1
|
Koslow M, Zhu P, McCabe C, Xu X, Lin X. Kidney transcriptome and cystic kidney disease genes in zebrafish. Front Physiol 2023; 14:1184025. [PMID: 37256068 PMCID: PMC10226271 DOI: 10.3389/fphys.2023.1184025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/20/2023] [Indexed: 06/01/2023] Open
Abstract
Introduction: Polycystic kidney disease (PKD) is a condition where fluid filled cysts form on the kidney which leads to overall renal failure. Zebrafish has been recently adapted to study polycystic kidney disease, because of its powerful embryology and genetics. However, there are concerns on the conservation of this lower vertebrate in modeling polycystic kidney disease. Methods: Here, we aim to assess the molecular conservation of zebrafish by searching homologues polycystic kidney disease genes and carrying transcriptome studies in this animal. Results and Discussion: We found that out of 82 human cystic kidney disease genes, 81 have corresponding zebrafish homologs. While 75 of the genes have a single homologue, only 6 of these genes have two homologs. Comparison of the expression level of the transcripts enabled us to identify one homolog over the other homolog with >70% predominance, which would be prioritized for future experimental studies. Prompted by sexual dimorphism in human and rodent kidneys, we studied transcriptome between different sexes and noted significant differences in male vs. female zebrafish, indicating that sex dimorphism also occurs in zebrafish. Comparison between zebrafish and mouse identified 10% shared genes and 38% shared signaling pathways. String analysis revealed a cluster of genes differentially expressed in male vs. female zebrafish kidneys. In summary, this report demonstrated remarkable molecular conservation, supporting zebrafish as a useful animal model for cystic kidney disease.
Collapse
Affiliation(s)
- Matthew Koslow
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Ping Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Chantal McCabe
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, United States
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
2
|
Ding Y, Wang M, Bu H, Li J, Lin X, Xu X. Application of an F0-based genetic assay in adult zebrafish to identify modifier genes of an inherited cardiomyopathy. Dis Model Mech 2023; 16:dmm049427. [PMID: 35481478 PMCID: PMC9239171 DOI: 10.1242/dmm.049427] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/19/2022] [Indexed: 01/08/2023] Open
Abstract
Modifier genes contribute significantly to our understanding of pathophysiology in human diseases; however, effective approaches to identify modifier genes are still lacking. Here, we aim to develop a rapid F0-based genetic assay in adult zebrafish using the bag3 gene knockout (bag3e2/e2) cardiomyopathy model as a paradigm. First, by utilizing a classic genetic breeding approach, we identified dnajb6b as a deleterious modifier gene for bag3 cardiomyopathy. Next, we established an F0-based genetic assay in adult zebrafish through injection of predicted microhomology-mediated end joining (MMEJ)-inducing single guide RNA/Cas9 protein complex. We showed that effective gene knockdown is maintained in F0 adult fish, enabling recapitulation of both salutary modifying effects of the mtor haploinsufficiency and deleterious modifying effects of the dnajb6b gene on bag3 cardiomyopathy. We finally deployed the F0-based genetic assay to screen differentially expressed genes in the bag3 cardiomyopathy model. As a result, myh9b was identified as a novel modifier gene for bag3 cardiomyopathy. Together, these data prove the feasibility of an F0 adult zebrafish-based genetic assay that can be effectively used to discover modifier genes for inherited cardiomyopathy.
Collapse
Affiliation(s)
- Yonghe Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Mingmin Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Haisong Bu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiothoracic Surgery, Xiangfan Hospital, Central South University, Changsha 410008, China
| | - Jiarong Li
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Surgery, The Second Xiangfan Hospital of Central South University, Changsha 410011, China
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Lv L, Wang X, Wu H. Assessment of palmitic acid toxicity to animal hearts and other major organs based on acute toxicity, network pharmacology, and molecular docking. Comput Biol Med 2023; 158:106899. [PMID: 37058761 DOI: 10.1016/j.compbiomed.2023.106899] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/28/2023] [Accepted: 04/09/2023] [Indexed: 04/16/2023]
Abstract
Palmitic acid is a common ingredient in many foods and traditional Chinese medicines. However, modern pharmacological experiments have shown that palmitic acid has toxic side effects. It can damage glomeruli, cardiomyocytes, and hepatocytes, as well as promote the growth of lung cancer cells. Despite this, there are few reports evaluating the safety of palmitic acid through animal experiments, and the mechanism of palmitic acid toxicity remains unclear. Clarifying the adverse reactions and mechanisms of palmitic acid in animal hearts and other major organs is of great significance for ensuring the safety of clinical application. Therefore, this study records an acute toxicity experiment on palmitic acid in a mouse model, and the observation of pathological changes in the heart, liver, lungs, and kidneys. It is found that palmitic acid had toxic and side effects on animal heart. Then the key targets of palmitic acid in regulating cardiac toxicity were screened using network pharmacology, and a "component-target-cardiotoxicity" network diagram and PPI network were constructed. The mechanisms regulating cardiotoxicity were explored using KEGG signal pathway and GO biological process enrichment analyses. Molecular docking models were used for verification. The results showed that the maximum dose of palmitic acid had low toxicity in the hearts of mice. The mechanism of cardiotoxicity of palmitic acid involves multiple targets, biological processes, and signaling pathways. Palmitic acid can induce steatosis in hepatocytes, and regulate cancer cells. This study preliminarily evaluated the safety of palmitic acid and provided a scientific basis for its safe application.
Collapse
Affiliation(s)
- Lijuan Lv
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China.
| | - Xiangpei Wang
- National Medical College, Guizhou Minzu University, Guiyang, Guizhou, China
| | - Hongmei Wu
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China.
| |
Collapse
|
4
|
Gao RF, Yang K, Qu YN, Wei X, Shi JR, Lv CY, Zhao YC, Sun XL, Xu YJ, Yang YQ. m 6A demethylase ALKBH5 attenuates doxorubicin-induced cardiotoxicity via posttranscriptional stabilization of Rasal3. iScience 2023; 26:106215. [PMID: 36876119 PMCID: PMC9982307 DOI: 10.1016/j.isci.2023.106215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/23/2022] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The clinical application of anthracyclines such as doxorubicin (DOX) is limited due to their cardiotoxicity. N6-methyladenosine (m6A) plays an essential role in numerous biological processes. However, the roles of m6A and m6A demethylase ALKBH5 in DOX-induced cardiotoxicity (DIC) remain unclear. In this research, DIC models were constructed using Alkbh5-knockout (KO), Alkbh5-knockin (KI), and Alkbh5-myocardial-specific knockout (ALKBH5flox/flox, αMyHC-Cre) mice. Cardiac function and DOX-mediated signal transduction were investigated. As a result, both Alkbh5 whole-body KO and myocardial-specific KO mice had increased mortality, decreased cardiac function, and aggravated DIC injury with severe myocardial mitochondrial damage. Conversely, ALKBH5 overexpression alleviated DOX-mediated mitochondrial injury, increased survival, and improved myocardial function. Mechanistically, ALKBH5 regulated the expression of Rasal3 in an m6A-dependent manner through posttranscriptional mRNA regulation and reduced Rasal3 mRNA stability, thus activating RAS3, inhibiting apoptosis through the RAS/RAF/ERK signaling pathway, and alleviating DIC injury. These findings indicate the potential therapeutic effect of ALKBH5 on DIC.
Collapse
Affiliation(s)
- Ri-Feng Gao
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
| | - Kun Yang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200232, China
| | - Ya-Nan Qu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200232, China
| | - Xiang Wei
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
| | - Jia-Ran Shi
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China
| | - Chun-Yu Lv
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 200240, China
| | - Yong-Chao Zhao
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200232, China
| | - Xiao-Lei Sun
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200232, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
- Department of Cardiovascular Research Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 518036, China
- Department of Central Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
- Corresponding author
| |
Collapse
|
5
|
Moossavi M, Lu X, Herrmann J, Xu X. Molecular mechanisms of anthracycline induced cardiotoxicity: Zebrafish come into play. Front Cardiovasc Med 2023; 10:1080299. [PMID: 36970353 PMCID: PMC10036604 DOI: 10.3389/fcvm.2023.1080299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Anthracyclines are among the most potent chemotherapeutics; however, cardiotoxicity significantly restricts their use. Indeed, anthracycline-induced cardiotoxicity (AIC) fares among the worst types of cardiomyopathy, and may only slowly and partially respond to standard heart failure therapies including β-blockers and ACE inhibitors. No therapy specifically designed to treat anthracycline cardiomyopathy at present, and neither is it known if any such strategy could be developed. To address this gap and to elucidate the molecular basis of AIC with a therapeutic goal in mind, zebrafish has been introduced as an in vivo vertebrate model about a decade ago. Here, we first review our current understanding of the basic molecular and biochemical mechanisms of AIC, and then the contribution of zebrafish to the AIC field. We summarize the generation of embryonic zebrafish AIC models (eAIC) and their use for chemical screening and assessment of genetic modifiers, and then the generation of adult zebrafish AIC models (aAIC) and their use for discovering genetic modifiers via forward mutagenesis screening, deciphering spatial-temporal-specific mechanisms of modifier genes, and prioritizing therapeutic compounds via chemical genetic tools. Several therapeutic target genes and related therapies have emerged, including a retinoic acid (RA)-based therapy for the early phase of AIC and an autophagy-based therapy that, for the first time, is able to reverse cardiac dysfunction in the late phase of AIC. We conclude that zebrafish is becoming an important in vivo model that would accelerate both mechanistic studies and therapeutic development of AIC.
Collapse
Affiliation(s)
- Maryam Moossavi
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Xiaoguang Lu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Joerg Herrmann
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- Correspondence: Xiaolei Xu
| |
Collapse
|
6
|
Synergistic Effects of Ginsenoside Rb3 and Ferruginol in Ischemia-Induced Myocardial Infarction. Int J Mol Sci 2022; 23:ijms232415935. [PMID: 36555577 PMCID: PMC9785845 DOI: 10.3390/ijms232415935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Previous research shows that ginsenoside Rb3 (G-Rb3) exhibit significant protective effects on cardiomyocytes and is considered a promising treatment for myocardial infraction (MI). However, how to improve its oral bioavailability and reduce its dosage remains to be studied. Previous studies suggest that Ferruginol (FGL) may have synergistic effects with G-Rb3. However, the underlying mechanisms remain to be explored. In this study, left anterior descending branch (LAD) coronary artery ligation or oxygen-glucose deprivation-reperfusion (OGD/R) were used to establish MI models in vivo and in vitro. Subsequently, the pharmacological effects and mechanisms of G-Rb3-FGL were explored by in vitro studies. The results showed that the G-Rb3-FGL co-treatment improved heart functions better than the G-Rb3 treatment alone in MI mice models. Meanwhile, the G-Rb3-FGL co-treatment can upregulate fatty acids oxidation (FAO) and suppress oxidative stress in the heart tissues of MI mice. In vitro studies demonstrated that the synergistic effect of G-Rb3-FGL on FAO, oxidation and inflammation was abolished by RXRα inhibitor HX531 in the H9C2 cell model. In summary, we revealed that G-Rb3 and FGL have a synergistic effect against MI. They protected cardiomyocytes by promoting FAO, inhibiting oxidative stress, and suppressing inflammation through the RXRα-Nrf2 signaling pathway.
Collapse
|
7
|
Hasbullah JS, Scott EN, Bhavsar AP, Gunaretnam EP, Miao F, Soliman H, Carleton BC, Ross CJD. All-trans retinoic acid (ATRA) regulates key genes in the RARG-TOP2B pathway and reduces anthracycline-induced cardiotoxicity. PLoS One 2022; 17:e0276541. [PMID: 36331922 PMCID: PMC9635745 DOI: 10.1371/journal.pone.0276541] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
The effectiveness of anthracycline chemotherapeutics (e.g., doxorubicin) is limited by anthracycline-induced cardiotoxicity (ACT). A nonsynonymous variant (S427L) in the retinoic acid receptor-γ (RARG) gene has been associated with ACT. This variant causes reduced RARG activity, which is hypothesized to lead to increased susceptibility to ACT through reduced activation of the retinoic acid pathway. This study explored the effects of activating the retinoic acid pathway using a RAR-agonist, all-trans retinoic acid (ATRA), in human cardiomyocytes and mice treated with doxorubicin. In human cardiomyocytes, ATRA induced the gene expression of RARs (RARG, RARB) and repressed the expression of topoisomerase II enzyme genes (TOP2A, TOP2B), which encode for the molecular targets of anthracyclines and repressed downstream ACT response genes. Importantly, ATRA enhanced cell survival of human cardiomyocytes exposed to doxorubicin. The protective effect of ATRA was also observed in a mouse model (B6C3F1/J) of ACT, in which ATRA treatment improved heart function compared to doxorubicin-only treated mice. Histological analyses of the heart also indicated that ATRA treatment reduced the pathology associated with ACT. These findings provide additional evidence for the retinoic acid pathway's role in ACT and suggest that the RAR activator ATRA can modulate this pathway to reduce ACT.
Collapse
Affiliation(s)
- Jafar S. Hasbullah
- Department of Medical Genetics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Erika N. Scott
- Department of Medical Genetics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Amit P. Bhavsar
- Department of Medical Microbiology and Immunology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Erandika P. Gunaretnam
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Fudan Miao
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Hesham Soliman
- School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce C. Carleton
- Department of Medical Genetics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin J. D. Ross
- Department of Medical Genetics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Ding Y, Lang D, Yan J, Bu H, Li H, Jiao K, Yang J, Ni H, Morotti S, Le T, Clark KJ, Port J, Ekker SC, Cao H, Zhang Y, Wang J, Grandi E, Li Z, Shi Y, Li Y, Glukhov AV, Xu X. A phenotype-based forward genetic screen identifies Dnajb6 as a sick sinus syndrome gene. eLife 2022; 11:e77327. [PMID: 36255053 PMCID: PMC9642998 DOI: 10.7554/elife.77327] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
Previously we showed the generation of a protein trap library made with the gene-break transposon (GBT) in zebrafish (Danio rerio) that could be used to facilitate novel functional genome annotation towards understanding molecular underpinnings of human diseases (Ichino et al, 2020). Here, we report a significant application of this library for discovering essential genes for heart rhythm disorders such as sick sinus syndrome (SSS). SSS is a group of heart rhythm disorders caused by malfunction of the sinus node, the heart's primary pacemaker. Partially owing to its aging-associated phenotypic manifestation and low expressivity, molecular mechanisms of SSS remain difficult to decipher. From 609 GBT lines screened, we generated a collection of 35 zebrafish insertional cardiac (ZIC) mutants in which each mutant traps a gene with cardiac expression. We further employed electrocardiographic measurements to screen these 35 ZIC lines and identified three GBT mutants with SSS-like phenotypes. More detailed functional studies on one of the arrhythmogenic mutants, GBT411, in both zebrafish and mouse models unveiled Dnajb6 as a novel SSS causative gene with a unique expression pattern within the subpopulation of sinus node pacemaker cells that partially overlaps with the expression of hyperpolarization activated cyclic nucleotide gated channel 4 (HCN4), supporting heterogeneity of the cardiac pacemaker cells.
Collapse
Affiliation(s)
- Yonghe Ding
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao UniversityQingdaoChina
| | - Di Lang
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
- Department of Medicine, University of California, San FranciscoSan FranciscoUnited States
| | - Jianhua Yan
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
- Division of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School Of MedicineShanghaiChina
| | - Haisong Bu
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
- Department of Cardiothoracic Surgery, Xiangya Hospital, Central South UniversityChangshaChina
| | - Hongsong Li
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
- Department of Cardiovascular Medicine, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health ScienceShanghaiChina
| | - Kunli Jiao
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
- Division of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School Of MedicineShanghaiChina
| | - Jingchun Yang
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
| | - Haibo Ni
- Department of Pharmacology, University of California, DavisDavisUnited States
| | - Stefano Morotti
- Department of Pharmacology, University of California, DavisDavisUnited States
| | - Tai Le
- Department of Biomedical Engineering, University of California, IrvineIrvineUnited States
| | - Karl J Clark
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
| | - Jenna Port
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
| | - Hung Cao
- Department of Biomedical Engineering, University of California, IrvineIrvineUnited States
- Department of Electrical Engineering and Computer Science, University of California, IrvineIrvineUnited States
| | - Yuji Zhang
- Department of Epidemiology and Public Health, University of Maryland School of MedicineBaltimoreUnited States
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at HoustonHoustonUnited States
| | - Eleonora Grandi
- Department of Pharmacology, University of California, DavisDavisUnited States
| | - Zhiqiang Li
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao UniversityQingdaoChina
| | - Yongyong Shi
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao UniversityQingdaoChina
| | - Yigang Li
- Division of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School Of MedicineShanghaiChina
| | - Alexey V Glukhov
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
| |
Collapse
|
9
|
Barradas M, Plaza A, Colmenarejo G, Lázaro I, Costa-Machado LF, Martín-Hernández R, Micó V, López-Aceituno JL, Herranz J, Pantoja C, Tejero H, Diaz-Ruiz A, Al-Shahrour F, Daimiel L, Loria-Kohen V, de Molina AR, Efeyan A, Serrano M, Pozo OJ, Sala-Vila A, Fernandez-Marcos PJ. Fatty acids homeostasis during fasting predicts protection from chemotherapy toxicity. Nat Commun 2022; 13:5677. [PMID: 36167809 PMCID: PMC9515185 DOI: 10.1038/s41467-022-33352-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 09/09/2022] [Indexed: 12/27/2022] Open
Abstract
Fasting exerts beneficial effects in mice and humans, including protection from chemotherapy toxicity. To explore the involved mechanisms, we collect blood from humans and mice before and after 36 or 24 hours of fasting, respectively, and measure lipid composition of erythrocyte membranes, circulating micro RNAs (miRNAs), and RNA expression at peripheral blood mononuclear cells (PBMCs). Fasting coordinately affects the proportion of polyunsaturated versus saturated and monounsaturated fatty acids at the erythrocyte membrane; and reduces the expression of insulin signaling-related genes in PBMCs. When fasted for 24 hours before and 24 hours after administration of oxaliplatin or doxorubicin, mice show a strong protection from toxicity in several tissues. Erythrocyte membrane lipids and PBMC gene expression define two separate groups of individuals that accurately predict a differential protection from chemotherapy toxicity, with important clinical implications. Our results reveal a mechanism of fasting associated with lipid homeostasis, and provide biomarkers of fasting to predict fasting-mediated protection from chemotherapy toxicity. Fasting has been reported to protect from chemotherapy-associated toxicity. Here, the authors show that fatty acid profiles in erythrocyte membranes and gene expression from peripheral blood mononuclear cells are associated to the fasting-mediated benefits during cancer treatment in mice and patients.
Collapse
Affiliation(s)
- Marta Barradas
- Metabolic Syndrome Group-BIOPROMET, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain.
| | - Adrián Plaza
- Metabolic Syndrome Group-BIOPROMET, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain.
| | - Gonzalo Colmenarejo
- Biostatistics and Bioinformatics Unit, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Iolanda Lázaro
- Cardiovascular risk and nutrition, Hospital del Mar Medical Research Institute-IMIM, Barcelona, Spain
| | - Luis Filipe Costa-Machado
- Metabolic Syndrome Group-BIOPROMET, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Roberto Martín-Hernández
- Biostatistics and Bioinformatics Unit, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Victor Micó
- Nutritional Genomics of Cardiovascular Disease and Obesity, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - José Luis López-Aceituno
- Metabolic Syndrome Group-BIOPROMET, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Jesús Herranz
- Biostatistics and Bioinformatics Unit, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Cristina Pantoja
- Metabolic Syndrome Group-BIOPROMET, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Hector Tejero
- Bioinformatics Unit, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Alberto Diaz-Ruiz
- Nutritional Interventions Group, Precision Nutrition and Aging, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Fatima Al-Shahrour
- Bioinformatics Unit, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Lidia Daimiel
- Nutritional Genomics of Cardiovascular Disease and Obesity, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Viviana Loria-Kohen
- Nutrition and Clinical Trials Unit, Platform GENYAL, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Ana Ramirez de Molina
- Nutrition and Clinical Trials Unit, Platform GENYAL, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain.,Molecular Oncology and Nutritional Genomics of Cancer Group, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Alejo Efeyan
- Metabolism and Cell Signaling Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Oscar J Pozo
- Applied Metabolomics Research Group, Hospital del Mar Medical Research Institute-(IMIM), Barcelona, Spain
| | - Aleix Sala-Vila
- Cardiovascular risk and nutrition, Hospital del Mar Medical Research Institute-IMIM, Barcelona, Spain.,Fatty Acid Research Institute, Sioux Falls, SD, USA
| | - Pablo J Fernandez-Marcos
- Metabolic Syndrome Group-BIOPROMET, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain.
| |
Collapse
|
10
|
Genetic Susceptibility and Mechanisms Underlying the Pathogenesis of Anthracycline-Associated Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5818612. [PMID: 35965684 PMCID: PMC9365594 DOI: 10.1155/2022/5818612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022]
Abstract
Anthracyclines are chemotherapeutic agents widely used to treat a variety of cancers, and these drugs have revolutionized our management of cancer patients. The dose-dependent cardiotoxicity of anthracyclines, however, remains one of the leading causes of chemotherapy treatment-associated mortality in cancer survivors. Patient threshold doses leading to anthracycline-induced cardiotoxicity (AIC) are highly variable among affected patients. This variability is largely ascribed to genetic variants in individuals' genomes. Here, we briefly discuss the prevailing mechanisms underlying the pathogenesis of AIC, and then, we review the genetic variants, mostly identified through human genetic approaches and identified in cancer survivors. The identification of all genetic susceptibilities and elucidation of underlying mechanisms of AIC can help improve upfront risk prediction assessment for potentially severe cardiotoxicity disease and provide valuable insights into the understanding of AIC pathophysiology, which can be further leveraged to develop targeted pharmacogenetic therapies for those at high risk.
Collapse
|
11
|
Schiano C, Balbi C, Burrello J, Ruocco A, Infante T, Fiorito C, Panella S, Barile L, Mauro C, Vassalli G, Napoli C. De novo DNA methylation induced by circulating extracellular vesicles from acute coronary syndrome patients. Atherosclerosis 2022; 354:41-52. [PMID: 35830762 DOI: 10.1016/j.atherosclerosis.2022.06.1026] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND AND AIMS DNA methylation is associated with gene silencing, but its clinical role in cardiovascular diseases (CVDs) remains to be elucidated. We hypothesized that extracellular vesicles (EVs) may carry epigenetic changes, showing themselves as a potentially valuable non-invasive diagnostic liquid biopsy. We isolated and characterized circulating EVs of acute coronary syndrome (ACS) patients and assessed their role on DNA methylation in epigenetic modifications. METHODS EVs were recovered from plasma of 19 ACS patients and 50 healthy subjects (HS). Flow cytometry, qRT-PCR, and Western blot (WB) were performed to evaluate both intra-vesicular and intra-cellular signals. ShinyGO, PANTHER, and STRING tools were used to perform GO and PPI network analyses. RESULTS ACS-derived EVs showed increased levels of DNA methyltransferases (DNMTs) (p<0.001) and Ten-eleven translocation (TET) genes reduction. Specifically, de novo methylation transcripts, as DNMT3A and DNMT3B, were significantly increased in plasma ACS-EVs. DNA methylation analysis on PBMCs from healthy donors treated with HS- and ACS-derived EVs showed an important role of DNMTs carried by EVs. PPI network analysis evidenced that ACS-EVs induced changes in PBMC methylome. In the most enriched subnetwork, the hub gene SRC was connected to NOTCH1, FOXO3, CDC42, IKBKG, RXRA, DGKG, BAIAP2 genes that were showed to have many molecular effects on various cell types into onset of several CVDs. Modulation in gene expression after ACS-EVs treatment was confirmed for SRC, NOTCH1, FOXO3, RXRA, DGKG and BAIAP2 (p<0.05). CONCLUSIONS Our data showed an important role for ACS-derived EVs in gene expression modulation through de novo DNA methylation signals, and modulating signalling pathways in target cells.
Collapse
Affiliation(s)
- Concetta Schiano
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania Luigi Vanvitelli, Naples, Italy; Cellular and Molecular Cardiology lab Istituto Cardiocentro Ticino-EOC, Lugano, Switzerland; Laboratories for Translation Research, EOC, Bellinzona, Switzerland.
| | - Carolina Balbi
- Cellular and Molecular Cardiology lab Istituto Cardiocentro Ticino-EOC, Lugano, Switzerland; Laboratories for Translation Research, EOC, Bellinzona, Switzerland; Center for Molecular Cardiology, Zurich, Switzerland
| | - Jacopo Burrello
- Laboratories for Translation Research, EOC, Bellinzona, Switzerland; Cardiovascular Theranostics, Istituto Cardiocentro Ticino-EOC, Lugano, Switzerland
| | - Antonio Ruocco
- Unit of Cardiovascular Diseases and Arrhythmias, Antonio Cardarelli Hospital, Naples, Italy
| | - Teresa Infante
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania Luigi Vanvitelli, Naples, Italy
| | | | - Stefano Panella
- Laboratories for Translation Research, EOC, Bellinzona, Switzerland; Cardiovascular Theranostics, Istituto Cardiocentro Ticino-EOC, Lugano, Switzerland
| | - Lucio Barile
- Laboratories for Translation Research, EOC, Bellinzona, Switzerland; Cardiovascular Theranostics, Istituto Cardiocentro Ticino-EOC, Lugano, Switzerland
| | - Ciro Mauro
- Unit of Cardiovascular Diseases and Arrhythmias, Antonio Cardarelli Hospital, Naples, Italy
| | - Giuseppe Vassalli
- Cellular and Molecular Cardiology lab Istituto Cardiocentro Ticino-EOC, Lugano, Switzerland; Laboratories for Translation Research, EOC, Bellinzona, Switzerland; Center for Molecular Cardiology, Zurich, Switzerland
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania Luigi Vanvitelli, Naples, Italy; Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology (SIMT), Regional Reference Laboratory of Transplant Immunology (LIT), Azienda Universitaria Policlinico (AOU), Naples, Italy
| |
Collapse
|
12
|
Mullen M, Wen Tan WL, Rhee JW, Wu JC. Modeling Susceptibility to Cardiotoxicity in Cancer Therapy Using Human iPSC-Derived Cardiac Cells and Systems Biology. Heart Fail Clin 2022; 18:335-347. [PMID: 35718410 DOI: 10.1016/j.hfc.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of human-induced pluripotent stem cell-derived cardiac cell types has created a new paradigm in assessing drug-induced cardiotoxicity. Advances in genomics and epigenomics have also implicated several genomic loci and biological pathways that may contribute to susceptibility to cancer therapies. In this review, we first provide a brief overview of the cardiotoxicity associated with chemotherapy. We then provide a detailed summary of systems biology approaches being applied to elucidate potential molecular mechanisms involved in cardiotoxicity. Finally, we discuss combining systems biology approaches with iPSC technology to help discover molecular mechanisms associated with cardiotoxicity.
Collapse
Affiliation(s)
- McKay Mullen
- Stanford Cardiovascular Institute, Stanford University, 265 Campus Drive G1120B, Stanford, CA 94304, USA
| | - Wilson Lek Wen Tan
- Stanford Cardiovascular Institute, Stanford University, 265 Campus Drive G1120B, Stanford, CA 94304, USA
| | - June-Wha Rhee
- Department of Medicine, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd, Duarte, CA 91010, USA.
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, 265 Campus Drive G1120B, Stanford, CA 94304, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University; Department of Radiology, Stanford University, 265 Campus Drive G1120B, Stanford, CA 94304, USA.
| |
Collapse
|
13
|
Sharma P, Liu Chung Ming C, Wang X, Bienvenu LA, Beck D, Figtree GA, Boyle A, Gentile C. Biofabrication of advanced in vitro3D models to study ischaemic and doxorubicin-induced myocardial damage. Biofabrication 2022; 14. [PMID: 34983029 DOI: 10.1088/1758-5090/ac47d8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/04/2022] [Indexed: 11/11/2022]
Abstract
Current preclinicalin vitroandin vivomodels of cardiac injury typical of myocardial infarction (MI, or heart attack) and drug induced cardiotoxicity mimic only a few aspects of these complex scenarios. This leads to a poor translation of findings from the bench to the bedside. In this study, we biofabricated for the first time advancedin vitromodels of MI and doxorubicin (DOX) induced injury by exposing cardiac spheroids (CSs) to pathophysiological changes in oxygen (O2) levels or DOX treatment. Then, contractile function and cell death was analyzed in CSs in control versus I/R and DOX CSs. For a deeper dig into cell death analysis, 3D rendering analyses and mRNA level changes of cardiac damage-related genes were compared in control versus I/R and DOX CSs. Overall,in vitroCSs recapitulated major features typical of thein vivoMI and drug induced cardiac damages, such as adapting intracellular alterations to O2concentration changes and incubation with cardiotoxic drug, mimicking the contraction frequency and fractional shortening and changes in mRNA expression levels for genes regulating sarcomere structure, calcium transport, cell cycle, cardiac remodelling and signal transduction. Taken together, our study supports the use of I/R and DOX CSs as advancedin vitromodels to study MI and DOX-induced cardiac damage by recapitulating their complex in vivoscenario.
Collapse
Affiliation(s)
- Poonam Sharma
- The University of Newcastle Faculty of Health and Medicine, Kookaburra Cct, New Lambton Heights, New South Wales, 2305, AUSTRALIA
| | - Clara Liu Chung Ming
- University of Technology Sydney Faculty of Engineering, Building 11, Level 10, Room 115, University of Technology Sydney, Ultimo, Sydney, Ultimo, Sydney, New South Wales, 2007, AUSTRALIA
| | - Xiaowei Wang
- Baker Heart and Diabetes Institute South Australia, 75 Commercial Road, Melbourne, Victoria, 3004, AUSTRALIA
| | - Laura A Bienvenu
- Baker Heart and Diabetes Institute South Australia, 75 Commercial Road, Melbourne, Victoria, 3004, AUSTRALIA
| | - Domink Beck
- University of Technology Sydney Faculty of Engineering, Building 11, Level 10, Room 115, University of Technology Sydney, Ultimo, Sydney, Ultimo, Sydney, New South Wales, 2007, AUSTRALIA
| | - Gemma A Figtree
- , The University of Sydney Faculty of Medicine and Health, Reserve Rd, Sydney, New South Wales, 2000, AUSTRALIA
| | - Andrew Boyle
- The University of Newcastle Faculty of Health and Medicine, Kookaburra Cct, New Lambton Heights, New South Wales, 2305, AUSTRALIA
| | - Carmine Gentile
- University of Technology Sydney Faculty of Engineering, Building 11, Level 10, Room 115, 81 Broadway St, Ultimo, Sydney, Ultimo, Sydney, New South Wales, 2007, AUSTRALIA
| |
Collapse
|
14
|
Wang Y, Lu X, Wang X, Qiu Q, Zhu P, Ma L, Ma X, Herrmann J, Lin X, Wang W, Xu X. atg7-Based Autophagy Activation Reverses Doxorubicin-Induced Cardiotoxicity. Circ Res 2021; 129:e166-e182. [PMID: 34384247 PMCID: PMC8484060 DOI: 10.1161/circresaha.121.319104] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Yong Wang
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
- Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoguang Lu
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
- Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoping Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Qiu
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
- Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Institute of Clinical Pharmacology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ping Zhu
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
- Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Lin Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao Ma
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
- Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Joerg Herrmann
- Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Xueying Lin
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
- Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Wei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaolei Xu
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
- Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
15
|
Ma X, Xu X. A Swimming-based Assay to Determine the Exercise Capacity of Adult Zebrafish Cardiomyopathy Models. Bio Protoc 2021; 11:e4114. [PMID: 34458408 DOI: 10.21769/bioprotoc.4114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/18/2021] [Accepted: 04/26/2021] [Indexed: 11/02/2022] Open
Abstract
Exercise capacity, measured by treadmill in humans and other mammals, is an important diagnostic and prognostic index for patients with cardiomyopathy and heart failure. The adult zebrafish is increasingly used as a vertebrate model to study human cardiomyopathy due to its conserved cardiovascular physiology, convenience for genetic manipulation, and amenability to high-throughput genetic and compound screening. Owing to the small size of its body and heart, new phenotyping assays are needed to unveil phenotypic traits of cardiomyopathy in adult zebrafish. Here, we describe a swimming-based functional assay that measures exercise capacity in an adult zebrafish doxorubicin-induced cardiomyopathy model. This protocol can be applied to any adult zebrafish model of acquired or inherited cardiomyopathy and potentially to other cardiovascular diseases. Graphic abstract: Clinical relevance of the swimming-based phenotyping assay in adult zebrafish cardiomyopathy models.
Collapse
Affiliation(s)
- Xiao Ma
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester MN, USA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester MN, USA
| |
Collapse
|
16
|
Paredes A, Santos-Clemente R, Ricote M. Untangling the Cooperative Role of Nuclear Receptors in Cardiovascular Physiology and Disease. Int J Mol Sci 2021; 22:ijms22157775. [PMID: 34360540 PMCID: PMC8346021 DOI: 10.3390/ijms22157775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
The heart is the first organ to acquire its physiological function during development, enabling it to supply the organism with oxygen and nutrients. Given this early commitment, cardiomyocytes were traditionally considered transcriptionally stable cells fully committed to contractile function. However, growing evidence suggests that the maintenance of cardiac function in health and disease depends on transcriptional and epigenetic regulation. Several studies have revealed that the complex transcriptional alterations underlying cardiovascular disease (CVD) manifestations such as myocardial infarction and hypertrophy is mediated by cardiac retinoid X receptors (RXR) and their partners. RXRs are members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors and drive essential biological processes such as ion handling, mitochondrial biogenesis, and glucose and lipid metabolism. RXRs are thus attractive molecular targets for the development of effective pharmacological strategies for CVD treatment and prevention. In this review, we summarize current knowledge of RXR partnership biology in cardiac homeostasis and disease, providing an up-to-date view of the molecular mechanisms and cellular pathways that sustain cardiomyocyte physiology.
Collapse
|
17
|
Disruption of MAP7D1 Gene Function Increases the Risk of Doxorubicin-Induced Cardiomyopathy and Heart Failure. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8569921. [PMID: 34327238 PMCID: PMC8302367 DOI: 10.1155/2021/8569921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022]
Abstract
Doxorubicin is a cornerstone chemotherapeutic drug widely used to treat various cancers; its dose-dependent cardiomyopathy, however, is one of the leading causes of treatment-associated mortality in cancer survivors. Patients' threshold doses leading to doxorubicin-induced cardiomyopathy (DIC) and heart failure are highly variable, mostly due to genetic variations in individuals' genomes. However, genetic susceptibility to DIC remains largely unidentified. Here, we combined a genetic approach in the zebrafish (Danio rerio) animal model with a genome-wide association study (GWAS) in humans to identify genetic susceptibility to DIC and heart failure. We firstly reported the cardiac and skeletal muscle-specific expression and sarcomeric localization of the microtubule-associated protein 7 domain-containing protein 1b (Map7d1b) in zebrafish, followed by expression validation in mice. We then revealed that disruption of the map7d1b gene function exaggerated DIC effects in adult zebrafish. Mechanistically, the exacerbated DIC are likely conveyed by impaired autophagic degradation and elevated protein aggregation. Lastly, we identified 2 MAP7D1 gene variants associated with cardiac functional decline and heart failure in cancer patients who received doxorubicin therapy. Together, this study identifies MAP7D1 as a clinically relevant susceptibility gene to DIC and heart failure, providing useful information to stratify cancer patients with a high risk of incurring severe cardiomyopathy and heart failure after receiving chemotherapy.
Collapse
|
18
|
Davidson SM, Padró T, Bollini S, Vilahur G, Duncker DJ, Evans PC, Guzik T, Hoefer IE, Waltenberger J, Wojta J, Weber C. Progress in cardiac research - from rebooting cardiac regeneration to a complete cell atlas of the heart. Cardiovasc Res 2021; 117:2161-2174. [PMID: 34114614 PMCID: PMC8344830 DOI: 10.1093/cvr/cvab200] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/10/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022] Open
Abstract
We review some of the important discoveries and advances made in basic and translational cardiac research in 2020. For example, in the field of myocardial infarction (MI), new aspects of autophagy and the importance of eosinophils were described. Novel approaches such as a glycocalyx mimetic were used to improve cardiac recovery following MI. The strategy of 3D bio-printing was shown to allow the fabrication of a chambered cardiac organoid. The benefit of combining tissue engineering with paracrine therapy to heal injured myocardium is discussed. We highlight the importance of cell-to cell communication, in particular the relevance of extracellular vesicles such as exosomes, which transport proteins, lipids, non-coding RNAs and mRNAs and actively contribute to angiogenesis and myocardial regeneration. In this rapidly growing field, new strategies were developed to stimulate the release of reparative exosomes in ischaemic myocardium. Single-cell sequencing technology is causing a revolution in the study of transcriptional expression at cellular resolution, revealing unanticipated heterogeneity within cardiomyocytes, pericytes and fibroblasts, and revealing a unique subpopulation of cardiac fibroblasts. Several studies demonstrated that exosome- and non-coding RNA-mediated approaches can enhance human induced pluripotent stem cell (iPSC) viability and differentiation into mature cardiomyocytes. Important details of the mitochondrial Ca2+ uniporter and its relevance were elucidated. Novel aspects of cancer therapeutic-induced cardiotoxicity were described, such as the novel circular RNA circITCH, which may lead to novel treatments. Finally, we provide some insights into the effects of SARS-CoV-2 on the heart.
Collapse
Affiliation(s)
- Sean M Davidson
- The Hatter Cardiovascular Institute, University College London WC1E 6HX, United Kingdom
| | - Teresa Padró
- Cardiovascular Program ICCC, Institut de Recerca de l'Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain.,CIBER Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Sveva Bollini
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Gemma Vilahur
- Cardiovascular Program ICCC, Institut de Recerca de l'Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain.,CIBER Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease and Insigneo Institute, University of Sheffield, UK
| | - Tomasz Guzik
- British Heart Foundation Centre for Cardiovascular Research, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK and Department of Medicine, Jagiellonian University, Collegium Medicum, Krakow, Poland
| | - Imo E Hoefer
- Central Diagnostic Laboratory, University Medical Center Utrecht, Netherlands
| | - Johannes Waltenberger
- Department of Cardiovascular Medicine, Medical Faculty, University of Muenster, Muenster, Germany
| | - Johann Wojta
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| |
Collapse
|
19
|
Abe JI, Yusuf SW, Deswal A, Herrmann J. Cardio-Oncology: Learning From the Old, Applying to the New. Front Cardiovasc Med 2020; 7:601893. [PMID: 33324688 PMCID: PMC7723824 DOI: 10.3389/fcvm.2020.601893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/26/2020] [Indexed: 01/08/2023] Open
Abstract
The recent surge in cancer drug approval has provided us in cardio-oncology with a new and unique era, which modern medicine has not experienced before: the diminishing availability of “conventional” evidence-based medicine. The drastic and quick changes in oncology has made it difficult, and at times even impossible, to establish a meaningful evidence-based cardio-oncology practice by simply following the oncologists' practice. For the modern cardio-oncologist, it seems that a more proactive approach and methodology is needed. We believe that only through such an approach (learn from the old, and apply to the new) the cardio-oncologist will obtain meaningful evidence to perform their every-day practice in this new era.
Collapse
Affiliation(s)
- Jun-Ichi Abe
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Syed Wamique Yusuf
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anita Deswal
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Joerg Herrmann
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
20
|
Ding Y, Bu H, Xu X. Modeling Inherited Cardiomyopathies in Adult Zebrafish for Precision Medicine. Front Physiol 2020; 11:599244. [PMID: 33329049 PMCID: PMC7717946 DOI: 10.3389/fphys.2020.599244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiomyopathies are a highly heterogeneous group of heart muscle disorders. More than 100 causative genes have been linked to various cardiomyopathies, which explain about half of familial cardiomyopathy cases. More than a dozen candidate therapeutic signaling pathways have been identified; however, precision medicine is not being used to treat the various types of cardiomyopathy because knowledge is lacking for how to tailor treatment plans for different genetic causes. Adult zebrafish (Danio rerio) have a higher throughout than rodents and are an emerging vertebrate model for studying cardiomyopathy. Herein, we review progress in the past decade that has proven the feasibility of this simple vertebrate for modeling inherited cardiomyopathies of distinct etiology, identifying effective therapeutic strategies for a particular type of cardiomyopathy, and discovering new cardiomyopathy genes or new therapeutic strategies via a forward genetic approach. On the basis of this progress, we discuss future research that would benefit from integrating this emerging model, including discovery of remaining causative genes and development of genotype-based therapies. Studies using this efficient vertebrate model are anticipated to significantly accelerate the implementation of precision medicine for inherited cardiomyopathies.
Collapse
Affiliation(s)
- Yonghe Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Haisong Bu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States.,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
21
|
Bavlovič Piskáčková H, Øiestad EL, Váňová N, Lengvarská J, Štěrbová-Kovaříková P, Pedersen-Bjergaard S. Electromembrane extraction of anthracyclines from plasma: Comparison with conventional extraction techniques. Talanta 2020; 223:121748. [PMID: 33298272 DOI: 10.1016/j.talanta.2020.121748] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 01/05/2023]
Abstract
Electromembrane extraction (EME) of the polar zwitterionic drugs, anthracyclines (ANT, doxorubicin, daunorubicin and its metabolite daunorubicinol), from rabbit plasma was investigated. The optimized EME was compared to conventional sample pretreatment techniques such as protein precipitation (PP) and liquid-liquid extraction (LLE), mainly in terms of extraction reliability, recovery and matrix effect. In addition, phospholipids profile in the individual extracts was evaluated. The extracted samples were analyzed using UHPLC-MS/MS with electrospray ionization in positive ion mode. The method was validated within the concentration range of 0.25-1000 ng/mL for all tested ANT. Compared with PP and LLE, the EME provided high extraction recovery (more than 80% for all ANT) and excellent sample clean-up (matrix effect were 100 ± 10% with RSD values lower than 4% for all ANT). Furthermore, only negligible amounts of phospholipids were detected in the EME samples. Finally, practical applicability of EME was proved by analysis of plasma samples taken from a pilot in vivo study in rabbits. Consistent results were obtained when using both EME and LLE to extract the plasma prior to the analysis, which further confirmed high reliability of EME. This study clearly showed that EME is a simple, rapid, repeatable technique for extraction of ANT from plasma and it is an up to date alternative to routine conventional extraction techniques.
Collapse
Affiliation(s)
- Hana Bavlovič Piskáčková
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Elisabeth Leere Øiestad
- Department of Pharmacy, University of Oslo, P.O.Box 1068 Blindern, 0316, Oslo, Norway; Oslo University Hospital, Division of Laboratory Medicine, Department of Forensic Sciences, P.O. Box 4459 Nydalen, 0424, Oslo, Norway
| | - Nela Váňová
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Júlia Lengvarská
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Petra Štěrbová-Kovaříková
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Stig Pedersen-Bjergaard
- Department of Pharmacy, University of Oslo, P.O.Box 1068 Blindern, 0316, Oslo, Norway; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Adverse drug reactions (ADRs) are a serious burden and can negatively impact patient quality of life. One of these ADRs, anthracycline-induced cardiotoxicity (ACT), occurs in up to 65% of treated patients and can lead to congestive heart failure. Pharmacogenetic studies have helped to reveal the mechanisms of ACT and, consequently, inform current strategies to prevent ACT in the clinic. RECENT FINDINGS Many pharmacogenetic studies have been conducted for ACT, but few have led to the development of clinical practice guidelines and clinical genetic testing for ACT. This is, in part, because of lack of replication in independent patient cohorts and/or validation of an affected biological pathway. Recent advances in pharmacogenetic studies have been made through the use of novel methods that directly implicate dysregulated genes and perturbed biological pathways in response to anthracycline treatment. SUMMARY Furthering the understanding of the genetics and altered biological pathways of ACT through these novel methods can inform clinical treatment strategies and enable refinement of current clinical practice guidelines. This can therefore lead to improvement in clinical pharmacogenetic testing for further reduction of the incidence of ACT in pediatric cancer patients taking anthracyclines.
Collapse
|
23
|
Ichino N, Serres MR, Urban RM, Urban MD, Treichel AJ, Schaefbauer KJ, Greif LE, Varshney GK, Skuster KJ, McNulty MS, Daby CL, Wang Y, Liao HK, El-Rass S, Ding Y, Liu W, Anderson JL, Wishman MD, Sabharwal A, Schimmenti LA, Sivasubbu S, Balciunas D, Hammerschmidt M, Farber SA, Wen XY, Xu X, McGrail M, Essner JJ, Burgess SM, Clark KJ, Ekker SC. Building the vertebrate codex using the gene breaking protein trap library. eLife 2020; 9:54572. [PMID: 32779569 PMCID: PMC7486118 DOI: 10.7554/elife.54572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 08/07/2020] [Indexed: 12/14/2022] Open
Abstract
One key bottleneck in understanding the human genome is the relative under-characterization of 90% of protein coding regions. We report a collection of 1200 transgenic zebrafish strains made with the gene-break transposon (GBT) protein trap to simultaneously report and reversibly knockdown the tagged genes. Protein trap-associated mRFP expression shows previously undocumented expression of 35% and 90% of cloned genes at 2 and 4 days post-fertilization, respectively. Further, investigated alleles regularly show 99% gene-specific mRNA knockdown. Homozygous GBT animals in ryr1b, fras1, tnnt2a, edar and hmcn1 phenocopied established mutants. 204 cloned lines trapped diverse proteins, including 64 orthologs of human disease-associated genes with 40 as potential new disease models. Severely reduced skeletal muscle Ca2+ transients in GBT ryr1b homozygous animals validated the ability to explore molecular mechanisms of genetic diseases. This GBT system facilitates novel functional genome annotation towards understanding cellular and molecular underpinnings of vertebrate biology and human disease.
Collapse
Affiliation(s)
- Noriko Ichino
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - MaKayla R Serres
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Rhianna M Urban
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Mark D Urban
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Anthony J Treichel
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Kyle J Schaefbauer
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Lauren E Greif
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Gaurav K Varshney
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, United States.,Functional & Chemical Genomics Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
| | - Kimberly J Skuster
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Melissa S McNulty
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Camden L Daby
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Ying Wang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| | - Hsin-Kai Liao
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| | - Suzan El-Rass
- Zebrafish Centre for Advanced Drug Discovery & Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto & University of Toronto, Toronto, Canada
| | - Yonghe Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, United States
| | - Weibin Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, United States
| | - Jennifer L Anderson
- Department of Embryology, Carnegie Institution for Science, Baltimore, United States
| | - Mark D Wishman
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Ankit Sabharwal
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Lisa A Schimmenti
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States.,Department of Clinical Genomics, Mayo Clinic, Rochester, United States.,Department of Otorhinolaryngology, Mayo Clinic, Rochester, United States
| | - Sridhar Sivasubbu
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Darius Balciunas
- Department of Biology, Temple University, Philadelphia, United States
| | - Matthias Hammerschmidt
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Steven Arthur Farber
- Department of Embryology, Carnegie Institution for Science, Baltimore, United States
| | - Xiao-Yan Wen
- Zebrafish Centre for Advanced Drug Discovery & Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto & University of Toronto, Toronto, Canada
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, United States
| | - Maura McGrail
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, United States
| | - Karl J Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| |
Collapse
|