1
|
Woodie LN, Alberto AJ, Krusen BM, Melink LC, Lazar MA. Genetic synchronization of the brain and liver molecular clocks defend against chrono-metabolic disease. Proc Natl Acad Sci U S A 2024; 121:e2417678121. [PMID: 39665757 DOI: 10.1073/pnas.2417678121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/12/2024] [Indexed: 12/13/2024] Open
Abstract
Nearly every cell of the body contains a circadian clock mechanism that is synchronized with the light-entrained clock in the suprachiasmatic nucleus (SCN). Desynchrony between the SCN and the external environment leads to metabolic dysfunction in shift workers. Similarly, mice with markedly shortened endogenous period due to the deletion of circadian REV-ERBα/β nuclear receptors in the SCN (SCN DKO) exhibit increased sensitivity to diet-induced obesity (DIO) on a 24 h light:dark cycle while mice with REV-ERBs deleted in hepatocytes (HepDKO) display exacerbated hepatosteatosis in response to a high-fat diet. Here, we show that inducing deletion of hepatocyte REV-ERBs in SCN DKO mice (Hep-SCN DDKO) rescued the exacerbated DIO and hepatic triglyceride accumulation, without affecting the shortened behavioral period. These findings suggest that metabolic disturbances due to environmental desynchrony with the central clock are due to effects on peripheral clocks which can be mitigated by matching peripheral and central clock periods even in a desynchronous environment. Thus, maintaining synchrony within an organism, rather than between endogenous and exogenous clocks, may be a viable target for the treatment of metabolic disorders associated with circadian disruption.
Collapse
Affiliation(s)
- Lauren N Woodie
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Ahren J Alberto
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Brianna M Krusen
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Lily C Melink
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Mitchell A Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
2
|
Woodie LN, Melink LC, Midha M, de Araújo AM, Geisler CE, Alberto AJ, Krusen BM, Zundell DM, de Lartigue G, Hayes MR, Lazar MA. Hepatic vagal afferents convey clock-dependent signals to regulate circadian food intake. Science 2024; 386:673-677. [PMID: 39509517 PMCID: PMC11629121 DOI: 10.1126/science.adn2786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 08/30/2024] [Indexed: 11/15/2024]
Abstract
Circadian desynchrony induced by shiftwork or jet lag is detrimental to metabolic health, but how synchronous or desynchronous signals are transmitted among tissues is unknown. We report that liver molecular clock dysfunction is signaled to the brain through the hepatic vagal afferent nerve (HVAN), leading to altered food intake patterns that are corrected by ablation of the HVAN. Hepatic branch vagotomy also prevents food intake disruptions induced by high-fat diet feeding and reduces body weight gain. Our findings reveal a homeostatic feedback signal that relies on communication between the liver and the brain to control circadian food intake patterns. This identifies the hepatic vagus nerve as a potential therapeutic target for obesity in the setting of chronodisruption.
Collapse
Affiliation(s)
- Lauren N. Woodie
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lily C. Melink
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mohit Midha
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Caroline E. Geisler
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ahren J. Alberto
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brianna M. Krusen
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Delaine M. Zundell
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guillaume de Lartigue
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Matthew R. Hayes
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mitchell A. Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Cheng Z, Liu B, Liu X. Circadian gene signatures in the progression of obesity based on machine learning and Mendelian randomization analysis. Front Nutr 2024; 11:1407265. [PMID: 39351493 PMCID: PMC11439728 DOI: 10.3389/fnut.2024.1407265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Objective Obesity, a global health concern, is associated with a spectrum of chronic diseases and cancers. Our research sheds light on the regulatory role of circadian genes in obesity progression, providing insight into the immune landscape of obese patients, and introducing new avenues for therapeutic interventions. Methods Expression files of multiple datasets were retrieved from the GEO database. By 80 machine-learning algorithm combinations and Mendelian randomization analysis, we discovered the key circadian genes contributing to and protecting against obesity. Subsequently, an immune infiltration analysis was conducted to examine the alterations in immune cell types and their abundance in the body and to investigate the relationships between circadian genes and immune cells. Furthermore, we delved into the molecular mechanisms of key genes implicated in obesity. Results Our study identified three key circadian genes (BHLHE40, PPP1CB, and CSNK1E) associated with obesity. BHLHE40 was found to promote obesity through various pathways, while PPP1CB and CSNK1E counteracted lipid metabolism disorders, and modulated cytokines, immune receptors, T cells, and monocytes. Conclusion In conclusion, the key circadian genes (BHLHE40, CSNK1E, and PPP1CB) may serve as novel biomarkers for understanding obesity pathogenesis and have significant correlations with infiltrating immune cells, thus providing potential new targets for obese prevention and treatment.
Collapse
Affiliation(s)
- Zhi’ang Cheng
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Binghong Liu
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xiaoyong Liu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of Ophthalmology, The Affiliated Shunde Hospital of Jinan University, Foshan, China
| |
Collapse
|
4
|
Vázquez-Lizarraga R, Mendoza-Viveros L, Cid-Castro C, Ruiz-Montoya S, Carreño-Vázquez E, Orozco-Solis R. Hypothalamic circuits and aging: keeping the circadian clock updated. Neural Regen Res 2024; 19:1919-1928. [PMID: 38227516 PMCID: PMC11040316 DOI: 10.4103/1673-5374.389624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/22/2023] [Accepted: 10/20/2023] [Indexed: 01/17/2024] Open
Abstract
Over the past century, age-related diseases, such as cancer, type-2 diabetes, obesity, and mental illness, have shown a significant increase, negatively impacting overall quality of life. Studies on aged animal models have unveiled a progressive discoordination at multiple regulatory levels, including transcriptional, translational, and post-translational processes, resulting from cellular stress and circadian derangements. The circadian clock emerges as a key regulator, sustaining physiological homeostasis and promoting healthy aging through timely molecular coordination of pivotal cellular processes, such as stem-cell function, cellular stress responses, and inter-tissue communication, which become disrupted during aging. Given the crucial role of hypothalamic circuits in regulating organismal physiology, metabolic control, sleep homeostasis, and circadian rhythms, and their dependence on these processes, strategies aimed at enhancing hypothalamic and circadian function, including pharmacological and non-pharmacological approaches, offer systemic benefits for healthy aging. Intranasal brain-directed drug administration represents a promising avenue for effectively targeting specific brain regions, like the hypothalamus, while reducing side effects associated with systemic drug delivery, thereby presenting new therapeutic possibilities for diverse age-related conditions.
Collapse
Affiliation(s)
| | - Lucia Mendoza-Viveros
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigacíon y de Estudios Avanzados (CIE-CINVESTAV), México City, México
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México UNAM, México City, México
| | - Carolina Cid-Castro
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigacíon y de Estudios Avanzados (CIE-CINVESTAV), México City, México
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México UNAM, México City, México
| | | | | | - Ricardo Orozco-Solis
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigacíon y de Estudios Avanzados (CIE-CINVESTAV), México City, México
| |
Collapse
|
5
|
McHill AW, Butler MP. Eating Around the Clock: Circadian Rhythms of Eating and Metabolism. Annu Rev Nutr 2024; 44:25-50. [PMID: 38848598 DOI: 10.1146/annurev-nutr-062122-014528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
The time of day that we eat is increasingly recognized as contributing as importantly to overall health as the amount or quality of the food we eat. The endogenous circadian clock has evolved to promote intake at optimal times when an organism is intended to be awake and active, but electric lights and abundant food allow eating around the clock with deleterious health outcomes. In this review, we highlight literature pertaining to the effects of food timing on health, beginning with animal models and then translation into human experiments. We emphasize the pitfalls and opportunities that technological advances bring in bettering understanding of eating behaviors and their association with health and disease. There is great promise for restricting the timing of food intake both in clinical interventions and in public health campaigns for improving health via nonpharmacological therapies.
Collapse
Affiliation(s)
- Andrew W McHill
- Sleep, Chronobiology, and Health Laboratory, School of Nursing, Oregon Health & Science University, Portland, Oregon, USA
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, USA
| | - Matthew P Butler
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA;
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
6
|
Curtis L, Piggins HD. Diverse genetic alteration dysregulates neuropeptide and intracellular signalling in the suprachiasmatic nuclei. Eur J Neurosci 2024; 60:3921-3945. [PMID: 38924215 DOI: 10.1111/ejn.16443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/12/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
In mammals, intrinsic 24 h or circadian rhythms are primarily generated by the suprachiasmatic nuclei (SCN). Rhythmic daily changes in the transcriptome and proteome of SCN cells are controlled by interlocking transcription-translation feedback loops (TTFLs) of core clock genes and their proteins. SCN cells function as autonomous circadian oscillators, which synchronize through intercellular neuropeptide signalling. Physiological and behavioural rhythms can be severely disrupted by genetic modification of a diverse range of genes and proteins in the SCN. With the advent of next generation sequencing, there is unprecedented information on the molecular profile of the SCN and how it is affected by genetically targeted alteration. However, whether the expression of some genes is more readily affected by genetic alteration of the SCN is unclear. Here, using publicly available datasets from recent RNA-seq assessments of the SCN from genetically altered and control mice, we evaluated whether there are commonalities in transcriptome dysregulation. This was completed for four different phases across the 24 h cycle and was augmented by Gene Ontology Molecular Function (GO:MF) and promoter analysis. Common differentially expressed genes (DEGs) and/or enriched GO:MF terms included signalling molecules, their receptors, and core clock components. Finally, examination of the JASPAR database indicated that E-box and CRE elements in the promoter regions of several commonly dysregulated genes. From this analysis, we identify differential expression of genes coding for molecules involved in SCN intra- and intercellular signalling as a potential cause of abnormal circadian rhythms.
Collapse
Affiliation(s)
- Lucy Curtis
- School of Biological Sciences, University of Bristol, Bristol, UK
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| | - Hugh D Piggins
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
7
|
Raza GS, Kaya Y, Stenbäck V, Sharma R, Sodum N, Mutt SJ, Gagnon DD, Tulppo M, Järvelin MR, Herzig KH, Mäkelä KA. Effect of Aerobic Exercise and Time-Restricted Feeding on Metabolic Markers and Circadian Rhythm in Mice Fed with the High-Fat Diet. Mol Nutr Food Res 2024; 68:e2300465. [PMID: 38389173 DOI: 10.1002/mnfr.202300465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/30/2023] [Indexed: 02/24/2024]
Abstract
SCOPE Diet and exercise are significant players in obesity and metabolic diseases. Time-restricted feeding (tRF) has been shown to improve metabolic responses by regulating circadian clocks but whether it acts synergically with exercise remains unknown. It is hypothesized that forced exercise alone or combined with tRF alleviates obesity and its metabolic complications. METHODS AND RESULTS Male C57bl6 mice are fed with high-fat or a control diet for 12 weeks either ad libitum or tRF for 10 h during their active period. High-fat diet (HFD)-fed mice are divided into exercise (treadmill for 1 h at 12 m min-1 alternate days for 9 weeks and 16 m min-1 daily for the following 3 weeks) and non-exercise groups. tRF and tRF-Ex significantly decreased body weight, food intake, and plasma lipids, and improved glucose tolerance. However, exercise reduced only body weight and plasma lipids. tRF and tRF-Ex significantly downregulated Fasn, Hmgcr, and Srebp1c, while exercise only Hmgcr. HFD feeding disrupted clock genes, but exercise, tRF, and tRF-Ex coordinated the circadian clock genes Bmal1, Per2, and Rev-Erbα in the liver, adipose tissue, and skeletal muscles. CONCLUSION HFD feeding disrupted clock genes in the peripheral organs while exercise, tRF, and their combination restored clock genes and improved metabolic consequences induced by high-fat diet feeding.
Collapse
Affiliation(s)
- Ghulam Shere Raza
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center, Faculty of Medicine, Biocenter of Oulu, University of Oulu, Aapistie 5, Oulu, 90220, Finland
| | - Yağmur Kaya
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Istanbul Kent University, Istanbul, 34406, Turkey
| | - Ville Stenbäck
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center, Faculty of Medicine, Biocenter of Oulu, University of Oulu, Aapistie 5, Oulu, 90220, Finland
| | - Ravikant Sharma
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center, Faculty of Medicine, Biocenter of Oulu, University of Oulu, Aapistie 5, Oulu, 90220, Finland
| | - Nalini Sodum
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center, Faculty of Medicine, Biocenter of Oulu, University of Oulu, Aapistie 5, Oulu, 90220, Finland
| | - Shivaprakash Jagalur Mutt
- Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, Uppsala, 75123, Sweden
| | - Dominique D Gagnon
- Faculty of Sports and Health Sciences, University of Jyväskylä, Seminaarinkatu 15, Jyväskylä, 40014, Finland
- Clinic for Sports and Exercise Medicine, Department of Sports and Exercise Medicine, Faculty of Medicine, University of Helsinki Mäkelänkatu, Helsinki, 00550, Finland
| | - Mikko Tulppo
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center, Faculty of Medicine, Biocenter of Oulu, University of Oulu, Aapistie 5, Oulu, 90220, Finland
| | - Marjo-Riitta Järvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, SW72AZ, UK
| | - Karl-Heinz Herzig
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center, Faculty of Medicine, Biocenter of Oulu, University of Oulu, Aapistie 5, Oulu, 90220, Finland
- Pediatric Gastroenterology and Metabolic Diseases, Pediatric Institute, Poznan University of Medical Sciences, Poznań, 60-572, Poland
| | - Kari A Mäkelä
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center, Faculty of Medicine, Biocenter of Oulu, University of Oulu, Aapistie 5, Oulu, 90220, Finland
| |
Collapse
|
8
|
Chen Y, Han Z, Zhang L, Gao C, Wei J, Yang X, Han Y, Li Y, Zhang C, Wei Y, Dong J, Xun W, Sun W, Zhang T, Zhang H, Chen J, Yuan P. TIMELESS promotes reprogramming of glucose metabolism in oral squamous cell carcinoma. J Transl Med 2024; 22:21. [PMID: 38178094 PMCID: PMC10768318 DOI: 10.1186/s12967-023-04791-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/09/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC), the predominant malignancy of the oral cavity, is characterized by high incidence and low survival rates. Emerging evidence suggests a link between circadian rhythm disruptions and cancer development. The circadian gene TIMELESS, known for its specific expression in various tumors, has not been extensively studied in the context of OSCC. This study aims to explore the influence of TIMELESS on OSCC, focusing on cell growth and metabolic alterations. METHODS We analyzed TIMELESS expression in OSCC using western blot, immunohistochemistry, qRT-PCR, and data from The Cancer Genome Atlas (TCGA) and the Cancer Cell Line Encyclopedia (CCLE). The role of TIMELESS in OSCC was examined through clone formation, MTS, cell cycle, and EdU assays, alongside subcutaneous tumor growth experiments in nude mice. We also assessed the metabolic impact of TIMELESS by measuring glucose uptake, lactate production, oxygen consumption, and medium pH, and investigated its effect on key metabolic proteins including silent information regulator 1 (SIRT1), hexokinase 2 (HK2), pyruvate kinase isozyme type M2 (PKM2), recombinant lactate dehydrogenase A (LDHA) and glucose transporter-1 (GLUT1). RESULTS Elevated TIMELESS expression in OSCC tissues and cell lines was observed, correlating with reduced patient survival. TIMELESS overexpression enhanced OSCC cell proliferation, increased glycolytic activity (glucose uptake and lactate production), and suppressed oxidative phosphorylation (evidenced by reduced oxygen consumption and altered pH levels). Conversely, TIMELESS knockdown inhibited these cellular and metabolic processes, an effect mirrored by manipulating SIRT1 levels. Additionally, SIRT1 was positively associated with TIMELESS expression. The expression of SIRT1, HK2, PKM2, LDHA and GLUT1 increased with the overexpression of TIMELESS levels and decreased with the knockdown of TIMELESS. CONCLUSION TIMELESS exacerbates OSCC progression by modulating cellular proliferation and metabolic pathways, specifically by enhancing glycolysis and reducing oxidative phosphorylation, largely mediated through the SIRT1 pathway. This highlights TIMELESS as a potential target for OSCC therapeutic strategies.
Collapse
Affiliation(s)
- Yafan Chen
- Department of Nuclear Medicine, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Zhengyang Han
- Department of Clinical Laboratory, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, 442008, Hubei, China
| | - Le Zhang
- Department of Interventional Radiology and Pain Treatment, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China
| | - Caihong Gao
- Xi'an Physical Education University, Xi'an, 710068, Shaanxi, China
| | - Jingyi Wei
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Xuyuan Yang
- School of Nursing and Rehabilitation, Xi'an Medical University, Xi'an, 710021, Shaanxi, China
| | - Yabing Han
- Medical College of Ankang University, Ankang, 725000, Shaanxi, China
| | - Yunbo Li
- Department of Nuclear Medicine, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Chunmei Zhang
- Department of Nuclear Medicine, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Yixin Wei
- Department of Nuclear Medicine, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Jiaqi Dong
- The Second Clinical Medical School, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Wenxing Xun
- Department of Stomatology, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Weifu Sun
- Department of Stomatology, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Taotao Zhang
- Department of Stomatology, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Hui Zhang
- Department of Ultrasound Diagnosis, Xi'an Children's Hospital, 69 West Park Lane, Xi'an, 710002, Shaanxi, China.
| | - Jingtao Chen
- Department of Stomatology, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Peng Yuan
- Department of Nuclear Medicine, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
9
|
Woodie LN, Melink LC, Alberto AJ, Burrows M, Fortin SM, Chan CC, Hayes MR, Lazar MA. Hindbrain REV-ERB nuclear receptors regulate sensitivity to diet-induced obesity and brown adipose tissue pathophysiology. Mol Metab 2024; 79:101861. [PMID: 38142970 PMCID: PMC10792761 DOI: 10.1016/j.molmet.2023.101861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023] Open
Abstract
OBJECTIVE The dorsal vagal complex (DVC) of the hindbrain is a major point of integration for central and peripheral signals that regulate a wide variety of metabolic functions to maintain energy balance. The REV-ERB nuclear receptors are important modulators of molecular metabolism, but their role in the DVC has yet to be established. METHODS Male REV-ERBα/β floxed mice received stereotaxic injections of a Cre expressing virus to the DVC to create the DVC REV-ERBα/β double knockout (DVC RDKO). Control littermates received stereotaxic injections to the DVC of a green fluorescent protein expressing virus. Animals were maintained on a normal chow diet or a 60% high-fat diet to observe the metabolic phenotype arising from DVC RDKO under healthy and metabolically stressed conditions. RESULTS DVC RDKO animals on high-fat diet exhibited increased weight gain compared to control animals maintained on the same diet. Increased weight gain in DVC RDKO animals was associated with decreased basal metabolic rate and dampened signature of brown adipose tissue activity. RDKO decreased gene expression of calcitonin receptor in the DVC and tyrosine hydroxylase in the brown adipose tissue. CONCLUSIONS These results suggest a previously unappreciated role of REV-ERB nuclear receptors in the DVC for maintaining energy balance and metabolic rate potentially through indirect sympathetic outflow to the brown adipose tissue.
Collapse
Affiliation(s)
- Lauren N Woodie
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lily C Melink
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ahren J Alberto
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michelle Burrows
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Samantha M Fortin
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Calvin C Chan
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew R Hayes
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Kong X, Meerlo P, Hut RA. Melatonin Does Not Affect the Stress-Induced Phase Shifts of Peripheral Clocks in Male Mice. Endocrinology 2023; 165:bqad183. [PMID: 38128120 PMCID: PMC11083644 DOI: 10.1210/endocr/bqad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 12/23/2023]
Abstract
Repeated or chronic stress can change the phase of peripheral circadian rhythms. Melatonin (Mel) is thought to be a circadian clock-controlled signal that might play a role in synchronizing peripheral rhythms, in addition to its direct suppressing effects on the stress axis. In this study we test whether Mel can reduce the social-defeat stress-induced phase shifts in peripheral rhythms, either by modulating circadian phase or by modulating the stress axis. Two experiments were performed with male Mel-deficient C57BL/6J mice carrying the circadian reporter gene construct (PER2::LUC). In the first experiment, mice received night-restricted (ZT11-21) Mel in their drinking water, resulting in physiological levels of plasma Mel peaking in the early dark phase. This treatment facilitated re-entrainment of the activity rhythm to a shifted light-dark cycle, but did not prevent the stress-induced (ZT21-22) reduction of activity during stress days. Also, this treatment did not attenuate the phase-delaying effects of stress in peripheral clocks in the pituitary, lung, and kidney. In a second experiment, pituitary, lung, and kidney collected from naive mice (ZT22-23), were treated with Mel, dexamethasone (Dex), or a combination of the two. Dex application affected PER2 rhythms in the pituitary, kidney, and lung by changing period, phase, or both. Administering Mel did not influence PER2 rhythms nor did it alleviate Dex-induced delays in PER2 rhythms in those tissues. We conclude that exogenous Mel is insufficient to affect peripheral PER2 rhythms and reduce stress effects on locomotor activity and phase changes in peripheral tissues.
Collapse
Affiliation(s)
- Xiangpan Kong
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747AG, the Netherlands
- School of Medicine, Hunan Normal University, Changsha 410013, PR China
| | - Peter Meerlo
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747AG, the Netherlands
| | - Roelof A Hut
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747AG, the Netherlands
| |
Collapse
|
11
|
Zhu K, Celwyn IJ, Guan D, Xiao Y, Wang X, Hu W, Jiang C, Cheng L, Casellas R, Lazar MA. An intrinsically disordered region controlling condensation of a circadian clock component and rhythmic transcription in the liver. Mol Cell 2023; 83:3457-3469.e7. [PMID: 37802023 PMCID: PMC10575687 DOI: 10.1016/j.molcel.2023.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/09/2023] [Accepted: 09/08/2023] [Indexed: 10/08/2023]
Abstract
Circadian gene transcription is fundamental to metabolic physiology. Here we report that the nuclear receptor REV-ERBα, a repressive component of the molecular clock, forms circadian condensates in the nuclei of mouse liver. These condensates are dictated by an intrinsically disordered region (IDR) located in the protein's hinge region which specifically concentrates nuclear receptor corepressor 1 (NCOR1) at the genome. IDR deletion diminishes the recruitment of NCOR1 and disrupts rhythmic gene transcription in vivo. REV-ERBα condensates are located at high-order transcriptional repressive hubs in the liver genome that are highly correlated with circadian gene repression. Deletion of the IDR disrupts transcriptional repressive hubs and diminishes silencing of target genes by REV-ERBα. This work demonstrates physiological circadian protein condensates containing REV-ERBα whose IDR is required for hub formation and the control of rhythmic gene expression.
Collapse
Affiliation(s)
- Kun Zhu
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Isaac J Celwyn
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Dongyin Guan
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yang Xiao
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Xiang Wang
- Laboratory of Lymphocyte Nuclear Biology, NIAMS, NIH, Bethesda, MD 20892, USA
| | - Wenxiang Hu
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Basic Research, Guangzhou Laboratory, Guangdong 510005, China
| | - Chunjie Jiang
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lan Cheng
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Rafael Casellas
- Laboratory of Lymphocyte Nuclear Biology, NIAMS, NIH, Bethesda, MD 20892, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Adlanmerini M, Lazar MA. The REV-ERB Nuclear Receptors: Timekeepers for the Core Clock Period and Metabolism. Endocrinology 2023; 164:bqad069. [PMID: 37149727 PMCID: PMC10413432 DOI: 10.1210/endocr/bqad069] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
REV-ERB nuclear receptors are potent transcriptional repressors that play an important role in the core mammalian molecular clock and metabolism. Deletion of both REV-ERBα and its largely redundant isoform REV-ERBβ in a murine tissue-specific manner have shed light on their specific functions in clock mechanisms and circadian metabolism. This review highlights recent findings that establish REV-ERBs as crucial circadian timekeepers in a variety of tissues, regulating overlapping and distinct processes that maintain normal physiology and protect from metabolic dysfunction.
Collapse
Affiliation(s)
- Marine Adlanmerini
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
13
|
Zečević K, Popović N, Vuksanović Božarić A, Vukmirović M, Rizzo M, Muzurović E. Timing Is Important-Management of Metabolic Syndrome According to the Circadian Rhythm. Biomedicines 2023; 11:biomedicines11041171. [PMID: 37189789 DOI: 10.3390/biomedicines11041171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/01/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Physiological processes occur in accordance with a rhythm regulated by the endogenous biological clock. This clock is programmed at the molecular level and synchronized with the daily light-dark cycle, as well as activities such as feeding, exercise, and social interactions. It consists of the core clock genes, Circadian Locomotor Output Cycles Protein Kaput (CLOCK) and Brain and Muscle Arnt-Like protein 1 (BMAL1), and their products, the period (PER) and cryptochrome (CRY) proteins, as well as an interlocked feedback loop which includes reverse-strand avian erythroblastic leukemia (ERBA) oncogene receptors (REV-ERBs) and retinoic acid-related orphan receptors (RORs). These genes are involved in the regulation of metabolic pathways and hormone release. Therefore, circadian rhythm disruption leads to development of metabolic syndrome (MetS). MetS refers to a cluster of risk factors (RFs), which are not only associated with the development of cardiovascular (CV) disease (CVD), but also with increased all-cause mortality. In this review, we consider the importance of the circadian rhythm in the regulation of metabolic processes, the significance of circadian misalignment in the pathogenesis of MetS, and the management of MetS in relation to the cellular molecular clock.
Collapse
Affiliation(s)
- Ksenija Zečević
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
| | - Nataša Popović
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
| | | | - Mihailo Vukmirović
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Cardiology Clinic, Clinical Center of Montenegro, 81000 Podgorica, Montenegro
| | - Manfredi Rizzo
- Promise Department, School of Medicine, University of Palermo, 90127 Palermo, Italy
| | - Emir Muzurović
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Department of Internal Medicine, Endocrinology Section, Clinical Center of Montenegro, 81000 Podgorica, Montenegro
| |
Collapse
|
14
|
Miao L, Batty KR, Jackson AN, Pieno HA, Rhoades MW, Kojima S. Genetic and environmental perturbations alter the rhythmic expression pattern of a circadian long non-coding RNA, Per2AS, in mouse liver. F1000Res 2022; 11:1073. [PMID: 36250003 PMCID: PMC9551389 DOI: 10.12688/f1000research.125628.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Long non-coding RNAs (lncRNAs) play a wide variety of biological roles without encoding a protein. Although the functions of many lncRNAs have been uncovered in recent years, the regulatory mechanism of lncRNA expression is still poorly understood despite that the expression patterns of lncRNAs are much more specific compared to mRNAs. Here, we investigated the rhythmic expression of Per2AS, a novel lncRNA that regulates circadian rhythms. Given that Per2AS expression is antiphasic to Period2 ( Per2), a core circadian clock gene, and transcribed from the antisense strand of Per2, we hypothesized that the rhythmic Per2AS expression is driven either by its own promoter or by the rhythmic Per2 transcription via transcriptional interference. Methods: We leveraged existing circadian RNA-seq datasets and analyzed the expression patterns of Per2AS and Per2 in response to the genetic or environmental disruption of the circadian rhythm in mouse liver. We tested our hypotheses by comparing the changes in the expression patterns of Per2AS and Per2. Conclusions: We found that, in some cases, Per2AS expression is independently controlled by other circadian transcription factors. In other cases, the pattern of expression change is consistent with both transcriptional interference and independent regulation hypotheses. Although additional experiments will be necessary to distinguish these possibilities, findings from this work contribute to a deeper understanding of the mechanism of how the expression of lncRNA is regulated.
Collapse
Affiliation(s)
- Lin Miao
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA,Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Kyle R. Batty
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA,Division of Systems Biology, Academy of Integrated Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ayana N. Jackson
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA,Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Heather A. Pieno
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Maisy W. Rhoades
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Shihoko Kojima
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA,Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA,Division of Systems Biology, Academy of Integrated Science, Virginia Tech, Blacksburg, VA, 24061, USA,
| |
Collapse
|
15
|
Petersen MC, Gallop MR, Flores Ramos S, Zarrinpar A, Broussard JL, Chondronikola M, Chaix A, Klein S. Complex physiology and clinical implications of time-restricted eating. Physiol Rev 2022; 102:1991-2034. [PMID: 35834774 PMCID: PMC9423781 DOI: 10.1152/physrev.00006.2022] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/16/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022] Open
Abstract
Time-restricted eating (TRE) is a dietary intervention that limits food consumption to a specific time window each day. The effect of TRE on body weight and physiological functions has been extensively studied in rodent models, which have shown considerable therapeutic effects of TRE and important interactions among time of eating, circadian biology, and metabolic homeostasis. In contrast, it is difficult to make firm conclusions regarding the effect of TRE in people because of the heterogeneity in results, TRE regimens, and study populations. In this review, we 1) provide a background of the history of meal consumption in people and the normal physiology of eating and fasting; 2) discuss the interaction between circadian molecular metabolism and TRE; 3) integrate the results of preclinical and clinical studies that evaluated the effects of TRE on body weight and physiological functions; 4) summarize other time-related dietary interventions that have been studied in people; and 4) identify current gaps in knowledge and provide a framework for future research directions.
Collapse
Affiliation(s)
- Max C Petersen
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri
| | - Molly R Gallop
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Stephany Flores Ramos
- Division of Gastroenterology, University of California, San Diego, La Jolla, California
| | - Amir Zarrinpar
- Division of Gastroenterology, University of California, San Diego, La Jolla, California
- Department of Veterans Affairs San Diego Health System, La Jolla, California
| | - Josiane L Broussard
- Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado
| | - Maria Chondronikola
- Departments of Nutrition and Radiology, University of California, Davis, California
- Departments of Nutrition and Dietetics, Harokopio University of Athens, Kallithea, Greece
| | - Amandine Chaix
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
16
|
LaPierre MP, Lawler K, Godbersen S, Farooqi IS, Stoffel M. MicroRNA-7 regulates melanocortin circuits involved in mammalian energy homeostasis. Nat Commun 2022; 13:5733. [PMID: 36175420 PMCID: PMC9522793 DOI: 10.1038/s41467-022-33367-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/14/2022] [Indexed: 11/09/2022] Open
Abstract
MicroRNAs (miRNAs) modulate physiological responses by repressing the expression of gene networks. We found that global deletion of microRNA-7 (miR-7), the most enriched miRNA in the hypothalamus, causes obesity in mice. Targeted deletion of miR-7 in Single-minded homolog 1 (Sim1) neurons, a critical component of the hypothalamic melanocortin pathway, causes hyperphagia, obesity and increased linear growth, mirroring Sim1 and Melanocortin-4 receptor (MC4R) haplo-insufficiency in mice and humans. We identified Snca (α-Synuclein) and Igsf8 (Immunoglobulin Superfamily Member 8) as miR-7 target genes that act in Sim1 neurons to regulate body weight and endocrine axes. In humans, MIR-7-1 is located in the last intron of HNRNPK, whose promoter drives the expression of both genes. Genetic variants at the HNRNPK locus that reduce its expression are associated with increased height and truncal fat mass. These findings demonstrate that miR-7 suppresses gene networks involved in the hypothalamic melanocortin pathway to regulate mammalian energy homeostasis.
Collapse
Affiliation(s)
- Mary P LaPierre
- Institute of Molecular Health Sciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Katherine Lawler
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Svenja Godbersen
- Institute of Molecular Health Sciences, ETH Zürich, 8093, Zürich, Switzerland
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zürich, 8093, Zürich, Switzerland.
- Medical Faculty, University of Zürich, 8091, Zürich, Switzerland.
| |
Collapse
|
17
|
Rhythmic transcription of Bmal1 stabilizes the circadian timekeeping system in mammals. Nat Commun 2022; 13:4652. [PMID: 35999195 PMCID: PMC9399252 DOI: 10.1038/s41467-022-32326-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 07/21/2022] [Indexed: 12/14/2022] Open
Abstract
In mammals, the circadian clock consists of transcriptional and translational feedback loops through DNA cis-elements such as E-box and RRE. The E-box-mediated core feedback loop is interlocked with the RRE-mediated feedback loop, but biological significance of the RRE-mediated loop has been elusive. In this study, we established mutant cells and mice deficient for rhythmic transcription of Bmal1 gene by deleting its upstream RRE elements and hence disrupted the RRE-mediated feedback loop. We observed apparently normal circadian rhythms in the mutant cells and mice, but a combination of mathematical modeling and experiments revealed that the circadian period and amplitude of the mutants were more susceptible to disturbance of CRY1 protein rhythm. Our findings demonstrate that the RRE-mediated feedback regulation of Bmal1 underpins the E-box-mediated rhythm in cooperation with CRY1-dependent posttranslational regulation of BMAL1 protein, thereby conferring the perturbation-resistant oscillation and chronologically-organized output of the circadian clock.
Collapse
|
18
|
The Circadian Regulation of Nutrient Metabolism in Diet-Induced Obesity and Metabolic Disease. Nutrients 2022; 14:nu14153136. [PMID: 35956312 PMCID: PMC9370226 DOI: 10.3390/nu14153136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity and other metabolic diseases are major public health issues that are particularly prevalent in industrialized societies where circadian rhythmicity is disturbed by shift work, jet lag, and/or social obligations. In mammals, daylight entrains the hypothalamic suprachiasmatic nucleus (SCN) to a ≈24 h cycle by initiating a transcription/translation feedback loop (TTFL) of molecular clock genes. The downstream impacts of the TTFL on clock-controlled genes allow the SCN to set the rhythm for the majority of physiological, metabolic, and behavioral processes. The TTFL, however, is ubiquitous and oscillates in tissues throughout the body. Tissues outside of the SCN are entrained to other signals, such as fed/fasting state, rather than light input. This system requires a considerable amount of biological flexibility as it functions to maintain homeostasis across varying conditions contained within a 24 h day. In the face of either circadian disruption (e.g., jet lag and shift work) or an obesity-induced decrease in metabolic flexibility, this finely tuned mechanism breaks down. Indeed, both human and rodent studies have found that obesity and metabolic disease develop when endogenous circadian pacing is at odds with the external cues. In the following review, we will delve into what is known on the circadian rhythmicity of nutrient metabolism and discuss obesity as a circadian disease.
Collapse
|
19
|
Circadian clock, diurnal glucose metabolic rhythm, and dawn phenomenon. Trends Neurosci 2022; 45:471-482. [PMID: 35466006 PMCID: PMC9117496 DOI: 10.1016/j.tins.2022.03.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/15/2022] [Accepted: 03/26/2022] [Indexed: 01/28/2023]
Abstract
The circadian clock provides cue-independent anticipatory signals for diurnal rhythms of baseline glucose levels and glucose tolerance. The central circadian clock is located in the hypothalamic suprachiasmatic nucleus (SCN), which comprises primarily GABAergic neurons. The SCN clock regulates physiological diurnal rhythms of endogenous glucose production (EGP) and hepatic insulin sensitivity through neurohumoral mechanisms. Disruption of the molecular circadian clock is associated with the extended dawn phenomenon (DP) in type 2 diabetes (T2D), referring to hyperglycemia in the early morning without nocturnal hypoglycemia. The DP affects nearly half of patients with diabetes, with poorly defined etiology and a lack of targeted therapy. Here we review neural and secreted factors in physiological diurnal rhythms of glucose metabolism and their pathological implications for the DP.
Collapse
|
20
|
Abstract
Circadian rhythms are approximately 24-hour cycles of variation in physiological processes, gene expression, and behavior. They result from the interplay of internal biological clocks with daily environmental rhythms, including light/dark and feeding/fasting. Note that 24-hour rhythms of liver metabolic processes have been known for almost 100 years. Modern studies reveal that, like metabolism, hepatic gene expression is highly rhythmic. Genetic or environmental changes can disrupt the circadian rhythms of the liver, leading to metabolic disorders and hepatocellular carcinoma. In this review, we summarize the current understanding of mechanisms regulating rhythmic gene expression in the liver, highlighting the roles of transcription factors that comprise the core clock molecular as well as noncanonical regulators. We emphasize the plasticity of circadian rhythms in the liver as it responds to multiple inputs from the external and internal environments as well as the potential of circadian medicine to impact liver-related diseases.
Collapse
Affiliation(s)
- Dongyin Guan
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX,Correspondence: Dongyin Guan, PhD (); Mitchell A. Lazar, MD, PhD ()
| | - Mitchell A. Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA,Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA,Correspondence: Dongyin Guan, PhD (); Mitchell A. Lazar, MD, PhD ()
| |
Collapse
|
21
|
Chronoradiobiology of Breast Cancer: The Time Is Now to Link Circadian Rhythm and Radiation Biology. Int J Mol Sci 2022; 23:ijms23031331. [PMID: 35163264 PMCID: PMC8836288 DOI: 10.3390/ijms23031331] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 12/13/2022] Open
Abstract
Circadian disruption has been linked to cancer development, progression, and radiation response. Clinical evidence to date shows that circadian genetic variation and time of treatment affect radiation response and toxicity for women with breast cancer. At the molecular level, there is interplay between circadian clock regulators such as PER1, which mediates ATM and p53-mediated cell cycle gating and apoptosis. These molecular alterations may govern aggressive cancer phenotypes, outcomes, and radiation response. Exploiting the various circadian clock mechanisms may enhance the therapeutic index of radiation by decreasing toxicity, increasing disease control, and improving outcomes. We will review the body’s natural circadian rhythms and clock gene-regulation while exploring preclinical and clinical evidence that implicates chronobiological disruptions in the etiology of breast cancer. We will discuss radiobiological principles and the circadian regulation of DNA damage responses. Lastly, we will present potential rational therapeutic approaches that target circadian pathways to improve outcomes in breast cancer. Understanding the implications of optimal timing in cancer treatment and exploring ways to entrain circadian biology with light, diet, and chronobiological agents like melatonin may provide an avenue for enhancing the therapeutic index of radiotherapy.
Collapse
|