1
|
Harris DM, Latella C, Tripodi N, O'Bryan SJ. Exploring Non-invasive Brain Stimulation Effects on Physical Outcomes in People With Parkinson's Disease: An Umbrella Evidence Mapping Review With Meta-analyses. Neurorehabil Neural Repair 2025:15459683241310984. [PMID: 39773131 DOI: 10.1177/15459683241310984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Background. Non-invasive brain stimulation (NIBS) is sometimes used alongside medication to alleviate motor symptoms in people with Parkinson's disease (PD). However, the evidence supporting NIBS's effectiveness for improving motor function in PD patients is uncertain. Objective. This umbrella review aims to synthesize recent systematic reviews and meta-analyses that have evaluated the effectiveness of NIBS in improving motor function in people with PD, with a key focus being to examine the quality of the evidence presented. Methods. The review protocol was registered in PROSPERO (CRD42022380544) and conducted per Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The search strategy was guided by the Population, Intervention, Comparison, and Outcome framework, focusing on individuals with idiopathic PD (Hoehn and Yahr stages 1-4). The review included studies comparing various NIBS techniques (eg, repetitive transcranial magnetic stimulation and transcranial direct current stimulation) to sham or alternative treatments, targeting motor and cognitive regions. Six databases were searched up to June 2024. Methodological quality was assessed using Assessment of Multiple Systematic Reviews 2 (AMSTAR2), and random-effects meta-analyses were performed to pool standardized mean differences (SMDs). Results. The final analysis included 31 meta-analyses and 10 systematic reviews. Overall, the reviews were rated as moderate quality (54% average for AMSTAR2). NIBS showed a small-to-moderate effect on motor function (Unified Parkinson's Disease Rating Scale-Section III scores; SMD = -0.80), functional mobility (gait speed and timed-up-and-go; SMD = -0.39), and freezing of gait (SMD = -0.58), but no significant effect on balance. Conclusion. NIBS offers small-to-moderate benefits for motor symptoms and functional movement in PD, though it does not significantly impact balance. Practitioners should consider the variety of techniques and treatment parameters before application.
Collapse
Affiliation(s)
- Dale M Harris
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, VIC, Australia
| | - Christopher Latella
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
- Neurophysiology Research Laboratory, Edith Cowan University, Joondalup, WA, Australia
| | - Nicholas Tripodi
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, VIC, Australia
| | - Steven J O'Bryan
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Saccenti D, Lauro LJR, Crespi SA, Moro AS, Vergallito A, Grgič RG, Pretti N, Lamanna J, Ferro M. Boosting Psychotherapy With Noninvasive Brain Stimulation: The Whys and Wherefores of Modulating Neural Plasticity to Promote Therapeutic Change. Neural Plast 2024; 2024:7853199. [PMID: 39723244 PMCID: PMC11669434 DOI: 10.1155/np/7853199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
The phenomenon of neural plasticity pertains to the intrinsic capacity of neurons to undergo structural and functional reconfiguration through learning and experiential interaction with the environment. These changes could manifest themselves not only as a consequence of various life experiences but also following therapeutic interventions, including the application of noninvasive brain stimulation (NIBS) and psychotherapy. As standalone therapies, both NIBS and psychotherapy have demonstrated their efficacy in the amelioration of psychiatric disorders' symptoms, with a certain variability in terms of effect sizes and duration. Consequently, scholars suggested the convenience of integrating the two interventions into a multimodal treatment to boost and prolong the therapeutic outcomes. Such an approach is still in its infancy, and the physiological underpinnings substantiating the effectiveness and utility of combined interventions are still to be clarified. Therefore, this opinion paper aims to provide a theoretical framework consisting of compelling arguments as to why adding NIBS to psychotherapy can promote therapeutic change. Namely, we will discuss the physiological effects of the two interventions, thus providing a rationale to explain the potential advantages of a combined approach.
Collapse
Affiliation(s)
- Daniele Saccenti
- Department of Psychology, Sigmund Freud University, Milan, Italy
| | - Leonor J. Romero Lauro
- Department of Psychology and NeuroMi, University of Milano-Bicocca, Milan, Italy
- Cognitive Studies, Cognitive Psychotherapy School and Research Center, Milan, Italy
| | - Sofia A. Crespi
- Cognitive Studies, Cognitive Psychotherapy School and Research Center, Milan, Italy
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea S. Moro
- Department of Psychology, Sigmund Freud University, Milan, Italy
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy
| | | | | | - Novella Pretti
- Cognitive Studies, Cognitive Psychotherapy School and Research Center, Milan, Italy
- Clinical Psychology Center, Division of Neurology, Galliera Hospital, Genoa, Italy
| | - Jacopo Lamanna
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy
| | - Mattia Ferro
- Department of Psychology, Sigmund Freud University, Milan, Italy
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
3
|
Liu QM, Lucas M, Badami F, Wu W, Etkin A, Yuan TF. Cortical plasticity differences in substance use disorders. FUNDAMENTAL RESEARCH 2024; 4:1351-1356. [PMID: 39734552 PMCID: PMC11670691 DOI: 10.1016/j.fmre.2023.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/18/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Among substances, opiates and psychostimulants are responsible for the most significant public health problems, yet few studies have characterized their similarities or differences in the cortical plasticity of individuals with these substance related problems. This investigation utilized concurrent transcranial magnetic stimulation and electroencephalography (TMS-EEG) to examine cortical plasticity characteristics of individuals with heroin and methamphetamine related substance use disorder (SUD) relative to healthy controls. TMS-EEG data were collected from healthy control subjects (N = 35), subjects with heroin (N = 72) and methamphetamine (N = 69) use disorder. The data were analyzed using our fully-automated artifact rejection algorithm (ARTIST). Analyses were performed separately for F3, F4 and P3 stimulation sites. Linear mixed effects models were used to examine Group (heroin, methamphetamine, healthy control) x Time (pre, post single-session rTMS) interactions. To evaluate plasticity differences across groups, we observed the changes in single pulse TMS before and after single-session of rTMS. There was no change in alpha power after stimulation of the F3 or F4 sites across groups. The alpha power of the control group was significantly decreased when stimulating the P3 site, while there was no significant change in alpha power for either drug group during the same time window. The beta power of the healthy control group increased significantly when the F3 site was stimulated. In contrast, there was no significant change in either the methamphetamine or heroin group. Following a single-session of rTMS intervention, there was a significant difference in alpha-band power between the healthy control group and the two drug groups. Taking together, the study findings identified differential plasticity effects in the two types of SUD population, and highlighted the network effects of rTMS. The findings point to an exciting future path for using rTMS to test new plasticity-based interventions for treating drug addiction.
Collapse
Affiliation(s)
- Qing-Ming Liu
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Center for Brain, Mind and Education, Shaoxing University, Shaoxing 312000, China
- School of Psychology, Nanjing Normal University, Nanjing 210024, China
| | - Molly Lucas
- Department of Psychiatry and Behavioral Science, Stanford University, CA 94394, United States
- Wu Tsai Neuroscience Institute, Stanford University, CA 94305, United States
| | - Faizan Badami
- Department of Psychiatry and Behavioral Science, Stanford University, CA 94394, United States
- Wu Tsai Neuroscience Institute, Stanford University, CA 94305, United States
| | - Wei Wu
- Department of Psychiatry and Behavioral Science, Stanford University, CA 94394, United States
- Alto Neuroscience, Inc., Los Altos, CA 94022, United States
| | - Amit Etkin
- Department of Psychiatry and Behavioral Science, Stanford University, CA 94394, United States
- Wu Tsai Neuroscience Institute, Stanford University, CA 94305, United States
- Alto Neuroscience, Inc., Los Altos, CA 94022, United States
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
4
|
Fan L, Su C, Li Y, Guo J, Huang Z, Zhang W, Liu T, Wang J. The alterations of repetitive transcranial magnetic stimulation on the energy landscape of resting-state networks differ across the human cortex. Hum Brain Mapp 2024; 45:e70029. [PMID: 39465912 PMCID: PMC11514123 DOI: 10.1002/hbm.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 10/29/2024] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a promising intervention tool for the noninvasive modulation of brain activity and behavior in neuroscience research and clinical settings. However, the resting-state dynamic evolution of large-scale functional brain networks following rTMS has rarely been investigated. Here, using resting-state fMRI images collected from 23 healthy individuals before (baseline) and after 1 Hz rTMS of the left frontal (FRO) and occipital (OCC) lobes, we examined the different effects of rTMS on brain dynamics across the human cortex. By fitting a pairwise maximum entropy model (pMEM), we constructed an energy landscape for the baseline and poststimulus conditions by fitting a pMEM. We defined dominant brain states (local minima) in the energy landscape with synergistic activation and deactivation patterns of large-scale functional networks. We calculated state dynamics including appearance probability, transitions and duration. The results showed that 1 Hz rTMS induced increased and decreased state probability, transitions and duration when delivered to the FRO and OCC targets, respectively. Most importantly, the shortest path and minimum cost between dominant brain states were altered after stimulation. The absolute sum of the costs from the source states to the destinations was lower after OCC stimulation than after FRO stimulation. In conclusion, our study characterized the dynamic trajectory of state transitions in the energy landscape and suggested that local rTMS can induce significant dynamic perturbation involving stimulated and distant functional networks, which aligns with the modern view of the dynamic and complex brain. Our results suggest low-dimensional mapping of rTMS-induced brain adaption, which will contribute to a broader and more effective application of rTMS in clinical settings.
Collapse
Affiliation(s)
- Liming Fan
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Chunwang Su
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Jinjia Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Zi‐Gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Wenlong Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
- The Key Laboratory of Neuro‐informatics & Rehabilitation Engineering of Ministry of Civil AffairsXi'anShaanxiP. R. China
| |
Collapse
|
5
|
Kiyonaga A, Miller JA, D'Esposito M. Lateral prefrontal cortex controls interplay between working memory and actions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613601. [PMID: 39345454 PMCID: PMC11429898 DOI: 10.1101/2024.09.17.613601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Humans must often keep multiple task goals in mind, at different levels of priority and immediacy, while also interacting with the environment. We might need to remember information for an upcoming task while engaged in more immediate actions. Consequently, actively maintained working memory (WM) content may bleed into ongoing but unrelated motor behavior. Here, we experimentally test the impact of WM maintenance on action execution, and we transcranially stimulate lateral prefrontal cortex (PFC) to parse its functional contributions to WM-motor interactions. We first created a task scenario wherein human participants (both sexes) executed cued hand movements during WM maintenance. We manipulated the compatibility between WM and movement goals at the trial level and the statistical likelihood that the two would be compatible at the block level. We found that remembering directional words (e.g., 'left', 'down') biased the trajectory and speed of hand movements that occurred during the WM delay, but the bias was dampened in blocks when WM content predictably conflicted with movement goals. Then we targeted left lateral PFC with two different transcranial magnetic stimulation (TMS) protocols before participants completed the task. We found that an intermittent theta-burst protocol, which is thought to be excitatory, dampened sensitivity to block-level control demands (i.e., proactive control), while a continuous theta-burst protocol, which is thought to be inhibitory, dampened adaptation to trial-by-trial conflict (i.e., reactive control). Therefore, lateral PFC is involved in controlling the interplay between WM content and manual action, but different PFC mechanisms may support different time-scales of adaptive control.
Collapse
|
6
|
Zhao X, Liu J, Shao Z, Liu X, Wang Z, Yuan K, Zhang B, Li Y, Sheng X, Zhu Y, Guo Y. Restoration of abnormal sleep EEG power in patients with insomnia disorder after 1Hz rTMS over left DLPFC. Front Psychiatry 2024; 15:1431837. [PMID: 39319359 PMCID: PMC11419987 DOI: 10.3389/fpsyt.2024.1431837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/23/2024] [Indexed: 09/26/2024] Open
Abstract
Introduction Hyperarousal has been a significant pathophysiological theory related to insomnia disorder (ID), characterized by excessive cortical activation and abnormal electroencephalogram (EEG) power during daytime or sleep. However, there is currently insufficient attention to the EEG power during rapid eye movement (REM) sleep and different stages of non-rapid eye movement (NREM) sleep. Additionally, whether the abnormal sleep EEG power in ID patients can be restored by repetitive transcranial magnetic stimulation (rTMS) remains unclear. Methods> Data of 26 ID patients and 26 healthy controls (HCs) were included in the current observational study. The comparisons of relative power between patients and HCs at baseline in each band of each sleep stage and the changes in patients before and after rTMS treatment were performed. The correlations between relative power and behavioral measures of the patients were also investigated. Results Abnormalities in sleep EEG relative power in the delta, beta and gamma bands of the patients were observed in NREM2, NREM3 and REM sleep. Correlations were identified between relative power and behavioral measures in ID group, primarily encompassing sleep efficiency, sleep onset latency and depression scores. Post-treatment improvements in relative power of the delta and beta band were observed in NREM2 sleep. Discussion The relative power of sleep EEG exhibited a significant correlation with sleep measures in ID patients, and demonstrated notable differences from HCs across the delta, beta, and gamma frequency bands. Furthermore, our findings suggest that rTMS treatment may partially ameliorate relative power abnormalities in patients with ID.
Collapse
Affiliation(s)
- Xumeng Zhao
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiayi Liu
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ziqiang Shao
- School of Life Science and Technology, Xidian University, Xi'an, Shanxi, China
| | - Xiaoyang Liu
- School of Life Science and Technology, Xidian University, Xi'an, Shanxi, China
| | - Zhen Wang
- School of Life Science and Technology, Xidian University, Xi'an, Shanxi, China
| | - Kai Yuan
- School of Life Science and Technology, Xidian University, Xi'an, Shanxi, China
| | - Bingqian Zhang
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Li
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaona Sheng
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yifei Zhu
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yansu Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
7
|
Mencarelli L, Torso M, Borghi I, Assogna M, Pezzopane V, Bonnì S, Di Lorenzo F, Santarnecchi E, Giove F, Martorana A, Bozzali M, Ridgway GR, Chance SA, Koch G. Macro and micro structural preservation of grey matter integrity after 24 weeks of rTMS in Alzheimer's disease patients: a pilot study. Alzheimers Res Ther 2024; 16:152. [PMID: 38970141 PMCID: PMC11225141 DOI: 10.1186/s13195-024-01501-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/12/2024] [Indexed: 07/07/2024]
Abstract
Alzheimer's Disease (AD) is characterized by structural and functional dysfunction involving the Default Mode Network (DMN), for which the Precuneus (PC) is a key node. We proposed a randomized double-blind pilot study to determine neurobiological changes after 24 weeks of PC-rTMS in patients with mild-to-moderate AD. Sixteen patients were randomly assigned to SHAM or PC-rTMS, and received an intensive 2-weeks course with daily rTMS sessions, followed by a maintenance phase in which rTMS has been applied once a week. Before and after the treatment structural and functional MRIs were collected. Our results showed macro- and micro-structural preservation in PC-rTMS compared to SHAM-rTMS group after 24 weeks of treatment, correlated to an increase of functional connectivity (FC) within the PC in the PC-rTMS group. Even if preliminary, these results trigger the possibility of using PC-rTMS to arrest atrophy progression by manipulating distributed network connectivity patterns.
Collapse
Affiliation(s)
- Lucia Mencarelli
- Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, Rome, 00179, Italy
| | - Mario Torso
- Oxford Brain Diagnostics Ltd, New Rd, Oxford, OX1 1BY, UK
| | - Ilaria Borghi
- Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, Rome, 00179, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Luigi Borsari, 46, Ferrara, 44121, Italy
| | - Martina Assogna
- Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, Rome, 00179, Italy
| | - Valentina Pezzopane
- Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, Rome, 00179, Italy
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Via Fossato di Mortara, 19, Ferrara, 44121, Italy
| | - Sonia Bonnì
- Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, Rome, 00179, Italy
| | - Francesco Di Lorenzo
- Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, Rome, 00179, Italy
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program & Network Control Laboratory, Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, 125 Nashua Street, Boston, MA, 02114- 1107, USA
| | - Federico Giove
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, Rome, 00179, Italy
- MARBILab, Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Via Panisperna 89 A, Rome, 00184, Italy
| | - Alessandro Martorana
- Department of Systems Medicine, Memory Clinic, University of Tor Vergata, Via Montpellier 1, Rome, 00133, Italy
| | - Marco Bozzali
- Neuroscience Department "Rita Levi Montalcini", University of Turin, Via Cherasco, 15, Turin, 10126, Italy
| | | | | | - Giacomo Koch
- Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, Rome, 00179, Italy.
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Luigi Borsari, 46, Ferrara, 44121, Italy.
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Via Fossato di Mortara, 19, Ferrara, 44121, Italy.
| |
Collapse
|
8
|
Tang SJ, Holle J, Dadario NB, Ryan M, Lesslar O, Teo C, Sughrue M, Yeung J. Personalized, parcel-guided non-invasive transcranial magnetic stimulation for the treatment of post-concussive syndrome: safety and proof of concept. Brain Inj 2024:1-11. [PMID: 38965876 DOI: 10.1080/02699052.2024.2371975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 06/15/2024] [Indexed: 07/06/2024]
Abstract
OBJECTIVE To determine the safety and proof of concept of a parcel-guided, repetitive Transcranial Magnetic Stimulation (rTMS) in patients who develop a heterogeneous array of symptoms, known collectively as post-concussive syndrome (PCS), following traumatic brain injury (TBI). METHODS We performed a retrospective review of off-label, individualized, parcel-guided rTMS in 19 patients from December 2020 to May 2023. Patients had at least one instance of mild, moderate, or severe TBI and developed symptoms not present prior to injury. rTMS targets were identified based on machine learning connectomic software using functional connectivity anomaly matrices compared to healthy controls. EuroQol (EQ-5D), as a measurement of quality of life, and additional questionnaires dependent on individual's symptoms were submitted prior to, after, and during follow-up from rTMS. RESULTS Nineteen patients showed improvement in EQ-5D and Rivermead Post Concussion Symptoms Questionnaires - 3 after treatment and follow-up. For nine patients who developed depression, five (55%) attained response and remission based on the Beck Depression Inventory after treatment. Eight of ten patients with anxiety had a clinically significant reduction in Generalized Anxiety Disorder-7 scores during follow-up. CONCLUSION Parcel-guided rTMS is safe and may be effective in reducing PCS symptoms following TBI and should incite further controlled studies.
Collapse
Affiliation(s)
- Si Jie Tang
- School of Medicine, University of California Davis Medical Center, Sacramento, California, USA
| | | | - Nicholas B Dadario
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | | | | | | | | | - Jacky Yeung
- Cingulum Health, Sydney, Australia
- Department of Neurosurgery, Yale University School of Medicine institution, New Haven, Connecticut, USA
| |
Collapse
|
9
|
Zhao T, Guo H, Yang J, Cai A, Liu J, Zheng J, Xiao Y, Zhao P, Li Y, Luo X, Zhang X, Zhu R, Wang J, Wang F. Repetitive Transcranial Magnetic Stimulation Reversing Abnormal Brain Function in Mood Disorders with Early Life Stress: from preclinical models to clinical applications. Asian J Psychiatr 2024; 97:104092. [PMID: 38823081 DOI: 10.1016/j.ajp.2024.104092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Early life stress (ELS) significantly increases the risk of mood disorders and affects the neurodevelopment of the primary cortex. HYPOTHESIS Modulating the primary cortex through neural intervention can ameliorate the impact of ELS on brain development and consequently alleviate its effects on mood disorders. METHOD We induced the chronic unpredictable mild stress (CUMS) model in adolescent rats, followed by applying repetitive transcranial magnetic stimulation (rTMS) to their primary cortex in early adulthood. To assess the applicability of primary cortex rTMS in humans, we recruited individuals aged 17-25 with mood disorders who had experienced ELS and performed primary cortex rTMS on them. Functional magnetic resonance imaging (fMRI) and depression-related behavioral and clinical symptoms were conducted in both rats and human subjects before and after the rTMS. RESULTS In animals, fMRI analysis revealed increased activation in the primary cortex of CUMS rats and decrease subcortical activation. Following the intervention of primary cortex rTMS, the abnormal functional activity was reversed. Similarly, in mood disorders patients with ELS, increased activation in the primary cortex and decreased activation in the frontal cortex were observed. During rTMS intervention, similar neuroimaging improvements were noted, particularly decreased activation in the primary cortex. This suggests that targeted rTMS in the primary cortex can reverse the abnormal neuroimaging. CONCLUSION This cross-species translational study has identified the primary cortex as a key region in mood disorders patients with ELS. Targeting the primary cortex with rTMS can correct abnormal functional activity while improving symptoms. Our study provides translational evidence for therapeutics targeting the ELS factor of mood disorders patients.
Collapse
Affiliation(s)
- Tongtong Zhao
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, PR China
| | - Huiling Guo
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, PR China; School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, PR China
| | - Jingyu Yang
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, PR China
| | - Aoling Cai
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China; School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, PR China; Changzhou Medical Center, Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou, PR China
| | - Juan Liu
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, PR China
| | - Junjie Zheng
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, PR China
| | - Yao Xiao
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, PR China
| | - Pengfei Zhao
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, PR China
| | - Yifan Li
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xiongjian Luo
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xizhe Zhang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, PR China
| | - Rongxin Zhu
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, PR China
| | - Jie Wang
- Academy of Integrative Medicine, College of Integrative Medicine, Afffliated Third People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Xiangyang, Hubei, PR China; Institute of Neuroscience and Brain Diseases, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, PR China
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, PR China; Department of Mental Health, School of Public Health, Nanjing Medical University, Nanjing, PR China.
| |
Collapse
|
10
|
Ngoy A, Tang VM, Xiao K, Blumberger DM, George TP, Gowin JL, Le Foll B, Sloan ME. Neuromodulation for Cannabis Use: A Scoping Review. Brain Sci 2024; 14:356. [PMID: 38672008 PMCID: PMC11048669 DOI: 10.3390/brainsci14040356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
This scoping review explores the use of neuromodulation techniques in individuals with cannabis use. Our goal was to determine whether cannabis use alters cortical excitation and inhibition in the context of neuromodulation and to determine whether neuromodulation affects craving and cannabis use patterns. A systematic search was conducted using PubMed, OVID Medline, and PsycINFO from inception to 20 December 2022. Our review identified ten relevant studies, eight of which used Transcranial Magnetic Stimulation (TMS), while two employed Transcranial Direct Current Stimulation (tDCS). Findings from TMS studies suggest that cannabis users exhibit altered cortical inhibition, with decreased short interval intracortical inhibition (SICI) compared to non-users. Single sessions of rTMS did not have any impact on cannabis craving. By contrast, two studies found that multiple sessions of rTMS reduced cannabis use, but these changes did not meet the threshold for statistical significance and both studies were limited by small sample sizes. The two included tDCS studies found contradictory results, with one showing reduced cannabis craving with active treatment and another showing no effect of active treatment on craving compared to sham. Future studies should further explore the effects of multiple treatment sessions and different neuromodulation modalities.
Collapse
Affiliation(s)
- Anthony Ngoy
- Addictions Division, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada; (A.N.); (T.P.G.); (B.L.F.)
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5G 2C8, Canada
| | - Victor M. Tang
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada; (V.M.T.); (D.M.B.)
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5S 2S1, Canada
| | - Kebin Xiao
- Addictions Division, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada; (A.N.); (T.P.G.); (B.L.F.)
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5G 2C8, Canada
| | - Daniel M. Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada; (V.M.T.); (D.M.B.)
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
| | - Tony P. George
- Addictions Division, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada; (A.N.); (T.P.G.); (B.L.F.)
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Joshua L. Gowin
- Departments of Radiology and Psychiatry, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Bernard Le Foll
- Addictions Division, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada; (A.N.); (T.P.G.); (B.L.F.)
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5G 2C8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5S 2S1, Canada
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5S 2S1, Canada
- Department of Family and Community Medicine, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada
- Waypoint Research Institute, Waypoint Centre for Mental Health Care, Penetanguishene, ON L9M 1G3, Canada
| | - Matthew E. Sloan
- Addictions Division, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada; (A.N.); (T.P.G.); (B.L.F.)
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5G 2C8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5S 2S1, Canada
- Department of Psychological Clinical Science, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| |
Collapse
|
11
|
Mazzi C, Mele S, Bagattini C, Sanchez-Lopez J, Savazzi S. Coherent activity within and between hemispheres: cortico-cortical connectivity revealed by rTMS of the right posterior parietal cortex. Front Hum Neurosci 2024; 18:1362742. [PMID: 38516308 PMCID: PMC10954802 DOI: 10.3389/fnhum.2024.1362742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction Low frequency (1 Hz) repetitive transcranial stimulation (rTMS) applied over right posterior parietal cortex (rPPC) has been shown to reduce cortical excitability both of the stimulated area and of the interconnected contralateral homologous areas. In the present study, we investigated the whole pattern of intra- and inter-hemispheric cortico-cortical connectivity changes induced by rTMS over rPPC. Methods To do so, 14 healthy participants underwent resting state EEG recording before and after 30 min of rTMS at 1 Hz or sham stimulation over the rPPC (electrode position P6). Real stimulation was applied at 90% of motor threshold. Coherence values were computed on the electrodes nearby the stimulated site (i.e., P4, P8, and CP6) considering all possible inter- and intra-hemispheric combinations for the following frequency bands: delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12Hz), low beta (12-20 Hz), high beta (20-30 Hz), and gamma (30-50 Hz). Results and discussion Results revealed a significant increase in coherence in delta, theta, alpha and beta frequency bands between rPPC and the contralateral homologous sites. Moreover, an increase in coherence in theta, alpha, beta and gamma frequency bands was found between rPPC and right frontal sites, reflecting the activation of the fronto-parietal network within the right hemisphere. Summarizing, subthreshold rTMS over rPPC revealed cortico-cortical inter- and intra-hemispheric connectivity as measured by the increase in coherence among these areas. Moreover, the present results further confirm previous evidence indicating that the increase of coherence values is related to intra- and inter-hemispheric inhibitory effects of rTMS. These results can have implications for devising evidence-based rehabilitation protocols after stroke.
Collapse
Affiliation(s)
- Chiara Mazzi
- Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Sonia Mele
- Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Chiara Bagattini
- Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- Section of Neurosurgery, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Javier Sanchez-Lopez
- Escuela Nacional de Estudios Superiores Unidad Juriquilla, Universidad Nacional Autonoma de Mexico, Santiago de Querétaro, Mexico
| | - Silvia Savazzi
- Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
12
|
Fan L, Li Y, Zhao X, Huang ZG, Liu T, Wang J. Dynamic nonreversibility view of intrinsic brain organization and brain dynamic analysis of repetitive transcranial magnitude stimulation. Cereb Cortex 2024; 34:bhae098. [PMID: 38494890 DOI: 10.1093/cercor/bhae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
Intrinsic neural activities are characterized as endless spontaneous fluctuation over multiple time scales. However, how the intrinsic brain organization changes over time under local perturbation remains an open question. By means of statistical physics, we proposed an approach to capture whole-brain dynamics based on estimating time-varying nonreversibility and k-means clustering of dynamic varying nonreversibility patterns. We first used synthetic fMRI to investigate the effects of window parameters on the temporal variability of varying nonreversibility. Second, using real test-retest fMRI data, we examined the reproducibility, reliability, biological, and physiological correlation of the varying nonreversibility substates. Finally, using repetitive transcranial magnetic stimulation-fMRI data, we investigated the modulation effects of repetitive transcranial magnetic stimulation on varying nonreversibility substate dynamics. The results show that: (i) as window length increased, the varying nonreversibility variance decreased, while the sliding step almost did not alter it; (ii) the global high varying nonreversibility states and low varying nonreversibility states were reproducible across multiple datasets and different window lengths; and (iii) there were increased low varying nonreversibility states and decreased high varying nonreversibility states when the left frontal lobe was stimulated, but not the occipital lobe. Taken together, these results provide a thermodynamic equilibrium perspective of intrinsic brain organization and reorganization under local perturbation.
Collapse
Affiliation(s)
- Liming Fan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Xingjian Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Zi-Gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
- The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi 710049, China
| |
Collapse
|
13
|
Shao Z, Guo Y, Yue L, Liu X, Liu J, Zhao X, Sheng X, Yu D, Zhu Y, Yuan K. Comparisons of transcranial alternating current stimulation and repetitive transcranial magnetic stimulation treatment therapy for insomnia: a pilot study. Gen Psychiatr 2024; 37:e101184. [PMID: 38390243 PMCID: PMC10882281 DOI: 10.1136/gpsych-2023-101184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/18/2023] [Indexed: 02/24/2024] Open
Affiliation(s)
- Ziqiang Shao
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Yongjian Guo
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Lirong Yue
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Xiaoyang Liu
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Jiayi Liu
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xumeng Zhao
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaona Sheng
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Dahua Yu
- Information Processing Laboratory, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Yifei Zhu
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Kai Yuan
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| |
Collapse
|
14
|
Tang N, Shu W, Wang HN. Accelerated transcranial magnetic stimulation for major depressive disorder: A quick path to relief? WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2024; 15:e1666. [PMID: 37779251 DOI: 10.1002/wcs.1666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023]
Abstract
Transcranial magnetic stimulation (TMS) is a safe, tolerable, and evidence-based intervention for major depressive disorder (MDD). However, even after decades of research, nearly half of the patients with MDD fail to respond to conventional TMS, with responding slowly and requiring daily attendance at the treatment site for 4-6 weeks. To intensify antidepressant efficacy and shorten treatment duration, accelerated TMS protocols, which involve multiple sessions per day over a few days, have been proposed and evaluated for safety and viability. We reviewed and summarized the current knowledge in accelerated TMS, including stimulation parameters, antidepressant efficacy, anti-suicidal efficacy, safety, and adverse effects. Limitations and suggestions for future directions are also addressed, along with a brief discussion on the application of accelerated TMS during the COVID-19 pandemic. This article is categorized under: Neuroscience > Clinical Neuroscience.
Collapse
Affiliation(s)
- Nailong Tang
- Department of Psychiatry, First Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
- Department of Psychiatry, the 907th Hospital of the PLA Joint Logistics Support Force, Nanping, Fujian, China
| | - Wanqing Shu
- Department of Psychiatry, First Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| | - Hua-Ning Wang
- Department of Psychiatry, First Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
15
|
Xiao Y, Womer FY, Dong S, Zhu R, Zhang R, Yang J, Zhang L, Liu J, Zhang W, Liu Z, Zhang X, Wang F. A neuroimaging-based precision medicine framework for depression. Asian J Psychiatr 2024; 91:103803. [PMID: 37992593 DOI: 10.1016/j.ajp.2023.103803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/20/2023] [Accepted: 10/16/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Symptom-based diagnostic criteria of depression leads to notorious heterogeneity and subjectivity. METHODS The study was conducted in two stages at two sites: development of a neuroimaging-based subtyping and precise repetitive transcranial magnetic stimulation (rTMS) strategy for depression at Center 1 and its clinical application at Center 2. Center 1 identified depression subtypes and subtype-specific rTMS targets based on amplitude of low frequency fluctuation (ALFF) in a cohort of 238 major depressive disorder patients and 66 healthy controls (HC). Subtypes were identified using a Gaussian Mixture Model, and subtype-specific rTMS targets were selected based on dominant brain regions prominently differentiating depression subtypes from HC. Subsequently, one classifier was employed and 72 hospitalized, depressed youths at Center 2 received two-week precise rTMS. MRI and clinical assessments were obtained at baseline, midpoint, and treatment completion for evaluation. RESULTS Two neuroimaging subtypes of depression, archetypal and atypical depression, were identified based on distinct frontal-posterior functional imbalance patterns as measured by ALFF. The dorsomedial prefrontal cortex was identified as the rTMS target for archetypal depression, and the occipital cortex for atypical depression. Following precise rTMS, ALFF alterations were normalized in both archetypal and atypical depressed youths, corresponding with symptom response of 90.00% in archetypal depression and 70.73% in atypical depression. CONCLUSIONS A precision medicine framework for depression was developed based on objective neurobiomarkers and implemented with promising results, actualizing a subtyping-treatment-evaluation closed loop in depression. Future randomized controlled trials are warranted.
Collapse
Affiliation(s)
- Yao Xiao
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| | - Fay Y Womer
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shuai Dong
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Rongxin Zhu
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| | - Ran Zhang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| | - Jingyu Yang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| | - Luheng Zhang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| | - Juan Liu
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| | - Weixiong Zhang
- Department of Health Technology and Informatics, Department of Computing, The Hong Kong Polytechnic University, Hong Kong
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China; Taikang center for life and medical sciences, Wuhan University, Wuhan, China.
| | - Xizhe Zhang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China.
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
16
|
Tao Q, Chao H, Fang D, Dou D. Progress in neurorehabilitation research and the support by the National Natural Science Foundation of China from 2010 to 2022. Neural Regen Res 2024; 19:226-232. [PMID: 37488871 PMCID: PMC10479845 DOI: 10.4103/1673-5374.375342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 07/26/2023] Open
Abstract
The National Natural Science Foundation of China is one of the major funding agencies for neurorehabilitation research in China. This study reviews the frontier directions and achievements in the field of neurorehabilitation in China and worldwide. We used data from the Web of Science Core Collection (WoSCC) database to analyze the publications and data provided by the National Natural Science Foundation of China to analyze funding information. In addition, the prospects for neurorehabilitation research in China are discussed. From 2010 to 2022, a total of 74,220 publications in neurorehabilitation were identified, with there being an overall upward tendency. During this period, the National Natural Science Foundation of China has funded 476 research projects with a total funding of 192.38 million RMB to support neurorehabilitation research in China. With the support of the National Natural Science Foundation of China, China has made some achievements in neurorehabilitation research. Research related to neurorehabilitation is believed to be making steady and significant progress in China.
Collapse
Affiliation(s)
- Qian Tao
- School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
- School of Health and Life Science, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, China
| | - Honglu Chao
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, China
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Dong Fang
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, China
| | - Dou Dou
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, China
| |
Collapse
|
17
|
Luo Y, Wang K, Jiao S, Zeng J, Han Z. Distinct parallel activation and interaction between dorsal and ventral pathways during phonological and semantic processing: A cTBS-fMRI study. Hum Brain Mapp 2024; 45:e26569. [PMID: 38224540 PMCID: PMC10785560 DOI: 10.1002/hbm.26569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/09/2023] [Accepted: 12/04/2023] [Indexed: 01/17/2024] Open
Abstract
Successful visual word recognition requires the integration of phonological and semantic information, which is supported by the dorsal and ventral pathways in the brain. However, the functional specialization or interaction of these pathways during phonological and semantic processing remains unclear. Previous research has been limited by its dependence on correlational functional magnetic resonance imaging (fMRI) results or causal validation using patient populations, which are susceptible to confounds such as plasticity and lesion characteristics. To address this, the present study employed continuous theta-burst stimulation combined with fMRI in a within-subject design to assess rapid adaptation in regional activity and functional connectivity of the dorsal and ventral pathways during phonological and semantic tasks. This assessment followed the precise inhibition of the left inferior parietal lobule and anterior temporal lobe in the dorsal and ventral pathways, respectively. Our results reveal that both the dorsal and ventral pathways were activated during phonological and semantic processing, while the adaptation activation and interactive network were modulated by the task type and inhibited region. The two pathways exhibited interconnectivity in phonological processing, and disruption of either pathway led to rapid adaptation across both pathways. In contrast, only the ventral pathway exhibited connectivity in semantic processing, and disruption of this pathway alone resulted in adaptive effects primarily in the ventral pathway. These findings provide essential evidence supporting the interactive theory, phonological information processing in particular, potentially providing meaningful implications for clinical populations.
Collapse
Affiliation(s)
- Yudan Luo
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Ke Wang
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
- School of System ScienceBeijing Normal UniversityBeijingChina
| | - Saiyi Jiao
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Jiahong Zeng
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Zaizhu Han
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| |
Collapse
|
18
|
Mroczek M, de Grado A, Pia H, Nochi Z, Tankisi H. Effects of sleep deprivation on cortical excitability: A threshold-tracking TMS study and review of the literature. Clin Neurophysiol Pract 2023; 9:13-20. [PMID: 38223850 PMCID: PMC10787222 DOI: 10.1016/j.cnp.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/09/2023] [Accepted: 12/01/2023] [Indexed: 01/16/2024] Open
Abstract
Objective Insufficient sleep is linked to several health problems. Previous studies on the effects of sleep deprivation on cortical excitability using conventional transcranial magnetic stimulation (TMS) included a limited number of modalities, and few inter-stimulus intervals (ISIs) and showed conflicting results. This study aimed to investigate the effects of sleep deprivation on cortical excitability through threshold-tracking TMS, using a wide range of protocols at multiple ISIs. Methods Fifteen healthy subjects (mean age ± SD: 36 ± 3.34 years) were included. The following tests were performed before and after 24 h of sleep deprivation using semi-automated threshold-tacking TMS protocols: short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) at 11 ISIs between 1 and 30 ms, short interval intracortical facilitation (SICF) at 14 ISIs between 1 and 4.9 ms, long interval intracortical inhibition (LICI) at 6 ISIs between 50 and 300 ms, and short-latency afferent inhibition (SAI) at 12 ISIs between 16 and 30 ms. Results No significant differences were observed between pre- and post-sleep deprivation measurements for SICI, ICF, SICF, or LICI at any ISIs (p < 0.05). As for SAI, we found a difference at 28 ms (p = 0.007) and 30 ms (p = 0.04) but not at other ISIs. Conclusions Sleep deprivation does not affect cortical excitability except for SAI. Significance This study confirms some of the previous studies while contradicting others.
Collapse
Affiliation(s)
- Magdalena Mroczek
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - Amedeo de Grado
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
- Neurophysiology Unit, IRCCS Fondazione Istituto Neurologico “Carlo Besta”, Università degli Studi di Milano, Milano, Italy
| | - Hossain Pia
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - Zahra Nochi
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Hatice Tankisi
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
19
|
Maas DA, Douw L. Multiscale network neuroscience in neuro-oncology: How tumors, brain networks, and behavior connect across scales. Neurooncol Pract 2023; 10:506-517. [PMID: 38026586 PMCID: PMC10666814 DOI: 10.1093/nop/npad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Network neuroscience refers to the investigation of brain networks across different spatial and temporal scales, and has become a leading framework to understand the biology and functioning of the brain. In neuro-oncology, the study of brain networks has revealed many insights into the structure and function of cells, circuits, and the entire brain, and their association with both functional status (e.g., cognition) and survival. This review connects network findings from different scales of investigation, with the combined aim of informing neuro-oncological healthcare professionals on this exciting new field and also delineating the promising avenues for future translational and clinical research that may allow for application of network methods in neuro-oncological care.
Collapse
Affiliation(s)
- Dorien A Maas
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Linda Douw
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Fan L, Li Y, Huang ZG, Zhang W, Wu X, Liu T, Wang J. Low-frequency repetitive transcranial magnetic stimulation alters the individual functional dynamical landscape. Cereb Cortex 2023; 33:9583-9598. [PMID: 37376783 DOI: 10.1093/cercor/bhad228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive approach to modulate brain activity and behavior in humans. Still, how individual resting-state brain dynamics after rTMS evolves across different functional configurations is rarely studied. Here, using resting state fMRI data from healthy subjects, we aimed to examine the effects of rTMS to individual large-scale brain dynamics. Using Topological Data Analysis based Mapper approach, we construct the precise dynamic mapping (PDM) for each participant. To reveal the relationship between PDM and canonical functional representation of the resting brain, we annotated the graph using relative activation proportion of a set of large-scale resting-state networks (RSNs) and assigned the single brain volume to corresponding RSN-dominant or a hub state (not any RSN was dominant). Our results show that (i) low-frequency rTMS could induce changed temporal evolution of brain states; (ii) rTMS didn't alter the hub-periphery configurations underlined resting-state brain dynamics; and (iii) the rTMS effects on brain dynamics differ across the left frontal and occipital lobe. In conclusion, low-frequency rTMS significantly alters the individual temporo-spatial dynamics, and our finding further suggested a potential target-dependent alteration of brain dynamics. This work provides a new perspective to comprehend the heterogeneous effect of rTMS.
Collapse
Affiliation(s)
- Liming Fan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Zi-Gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Wenlong Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Xiaofeng Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
- The Key Laboratory of Neuro-Informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi 710049, China
| |
Collapse
|
21
|
Belov V, Kozyrev V, Singh A, Sacchet MD, Goya-Maldonado R. Subject-specific whole-brain parcellations of nodes and boundaries are modulated differently under 10 Hz rTMS. Sci Rep 2023; 13:12615. [PMID: 37537227 PMCID: PMC10400653 DOI: 10.1038/s41598-023-38946-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 07/18/2023] [Indexed: 08/05/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has gained considerable importance in the treatment of neuropsychiatric disorders, including major depression. However, it is not yet understood how rTMS alters brain's functional connectivity. Here we report changes in functional connectivity captured by resting state functional magnetic resonance imaging (rsfMRI) within the first hour after 10 Hz rTMS. We apply subject-specific parcellation schemes to detect changes (1) in network nodes, where the strongest functional connectivity of regions is observed, and (2) in network boundaries, where functional transitions between regions occur. We use support vector machine (SVM), a widely used machine learning algorithm that is robust and effective, for the classification and characterization of time intervals of changes in node and boundary maps. Our results reveal that changes in connectivity at the boundaries are slower and more complex than in those observed in the nodes, but of similar magnitude according to accuracy confidence intervals. These results were strongest in the posterior cingulate cortex and precuneus. As network boundaries are indeed under-investigated in comparison to nodes in connectomics research, our results highlight their contribution to functional adjustments to rTMS.
Collapse
Affiliation(s)
- Vladimir Belov
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold Str. 5, 37075, Göttingen, Germany
| | - Vladislav Kozyrev
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold Str. 5, 37075, Göttingen, Germany
- Functional Imaging Laboratory, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - Aditya Singh
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold Str. 5, 37075, Göttingen, Germany
| | - Matthew D Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Roberto Goya-Maldonado
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold Str. 5, 37075, Göttingen, Germany.
| |
Collapse
|
22
|
Chen R, Dadario NB, Cook B, Sun L, Wang X, Li Y, Hu X, Zhang X, Sughrue ME. Connectomic insight into unique stroke patient recovery after rTMS treatment. Front Neurol 2023; 14:1063408. [PMID: 37483442 PMCID: PMC10359072 DOI: 10.3389/fneur.2023.1063408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 06/13/2023] [Indexed: 07/25/2023] Open
Abstract
An improved understanding of the neuroplastic potential of the brain has allowed advancements in neuromodulatory treatments for acute stroke patients. However, there remains a poor understanding of individual differences in treatment-induced recovery. Individualized information on connectivity disturbances may help predict differences in treatment response and recovery phenotypes. We studied the medical data of 22 ischemic stroke patients who received MRI scans and started repetitive transcranial magnetic stimulation (rTMS) treatment on the same day. The functional and motor outcomes were assessed at admission day, 1 day after treatment, 30 days after treatment, and 90 days after treatment using four validated standardized stroke outcome scales. Each patient underwent detailed baseline connectivity analyses to identify structural and functional connectivity disturbances. An unsupervised machine learning (ML) agglomerative hierarchical clustering method was utilized to group patients according to outcomes at four-time points to identify individual phenotypes in recovery trajectory. Differences in connectivity features were examined between individual clusters. Patients were a median age of 64, 50% female, and had a median hospital length of stay of 9.5 days. A significant improvement between all time points was demonstrated post treatment in three of four validated stroke scales utilized. ML-based analyses identified distinct clusters representing unique patient trajectories for each scale. Quantitative differences were found to exist in structural and functional connectivity analyses of the motor network and subcortical structures between individual clusters which could explain these unique trajectories on the Barthel Index (BI) scale but not on other stroke scales. This study demonstrates for the first time the feasibility of using individualized connectivity analyses in differentiating unique phenotypes in rTMS treatment responses and recovery. This personalized connectomic approach may be utilized in the future to better understand patient recovery trajectories with neuromodulatory treatment.
Collapse
Affiliation(s)
- Rong Chen
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Nicholas B. Dadario
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| | - Brennan Cook
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| | - Lichun Sun
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xiaolong Wang
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yujie Li
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xiaorong Hu
- Xijia Medical Technology Company Limited, Shenzhen, China
| | - Xia Zhang
- Xijia Medical Technology Company Limited, Shenzhen, China
- International Joint Research Center on Precision Brain Medicine, XD Group Hospital, Xi'an, Shaanxi, China
| | - Michael E. Sughrue
- International Joint Research Center on Precision Brain Medicine, XD Group Hospital, Xi'an, Shaanxi, China
- Omniscient Neurotechnology, Sydney, NSW, Australia
- Cingulum Health, Sydney, NSW, Australia
| |
Collapse
|
23
|
Vasileiadi M, Schuler AL, Woletz M, Linhardt D, Windischberger C, Tik M. Functional connectivity explains how neuronavigated TMS of posterior temporal subregions differentially affect language processing. Brain Stimul 2023; 16:1062-1071. [PMID: 37390891 DOI: 10.1016/j.brs.2023.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/25/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND "Wernicke's area" is most often used to describe the posterior superior temporal gyrus (STG) and refers to a region traditionally thought to support language comprehension. However, the posterior STG additionally plays a critical role in language production. The purpose of the current study was to determine to what extent regions within the posterior STG are selectively recruited during language production. METHODS 23 healthy right-handed participants completed an auditory fMRI localizer task, resting-state fMRI and underwent neuronavigated TMS language mapping. We applied repetitive TMS bursts during a picture naming paradigm to probe speech disruptions of different categories (anomia, speech arrest, semantic paraphasia and phonological paraphasia). We combined an in-house built high precision stimulation software suite with E-field modeling to map the naming errors to cortical regions and revealed a dissociation of language functions within the temporal gyrus. Resting state fMRI was used to explain how E-field peaks of different categories differentially affected language production. RESULTS Peaks for phonological and semantic errors were found in the STG while those for anomia and speech arrest were located in the MTG. Seed-based connectivity analysis revealed a local connectivity pattern for phonological and semantic errors, while anomia and speech arrest seeds resulted in a larger network between IFG and posterior MTG. CONCLUSIONS Our study provides important insights into the functional neuroanatomy of language production and might help to increase the current understanding of specific language production difficulties on a causal level.
Collapse
Affiliation(s)
- Maria Vasileiadi
- Center for Medical Physics and BME, Medical University of Vienna, Vienna, Austria
| | - Anna-Lisa Schuler
- Center for Medical Physics and BME, Medical University of Vienna, Vienna, Austria
| | - Michael Woletz
- Center for Medical Physics and BME, Medical University of Vienna, Vienna, Austria
| | - David Linhardt
- Center for Medical Physics and BME, Medical University of Vienna, Vienna, Austria
| | | | - Martin Tik
- Center for Medical Physics and BME, Medical University of Vienna, Vienna, Austria; Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
24
|
Ivanova MV, Pappas I. Understanding recovery of language after stroke: insights from neurovascular MRI studies. FRONTIERS IN LANGUAGE SCIENCES 2023; 2:1163547. [PMID: 38162928 PMCID: PMC10757818 DOI: 10.3389/flang.2023.1163547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Stroke causes a disruption in blood flow to the brain that can lead to profound language impairments. Understanding the mechanisms of language recovery after stroke is crucial for the prognosis and effective rehabilitation of people with aphasia. While the role of injured brain structures and disruptions in functional connectivity have been extensively explored, the relationship between neurovascular measures and language recovery in both early and later stages has not received sufficient attention in the field. Fully functioning healthy brain tissue requires oxygen and nutrients to be delivered promptly via its blood supply. Persistent decreases in blood flow after a stroke to the remaining non-lesioned tissue have been shown to contribute to poor language recovery. The goal of the current paper is to critically examine stroke studies looking at the relationship between different neurovascular measures and language deficits and mechanisms of language recovery via changes in neurovascular metrics. Measures of perfusion or cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) provide complementary approaches to understanding neurovascular mechanisms post stroke by capturing both cerebral metabolic demands and mechanical vascular properties. While CBF measures indicate the amount of blood delivered to a certain region and serve as a proxy for metabolic demands of that area, CVR indices reflect the ability of the vasculature to recruit blood flow in response to a shortage of oxygen, such as when one is holding their breath. Increases in CBF during recovery beyond the site of the lesion have been shown to promote language gains. Similarly, CVR changes, when collateral vessels are recruited to help reorganize the flow of blood in hypoperfused regions, have been related to functional recovery post stroke. In the current review, we highlight the main findings in the literature investigating neurovascular changes in stroke recovery with a particular emphasis on how language abilities can be affected by changes in CBF and CVR. We conclude by summarizing existing methodological challenges and knowledge gaps that need to be addressed in future work in this area, outlining a promising avenue of research.
Collapse
Affiliation(s)
- Maria V. Ivanova
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| | - Ioannis Pappas
- USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
25
|
Hernandez-Pavon JC, Schneider-Garces N, Begnoche JP, Miller LE, Raij T. Targeted Modulation of Human Brain Interregional Effective Connectivity With Spike-Timing Dependent Plasticity. Neuromodulation 2023; 26:745-754. [PMID: 36404214 PMCID: PMC10188658 DOI: 10.1016/j.neurom.2022.10.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The ability to selectively up- or downregulate interregional brain connectivity would be useful for research and clinical purposes. Toward this aim, cortico-cortical paired associative stimulation (ccPAS) protocols have been developed in which two areas are repeatedly stimulated with a millisecond-level asynchrony. However, ccPAS results in humans using bifocal transcranial magnetic stimulation (TMS) have been variable, and the mechanisms remain unproven. In this study, our goal was to test whether ccPAS mechanism is spike-timing-dependent plasticity (STDP). MATERIALS AND METHODS Eleven healthy participants received ccPAS to the left primary motor cortex (M1) → right M1 with three different asynchronies (5 milliseconds shorter, equal to, or 5 milliseconds longer than the 9-millisecond transcallosal conduction delay) in separate sessions. To observe the neurophysiological effects, single-pulse TMS was delivered to the left M1 before and after ccPAS while cortico-cortical evoked responses were extracted from the contralateral M1 using source-resolved electroencephalography. RESULTS Consistent with STDP mechanisms, the effects on synaptic strengths flipped depending on the asynchrony. Further implicating STDP, control experiments suggested that the effects were unidirectional and selective to the targeted connection. CONCLUSION The results support the idea that ccPAS induces STDP and may selectively up- or downregulate effective connectivity between targeted regions in the human brain.
Collapse
Affiliation(s)
- Julio C Hernandez-Pavon
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Center for Brain Stimulation, Shirley Ryan AbilityLab, Chicago, IL, USA; Legs + Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA
| | | | | | - Lee E Miller
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA; Limb Motor Control Lab, Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Tommi Raij
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Center for Brain Stimulation, Shirley Ryan AbilityLab, Chicago, IL, USA; Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
26
|
Xu X, Li X, Qi X, Jiang X, Xing H, Huang X, Gong Q. Effect of regional intrinsic activity following two kinds of theta burst stimulation on precuneus. Hum Brain Mapp 2023; 44:2254-2265. [PMID: 36661276 PMCID: PMC10028626 DOI: 10.1002/hbm.26207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/18/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023] Open
Abstract
Theta burst stimulation (TBS) has been widely used in the treatment of mental disorders, but the cerebral functional difference between intermittent TBS (iTBS) and continuous TBS (cTBS) after one single session of stimulation is not clear. Here we applied resting-state functional magnetic resonance imaging (RS-FMRI) to evaluate the alterations in intrinsic brain activity after iTBS and cTBS in the precuneus. We recruited 32 healthy young adults and performed a single session each of iTBS and cTBS at a 1-week interval. RS-fMRI was collected at baseline before and immediately after the stimulation. Parameters for regional brain activity (ALFF/fALFF/ReHo) and functional connectivity (FC) with the stimulated site of the precuneus after iTBS and cTBS were calculated and compared between each stimulation using a paired t-test. Correlation analysis among those parameters was calculated to explore whether changes in functional connectivity were associated with local spontaneous activity. After iTBS stimulation, fALFF increased in the bilateral precuneus, while fALFF decreased in the bilateral middle temporal gyrus. Reductions in precuneus FC were found in the bilateral cuneus, superior occipital gyrus, superior temporal gyrus, precentral gyrus, and postcentral gyrus, which correlated with regional activity. After cTBS, fALFF decreased in the bilateral insula, and precuneus FC was decreased in the bilateral inferior occipital gyrus and increased in the thalamus. In the current study, we observed that one session of iTBS or cTBS could cause inhibitory effects in remote brain regions, but only iTBS caused significant local activation in the target region.
Collapse
Affiliation(s)
- Xin Xu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Xue Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, People's Republic of China
- College of Physics, Sichuan University, Chengdu, People's Republic of China
| | - Xu Qi
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, People's Republic of China
- College of Physics, Sichuan University, Chengdu, People's Republic of China
| | - Xi Jiang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, People's Republic of China
- College of Physics, Sichuan University, Chengdu, People's Republic of China
| | - Haoyang Xing
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, People's Republic of China
- College of Physics, Sichuan University, Chengdu, People's Republic of China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, People's Republic of China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, People's Republic of China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, People's Republic of China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, People's Republic of China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, People's Republic of China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
27
|
The potential of electroencephalography coherence to predict the outcome of repetitive transcranial magnetic stimulation in insomnia disorder. J Psychiatr Res 2023; 160:56-63. [PMID: 36774831 DOI: 10.1016/j.jpsychires.2023.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND It is unknown whether repetitive Transcranial Magnetic Stimulation (rTMS) could improve sleep quality by modulating electroencephalography (EEG) connectivity of insomnia disorder (ID) patients. Great heterogeneity had been found in the clinical outcomes of rTMS for ID. The study aimed to investigate the potential mechanisms of rTMS therapy for ID and develop models to predict clinical outcomes. METHODS In Study 1, 50 ID patients were randomly divided into active and sham groups, and subjected to 20 sessions of treatment with 1 Hz rTMS over the left dorsolateral prefrontal cortex. EEG during awake, Polysomnography, and clinical assessment were collected and analyzed before and after rTMS. In Study 2, 120 ID patients were subjected to active rTMS stimulation and were then separated into optimal and sub-optimal groups due to the median of Pittsburgh Sleep Quality Index reduction rate. Machine learning models were developed based on baseline EEG coherence to predict rTMS treatment effects. RESULTS In Study 1, decreased EEG coherence in theta and alpha bands were observed after rTMS treatment, and changes in theta band (F7-O1) coherence were correlated with changes in sleep efficiency. In Study 2, baseline EEG coherence in theta, alpha, and beta bands showed the potential to predict the treatment effects of rTMS for ID. CONCLUSION rTMS improved sleep quality of ID patients by modulating the abnormal EEG coherence. Baseline EEG coherence between certain channels in theta, alpha, and beta bands could act as potential biomarkers to predict the therapeutic effects.
Collapse
|
28
|
Zheng H, Zhou Q, Yang J, Lu Q, Qiu H, He C, Yan H. Altered functional connectivity of the default mode and frontal control networks in patients with insomnia. CNS Neurosci Ther 2023. [PMID: 36942498 DOI: 10.1111/cns.14183] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 02/20/2023] [Accepted: 03/05/2023] [Indexed: 03/23/2023] Open
Abstract
AIMS The purpose of this study was to investigate the association between spontaneous regional activity and brain functional connectivity, which maybe can distinguish insomnia while being responsive to repetitive transcranial magnetic stimulation (rTMS) treatment effects in insomnia patients. METHODS Using resting-state functional magnetic resonance imaging data from 38 chronic insomnia patients and 36 healthy volunteers, we compared the amplitude of low-frequency fluctuations (ALFF) between the two groups. Of all the patients with insomnia, 20 received rTMS for 4 weeks, while 18 patients received a 4-week pseudo-stimulation intervention. Seed-based resting-state functional connectivity (RSFC) analysis was conducted from regions with significantly different ALFF values, and the association between RSFC value and Pittsburgh Sleep Quality Index score was determined. RESULTS Our results revealed that insomnia patients presented a significantly higher ALFF value in the posterior cingulate cortex (PCC), whereas a significantly lower ALFF value was observed in the superior parietal lobule (SPL). Moreover, significantly reduced RSFC was detected from both PCC to prefrontal cortex connections, as well as from left SPL to frontal pole connections. In addition, RSFC from frontal pole to left SPL negatively predicted sleep quality (PSQI) and treatment response in patients' group. CONCLUSION Our findings suggest that disrupted frontoparietal network connectivity may be a biomarker for insomnia in middle-aged adults, reinforcing the potential of rTMS targeting the frontal lobes. Monitoring pretreatment RSFC could offer greater insight into how rTMS treatments are responded to by insomniacs.
Collapse
Affiliation(s)
- Hui Zheng
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Zhou
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Junjie Yang
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Qian Lu
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Huaide Qiu
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chuan He
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Hailang Yan
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
- Department of Radiology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
29
|
Zhu L, Dang G, Wu W, Zhou J, Shi X, Su X, Ren H, Pei Z, Lan X, Lian C, Xie P, Guo Y. Functional connectivity changes are correlated with sleep improvement in chronic insomnia patients after rTMS treatment. Front Neurosci 2023; 17:1135995. [PMID: 37139515 PMCID: PMC10149758 DOI: 10.3389/fnins.2023.1135995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS) has been increasingly used as a treatment modality for chronic insomnia disorder (CID). However, our understanding of the mechanisms underlying the efficacy of rTMS is limited. Objective This study aimed to investigate rTMS-induced alterations in resting-state functional connectivity and to find potential connectivity biomarkers for predicting and tracking clinical outcomes after rTMS. Methods Thirty-seven patients with CID received a 10-session low frequency rTMS treatment applied to the right dorsolateral prefrontal cortex. Before and after treatment, the patients underwent resting-state electroencephalography recordings and a sleep quality assessment using the Pittsburgh Sleep Quality Index (PSQI). Results After treatment, rTMS significantly increased the connectivity of 34 connectomes in the lower alpha frequency band (8-10 Hz). Additionally, alterations in functional connectivity between the left insula and the left inferior eye junction, as well as between the left insula and medial prefrontal cortex, were associated with a decrease in PSQI score. Further, the correlation between the functional connectivity and PSQI persisted 1 month after the completion of rTMS as evidenced by subsequent electroencephalography (EEG) recordings and the PSQI assessment. Conclusion Based on these results, we established a link between alterations in functional connectivity and clinical outcomes of rTMS, which suggested that EEG-derived functional connectivity changes were associated with clinical improvement of rTMS in treating CID. These findings provide preliminary evidence that rTMS may improve insomnia symptoms by modifying functional connectivity, which can be used to inform prospective clinical trials and potentially for treatment optimization.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Neurology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Ge Dang
- Department of Neurology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Wei Wu
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Junhong Zhou
- Hebrew Seniorlife, Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, MA, United States
| | - Xue Shi
- Department of Neurology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiaolin Su
- Department of Neurology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Huixia Ren
- Department of Geriatrics, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zian Pei
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Xiaoyong Lan
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | | | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Guo
- Department of Neurology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- *Correspondence: Yi Guo,
| |
Collapse
|
30
|
Gambino G, Brighina F, Allegra M, Marrale M, Collura G, Gagliardo C, Attanzio A, Tesoriere L, Di Majo D, Ferraro G, Sardo P, Giglia G. Modulation of Human Motor Cortical Excitability and Plasticity by Opuntia Ficus Indica Fruit Consumption: Evidence from a Preliminary Study through Non-Invasive Brain Stimulation. Nutrients 2022; 14:nu14224915. [PMID: 36432601 PMCID: PMC9694319 DOI: 10.3390/nu14224915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/05/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Indicaxanthin (IX) from Opuntia Ficus Indica (OFI) has been shown to exert numerous biological effects both in vitro and in vivo, such as antioxidant, anti-inflammatory, neuro-modulatory activity in rodent models. Our goal was to investigate the eventual neuro-active role of orally assumed fruits containing high levels of IX at nutritionally-relevant amounts in healthy subjects, exploring cortical excitability and plasticity in the human motor cortex (M1). To this purpose, we applied paired-pulse transcranial magnetic stimulation and anodal transcranial direct current stimulation (a-tDCS) in basal conditions and followed the consumption of yellow cactus pear fruits containing IX or white cactus pear fruits devoid of IX (placebo). Furthermore, resting state-functional MRI (rs-fMRI) preliminary acquisitions were performed before and after consumption of the same number of yellow fruits. Our data revealed that the consumption of IX-containing fruits could specifically activate intracortical excitatory circuits, differently from the placebo-controlled group. Furthermore, we found that following the ingestion of IX-containing fruits, elevated network activity of glutamatergic intracortical circuits can homeostatically be restored to baseline levels following a-tDCS stimulation. No significant differences were observed through rs-fMRI acquisitions. These outcomes suggest that IX from OFI increases intracortical excitability of M1 and leads to homeostatic cortical plasticity responses.
Collapse
Affiliation(s)
- Giuditta Gambino
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90134 Palermo, Italy
- Correspondence: (G.G.); (P.S.)
| | - Filippo Brighina
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90134 Palermo, Italy
| | - Mario Allegra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90134 Palermo, Italy
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90134 Palermo, Italy
| | - Maurizio Marrale
- Department of Physics and Chemistry “Emilio Segrè”, University of Palermo, 90134 Palermo, Italy
| | - Giorgio Collura
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90134 Palermo, Italy
| | - Cesare Gagliardo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90134 Palermo, Italy
| | - Alessandro Attanzio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90134 Palermo, Italy
| | - Luisa Tesoriere
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90134 Palermo, Italy
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90134 Palermo, Italy
| | - Danila Di Majo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90134 Palermo, Italy
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90134 Palermo, Italy
| | - Giuseppe Ferraro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90134 Palermo, Italy
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90134 Palermo, Italy
| | - Pierangelo Sardo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90134 Palermo, Italy
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90134 Palermo, Italy
- Correspondence: (G.G.); (P.S.)
| | - Giuseppe Giglia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90134 Palermo, Italy
| |
Collapse
|
31
|
Neurophysiological Impact of Theta Burst Stimulation Followed by Cognitive Exercise in Treatment of Youth Depression. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2022. [DOI: 10.1016/j.jadr.2022.100439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
32
|
Pitts M, Nee DE. Generalizing the control architecture of the lateral prefrontal cortex. Neurobiol Learn Mem 2022; 195:107688. [PMID: 36265793 PMCID: PMC11514053 DOI: 10.1016/j.nlm.2022.107688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/07/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022]
Abstract
Cognitive control guides non-habitual, goal directed behaviors allowing us to flexibly adapt to ongoing demands. Previous work has suggested that multiple cognitive control processes exist that can be classed according to their action on present-oriented/external information versus future-oriented/internal information. These processes can be mapped onto the lateral prefrontal cortex (LPFC) such that increasingly rostral areas are involved in increasingly future-oriented/internal control processes. Whether and how such processes are organized to support goal-directed behavior remains unclear. On the one hand, the LPFC may flexibly adapt based upon demands. On the other hand, there may be a consistent control architecture such as a control hierarchy that generalizes across demands. Previous work using fMRI in humans during a comprehensive control task that engaged several control processes at once found that an area in mid-LPFC consistently exerted widespread influence throughout the LPFC. These data suggested that the mid-LPFC forms an apex of a putative control hierarchy. However, whether such an architecture generalizes across tasks remains to be tested. Here, we utilized a modified comprehensive control task designed to alter how control processes influence one another to test the generalizability of the LPFC control architecture. Univariate fMRI activations revealed distinct control-related activations relative to past work. Despite these changes, effective connectivity modeling revealed a directed architecture similar to previous findings with the mid-LPFC exerting the most widespread influences throughout LPFC. These results suggest that the fundamental control architecture of the LPFC is relatively fixed, and that different demands are accommodated through modulations of this fixed architecture.
Collapse
Affiliation(s)
- McKinney Pitts
- Department of Psychology, Florida State University, Tallahassee, FL 32306-4301, United States
| | - Derek Evan Nee
- Department of Psychology, Florida State University, Tallahassee, FL 32306-4301, United States.
| |
Collapse
|
33
|
Mosilhy EA, Alshial EE, Eltaras MM, Rahman MMA, Helmy HI, Elazoul AH, Hamdy O, Mohammed HS. Non-invasive transcranial brain modulation for neurological disorders treatment: A narrative review. Life Sci 2022; 307:120869. [DOI: 10.1016/j.lfs.2022.120869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022]
|
34
|
Siebner HR, Funke K, Aberra AS, Antal A, Bestmann S, Chen R, Classen J, Davare M, Di Lazzaro V, Fox PT, Hallett M, Karabanov AN, Kesselheim J, Beck MM, Koch G, Liebetanz D, Meunier S, Miniussi C, Paulus W, Peterchev AV, Popa T, Ridding MC, Thielscher A, Ziemann U, Rothwell JC, Ugawa Y. Transcranial magnetic stimulation of the brain: What is stimulated? - A consensus and critical position paper. Clin Neurophysiol 2022; 140:59-97. [PMID: 35738037 PMCID: PMC9753778 DOI: 10.1016/j.clinph.2022.04.022] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 03/14/2022] [Accepted: 04/15/2022] [Indexed: 12/11/2022]
Abstract
Transcranial (electro)magnetic stimulation (TMS) is currently the method of choice to non-invasively induce neural activity in the human brain. A single transcranial stimulus induces a time-varying electric field in the brain that may evoke action potentials in cortical neurons. The spatial relationship between the locally induced electric field and the stimulated neurons determines axonal depolarization. The induced electric field is influenced by the conductive properties of the tissue compartments and is strongest in the superficial parts of the targeted cortical gyri and underlying white matter. TMS likely targets axons of both excitatory and inhibitory neurons. The propensity of individual axons to fire an action potential in response to TMS depends on their geometry, myelination and spatial relation to the imposed electric field and the physiological state of the neuron. The latter is determined by its transsynaptic dendritic and somatic inputs, intrinsic membrane potential and firing rate. Modeling work suggests that the primary target of TMS is axonal terminals in the crown top and lip regions of cortical gyri. The induced electric field may additionally excite bends of myelinated axons in the juxtacortical white matter below the gyral crown. Neuronal excitation spreads ortho- and antidromically along the stimulated axons and causes secondary excitation of connected neuronal populations within local intracortical microcircuits in the target area. Axonal and transsynaptic spread of excitation also occurs along cortico-cortical and cortico-subcortical connections, impacting on neuronal activity in the targeted network. Both local and remote neural excitation depend critically on the functional state of the stimulated target area and network. TMS also causes substantial direct co-stimulation of the peripheral nervous system. Peripheral co-excitation propagates centrally in auditory and somatosensory networks, but also produces brain responses in other networks subserving multisensory integration, orienting or arousal. The complexity of the response to TMS warrants cautious interpretation of its physiological and behavioural consequences, and a deeper understanding of the mechanistic underpinnings of TMS will be critical for advancing it as a scientific and therapeutic tool.
Collapse
Affiliation(s)
- Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Klaus Funke
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Aman S Aberra
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Sven Bestmann
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Robert Chen
- Krembil Brain Institute, University Health Network and Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Joseph Classen
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Marco Davare
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Anke N Karabanov
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Nutrition and Exercise, University of Copenhagen, Copenhagen, Denmark
| | - Janine Kesselheim
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Mikkel M Beck
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Non-invasive Brain Stimulation Unit, Laboratorio di NeurologiaClinica e Comportamentale, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - David Liebetanz
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Sabine Meunier
- Sorbonne Université, Faculté de Médecine, INSERM U 1127, CNRS 4 UMR 7225, Institut du Cerveau, F-75013, Paris, France
| | - Carlo Miniussi
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy; Cognitive Neuroscience Section, IRCCS Centro San Giovanni di DioFatebenefratelli, Brescia, Italy
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Angel V Peterchev
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Psychiatry & Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA; Department of Electrical & Computer Engineering, Duke University, Durham, NC, USA; Department of Neurosurgery, School of Medicine, Duke University, Durham, NC, USA
| | - Traian Popa
- Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, Sion, Switzerland
| | - Michael C Ridding
- University of South Australia, IIMPACT in Health, Adelaide, Australia
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ulf Ziemann
- Department of Neurology & Stroke, University Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, Germany
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Yoshikazu Ugawa
- Department of Neurology, Fukushima Medical University, Fukushima, Japan; Fukushima Global Medical Science Centre, Advanced Clinical Research Centre, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
35
|
Abuleil D, Thompson B, Dalton K. Aerobic Exercise and Human Visual Cortex Neuroplasticity: A Narrative Review. Neural Plast 2022; 2022:6771999. [PMID: 35915651 PMCID: PMC9338869 DOI: 10.1155/2022/6771999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/07/2022] [Indexed: 12/02/2022] Open
Abstract
There is compelling evidence from animal models that physical exercise can enhance visual cortex neuroplasticity. In this narrative review, we explored whether exercise has the same effect in humans. We found that while some studies report evidence consistent with exercise-induced enhancement of human visual cortex neuroplasticity, others report no effect or even reduced neuroplasticity following exercise. Differences in study methodology may partially explain these varying results. Because the prospect of exercise increasing human visual cortex neuroplasticity has important implications for vision rehabilitation, additional research is required to resolve this discrepancy in the literature.
Collapse
Affiliation(s)
- Dania Abuleil
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
- Center for Eye and Vision Research, Hong Kong, Hong Kong
| | - Benjamin Thompson
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
- Center for Eye and Vision Research, Hong Kong, Hong Kong
| | - Kristine Dalton
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
- Center for Eye and Vision Research, Hong Kong, Hong Kong
| |
Collapse
|
36
|
Zhao W, Voon V, Xue K, Xie C, Kang J, Lin CP, Wang J, Cheng J, Feng J. Common abnormal connectivity in first-episode and chronic schizophrenia in pre- and post-central regions: Implications for neuromodulation targeting. Prog Neuropsychopharmacol Biol Psychiatry 2022; 117:110556. [PMID: 35367293 DOI: 10.1016/j.pnpbp.2022.110556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/23/2022] [Accepted: 03/27/2022] [Indexed: 11/30/2022]
Abstract
Schizophrenia is a neurodevelopmental disorder manifesting differing impairments at early onset and chronic disease stages. Brain imaging research suggests a core pathological region in patients with first-episode schizophrenia is Broca's area. With disease progression, alterations in thalamic connectivity becomes more prevalent. Understanding the common circuitry underlying pathology in these two groups might highlight a critical common network and novel targets for treatment. In this study, 937 subject samples were collected including patients with first-episode schizophrenia and those with chronic schizophrenia. We used hypothesis-based voxel-level functional connectivity analyses to calculate functional connectivity using the left Broca's area and thalamus as regions of interest in those with first-episode and chronic schizophrenia, respectively. We show for the first time that in both patients with first-episode and chronic schizophrenia the greatest functional connectivity disruption ended in the pre- and postcentral regions. At the early-onset stage, the core brain region is abnormally connected to pre- and postcentral areas responsible for mouth movement, while in the chronic stage, it expanded to a wider range of sensorimotor areas. Our findings suggest that expanding the focus on the low-order sensory-motor systems beyond high-order cognitive impairments in schizophrenia may show potential for neuromodulation treatment, given the relative accessibility of these cortical regions and their functional and structural connections to the core region at different stages of illness.
Collapse
Affiliation(s)
- Wei Zhao
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha, China; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Kangkang Xue
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chao Xie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Jujiao Kang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China; Shanghai Center for Mathematical Science, Fudan University, Shanghai, China
| | - Ching-Po Lin
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders (No. 13dz2260500), Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China; Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China; Shanghai Center for Mathematical Sciences, Shanghai, China.
| |
Collapse
|
37
|
Turi Z, Hananeia N, Shirinpour S, Opitz A, Jedlicka P, Vlachos A. Dosing Transcranial Magnetic Stimulation of the Primary Motor and Dorsolateral Prefrontal Cortices With Multi-Scale Modeling. Front Neurosci 2022; 16:929814. [PMID: 35898411 PMCID: PMC9309210 DOI: 10.3389/fnins.2022.929814] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/27/2022] [Indexed: 11/15/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) can depolarize cortical neurons through the intact skin and skull. The characteristics of the induced electric field (E-field) have a major impact on specific outcomes of TMS. Using multi-scale computational modeling, we explored whether the stimulation parameters derived from the primary motor cortex (M1) induce comparable macroscopic E-field strengths and subcellular/cellular responses in the dorsolateral prefrontal cortex (DLPFC). To this aim, we calculated the TMS-induced E-field in 16 anatomically realistic head models and simulated the changes in membrane voltage and intracellular calcium levels of morphologically and biophysically realistic human pyramidal cells in the M1 and DLPFC. We found that the conventional intensity selection methods (i.e., motor threshold and fixed intensities) produce variable macroscopic E-fields. Consequently, it was challenging to produce comparable subcellular/cellular responses across cortical regions with distinct folding characteristics. Prospectively, personalized stimulation intensity selection could standardize the E-fields and the subcellular/cellular responses to repetitive TMS across cortical regions and individuals. The suggested computational approach points to the shortcomings of the conventional intensity selection methods used in clinical settings. We propose that multi-scale modeling has the potential to overcome some of these limitations and broaden our understanding of the neuronal mechanisms for TMS.
Collapse
Affiliation(s)
- Zsolt Turi
- Department of Neuroanatomy, Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany
| | - Nicholas Hananeia
- Faculty of Medicine, Interdisciplinary Centre for 3Rs in Animal Research, Justus-Liebig-University, Giessen, Germany
| | - Sina Shirinpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Peter Jedlicka
- Faculty of Medicine, Interdisciplinary Centre for 3Rs in Animal Research, Justus-Liebig-University, Giessen, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- *Correspondence: Andreas Vlachos
| |
Collapse
|
38
|
Nasr K, Haslacher D, Dayan E, Censor N, Cohen LG, Soekadar SR. Breaking the boundaries of interacting with the human brain using adaptive closed-loop stimulation. Prog Neurobiol 2022; 216:102311. [PMID: 35750290 DOI: 10.1016/j.pneurobio.2022.102311] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022]
Abstract
The human brain is arguably one of the most complex systems in nature. To understand how it operates, it is essential to understand the link between neural activity and behavior. Experimental investigation of that link requires tools to interact with neural activity during behavior. Human neuroscience, however, has been severely bottlenecked by the limitations of these tools. While invasive methods can support highly specific interaction with brain activity during behavior, their applicability in human neuroscience is limited. Despite extensive development in the last decades, noninvasive alternatives have lacked spatial specificity and yielded results that are commonly fraught with variability and replicability issues, along with relatively limited understanding of the neural mechanisms involved. Here we provide a comprehensive review of the state-of-the-art in interacting with human brain activity and highlight current limitations and recent efforts to overcome these limitations. Beyond crucial technical and scientific advancements in electromagnetic brain stimulation, new frontiers in interacting with human brain activity such as task-irrelevant sensory stimulation and focal ultrasound stimulation are introduced. Finally, we argue that, along with technological improvements and breakthroughs in noninvasive methods, a paradigm shift towards adaptive closed-loop stimulation will be a critical step for advancing human neuroscience.
Collapse
Affiliation(s)
- Khaled Nasr
- Clinical Neurotechnology Laboratory & Center for Translational Neuromodulation, Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - David Haslacher
- Clinical Neurotechnology Laboratory & Center for Translational Neuromodulation, Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Eran Dayan
- Department of Radiology and Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nitzan Censor
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institutes of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| | - Surjo R Soekadar
- Clinical Neurotechnology Laboratory & Center for Translational Neuromodulation, Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
39
|
Tan G, Wang J, Liu J, Sheng Y, Xie Q, Liu H. A framework for quantifying the effects of transcranial magnetic stimulation on motor recovery from hemiparesis: Corticomuscular Network. J Neural Eng 2022; 19. [PMID: 35366651 DOI: 10.1088/1741-2552/ac636b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/01/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Transcranial magnetic stimulation (TMS) is an experimental therapy for promoting motor recovery from hemiparesis. At present, hemiparesis patients' responses to TMS are variable. To maximize its therapeutic potential, we need an approach that relates the electrophysiology of motor recovery and TMS. To this end, we propose Corticomuscular Network (CMN) representing the holistic motor system, including the cortico-cortical pathway, corticospinal tract, and muscle co-activation. METHODS CMN is made up of coherence between pairs of electrode signals and spatial locations of the electrodes. We associated coherence and graph features of CMN with Fugl-Meyer Assessment (FMA) for the upper extremity. Besides, we compared CMN between 8 patients with hemiparesis and 6 healthy controls and contrasted CMN of patients before and after a 1Hz TMS. MAIN RESULTS Corticomuscular coherence (CMC) correlated positively with FMA. The regression model between FMA and CMC between 5 pairs of channels had 0.99 adjusted R^2 and a p-value less than 0.01. Compared to healthy controls, CMN of patients tended to be a small-world network and was more interconnected with higher CMC. CMC between cortex and triceps brachii long head was higher in patients. 15-minute 1Hz TMS protocol induced coherence changes beyond the stimulation side and had a limited impact on CMN parameters that are related to motor recovery. SIGNIFICANCE CMN is a potential clinical approach to quantify rehabilitating progress. It also sheds light on the desirable electrophysiological effects of TMS based on which rehabilitating strategies can be optimized.
Collapse
Affiliation(s)
- Gansheng Tan
- Washington University in St Louis, 520 S Euclid Ave, St. Louis, MO 63110, St Louis, Missouri, 63130-4899, UNITED STATES
| | - Jixian Wang
- Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, 800 Dongchuan Rd, Shanghai, 200025, CHINA
| | - Jinbiao Liu
- Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, CHINA
| | - Yixuan Sheng
- Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, CHINA
| | - Qing Xie
- Ruijin Hospital, 800 Dongchuan Rd, Shanghai, 200025, CHINA
| | - Honghai Liu
- Harbin Institute of Technology Shenzhen, Pingshan 1 Rd, Nanshan, Shenzhen, Guangdong, 518055, CHINA
| |
Collapse
|
40
|
Stoby KS, Rafique SA, Oeltzschner G, Steeves JKE. Continuous and intermittent theta burst stimulation to the visual cortex do not alter GABA and glutamate concentrations measured by magnetic resonance spectroscopy. Brain Behav 2022; 12:e2478. [PMID: 35029058 PMCID: PMC8865152 DOI: 10.1002/brb3.2478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Theta burst stimulation (TBS), a form of repetitive transcranial magnetic stimulation (rTMS), uses repeated high-frequency bursts to non-invasively modulate neural processes in the brain. An intermittent TBS (iTBS) protocol is generally considered "excitatory," while continuous TBS (cTBS) is considered "inhibitory." However, the majority of work that has led to these effects being associated with the respective protocols has been done in the motor cortex, and it is well established that TMS can have variable effects across the brain. OBJECTIVES AND METHOD We investigated the effects of iTBS and cTBS to the primary visual cortex (V1) on composite levels of gamma-aminobutyric acid + co-edited macromolecules (GABA+) and glutamate + glutamine (Glx) since these are key inhibitory and excitatory neurotransmitters, respectively. Participants received a single session of cTBS, iTBS, or sham TBS to V1. GABA+ and Glx were quantified in vivo at the stimulation site using spectral-edited proton magnetic resonance spectroscopy (1 H-MRS) at 3T. Baseline pre-TBS GABA+ and Glx levels were compared to immediate post-TBS and 1 h post-TBS levels. RESULTS There were no significant changes in GABA+ or Glx following either of the TBS conditions. Visual cortical excitability, measured using phosphene thresholds, remained unchanged following both cTBS and iTBS conditions. There was no relationship between excitability thresholds and GABA+ or Glx levels. However, TBS did alter the relationship between GABA+ and Glx for up to 1 h following stimulation. CONCLUSIONS These findings demonstrate that a single session of TBS to the visual cortex can be used without significant effects on the tonic levels of these key neurotransmitters; and add to our understanding that TBS has differential effects at visual, motor, and frontal cortices.
Collapse
Affiliation(s)
- Karlene S Stoby
- Centre for Vision Research and Department of Psychology, York University, Toronto, ON, Canada
| | - Sara A Rafique
- Centre for Vision Research and Department of Psychology, York University, Toronto, ON, Canada
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Jennifer K E Steeves
- Centre for Vision Research and Department of Psychology, York University, Toronto, ON, Canada
| |
Collapse
|
41
|
1Hz rTMS over left DLPFC rewired the coordination with hippocampus in insomnia patients: A pilot study. Brain Stimul 2022; 15:437-440. [DOI: 10.1016/j.brs.2022.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 02/20/2022] [Indexed: 11/24/2022] Open
|
42
|
Using Brain Imaging to Improve Spatial Targeting of Transcranial Magnetic Stimulation for Depression. Biol Psychiatry 2021; 90:689-700. [PMID: 32800379 DOI: 10.1016/j.biopsych.2020.05.033] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 01/18/2023]
Abstract
Transcranial magnetic stimulation (TMS) is an effective treatment for depression but is limited in that the optimal therapeutic target remains unknown. Early TMS trials lacked a focal target and thus positioned the TMS coil over the prefrontal cortex using scalp measurements. Over time, it became clear that this method leads to variation in the stimulation site and that this could contribute to heterogeneity in antidepressant response. Newer methods allow for precise positioning of the TMS coil over a specific brain location, but leveraging these precise methods requires a more precise therapeutic target. We review how neuroimaging is being used to identify a more focal therapeutic target for depression. We highlight recent studies showing that more effective TMS targets in the frontal cortex are functionally connected to deep limbic regions such as the subgenual cingulate cortex. We review how connectivity might be used to identify an optimal TMS target for use in all patients and potentially even a personalized target for each individual patient. We address the clinical implications of this emerging field and highlight critical questions for future research.
Collapse
|
43
|
Shi X, Guo Y, Zhu L, Wu W, Hordacre B, Su X, Wang Q, Chen X, Lan X, Dang G. Electroencephalographic connectivity predicts clinical response to repetitive transcranial magnetic stimulation in patients with insomnia disorder. Sleep Med 2021; 88:171-179. [PMID: 34773788 DOI: 10.1016/j.sleep.2021.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/10/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Accumulating evidence suggests that low frequency repetitive transcranial magnetic stimulation (rTMS), which generally decreases cortical excitability and remodels plastic connectivity, improves sleep quality in patients with insomnia disorder. However, the effects of rTMS vary substantially across individuals and treatment is sometimes unsatisfactory, calling for biomarkers for predicting clinical outcomes. OBJECTIVE This study aimed to investigate whether functional connectivity of the target network in electroencephalography is associated with the clinical response to low frequency rTMS in patients with insomnia disorder. METHODS Twenty-five patients with insomnia disorder were subjected to 10 sessions of treatment with 1 Hz rTMS over the right dorsolateral prefrontal cortex. Resting-state electroencephalography was collected before rTMS. Pittsburgh Sleep Quality Index, Hamilton Depression Rating Scale, Hamilton Anxiety Rating Scale, and Mini-Mental State Exam were performed before and after rTMS treatment, with a follow-up after one month. Electroencephalographic connectivity was measured by the power envelope connectivity at the source level. Partial least squares regression identified models of connectivity that maximally accounted for the rTMS response. RESULTS Scores of Pittsburgh Sleep Quality Index, Hamilton Depression Rating Scale, and Hamilton Anxiety Rating Scale were decreased after rTMS and one-month later. Baseline weaker connectivity of a network in the beta and alpha bands between a brain region approximating the stimulated right dorsolateral prefrontal cortex and areas located in the frontal, insular, and limbic cortices was associated with a greater change in Pittsburgh Sleep Quality Index and Hamilton Depression Rating Scale following rTMS. CONCLUSIONS Low frequency rTMS could improve sleep quality and depressive moods in patients with insomnia disorder. Moreover, electroencephalographic functional connectivity would potentially be a robust biomarker for predicting the therapeutic effects.
Collapse
Affiliation(s)
- Xue Shi
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Yi Guo
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China; Shenzhen Bay Laboratory, Shenzhen, 518020, Guangdong, China
| | - Lin Zhu
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Wei Wu
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Brenton Hordacre
- Innovation, Implementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Australia
| | - Xiaolin Su
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Qian Wang
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Xiaoxia Chen
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Xiaoyong Lan
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Ge Dang
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
44
|
Vergallito A, Gallucci A, Pisoni A, Punzi M, Caselli G, Ruggiero GM, Sassaroli S, Romero Lauro LJ. Effectiveness of noninvasive brain stimulation in the treatment of anxiety disorders: a meta-analysis of sham or behaviour-controlled studies. J Psychiatry Neurosci 2021; 46:E592-E614. [PMID: 34753789 PMCID: PMC8580831 DOI: 10.1503/jpn.210050] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/23/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The possibility of using noninvasive brain stimulation to treat mental disorders has received considerable attention recently. Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are considered to be effective treatments for depressive symptoms. However, no treatment recommendation is currently available for anxiety disorders, suggesting that evidence is still limited. We conducted a systematic review of the literature and a quantitative analysis of the effectiveness of rTMS and tDCS in the treatment of anxiety disorders. METHODS Following PRISMA guidelines, we screened 3 electronic databases up to the end of February 2020 for English-language, peer-reviewed articles that included the following: a clinical sample of patients with an anxiety disorder, the use of a noninvasive brain stimulation technique, the inclusion of a control condition, and pre/post scores on a validated questionnaire that measured symptoms of anxiety. RESULTS Eleven papers met the inclusion criteria, comprising 154 participants assigned to a stimulation condition and 164 to a sham or control group. We calculated Hedge's g for scores on disorder-specific and general anxiety questionnaires before and after treatment to determine effect size, and we conducted 2 independent random-effects meta-analyses. Considering the well-known comorbidity between anxiety and depression, we ran a third meta-analysis analyzing outcomes for depression scores. Results showed a significant effect of noninvasive brain stimulation in reducing scores on disorder-specific and general anxiety questionnaires, as well as depressive symptoms, in the real stimulation compared to the control condition. LIMITATIONS Few studies met the inclusion criteria; more evidence is needed to strengthen conclusions about the effectiveness of noninvasive brain stimulation in the treatment of anxiety disorders. CONCLUSION Our findings showed that noninvasive brain stimulation reduced anxiety and depression scores compared to control conditions, suggesting that it can alleviate clinical symptoms in patients with anxiety disorders.
Collapse
Affiliation(s)
| | | | - Alberto Pisoni
- From the Department of Psychology, University of Milano Bicocca, Milan, Italy (Vergallito, Pisoni, Punzi, Romero Lauro); the Neuromi, Milan, Italy (Vergallito, Gallucci, Pisoni, Romero Lauro); the Department of Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (Gallucci); the Studi Cognitivi, Milan, Italy (Caselli, Ruggiero, Sassaroli); and the Faculty of Psychology, Sigmund Freud University, Milan, Italy (Caseli, Ruggiero, Sassaroli)
| | | | | | | | | | | |
Collapse
|
45
|
Lehmann SJ, Corneil BD. Completing the puzzle: Why studies in non-human primates are needed to better understand the effects of non-invasive brain stimulation. Neurosci Biobehav Rev 2021; 132:1074-1085. [PMID: 34742722 DOI: 10.1016/j.neubiorev.2021.10.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/29/2021] [Accepted: 10/31/2021] [Indexed: 11/27/2022]
Abstract
Brain stimulation is a core method in neuroscience. Numerous non-invasive brain stimulation (NIBS) techniques are currently in use in basic and clinical research, and recent advances promise the ability to non-invasively access deep brain structures. While encouraging, there is a surprising gap in our understanding of precisely how NIBS perturbs neural activity throughout an interconnected network, and how such perturbed neural activity ultimately links to behaviour. In this review, we will consider why non-human primate (NHP) models of NIBS are ideally situated to address this gap in knowledge, and why the oculomotor network that moves our line of sight offers a particularly valuable platform in which to empirically test hypothesis regarding NIBS-induced changes in brain and behaviour. NHP models of NIBS will enable investigation of the complex, dynamic effects of brain stimulation across multiple hierarchically interconnected brain areas, networks, and effectors. By establishing such links between brain and behavioural output, work in NHPs can help optimize experimental and therapeutic approaches, improve NIBS efficacy, and reduce side-effects of NIBS.
Collapse
Affiliation(s)
- Sebastian J Lehmann
- Department of Physiology and Pharmacology, Western University, London, Ontario, N6A 5B7, Canada.
| | - Brian D Corneil
- Department of Physiology and Pharmacology, Western University, London, Ontario, N6A 5B7, Canada; Department of Psychology, Western University, London, Ontario, N6A 5B7, Canada; Robarts Research Institute, London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
46
|
Pallanti S, Marras A, Dickson SL, Adan RA, Vieta E, Dell Osso B, Arango C, Fusar-Poli P, Soriano-Mas C, Carmi L, Meyer Lindenberg A, Zohar J. Manifesto for an ECNP Neuromodulation Thematic Working Group (TWG): Non-invasive brain stimulation as a new Super-subspecialty. Eur Neuropsychopharmacol 2021; 52:72-83. [PMID: 34348181 DOI: 10.1016/j.euroneuro.2021.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
Non-Invasive Brain Stimulation (NIBS) techniques and in particular, repetitive Transcranial Magnetic Stimulation (rTMS), are developing beyond mere clinical application. Although originally purposed for the treatment of resistant neuropsychiatric disorders, NIBS is also contributing to a deeper understanding of psychiatric disorders. rTMS is also changing the model of the disorder itself, from "mental" to one of neural connectivity. TMS allows the assessment of brain circuit excitability and eventually, of plastic changes affecting these circuits. While a clinical translational approach is, at the present time, the most adequate to meet the dimensional-circuit base model of the disorder, it refines the standard categorical classification of psychiatric disorders. The discovery of the fundamental importance of the balance between neuroplasticity and inflammation is also now explored through neuro-modulation findings consistently with the evidence of anti-inflammatory actions of the magnetic pulses. rTMS may activate, inhibit, or otherwise interfere with the activity of neuronal cortical networks, depending on stimulus frequency and intensity of brain-induced electric field. Of particular interest, yet still unclear, is how the relatively unspecific nature of TMS stimulation may lead to specific neuronal reorganization, as well as a definition of the TMS-triggered reorganization of functional brain modules, raising attention on the importance of the active participation of the patient to the treatment.. Configuration and state of consciousness of the subject have made subjective experience under treatment regain importance in the neuro-scientific Psychiatry based on the requirement of United States National Institute of Health (NIH) and the substantial importance of the consciousness state in the efficacy of the TMS treatment. By focusing on the subjective experience, a renaissance of the phenomenology offers Psychiatry an opportunity to become proficient and to distinguish itself from other disciplines. For all these reasons, TMS should be included in the cluster of the sub-specialties as a new "Super-Specialty" and an appropriate training course has to be inaugurated. Psychiatrists are nowadays multi-specialists, moving from a specialty to another, vs super-specialist. The cultivation of a properly trained cohort of TMS psychiatrists will better meet the challenges of treatment-resistant psychiatric conditions (disorders of connectivity), through appropriate and ethical practice, meanwhile facilitating an informed development and integration of additional emerging neuro-modulation techniques. The aim of this consensus paper is to underline the interdisciplinary nature of NIBS, that also encompasses the subjective experience and to point out the necessity of a neuroscience-applied approach to NIBS in the context of the European College of Neuro-psychopharmacology (ECNP).
Collapse
Affiliation(s)
- Stefano Pallanti
- Istituto di Neuroscienze, Florence, IT; Albert Einstein College of Medicine and Montefiore Medical Center, NY, USA.
| | - Anna Marras
- Istituto di Neuroscienze, Florence, IT; Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, IT
| | - Suzanne L Dickson
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Roger Ah Adan
- Department of Translational Neuroscience, UMCU Brain Center, University Medical Center Utrecht, Utrecht University, The Netherlands; Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Eduard Vieta
- Hospital Clinic, Institute of Neuroscience, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Bernardo Dell Osso
- Ospedale Sacco-Polo Universitario, Psychiatric Clinic, Milano; University of Milano, IT
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid 28009, Spain
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-detection (EPIC) lab, Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan. Aldo Ravelli' Research Center for Neurotechnology and Experimental Brain Therapeutics, Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Health Sciences, University of Milan, Milan, Italy; Department of Psychiatry and Brain and Behavioral Sciences, Stanford University, California, USA. of Pavia, Pavia, Italy
| | - Carles Soriano-Mas
- Bellvitge Biomedical Research Institute-IDIBELL, Psychiatry Service, Bellvitge University Hospital and CIBERSAM,Barcelona, Spain. Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Spain
| | - Lior Carmi
- Academic Laboratory Manager, The National Institute of PTSD, Chaim Sheba Medical Center, School Of Psychological sciences, Tel Aviv University, Israel
| | - Andreas Meyer Lindenberg
- Central Institute of Mental Health, Mannheim; Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Chair of Psychiatry and Psychotherapy, University of Heidelberg, Germany
| | - Joseph Zohar
- Sheba Medical Center at Tel Hashomer, Israel, Sackler Faculty of Medicine, Tel Aviv
| |
Collapse
|
47
|
Precise Modulation Strategies for Transcranial Magnetic Stimulation: Advances and Future Directions. Neurosci Bull 2021; 37:1718-1734. [PMID: 34609737 DOI: 10.1007/s12264-021-00781-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/23/2021] [Indexed: 10/20/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a popular modulatory technique for the noninvasive diagnosis and therapy of neurological and psychiatric diseases. Unfortunately, current modulation strategies are only modestly effective. The literature provides strong evidence that the modulatory effects of TMS vary depending on device components and stimulation protocols. These differential effects are important when designing precise modulatory strategies for clinical or research applications. Developments in TMS have been accompanied by advances in combining TMS with neuroimaging techniques, including electroencephalography, functional near-infrared spectroscopy, functional magnetic resonance imaging, and positron emission tomography. Such studies appear particularly promising as they may not only allow us to probe affected brain areas during TMS but also seem to predict underlying research directions that may enable us to precisely target and remodel impaired cortices or circuits. However, few precise modulation strategies are available, and the long-term safety and efficacy of these strategies need to be confirmed. Here, we review the literature on possible technologies for precise modulation to highlight progress along with limitations with the goal of suggesting future directions for this field.
Collapse
|
48
|
Huber J, Ruehl M, Flanagin V, Zu Eulenburg P. Delineating neural responses and functional connectivity changes during vestibular and nociceptive stimulation reveal the uniqueness of cortical vestibular processing. Brain Struct Funct 2021; 227:779-791. [PMID: 34611776 PMCID: PMC8930960 DOI: 10.1007/s00429-021-02394-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/20/2021] [Indexed: 01/21/2023]
Abstract
Vestibular information is ubiquitous and often processed jointly with visual, somatosensory and proprioceptive information. Among the cortical brain regions associated with human vestibular processing, area OP2 in the parietal operculum has been proposed as vestibular core region. However, delineating responses uniquely to vestibular stimulation in this region using neuroimaging is challenging for several reasons: First, the parietal operculum is a cytoarchitectonically heterogeneous region responding to multisensory stimulation. Second, artificial vestibular stimulation evokes confounding somatosensory and nociceptive responses blurring responses contributing to vestibular perception. Furthermore, immediate effects of vestibular stimulation on the organization of functional networks have not been investigated in detail yet. Using high resolution neuroimaging in a task-based and functional connectivity approach, we compared two equally salient stimuli—unilateral galvanic vestibular (GVS) and galvanic nociceptive stimulation (GNS)—to disentangle the processing of both modalities in the parietal operculum and characterize their effects on functional network architecture. GNS and GVS gave joint responses in area OP1, 3, 4, and the anterior and middle insula, but not in area OP2. GVS gave stronger responses in the parietal operculum just adjacent to OP3 and OP4, whereas GNS evoked stronger responses in area OP1, 3 and 4. Our results underline the importance of considering this common pathway when interpreting vestibular neuroimaging experiments and underpin the role of area OP2 in central vestibular processing. Global network changes were found during GNS, but not during GVS. This lack of network reconfiguration despite the saliency of GVS may reflect the continuous processing of vestibular information in the awake human.
Collapse
Affiliation(s)
- Judita Huber
- Graduate School of Systemic Neurosciences, Department of Biology II and Neurobiology, Ludwig-Maximilians-University, Munich, Germany
| | - Maxine Ruehl
- Department of Neurology, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany.
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany.
| | - Virginia Flanagin
- Graduate School of Systemic Neurosciences, Department of Biology II and Neurobiology, Ludwig-Maximilians-University, Munich, Germany
- Department of Neurology, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Peter Zu Eulenburg
- Graduate School of Systemic Neurosciences, Department of Biology II and Neurobiology, Ludwig-Maximilians-University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
- Institute for Neuroradiology, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
49
|
van der Plas M, Braun V, Stauch BJ, Hanslmayr S. Stimulation of the left dorsolateral prefrontal cortex with slow rTMS enhances verbal memory formation. PLoS Biol 2021; 19:e3001363. [PMID: 34582432 PMCID: PMC8478201 DOI: 10.1371/journal.pbio.3001363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/14/2021] [Indexed: 12/21/2022] Open
Abstract
Encoding of episodic memories relies on stimulus-specific information processing and involves the left prefrontal cortex. We here present an incidental finding from a simultaneous EEG-TMS experiment as well as a replication of this unexpected effect. Our results reveal that stimulating the left dorsolateral prefrontal cortex (DLPFC) with slow repetitive transcranial magnetic stimulation (rTMS) leads to enhanced word memory performance. A total of 40 healthy human participants engaged in a list learning paradigm. Half of the participants (N = 20) received 1 Hz rTMS to the left DLPFC, while the other half (N = 20) received 1 Hz rTMS to the vertex and served as a control group. Participants receiving left DLPFC stimulation demonstrated enhanced memory performance compared to the control group. This effect was replicated in a within-subjects experiment where 24 participants received 1 Hz rTMS to the left DLPFC and vertex. In this second experiment, DLPFC stimulation also induced better memory performance compared to vertex stimulation. In addition to these behavioural effects, we found that 1 Hz rTMS to DLPFC induced stronger beta power modulation in posterior areas, a state that is known to be beneficial for memory encoding. Further analysis indicated that beta modulations did not have an oscillatory origin. Instead, the observed beta modulations were a result of a spectral tilt, suggesting inhibition of these parietal regions. These results show that applying 1 Hz rTMS to DLPFC, an area involved in episodic memory formation, improves memory performance via modulating neural activity in parietal regions. Encoding of episodic memories relies on stimulus-specific information processing and involves the left prefrontal cortex. An incidental finding from a simultaneous EEG-TMS experiment reveals that applying 1-Hz repetitive transcranial magnetic stimulation to this area of the brain improves memory performance by modulating neural activity in parietal regions.
Collapse
Affiliation(s)
- Mircea van der Plas
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Centre for Cognitive Neuroimaging, Institute for Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Verena Braun
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Benjamin Johannes Stauch
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany
| | - Simon Hanslmayr
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Centre for Cognitive Neuroimaging, Institute for Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
50
|
Lu HY, Lorenc ES, Zhu H, Kilmarx J, Sulzer J, Xie C, Tobler PN, Watrous AJ, Orsborn AL, Lewis-Peacock J, Santacruz SR. Multi-scale neural decoding and analysis. J Neural Eng 2021; 18. [PMID: 34284369 PMCID: PMC8840800 DOI: 10.1088/1741-2552/ac160f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 07/20/2021] [Indexed: 12/15/2022]
Abstract
Objective. Complex spatiotemporal neural activity encodes rich information related to behavior and cognition. Conventional research has focused on neural activity acquired using one of many different measurement modalities, each of which provides useful but incomplete assessment of the neural code. Multi-modal techniques can overcome tradeoffs in the spatial and temporal resolution of a single modality to reveal deeper and more comprehensive understanding of system-level neural mechanisms. Uncovering multi-scale dynamics is essential for a mechanistic understanding of brain function and for harnessing neuroscientific insights to develop more effective clinical treatment. Approach. We discuss conventional methodologies used for characterizing neural activity at different scales and review contemporary examples of how these approaches have been combined. Then we present our case for integrating activity across multiple scales to benefit from the combined strengths of each approach and elucidate a more holistic understanding of neural processes. Main results. We examine various combinations of neural activity at different scales and analytical techniques that can be used to integrate or illuminate information across scales, as well the technologies that enable such exciting studies. We conclude with challenges facing future multi-scale studies, and a discussion of the power and potential of these approaches. Significance. This roadmap will lead the readers toward a broad range of multi-scale neural decoding techniques and their benefits over single-modality analyses. This Review article highlights the importance of multi-scale analyses for systematically interrogating complex spatiotemporal mechanisms underlying cognition and behavior.
Collapse
Affiliation(s)
- Hung-Yun Lu
- The University of Texas at Austin, Biomedical Engineering, Austin, TX, United States of America
| | - Elizabeth S Lorenc
- The University of Texas at Austin, Psychology, Austin, TX, United States of America.,The University of Texas at Austin, Institute for Neuroscience, Austin, TX, United States of America
| | - Hanlin Zhu
- Rice University, Electrical and Computer Engineering, Houston, TX, United States of America
| | - Justin Kilmarx
- The University of Texas at Austin, Mechanical Engineering, Austin, TX, United States of America
| | - James Sulzer
- The University of Texas at Austin, Mechanical Engineering, Austin, TX, United States of America.,The University of Texas at Austin, Institute for Neuroscience, Austin, TX, United States of America
| | - Chong Xie
- Rice University, Electrical and Computer Engineering, Houston, TX, United States of America
| | - Philippe N Tobler
- University of Zurich, Neuroeconomics and Social Neuroscience, Zurich, Switzerland
| | - Andrew J Watrous
- The University of Texas at Austin, Neurology, Austin, TX, United States of America
| | - Amy L Orsborn
- University of Washington, Electrical and Computer Engineering, Seattle, WA, United States of America.,University of Washington, Bioengineering, Seattle, WA, United States of America.,Washington National Primate Research Center, Seattle, WA, United States of America
| | - Jarrod Lewis-Peacock
- The University of Texas at Austin, Psychology, Austin, TX, United States of America.,The University of Texas at Austin, Institute for Neuroscience, Austin, TX, United States of America
| | - Samantha R Santacruz
- The University of Texas at Austin, Biomedical Engineering, Austin, TX, United States of America.,The University of Texas at Austin, Institute for Neuroscience, Austin, TX, United States of America
| |
Collapse
|