canberra, Australia
| | - Emiliano Bruner
- Paleoneurobiology of Hominins, Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| | - P David Polly
- Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
14
|
Bardo A, Filippo A, Balzeau A. Lateralized behaviors in living humans: Application in the context of hominin brain evolution. PROGRESS IN BRAIN RESEARCH 2023; 275:143-164. [PMID: 36841567 DOI: 10.1016/bs.pbr.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The left and right hemispheres of our brains differ subtly in structure, and each is dominant in processing specific cognitive tasks. Our species has a unique system of distributing behavior and cognition between each cerebral hemisphere, with a preponderance of pronounced side biases and lateralized functions. This hemisphere-dependent relationship between cognitive, sensory or motor function and a set of brain structures is called hemispheric specialization. Hemispheric specialization has led to the emergence of model systems to link anatomical asymmetries to brain function and behavior. Scientific research on hemispheric specialization and lateralized functions in living humans focuses on three major domains: (1) hand preferences, (2) language, and (3) visuospatial skills and attention. In this chapter we present an overview of this research with a specific focus on living humans and the applications of this research in the context of hominin brain evolution. Our objective is to put into perspective what we know about brain-behavior relationships in living humans and how we can apply the same methods to investigate this relationship in fossil hominin species, and thus improve our understanding of the emergence and development of complex cognitive abilities.
Collapse
Affiliation(s)
- Ameline Bardo
- UMR 7194, CNRS-MNHN, Département Homme et Environnement, Musée de l'Homme, Paris, France; Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, United Kingdom.
| | - Andréa Filippo
- UMR 7194, CNRS-MNHN, Département Homme et Environnement, Musée de l'Homme, Paris, France
| | - Antoine Balzeau
- UMR 7194, CNRS-MNHN, Département Homme et Environnement, Musée de l'Homme, Paris, France; Department of African Zoology, Royal Museum for Central Africa, Tervuren, Belgium & Laboratory of Histology and Neuropathology, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
15
|
Saltoun K, Adolphs R, Paul LK, Sharma V, Diedrichsen J, Yeo BTT, Bzdok D. Dissociable brain structural asymmetry patterns reveal unique phenome-wide profiles. Nat Hum Behav 2023; 7:251-268. [PMID: 36344655 DOI: 10.1038/s41562-022-01461-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 09/16/2022] [Indexed: 11/09/2022]
Abstract
Broca reported ~150 years ago that particular lesions of the left hemisphere impair speech. Since then, other brain regions have been reported to show lateralized structure and function. Yet, studies of brain asymmetry have limited their focus to pairwise comparisons between homologous regions. Here, we characterized separable whole-brain asymmetry patterns in grey and white matter structure from n = 37,441 UK Biobank participants. By pooling information on left-right shifts underlying whole-brain structure, we deconvolved signatures of brain asymmetry that are spatially distributed rather than locally constrained. Classically asymmetric regions turned out to belong to more than one asymmetry pattern. Instead of a single dominant signature, we discovered complementary asymmetry patterns that contributed similarly to whole-brain asymmetry at the population level. These asymmetry patterns were associated with unique collections of phenotypes, ranging from early lifestyle factors to demographic status to mental health indicators.
Collapse
Affiliation(s)
- Karin Saltoun
- McConnell Brain Imaging Centre, Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada.,Mila - Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada.,Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.,School of Computer Science, McGill University, Quebec, Canada
| | - Ralph Adolphs
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lynn K Paul
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA.,International Research Consortium for the Corpus Callosum and Cerebral Connectivity (IRC5), Pasadena, CA, USA.,Fuller Graduate School of Psychology, Travis Research Institute, Pasadena, CA, USA
| | - Vaibhav Sharma
- McConnell Brain Imaging Centre, Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada.,Mila - Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| | - Joern Diedrichsen
- The Brain and Mind Institute, Western University, London, Ontario, Canada.,Department of Computer Science, Western University, London, Ontario, Canada.,Department of Statistical and Actuarial Sciences, Western University, London, Ontario, Canada
| | - B T Thomas Yeo
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.,Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore, Singapore.,N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
| | - Danilo Bzdok
- McConnell Brain Imaging Centre, Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada. .,Mila - Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada.
| |
Collapse
|
16
|
Fu W, Xu J, Wang X, Li Y, He S, Wang C, Ren Y, Yang B, Wu T, Wang Y, Li B. Consistency of limb preference across unimanual feeding, bipedal locomotion, and social grooming in golden snub-nosed monkeys ( Rhinopithecus roxellana). Laterality 2023; 28:32-47. [PMID: 36859828 DOI: 10.1080/1357650x.2022.2141251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The golden snub-nosed monkey (Rhinopithecus roxellana) is a typical arboreal group-living Old World primate. While limb preference has been extensively studied in this species, limb preference consistency has not yet been explored. Here, based on 26 R. roxellana adults, we investigated whether individuals exhibit consistent motor biases in manual- (e.g., unimanual feeding and social grooming) and foot-related (e.g., bipedal locomotion) tasks and whether limb preference consistency is influenced by increased social interactions during social grooming. Results showed no consistency in the direction or strength of limb preference among tasks, except for lateral strength in handedness for unimanual feeding and footedness in the initiation of locomotion. Population-level foot preference was only found among right-handers. Marked lateral bias was found in unimanual feeding, indicating that it may be a sensitive behavioural measure for assessing manual preference, especially for provisioned populations. This study not only improves our understanding of the relationship between hand and foot preference in R. roxellana but also reveals potential differential hemispheric regulation of limb preference and the influence of increased social interaction on handedness consistency.
Collapse
Affiliation(s)
- Weiwei Fu
- Shaanxi Key Laboratory for Animal Conservation, Shaanxi Institute of Zoology, Xi'an, People's Republic of China
| | - Jianghui Xu
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, People's Republic of China
| | - Xiaowei Wang
- Shaanxi Key Laboratory for Animal Conservation, Shaanxi Institute of Zoology, Xi'an, People's Republic of China
| | - Yongbo Li
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, People's Republic of China
| | - Shujun He
- Shaanxi Key Laboratory for Animal Conservation, Shaanxi Institute of Zoology, Xi'an, People's Republic of China
| | - Chengliang Wang
- Shaanxi Key Laboratory for Animal Conservation, Shaanxi Institute of Zoology, Xi'an, People's Republic of China
| | - Yi Ren
- Shaanxi Key Laboratory for Animal Conservation, Shaanxi Institute of Zoology, Xi'an, People's Republic of China
| | - Bin Yang
- Shaanxi Key Laboratory for Animal Conservation, Shaanxi Institute of Zoology, Xi'an, People's Republic of China
| | - Tong Wu
- Shaanxi Key Laboratory for Animal Conservation, Shaanxi Institute of Zoology, Xi'an, People's Republic of China
| | - Yan Wang
- Shaanxi Key Laboratory for Animal Conservation, Shaanxi Institute of Zoology, Xi'an, People's Republic of China
| | - Baoguo Li
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, People's Republic of China
| |
Collapse
|
17
|
Homo sapiens and Neanderthals share high cerebral cortex integration into adulthood. Nat Ecol Evol 2023; 7:42-50. [PMID: 36604552 DOI: 10.1038/s41559-022-01933-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/11/2022] [Indexed: 01/07/2023]
Abstract
There is controversy around the mechanisms that guided the change in brain shape during the evolution of modern humans. It has long been held that different cortical areas evolved independently from each other to develop their unique functional specializations. However, some recent studies suggest that high integration between different cortical areas could facilitate the emergence of equally extreme, highly specialized brain functions. Here, we analyse the evolution of brain shape in primates using three-dimensional geometric morphometrics of endocasts. We aim to determine, firstly, whether modern humans present unique developmental patterns of covariation between brain cortical areas; and secondly, whether hominins experienced unusually high rates of evolution in brain covariation as compared to other primates. On the basis of analyses including modern humans and other extant great apes at different developmental stages, we first demonstrate that, unlike our closest living relatives, Homo sapiens retain high levels of covariation between cortical areas into adulthood. Among the other great apes, high levels of covariation are only found in immature individuals. Secondly, at the macro-evolutionary level, our analysis of 400 endocasts, representing 148 extant primate species and 6 fossil hominins, shows that strong covariation between different areas of the brain in H. sapiens and Homo neanderthalensis evolved under distinctly higher evolutionary rates than in any other primate, suggesting that natural selection favoured a greatly integrated brain in both species. These results hold when extinct species are excluded and allometric effects are accounted for. Our findings demonstrate that high covariation in the brain may have played a critical role in the evolution of unique cognitive capacities and complex behaviours in both modern humans and Neanderthals.
Collapse
|
18
|
Bruner E, Beaudet A. The brain of Homo habilis: Three decades of paleoneurology. J Hum Evol 2023; 174:103281. [PMID: 36455402 DOI: 10.1016/j.jhevol.2022.103281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022]
Abstract
In 1987, Phillip Tobias published a comprehensive anatomical analysis of the endocasts attributed to Homo habilis, discussing issues dealing with brain size, sulcal patterns, and vascular traces. He suggested that the neuroanatomy of this species evidenced a clear change toward many cerebral traits associated with our genus, mostly when concerning the morphology of the frontal and parietal cortex. After more than 30 years, the fossil record associated with this taxon has not grown that much, but we have much more information on cranial and brain biology, and we are using a larger array of digital methods to investigate the paleoneurological variation observed in the human genus. Brain volume, the size of the frontal lobe, or the gross hemispheric asymmetries are still relevant issues, but they are considered to be less central than before. More attention is instead being paid to the cortical organization, the relationships with the cranial architecture, and the influence of molecular or ecological factors. Although the field of paleoneurology can currently count on a larger range of tools and principles, there is still a general lack of anatomical information on many endocranial traits. This aspect is probably crucial for the agenda of paleoneurology. More importantly, the whole science is undergoing a delicate change, because of the growing influence of the social environment. In this sense, the disciplines working with fossils (and, in particular, with brain evolution) should take particular care to maintain a healthy professional situation, avoiding an excess of speculation and overstatement.
Collapse
Affiliation(s)
- Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución Humana, Paseo Sierra de Atapuerca 3, 09002 Burgos, Spain.
| | - Amélie Beaudet
- University of Cambridge, Henry Wellcome Building, Fitzwilliam St, Cambridge CB2 1QH, UK; School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Private Bag 3, WITS 2050, South Africa; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Carrer de l'Escola Industrial, 23, 08201 Sabadell, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
19
|
Olsen TB, García-Martínez D, Villa C. Testing different 3D techniques using geometric morphometrics: Implications for cranial fluctuating asymmetry in humans. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 180:224-234. [PMID: 36790697 PMCID: PMC10100329 DOI: 10.1002/ajpa.24657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/05/2022] [Accepted: 11/01/2022] [Indexed: 11/17/2022]
Abstract
This study aimed to test the performance of 3D digitizer, CT scanner, and surface scanner in detecting cranial fluctuating asymmetry. Sets of 32 landmarks (6 in the midline and 13 bilateral) were acquired from 14 archeological crania using a 3D digitizer, and from 3D models generated from a CT scanner and surface scanner using Viewbox 4. Levels of shape variation were analyzed in MorphoJ using Procrustes analysis of variance and Principal component analysis. Intra-observer error accounted for 1.7%, 1.8%, and 4.5% of total shape variation for 3D digitizer, CT scanner, and surface scanner respectively. Fluctuating asymmetry accounted for 15%-16% of total shape variation. Variation between techniques accounted for 18% of total shape variation. We found a higher level of missing landmarks in our surface scan data than for both 3D digitizer and CT scanner data, and both 3D model-based techniques sometimes obscured taphonomic damage. All three 3D techniques are appropriate for measuring cranial fluctuating asymmetry. We advise against combining data collected with different techniques.
Collapse
Affiliation(s)
- Trine Bottos Olsen
- Laboratory of Advanced Imaging and 3D modelling, Section of Forensic Pathology, Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Daniel García-Martínez
- Physical Anthropology Unit, Department of Biodiversity, Ecology, and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain.,Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain.,Laboratory of Forensic Anthropology, Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Chiara Villa
- Laboratory of Advanced Imaging and 3D modelling, Section of Forensic Pathology, Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Taking Sides: Asymmetries in the Evolution of Human Brain Development in Better Understanding Autism Spectrum Disorder. Symmetry (Basel) 2022. [DOI: 10.3390/sym14122689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Confirmation from structural, functional, and behavioral studies agree and suggest a configuration of atypical lateralization in individuals with autistic spectrum disorders (ASD). It is suggested that patterns of cortical and behavioral atypicality are evident in individuals with ASDs with atypical lateralization being common in individuals with ASDs. The paper endeavors to better understand the relationship between alterations in typical cortical asymmetries and functional lateralization in ASD in evolutionary terms. We have proposed that both early genetic and/or environmental influences can alter the developmental process of cortical lateralization. There invariably is a “chicken or egg” issue that arises whether atypical cortical anatomy associated with abnormal function, or alternatively whether functional atypicality generates abnormal structure.
Collapse
|
21
|
Hublin JJ, Changeux JP. Paleoanthropology of cognition: an overview on Hominins brain evolution. C R Biol 2022; 345:57-75. [PMID: 36847465 DOI: 10.5802/crbiol.92] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
Abstract
Recent advances in neurobiology, paleontology, and paleogenetics allow us to associate changes in brain size and organization with three main "moments" of increased behavioral complexity and, more speculatively, language development. First, Australopiths display a significant increase in brain size relative to the great apes and an incipient extension of postnatal brain development. However, their cortical organization remains essentially similar to that of apes. Second, over the last 2 My, with two notable exceptions, brain size increases dramatically, partly in relation to changes in body size. Differential enlargements and reorganizations of cortical areas lay the foundation for the "language-ready" brain and cumulative culture of later Homo species. Third, in Homo sapiens, brain size remains fairly stable over the last 300,000 years but an important cerebral reorganization takes place. It affects the frontal and temporal lobes, the parietal areas and the cerebellum and resulted in a more globular shape of the brain. These changes are associated, among others, with an increased development of long-distance-horizontal-connections. A few regulatory genetic events took place in the course of this hominization process with, in particular, enhanced neuronal proliferation and global brain connectivity.
Collapse
|
22
|
Wilson LAB. Developmental instability in domesticated mammals. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:484-494. [PMID: 34813170 DOI: 10.1002/jez.b.23108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Measures of fluctuating asymmetry (FA) have been adopted widely as an estimate of developmental instability. Arising from various sources of stress, developmental instability is associated with an organism's capacity to maintain fitness. The process of domestication has been framed as an environmental stress with human-specified parameters, suggesting that FA may manifest to a larger degree among domesticates compared to their wild relatives. This study used three-dimensional geometric morphometric landmark data to (a) quantify the amount of FA in the cranium of six domestic mammal species and their wild relatives and, (b) provide novel assessment of the commonalities and differences across domestic/wild pairs concerning the extent to which random variation arising from the developmental system assimilates into within-population variation. The majority of domestic mammals showed greater disparity for asymmetric shape, however, only two forms (Pig, Dog) showed significantly higher disparity as well as a higher degree of asymmetry compared to their wild counterparts (Wild Boar, Wolf). Contra to predictions, most domestic and wild forms did not show a statistically significant correspondence between symmetric shape variation and FA, however, a moderate correlation value was recorded for most pairs (r-partial least squares >0.5). Within pairs, domestic and wild forms showed similar correlation magnitudes for the relationship between the asymmetric and symmetric components. In domesticates, new variation may therefore retain a general, conserved pattern in the gross structuring of the cranium, whilst also being a source for response to selection on specific features.
Collapse
Affiliation(s)
- Laura A B Wilson
- School of Archaeology and Anthropology, The Australian National University, Canberra, ACT, Australia
- School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
23
|
Balzeau A, Albessard-Ball L, Kubicka AM, Filippo A, Beaudet A, Santos E, Bienvenu T, Arsuaga JL, Bartsiokas A, Berger L, Bermúdez de Castro JM, Brunet M, Carlson KJ, Daura J, Gorgoulis VG, Grine FE, Harvati K, Hawks J, Herries A, Hublin JJ, Hui J, Ives R, Joordens JA, Kaifu Y, Kouloukoussa M, Léger B, Lordkipanidze D, Margvelashvili A, Martin J, Martinón-Torres M, May H, Mounier A, du Plessis A, Rae T, Röding C, Sanz M, Semal P, Stratford D, Stringer C, Tawane M, Temming H, Tsoukala E, Zilhão J, Zipfel B, Buck LT. Frontal sinuses and human evolution. SCIENCE ADVANCES 2022; 8:eabp9767. [PMID: 36269821 PMCID: PMC9586476 DOI: 10.1126/sciadv.abp9767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
The frontal sinuses are cavities inside the frontal bone located at the junction between the face and the cranial vault and close to the brain. Despite a long history of study, understanding of their origin and variation through evolution is limited. This work compares most hominin species' holotypes and other key individuals with extant hominids. It provides a unique and valuable perspective of the variation in sinuses position, shape, and dimensions based on a simple and reproducible methodology. We also observed a covariation between the size and shape of the sinuses and the underlying frontal lobes in hominin species from at least the appearance of Homo erectus. Our results additionally undermine hypotheses stating that hominin frontal sinuses were directly affected by biomechanical constraints resulting from either chewing or adaptation to climate. Last, we demonstrate their substantial potential for discussions of the evolutionary relationships between hominin species.
Collapse
Affiliation(s)
- Antoine Balzeau
- UMR 7194 Histoire Naturelle de l’Homme Préhistorique, CNRS, PaleoFED Team, Département Homme et Environnement, Muséum national d’Histoire naturelle, Paris, France
- Department of African Zoology, Royal Museum for Central Africa, Tervuren, Belgium
| | - Lou Albessard-Ball
- UMR 7194 Histoire Naturelle de l’Homme Préhistorique, CNRS, PaleoFED Team, Département Homme et Environnement, Muséum national d’Histoire naturelle, Paris, France
- PalaeoHub, Department of Archaeology, University of York, York, UK
| | - Anna Maria Kubicka
- UMR 7194 Histoire Naturelle de l’Homme Préhistorique, CNRS, PaleoFED Team, Département Homme et Environnement, Muséum national d’Histoire naturelle, Paris, France
- Department of Zoology, Poznań University of Life Sciences, Poznań, Poland
| | - Andréa Filippo
- UMR 7194 Histoire Naturelle de l’Homme Préhistorique, CNRS, PaleoFED Team, Département Homme et Environnement, Muséum national d’Histoire naturelle, Paris, France
| | - Amélie Beaudet
- Department of Archaeology, University of Cambridge, Cambridge, UK
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elena Santos
- Centro Mixto UCM-ISCIII de Evolución y Comportamiento Humanos, Departamento de Paleontología, Facultad Ciencias Geológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Cátedra de Otoacústica Evolutiva y Paleoantropología (HM Hospitales - Universidad de Alcalá), Departamento de Ciencias de la Vida, Universidad de Alcalá, Alcalá de Henares, Spain
- Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Paseo de la Sierra de Atapuerca 3, 09002 Burgos, Spain
| | - Thibault Bienvenu
- Department of Anthropology and Anthropological Museum, University of Zurich, CH-8052 Zurich, Switzerland
| | - Juan-Luis Arsuaga
- Centro Mixto UCM-ISCIII de Evolución y Comportamiento Humanos, Departamento de Paleontología, Facultad Ciencias Geológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Antonis Bartsiokas
- Department of History and Ethnology, Democritus University of Thrace, Komotini, Greece
| | - Lee Berger
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, WITS, Johannesburg 2050, South Africa
| | - José María Bermúdez de Castro
- Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Paseo de la Sierra de Atapuerca 3, 09002 Burgos, Spain
- Anthropology Department, University College London, London, UK
| | - Michel Brunet
- Chaire de Paléoanthropologie Humaine, Collège de France, Paris, France
- UMR 7262 CNRS, Université de Poitiers, Poitiers, France
| | - Kristian J. Carlson
- Evolutionary Studies Institute, University of the Witwatersrand, Palaeosciences Centre, Wits, Johannesburg 2050, South Africa
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Joan Daura
- Departament d’Història i Arqueologia, Facultat de Geografia i Història, Universitat de Barcelona, c/Montalegre 6, 08001 Barcelona, Spain
- Centro de Arqueologia da Universidade de Lisboa (UNIARQ), Faculdade de Letras de Lisboa, Universidade de Lisboa, Alameda da Universidade, 1600-214 Lisboa, Portugal
| | - Vassilis G. Gorgoulis
- Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M20 4GJ, UK
| | - Frederick E. Grine
- Departments of Anthropology and Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Katerina Harvati
- Senckenberg Center for Human Evolution and Paleoenvironment and Institute for Archaeological Sciences, Eberhard Karls Universität Tübingen, Rümelinstr. 23, 72070 Tübingen, Germany
| | - John Hawks
- University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Andy Herries
- Department of Archaeology and History, La Trobe University, Bundoora, VIC 3086, Australia
- Palaeo-Research Institute, University of Johannesburg, Gauteng, South Africa
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
- Chaire de Paléoanthropologie, Collège de France, 75005 Paris, France
| | - Jiaming Hui
- UMR 7194 Histoire Naturelle de l’Homme Préhistorique, CNRS, PaleoFED Team, Département Homme et Environnement, Muséum national d’Histoire naturelle, Paris, France
| | - Rachel Ives
- Centre for Human Evolution Research, History Museum, London, UK
| | - Josephine A. Joordens
- Naturalis Biodiversity Center, Leiden, Netherlands
- Faculty of Science and Engineering, Maastricht University, Netherlands
| | - Yousuke Kaifu
- The University Museum, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mirsini Kouloukoussa
- Museum of Anthropology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Baptiste Léger
- Columbia University, 116 Street & Broadway, New York, NY 10027, USA
| | - David Lordkipanidze
- Georgian National Museum, Purtseladze Str. 3, 0105 Tbilisi, Georgia
- Ivane Javakhishvili Tbilisi State University, Chavchavadze Av. 1, 0179 Tbilisi, Georgia
| | - Ann Margvelashvili
- Georgian National Museum, Purtseladze Str. 3, 0105 Tbilisi, Georgia
- Ivane Javakhishvili Tbilisi State University, Chavchavadze Av. 1, 0179 Tbilisi, Georgia
| | - Jesse Martin
- Palaeoscience, Department of Archaeology and History, La Trobe University, Bundoora, VIC 3086, Australia
| | - María Martinón-Torres
- Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Paseo de la Sierra de Atapuerca 3, 09002 Burgos, Spain
- Anthropology Department, University College London, London, UK
| | - Hila May
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Post Office Box 39040, Tel Aviv 6997801, Israel
- Shmunis Family Anthropology Institute, Dan David Center for Human Evolution and Biohistory Research, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Aurélien Mounier
- UMR 7194 Histoire Naturelle de l’Homme Préhistorique, CNRS, PaleoFED Team, Département Homme et Environnement, Muséum national d’Histoire naturelle, Paris, France
- Department of History and Ethnology, Democritus University of Thrace, Komotini, Greece
| | - Anton du Plessis
- Physics Department, Stellenbosch University, Stellenbosch, South Africa
| | - Todd Rae
- Centre for Research in Evolutionary Anthropology, Department of Life Sciences, Roehampton University, Holybourne Avenue, London SW15 4JD, UK
| | - Carolin Röding
- Paleoanthropology, Senckenberg Centre for Human Evolution and Palaeoenvironment, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Montserrat Sanz
- Centro de Arqueologia da Universidade de Lisboa (UNIARQ), Faculdade de Letras de Lisboa, Universidade de Lisboa, Alameda da Universidade, 1600-214 Lisboa, Portugal
- Grup de Recerca del Quaternari (GRQ-SERP), Departament d’Història i Arqueologia, Universitat de Barcelona, Carrer Montalegre, 6, 08001 Barcelona, Spain
| | - Patrick Semal
- Royal Belgian Institute of Natural Sciences, Brussels 1000, Belgium
| | - Dominic Stratford
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, WITS, Johannesburg 2050, South Africa
| | - Chris Stringer
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Mirriam Tawane
- Ditsong National Museum of Natural History, Pretoria, South Africa
| | - Heiko Temming
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Evangelia Tsoukala
- Laboratory of Geology and Palaeontology, School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - João Zilhão
- UNIARQ-Centro de Arqueologia da Universidade de Lisboa, Faculdade de Letras, Universidade de Lisboa, 1600-214 Lisbon, Portugal
- Catalan Institution for Research and Advanced Studies, 08010 Barcelona, Spain
- Department of History and Archaeology, University of Barcelona, 08007 Barcelona, Spain
| | - Bernhard Zipfel
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Laura T. Buck
- Research Centre for Evolutionary Anthropology and Palaeoecology, School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
24
|
Mitteroecker P, Schaefer K. Thirty years of geometric morphometrics: Achievements, challenges, and the ongoing quest for biological meaningfulness. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 178 Suppl 74:181-210. [PMID: 36790612 PMCID: PMC9545184 DOI: 10.1002/ajpa.24531] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/28/2022] [Accepted: 04/17/2022] [Indexed: 12/30/2022]
Abstract
The foundations of geometric morphometrics were worked out about 30 years ago and have continually been refined and extended. What has remained as a central thrust and source of debate in the morphometrics community is the shared goal of meaningful biological inference through a tight connection between biological theory, measurement, multivariate biostatistics, and geometry. Here we review the building blocks of modern geometric morphometrics: the representation of organismal geometry by landmarks and semilandmarks, the computation of shape or form variables via superimposition, the visualization of statistical results as actual shapes or forms, the decomposition of shape variation into symmetric and asymmetric components and into different spatial scales, the interpretation of various geometries in shape or form space, and models of the association between shape or form and other variables, such as environmental, genetic, or behavioral data. We focus on recent developments and current methodological challenges, especially those arising from the increasing number of landmarks and semilandmarks, and emphasize the importance of thorough exploratory multivariate analyses rather than single scalar summary statistics. We outline promising directions for further research and for the evaluation of new developments, such as "landmark-free" approaches. To illustrate these methods, we analyze three-dimensional human face shape based on data from the Avon Longitudinal Study of Parents and Children (ALSPAC).
Collapse
Affiliation(s)
- Philipp Mitteroecker
- Department of Evolutionary Biology, Unit for Theoretical BiologyUniversity of ViennaViennaAustria
| | - Katrin Schaefer
- Department of Evolutionary AnthropologyUniversity of ViennaViennaAustria
- Human Evolution and Archaeological Sciences (HEAS)University of ViennaViennaAustria
| |
Collapse
|
25
|
Wan B, Bayrak Ş, Xu T, Schaare HL, Bethlehem RAI, Bernhardt BC, Valk SL. Heritability and cross-species comparisons of human cortical functional organization asymmetry. eLife 2022; 11:e77215. [PMID: 35904242 PMCID: PMC9381036 DOI: 10.7554/elife.77215] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
The human cerebral cortex is symmetrically organized along large-scale axes but also presents inter-hemispheric differences in structure and function. The quantified contralateral homologous difference, that is asymmetry, is a key feature of the human brain left-right axis supporting functional processes, such as language. Here, we assessed whether the asymmetry of cortical functional organization is heritable and phylogenetically conserved between humans and macaques. Our findings indicate asymmetric organization along an axis describing a functional trajectory from perceptual/action to abstract cognition. Whereas language network showed leftward asymmetric organization, frontoparietal network showed rightward asymmetric organization in humans. These asymmetries were heritable in humans and showed a similar spatial distribution with macaques, in the case of intra-hemispheric asymmetry of functional hierarchy. This suggests (phylo)genetic conservation. However, both language and frontoparietal networks showed a qualitatively larger asymmetry in humans relative to macaques. Overall, our findings suggest a genetic basis for asymmetry in intrinsic functional organization, linked to higher order cognitive functions uniquely developed in humans.
Collapse
Affiliation(s)
- Bin Wan
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity (IMPRS NeuroCom)LeipzigGermany
- Department of Cognitive Neurology, University Hospital Leipzig and Faculty of Medicine, University of LeipzigLeipzigGermany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre JülichJülichGermany
| | - Şeyma Bayrak
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Department of Cognitive Neurology, University Hospital Leipzig and Faculty of Medicine, University of LeipzigLeipzigGermany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre JülichJülichGermany
| | - Ting Xu
- Center for the Developing Brain, Child Mind InstituteNew YorkUnited States
| | - H Lina Schaare
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre JülichJülichGermany
| | | | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montréal Neurological Institute and Hospital, McGill UniversityMontréalCanada
| | - Sofie L Valk
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre JülichJülichGermany
- Institute of Systems Neuroscience, Heinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
26
|
Asymmetry of Endocast Surface Shape in Modern Humans Based on Diffeomorphic Surface Matching. Symmetry (Basel) 2022. [DOI: 10.3390/sym14071459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Brain asymmetry is associated with handedness and cognitive function, and is also reflected in the shape of endocasts. However, comprehensive quantification of the asymmetry in endocast shapes is limited. Here, we quantify and visualize the variation of endocast asymmetry in modern humans using diffeomorphic surface matching. Our results show that two types of lobar fluctuating asymmetry contribute most to global asymmetry variation. A dominant pattern of local directional asymmetry is shared in the majority of the population: (1) the left occipital pole protrudes more than the right frontal pole in the left-occipital and right-frontal petalial asymmetry; (2) the left Broca’s cap appears to be more globular and bulges laterally, anteriorly, and ventrally compared to the right side; and (3) the asymmetrical pattern of the parietal is complex and the posterior part of the right temporal lobes are more bulbous than the contralateral sides. This study confirms the validity of endocasts for obtaining valuable information on encephalic asymmetries and reveals a more complicated pattern of asymmetry of the cerebral lobes than previously reported. The endocast asymmetry pattern revealed here provides more shape information to explore the relationships between brain structure and function, to re-define the uniqueness of human brains related to other primates, and to trace the timing of the human asymmetry pattern within hominin lineages.
Collapse
|
27
|
Federico G, Reynaud E, Navarro J, Lesourd M, Gaujoux V, Lamberton F, Ibarrola D, Cavaliere C, Alfano V, Aiello M, Salvatore M, Seguin P, Schnebelen D, Brandimonte MA, Rossetti Y, Osiurak F. The cortical thickness of the area PF of the left inferior parietal cortex mediates technical-reasoning skills. Sci Rep 2022; 12:11840. [PMID: 35821259 PMCID: PMC9276675 DOI: 10.1038/s41598-022-15587-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Most recent research highlights how a specific form of causal understanding, namely technical reasoning, may support the increasing complexity of tools and techniques developed by humans over generations, i.e., the cumulative technological culture (CTC). Thus, investigating the neurocognitive foundations of technical reasoning is essential to comprehend the emergence of CTC in our lineage. Whereas functional neuroimaging evidence started to highlight the critical role of the area PF of the left inferior parietal cortex (IPC) in technical reasoning, no studies explored the links between the structural characteristics of such a brain region and technical reasoning skills. Therefore, in this study, we assessed participants’ technical-reasoning performance by using two ad-hoc psycho-technical tests; then, we extracted from participants’ 3 T T1-weighted magnetic-resonance brain images the cortical thickness (i.e., a volume-related measure which is associated with cognitive performance as reflecting the size, density, and arrangement of cells in a brain region) of all the IPC regions for both hemispheres. We found that the cortical thickness of the left area PF predicts participants’ technical-reasoning performance. Crucially, we reported no correlations between technical reasoning and the other IPC regions, possibly suggesting the specificity of the left area PF in generating technical knowledge. We discuss these findings from an evolutionary perspective, by speculating about how the evolution of parietal lobes may have supported the emergence of technical reasoning in our lineage.
Collapse
Affiliation(s)
- Giovanni Federico
- IRCCS Synlab SDN, Via Emanuele Gianturco, 113, 80143, Naples, Italy.
| | - Emanuelle Reynaud
- Laboratoire d'Etude des Mécanismes Cognitifs (EA 3082), Université de Lyon, Lyon, France
| | - Jordan Navarro
- Laboratoire d'Etude des Mécanismes Cognitifs (EA 3082), Université de Lyon, Lyon, France
| | - Mathieu Lesourd
- Laboratoire de recherches Intégratives en Neurosciences et Psychologie Cognitive (UR 481), Université de Bourgogne Franche-Comté, Besançon, France.,MSHE Ledoux, CNRS, Université de Bourgogne Franche-Comté, F-25000, Besançon, France
| | - Vivien Gaujoux
- Laboratoire d'Etude des Mécanismes Cognitifs (EA 3082), Université de Lyon, Lyon, France
| | - Franck Lamberton
- CERMEP-Imagerie du vivant, MRI Department and CNRS UMS3453, Lyon, France
| | - Danièle Ibarrola
- CERMEP-Imagerie du vivant, MRI Department and CNRS UMS3453, Lyon, France
| | - Carlo Cavaliere
- IRCCS Synlab SDN, Via Emanuele Gianturco, 113, 80143, Naples, Italy
| | - Vincenzo Alfano
- IRCCS Synlab SDN, Via Emanuele Gianturco, 113, 80143, Naples, Italy
| | - Marco Aiello
- IRCCS Synlab SDN, Via Emanuele Gianturco, 113, 80143, Naples, Italy
| | - Marco Salvatore
- IRCCS Synlab SDN, Via Emanuele Gianturco, 113, 80143, Naples, Italy
| | - Perrine Seguin
- Centre de Recherche en Neurosciences de Lyon (CRNL), Computation, Cognition and Neurophysiology Team (Inserm UMR_S 1028-CNRS-UMR 5292-Université de Lyon), Bron, France
| | - Damien Schnebelen
- Laboratoire d'Etude des Mécanismes Cognitifs (EA 3082), Université de Lyon, Lyon, France
| | | | - Yves Rossetti
- Centre de Recherche en Neurosciences de Lyon (CRNL), Trajectoires Team (Inserm UMR_S 1028-CNRS-UMR 5292-Université de Lyon), Bron, France.,Mouvement et Handicap and Neuro-Immersion, Hospices Civils de Lyon et Centre de Recherche en Neurosciences de Lyon, Hôpital Henry Gabrielle, St Genis Laval, France
| | - François Osiurak
- Laboratoire d'Etude des Mécanismes Cognitifs (EA 3082), Université de Lyon, Lyon, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
28
|
Poeppl TB, Dimas E, Sakreida K, Kernbach JM, Markello RD, Schöffski O, Dagher A, Koellinger P, Nave G, Farah MJ, Mišić B, Bzdok D. Pattern learning reveals brain asymmetry to be linked to socioeconomic status. Cereb Cortex Commun 2022; 3:tgac020. [PMID: 35702547 PMCID: PMC9188625 DOI: 10.1093/texcom/tgac020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 11/16/2022] Open
Abstract
Socioeconomic status (SES) anchors individuals in their social network layers. Our embedding in the societal fabric resonates with habitus, world view, opportunity, and health disparity. It remains obscure how distinct facets of SES are reflected in the architecture of the central nervous system. Here, we capitalized on multivariate multi-output learning algorithms to explore possible imprints of SES in gray and white matter structure in the wider population (n ≈ 10,000 UK Biobank participants). Individuals with higher SES, compared with those with lower SES, showed a pattern of increased region volumes in the left brain and decreased region volumes in the right brain. The analogous lateralization pattern emerged for the fiber structure of anatomical white matter tracts. Our multimodal findings suggest hemispheric asymmetry as an SES-related brain signature, which was consistent across six different indicators of SES: degree, education, income, job, neighborhood and vehicle count. Hence, hemispheric specialization may have evolved in human primates in a way that reveals crucial links to SES.
Collapse
Affiliation(s)
- Timm B Poeppl
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Department of Health Management, School of Business, Economics and Society, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nürnberg, Germany
| | - Emile Dimas
- Department of Biomedical Engineering, McConnell Brain Imaging Center (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, School of Computer Science, McGill University, Montreal, Quebec, Canada
| | - Katrin Sakreida
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Julius M Kernbach
- Department of Neurosurgery, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Ross D Markello
- McConnell Brain Imaging Center (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Oliver Schöffski
- Department of Health Management, School of Business, Economics and Society, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nürnberg, Germany
| | - Alain Dagher
- Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada
| | - Philipp Koellinger
- Department of Economics, School of Business and Economics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- La Follette School of Public Affairs, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Gideon Nave
- Marketing Department, The Wharton School, University of Pennsylvania, Philadelphia, United States of America
| | - Martha J Farah
- Center for Neuroscience & Society, University of Pennsylvania, Philadelphia, United States of America
| | - Bratislav Mišić
- McConnell Brain Imaging Center (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Danilo Bzdok
- Department of Biomedical Engineering, McConnell Brain Imaging Center (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, School of Computer Science, McGill University, Montreal, Quebec, Canada
- Mila – Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| |
Collapse
|
29
|
Abstract
Brain asymmetry is a hallmark of the human brain. Recent studies report a certain degree of abnormal asymmetry of brain lateralization between left and right brain hemispheres can be associated with many neuropsychiatric conditions. In this regard, some questions need answers. First, the accelerated brain asymmetry is programmed during the pre-natal period that can be called “accelerated brain decline clock”. Second, can we find the right biomarkers to predict these changes? Moreover, can we establish the dynamics of these changes in order to identify the right time window for proper interventions that can reverse or limit the neurological decline? To find answers to these questions, we performed a systematic online search for the last 10 years in databases using keywords. Conclusion: we need to establish the right in vitro model that meets human conditions as much as possible. New biomarkers are necessary to establish the “good” or the “bad” borders of brain asymmetry at the epigenetic and functional level as early as possible.
Collapse
|
30
|
Limb Preference in Animals: New Insights into the Evolution of Manual Laterality in Hominids. Symmetry (Basel) 2022. [DOI: 10.3390/sym14010096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Until the 1990s, the notion of brain lateralization—the division of labor between the two hemispheres—and its more visible behavioral manifestation, handedness, remained fiercely defined as a human specific trait. Since then, many studies have evidenced lateralized functions in a wide range of species, including both vertebrates and invertebrates. In this review, we highlight the great contribution of comparative research to the understanding of human handedness’ evolutionary and developmental pathways, by distinguishing animal forelimb asymmetries for functionally different actions—i.e., potentially depending on different hemispheric specializations. Firstly, lateralization for the manipulation of inanimate objects has been associated with genetic and ontogenetic factors, with specific brain regions’ activity, and with morphological limb specializations. These could have emerged under selective pressures notably related to the animal locomotion and social styles. Secondly, lateralization for actions directed to living targets (to self or conspecifics) seems to be in relationship with the brain lateralization for emotion processing. Thirdly, findings on primates’ hand preferences for communicative gestures accounts for a link between gestural laterality and a left-hemispheric specialization for intentional communication and language. Throughout this review, we highlight the value of functional neuroimaging and developmental approaches to shed light on the mechanisms underlying human handedness.
Collapse
|
31
|
Chen YC, Arnatkevičiūtė A, McTavish E, Pang JC, Chopra S, Suo C, Fornito A, Aquino KM. The individuality of shape asymmetries of the human cerebral cortex. eLife 2022; 11:75056. [PMID: 36197720 PMCID: PMC9668337 DOI: 10.7554/elife.75056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 10/04/2022] [Indexed: 01/05/2023] Open
Abstract
Asymmetries of the cerebral cortex are found across diverse phyla and are particularly pronounced in humans, with important implications for brain function and disease. However, many prior studies have confounded asymmetries due to size with those due to shape. Here, we introduce a novel approach to characterize asymmetries of the whole cortical shape, independent of size, across different spatial frequencies using magnetic resonance imaging data in three independent datasets. We find that cortical shape asymmetry is highly individualized and robust, akin to a cortical fingerprint, and identifies individuals more accurately than size-based descriptors, such as cortical thickness and surface area, or measures of inter-regional functional coupling of brain activity. Individual identifiability is optimal at coarse spatial scales (~37 mm wavelength), and shape asymmetries show scale-specific associations with sex and cognition, but not handedness. While unihemispheric cortical shape shows significant heritability at coarse scales (~65 mm wavelength), shape asymmetries are determined primarily by subject-specific environmental effects. Thus, coarse-scale shape asymmetries are highly personalized, sexually dimorphic, linked to individual differences in cognition, and are primarily driven by stochastic environmental influences.
Collapse
Affiliation(s)
- Yu-Chi Chen
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia,Monash Data Futures Institute, Monash UniversityMelbourneAustralia
| | - Aurina Arnatkevičiūtė
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia
| | - Eugene McTavish
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia,Healthy Brain and Mind Research Centre, Faculty of Health Sciences, Australian Catholic UniversityFitzroyAustralia
| | - James C Pang
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia
| | - Sidhant Chopra
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia,Department of Psychology, Yale UniversityNew HavenUnited States
| | - Chao Suo
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia,BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia
| | - Kevin M Aquino
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia,School of Physics, University of SydneySydneyAustralia,Center of Excellence for Integrative Brain Function, University of SydneySydneyAustralia,BrainKey IncSan FranciscoUnited States
| | | |
Collapse
|
32
|
Kubicka AM, Charlier P, Balzeau A. The Internal Cranial Anatomy of a Female With Endocrine Disorders From a Mediaeval Population. Front Endocrinol (Lausanne) 2022; 13:862047. [PMID: 35498425 PMCID: PMC9048198 DOI: 10.3389/fendo.2022.862047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
Gigantism and acromegaly have been observed in past populations; however, analyses usually focus on the morphological features of the post-cranial skeleton. The aim of this study is to characterize the internal anatomical features of the skull (brain endocast anatomy and asymmetry, frontal pneumatization, cranial thickness, sella turcica size) of an adult individual from the 11-14th centuries with these two diseases, in comparison with non-pathological individuals from the same population. The material consisted of 33 adult skulls from a mediaeval population, one of them belonging to an adult female with endocrine disorders (OL-23/77). Based on the CT scans, the internal cranial anatomy was analysed. The sella turcica of OL-23/77 is much larger than in the comparative sample. The endocast of the individual OL-23/77 shows a left frontal/left occipital petalia, while the comparative population mostly had right frontal/left occipital petalias. The asymmetry in petalia location in OL-23/77 comes within the range of variation observed in the comparative population. The individual has high values for cranial thickness. The frontal sinuses of the specimen analysed are similar in size and shape to the comparative sample only for data scaled to the skull length. Enlarged sella turcica is typical for individuals with acromegaly/gigantism. The pattern of the left frontal/left occipital petalia in the specimen OL-23/77 is quite rare. The position of the endocranial petalias has not influenced the degree of asymmetry in the specimen. Despite the large bone thickness values, skull of OL-23/77 does not show any abnormal features. The skull/endocast relationship in this individual shows some peculiarities in relation to its large size, while other internal anatomical features are within the normal range of variation of the comparative sample.
Collapse
Affiliation(s)
- Anna Maria Kubicka
- Department of Zoology, Poznań University of Life Sciences, Poznań, Poland
- PaleoFED Team, Unité Mixte de Recherche (UMR) 7194, Centre National de la Recherche Scientifique (CNRS), Département Homme et Environnement, Muséum National d’Histoire Naturelle, Musée de l’Homme, Paris, France
- *Correspondence: Anna Maria Kubicka,
| | - Philippe Charlier
- Laboratoire Anthropologie, Archéologie, Biologie (LAAB), Unité de Formation à la Recherche (UFR) des Sciences de la Santé, Université Paris-Saclay (UVSQ) & Musée du quai Branly - Jacques Chirac, Montigny-le-Bretonneux, France
- Direction, Département de la Recherche et de L’Enseignement Musée du quai Branly - Jacques Chirac, Paris, France
| | - Antoine Balzeau
- PaleoFED Team, Unité Mixte de Recherche (UMR) 7194, Centre National de la Recherche Scientifique (CNRS), Département Homme et Environnement, Muséum National d’Histoire Naturelle, Musée de l’Homme, Paris, France
- Royal Museum for Central Africa, Department of African Zoology, Tervuren, Belgium
| |
Collapse
|
33
|
Abstract
Structural asymmetries in language-related brain regions have long been hypothesized to underlie hemispheric language laterality and variability in language functions. These structural asymmetries have been examined using voxel-level, gross volumetric, and surface area measures of gray matter and white matter. Here we used deformation-based and persistent homology approaches to characterize the three-dimensional topology of brain structure asymmetries within language-related areas that were defined in functional neuroimaging experiments. Persistence diagrams representing the range of values for each spatially unique structural asymmetry were collected within language-related regions of interest across 212 children (mean age (years) = 10.56, range 6.39–16.92; 39% female). These topological data exhibited both leftward and rightward asymmetries within the same language-related regions. Permutation testing demonstrated that age and sex effects were most consistent and pronounced in the superior temporal sulcus, where older children and males had more rightward asymmetries. While, consistent with previous findings, these associations exhibited small effect sizes that were observable because of the relatively large sample. In addition, the density of rightward asymmetry structures in nearly all language-related regions was consistently higher than the density of leftward asymmetric structures. These findings guide the prediction that the topological pattern of structural asymmetries in language-related regions underlies the organization of language.
Collapse
|
34
|
Abstract
We are interested here in the central organ of our thoughts: the brain. Advances in neuroscience have made it possible to obtain increasing information on the anatomy of this organ, at ever-higher resolutions, with different imaging techniques, on ever-larger samples. At the same time, paleoanthropology has to deal with partial reflections on the shape of the brain, on fragmentary specimens and small samples in an attempt to approach the morphology of the brain of past human species. It undeniably emerges from the perspective we propose here that paleoanthropology has much to gain from interacting more with the field of neuroimaging. Improving our understanding of the morphology of the endocast necessarily involves studying the external surface of the brain and the link it maintains with the internal surface of the skull. The contribution of neuroimaging will allow us to better define the relationship between brain and endocast. Models of intra- and inter-species variability in brain morphology inferred from large neuroimaging databases will help make the most of the rare endocasts of extinct species. We also conclude that exchanges between these two disciplines will also be beneficial to our knowledge of the Homo sapiens brain. Documenting the anatomy among other human species and including the variation over time within our own species are approaches that offer us a new perspective through which to appreciate what really characterizes the brain of humanity today.
Collapse
|
35
|
A New Integrated Tool to Calculate and Map Bilateral Asymmetry on Three-Dimensional Digital Models. Symmetry (Basel) 2021. [DOI: 10.3390/sym13091644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The observation and the quantification of asymmetry in biological structures are deeply investigated in geometric morphometrics. Patterns of asymmetry were explored in both living and fossil species. In living organisms, levels of directional and fluctuating asymmetry are informative about developmental processes and health status of the individuals. Paleontologists are primarily interested in asymmetric features introduced by the taphonomic process, as they may significantly alter the original shape of the biological remains, hampering the interpretation of morphological features which may have profound evolutionary significance. Here, we provide a new R tool that produces the numerical quantification of fluctuating and directional asymmetry and charts asymmetry directly on the specimens under study, allowing the visual inspection of the asymmetry pattern. We tested this show.asymmetry algorithm, written in the R language, on fossil and living cranial remains of the genus Homo. show.asymmetry proved successful in discriminating levels of asymmetry among sexes in Homo sapiens, to tell apart fossil from living Homo skulls, to map effectively taphonomic distortion directly on the fossil skulls, and to provide evidence that digital restoration obliterates natural asymmetry to unnaturally low levels.
Collapse
|
36
|
Gonzalez PN, Vallejo-Azar M, Aristide L, Lopes R, Dos Reis SF, Perez SI. Endocranial asymmetry in New World monkeys: a comparative phylogenetic analysis of morphometric data. Brain Struct Funct 2021; 227:469-477. [PMID: 34455496 DOI: 10.1007/s00429-021-02371-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022]
Abstract
Brain lateralization is a widespread phenomenon although its expression across primates is still controversial due to the reduced number of species analyzed and the disparity of methods used. To gain insight into the diversification of neuroanatomical asymmetries in non-human primates we analyze the endocasts, as a proxy of external brain morphology, of a large sample of New World monkeys and test the effect of brain size, home range and group sizes in the pattern and magnitude of shape asymmetry. Digital endocasts from 26 species were obtained from MicroCT scans and a set of 3D coordinates was digitized on endocast surfaces. Results indicate that Ateles, Brachyteles, Callicebus and Cacajao tend to have a rightward frontal and a leftward occipital lobe asymmetry, whereas Aotus, Callitrichinae and Cebinae have either the opposite pattern or no directional asymmetry. Such differences in the pattern of asymmetry were associated with group and home range sizes. Conversely, its magnitude was significantly associated with brain size, with larger-brained species showing higher inter-hemispheric differences. These findings support the hypothesis that reduction in inter-hemispheric connectivity in larger brains favors the lateralization and increases the structural asymmetries, whereas the patterns of shape asymmetry might be driven by socio-ecological differences among species.
Collapse
Affiliation(s)
- Paula N Gonzalez
- Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos (CONICET-UNAJ-HEC), Florencio Varela, Buenos Aires, Argentina.
| | - Mariana Vallejo-Azar
- Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos (CONICET-UNAJ-HEC), Florencio Varela, Buenos Aires, Argentina
| | | | - Ricardo Lopes
- Centro de Tecnologia (UFRJ), Laboratório de Instrumentação Nuclear, Rio de Janeiro, Brazil
| | | | - S Ivan Perez
- División Antropología (FCNyM-UNLP), CONICET, La Plata, Argentina
| |
Collapse
|
37
|
Spinal and Cerebral Integration of Noxious Inputs in Left-handed Individuals. Brain Topogr 2021; 34:568-586. [PMID: 34338897 DOI: 10.1007/s10548-021-00864-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
Some pain-related information is processed preferentially in the right cerebral hemisphere. Considering that functional lateralization can be affected by handedness, spinal and cerebral pain-related responses may be different between right- and left-handed individuals. Therefore, this study aimed to investigate the cortical and spinal mechanisms of nociceptive integration when nociceptive stimuli are applied to right -handed vs. left -handed individuals. The NFR, evoked potentials (ERP: P45, N100, P260), and event-related spectral perturbations (ERSP: theta, alpha, beta and gamma band oscillations) were compared between ten right-handed and ten left-handed participants. Pain was induced by transcutaneous electrical stimulation of the lower limbs and left upper limb. Stimulation intensity was adjusted individually in five counterbalanced conditions of 21 stimuli each: three unilateral (right lower limb, left lower limb, and left upper limb stimulation) and two bilateral conditions (right and left lower limbs, and the right lower limb and left upper limb stimulation). The amplitude of the NFR, ERP, ERSP, and pain ratings were compared between groups and conditions using a mixed ANOVA. A significant increase of responses was observed in bilateral compared with unilateral conditions for pain intensity, NFR amplitude, N100, theta oscillations, and gamma oscillations. However, these effects were not significantly different between right- and left-handed individuals. These results suggest that spinal and cerebral integration of bilateral nociceptive inputs is similar between right- and left-handed individuals. They also imply that pain-related responses measured in this study may be examined independently of handedness.
Collapse
|
38
|
Kong XZ, Postema M, Schijven D, Castillo AC, Pepe A, Crivello F, Joliot M, Mazoyer B, Fisher SE, Francks C. Large-Scale Phenomic and Genomic Analysis of Brain Asymmetrical Skew. Cereb Cortex 2021; 31:4151-4168. [PMID: 33836062 PMCID: PMC8328207 DOI: 10.1093/cercor/bhab075] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/15/2021] [Accepted: 03/10/2021] [Indexed: 12/29/2022] Open
Abstract
The human cerebral hemispheres show a left-right asymmetrical torque pattern, which has been claimed to be absent in chimpanzees. The functional significance and developmental mechanisms are unknown. Here, we carried out the largest-ever analysis of global brain shape asymmetry in magnetic resonance imaging data. Three population datasets were used, UK Biobank (N = 39 678), Human Connectome Project (N = 1113), and BIL&GIN (N = 453). At the population level, there was an anterior and dorsal skew of the right hemisphere, relative to the left. Both skews were associated independently with handedness, and various regional gray and white matter metrics oppositely in the two hemispheres, as well as other variables related to cognitive functions, sociodemographic factors, and physical and mental health. The two skews showed single nucleotide polymorphisms-based heritabilities of 4-13%, but also substantial polygenicity in causal mixture model analysis, and no individually significant loci were found in genome-wide association studies for either skew. There was evidence for a significant genetic correlation between horizontal brain skew and autism, which requires future replication. These results provide the first large-scale description of population-average brain skews and their inter-individual variations, their replicable associations with handedness, and insights into biological and other factors which associate with human brain asymmetry.
Collapse
Affiliation(s)
- Xiang-Zhen Kong
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310028, China
| | - Merel Postema
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands
| | - Dick Schijven
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands
| | - Amaia Carrión Castillo
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands
| | - Antonietta Pepe
- Institut des Maladies Neurodégénératives, UMR5293, Groupe d’Imagerie Neurofonctionnelle, Commissariat à l'énergie atomique et aux énergies alternatives, CNRS, Université de Bordeaux, Bordeaux cedex 33076, France
| | - Fabrice Crivello
- Institut des Maladies Neurodégénératives, UMR5293, Groupe d’Imagerie Neurofonctionnelle, Commissariat à l'énergie atomique et aux énergies alternatives, CNRS, Université de Bordeaux, Bordeaux cedex 33076, France
| | - Marc Joliot
- Institut des Maladies Neurodégénératives, UMR5293, Groupe d’Imagerie Neurofonctionnelle, Commissariat à l'énergie atomique et aux énergies alternatives, CNRS, Université de Bordeaux, Bordeaux cedex 33076, France
| | - Bernard Mazoyer
- Institut des Maladies Neurodégénératives, UMR5293, Groupe d’Imagerie Neurofonctionnelle, Commissariat à l'énergie atomique et aux énergies alternatives, CNRS, Université de Bordeaux, Bordeaux cedex 33076, France
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen 6525 EN, The Netherlands
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen 6525 EN, The Netherlands
| |
Collapse
|
39
|
Pei X, Qi X, Jiang Y, Shen X, Wang AL, Cao Y, Zhou C, Yu Y. Sparsely Wiring Connectivity in the Upper Beta Band Characterizes the Brains of Top Swimming Athletes. Front Psychol 2021; 12:661632. [PMID: 34335372 PMCID: PMC8322235 DOI: 10.3389/fpsyg.2021.661632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Human brains are extremely energy costly in neural connections and activities. However, it is unknown what is the difference in the brain connectivity between top athletes with long-term professional trainings and age-matched controls. Here we ask whether long-term training can lower brain-wiring cost while have better performance. Since elite swimming requires athletes to move their arms and legs at different tempos in time with high coordination skills, we selected an eye-hand-foot complex reaction (CR) task to examine the relations between the task performance and the brain connections and activities, as well as to explore the energy cost-efficiency of top athletes. Twenty-one master-level professional swimmers and 23 age-matched non-professional swimmers as controls were recruited to perform the CR task with concurrent 8-channel EEG recordings. Reaction time and accuracy of the CR task were recorded. Topological network analysis of various frequency bands was performed using the phase lag index (PLI) technique to avoid volume conduction effects. The wiring number of connections and mean frequency were calculated to reflect the wiring and activity cost, respectively. Results showed that professional athletes demonstrated better eye-hand-foot coordination than controls when performing the CR task, indexing by faster reaction time and higher accuracy. Comparing to controls, athletes' brain demonstrated significantly less connections and weaker correlations in upper beta frequency band between the frontal and parietal regions, while demonstrated stronger connectivity in the low theta frequency band between sites of F3 and Cz/C4. Additionally, athletes showed highly stable and low eye-blinking rates across different reaction performance, while controls had high blinking frequency with high variance. Elite athletes' brain may be characterized with energy efficient sparsely wiring connections in support of superior motor performance and better cognitive performance in the eye-hand-foot complex reaction task.
Collapse
Affiliation(s)
- Xinzhen Pei
- Human Phenome Institute, State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, School of Life Science and Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China
| | - Xiaoying Qi
- Human Phenome Institute, State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, School of Life Science and Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China
| | - Yuzhou Jiang
- Human Phenome Institute, State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, School of Life Science and Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China
| | - Xunzhang Shen
- Shanghai Research Institute of Sports Science, Shanghai, China
| | - An-Li Wang
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yang Cao
- Human Phenome Institute, State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, School of Life Science and Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China
| | - Chenglin Zhou
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Yuguo Yu
- Human Phenome Institute, State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, School of Life Science and Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China
| |
Collapse
|
40
|
Gómez-Ramírez J, González-Rosa JJ. Intra- and interhemispheric symmetry of subcortical brain structures: a volumetric analysis in the aging human brain. Brain Struct Funct 2021; 227:451-462. [PMID: 34089103 DOI: 10.1007/s00429-021-02305-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/19/2021] [Indexed: 12/20/2022]
Abstract
Here, we address the hemispheric interdependency of subcortical structures in the aging human brain. In particular, we investigated whether subcortical volume variations can be explained by the adjacency of structures in the same hemisphere or are due to the interhemispheric development of mirror subcortical structures in the brain. Seven subcortical structures in each hemisphere were automatically segmented in a large sample of 3312 magnetic resonance imaging (MRI) studies of elderly individuals in their 70s and 80s. We performed Eigenvalue analysis, and found that anatomic volumes in the limbic system and basal ganglia show similar statistical dependency whether considered in the same hemisphere (intrahemispherically) or different hemispheres (interhemispherically). Our results indicate that anatomic bilaterality of subcortical volumes is preserved in the aging human brain, supporting the hypothesis that coupling between non-adjacent subcortical structures might act as a mechanism to compensate for the deleterious effects of aging.
Collapse
Affiliation(s)
| | - Javier J González-Rosa
- Department of Psychology, Universidad de Cádiz, Cádiz, Spain
- Instituto de Investigación Biomédica de Cádiz (INIBICA), Cádiz, Spain
| |
Collapse
|
41
|
Ocklenburg S, Berretz G, Packheiser J, Friedrich P. Laterality 2020: Response to the article commentaries. Laterality 2021; 26:348-357. [PMID: 34047243 DOI: 10.1080/1357650x.2021.1932983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In our recent opinion paper "Laterality 2020: entering the next decade", we highlighted trends that we thought are likely to shape laterality research in the 2020s. Our opinion paper inspired 11 commentaries by experts from several disciplines which discussed a wide range of topics complementing the 10 trends we identified in the opinion paper. In this reply, we summarize and discuss the 11 commentaries by clustering them into 3 different main topics. The topic that was covered by the largest number of commentaries was the role of comparative and evolutionary approaches in laterality research. Moreover, several comments focused on the ontogenesis of hemispheric asymmetries and the importance of reliability and validity in laterality research. Embracing the technical advances, research trends and controversies laid out in the commentaries will significantly improve our understanding of several of the core questions of laterality research.
Collapse
Affiliation(s)
- Sebastian Ocklenburg
- Institute of Cognitive Neuroscience, Biopsychology, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Gesa Berretz
- Institute of Cognitive Neuroscience, Biopsychology, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Julian Packheiser
- Institute of Cognitive Neuroscience, Biopsychology, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Patrick Friedrich
- Brain and Behaviour (INM-7), Institute of Neuroscience and Medicine, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
42
|
Ponce de León MS, Bienvenu T, Marom A, Engel S, Tafforeau P, Alatorre Warren JL, Lordkipanidze D, Kurniawan I, Murti DB, Suriyanto RA, Koesbardiati T, Zollikofer CPE. The primitive brain of early Homo. Science 2021; 372:165-171. [PMID: 33833119 DOI: 10.1126/science.aaz0032] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/08/2020] [Accepted: 03/08/2021] [Indexed: 12/20/2022]
Abstract
The brains of modern humans differ from those of great apes in size, shape, and cortical organization, notably in frontal lobe areas involved in complex cognitive tasks, such as social cognition, tool use, and language. When these differences arose during human evolution is a question of ongoing debate. Here, we show that the brains of early Homo from Africa and Western Asia (Dmanisi) retained a primitive, great ape-like organization of the frontal lobe. By contrast, African Homo younger than 1.5 million years ago, as well as all Southeast Asian Homo erectus, exhibited a more derived, humanlike brain organization. Frontal lobe reorganization, once considered a hallmark of earliest Homo in Africa, thus evolved comparatively late, and long after Homo first dispersed from Africa.
Collapse
Affiliation(s)
- Marcia S Ponce de León
- Department of Anthropology and Anthropological Museum, University of Zurich, CH-8052 Zurich, Switzerland.
| | - Thibault Bienvenu
- Department of Anthropology and Anthropological Museum, University of Zurich, CH-8052 Zurich, Switzerland
| | - Assaf Marom
- Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Silvano Engel
- Department of Anthropology and Anthropological Museum, University of Zurich, CH-8052 Zurich, Switzerland
| | - Paul Tafforeau
- European Synchrotron Radiation Facility, 38043 Grenoble, France
| | - José Luis Alatorre Warren
- Department of Anthropology and Anthropological Museum, University of Zurich, CH-8052 Zurich, Switzerland.,Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Iwan Kurniawan
- Museum of Geology, Jln. Diponegoro 57, Bandung 40122, Indonesia
| | - Delta Bayu Murti
- Department of Anthropology, Airlangga University, Surabaya, 60115 Jawa Timur, Indonesia
| | - Rusyad Adi Suriyanto
- Laboratory of Bioanthropology and Paleoanthropology, Gadjah Mada University, Yogyakarta 55281, Indonesia
| | | | - Christoph P E Zollikofer
- Department of Anthropology and Anthropological Museum, University of Zurich, CH-8052 Zurich, Switzerland.
| |
Collapse
|
43
|
Hou SY, Zhou W, Dai H, Wong HM, Wen YF, Zhou J. Soft tissue facial changes among adult females during alignment stage of orthodontic treatment: a 3D geometric morphometric study. BMC Oral Health 2021; 21:57. [PMID: 33563265 PMCID: PMC7874451 DOI: 10.1186/s12903-021-01425-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To investigate changes in facial morphology during the first six months of orthodontic treatment among adult females receiving orthodontic treatment. METHODS 43 adult females receiving orthodontic treatment were randomly recruited. 3D facial images were taken at baseline (T0), three months (T1), and six months (T2) after treatment initiation. Spatially dense facial landmarks were digitized to allow for sufficient details in characterization of facial features. 3D geometric morphometrics and multivariate statistics were used to investigate changes in mean and variance of facial shape and facial form associated with treatment. RESULTS We observed statistically significant changes in facial shape across the three treatment stages (p = 0.0022). Pairwise comparisons suggested significant changes from T0 to T1 (p = 0.0045) and from T0 to T2 (p = 0.0072). Heatmap visualization indicated that the buccal and temporal region were invaginated while the labial region became protruded with treatment. The magnitude of shape change was 0.009, 0.004, and 0.010 from T0 to T1, T1 to T2, and T0 to T2, respectively, in unit of Procrustes distance. The average magnitude of change per-landmark was 1.32 mm, 0.21 mm, and 1.34 mm, respectively. Changes in mean facial form were not statistically significant (p = 0.1143). No changes in variance of facial shape were observed across treatment stages (p > 0.05). CONCLUSION Rate of facial changes was twice as fast during the first three months as that during fourth to sixth month. Buccal and temporal region became invaginated while labial region became protruded with treatment.
Collapse
Affiliation(s)
- Si Yu Hou
- Stomatological Hospital of Chongqing Medical University China, No. 426 Songshi North Road, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Wenwen Zhou
- Stomatological Hospital of Chongqing Medical University China, No. 426 Songshi North Road, Chongqing, China
| | - Hongwei Dai
- Stomatological Hospital of Chongqing Medical University China, No. 426 Songshi North Road, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Hai Ming Wong
- Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, China, 34 Hospital Road, Hong Kong, Hong Kong
| | - Yi Feng Wen
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University., No. 98 Xiwu Road, Xi'an, Shaanxi Province, China.
| | - Jianping Zhou
- Stomatological Hospital of Chongqing Medical University China, No. 426 Songshi North Road, Chongqing, China. .,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China. .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
44
|
Waltenberger L, Rebay-Salisbury K, Mitteroecker P. Three-dimensional surface scanning methods in osteology: A topographical and geometric morphometric comparison. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 174:846-858. [PMID: 33410519 PMCID: PMC8048833 DOI: 10.1002/ajpa.24204] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 11/11/2020] [Accepted: 12/08/2020] [Indexed: 11/21/2022]
Abstract
Objectives Three‐dimensional (3D) data collected by structured light scanners, photogrammetry, and computed tomography (CT) scans are increasingly combined in joint analyses, even though the scanning techniques and reconstruction software differ considerably. The aim of the present study was to compare the quality and accuracy of surface models and landmark data obtained from modern clinical CT scanning, 3D structured light scanner, photogrammetry, and MicroScribe digitizer. Material and methods We tested 13 different photogrammetric software tools and compared surface models obtained by different methods for four articulated human pelves in a topographical analysis. We also measured a set of 219 landmarks and semilandmarks twice on every surface as well as directly on the dry bones with a MicroScribe digitizer. Results Only one photogrammetric software package yielded surface models of the complete pelves that could be used for further analysis. Despite the complex pelvic anatomy, all three methods (CT scanning, 3D structured light scanning, photogrammetry) yielded similar surface representations with average deviations among the surface models between 100 and 200 μm. A geometric morphometric analysis of the measured landmarks showed that the different scanning methods yielded similar shape variables, but data acquisition via MicroScribe digitizer was most prone to error. Discussion We demonstrated that three‐dimensional models obtained by different methods can be combined in a single analysis. Photogrammetry proved to be a cheap, quick, and accurate method to generate 3D surface models at useful resolutions, but photogrammetry software packages differ enormously in quality.
Collapse
Affiliation(s)
- Lukas Waltenberger
- Austrian Archaeological Institute, Austrian Academy of Sciences, Vienna, Austria.,Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
45
|
Breaking Symmetry: Fluctuating Asymmetry and Geometric Morphometrics as Tools for Evaluating Developmental Instability under Diverse Agroecosystems. Symmetry (Basel) 2020. [DOI: 10.3390/sym12111789] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fluctuating asymmetry (FA), in contrast with other asymmetries, is the bilateral asymmetry that represents small, random developmental differences between right and left sides. After nearly a century of using traditional morphometrics in the estimation of FA, geometric morphometrics (GM) now provides new insights into the use of FA as a tool, especially for assessing environmental and developmental stress. Thus, it will be possible to assess adaptation to various environmental stressors as particular triggers for unavoidable selection pressures. In this review, we describe measures of FA that use geometric morphometrics, and we include a flow chart of the methodology. We also describe how this combination (GM + FA) has been tested in several agroecosystems. Nutritional stress, temperature, chemical pollution, and population density are known stressors experienced by populations in agroecosystems.
Collapse
|
46
|
Spocter MA, Sherwood CC, Schapiro SJ, Hopkins WD. Reproducibility of leftward planum temporale asymmetries in two genetically isolated populations of chimpanzees ( Pan troglodytes). Proc Biol Sci 2020; 287:20201320. [PMID: 32900313 PMCID: PMC7542794 DOI: 10.1098/rspb.2020.1320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/17/2020] [Indexed: 12/23/2022] Open
Abstract
Once considered a hallmark of human uniqueness, brain asymmetry has emerged as a feature shared with several other species, including chimpanzees, one of our closest living relatives. Most notable has been the discovery of asymmetries in homologues of cortical language areas in apes, particularly in the planum temporale (PT), considered a central node of the human language network. Several lines of evidence indicate a role for genetic mechanisms in the emergence of PT asymmetry; however, the genetic determinants of cerebral asymmetries have remained elusive. Studies in humans suggest that there is heritability of brain asymmetries of the PT, but this has not been explored to any extent in chimpanzees. Furthermore, the potential influence of non-genetic factors has raised questions about the reproducibility of earlier observations of PT asymmetry reported in chimpanzees. As such, the present study was aimed at examining both the heritability of phenotypic asymmetries in PT morphology, as well as their reproducibility. Using magnetic resonance imaging, we evaluated morphological asymmetries of PT surface area (mm2) and mean depth (mm) in captive chimpanzees (n = 291) derived from two genetically isolated populations. Our results confirm that chimpanzees exhibit a significant population-level leftward asymmetry for PT surface area, as well as significant heritability in the surface area and mean depth of the PT. These results conclusively demonstrate the existence of a leftward bias in PT asymmetry in chimpanzees and suggest that genetic mechanisms play a key role in the emergence of anatomical asymmetry in this region.
Collapse
Affiliation(s)
- Muhammad A. Spocter
- Department of Anatomy, Des Moines University, 3200 Grand Avenue, Des Moines, IA 50312, USA
- School of Anatomical Sciences, University of Witwatersrand, Johannesburg 2094, South Africa
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Steven J. Schapiro
- Department of Comparative Medicine, UT MD Anderson Cancer Center Bastrop, TX 78602, USA
- Department of Experimental Medicine, University of Copenhagen, Copenhagen, Denmark
| | - William D. Hopkins
- Department of Comparative Medicine, UT MD Anderson Cancer Center Bastrop, TX 78602, USA
| |
Collapse
|
47
|
Sansalone G, Allen K, Ledogar JA, Ledogar S, Mitchell DR, Profico A, Castiglione S, Melchionna M, Serio C, Mondanaro A, Raia P, Wroe S. Variation in the strength of allometry drives rates of evolution in primate brain shape. Proc Biol Sci 2020; 287:20200807. [PMID: 32635870 DOI: 10.1098/rspb.2020.0807] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Large brains are a defining feature of primates, as is a clear allometric trend between body mass and brain size. However, important questions on the macroevolution of brain shape in primates remain unanswered. Here we address two: (i), does the relationship between the brain size and its shape follow allometric trends and (ii), is this relationship consistent over evolutionary time? We employ three-dimensional geometric morphometrics and phylogenetic comparative methods to answer these questions, based on a large sample representing 151 species and most primate families. We found two distinct trends regarding the relationship between brain shape and brain size. Hominoidea and Cercopithecinae showed significant evolutionary allometry, whereas no allometric trends were discernible for Strepsirrhini, Colobinae or Platyrrhini. Furthermore, we found that in the taxa characterized by significant allometry, brain shape evolution accelerated, whereas for taxa in which such allometry was absent, the evolution of brain shape decelerated. We conclude that although primates in general are typically described as large-brained, strong allometric effects on brain shape are largely confined to the order's representatives that display more complex behavioural repertoires.
Collapse
Affiliation(s)
- G Sansalone
- Function, Evolution and Anatomy Research Lab, Zoology Division, School of Environmental and Rural Science, University of New England, NSW 2351, Armidale, Australia
| | - K Allen
- Department of Neuroscience, Washington University School of Medicine in St Louis, MO, USA.,Department of Anthropology, Washington University in St Louis, Washington, MO, USA
| | - J A Ledogar
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - S Ledogar
- Function, Evolution and Anatomy Research Lab, Zoology Division, School of Environmental and Rural Science, University of New England, NSW 2351, Armidale, Australia.,Department of Archaeology and Palaeoanthropology, School of Humanities, University of New England, NSW 2351, Armidale, Australia
| | - D R Mitchell
- Function, Evolution and Anatomy Research Lab, Zoology Division, School of Environmental and Rural Science, University of New England, NSW 2351, Armidale, Australia.,Department of Anthropology, University of Arkansas, Old Main 330, Fayetteville, AR 72701, USA
| | - A Profico
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Roma, Italy
| | - S Castiglione
- Department of Earth Sciences, Environment and Resources, Università degli Studi di Napoli Federico II, L.go San Marcellino 10, 80138, Naples, Italy
| | - M Melchionna
- Department of Earth Sciences, Environment and Resources, Università degli Studi di Napoli Federico II, L.go San Marcellino 10, 80138, Naples, Italy
| | - C Serio
- Department of Earth Sciences, Environment and Resources, Università degli Studi di Napoli Federico II, L.go San Marcellino 10, 80138, Naples, Italy.,Research Centre in Evolutionary Anthropology and Palaeoecology, School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - A Mondanaro
- Department of Earth Sciences, Environment and Resources, Università degli Studi di Napoli Federico II, L.go San Marcellino 10, 80138, Naples, Italy.,Department of Earth Sciences, University of Florence, Italy
| | - P Raia
- Department of Earth Sciences, Environment and Resources, Università degli Studi di Napoli Federico II, L.go San Marcellino 10, 80138, Naples, Italy
| | - S Wroe
- Function, Evolution and Anatomy Research Lab, Zoology Division, School of Environmental and Rural Science, University of New England, NSW 2351, Armidale, Australia
| |
Collapse
|