1
|
Salazar A, Mitri S. Can a microbial community become an evolutionary individual? Curr Opin Microbiol 2025; 84:102596. [PMID: 39983253 DOI: 10.1016/j.mib.2025.102596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/23/2025]
Abstract
Microbial communities provide crucial services for human well-being, driving an interest in designing and controlling them towards optimised or novel functions. Unfortunately, promising strategies such as community breeding - sometimes referred to as 'directed evolution' or 'artificial community selection' - have shown limited success. A key issue is that microbial communities do not reliably exhibit heritable variation, limiting their capacity for adaptive evolution. In other words, microbial communities are not evolutionary individuals. Here, we provide an overview of the literature on evolutionary transitions in individuality and, with insights from paradigmatic organisms, build a multidimensional space in which the individuality of a multispecies community is characterised by three ecological traits: positive interactions, functional integration, and entrenchment. We then place microbial communities within this individuality space, explore how they can be directed toward increased individuality, and discuss how this perspective can help improve our approach to community breeding.
Collapse
Affiliation(s)
- Afra Salazar
- Department of Fundamental Microbiology, University of Lausanne, Lausanne 1015, Switzerland
| | - Sara Mitri
- Department of Fundamental Microbiology, University of Lausanne, Lausanne 1015, Switzerland.
| |
Collapse
|
2
|
Zhang Y, Bian Z, Wang F, Peng Y, Xiao W, Zhang Q. In-situ synthesis of FeS nanoparticles enhances Sulfamethoxazole degradation via accelerated electron transfer in anaerobic bacterial communities. WATER RESEARCH 2025; 273:123025. [PMID: 39721503 DOI: 10.1016/j.watres.2024.123025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/22/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
The impact of nanominerals on microbial electron transfer and energy metabolism strategies during pollutant degradation remains uncertain. This study used in situ synthesized FeS nanoparticles (FeS NPs) to increase the degradation efficiency of SMX by anaerobic bacterial communities from 25.80 % to 47.60 %. The proportion of intracellular degradation by bacteria in the community significantly increased by 23.25 times, which mainly facilitated by NADH-dependent reductases and iron-sulfur proteins. Microbial network analysis and electrochemical analysis indicated that the in-situ synthesis of FeS NPs altered the interactions among different microbial species, enabling Petrimonas to transfer electrons directly to Lysinibacillus more effectively. This adjustment led to an increase in the activity of the electron transport system by 1.2 times, an increase in the electron supply capacity by 2.8 times, and a decrease in the electrochemical impedance (EIS) to 3.21 Ω. Moreover, the coupling of electron transfer pathways and protease transport channels significantly increased Na+/K+-ATPase by 14.72 times. Inhibitor experiments and molecular dynamics (MD) results showed that FeS NPs interact with Nqo1 in the cell membrane via electrostatic force at -28.573 kcal/mol, forming a unique electron conduit with ubiquinone (CoQ). This study provides new insights into the role of in situ nanominerals in electron transfer between different microorganisms, aim to enhance the antibiotic wastewater treatment efficiency in actual anaerobic processes.
Collapse
Affiliation(s)
- Yaru Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Zhaoyong Bian
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Feng Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yiyin Peng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Wenyu Xiao
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Qiang Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Beijing ENFI Environmental Protection Co., Ltd., Beijing, 100038, China
| |
Collapse
|
3
|
Yusim EJ, Zarecki R, Medina S, Carmi G, Mousa S, Hassanin M, Ronen Z, Wu Z, Jiang J, Baransi-Karkaby K, Avisar D, Sabbah I, Yanuka-Golub K, Freilich S. Integrated use of electrochemical anaerobic reactors and genomic based modeling for characterizing methanogenic activity in microbial communities exposed to BTEX contamination. ENVIRONMENTAL RESEARCH 2025; 268:120691. [PMID: 39746623 DOI: 10.1016/j.envres.2024.120691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/03/2024] [Accepted: 12/22/2024] [Indexed: 01/04/2025]
Abstract
In soil polluted with benzene, toluene, ethylbenzene, and xylenes (BTEX), oxygen is rapidly depleted by aerobic respiration, creating a redox gradient across the plume. Under anaerobic conditions, BTEX biodegradation is then coupled with fermentation and methanogenesis. This study aimed to characterize this multi-step process, focusing on the interactions and functional roles of key microbial groups involved. A reactor system, comprising an Anaerobic Bioreactor (AB) and two Microbial Electrolysis Cell (MEC) chambers, designed to represent different spatial zones along the redox gradient, operated for 160 days with intermittent exposure to BTEX. The functional differentiation of each chamber was reflected by the gas emission profiles: 50%, 12% and 84% methane in the AB, anode and cathode chambers, respectively. The taxonomic profiling, assessed using 16S amplicon sequencing, led to the identification chamber-characteristic taxonomic groups. To translate the taxonomic shift into a functional shift, community dynamics was transformed into a simulative platform based on genome scale metabolic models constructed for 21 species that capture both key functionalities and taxonomies. Representatives include BTEX degraders, fermenters, iron reducers acetoclastic and hydrogenotrophic methanogens. Functionality was inferred according to the identification of the functional gene bamA as a biomarker for anaerobic BTEX degradation, taxonomy and literature support. Comparison of the predicted performances of the reactor-specific communities confirmed that the simulation successfully captured the experimentally recorded functional variation. Variations in the predicted exchange profiles between chambers capture reported and novel competitive and cooperative interactions between methanogens and non-methanogens. Examples include the exchange profiles of hypoxanthine (HYXN) and acetate between fermenters and methanogens, suggesting mechanisms underlying the supportive/repressive effect of taxonomic divergence on methanogenesis. Hence, the platform represents a pioneering attempt to capture the full spectrum of community activity in methanogenic hydrocarbon biodegradation while supporting the future design of optimization strategies.
Collapse
Affiliation(s)
- Evgenia Jenny Yusim
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel; Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel; The Water Research Center, The Porter School of Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 66978, Israel.
| | - Raphy Zarecki
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel
| | - Shlomit Medina
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel
| | - Gon Carmi
- Bioinformatics Unit, Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization (ARO) - Volcani Institute, Ramat Yishay, Israel
| | - Sari Mousa
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel
| | - Mahdi Hassanin
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel
| | - Zeev Ronen
- Department of Environmental Hydrology and Microbiology, The Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Sede-Boqer 8499000, Israel
| | - Zhiming Wu
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Katie Baransi-Karkaby
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel; School of Environmental Sciences, University of Haifa, Haifa 3498838, Israel
| | - Dror Avisar
- The Water Research Center, The Porter School of Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 66978, Israel
| | - Isam Sabbah
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel; Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel
| | - Keren Yanuka-Golub
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel
| | - Shiri Freilich
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel.
| |
Collapse
|
4
|
Li YZ, Zhang WQ, Hu PF, Yang QQ, Molnár I, Xu P, Zhang BB. Harnessing microbial co-culture to increase the production of known secondary metabolites. Nat Prod Rep 2025. [PMID: 39967461 DOI: 10.1039/d4np00052h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Covering: 2019 to 2024Secondary metabolites (SMs) are naturally occurring defense or signaling molecules that are also utilized as human and animal drugs, crop protection agents, and fine chemicals. Currently, SMs are primarily produced in monoculture settings, devoid of the intricate microbial interactions found in natural environments. Monoculture may lead to the silencing of gene clusters, requiring various genetic or bioprocess strategies to activate the biosynthesis of the corresponding metabolites. Less considered is the effect of monoculture on the efficiency of the production of important, known SMs during microbial fermentations. Co-culturing aims to mimic the complexity of natural microbial habitats, thus may increase the titer, the rate and/or the yield of fermentations. This review summarizes the progress in utilizing co-culture to promote the synthesis of known SMs by describing the types of various microbial co-cultures, listing the mechanisms for enhancing the biosynthesis of SMs, and navigating the challenges and strategies for applying such an approach in the biotechnology industries.
Collapse
Affiliation(s)
- Yu-Zhen Li
- Guangdong Provincial Key Laboratory of Marine Biology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, P.R. China.
| | - Wan-Qi Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, P.R. China.
| | - Peng-Fei Hu
- Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 320003, Israel
| | - Qiong-Qiong Yang
- Guangdong Provincial Key Laboratory of Marine Biology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, P.R. China.
- Chaoshan Branch of State Key Laboratory for Esophageal Cancer Prevention and Treatment, Shantou 515063, Guangdong, P.R. China
| | - István Molnár
- VTT Technical Research Centre of Finland, FI 02150, Espoo, Finland.
| | - Peng Xu
- Department of Chemical Engineering, Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion-Israel Institute of Technology, Shantou 515063, Guangdong, P.R. China.
| | - Bo-Bo Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, P.R. China.
- Chaoshan Branch of State Key Laboratory for Esophageal Cancer Prevention and Treatment, Shantou 515063, Guangdong, P.R. China
| |
Collapse
|
5
|
Siguenza N, Bailey S, Sadegi M, Gootin H, Tiu M, Price JD, Ramer-Tait A, Zarrinpar A. Gut Competition Dynamics of Live Bacterial Therapeutics Are Shaped by Microbiome Complexity, Diet, and Therapeutic Transgenes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634159. [PMID: 39896492 PMCID: PMC11785071 DOI: 10.1101/2025.01.21.634159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Competitive exclusion is conventionally believed to prevent the establishment of a secondary strain of the same bacterial species in the gut microbiome, raising concerns for the deployment of live bacterial therapeutics (LBTs), especially if the bacterial chassis is a strain native to the gut. In this study, we investigated factors influencing competition dynamics in the murine gut using isogenic native Escherichia coli strains. We found that competition outcomes are context-dependent, modulated by microbiome complexity, LBT transgene expression, intestinal inflammation, and host diet. Furthermore, we demonstrated that native LBTs can establish long-term engraftment in the gut alongside a parental strain, with transgene-associated fitness effects influencing competition. We identified various interventions, including strategic dosing and dietary modulation, that significantly enhanced LBT colonization levels by 2 to 3 orders of magnitude. These insights provide a framework for optimizing LBT engraftment and efficacy, supporting their potential translation for human therapeutic applications.
Collapse
Affiliation(s)
- Nicole Siguenza
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Sharyl Bailey
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA
| | - Mohammad Sadegi
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA
| | - Hanna Gootin
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA
| | - Maria Tiu
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA
| | - Jeffrey D. Price
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Amanda Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Amir Zarrinpar
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA
- Division of Gastroenterology, Jennifer Moreno Department of Veterans Affairs Medical Center, La Jolla, CA, USA
- The Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Synthetic Biology Institute, University of California San Diego, La Jolla, CA, USA
- Institute of Diabetes and Metabolic Health, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
6
|
Meacock OJ, Mitri S. Environment-Organism Feedbacks Drive Changes in Ecological Interactions. Ecol Lett 2025; 28:e70027. [PMID: 39737705 DOI: 10.1111/ele.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 01/01/2025]
Abstract
Ecological interactions are foundational to our understanding of community composition and function. While interactions are known to change depending on the environmental context, it has generally been assumed that external environmental factors are responsible for driving these dependencies. Here, we derive a theoretical framework which instead focuses on how intrinsic environmental changes caused by the organisms themselves alter interaction values. Our central concept is the 'instantaneous interaction', which captures the feedback between the current environmental state and organismal growth, generating spatiotemporal context-dependencies as organisms modify their environment over time and/or space. We use small microbial communities to illustrate how this framework can predict time-dependencies in a toxin degradation system, and relate time- and spatial-dependencies in crossfeeding communities. By re-centring the relationship between organisms and their environment, our framework predicts the variations in interactions wherever intrinsic, organism-driven environmental change dominates over external drivers.
Collapse
Affiliation(s)
- Oliver J Meacock
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Sara Mitri
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Aida H, Ying BW. Data-driven discovery of the interplay between genetic and environmental factors in bacterial growth. Commun Biol 2024; 7:1691. [PMID: 39719455 DOI: 10.1038/s42003-024-07347-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/02/2024] [Indexed: 12/26/2024] Open
Abstract
A complex interplay of genetic and environmental factors influences bacterial growth. Understanding these interactions is crucial for insights into complex living systems. This study employs a data-driven approach to uncover the principles governing bacterial growth changes due to genetic and environmental variation. A pilot survey is conducted across 115 Escherichia coli strains and 135 synthetic media comprising 45 chemicals, generating 13,944 growth profiles. Machine learning analyzes this dataset to predict the chemicals' priorities for bacterial growth. The primary gene-chemical networks are structured hierarchically, with glucose playing a pivotal role. Offset in bacterial growth changes is frequently observed across 1,445,840 combinations of strains and media, with its magnitude correlating to individual alterations in strains or media. This counterbalance in the gene-chemical interplay is supposed to be a general feature beneficial for bacterial population growth.
Collapse
Affiliation(s)
- Honoka Aida
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Bei-Wen Ying
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
8
|
Rain-Franco A, Le Moigne A, Serra Moncadas L, Silva MOD, Andrei AS, Pernthaler J. Dispersal shapes compositional and functional diversity in aquatic microbial communities. mSystems 2024; 9:e0140324. [PMID: 39555909 DOI: 10.1128/msystems.01403-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024] Open
Abstract
Segregation and mixing shape the structure and functioning of aquatic microbial communities, but their respective roles are challenging to disentangle in field studies. We explored the hypothesis that functional differences and beta diversity among stochastically assembled communities would increase in the absence of dispersal. Contrariwise, we expected biotic selection during homogenizing dispersal to reduce beta and gamma diversity as well as functional variability. This was experimentally addressed by examining the compositional and functional changes of 20 freshwater bacterial assemblages maintained at identical conditions over seven growth cycles for 34 days and subjected to two consecutive dispersal regimes. Initial dispersal limitation generated high beta diversity and led to the repeated emergence of community types that were dominated by particular taxa. Compositional stability and evenness of the community types varied over successive growth cycles, reflecting differences in functional properties. Carbon use efficiency increased during cultivation, with some communities of unique composition outperforming the replicate community types. Homogenizing dispersal led to high compositional similarity and reduced gamma diversity. While a neutral and a competition-based (Elo-rating) model together largely explained community assembly, a pseudomonad disproportionally dominated across communities, possibly due to interaction-related genomic traits. In conclusion, microbial assemblages stochastically generated by dispersal limitation can be gradually "refined" into distinct community types by subsequent deterministic processes. Segregation of communities represented an insurance mechanism for highly productive but competitively weak microbial taxa that were excluded during community coalescence. IMPORTANCE We experimentally assessed the compositional and functional responses of freshwater bacterial assemblages exposed to two consecutive dispersal-related events (dispersal limitation and homogenizing dispersal) under identical growth conditions. While segregation led to a decreased local diversity, high beta diversity sustained regional diversity and functional variability. In contrast, homogenizing dispersal reduced the species pool and functional variability of the metacommunity. Our findings highlight the role of dispersal in regulating both diversity and functional variability of aquatic microbial metacommunities, thereby providing crucial insight to predict changes in ecosystem functioning.
Collapse
Affiliation(s)
| | - Alizée Le Moigne
- Limnological Station, University of Zurich, Zurich, Switzerland
- Institut National de la Recherche Scientifique (INRS), Centre Eau, Terre et Environnement, Québec, Canada
| | | | | | | | | |
Collapse
|
9
|
Alonso-Vásquez T, Giovannini M, Garbini GL, Dziurzynski M, Bacci G, Coppini E, Fibbi D, Fondi M. An ecological and stochastic perspective on persisters resuscitation. Comput Struct Biotechnol J 2024; 27:1-9. [PMID: 39760074 PMCID: PMC11697298 DOI: 10.1016/j.csbj.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025] Open
Abstract
Resistance, tolerance, and persistence to antibiotics have mainly been studied at the level of a single microbial isolate. However, in recent years it has become evident that microbial interactions play a role in determining the success of antibiotic treatments, in particular by influencing the occurrence of persistence and tolerance within a population. Additionally, the challenge of resuscitation (the capability of a population to revive after antibiotic exposure) and pathogen clearance are strongly linked to the small size of the surviving population and to the presence of fluctuations in cell counts. Indeed, while large population dynamics can be considered deterministic, small populations are influenced by stochastic processes, making their behaviour less predictable. Our study argues that microbe-microbe interactions within a community affect the mode, tempo, and success of persister resuscitation and that these are further influenced by noise. To this aim, we developed a theoretical model of a three-member microbial community and analysed the role of cell-to-cell interactions on pathogen clearance, using both deterministic and stochastic simulations. Our findings highlight the importance of ecological interactions and population size fluctuations (and hence the underlying cellular mechanisms) in determining the resilience of microbial populations following antibiotic treatment.
Collapse
Affiliation(s)
- Tania Alonso-Vásquez
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019, Italy
| | - Michele Giovannini
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019, Italy
| | - Gian Luigi Garbini
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019, Italy
| | - Mikolaj Dziurzynski
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019, Italy
| | - Giovanni Bacci
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019, Italy
| | - Ester Coppini
- G.I.D.A. SpA, Via Baciacavallo 36, Prato, 59100, Italy
| | | | - Marco Fondi
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019, Italy
| |
Collapse
|
10
|
Shi L, Cai Y, Zhang Y, Liu J, Zhang M, Chen F, Shi X, Yu Y, Li P, Wu QL. Contrasting but interconnecting metatranscriptome between large buoyant and small suspended particles during cyanobacterial blooming in the large shallow eutrophic Taihu Lake. WATER RESEARCH 2024; 267:122539. [PMID: 39378731 DOI: 10.1016/j.watres.2024.122539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
Large cyanobacterial colonies as visible particles floating on the water surface provide different microbial niches from small particles suspended in the water column in eutrophic freshwaters. However, functional potential differences among microbes colonizing on these contrasting particles are not well understood. Here, the metatranscriptome of microbes inhabiting these two kinds of particles during cyanobacterial bloom (dominated by Microcystis spp.) was analyzed and compared. Community compositions of active bacteria associated with small suspended particles (SA, aggregates dominated by small cyanobacteria colonies, other algae and detritus, etc.) were much more diverse than those associated with large buoyant cyanobacterial colonies (LA), but functional diversity was not significantly different between them. Transcripts related to phosphorus and nitrogen metabolism from Proteobacteria, and respiration from Bacteroidetes were enriched in LA, whereas many more pathways such as photosynthesis from Cyanobacteria, cofactors, and protein metabolism from all dominant phyla were enriched in SA. Nevertheless, many transcripts were significantly correlated within and between LA and SA. These results indicated interconnection of bacteria between LA and SA. Moreover, many transcripts in SA were significantly correlated with transcripts from cyanobacterial phycobilisome in LA, indicating that bacterial metabolism in SA may influence cyanobacterial biomass in LA. Thus, the prediction of cyanobacterial blooms by bacterial activity in SA may be possible when there is no visible bloom on the water surface.
Collapse
Affiliation(s)
- Limei Shi
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; University of Chinese Academy of Sciences, Nanjing, 211135, China.
| | - Yuanfeng Cai
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yuqing Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Jiayin Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Min Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Feizhou Chen
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; Sino-Danish Center for Science and Education, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoli Shi
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Yang Yu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Pengfu Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qinglong L Wu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Sino-Danish Center for Science and Education, University of Chinese Academy of Sciences, Beijing, China; Fuxianhu Research Station for Plateau Deep Lake Ecosystem, Chinese Academy of Sciences, Chengjiang, China.
| |
Collapse
|
11
|
Padmanabha P, Nicoletti G, Bernardi D, Suweis S, Azaele S, Rinaldo A, Maritan A. Landscape and environmental heterogeneity support coexistence in competitive metacommunities. Proc Natl Acad Sci U S A 2024; 121:e2410932121. [PMID: 39436657 PMCID: PMC11536131 DOI: 10.1073/pnas.2410932121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024] Open
Abstract
Metapopulation models have been instrumental in quantifying the ecological impact of landscape structure on the survival of a focal species. However, extensions to multiple species with arbitrary dispersal networks often rely on phenomenological assumptions that inevitably limit their scope. Here, we propose a multilayer network model of competitive dispersing metacommunities to investigate how spatially structured environments impact species coexistence and ecosystem stability. We introduce the concept of landscape-mediated fitness, quantifying how fit a species is in a given environment in terms of colonization and extinction. We show that, when all environments are equivalent, one species excludes all the others-except the marginal case where species fitnesses are in exact trade-off. However, we prove that stable coexistence becomes possible in sufficiently heterogeneous environments by introducing spatial disorder in the model and solving it exactly in the mean-field limit. Crucially, coexistence is supported by the spontaneous localization of species through the emergence of ecological niches. We show that our results remain qualitatively valid in arbitrary dispersal networks, where topological features can improve species coexistence by buffering competition. Finally, we employ our model to study how correlated heterogeneity promotes spatial ecological patterns in realistic terrestrial and riverine landscapes. Our work provides a framework to understand how landscape structure enables coexistence in metacommunities by acting as the substrate for ecological interactions.
Collapse
Affiliation(s)
- Prajwal Padmanabha
- Department of Physics and Astronomy “Galileo Galilei,” University of Padova, Padova35131, Italy
- Department of Fundamental Microbiology, University of Lausanne, Lausanne1015, Switzerland
| | - Giorgio Nicoletti
- Laboratory of Ecohydrology, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne1015, Switzerland
| | - Davide Bernardi
- Department of Physics and Astronomy “Galileo Galilei,” University of Padova, Padova35131, Italy
- National Biodiversity Future Center, Palermo90133, Italy
| | - Samir Suweis
- Department of Physics and Astronomy “Galileo Galilei,” University of Padova, Padova35131, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padova35131, Italy
| | - Sandro Azaele
- Department of Physics and Astronomy “Galileo Galilei,” University of Padova, Padova35131, Italy
- National Biodiversity Future Center, Palermo90133, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padova35131, Italy
| | - Andrea Rinaldo
- Laboratory of Ecohydrology, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne1015, Switzerland
- Department of Civil, Environmental and Architectural Engineering, University of Padova, Padova35131, Italy
| | - Amos Maritan
- Department of Physics and Astronomy “Galileo Galilei,” University of Padova, Padova35131, Italy
- National Biodiversity Future Center, Palermo90133, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padova35131, Italy
| |
Collapse
|
12
|
Lyng M, Þórisdóttir B, Sveinsdóttir SH, Hansen ML, Jelsbak L, Maróti G, Kovács ÁT. Taxonomy of Pseudomonas spp. determines interactions with Bacillus subtilis. mSystems 2024; 9:e0021224. [PMID: 39254334 PMCID: PMC11494997 DOI: 10.1128/msystems.00212-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024] Open
Abstract
Bacilli and pseudomonads are among the most well-studied microorganisms commonly found in soil and frequently co-isolated. Isolates from these two genera are frequently used as plant beneficial microorganisms; therefore, their interaction in the plant rhizosphere is relevant for agricultural applications. Despite this, no systematic approach has been employed to assess the coexistence of members from these genera. Here, we screened 720 fluorescent soil isolates for their effects on Bacillus subtilis pellicle formation in two types of media and found a predictor for interaction outcome in Pseudomonas taxonomy. Interactions were context-dependent, and both medium composition and culture conditions strongly influenced interactions. Negative interactions were associated with Pseudomonas capeferrum, Pseudomonas entomophila, and Pseudomonas protegens, and 2,4-diacetylphloroglucinol was confirmed as a strong (but not exclusive) inhibitor of B. subtilis. Non-inhibiting strains were closely related to Pseudomonas trivialis and Pseudomonas lini. Using such a non-inhibiting isolate, Pseudomonas P9_31, which increased B. subtilis pellicle formation demonstrated that the two species were spatially segregated in cocultures. Our study is the first one to propose an overall negative outcome from pairwise interactions between B. subtilis and fluorescent pseudomonads; hence, cocultures comprising members from these groups are likely to require additional microorganisms for coexistence. IMPORTANCE There is a strong interest in the microbial ecology field to predict interaction among microorganisms, whether two microbial isolates will promote each other's growth or compete for resources. Numerous studies have been performed based on surveying the available literature or testing phylogenetically diverse sets of species in synthetic communities. Here, a high throughput screening has been performed using 720 Pseudomonas isolates, and their impact on the biofilm formation of Bacillus subtilis was tested. The aim was to determine whether a majority of Pseudomonas will promote or inhibit the biofilms of B. subtilis in the co-cultures. This study reports that Pseudomonas taxonomy is a good predictor of interaction outcome, and only a minority of Pseudomonas isolates promote Bacillus biofilm establishment.
Collapse
Affiliation(s)
- Mark Lyng
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Birta Þórisdóttir
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sigrún H. Sveinsdóttir
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Morten L. Hansen
- Microbiome Interactions and Engineering, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lars Jelsbak
- Microbiome Interactions and Engineering, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Center, ELKH, Szeged, Hungary
| | - Ákos T. Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| |
Collapse
|
13
|
Miguel Trabajo T, Guex I, Dubey M, Sarton-Lohéac E, Todorov H, Richard X, Mazza C, van der Meer JR. Inferring bacterial interspecific interactions from microcolony growth expansion. MICROLIFE 2024; 5:uqae020. [PMID: 39524022 PMCID: PMC11549556 DOI: 10.1093/femsml/uqae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 08/19/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Bacterial species interactions significantly shape growth and behavior in communities, determining the emergence of community functions. Typically, these interactions are studied through bulk population measurements, overlooking the role of cell-to-cell variability and spatial context. This study uses real-time surface growth measurements of thousands of sparsely positioned microcolonies to investigate interactions and kinetic variations in monocultures and cocultures of Pseudomonas putida and P. veronii under substrate competition (succinate) or substrate independence (d-mannitol and putrescine). In monoculture, microcolonies exhibited expected substrate-dependent expansion rates, but individual colony sizes were affected by founder cell density, spatial positioning, growth rates, and lag times. In coculture, substrate competition favored P. putida, but unexpectedly, reduced the maximum growth rates of both species. In contrast, 10% of P. veronii microcolonies under competition grew larger than expected, likely due to founder cell phenotypic variation and stochastic spatial positioning. These effects were alleviated under substrate independence. A linear relationship between founder cell ratios and final colony area ratios in local neighborhoods (6.5-65 µm radius) was observed in coculture, with its slope reflecting interaction type and strength. Measured slopes in the P. putida to P. veronii biomass ratio under competition were one-third reduced compared to kinetic predictions using a cell-agent growth model, which exometabolite analysis and simulations suggested may be due to metabolite cross-feeding or inhibitory compound production. This indicates additional factors beyond inherent monoculture growth kinetics driving spatial interactions. Overall, the study demonstrates how microcolony growth experiments offer valuable insights into bacterial interactions, from local to community-level dynamics.
Collapse
Affiliation(s)
- Tania Miguel Trabajo
- Department of Fundamental Microbiology, University of Lausanne, Batiment Biophore, Quartier UNIL-Sorge, 1015 Lausanne, Switzerland
| | - Isaline Guex
- Department of Fundamental Microbiology, University of Lausanne, Batiment Biophore, Quartier UNIL-Sorge, 1015 Lausanne, Switzerland
- Department of Mathematics, University of Fribourg, 1700 Fribourg, Switzerland
| | - Manupriyam Dubey
- Department of Fundamental Microbiology, University of Lausanne, Batiment Biophore, Quartier UNIL-Sorge, 1015 Lausanne, Switzerland
| | - Elvire Sarton-Lohéac
- Department of Fundamental Microbiology, University of Lausanne, Batiment Biophore, Quartier UNIL-Sorge, 1015 Lausanne, Switzerland
| | - Helena Todorov
- Department of Fundamental Microbiology, University of Lausanne, Batiment Biophore, Quartier UNIL-Sorge, 1015 Lausanne, Switzerland
| | - Xavier Richard
- Department of Mathematics, University of Fribourg, 1700 Fribourg, Switzerland
| | - Christian Mazza
- Department of Mathematics, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jan Roelof van der Meer
- Department of Fundamental Microbiology, University of Lausanne, Batiment Biophore, Quartier UNIL-Sorge, 1015 Lausanne, Switzerland
| |
Collapse
|
14
|
Nien TS, Chan TH, Li YY, Liu TS, Shiau YJ, Ho MY. Two cyanobacterial species exhibit stress responses when grown together in visible light or far-red light. mSphere 2024; 9:e0025124. [PMID: 39120135 PMCID: PMC11423583 DOI: 10.1128/msphere.00251-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Although most cyanobacteria grow in visible light (VL; λ = 400-700 nm), some cyanobacteria can also use far-red light (FRL; λ = 700-800 nm) for oxygenic photosynthesis by performing far-red light photoacclimation. These two types of cyanobacteria can be found in the same environment. However, how they respond to each other remains unknown. Here, we reveal that coculture stresses FRL-using Chlorogloeopsis fritschii PCC 9212 and VL-using Synechocystis sp. PCC 6803. No significant growth difference was found in Synechocystis sp. PCC 6803 between the coculture and the monoculture. Conversely, the growth of Chlorogloeopsis fritschii PCC 9212 was suppressed in VL under coculture. According to transcriptomic analysis, Chlorogloeopsis fritschii PCC 9212 in coculture shows low transcript levels of metabolic activities and high transcript levels of ion transporters, with the differences being more noticeable in VL than in FRL. The transcript levels of stress responses in coculture were likewise higher than in monoculture in Synechocystis sp. PCC 6803 under FRL. The low transcript level of metabolic activities in coculture or the inhibition of cyanobacterial growth indicates a possible negative interaction between these two cyanobacterial strains.IMPORTANCEThe interaction between two cyanobacterial species is the primary focus of this study. One species harvests visible light, while the other can harvest far-red and visible light. Prior research on cyanobacteria interaction concentrated on its interactions with algal, coral, and fungal species. Interactions between cyanobacterial species were, nevertheless, rarely discussed. Thus, we characterized the interaction between two cyanobacterial species, one capable of photosynthesis using far-red light and the other not. Through experimental and bioinformatic approaches, we demonstrate that when one cyanobacterium thrives under optimal light conditions, it stresses the remaining cyanobacterial species. We contribute to an ecological understanding of these two kinds of cyanobacteria distribution patterns. Cyanobacteria that utilize far-red light probably disperse in environments with limited visible light to avoid competition with other cyanobacteria. From a biotechnological standpoint, this study suggests that the simultaneous cultivation of two cyanobacterial species in large-scale cultivation facilities may reduce the overall biomass yield.
Collapse
Affiliation(s)
- Ting-Shuo Nien
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ting-Hsuan Chan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Ying-Yang Li
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Ting-So Liu
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yo-Jin Shiau
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Ming-Yang Ho
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
15
|
Gopalakrishnappa C, Li Z, Kuehn S. Environmental modulators of algae-bacteria interactions at scale. Cell Syst 2024; 15:838-853.e13. [PMID: 39236710 PMCID: PMC11412779 DOI: 10.1016/j.cels.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/29/2023] [Accepted: 08/07/2024] [Indexed: 09/07/2024]
Abstract
Interactions between photosynthetic and heterotrophic microbes play a key role in global primary production. Understanding phototroph-heterotroph interactions remains challenging because these microbes reside in chemically complex environments. Here, we leverage a massively parallel droplet microfluidic platform that enables us to interrogate interactions between photosynthetic algae and heterotrophic bacteria in >100,000 communities across ∼525 environmental conditions with varying pH, carbon availability, and phosphorus availability. By developing a statistical framework to dissect interactions in this complex dataset, we reveal that the dependence of algae-bacteria interactions on nutrient availability is strongly modulated by pH and buffering capacity. Furthermore, we show that the chemical identity of the available organic carbon source controls how pH, buffering capacity, and nutrient availability modulate algae-bacteria interactions. Our study reveals the previously underappreciated role of pH in modulating phototroph-heterotroph interactions and provides a framework for thinking about interactions between phototrophs and heterotrophs in more natural contexts.
Collapse
Affiliation(s)
| | - Zeqian Li
- Department of Physics, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for the Physics of Evolving Systems, The University of Chicago, Chicago, IL 60637, USA; Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
| | - Seppe Kuehn
- Center for the Physics of Evolving Systems, The University of Chicago, Chicago, IL 60637, USA; Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA; National Institute for Theory and Mathematics in Biology, Northwestern University and The University of Chicago, Chicago, IL 60637, USA; Center for Living Systems, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
16
|
Peng X, Wang S, Wang M, Feng K, He Q, Yang X, Hou W, Li F, Zhao Y, Hu B, Zou X, Deng Y. Metabolic interdependencies in thermophilic communities are revealed using co-occurrence and complementarity networks. Nat Commun 2024; 15:8166. [PMID: 39289365 PMCID: PMC11408653 DOI: 10.1038/s41467-024-52532-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
Microbial communities exhibit intricate interactions underpinned by metabolic dependencies. To elucidate these dependencies, we present a workflow utilizing random matrix theory on metagenome-assembled genomes to construct co-occurrence and metabolic complementarity networks. We apply this approach to a temperature gradient hot spring, unraveling the interplay between thermal stress and metabolic cooperation. Our analysis reveals an increase in the frequency of metabolic interactions with rising temperatures. Amino acids, coenzyme A derivatives, and carbohydrates emerge as key exchange metabolites, forming the foundation for syntrophic dependencies, in which commensalistic interactions take a greater proportion than mutualistic ones. These metabolic exchanges are most prevalent between phylogenetically distant species, especially archaea-bacteria collaborations, as a crucial adaptation to harsh environments. Furthermore, we identify a significant positive correlation between basal metabolite exchange and genome size disparity, potentially signifying a means for streamlined genomes to leverage cooperation with metabolically richer partners. This phenomenon is also confirmed by another composting system which has a similar wide range of temperature fluctuations. Our workflow provides a feasible way to decipher the metabolic complementarity mechanisms underlying microbial interactions, and our findings suggested environmental stress regulates the cooperative strategies of thermophiles, while these dependencies have been potentially hardwired into their genomes during co-evolutions.
Collapse
Affiliation(s)
- Xi Peng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Shang Wang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Miaoxiao Wang
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Department of Environmental Microbiology, Eawag, Dübendorf, Switzerland
| | - Kai Feng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Qing He
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Xingsheng Yang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Weiguo Hou
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
| | - Fangru Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
| | - Yuxiang Zhao
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Baolan Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China
| | - Xiao Zou
- Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, China
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
17
|
Xia L, Chen M, Li G, An T. Can photocatalysis inhibit interspecies bacterial cooperation to quench the formation of robust complex bacterial biofilms in water environments? WATER RESEARCH 2024; 262:122137. [PMID: 39059198 DOI: 10.1016/j.watres.2024.122137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Bacterial biofilms pose significant a public health risk as an environmental reservoir for opportunistic aquatic bacterial pathogens. Understanding the interspecies roles of complex bacterial biofilms under different stimuli and regulatory mechanisms of stress responses is the key to controlling their dissemination. Herein, two-species mixture (TSM) biofilms (Staphylococcus aureus and Pseudomonas aeruginosa) were constructed in a flowthrough reactor. Compared with the single-species biofilms, the TSM biofilm had higher growth activity to reach maturity faster, forming a staggered community structure. Moreover, the TSM biofilm exhibited greatly improved resistance to different antibiotics (16-128 times higher), especially to those that act on protein synthesis and cell membrane integrity, when compared to single planktonic microorganisms. In the presence of stimuli, photocatalysis effectively inactivated the TSM biofilm within 10 h, a 4-fold shorter inactivation time compared to UVC irradiation. In addition, photocatalysis effectively depleted the extracellular polymers of the TSM biofilm and inhibited secretion of their interspecies quorum sensing signaling molecule autoinducer-2 (AI-2). However, the expression of AI-2 induced related virulence factors, and biofilm growth-related genes were initially up-regulated 3 - 10 fold for the TSM biofilm within the first 2 - 4 h of photocatalysis, followed by significant down-regulation. Furthermore, the addition of the AI-2 precursor 4,5-dihydroxy-2,3-pentanedione effectively delayed the photocatalytic inactivation efficiency of the TSM biofilm compared to the control. These results suggest that photocatalysis can effectively inactivate biofilms by inhibiting interspecies cooperation by quenching AI-2 in the TSM biofilm. This work sheds light on controlling biofilms in public health engineering systems.
Collapse
Affiliation(s)
- Longji Xia
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Min Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
18
|
Batsch M, Guex I, Todorov H, Heiman CM, Vacheron J, Vorholt JA, Keel C, van der Meer JR. Fragmented micro-growth habitats present opportunities for alternative competitive outcomes. Nat Commun 2024; 15:7591. [PMID: 39217178 PMCID: PMC11365936 DOI: 10.1038/s41467-024-51944-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Bacteria in nature often thrive in fragmented environments, like soil pores, plant roots or plant leaves, leading to smaller isolated habitats, shared with fewer species. This spatial fragmentation can significantly influence bacterial interactions, affecting overall community diversity. To investigate this, we contrast paired bacterial growth in tiny picoliter droplets (1-3 cells per 35 pL up to 3-8 cells per species in 268 pL) with larger, uniform liquid cultures (about 2 million cells per 140 µl). We test four interaction scenarios using different bacterial strains: substrate competition, substrate independence, growth inhibition, and cell killing. In fragmented environments, interaction outcomes are more variable and sometimes even reverse compared to larger uniform cultures. Both experiments and simulations show that these differences stem mostly from variation in initial cell population growth phenotypes and their sizes. These effects are most significant with the smallest starting cell populations and lessen as population size increases. Simulations suggest that slower-growing species might survive competition by increasing growth variability. Our findings reveal how microhabitat fragmentation promotes diverse bacterial interaction outcomes, contributing to greater species diversity under competitive conditions.
Collapse
Affiliation(s)
- Maxime Batsch
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Isaline Guex
- Department of Mathematics, University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Helena Todorov
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Clara M Heiman
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Jordan Vacheron
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Julia A Vorholt
- Institute for Microbiology, Swiss Federal Institute of Technology (ETH Zürich), CH-8049, Zürich, Switzerland
| | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Jan Roelof van der Meer
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
19
|
Sperfeld M, Narváez-Barragán DA, Malitsky S, Frydman V, Yuda L, Rocha J, Segev E. Algal methylated compounds shorten the lag phase of Phaeobacter inhibens bacteria. Nat Microbiol 2024; 9:2006-2021. [PMID: 38969820 PMCID: PMC11306105 DOI: 10.1038/s41564-024-01742-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/22/2024] [Indexed: 07/07/2024]
Abstract
The lag phase is key in resuming bacterial growth, but it remains underexplored particularly in environmental bacteria. Here we use transcriptomics and 13C-labelled metabolomics to show that the lag phase of the model marine bacterium Phaeobacter inhibens is shortened by methylated compounds produced by the microalgal partner, Emiliania huxleyi. Methylated compounds are abundantly produced and released by microalgae, and we show that their methyl groups can be collected by bacteria and assimilated through the methionine cycle. Our findings underscore the significance of methyl groups as a limiting factor during the lag phase and highlight the adjustability of this growth phase. In addition, we show that methylated compounds, typical of photosynthetic organisms, prompt diverse reductions in lag times in bacteria associated with algae and plants, potentially favouring early growth in some bacteria. These findings suggest ways to accelerate bacterial growth and underscore the significance of studying bacteria within an environmental context.
Collapse
Affiliation(s)
- Martin Sperfeld
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Institute of Microbiology, ETH, Zurich, Switzerland
| | | | - Sergey Malitsky
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Veronica Frydman
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Lilach Yuda
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jorge Rocha
- Agricultura en Zonas Áridas, Centro de Investigaciones Biológicas del Noroeste, La Paz, Mexico
| | - Einat Segev
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
20
|
Laurich JR, Lash E, O'Brien AM, Pogoutse O, Frederickson ME. Community interactions among microbes give rise to host-microbiome mutualisms in an aquatic plant. mBio 2024; 15:e0097224. [PMID: 38904411 PMCID: PMC11324027 DOI: 10.1128/mbio.00972-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
Microbiomes often benefit plants, conferring resistance to pathogens, improving stress tolerance, or promoting plant growth. As potential plant mutualists, however, microbiomes are not a single organism but a community of species with complex interactions among microbial taxa and between microbes and their shared host. The nature of ecological interactions among microbes in the microbiome can have important consequences for the net effects of microbiomes on hosts. Here, we compared the effects of individual microbial strains and 10-strain synthetic communities on microbial productivity and host growth using the common duckweed Lemna minor and a synthetic, simplified version of its native microbiome. Except for Pseudomonas protegens, which was a mutualist when tested alone, all of the single strains we tested were commensals on hosts, benefiting from plant presence but not increasing host growth relative to uninoculated controls. However, 10-strain synthetic microbial communities increased both microbial productivity and duckweed growth more than the average single-strain inoculation and uninoculated controls, meaning that host-microbiome mutualisms can emerge from community interactions among microbes on hosts. The effects of community inoculation were sub-additive, suggesting at least some competition among microbes in the duckweed microbiome. We also investigated the relationship between L. minor fitness and that of its microbes, providing some of the first empirical estimates of broad fitness alignment between plants and members of their microbiomes; hosts grew faster with more productive microbes or microbiomes. IMPORTANCE There is currently substantial interest in engineering synthetic microbiomes for health or agricultural applications. One key question is how multi-strain microbial communities differ from single microbial strains in their productivity and effects on hosts. We tested 20 single bacterial strains and 2 distinct 10-strain synthetic communities on plant hosts and found that 10-strain communities led to faster host growth and greater microbial productivity than the average, but not the best, single strain. Furthermore, the microbial strains or communities that achieved the greatest cell densities were also the most beneficial to their hosts, showing that both specific single strains and multi-strain synthetic communities can engage in high-quality mutualisms with their hosts. Our results suggest that ~5% of single strains, as well as multi-strain synthetic communities comprised largely of commensal microbes, can benefit hosts and result in effective host-microbe mutualisms.
Collapse
Affiliation(s)
- Jason R. Laurich
- Department of Ecology
& Evolutionary Biology, University of
Toronto, Toronto,
Ontario, Canada
| | - Emma Lash
- Department of Ecology
& Evolutionary Biology, University of
Toronto, Toronto,
Ontario, Canada
| | - Anna M. O'Brien
- Department of Ecology
& Evolutionary Biology, University of
Toronto, Toronto,
Ontario, Canada
- Department of
Molecular, Cellular, and Biomedical Sciences, University of New
Hampshire, Durham,
New Hampshire, USA
| | - Oxana Pogoutse
- Department of Ecology
& Evolutionary Biology, University of
Toronto, Toronto,
Ontario, Canada
| | - Megan E. Frederickson
- Department of Ecology
& Evolutionary Biology, University of
Toronto, Toronto,
Ontario, Canada
| |
Collapse
|
21
|
Bittleston LS. Connecting microbial community assembly and function. Curr Opin Microbiol 2024; 80:102512. [PMID: 39018765 DOI: 10.1016/j.mib.2024.102512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 07/19/2024]
Abstract
Microbial ecology is moving away from purely descriptive analyses to experiments that can determine the underlying mechanisms driving changes in community assembly and function. More species-rich microbial communities generally have higher functional capabilities depending on if there is positive selection of certain species or complementarity among different species. When building synthetic communities or laboratory enrichment cultures, there are specific choices that can increase the number of species able to coexist. Higher resource complexity or the addition of physical niches are two of the many factors leading to greater biodiversity and associated increases in functional capabilities. We can use principles from community ecology and knowledge of microbial physiology to generate improved microbiomes for use in medicine, agriculture, or environmental management.
Collapse
|
22
|
Meroz N, Livny T, Friedman J. Quantifying microbial interactions: concepts, caveats, and applications. Curr Opin Microbiol 2024; 80:102511. [PMID: 39002491 DOI: 10.1016/j.mib.2024.102511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024]
Abstract
Microbial communities are fundamental to every ecosystem on Earth and hold great potential for biotechnological applications. However, their complex nature hampers our ability to study and understand them. A common strategy to tackle this complexity is to abstract the community into a network of interactions between its members - a phenomenological description that captures the overall effects of various chemical and physical mechanisms that underpin these relationships. This approach has proven useful for numerous applications in microbial ecology, including predicting community dynamics and stability and understanding community assembly and evolution. However, care is required in quantifying and interpreting interactions. Here, we clarify the concept of an interaction and discuss when interaction measurements are useful despite their context-dependent nature. Furthermore, we categorize different approaches for quantifying interactions, highlighting the research objectives each approach is best suited for.
Collapse
Affiliation(s)
- Nittay Meroz
- Institute of Environmental Sciences, Hebrew University, Rehovot
| | - Tal Livny
- Institute of Environmental Sciences, Hebrew University, Rehovot; Department of Immunology and Regenerative Biology, Weizmann Institute, Rehovot
| | | |
Collapse
|
23
|
Babajanyan SG, Garushyants SK, Wolf YI, Koonin EV. Microbial diversity and ecological complexity emerging from environmental variation and horizontal gene transfer in a simple mathematical model. BMC Biol 2024; 22:148. [PMID: 38965531 PMCID: PMC11225191 DOI: 10.1186/s12915-024-01937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/13/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Microbiomes are generally characterized by high diversity of coexisting microbial species and strains, and microbiome composition typically remains stable across a broad range of conditions. However, under fixed conditions, microbial ecology conforms with the exclusion principle under which two populations competing for the same resource within the same niche cannot coexist because the less fit population inevitably goes extinct. Therefore, the long-term persistence of microbiome diversity calls for an explanation. RESULTS To explore the conditions for stabilization of microbial diversity, we developed a simple mathematical model consisting of two competing populations that could exchange a single gene allele via horizontal gene transfer (HGT). We found that, although in a fixed environment, with unbiased HGT, the system obeyed the exclusion principle, in an oscillating environment, within large regions of the phase space bounded by the rates of reproduction and HGT, the two populations coexist. Moreover, depending on the parameter combination, all three major types of symbiosis were obtained, namely, pure competition, host-parasite relationship, and mutualism. In each of these regimes, certain parameter combinations provided for synergy, that is, a greater total abundance of both populations compared to the abundance of the winning population in the fixed environment. CONCLUSIONS The results of this modeling study show that basic phenomena that are universal in microbial communities, namely, environmental variation and HGT, provide for stabilization and persistence of microbial diversity, and emergence of ecological complexity.
Collapse
Affiliation(s)
- Sanasar G Babajanyan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, 20894, MD, USA.
| | - Sofya K Garushyants
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, 20894, MD, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, 20894, MD, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, 20894, MD, USA.
| |
Collapse
|
24
|
Mattei M, Arenas A. Exploring spatial segregation induced by competition avoidance as driving mechanism for emergent coexistence in microbial communities. Phys Rev E 2024; 110:014404. [PMID: 39160961 DOI: 10.1103/physreve.110.014404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/14/2024] [Indexed: 08/21/2024]
Abstract
This study investigates the role of spatial segregation, prompted by competition avoidance, as a key mechanism for emergent coexistence within microbial communities. Recognizing these communities as complex adaptive systems, we challenge the sufficiency of mean-field pairwise interaction models, and we consider the impact of spatial dynamics. We developed an individual-based spatial simulation depicting bacterial movement through a pattern of random walks influenced by competition avoidance, leading to the formation of spatially segregated clusters. This model was integrated with a Lotka-Volterra metapopulation framework focused on competitive interactions. Our findings reveal that spatial segregation combined with low diffusion rates and high compositional heterogeneity among patches can lead to emergent coexistence in microbial communities. This reveals a novel mechanism underpinning the formation of stable, coexisting microbe clusters, which is nonetheless incapable of promoting coexistence in the case of isolated pairs of species. This study underscores the importance of considering spatial factors in understanding the dynamics of microbial ecosystems.
Collapse
|
25
|
Jin R, Song J, Liu C, Lin R, Liang D, Aweya JJ, Weng W, Zhu L, Shang J, Yang S. Synthetic microbial communities: Novel strategies to enhance the quality of traditional fermented foods. Compr Rev Food Sci Food Saf 2024; 23:e13388. [PMID: 38865218 DOI: 10.1111/1541-4337.13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/27/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024]
Abstract
Consumers are attracted to traditional fermented foods due to their unique flavor and nutritional value. However, the traditional fermentation technique can no longer accommodate the requirements of the food industry. Traditional fermented foods produce hazardous compounds, off-odor, and anti-nutritional factors, reducing product stability. The microbial system complexity of traditional fermented foods resulting from the open fermentation process has made it challenging to regulate these problems by modifying microbial behaviors. Synthetic microbial communities (SynComs) have been shown to simplify complex microbial communities and allow for the targeted design of microbial communities, which has been applied in processing traditional fermented foods. Herein, we describe the theoretical information of SynComs, particularly microbial physiological processes and their interactions. This paper discusses current approaches to creating SynComs, including designing, building, testing, and learning, with typical applications and fundamental techniques. Based on various traditional fermented food innovation demands, the potential and application of SynComs in enhancing the quality of traditional fermented foods are highlighted. SynComs showed superior performance in regulating the quality of traditional fermented foods using the interaction of core microorganisms to reduce the hazardous compounds of traditional fermented foods and improve flavor. Additionally, we presented the current status and future perspectives of SynComs for improving the quality of traditional fermented foods.
Collapse
Affiliation(s)
- Ritian Jin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China
| | - Jing Song
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China
| | - Chang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China
| | - Rong Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China
| | - Duo Liang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China
| | - Jude Juventus Aweya
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China
| | - Wuyin Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Longji Zhu
- Institute of Urban Environment, Chinese Academy of Science, Xiamen, China
| | - Jiaqi Shang
- Key Laboratory of Bionic Engineering, College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Shen Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China
| |
Collapse
|
26
|
Teixeira-Santos R, Azevedo A, Romeu MJ, Amador CI, Gomes LC, Whitehead KA, Sjollema J, Burmølle M, Mergulhão FJ. The use of biomimetic surfaces to reduce single- and dual-species biofilms of Escherichia coli and Pseudomonas putida. Biofilm 2024; 7:100185. [PMID: 38444517 PMCID: PMC10912049 DOI: 10.1016/j.bioflm.2024.100185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/26/2024] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
The ability of bacteria to adhere to and form biofilms on food contact surfaces poses serious challenges, as these may lead to the cross-contamination of food products. Biomimetic topographic surface modifications have been explored to enhance the antifouling performance of materials. In this study, the topography of two plant leaves, Brassica oleracea var. botrytis (cauliflower, CF) and Brassica oleracea capitate (white cabbage, WC), was replicated through wax moulding, and their antibiofilm potential was tested against single- and dual-species biofilms of Escherichia coli and Pseudomonas putida. Biomimetic surfaces exhibited higher roughness values (SaWC = 4.0 ± 1.0 μm and SaCF = 3.3 ± 1.0 μm) than the flat control (SaF = 0.6 ± 0.2 μm), whilst the CF surface demonstrated a lower interfacial free energy (ΔGiwi) than the WC surface (-100.08 mJ m-2 and -71.98 mJ m-2, respectively). The CF and WC surfaces had similar antibiofilm effects against single-species biofilms, achieving cell reductions of approximately 50% and 60% for E. coli and P. putida, respectively, compared to the control. Additionally, the biomimetic surfaces led to reductions of up to 60% in biovolume, 45% in thickness, and 60% in the surface coverage of single-species biofilms. For dual-species biofilms, only the E. coli strain growing on the WC surface exhibited a significant decrease in the cell count. However, confocal microscopy analysis revealed a 60% reduction in the total biovolume and surface coverage of mixed biofilms developed on both biomimetic surfaces. Furthermore, dual-species biofilms were mainly composed of P. putida, which reduced E. coli growth. Altogether, these results demonstrate that the surface properties of CF and WC biomimetic surfaces have the potential for reducing biofilm formation.
Collapse
Affiliation(s)
- Rita Teixeira-Santos
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Ana Azevedo
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Maria J. Romeu
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Cristina I. Amador
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Luciana C. Gomes
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Kathryn A. Whitehead
- Microbiology at Interfaces, Manchester Metropolitan University, Manchester, M15GD, UK
| | - Jelmer Sjollema
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mette Burmølle
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Filipe J. Mergulhão
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| |
Collapse
|
27
|
Algavi YM, Borenstein E. Relative dispersion ratios following fecal microbiota transplant elucidate principles governing microbial migration dynamics. Nat Commun 2024; 15:4447. [PMID: 38789466 PMCID: PMC11126695 DOI: 10.1038/s41467-024-48717-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Microorganisms frequently migrate from one ecosystem to another. Yet, despite the potential importance of this process in modulating the environment and the microbial ecosystem, our understanding of the fundamental forces that govern microbial dispersion is still lacking. Moreover, while theoretical models and in-vitro experiments have highlighted the contribution of species interactions to community assembly, identifying such interactions in vivo, specifically in communities as complex as the human gut, remains challenging. To address this gap, here we introduce a robust and rigorous computational framework, termed Relative Dispersion Ratio (RDR) analysis, and leverage data from well-characterized fecal microbiota transplant trials, to rigorously pinpoint dependencies between taxa during the colonization of human gastrointestinal tract. Our analysis identifies numerous pairwise dependencies between co-colonizing microbes during migration between gastrointestinal environments. We further demonstrate that identified dependencies agree with previously reported findings from in-vitro experiments and population-wide distribution patterns. Finally, we explore metabolic dependencies between these taxa and characterize the functional properties that facilitate effective dispersion. Collectively, our findings provide insights into the principles and determinants of community dynamics following ecological translocation, informing potential opportunities for precise community design.
Collapse
Affiliation(s)
- Yadid M Algavi
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Elhanan Borenstein
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel.
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel.
- Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
28
|
Song T, Gupta S, Sorokin Y, Frenkel O, Cytryn E, Friedman J. A Burkholderia cenocepacia-like environmental isolate strongly inhibits the plant fungal pathogen Zymoseptoria tritici. Appl Environ Microbiol 2024; 90:e0222223. [PMID: 38624199 PMCID: PMC11107150 DOI: 10.1128/aem.02222-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/20/2024] [Indexed: 04/17/2024] Open
Abstract
Fungal phytopathogens cause significant reductions in agricultural yields annually, and overusing chemical fungicides for their control leads to environmental pollution and the emergence of resistant pathogens. Exploring natural isolates with strong antagonistic effects against pathogens can improve our understanding of their ecology and develop new treatments for the future. We isolated and characterized a novel bacterial strain associated with the species Burkholderia cenocepacia, termed APO9, which strongly inhibits Zymoseptoria tritici, a commercially important pathogenic fungus causing Septoria tritici blotch in wheat. Additionally, this strain exhibits inhibitory activity against four other phytopathogens. We found that physical contact plays a crucial role for APO9's antagonistic capacity. Genome sequencing of APO9 and biosynthetic gene cluster (BGC) analysis identified nine classes of BGCs and three types of secretion systems (types II, III, and IV), which may be involved in the inhibition of Z. tritici and other pathogens. To identify genes driving APO9's inhibitory activity, we screened a library containing 1,602 transposon mutants and identified five genes whose inactivation reduced inhibition efficiency. One such gene encodes for a diaminopimelate decarboxylase located in a terpenoid biosynthesis gene cluster. Phylogenetic analysis revealed that while some of these genes are also found across the Burkholderia genus, as well as in other Betaproteobacteria, the combination of these genes is unique to the Burkholderia cepacia complex. These findings suggest that the inhibitory capacity of APO9 is complex and not limited to a single mechanism, and may play a role in the interaction between various Burkholderia species and various phytopathogens within diverse plant ecosystems. IMPORTANCE The detrimental effects of fungal pathogens on crop yields are substantial. The overuse of chemical fungicides contributes not only to environmental pollution but also to the emergence of resistant pathogens. Investigating natural isolates with strong antagonistic effects against pathogens can improve our understanding of their ecology and develop new treatments for the future. We discovered and examined a unique bacterial strain that demonstrates significant inhibitory activity against several phytopathogens. Our research demonstrates that this strain has a wide spectrum of inhibitory actions against plant pathogens, functioning through a complex mechanism. This plays a vital role in the interactions between plant microbiota and phytopathogens.
Collapse
Affiliation(s)
- Tingting Song
- The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Suyash Gupta
- The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Rishon Lezion, Israel
- Institute of Plant Protection, Agricultural Research Organization, Rishon Lezion, Israel
| | - Yael Sorokin
- The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Omer Frenkel
- Institute of Plant Protection, Agricultural Research Organization, Rishon Lezion, Israel
| | - Eddie Cytryn
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Rishon Lezion, Israel
| | - Jonathan Friedman
- The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
29
|
Cardoso P, Pinto R, Lopes T, Figueira E. How Bacteria Cope with Oxidative Stress Induced by Cadmium: Volatile Communication Is Differentially Perceived among Strains. Antioxidants (Basel) 2024; 13:565. [PMID: 38790670 PMCID: PMC11118407 DOI: 10.3390/antiox13050565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Soil is an environment with numerous niches, where bacteria are exposed to diverse conditions. Some bacteria are exposed earlier than others to pressure, and the emission of signals that other bacteria can receive and perceive may allow a better response to an eminent stimulus. To shed light on how bacteria trigger their response and adapt to changes in the environment, the intra- and interspecific influences of volatiles on bacterial strains growing under non-stressed and cadmium-stressed conditions were assessed. Each strain was exposed to its volatiles emitted by cells growing under different conditions to test whether the environment in which a cell grows influences neighboring cells. The five genera tested showed different responses, with Rhizobium displaying the greatest influence. In a second experiment, 13 strains from different genera were grown under control conditions but exposed to volatiles released by Cd-stressed Rhizobium cells to ascertain whether Rhizobium's observed influence was strain-specific or broader. Our results showed that the volatiles emitted by some bacteria under stress are differentially perceived and translated into biochemical changes (growth, alteration of the antioxidant response, and oxidative damage) by other bacteria, which may increase the adaptability and resilience of bacterial communities to environmental changes, especially those with a prooxidant nature. Cadmium (Cd) contamination of soils constitutes a risk to the environment and human health. Here, we showed the effects of Cd exposure on bacteria and how volatile communication influences the biochemistry related to coping with oxidative stress. This knowledge can be important for remediation and risk assessment and highlights that new biological features, such as volatile communication, should be considered when studying and assessing the impact of contaminants on soil ecosystems.
Collapse
Affiliation(s)
- Paulo Cardoso
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (P.C.); (R.P.); (T.L.)
- CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ricardo Pinto
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (P.C.); (R.P.); (T.L.)
- CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tiago Lopes
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (P.C.); (R.P.); (T.L.)
- CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (P.C.); (R.P.); (T.L.)
- CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
30
|
Ochoa-Hueso R, Eldridge DJ, Berdugo M, Trivedi P, Sokoya B, Cano-Díaz C, Abades S, Alfaro F, Bamigboye AR, Bastida F, Blanco-Pastor JL, de Los Rios A, Durán J, Geisen S, Grebenc T, Illán JG, Liu YR, Makhalanyane TP, Mamet S, Molina-Montenegro MA, Moreno JL, Nahberger TU, Peñaloza-Bojacá GF, Plaza C, Rey A, Rodríguez A, Siebe C, Singh BK, Teixido AL, Torres-Díaz C, Wang L, Wang J, Wang J, Zaady E, Zhou X, Zhou XQ, Tedersoo L, Delgado-Baquerizo M. Unearthing the soil-borne microbiome of land plants. GLOBAL CHANGE BIOLOGY 2024; 30:e17295. [PMID: 38804108 DOI: 10.1111/gcb.17295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 05/29/2024]
Abstract
Plant-soil biodiversity interactions are fundamental for the functioning of terrestrial ecosystems. Yet, the existence of a set of globally distributed topsoil microbial and small invertebrate organisms consistently associated with land plants (i.e., their consistent soil-borne microbiome), together with the environmental preferences and functional capabilities of these organisms, remains unknown. We conducted a standardized field survey under 150 species of land plants, including 58 species of bryophytes and 92 of vascular plants, across 124 locations from all continents. We found that, despite the immense biodiversity of soil organisms, the land plants evaluated only shared a small fraction (less than 1%) of all microbial and invertebrate taxa that were present across contrasting climatic and soil conditions and vegetation types. These consistent taxa were dominated by generalist decomposers and phagotrophs and their presence was positively correlated with the abundance of functional genes linked to mineralization. Finally, we showed that crossing environmental thresholds in aridity (aridity index of 0.65, i.e., the transition from mesic to dry ecosystems), soil pH (5.5; i.e., the transition from acidic to strongly acidic soils), and carbon (less than 2%, the lower limit of fertile soils) can result in drastic disruptions in the associations between land plants and soil organisms, with potential implications for the delivery of soil ecosystem processes under ongoing global environmental change.
Collapse
Affiliation(s)
- Raúl Ochoa-Hueso
- Department of Biology, Botany Area, University of Cádiz, Vitivinicultural and Agri-Food Research Institute (IVAGRO), Cádiz, Spain
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - David J Eldridge
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of NSW, Sydney, New South Wales, Australia
| | - Miguel Berdugo
- Departmento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Pankaj Trivedi
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Blessing Sokoya
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
| | - Concha Cano-Díaz
- CISAS - Center for Research and Development in Agrifood Systems and Sustainability, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial Nun'Álvares, Viana do Castelo, Portugal
| | | | - Fernando Alfaro
- GEMA Center for Genomics, Ecology & Environment, Faculty of Interdisciplinary Studies, Universidad Mayor, Santiago, Chile
| | - Adebola R Bamigboye
- Natural History Museum (Botany Unit), Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Felipe Bastida
- CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, Spain
| | - José L Blanco-Pastor
- Department of Biology, Botany Area, University of Cádiz, Vitivinicultural and Agri-Food Research Institute (IVAGRO), Cádiz, Spain
| | - Asunción de Los Rios
- Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Jorge Durán
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas, Pontevedra, Spain
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Tine Grebenc
- Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Javier G Illán
- Department of Entomology, Washington State University, Pullman, Washington, USA
| | - Yu-Rong Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Thulani P Makhalanyane
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Steven Mamet
- College of Agriculture and Bioresources, Department of Soil Science, University of Saskatchewan, Saskatoon, Canada
| | | | - José L Moreno
- CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, Spain
| | | | - Gabriel F Peñaloza-Bojacá
- Laboratório de Sistemática Vegetal, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - César Plaza
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Ana Rey
- Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Alexandra Rodríguez
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Christina Siebe
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith South, New South Wales, Australia
| | - Alberto L Teixido
- Departmento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Cristian Torres-Díaz
- Grupo de Biodiversidad y Cambio Global (BCG), Departamento de Ciencias Básicas, Universidad del Bío-Bío, Chillán, Chile
| | - Ling Wang
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun, China
| | - Jianyong Wang
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun, China
| | - Juntao Wang
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Eli Zaady
- Department of Natural Resources, Agricultural Research Organization, Institute of Plant Sciences, Gilat Research Center, Negev, Israel
| | - Xiaobing Zhou
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Xinjiang, China
| | - Xin-Quan Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
| |
Collapse
|
31
|
Kratzl F, Urban M, Pandhal J, Shi M, Meng C, Kleigrewe K, Kremling A, Pflüger-Grau K. Pseudomonas putida as saviour for troubled Synechococcus elongatus in a synthetic co-culture - interaction studies based on a multi-OMICs approach. Commun Biol 2024; 7:452. [PMID: 38609451 PMCID: PMC11014904 DOI: 10.1038/s42003-024-06098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
In their natural habitats, microbes rarely exist in isolation; instead, they thrive in consortia, where various interactions occur. In this study, a defined synthetic co-culture of the cyanobacterium S. elongatus cscB, which supplies sucrose to the heterotrophic P. putida cscRABY, is investigated to identify potential interactions. Initial experiments reveal a remarkable growth-promoting effect of the heterotrophic partner on the cyanobacterium, resulting in an up to 80% increase in the growth rate and enhanced photosynthetic capacity. Vice versa, the presence of the cyanobacterium has a neutral effect on P. putida cscRABY, highlighting the resilience of pseudomonads against stress and their potential as co-culture partners. Next, a suitable reference process reinforcing the growth-promoting effect is established in a parallel photobioreactor system, which sets the basis for the analysis of the co-culture at the transcriptome, proteome, and metabolome levels. In addition to several moderate changes, including alterations in the metabolism and stress response in both microbes, this comprehensive multi-OMICs approach strongly hints towards the exchange of further molecules beyond the unidirectional feeding with sucrose. Taken together, these findings provide valuable insights into the complex dynamics between both co-culture partners, indicating multi-level interactions, which can be employed for further streamlining of the co-cultivation system.
Collapse
Affiliation(s)
- Franziska Kratzl
- Professorship for Systems Biotechnology, TUM School of Engineering and Design, Technical University of Munich, Garching, Germany
| | - Marlene Urban
- Professorship for Systems Biotechnology, TUM School of Engineering and Design, Technical University of Munich, Garching, Germany
| | - Jagroop Pandhal
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Mengxun Shi
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Andreas Kremling
- Professorship for Systems Biotechnology, TUM School of Engineering and Design, Technical University of Munich, Garching, Germany
| | - Katharina Pflüger-Grau
- Professorship for Systems Biotechnology, TUM School of Engineering and Design, Technical University of Munich, Garching, Germany.
| |
Collapse
|
32
|
Srinivasan S, Jnana A, Murali TS. Modeling Microbial Community Networks: Methods and Tools for Studying Microbial Interactions. MICROBIAL ECOLOGY 2024; 87:56. [PMID: 38587642 PMCID: PMC11001700 DOI: 10.1007/s00248-024-02370-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
Microbial interactions function as a fundamental unit in complex ecosystems. By characterizing the type of interaction (positive, negative, neutral) occurring in these dynamic systems, one can begin to unravel the role played by the microbial species. Towards this, various methods have been developed to decipher the function of the microbial communities. The current review focuses on the various qualitative and quantitative methods that currently exist to study microbial interactions. Qualitative methods such as co-culturing experiments are visualized using microscopy-based techniques and are combined with data obtained from multi-omics technologies (metagenomics, metabolomics, metatranscriptomics). Quantitative methods include the construction of networks and network inference, computational models, and development of synthetic microbial consortia. These methods provide a valuable clue on various roles played by interacting partners, as well as possible solutions to overcome pathogenic microbes that can cause life-threatening infections in susceptible hosts. Studying the microbial interactions will further our understanding of complex less-studied ecosystems and enable design of effective frameworks for treatment of infectious diseases.
Collapse
Affiliation(s)
- Shanchana Srinivasan
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Apoorva Jnana
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Thokur Sreepathy Murali
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
33
|
Sperfeld M, Narváez-Barragán DA, Malitsky S, Frydman V, Yuda L, Rocha J, Segev E. Reducing the Bacterial Lag Phase Through Methylated Compounds: Insights from Algal-Bacterial Interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.06.543872. [PMID: 38645154 PMCID: PMC11030247 DOI: 10.1101/2023.06.06.543872] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The bacterial lag phase is a key period for resuming growth. Despite its significance, the lag phase remains underexplored, particularly in environmental bacteria. Here, we explore the lag phase of the model marine bacterium Phaeobacter inhibens when it transitions from starvation to growth with a microalgal partner. Utilizing transcriptomics and 13 C-labeled metabolomics, our study reveals that methylated compounds, which are abundantly produced by microalgae, shorten the bacterial lag phase. Our findings underscore the significance of methyl groups as a limiting factor during the lag phase and demonstrate that methyl groups can be harvested from algal compounds and assimilated through the methionine cycle. Furthermore, we show that methylated compounds, characteristic of photosynthetic organisms, induce variable reductions in lag times among bacteria associated with algae and plants. These findings highlight the adjustability of the bacterial lag phase and emphasize the importance of studying bacteria in an environmental context. One-Sentence Summary Bacteria use algal compounds as a metabolic shortcut to transition from starvation to growth.
Collapse
|
34
|
Herbst K, Wang T, Forchielli EJ, Thommes M, Paschalidis IC, Segrè D. Multi-Attribute Subset Selection enables prediction of representative phenotypes across microbial populations. Commun Biol 2024; 7:407. [PMID: 38570615 PMCID: PMC10991586 DOI: 10.1038/s42003-024-06093-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 03/22/2024] [Indexed: 04/05/2024] Open
Abstract
The interpretation of complex biological datasets requires the identification of representative variables that describe the data without critical information loss. This is particularly important in the analysis of large phenotypic datasets (phenomics). Here we introduce Multi-Attribute Subset Selection (MASS), an algorithm which separates a matrix of phenotypes (e.g., yield across microbial species and environmental conditions) into predictor and response sets of conditions. Using mixed integer linear programming, MASS expresses the response conditions as a linear combination of the predictor conditions, while simultaneously searching for the optimally descriptive set of predictors. We apply the algorithm to three microbial datasets and identify environmental conditions that predict phenotypes under other conditions, providing biologically interpretable axes for strain discrimination. MASS could be used to reduce the number of experiments needed to identify species or to map their metabolic capabilities. The generality of the algorithm allows addressing subset selection problems in areas beyond biology.
Collapse
Affiliation(s)
- Konrad Herbst
- Bioinformatics Program, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| | - Taiyao Wang
- Division of Systems Engineering, Boston University, Boston, MA, USA
| | - Elena J Forchielli
- Biological Design Center, Boston University, Boston, MA, USA
- Department of Biology, Boston University, Boston, MA, USA
| | - Meghan Thommes
- Biological Design Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Ioannis Ch Paschalidis
- Division of Systems Engineering, Boston University, Boston, MA, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Faculty of Computing and Data Science, Boston University, Boston, MA, USA.
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA.
| | - Daniel Segrè
- Bioinformatics Program, Boston University, Boston, MA, USA.
- Biological Design Center, Boston University, Boston, MA, USA.
- Department of Biology, Boston University, Boston, MA, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Faculty of Computing and Data Science, Boston University, Boston, MA, USA.
| |
Collapse
|
35
|
Ulanova A, Mansfeldt C. EcoGenoRisk: Developing a computational ecological risk assessment tool for synthetic biology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123647. [PMID: 38402941 DOI: 10.1016/j.envpol.2024.123647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
The expanding field of synthetic biology (synbio) supports new opportunities in the design of targeted bioproducts or modified microorganisms. However, this rapid development of synbio products raises concerns surrounding the potential risks of modified microorganisms contaminating unintended environments. These potential invasion risks require new bioinformatic tools to inform the design phase. EcoGenoRisk is a newly constructed computational risk assessment tool for invasiveness that aims to predict where synbio microorganisms may establish a population by screening for habitats of genetically similar microorganisms. The first module of the tool identifies genetically similar microorganisms and potential ecological relationships such as competition, mutualism, and inhibition. In total, 520 archaeal and 32,828 bacterial complete assembly genomes were analyzed to test the specificity and accuracy of the tool as well as to characterize the enzymatic profiles of different taxonomic lineages. Additionally, ecological relationships were analyzed to determine which would result in the greatest potential overlap between shared functional profiles. Notably, competition displayed the significantly highest overlap of shared functions between compared genomes. Overall, EcoGenoRisk is a flexible software pipeline that assists environmental risk assessors to query large databases of known microorganisms and prioritize follow-up bench scale studies.
Collapse
Affiliation(s)
- Anna Ulanova
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, 1111 Engineering Drive, Boulder, CO, 80309, USA; University of Colorado Boulder, Environmental Engineering Program, 4001 Discovery Drive, Boulder, CO, 80303, USA
| | - Cresten Mansfeldt
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, 1111 Engineering Drive, Boulder, CO, 80309, USA; University of Colorado Boulder, Environmental Engineering Program, 4001 Discovery Drive, Boulder, CO, 80303, USA.
| |
Collapse
|
36
|
Auclert LZ, Chhanda MS, Derome N. Interwoven processes in fish development: microbial community succession and immune maturation. PeerJ 2024; 12:e17051. [PMID: 38560465 PMCID: PMC10981415 DOI: 10.7717/peerj.17051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/13/2024] [Indexed: 04/04/2024] Open
Abstract
Fishes are hosts for many microorganisms that provide them with beneficial effects on growth, immune system development, nutrition and protection against pathogens. In order to avoid spreading of infectious diseases in aquaculture, prevention includes vaccinations and routine disinfection of eggs and equipment, while curative treatments consist in the administration of antibiotics. Vaccination processes can stress the fish and require substantial farmer's investment. Additionally, disinfection and antibiotics are not specific, and while they may be effective in the short term, they have major drawbacks in the long term. Indeed, they eliminate beneficial bacteria which are useful for the host and promote the raising of antibiotic resistance in beneficial, commensal but also in pathogenic bacterial strains. Numerous publications highlight the importance that plays the diversified microbial community colonizing fish (i.e., microbiota) in the development, health and ultimately survival of their host. This review targets the current knowledge on the bidirectional communication between the microbiota and the fish immune system during fish development. It explores the extent of this mutualistic relationship: on one hand, the effect that microbes exert on the immune system ontogeny of fishes, and on the other hand, the impact of critical steps in immune system development on the microbial recruitment and succession throughout their life. We will first describe the immune system and its ontogeny and gene expression steps in the immune system development of fishes. Secondly, the plurality of the microbiotas (depending on host organism, organ, and development stage) will be reviewed. Then, a description of the constant interactions between microbiota and immune system throughout the fish's life stages will be discussed. Healthy microbiotas allow immune system maturation and modulation of inflammation, both of which contribute to immune homeostasis. Thus, immune equilibrium is closely linked to microbiota stability and to the stages of microbial community succession during the host development. We will provide examples from several fish species and describe more extensively the mechanisms occurring in zebrafish model because immune system ontogeny is much more finely described for this species, thanks to the many existing zebrafish mutants which allow more precise investigations. We will conclude on how the conceptual framework associated to the research on the immune system will benefit from considering the relations between microbiota and immune system maturation. More precisely, the development of active tolerance of the microbiota from the earliest stages of life enables the sustainable establishment of a complex healthy microbial community in the adult host. Establishing a balanced host-microbiota interaction avoids triggering deleterious inflammation, and maintains immunological and microbiological homeostasis.
Collapse
Affiliation(s)
- Lisa Zoé Auclert
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Mousumi Sarker Chhanda
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
- Department of Aquaculture, Faculty of Fisheries, Hajee Mohammad Danesh Science and Technology University, Basherhat, Bangladesh
| | - Nicolas Derome
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| |
Collapse
|
37
|
Romdhane S, Huet S, Spor A, Bru D, Breuil MC, Philippot L. Manipulating the physical distance between cells during soil colonization reveals the importance of biotic interactions in microbial community assembly. ENVIRONMENTAL MICROBIOME 2024; 19:18. [PMID: 38504378 PMCID: PMC10953230 DOI: 10.1186/s40793-024-00559-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/03/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Microbial communities are of tremendous importance for ecosystem functioning and yet we know little about the ecological processes driving the assembly of these communities in the environment. Here, we used an unprecedented experimental approach based on the manipulation of physical distance between neighboring cells during soil colonization to determine the role of bacterial interactions in soil community assembly. We hypothesized that experimentally manipulating the physical distance between bacterial cells will modify the interaction strengths leading to differences in microbial community composition, with increasing distance between neighbors favoring poor competitors. RESULTS We found significant differences in both bacterial community diversity, composition and co-occurrence networks after soil colonization that were related to physical distancing. We show that reducing distances between cells resulted in a loss of bacterial diversity, with at least 41% of the dominant OTUs being significantly affected by physical distancing. Our results suggest that physical distancing may differentially modulate competitiveness between neighboring species depending on the taxa present in the community. The mixing of communities that assembled at high and low cell densities did not reveal any "home field advantage" during coalescence. This confirms that the observed differences in competitiveness were due to biotic rather than abiotic filtering. CONCLUSIONS Our study demonstrates that the competitiveness of bacteria strongly depends on cell density and community membership, therefore highlighting the fundamental role of microbial interactions in the assembly of soil communities.
Collapse
Affiliation(s)
- Sana Romdhane
- Univ. Bourgogne Franche-Comté, INRAE, Institut Agro, Agroécologie, F-21000, Dijon, France.
| | - Sarah Huet
- Univ. Bourgogne Franche-Comté, INRAE, Institut Agro, Agroécologie, F-21000, Dijon, France
| | - Aymé Spor
- Univ. Bourgogne Franche-Comté, INRAE, Institut Agro, Agroécologie, F-21000, Dijon, France
| | - David Bru
- Univ. Bourgogne Franche-Comté, INRAE, Institut Agro, Agroécologie, F-21000, Dijon, France
| | - Marie-Christine Breuil
- Univ. Bourgogne Franche-Comté, INRAE, Institut Agro, Agroécologie, F-21000, Dijon, France
| | - Laurent Philippot
- Univ. Bourgogne Franche-Comté, INRAE, Institut Agro, Agroécologie, F-21000, Dijon, France
| |
Collapse
|
38
|
Li C, Li X, Romdhane S, Cheng Y, Li G, Cao R, Li P, Xu J, Zhao Y, Yang Y, Jiao J, Hu F, Wu J, Li H, Philippot L. Deciphering the biotic and abiotic drivers of coalescence asymmetry between soil and manure microbiomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170180. [PMID: 38262533 DOI: 10.1016/j.scitotenv.2024.170180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/25/2024]
Abstract
Manure application improves soil fertility, yet its implications on the success of invasion of manure-borne microorganisms in the soil are poorly understood. Here, we assessed the importance of abiotic and biotic factors in modulating the extent to which manure-borne fungal and bacterial communities can invade resident soil microbial communities. For this purpose, we applied varying frequencies of two different amounts of manure to nine soils differing in physico-chemical properties, as well as in land-use history, over 180 days and monitored changes in bacterial and fungal communities. Variance partitioning revealed differential contributions of abiotic and biotic factors to invasion success, which together accounted for up to 82 % of the variance explained. We showed that the effects of interactions between biotic and abiotic factors increased with coalescence frequency and manure amount for the bacterial and fungal communities, respectively. Both abiotic and biotic factors were important for modulating coalescence asymmetry for the bacterial community, whereas abiotic factors had a greater effect on the fungal community. These results provide new insights into the drivers of coalescence events between manure and resident soil microbial communities. Moreover, our findings highlight the roles of the mixing ratio and frequency of coalescence events in modulating the survival of manure-borne microorganisms.
Collapse
Affiliation(s)
- Chunkai Li
- College of Chemical Engineering, Nanjing Forestry University, No. 159, Longpan Road, Nanjing, Jiangsu 210037, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang, Nanjing, Jiangsu 210095, China.
| | - Xianping Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang, Nanjing, Jiangsu 210095, China.
| | - Sana Romdhane
- Université Bourgogne Franche-Comté, INRAE, Institut Agro Dijon, Department of Agroécologie, Dijon 21000, France.
| | - Yanhong Cheng
- Key Laboratory of Red Soil Cultivated Land Conservation, Jiangxi Institute of Red Soil and Germplasm Resource, Nanchang, Jiangxi 331717, China
| | - Gen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang, Nanjing, Jiangsu 210095, China.
| | - Rui Cao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang, Nanjing, Jiangsu 210095, China.
| | - Peng Li
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Jingjing Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang, Nanjing, Jiangsu 210095, China.
| | - Yexin Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang, Nanjing, Jiangsu 210095, China.
| | - Yang Yang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang, Nanjing, Jiangsu 210095, China.
| | - Jiaguo Jiao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang, Nanjing, Jiangsu 210095, China.
| | - Feng Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang, Nanjing, Jiangsu 210095, China.
| | - Jun Wu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang, Nanjing, Jiangsu 210095, China.
| | - Huixin Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang, Nanjing, Jiangsu 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Weigang, Nanjing 210014, China.
| | - Laurent Philippot
- Université Bourgogne Franche-Comté, INRAE, Institut Agro Dijon, Department of Agroécologie, Dijon 21000, France.
| |
Collapse
|
39
|
Geesink P, ter Horst J, Ettema TJG. More than the sum of its parts: uncovering emerging effects of microbial interactions in complex communities. FEMS Microbiol Ecol 2024; 100:fiae029. [PMID: 38444203 PMCID: PMC10950044 DOI: 10.1093/femsec/fiae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/07/2024] Open
Abstract
Microbial communities are not only shaped by the diversity of microorganisms and their individual metabolic potential, but also by the vast amount of intra- and interspecies interactions that can occur pairwise interactions among microorganisms, we suggest that more attention should be drawn towards the effects on the entire microbiome that emerge from individual interactions between community members. The production of certain metabolites that can be tied to a specific microbe-microbe interaction might subsequently influence the physicochemical parameters of the habitat, stimulate a change in the trophic network of the community or create new micro-habitats through the formation of biofilms, similar to the production of antimicrobial substances which might negatively affect only one microorganism but cause a ripple effect on the abundance of other community members. Here, we argue that combining established as well as innovative laboratory and computational methods is needed to predict novel interactions and assess their secondary effects. Such efforts will enable future microbiome studies to expand our knowledge on the dynamics of complex microbial communities.
Collapse
Affiliation(s)
- Patricia Geesink
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Jolanda ter Horst
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Thijs J G Ettema
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
40
|
Yang M, Liu N, Wang B, Li Y, Li W, Shi X, Yue X, Liu CQ. Stepwise degradation of organic matters driven by microbial interactions in China΄s coastal wetlands: Evidence from carbon isotope analysis. WATER RESEARCH 2024; 250:121062. [PMID: 38157604 DOI: 10.1016/j.watres.2023.121062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/05/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
The microbial "unseen majority" as drivers of carbon cycle represent a significant source of uncertain climate change. To comprehend the resilience of life forms on Earth to climate change, it is crucial to incorporate knowledge of intricate microbial interactions and their impact to carbon transformation. Combined with carbon stable isotope analysis and high-throughput sequencing technology, the underlying mechanism of microbial interactions for organic carbon degradation has been elucidated. Niche differentiation enabled archaea to coexist with bacteria mainly in a cooperative manner. Bacteria composed of specialists preferred to degrade lighter carbon, while archaea were capable of utilizing heavier carbon. Microbial resource-dependent interactions drove stepwise degradation of organic matter. Bacterial cooperation directly facilitated the degradation of algae-dominated particulate organic carbon, while competitive feeding of archaea caused by resource scarcity significantly promoted the mineralization of heavier particulate organic carbon and then the release of dissolved inorganic carbon. Meanwhile, archaea functioned as a primary decomposer and collaborated with bacteria in the gradual degradation of dissolved organic carbon. This study emphasized microbial interactions driving carbon cycle and provided new perspectives for incorporating microorganisms into carbon biogeochemical models.
Collapse
Affiliation(s)
- Meiling Yang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Bohai Coastal Critical Zone National Observation and Research Station, Tianjin University, Tianjin 300072, China
| | - Na Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Baoli Wang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Bohai Coastal Critical Zone National Observation and Research Station, Tianjin University, Tianjin 300072, China.
| | - Yajun Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Wanzhu Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xinjie Shi
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xinrui Yue
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Bohai Coastal Critical Zone National Observation and Research Station, Tianjin University, Tianjin 300072, China
| |
Collapse
|
41
|
Cheng C, Li G, Yang X, Zhao J, Liu J, Zheng A, Zhang Z. High diversity, close genetic relatedness, and favorable living conditions benefit species co-occurrence of gut microbiota in Brandt's vole. Front Microbiol 2024; 15:1337402. [PMID: 38384265 PMCID: PMC10879610 DOI: 10.3389/fmicb.2024.1337402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Introduction Revealing factors and mechanisms in determining species co-existence are crucial to community ecology, but studies using gut microbiota data are still lacking. Methods Using gut microbiota data of 556 Brandt's voles from 37 treatments in eight experiments, we examined the relationship of species co-occurrence of gut microbiota in Brandt's voles (Lasiopodomys brandtii) with genetic distance (or genetic relatedness), community diversity, and several environmental variables. Results We found that the species co-occurrence index (a larger index indicates a higher co-occurrence probability) of gut microbiota in Brandt's voles was negatively associated with the genetic distance between paired ASVs and the number of cohabitating voles in the experimental space (a larger number represents more crowding social stress), but positively with Shannon diversity index, grass diets (representing natural foods), and non-physical contact within an experimental space (representing less stress). Discussion Our study demonstrated that high diversity, close genetic relatedness, and favorable living conditions would benefit species co-occurrence of gut microbiota in hosts. Our results provide novel insights into factors and mechanisms that shape the community structure and function of gut microbiota and highlight the significance of preserving the biodiversity of gut microbiota.
Collapse
Affiliation(s)
- Chaoyuan Cheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Guoliang Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xifu Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jidong Zhao
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi’an, China
| | - Jing Liu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, School of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Aihua Zheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
42
|
Liu X, Chu H, Godoy O, Fan K, Gao GF, Yang T, Ma Y, Delgado-Baquerizo M. Positive associations fuel soil biodiversity and ecological networks worldwide. Proc Natl Acad Sci U S A 2024; 121:e2308769121. [PMID: 38285947 PMCID: PMC10861899 DOI: 10.1073/pnas.2308769121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 12/27/2023] [Indexed: 01/31/2024] Open
Abstract
Microbial interactions are key to maintaining soil biodiversity. However, whether negative or positive associations govern the soil microbial system at a global scale remains virtually unknown, limiting our understanding of how microbes interact to support soil biodiversity and functions. Here, we explored ecological networks among multitrophic soil organisms involving bacteria, protists, fungi, and invertebrates in a global soil survey across 20 regions of the planet and found that positive associations among both pairs and triads of soil taxa governed global soil microbial networks. We further revealed that soil networks with greater levels of positive associations supported larger soil biodiversity and resulted in lower network fragility to withstand potential perturbations of species losses. Our study provides unique evidence of the widespread positive associations between soil organisms and their crucial role in maintaining the multitrophic structure of soil biodiversity worldwide.
Collapse
Affiliation(s)
- Xu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing210008, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing210008, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Oscar Godoy
- Departamento de Biología, Instituto Universitario de Ciencias del Mar, Universidad de Cádiz, Puerto RealE-11510, Spain
| | - Kunkun Fan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing210008, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Gui-Feng Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing210008, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing210008, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yuying Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing210008, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, SevillaE-41012, Spain
| |
Collapse
|
43
|
Hesse E, O’Brien S. Ecological dependencies and the illusion of cooperation in microbial communities. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001442. [PMID: 38385784 PMCID: PMC10924460 DOI: 10.1099/mic.0.001442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Ecological dependencies - where organisms rely on other organisms for survival - are a ubiquitous feature of life on earth. Multicellular hosts rely on symbionts to provide essential vitamins and amino acids. Legume plants similarly rely on nitrogen-fixing rhizobia to convert atmospheric nitrogen to ammonia. In some cases, dependencies can arise via loss-of-function mutations that allow one partner to benefit from the actions of another. It is common in microbiology to label ecological dependencies between species as cooperation - making it necessary to invoke cooperation-specific frameworks to explain the phenomenon. However, in many cases, such traits are not (at least initially) cooperative, because they are not selected for because of the benefits they confer on a partner species. In contrast, dependencies in microbial communities may originate from fitness benefits gained from genomic-streamlining (i.e. Black Queen Dynamics). Here, we outline how the Black Queen Hypothesis predicts the formation of metabolic dependencies via loss-of-function mutations in microbial communities, without needing to invoke any cooperation-specific explanations. Furthermore we outline how the Black Queen Hypothesis can act as a blueprint for true cooperation as well as discuss key outstanding questions in the field. The nature of interactions in microbial communities can predict the ability of natural communities to withstand and recover from disturbances. Hence, it is vital to gain a deeper understanding of the factors driving these dynamic interactions over evolutionary time.
Collapse
Affiliation(s)
- Elze Hesse
- College of Life and Environmental Science, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Siobhán O’Brien
- Moyne Institute of Preventive Medicine, Department of Microbiology, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
44
|
Camacho-Mateu J, Lampo A, Sireci M, Muñoz MA, Cuesta JA. Sparse species interactions reproduce abundance correlation patterns in microbial communities. Proc Natl Acad Sci U S A 2024; 121:e2309575121. [PMID: 38266051 PMCID: PMC10853627 DOI: 10.1073/pnas.2309575121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024] Open
Abstract
During the last decades, macroecology has identified broad-scale patterns of abundances and diversity of microbial communities and put forward some potential explanations for them. However, these advances are not paralleled by a full understanding of the dynamical processes behind them. In particular, abundance fluctuations of different species are found to be correlated, both across time and across communities in metagenomic samples. Reproducing such correlations through appropriate population models remains an open challenge. The present paper tackles this problem and points to sparse species interactions as a necessary mechanism to account for them. Specifically, we discuss several possibilities to include interactions in population models and recognize Lotka-Volterra constants as a successful ansatz. For this, we design a Bayesian inference algorithm to extract sets of interaction constants able to reproduce empirical probability distributions of pairwise correlations for diverse biomes. Importantly, the inferred models still reproduce well-known single-species macroecological patterns concerning abundance fluctuations across both species and communities. Endorsed by the agreement with the empirically observed phenomenology, our analyses provide insights into the properties of the networks of microbial interactions, revealing that sparsity is a crucial feature.
Collapse
Affiliation(s)
- José Camacho-Mateu
- Grupo Interdisciplinar de Sistemas Complejos, Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés28911, Spain
| | - Aniello Lampo
- Grupo Interdisciplinar de Sistemas Complejos, Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés28911, Spain
| | - Matteo Sireci
- Departamento de Electromagnetismo y Física de la Materia, Universidad de Granada, Granada18071, Spain
- Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Granada, Spain
| | - Miguel A. Muñoz
- Departamento de Electromagnetismo y Física de la Materia, Universidad de Granada, Granada18071, Spain
- Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Granada, Spain
| | - José A. Cuesta
- Grupo Interdisciplinar de Sistemas Complejos, Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés28911, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, Zaragoza50001, Spain
| |
Collapse
|
45
|
Babajanyan SG, Garushyants SK, Wolf YI, Koonin EV. Microbial diversity and ecological complexity emerging from environmental variation and horizontal gene transfer in a simple mathematical model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576128. [PMID: 38313259 PMCID: PMC10836074 DOI: 10.1101/2024.01.17.576128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Microbiomes are generally characterized by high diversity of coexisting microbial species and strains that remains stable within a broad range of conditions. However, under fixed conditions, microbial ecology conforms with the exclusion principle under which two populations competing for the same resource within the same niche cannot coexist because the less fit population inevitably goes extinct. To explore the conditions for stabilization of microbial diversity, we developed a simple mathematical model consisting of two competing populations that could exchange a single gene allele via horizontal gene transfer (HGT). We found that, although in a fixed environment, with unbiased HGT, the system obeyed the exclusion principle, in an oscillating environment, within large regions of the phase space bounded by the rates of reproduction and HGT, the two populations coexist. Moreover, depending on the parameter combination, all three major types of symbiosis obtained, namely, pure competition, host-parasite relationship and mutualism. In each of these regimes, certain parameter combinations provided for synergy, that is, a greater total abundance of both populations compared to the abundance of the winning population in the fixed environments. These findings show that basic phenomena that are universal in microbial communities, environmental variation and HGT, provide for stabilization of microbial diversity and ecological complexity.
Collapse
Affiliation(s)
- Sanasar G. Babajanyan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Sofya K. Garushyants
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
46
|
Dooley KD, Bergelson J. Richness and density jointly determine context dependence in bacterial interactions. iScience 2024; 27:108654. [PMID: 38188527 PMCID: PMC10770726 DOI: 10.1016/j.isci.2023.108654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/30/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Pairwise interactions are often used to predict features of complex microbial communities due to the challenge of measuring multi-species interactions in high dimensional contexts. This assumes that interactions are unaffected by community context. Here, we used synthetic bacterial communities to investigate that assumption by observing how interactions varied across contexts. Interactions were most often weakly negative and showed a phylogenetic signal among genera. Community richness and total density emerged as strong predictors of interaction strength and contributed to an attenuation of interactions as richness increased. Population level and per-capita measures of interactions both displayed such attenuation, suggesting factors beyond systematic changes in population size were involved; namely, changes to the interactions themselves. Nevertheless, pairwise interactions retained some explanatory power across contexts, provided those contexts were not substantially divergent in richness. These results suggest that understanding the emergent properties of microbial interactions can improve our ability to predict the features of microbial communities.
Collapse
Affiliation(s)
- Keven D. Dooley
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Joy Bergelson
- Center for Genomics and System Biology, Department of Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
47
|
Song L, Xu L, Wu T, Shi Z, Kareem HA, Wang Z, Dai Q, Guo C, Pan J, Yang M, Wei X, Wang Y, Wei G, Shen X. Trojan horselike T6SS effector TepC mediates both interference competition and exploitative competition. THE ISME JOURNAL 2024; 18:wrad028. [PMID: 38365238 PMCID: PMC10833071 DOI: 10.1093/ismejo/wrad028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 02/18/2024]
Abstract
The type VI secretion system (T6SS) is a bacterial weapon capable of delivering antibacterial effectors to kill competing cells for interference competition, as well as secreting metal ion scavenging effectors to acquire essential micronutrients for exploitation competition. However, no T6SS effectors that can mediate both interference competition and exploitation competition have been reported. In this study, we identified a unique T6SS-1 effector in Yersinia pseudotuberculosis named TepC, which plays versatile roles in microbial communities. First, secreted TepC acts as a proteinaceous siderophore that binds to iron and mediates exploitative competition. Additionally, we discovered that TepC has DNase activity, which gives it both contact-dependent and contact-independent interference competition abilities. In conditions where iron is limited, the iron-loaded TepC is taken up by target cells expressing the outer membrane receptor TdsR. For kin cells encoding the cognate immunity protein TipC, TepC facilitates iron acquisition, and its toxic effects are neutralized. On the other hand, nonkin cells lacking TipC are enticed to uptake TepC and are killed by its DNase activity. Therefore, we have uncovered a T6SS effector, TepC, that functions like a "Trojan horse" by binding to iron ions to provide a valuable resource to kin cells, whereas punishing cheaters that do not produce public goods. This lure-to-kill mechanism, mediated by a bifunctional T6SS effector, may offer new insights into the molecular mechanisms that maintain stability in microbial communities.
Collapse
Affiliation(s)
- Li Song
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Xu
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tong Wu
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhenkun Shi
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hafiz Abdul Kareem
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhuo Wang
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingyun Dai
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chenghao Guo
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junfeng Pan
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingming Yang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaomeng Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yao Wang
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gehong Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xihui Shen
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
48
|
Richards L, Cremin K, Coates M, Vigor F, Schäfer P, Soyer OS. Ammonia leakage can underpin nitrogen-sharing among soil microorganisms. THE ISME JOURNAL 2024; 18:wrae171. [PMID: 39236233 PMCID: PMC11440039 DOI: 10.1093/ismejo/wrae171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/16/2024] [Accepted: 09/04/2024] [Indexed: 09/07/2024]
Abstract
Soil microbial communities host a large number of microbial species that support important ecological functions such as biogeochemical cycling and plant nutrition. The extent and stability of these functions are affected by inter-species interactions among soil microorganisms, yet the different mechanisms underpinning microbial interactions in the soil are not fully understood. Here, we study the extent of nutrient-based interactions among two model, plant-supporting soil microorganisms, the fungi Serendipita indica, and the bacteria Bacillus subtilis. We found that S. indica is unable to grow with nitrate - a common nitrogen source in the soil - but this inability could be rescued, and growth restored in the presence of B. subtilis. We demonstrate that this effect is due to B. subtilis utilising nitrate and releasing ammonia, which can be used by S. indica. We refer to this type of mechanism as ammonia mediated nitrogen sharing (N-sharing). Using a mathematical model, we demonstrated that the pH dependent equilibrium between ammonia (NH3) and ammonium (NH+4) results in an inherent cellular leakiness, and that reduced amonnium uptake or assimilation rates could result in higher levels of leaked ammonia. In line with this model, a mutant B. subtilis - devoid of ammonia uptake - showed higher S. indica growth support in nitrate media. These findings highlight that ammonia based N-sharing can be a previously under-appreciated mechanism underpinning interaction among soil microorganisms and could be influenced by microbial or abiotic alteration of pH in microenvironments.
Collapse
Affiliation(s)
- Luke Richards
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Kelsey Cremin
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Mary Coates
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Finley Vigor
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Patrick Schäfer
- Institute of Phytophathology, Justus-Liebig Universität, Heinrich-Buff-Ring 26-32 35392 Giessen, Germany
| | - Orkun S Soyer
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
49
|
Xiong X, Othmer HG, Harcombe WR. Emergent antibiotic persistence in a spatially structured synthetic microbial mutualism. THE ISME JOURNAL 2024; 18:wrae075. [PMID: 38691424 PMCID: PMC11104777 DOI: 10.1093/ismejo/wrae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Antibiotic persistence (heterotolerance) allows a subpopulation of bacteria to survive antibiotic-induced killing and contributes to the evolution of antibiotic resistance. Although bacteria typically live in microbial communities with complex ecological interactions, little is known about how microbial ecology affects antibiotic persistence. Here, we demonstrated within a synthetic two-species microbial mutualism of Escherichia coli and Salmonella enterica that the combination of cross-feeding and community spatial structure can emergently cause high antibiotic persistence in bacteria by increasing the cell-to-cell heterogeneity. Tracking ampicillin-induced death for bacteria on agar surfaces, we found that E. coli forms up to 55 times more antibiotic persisters in the cross-feeding coculture than in monoculture. This high persistence could not be explained solely by the presence of S. enterica, the presence of cross-feeding, average nutrient starvation, or spontaneous resistant mutations. Time-series fluorescent microscopy revealed increased cell-to-cell variation in E. coli lag time in the mutualistic co-culture. Furthermore, we discovered that an E. coli cell can survive antibiotic killing if the nearby S. enterica cells on which it relies die first. In conclusion, we showed that the high antibiotic persistence phenotype can be an emergent phenomenon caused by a combination of cross-feeding and spatial structure. Our work highlights the importance of considering spatially structured interactions during antibiotic treatment and understanding microbial community resilience more broadly.
Collapse
Affiliation(s)
- Xianyi Xiong
- Department of Ecology, Evolution, and Behavior, BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, United States
- Division of Community Health & Epidemiology, University of Minnesota School of Public Health, Minneapolis, MN 55454, United States
| | - Hans G Othmer
- School of Mathematics, University of Minnesota, Minneapolis, MN 55455, United States
| | - William R Harcombe
- Department of Ecology, Evolution, and Behavior, BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, United States
| |
Collapse
|
50
|
Wang S, Mu L, Yu C, He Y, Hu X, Jiao Y, Xu Z, You S, Liu SL, Bao H. Microbial collaborations and conflicts: unraveling interactions in the gut ecosystem. Gut Microbes 2024; 16:2296603. [PMID: 38149632 PMCID: PMC10761165 DOI: 10.1080/19490976.2023.2296603] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/14/2023] [Indexed: 12/28/2023] Open
Abstract
The human gut microbiota constitutes a vast and complex community of microorganisms. The myriad of microorganisms present in the intestinal tract exhibits highly intricate interactions, which play a crucial role in maintaining the stability and balance of the gut microbial ecosystem. These interactions, in turn, influence the overall health of the host. The mammalian gut microbes have evolved a wide range of mechanisms to suppress or even eliminate their competitors for nutrients and space. Simultaneously, extensive cooperative interactions exist among different microbes to optimize resource utilization and enhance their own fitness. This review will focus on the competitive mechanisms among members of the gut microorganisms and discuss key modes of actions, including bacterial secretion systems, bacteriocins, membrane vesicles (MVs) etc. Additionally, we will summarize the current knowledge of the often-overlooked positive interactions within the gut microbiota, and showcase representative machineries. This information will serve as a reference for better understanding the complex interactions occurring within the mammalian gut environment. Understanding the interaction dynamics of competition and cooperation within the gut microbiota is crucial to unraveling the ecology of the mammalian gut microbial communities. Targeted interventions aimed at modulating these interactions may offer potential therapeutic strategies for disease conditions.
Collapse
Affiliation(s)
- Shuang Wang
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- Department of Biopharmaceutical Sciences (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lingyi Mu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chong Yu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Yuting He
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Xinliang Hu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Yanlei Jiao
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Ziqiong Xu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Shaohui You
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Shu-Lin Liu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Hongxia Bao
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| |
Collapse
|