1
|
Zhang J, Lv T, Tan S, Yu L, Chi Y, Chen J, Fan X, Lu X. Screening helper T lymphocyte epitopes based on IFN-γ/IL-10 ratio for developing a novel multi-epitope vaccine candidate using Wolbachia surface protein as an adjuvant against visceral leishmaniasis. Parasit Vectors 2025; 18:116. [PMID: 40134009 PMCID: PMC11938772 DOI: 10.1186/s13071-025-06756-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Visceral leishmaniasis (VL) is the most lethal form of leishmaniasis. In terms of anti-leishmanial vaccines, favorable immune responses are Th1 responses that primarily produce interferon gamma (IFN-γ) and activate macrophages for leishmanicidal effects. The selection of IFN-γ-inducing epitopes in silico may reduce the steps of pre-clinical evaluation and increase the certainty of the better-designed vaccine. Wolbachia surface protein (WSP) derived from Wolbachia bacteria that have been reported to reside in sandflies can trigger TLR2 and TLR4 activation to favor Th1 immune responses, which may serve as a potential adjuvant candidate for the Leishmania vaccine. Therefore, in this study, helper T lymphocyte epitopes that may induce favorable immune responses were identified, and WSP was served as an adjuvant to design a novel multi-epitope vaccine candidate. METHODS Leishmania hemoglobin receptor (HbR), kinetoplastid membrane protein-11 (KMP-11), glycoprotein of 63 kDa (Gp63), thiol-specific antioxidant antigen (TSA), and sterol 24-c-methyltransferase (SMT) were analyzed by immunoinformatics to screen helper T lymphocyte and cytotoxic T lymphocyte epitopes. The antigenicity, toxicity, allergenicity, and IFN-γ-inducing epitope potential of T epitopes were predicted. The immune simulation was performed to calculate IFN-γ/interleukin (IL)-10 ratios to predict the immune responses induced by the helper T lymphocyte epitopes. Molecular docking and molecular dynamics simulations were carried out to analyze the interactions and stability of the docked complexes. The immune simulation of a multi-epitope vaccine candidate was carried out to predict its immunogenicity. RESULTS Some helper T lymphocyte epitopes that were predicted with the potential of inducing Th1 responses and cytotoxic T lymphocyte epitopes were selected to develop a novel multi-epitope vaccine candidate with WSP as an adjuvant. It was found in molecular docking and interaction analysis that TLR2 and TLR4 can recognize WSP, supporting the potential of adjuvant for the Leishmania vaccine. The results from immune simulation demonstrated that the multi-epitope vaccine candidate induced obvious cytokine (IFN-γ, IL-12, and IL-2) secretion and Th1 as well as memory T cell production, similar to that of Leish-111f. CONCLUSIONS Our vaccine candidate may interact with TLR2 and TLR4 and exhibit good immunogenicity, favoring Leishmania clearance. Our strategy provides a novel multi-epitope vaccine candidate and references for other vaccine developments.
Collapse
Affiliation(s)
- Jianhui Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| | - Tianhang Lv
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| | - Shuoyan Tan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| | - Lingqi Yu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| | - Yangjian Chi
- Department of Urinary Surgery, Jianou Municipal Hospital of Fujian Province, Jiaou, 353199, China
| | - Jianping Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Schumacher PP, Ajendra J, Lenz B, Risch F, Ehrens A, Nieto-Pérez C, Koschel M, Aden T, Hoerauf A, Hübner MP. Major basic protein and eosinophil peroxidase support microfilariae motility inhibition by eosinophil ETosis. PLoS Negl Trop Dis 2025; 19:e0012889. [PMID: 40029883 PMCID: PMC11902130 DOI: 10.1371/journal.pntd.0012889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/12/2025] [Accepted: 02/01/2025] [Indexed: 03/14/2025] Open
Abstract
Eosinophils are a hallmark of filarial infections. They are primary effector cells and can attack filariae by releasing extracellular traps that contain toxic cationic proteins, such as eosinophil peroxidase and major basic protein. Previous studies demonstrated that the extracellular traps of eosinophils are induced by the microfilariae of Litomosoides sigmodontis and that they inhibit their motility. In this project, we aimed to investigate the role of these cationic proteins during the extracellular trap-mediated immobilization of microfilariae. Our results indicate that extracellular DNA traps from knockout mice that lack eosinophil peroxidase or major basic protein are significantly less able to immobilize and kill microfilariae. Accordingly, the addition of these cationic proteins to in vitro cultures inhibited microfilariae motility in a dose-dependent manner. Moreover, we examined eosinophils from the natural host, the cotton rat Sigmodon hispidus. While eosinophils of cotton rats release DNA after stimulation with PMA and zymosan, microfilariae did not trigger this effector function. Our work shows that eosinophil granule proteins impair the motility of microfilariae and indicate significant differences in the effector functions of eosinophils between the mouse model and the natural host. We hypothesize that the absence of DNA nets released by cotton rat eosinophils in response to microfilariae may explain the higher microfilarial load and longer patency of the natural host.
Collapse
Affiliation(s)
- Pia Philippa Schumacher
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Jesuthas Ajendra
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Benjamin Lenz
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Frederic Risch
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Alexandra Ehrens
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Celia Nieto-Pérez
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Marianne Koschel
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Tilman Aden
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
3
|
Mansour A, Rodriguez L, Mansour H, Yehia M, Battaglia Parodi M. Presumed Onchocerciasis Chorioretinitis Spilling over into North America, Europe and Middle East. Diagnostics (Basel) 2023; 13:3626. [PMID: 38132210 PMCID: PMC10743067 DOI: 10.3390/diagnostics13243626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Newer generation ophthalmologists practicing in the developed world are not very familiar with some tropical ocular diseases due to the absence of reports in the ophthalmic literature over the past thirty years. Because of world globalization or due to influx of immigrants from sub-Saharan Africa, exotic retinal diseases are being encountered more often in ophthalmology clinics. METHODS A multicenter case series of chorioretinitis or optic neuritis with obscure etiology that used serial multimodal imaging. RESULTS Four cases qualified with the diagnosis of presumed ocular onchocerciasis based on their residence near fast rivers in endemic areas, multimodal imaging, long term follow-up showing progressive disease and negative workup for other diseases. Characteristic findings include peripapillary choroiditis with optic neuritis or atrophy, subretinal tracts of the microfilaria, progressive RPE atrophy around heavily pigmented multifocal chorioretinal lesions of varying shapes, subretinal white or crystalline dots, and response to ivermectin. Typical skin findings are often absent in such patients with chorioretinitis rendering the diagnosis more challenging. CONCLUSIONS Familiarity with the myriad ocular findings of onchocerciasis, and a high-degree of suspicion in subjects residing in endemic areas can help in the correct diagnosis and implementation of appropriate therapy. Onchocercal chorioretinitis is a slow, insidious, progressive, and prolonged polymorphous disease.
Collapse
Affiliation(s)
- Ahmad Mansour
- Retina Service, Department of Ophthalmology, American University of Beirut, Beirut 1107, Lebanon
| | - Linnet Rodriguez
- Retina Service, Wills Eye Hospital, Thomas Jefferson Medical Center, Philadelphia, PA 19107, USA; (L.R.); (H.M.)
| | - Hana Mansour
- Retina Service, Wills Eye Hospital, Thomas Jefferson Medical Center, Philadelphia, PA 19107, USA; (L.R.); (H.M.)
| | - Madeleine Yehia
- Retina Service, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Maurizio Battaglia Parodi
- Retina Service, Department of Ophthalmology, Ospedale San Raffaele, University Vita-Salute, 20132 Milan, Italy;
| |
Collapse
|
4
|
Rajković M, Glavinić U, Bogunović D, Vejnović B, Davitkov D, Đelić N, Stanimirović Z. "Slow kill" treatment reduces DNA damage in leukocytes of dogs naturally infected with Dirofilaria immitis. Vet Parasitol 2023; 322:110008. [PMID: 37643566 DOI: 10.1016/j.vetpar.2023.110008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/31/2023]
Abstract
Parasitic diseases are considered to be a cause of oxidative stress which leads to oxidative damage of various molecules including DNA. This can result in mutations, replication errors, and genome instability. Therefore, aim of this study was to measure DNA damage induced by Dirofilaria immitis in the single cells such as dogs' leukocytes using the comet assay. Also, we monitored the effects of antiparasitic treatment on mitigation of sensitivity to DNA damage in leukocytes treated with H2O2 using the in vivo and ex vivo comet assay. The whole blood samples from 34 dogs from Serbia were used, both males and females, from one to 13 years old, both pure and mixed-breeds. A rapid immunochromatographic test (Antigen Rapid Heartworm Ag 2.0 Test Kit, Bionote, Minnesota, USA) was used for the detection of D. immitis antigens. The modified Knott's test and PCR were used in the aim of detecting D. immitis microfilariae in dogs' blood, and evaluating the number of circulating microfilariae during the treatment. The genotoxicity evaluation showed that D. immitis infection resulted in DNA damage in naturally infected dogs, with the highest DNA damage occurring in the group of dogs with severe clinical signs. Treatment with ivermectin and doxycycline decreased DNA damage in leukocytes of dogs in all groups, as the intensity of infection decreased due to applied therapy. Ex vivo comet assay results showed that leukocytes exhibited decreased sensitivity to H2O2-induced DNA damage during treatment. The results of the modified Knott's test and PCR in our study showed that treatment with ivermectin and doxycycline was successful in decreasing the average number of microfilariae during the time and at the end eliminating them from the dogs' blood.
Collapse
Affiliation(s)
- Milan Rajković
- Department of Parasitology, University of Belgrade - Faculty of Veterinary Medicine, Belgrade 11000, Serbia
| | - Uroš Glavinić
- Department of Biology, University of Belgrade - Faculty of Veterinary Medicine, Belgrade 11000, Serbia
| | - Danica Bogunović
- Department of Parasitology, University of Belgrade - Faculty of Veterinary Medicine, Belgrade 11000, Serbia
| | - Branislav Vejnović
- Department of Economics and Statistics, University of Belgrade - Faculty of Veterinary Medicine, Belgrade 11000, Serbia.
| | - Darko Davitkov
- Department of Equine, Small Animal, Poultry and Wild Animal Diseases, University of Belgrade - Faculty of Veterinary Medicine, Belgrade 11000, Serbia
| | - Ninoslav Đelić
- Department of Biology, University of Belgrade - Faculty of Veterinary Medicine, Belgrade 11000, Serbia
| | - Zoran Stanimirović
- Department of Biology, University of Belgrade - Faculty of Veterinary Medicine, Belgrade 11000, Serbia
| |
Collapse
|
5
|
Alami N, Carter DC, Kwatra NV, Zhao W, Snodgrass L, Porcalla AR, Klein CE, Cohen DE, Gallenberg L, Neenan M, Carr RA, Marsh KC, Kempf DJ. A Phase-I pharmacokinetic, safety and food-effect study on flubentylosin, a novel analog of Tylosin-A having potent anti-Wolbachia and antifilarial activity. PLoS Negl Trop Dis 2023; 17:e0011392. [PMID: 37428804 PMCID: PMC10368248 DOI: 10.1371/journal.pntd.0011392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/19/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND The parasitic filariae responsible for onchocerciasis and lymphatic filariasis are host to an endosymbiotic bacterium, Wolbachia, which is essential to the fertility and development of the parasites. We performed a Phase-I pharmacokinetic, safety and food-effect study on single and multiple ascending doses of flubentylosin (ABBV-4083), a macrolide antibacterial with activity against Wolbachia, intended to sterilize and eliminate the parasites. METHODS Seventy-eight healthy adults were exposed to flubentylosin; 36 were exposed to single ascending 40, 100, 200, 400 or 1000 mg doses; 12 received 1000 mg in the food-effect part; and 30 received multiple ascending daily doses of 100 mg for 7 days, 200 mg for 7 or 14 days, or 400 mg for 7 or 14 days. Twenty-two subjects received placebo. RESULTS Maximum concentrations (Cmax) of flubentylosin were reached after 1-2 hours, with a half-life < 4 hours at doses ≤ 400 mg. Cmax and AUC increased in a more than dose-proportional manner, with similar exposure after multiple dose administration. The most frequently reported adverse events were nausea (8/78, 10%) and headache (6/78, 8%). Two subjects given a single dose of flubentylosin 1000 mg in the food-effect part experienced reversible asymptomatic ALT and AST elevations at Grade 2 or Grade 4, with no elevation in bilirubin, deemed related to study drug. The effect of food on exposure parameters was minimal. No treatment-related serious adverse events were reported. DISCUSSION Flubentylosin 400 mg for 14 days was the maximum tolerated dose in this first-in-human, Phase-I study in healthy adults. Based on preclinical pharmacokinetic/pharmacodynamic modeling, flubentylosin 400 mg once daily for 7 or 14 days is expected to be an effective dose. A Phase-II, proof-of-concept study with flubentylosin using these regimens is currently ongoing in patients with onchocerciasis in Africa.
Collapse
Affiliation(s)
- Negar Alami
- AbbVie, North Chicago, Illinois, United States of America
- Pfizer, Chicago, Illinois, United States of America
| | - David C Carter
- AbbVie, North Chicago, Illinois, United States of America
- Retirees of AbbVie, Chicago, Illinois, United States of America
| | - Nisha V Kwatra
- AbbVie, North Chicago, Illinois, United States of America
- Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Weihan Zhao
- AbbVie, North Chicago, Illinois, United States of America
| | | | | | - Cheri E Klein
- AbbVie, North Chicago, Illinois, United States of America
| | - Daniel E Cohen
- AbbVie, North Chicago, Illinois, United States of America
| | - Loretta Gallenberg
- AbbVie, North Chicago, Illinois, United States of America
- Retirees of AbbVie, Chicago, Illinois, United States of America
| | - Melina Neenan
- AbbVie, North Chicago, Illinois, United States of America
| | - Robert A Carr
- AbbVie, North Chicago, Illinois, United States of America
- Retirees of AbbVie, Chicago, Illinois, United States of America
| | - Kennan C Marsh
- AbbVie, North Chicago, Illinois, United States of America
| | - Dale J Kempf
- AbbVie, North Chicago, Illinois, United States of America
- Retirees of AbbVie, Chicago, Illinois, United States of America
| |
Collapse
|
6
|
Karunakaran I, Ritter M, Pfarr K, Klarmann-Schulz U, Debrah AY, Debrah LB, Katawa G, Wanji S, Specht S, Adjobimey T, Hübner MP, Hoerauf A. Filariasis research - from basic research to drug development and novel diagnostics, over a decade of research at the Institute for Medical Microbiology, Immunology and Parasitology, Bonn, Germany. FRONTIERS IN TROPICAL DISEASES 2023; 4:1126173. [PMID: 38655130 PMCID: PMC7615856 DOI: 10.3389/fitd.2023.1126173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Filariae are vector borne parasitic nematodes, endemic in tropical and subtropical regions causing avoidable infections ranging from asymptomatic to stigmatizing and disfiguring disease. The filarial species that are the major focus of our institution's research are Onchocerca volvulus causing onchocerciasis (river blindness), Wuchereria bancrofti and Brugia spp. causing lymphatic filariasis (elephantiasis), Loa loa causing loiasis (African eye worm), and Mansonella spp causing mansonellosis. This paper aims to showcase the contribution of our institution and our collaborating partners to filarial research and covers decades of long research spanning basic research using the Litomosoides sigmodontis animal model to development of drugs and novel diagnostics. Research with the L. sigmodontis model has been extensively useful in elucidating protective immune responses against filariae as well as in identifying the mechanisms of filarial immunomodulation during metabolic, autoimmune and infectious diseases. The institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany has also been actively involved in translational research in contributing to the identification of new drug targets and pre-clinical drug research with successful and ongoing partnership with sub-Saharan Africa, mainly Ghana (the Kumasi Centre for Collaborative Research (KCCR)), Cameroon (University of Buea (UB)) and Togo (Laboratoire de Microbiologie et de Contrôle de Qualité des Denrées Alimentaires (LAMICODA)), Asia and industry partners. Further, in the direction of developing novel diagnostics that are sensitive, time, and labour saving, we have developed sensitive qPCRs as well as LAMP assays and are currently working on artificial intelligence based histology analysis for onchocerciasis. The article also highlights our ongoing research and the need for novel animal models and new drug targets.
Collapse
Affiliation(s)
- Indulekha Karunakaran
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Kenneth Pfarr
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Ute Klarmann-Schulz
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Alexander Yaw Debrah
- Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Center for Collaborative Research (KCCR), Kumasi, Ghana
| | - Linda Batsa Debrah
- Kumasi Center for Collaborative Research (KCCR), Kumasi, Ghana
- Department of Clinical Microbiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Gnatoulma Katawa
- Unité de Recherche en Immunologie et Immunomodulation (UR2IM)/Laboratoire de Microbiologie et de Contrôle de Qualité des Denrées Alimentaires (LAMICODA), Ecole Supérieure des Techniques Biologiques et Alimentaires, Université de Lomé, Lomé, Togo
| | - Samuel Wanji
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| | - Sabine Specht
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | - Tomabu Adjobimey
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Marc P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
7
|
Fordjour FA, Kwarteng A. The filarial and the antibiotics: Single or combination therapy using antibiotics for filariasis. Front Cell Infect Microbiol 2022; 12:1044412. [PMID: 36467729 PMCID: PMC9712956 DOI: 10.3389/fcimb.2022.1044412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/24/2022] [Indexed: 12/01/2023] Open
Abstract
Filarial infections caused by nematodes are one of the major neglected tropical diseases with public health concern. Although there is significant decrease in microfilariae (mf) prevalence following mass drug administration (IVM/DEC/ALB administration), this is transient, in that there is reported microfilaria repopulation 6-12 months after treatment. Wolbachia bacteria have been recommended as a novel target presenting antibiotic-based treatment for filarial disease. Potency of antibiotics against filarial diseases is undoubtful, however, the duration for treatment remains a hurdle yet to be overcome in filarial disease treatment.
Collapse
Affiliation(s)
- Fatima Amponsah Fordjour
- Department of Microbiology, University for Development Studies (UDS), Tamale, Ghana
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Alexander Kwarteng
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| |
Collapse
|
8
|
Ehrens A, Hoerauf A, Hübner MP. Eosinophils in filarial infections: Inducers of protection or pathology? Front Immunol 2022; 13:983812. [PMID: 36389745 PMCID: PMC9659639 DOI: 10.3389/fimmu.2022.983812] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/05/2022] [Indexed: 05/29/2024] Open
Abstract
Filariae are parasitic roundworms, which can cause debilitating diseases such as lymphatic filariasis and onchocerciasis. Lymphatic filariasis, also known as elephantiasis, and onchocerciasis, commonly referred to as river blindness, can lead to stigmatizing pathologies and present a socio-economic burden for affected people and their endemic countries. Filariae typically induce a type 2 immune response, which is characterized by cytokines, i.e., IL-4, IL-5 and IL-13 as well as type 2 immune cells including alternatively activated macrophages, innate lymphoid cells and Th2 cells. However, the hallmark characteristic of filarial infections is a profound eosinophilia. Eosinophils are innate immune cells and pivotal in controlling helminth infections in general and filarial infections in particular. By modulating the function of other leukocytes, eosinophils support and drive type 2 immune responses. Moreover, as primary effector cells, eosinophils can directly attack filariae through the release of granules containing toxic cationic proteins with or without extracellular DNA traps. At the same time, eosinophils can be a driving force for filarial pathology as observed during tropical pulmonary eosinophilia in lymphatic filariasis, in dermatitis in onchocerciasis patients as well as adverse events after treatment of onchocerciasis patients with diethylcarbamazine. This review summarizes the latest findings of the importance of eosinophil effector functions including the role of eosinophil-derived proteins in controlling filarial infections and their impact on filarial pathology analyzing both human and experimental animal studies.
Collapse
Affiliation(s)
- Alexandra Ehrens
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
9
|
Otiti-Sengeri J, Omaido BA, Bhwana D, Nakanjako D, Missiru M, Muwonge M, Amaral LJ, Mmbando BP, Colebunders R. High Prevalence of Glaucoma among Patients in an Onchocerciasis Endemic Area (Mahenge, Tanzania). Pathogens 2022; 11:1046. [PMID: 36145478 PMCID: PMC9501165 DOI: 10.3390/pathogens11091046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/22/2022] Open
Abstract
Onchocerciasis is known to cause skin lesions and blindness, but there is also epidemiological evidence that onchocerciasis is associated with epilepsy, including nodding syndrome. We carried out ocular exams in persons with epilepsy in Mahenge, an onchocerciasis endemic area with a high prevalence of epilepsy in Tanzania. We recruited 278 consecutive persons with epilepsy attending the epilepsy clinic at Mahenge hospital and satellite clinics in rural villages. They underwent a general physical and a detailed ocular examination and were tested for onchocerciasis Ov16 IgG4 antibodies. Glaucoma was defined by a raised intraocular pressure above 21 mmHg with evidence of typical glaucomatous disc changes in one or both eyes. Among the 278 participants, median age 27 (IQR 21-38) years, 55.4% were female; 151/210 (71.9%) (95% CI: 65.3-77.9) were Ov16 positive. The most frequent ophthalmic lesions were glaucoma (33.1%), vitreous opacities (6.5%) and cataracts (2.9%). In multivariate analysis, glaucoma (adjusted IRR = 1.46; 95% CI: 1.24-1.70) and age (adjusted IRR = 1.01; 95% CI: 1.01-1.02) were significantly associated with onchocerciasis. In conclusion, a high prevalence of glaucoma was observed among Ov16 positive persons with epilepsy. Persons with epilepsy with O. volvulus infection should undergo screening for glaucoma to prevent one of the causes of preventable blindness.
Collapse
Affiliation(s)
- Juliet Otiti-Sengeri
- Department of Ophthalmology, College of Health Sciences, Makerere University, Kampala P.O. Box 7072, Uganda
| | - Blair Andrew Omaido
- Department of Ophthalmology, College of Health Sciences, Makerere University, Kampala P.O. Box 7072, Uganda
| | - Dan Bhwana
- National Institute for Medical Research, Tanga Centre, Tanga P.O. Box 5004, Tanzania
| | - Damalie Nakanjako
- Department of Internal Medicine, College of Health Sciences, Makerere University, Kampala P.O. Box 7072, Uganda
| | - Malik Missiru
- Department of Ophthalmology, Mahenge District Hospital, Mahenge P.O. Box 4, Tanzania
| | - Musa Muwonge
- School of Medicine, Soroti University, Soroti P.O. Box 690, Uganda
| | - Luis-Jorge Amaral
- Global Health Institute, University of Antwerp, Kinsbergen Centrum, Doornstraat 331, 2610 Antwerp, Belgium
| | - Bruno P. Mmbando
- National Institute for Medical Research, Tanga Centre, Tanga P.O. Box 5004, Tanzania
| | - Robert Colebunders
- Global Health Institute, University of Antwerp, Kinsbergen Centrum, Doornstraat 331, 2610 Antwerp, Belgium
| |
Collapse
|
10
|
Wu Y, Duffey M, Alex SE, Suarez-Reyes C, Clark EH, Weatherhead JE. The role of helminths in the development of non-communicable diseases. Front Immunol 2022; 13:941977. [PMID: 36119098 PMCID: PMC9473640 DOI: 10.3389/fimmu.2022.941977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/01/2022] [Indexed: 12/15/2022] Open
Abstract
Non-communicable diseases (NCDs) like cardiovascular disease, chronic respiratory diseases, cancers, diabetes, and neuropsychiatric diseases cause significant global morbidity and mortality which disproportionately affect those living in low resource regions including low- and middle-income countries (LMICs). In order to reduce NCD morbidity and mortality in LMIC it is imperative to understand risk factors associated with the development of NCDs. Certain infections are known risk factors for many NCDs. Several parasitic helminth infections, which occur most commonly in LMICs, have been identified as potential drivers of NCDs in parasite-endemic regions. Though understudied, the impact of helminth infections on the development of NCDs is likely related to helminth-specific factors, including species, developmental stage and disease burden. Mechanical and chemical damage induced by the helminth in combination with pathologic host immune responses contribute to the long-term inflammation that increases risk for NCD development. Robust studies from animal models and human clinical trials are needed to understand the immunologic mechanisms of helminth-induced NCDs. Understanding the complex connection between helminths and NCDs will aid in targeted public health programs to reduce helminth-induced NCDs and reduce the high rates of morbidity that affects millions of people living in parasite-endemic, LMICs globally.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Megan Duffey
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States,Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, United States
| | - Saira Elizabeth Alex
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Charlie Suarez-Reyes
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Eva H. Clark
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States,Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, United States,National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Jill E. Weatherhead
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States,Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, United States,National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States,*Correspondence: Jill E. Weatherhead,
| |
Collapse
|
11
|
Arellano AA, Sommer AJ, Coon KL. Beyond canonical models: why a broader understanding of Diptera-microbiota interactions is essential for vector-borne disease control. Evol Ecol 2022; 37:165-188. [PMID: 37153630 PMCID: PMC10162596 DOI: 10.1007/s10682-022-10197-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vector-borne diseases constitute a major global public health threat. The most significant arthropod disease vectors are predominantly comprised of members of the insect order Diptera (true flies), which have long been the focus of research into host-pathogen dynamics. Recent studies have revealed the underappreciated diversity and function of dipteran-associated gut microbial communities, with important implications for dipteran physiology, ecology, and pathogen transmission. However, the effective parameterization of these aspects into epidemiological models will require a comprehensive study of microbe-dipteran interactions across vectors and related species. Here, we synthesize recent research into microbial communities associated with major families of dipteran vectors and highlight the importance of development and expansion of experimentally tractable models across Diptera towards understanding the functional roles of the gut microbiota in modulating disease transmission. We then posit why further study of these and other dipteran insects is not only essential to a comprehensive understanding of how to integrate vector-microbiota interactions into existing epidemiological frameworks, but our understanding of the ecology and evolution of animal-microbe symbiosis more broadly.
Collapse
Affiliation(s)
- Aldo A. Arellano
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Andrew J. Sommer
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kerri L. Coon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
12
|
Algammal AM, Alfifi KJ, Mabrok M, Alatawy M, Abdel-moneam DA, Alghamdi S, Azab MM, Ibrahim RA, Hetta HF, El-Tarabili RM. Newly Emerging MDR B. cereus in Mugil seheli as the First Report Commonly Harbor nhe, hbl, cytK, and pc-plc Virulence Genes and bla1, bla2, tetA, and ermA Resistance Genes. Infect Drug Resist 2022; 15:2167-2185. [PMID: 35498633 PMCID: PMC9052338 DOI: 10.2147/idr.s365254] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/15/2022] [Indexed: 01/23/2023] Open
Abstract
Background Bacillus cereus is a common food poisoning pathogen in humans. This study aimed to investigate the prevalence, molecular typing, antibiogram profile, pathogenicity, dissemination of virulence and antibiotic resistance genes associated with natural B. cereus infection among Mugil seheli. Methods Consequently, 120 M. seheli (40 healthy and 80 diseased) were obtained from private fish farms in Port-said Governorate, Egypt. Afterward, samples were processed for clinical, post-mortem, and bacteriological examinations. The recovered isolates were tested for antimicrobial susceptibility, phenotypic assessment of virulence factors, pathogeneicity, and PCR-based detection of virulence and antibiotic resistance genes. Results B. cereus was isolated from 30 (25%) examined fish; the highest prevalence was noticed in the liver (50%). The phylogenetic and sequence analyses of the gyrB gene revealed that the tested B. cereus isolate displayed a high genetic similarity with other B. cereus strains from different origins. All the recovered B. cereus isolates (n =60, 100%) exhibited β-hemolytic and lecithinase activities, while 90% (54/60) of the tested isolates were biofilm producers. Using PCR, the tested B. cereus isolates harbor nhe, hbl, cytK, pc-plc, and ces virulence genes with prevalence rates of 91.6%, 86.6%, 83.4%, 50%, and 33.4%, respectively. Moreover, 40% (24/60) of the tested B. cereus isolates were multidrug-resistant (MDR) to six antimicrobial classes and carried the bla1, bla2, tetA, and ermA genes. The experimentally infected fish with B. cereus showed variable mortality in direct proportion to the inoculated doses. Conclusion As far as we know, this is the first report that emphasized the existence of MDR B. cereus in M. seheli that reflects a threat to the public health and the aquaculture sector. Newly emerging MDR B. cereus in M. seheli commonly carried virulence genes nhe, hbl, cytK, and pc-plc, as well as resistance genes bla1, bla2, tetA, and ermA.
Collapse
Affiliation(s)
- Abdelazeem M Algammal
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Khyreyah J Alfifi
- Biology Department, Faculty of Science, Tabuk University, Tabuk, 71421, Saudi Arabia
| | - Mahmoud Mabrok
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Marfat Alatawy
- Biology Department, Faculty of Science, Tabuk University, Tabuk, 71421, Saudi Arabia
| | - Dalia A Abdel-moneam
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Cairo, 12613, Egypt
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Marwa M Azab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Reham A Ibrahim
- Marine Environmental Division- National Institute of Oceanography and Fisheries (NIOF), Suez, 43511, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Reham M El-Tarabili
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
13
|
Ajendra J, Allen JE. Neutrophils: Friend or Foe in Filariasis? Parasite Immunol 2022; 44:e12918. [DOI: 10.1111/pim.12918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Jesuthas Ajendra
- Institute for Medical Microbiology, Immunology and Parasitology University Hospital of Bonn Bonn Germany
| | - Judith E. Allen
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell‐Matrix Research, Manchester Academic Health Science Center University of Manchester Manchester UK
| |
Collapse
|
14
|
Ehrens A, Hoerauf A, Hübner MP. Current perspective of new anti-Wolbachial and direct-acting macrofilaricidal drugs as treatment strategies for human filariasis. GMS INFECTIOUS DISEASES 2022; 10:Doc02. [PMID: 35463816 PMCID: PMC9006451 DOI: 10.3205/id000079] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Filarial diseases like lymphatic filariasis and onchocerciasis belong to the Neglected Tropical Diseases and remain a public health problem in endemic countries. Lymphatic filariasis and onchocerciasis can lead to stigmatizing pathologies and present a socio-economic burden for affected people and their endemic countries. Current treatment recommendations by the WHO include mass drug administration with ivermectin for the treatment of onchocerciasis and a combination of ivermectin, albendazole and diethylcarbamazine (DEC) for the treatment of lymphatic filariasis in areas that are not co-endemic for onchocerciasis or loiasis. Limitations of these treatment strategies are due to potential severe adverse events in onchocerciasis and loiasis patients following DEC or ivermectin treatment, respectively, the lack of a macrofilaricidal efficacy of those drugs and the risk of drug resistance development. Thus, to achieve the elimination of transmission of onchocerciasis and the elimination of lymphatic filariasis as a public health problem by 2030, the WHO defined in its roadmap that new alternative treatment strategies with macrofilaricidal compounds are required. Within a collaboration of the non-profit organizations Drugs for Neglected Diseases initiative (DNDi), the Bill & Melinda Gates Foundation, and partners from academia and industry, several new promising macrofilaricidal drug candidates were identified, which will be discussed in this review.
Collapse
Affiliation(s)
- Alexandra Ehrens
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
15
|
McCann K, Grant W, Doyle SR. The genome sequence of the Australian filarial nematode, Cercopithifilaria johnstoni. Wellcome Open Res 2021; 6:259. [PMID: 34796277 PMCID: PMC8564745 DOI: 10.12688/wellcomeopenres.17258.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 11/20/2022] Open
Abstract
We present a genome assembly and annotation of an individual female
Cercopithifilaria johnstoni, a parasitic filarial nematode that is transmitted by hard ticks (Ixodidae) to infect a broad range of native Australian murid and marsupial hosts. The genome sequence is 76.9 Mbp in length, and although in draft form (N50 = 99 kbp, N50[n] = 232), is largely complete based on universally conserved orthologs (BUSCOs; genome = 94.9%, protein = 96.5%) and relative to other related filarial species. These data represent the first genomic resources for the genus
Cercopithifilaria, a group of parasites with a broad host range, and form the basis for comparative analysis with the human-infective parasite,
Onchocerca volvulus, both of which are responsible for similar eye and skin pathologies in their respective hosts.
Collapse
Affiliation(s)
- Kirsty McCann
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, Australia
| | - Warwick Grant
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, Australia
| | - Stephen R Doyle
- Parasites & Microbes Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| |
Collapse
|
16
|
McCann K, Grant W, Doyle SR. The genome sequence of the Australian filarial nematode, Cercopithifilaria johnstoni. Wellcome Open Res 2021; 6:259. [PMID: 34796277 PMCID: PMC8564745 DOI: 10.12688/wellcomeopenres.17258.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 09/02/2023] Open
Abstract
We present a genome assembly and annotation of an individual female Cercopithifilaria johnstoni, a parasitic filarial nematode that is transmitted by hard ticks (Ixodidae) to infect a broad range of native Australian murid and marsupial hosts. The genome sequence is 76.9 Mbp in length, and although in draft form (N50 = 99 kbp, N50[n] = 232), is largely complete based on universally conserved orthologs (BUSCOs; genome = 94.9%, protein = 96.5%) and relative to other related filarial species. These data represent the first genomic resources for the genus Cercopithifilaria, a group of parasites with a broad host range, and form the basis for comparative analysis with the human-infective parasite, Onchocerca volvulus, both of which are responsible for similar eye and skin pathologies in their respective hosts.
Collapse
Affiliation(s)
- Kirsty McCann
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, Australia
| | - Warwick Grant
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, Australia
| | - Stephen R. Doyle
- Parasites & Microbes Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| |
Collapse
|
17
|
Risch F, Ritter M, Hoerauf A, Hübner MP. Human filariasis-contributions of the Litomosoides sigmodontis and Acanthocheilonema viteae animal model. Parasitol Res 2021; 120:4125-4143. [PMID: 33547508 PMCID: PMC8599372 DOI: 10.1007/s00436-020-07026-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/20/2020] [Indexed: 12/16/2022]
Abstract
Filariae are vector-borne parasitic nematodes that are endemic worldwide, in tropical and subtropical regions. Important human filariae spp. include Onchocerca volvulus, Wuchereria bancrofti and Brugia spp., and Loa loa and Mansonella spp. causing onchocerciasis (river blindness), lymphatic filariasis (lymphedema and hydrocele), loiasis (eye worm), and mansonelliasis, respectively. It is estimated that over 1 billion individuals live in endemic regions where filarial diseases are a public health concern contributing to significant disability adjusted life years (DALYs). Thus, efforts to control and eliminate filarial diseases were already launched by the WHO in the 1970s, especially against lymphatic filariasis and onchocerciasis, and are mainly based on mass drug administration (MDA) of microfilaricidal drugs (ivermectin, diethylcarbamazine, albendazole) to filarial endemic areas accompanied with vector control strategies with the goal to reduce the transmission. With the United Nations Sustainable Development Goals (SDGs), it was decided to eliminate transmission of onchocerciasis and stop lymphatic filariasis as a public health problem by 2030. It was also requested that novel drugs and treatment strategies be developed. Mouse models provide an important platform for anti-filarial drug research in a preclinical setting. This review presents an overview about the Litomosoides sigmodontis and Acanthocheilonema viteae filarial mouse models and their role in immunological research as well as preclinical studies about novel anti-filarial drugs and treatment strategies.
Collapse
Affiliation(s)
- Frederic Risch
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Marc P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany.
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany.
| |
Collapse
|
18
|
Ajendra J. Lessons in type 2 immunity: Neutrophils in Helminth infections. Semin Immunol 2021; 53:101531. [PMID: 34836773 DOI: 10.1016/j.smim.2021.101531] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/20/2022]
Abstract
Neutrophils constitute the body's first line of defense against invading pathogens. Equipped with a large array of tools, these immune cells are highly efficient in eliminating bacterial and viral infections, yet their activity can at the same time be detrimental to the host itself - this is the broad consensus on these granulocytes. However, the last decade has proven that neutrophils are a much more sophisticated cell type with unexpected and underappreciated functions in health and disease. In this review, we look at the latest discoveries in neutrophil biology with a focus on their role during the hallmark setting of type 2 immunity - helminth infection. We discuss the involvement of neutrophils in various helminth infection models and summarize the latest findings regarding neutrophil regulation and effector function. We will show that neutrophils have much more to offer than previously thought and while studies of neutrophils in helminth infections are still in its infancy, recent discoveries highlight more than ever that these cells are a key cog of the immune system, even during type 2 responses.
Collapse
Affiliation(s)
- Jesuthas Ajendra
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK; Wellcome Centre for Cell-Matrix Research, Manchester, M13 9PT, UK.
| |
Collapse
|
19
|
McGillan P, Berry NG, Nixon GL, Leung SC, Webborn PJH, Wenlock MC, Kavanagh S, Cassidy A, Clare RH, Cook DA, Johnston KL, Ford L, Ward SA, Taylor MJ, Hong WD, O’Neill PM. Development of Pyrazolopyrimidine Anti- Wolbachia Agents for the Treatment of Filariasis. ACS Med Chem Lett 2021; 12:1421-1426. [PMID: 34527179 PMCID: PMC8436242 DOI: 10.1021/acsmedchemlett.1c00216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/16/2021] [Indexed: 11/30/2022] Open
Abstract
![]()
Anti-Wolbachia therapy has been identified as
a viable treatment for combating filarial diseases. Phenotypic screening
revealed a series of pyrazolopyrimidine hits with potent anti-Wolbachia activity. This paper focuses on the exploration
of the SAR for this chemotype, with improvement of metabolic stability
and solubility profiles using medicinal chemistry approaches. Organic
synthesis has enabled functionalization of the pyrazolopyrimidine
core at multiple positions, generating a library of compounds of which
many analogues possess nanomolar activity against Wolbachia
in vitro with improved DMPK parameters. A lead compound, 15f, was selected for in vivo pharmacokinetics
(PK) profiling in mice. The combination of potent anti-Wolbachia activity in two in vitro assessments plus the exceptional
oral PK profiles in mice puts this lead compound in a strong position
for in vivo proof-of-concept pharmacodynamics studies
and demonstrates the strong potential for further optimization and
development of this series for treatment of filariasis in the future.
Collapse
Affiliation(s)
- Paul McGillan
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - Neil G. Berry
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - Gemma L. Nixon
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - Suet C. Leung
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - Peter J. H. Webborn
- Drug Safety & Metabolism, IMED Biotech Unit, AstraZeneca U.K., Cambridge CB2 0AA, United Kingdom
| | - Mark C. Wenlock
- Drug Safety & Metabolism, IMED Biotech Unit, AstraZeneca U.K., Cambridge CB2 0AA, United Kingdom
| | - Stefan Kavanagh
- Oncology Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, United Kingdom
| | - Andrew Cassidy
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Rachel H. Clare
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Darren A. Cook
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Kelly L. Johnston
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
- Institute of Systems, Molecular & Integrative Biology, School of Life Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Louise Ford
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Stephen A. Ward
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Mark J. Taylor
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - W. David Hong
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Paul M. O’Neill
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| |
Collapse
|
20
|
Brattig NW, Cheke RA, Garms R. Onchocerciasis (river blindness) - more than a century of research and control. Acta Trop 2021; 218:105677. [PMID: 32857984 DOI: 10.1016/j.actatropica.2020.105677] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/06/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022]
Abstract
This review summarises more than a century of research on onchocerciasis, also known as river blindness, and its control. River blindness is an infection caused by the tissue filaria Onchocerca volvulus affecting the skin, subcutaneous tissue and eyes and leading to blindness in a minority of infected persons. The parasite is transmitted by its intermediate hosts Simulium spp. which breed in rivers. Featured are history and milestones in onchocerciasis research and control, state-of-the-art data on the parasite, its endobacteria Wolbachia, on the vectors, previous and current prevalence of the infection, its diagnostics, the interaction between the parasite and its host, immune responses and the pathology of onchocerciasis. Detailed information is documented on the time course of control programmes in the afflicted countries in Africa and the Americas, a long road from previous programmes to current successes in control of the transmission of this infectious disease. By development, adjustment and optimization of the control measures, transmission by the vector has been interrupted in foci of countries in the Americas, in Uganda, in Sudan and elsewhere, followed by onchocerciasis eliminations. The current state and future perspectives for control, elimination and eradication within the next 20-30 years are described and discussed. This review contributes to a deeper comprehension of this disease by a tissue-dwelling filaria and it will be helpful in efforts to control and eliminate other filarial infections.
Collapse
|
21
|
Cheke RA, Little KE, Young S, Walker M, Basáñez MG. Taking the strain out of onchocerciasis? A reanalysis of blindness and transmission data does not support the existence of a savannah blinding strain of onchocerciasis in West Africa. ADVANCES IN PARASITOLOGY 2021; 112:1-50. [PMID: 34024357 DOI: 10.1016/bs.apar.2021.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Onchocerciasis (also known as 'river blindness'), is a neglected tropical disease (NTD) caused by the (Simulium-transmitted) filarial nematode Onchocerca volvulus. The occurrence of 'blinding' (savannah) and non-blinding (forest) parasite strains and the existence of corresponding, locally adapted Onchocerca-Simulium complexes were postulated to explain greater blindness prevalence in savannah than in forest foci. As a result, the World Health Organization (WHO) Onchocerciasis Control Programme in West Africa (OCP) focused anti-vectorial and anti-parasitic interventions in savannah endemic areas. In this paper, village-level data on blindness prevalence, microfilarial prevalence, and transmission intensity (measured by the annual transmission potential, the number of infective, L3, larvae per person per year) were extracted from 16 West-Central Africa-based publications, and analysed according to habitat (forest, forest-savannah mosaic, savannah) to test the dichotomous strain hypothesis in relation to blindness. When adjusting for sample size, there were no statistically significant differences in blindness prevalence between the habitats (one-way ANOVA, P=0.68, mean prevalence for forest=1.76±0.37 (SE); mosaic=1.49±0.38; savannah=1.89±0.26). The well-known relationship between blindness prevalence and annual transmission potential for savannah habitats was confirmed and shown to hold for (but not to be statistically different from) forest foci (excluding data from southern Côte d'Ivoire, in which blindness prevalence was significantly lower than in other West African forest communities, but which had been the focus of studies leading to the strain-blindness hypothesis that was accepted by OCP planners). We conclude that the evidence for a savannah blinding onchocerciasis strain in simple contrast with a non-blinding forest strain is equivocal. A re-appraisal of the strain hypothesis to explain patterns of ocular disease is needed to improve understanding of onchocerciasis epidemiology and disease burden estimates in the light of the WHO 2030 goals for onchocerciasis.
Collapse
Affiliation(s)
- Robert A Cheke
- Natural Resources Institute, Department of Agriculture, Health & Environment, University of Greenwich at Medway, Kent, United Kingdom; London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, Faculty of Medicine, School of Public Health, Imperial College London, London, United Kingdom
| | | | - Stephen Young
- Natural Resources Institute, Department of Agriculture, Health & Environment, University of Greenwich at Medway, Kent, United Kingdom
| | - Martin Walker
- London Centre for Neglected Tropical Disease Research, Department of Pathobiology and Populations Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Maria-Gloria Basáñez
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, Faculty of Medicine, School of Public Health, Imperial College London, London, United Kingdom; MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Faculty of Medicine, School of Public Health, Imperial College London, London, United Kingdom.
| |
Collapse
|
22
|
Fordjour FA, Asiedu E, Larbi A, Kwarteng A. The role of nuclear factor kappa B (NF-κB) in filarial pathology. J Cell Commun Signal 2021; 15:185-193. [PMID: 33630268 DOI: 10.1007/s12079-021-00607-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/24/2021] [Indexed: 12/11/2022] Open
Abstract
The transcription factor NF-κB promotes immunity by controlling the expression of genes involved in inflammation. Cytokines and pathogen-associated molecular patterns stimulate cell surface receptors, including toll-like receptors, to initiate a signalling cascade resulting in the activation of NF-κB. NF-κB drives the expression of target genes that mediate cell proliferation and release antimicrobial molecules and cytokines to activate an immune response. Filariasis is one of the most complex infections of humans. The actual causes of the heterogeneity in infection are not well understood. However, they have been attributed to differences in inflammatory processes that are immune-mediated, secondary bacterial infections, and host immune-genetics. Elevated production of angiogenic molecules (VEGFs, CEACAM and MMPs) in filarial pathology has been shown to be dependent on phosphorylation and intracellular activation of NF-κB. This review examines the role of NF-κB in filarial pathology and its potential therapeutic options for individuals with the disease.
Collapse
Affiliation(s)
- Fatima Amponsah Fordjour
- Department of Microbiology, University for Development Studies, UDS, Tamale, Ghana. .,Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana.
| | - Ebenezer Asiedu
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Amma Larbi
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Alexander Kwarteng
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana.,Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| |
Collapse
|
23
|
Kwarteng A, Sylverken A, Asiedu E, Ahuno ST. Genome editing as control tool for filarial infections. Biomed Pharmacother 2021; 137:111292. [PMID: 33581654 DOI: 10.1016/j.biopha.2021.111292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/26/2022] Open
Abstract
Human filarial infections are vector-borne nematode infections, which include lymphatic filariasis, onchocerciasis, loiasis, and mansonella filariasis. With a high prevalence in developing countries, filarial infections are responsible for some of the most debilitating morbidities and a vicious cycle of poverty and disease. Global initiatives set to eradicate these infections include community mass treatments, vector control, provision of care for morbidity, and search for vaccines. However, there are growing challenges associated with mass treatments, vector control, and antifilarial vaccine development. With the emergence of genome editing tools and successful applications in other infectious diseases, the integration of genetic editing techniques in future control strategies for filarial infections would offer the best option for eliminating filarial infections. In this review, we briefly discuss the mechanisms of the three main genetic editing techniques and explore the potential applications of these powerful tools to control filarial infections.
Collapse
Affiliation(s)
- Alexander Kwarteng
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana; Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana.
| | - Augustina Sylverken
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana; Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Ebenezer Asiedu
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Samuel Terkper Ahuno
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana; Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| |
Collapse
|
24
|
Varotto-Boccazzi I, Epis S, Arnoldi I, Corbett Y, Gabrieli P, Paroni M, Nodari R, Basilico N, Sacchi L, Gramiccia M, Gradoni L, Tranquillo V, Bandi C. Boosting immunity to treat parasitic infections: Asaia bacteria expressing a protein from Wolbachia determine M1 macrophage activation and killing of Leishmania protozoans. Pharmacol Res 2020; 161:105288. [PMID: 33160070 DOI: 10.1016/j.phrs.2020.105288] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023]
Abstract
Leishmaniases are severe vector-borne diseases affecting humans and animals, caused by Leishmania protozoans. Over one billion people and millions of dogs live in endemic areas for leishmaniases and are at risk of infection. Immune polarization plays a major role in determining the outcome of Leishmania infections: hosts displaying M1-polarized macrophages are protected, while those biased on the M2 side acquire a chronic infection that could develop into a deadly disease. The identification of the factors involved in M1 polarization is essential for the design of therapeutic and prophylactic interventions, including vaccines. Infection by the filarial nematode Dirofilaria immitis could be one of the factors that interfere with leishmaniasis in dogs. Indeed, filarial nematodes induce a partial skew of the immune response towards M1, likely caused by their bacterial endosymbionts, Wolbachia. Here we have examined the potential of AsaiaWSP, a bacterium engineered for the expression of the Wolbachia surface protein (WSP), as an inductor of M1 macrophage activation and Leishmania killing. Macrophages stimulated with AsaiaWSP displayed a strong leishmanicidal activity, comparable to that determined by the choice-drug amphotericin B. Additionally, AsaiaWSP determined the expression of markers of classical macrophage activation, including M1 cytokines, ROS and NO, and an increase in phagocytosis activity. Asaia not expressing WSP also induced macrophage activation, although at a lower extent compared to AsaiaWSP. In summary, the results of the present study confirm the immunostimulating properties of WSP highlighting a potential therapeutic efficacy against Leishmania parasites. Furthermore, Asaia was designed as a delivery system for WSP, thus developing a novel type of immunomodulating agent, worthy of being investigated for immuno-prophylaxis and -therapy of leishmaniases and other diseases that could be subverted by M1 macrophage activation.
Collapse
Affiliation(s)
- Ilaria Varotto-Boccazzi
- Department of Biosciences and Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", University of Milan, Milan, 20133, Italy
| | - Sara Epis
- Department of Biosciences and Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", University of Milan, Milan, 20133, Italy.
| | - Irene Arnoldi
- Department of Biosciences and Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", University of Milan, Milan, 20133, Italy; Department of Biology and Biotechnology, University of Pavia, Pavia, 27100, Italy
| | - Yolanda Corbett
- Department of Biosciences and Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", University of Milan, Milan, 20133, Italy
| | - Paolo Gabrieli
- Department of Biosciences and Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", University of Milan, Milan, 20133, Italy
| | - Moira Paroni
- Department of Biosciences, University of Milan, Milan, 20133, Italy
| | - Riccardo Nodari
- Department of Biosciences and Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", University of Milan, Milan, 20133, Italy
| | - Nicoletta Basilico
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, 20133, Italy
| | - Luciano Sacchi
- Department of Biology and Biotechnology, University of Pavia, Pavia, 27100, Italy
| | - Marina Gramiccia
- Unit of Vector-Borne Diseases, Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Luigi Gradoni
- Unit of Vector-Borne Diseases, Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Vito Tranquillo
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Bergamo, 24125, Italy
| | - Claudio Bandi
- Department of Biosciences and Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", University of Milan, Milan, 20133, Italy
| |
Collapse
|
25
|
Madhav M, Baker D, Morgan JAT, Asgari S, James P. Wolbachia: A tool for livestock ectoparasite control. Vet Parasitol 2020; 288:109297. [PMID: 33248417 DOI: 10.1016/j.vetpar.2020.109297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
Ectoparasites and livestock-associated insects are a major concern throughout the world because of their economic and welfare impacts. Effective control is challenging and relies mainly on the use of chemical insecticides and acaricides. Wolbachia, an arthropod and nematode-infecting, maternally-transmitted endosymbiont is currently of widespread interest for use in novel strategies for the control of a range of arthropod-vectored human diseases and plant pests but to date has received only limited consideration for use in the control of diseases of veterinary concern. Here, we review the currently available information on Wolbachia in veterinary ectoparasites and disease vectors, consider the feasibility for use of Wolbachia in the control of livestock pests and diseases and highlight critical issues which need further investigation.
Collapse
Affiliation(s)
- Mukund Madhav
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Dalton Baker
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jess A T Morgan
- Department of Agriculture and Fisheries, Brisbane, Australia
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter James
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
26
|
Zoonotic Implications of Onchocerca Species on Human Health. Pathogens 2020; 9:pathogens9090761. [PMID: 32957647 PMCID: PMC7560048 DOI: 10.3390/pathogens9090761] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
The genus Onchocerca includes several species associated with ungulates as hosts, although some have been identified in canids, felids, and humans. Onchocerca species have a wide geographical distribution, and the disease they produce, onchocerciasis, is generally seen in adult individuals because of its large prepatency period. In recent years, Onchocerca species infecting animals have been found as subcutaneous nodules or invading the ocular tissues of humans; the species involved are O. lupi, O. dewittei japonica, O. jakutensis, O. gutturosa, and O. cervicalis. These findings generally involve immature adult female worms, with no evidence of being fertile. However, a few cases with fertile O. lupi, O. dewittei japonica, and O. jakutensis worms have been identified recently in humans. These are relevant because they indicate that the parasite’s life cycle was completed in the new host—humans. In this work, we discuss the establishment of zoonotic Onchocerca infections in humans, and the possibility of these infections to produce symptoms similar to human onchocerciasis, such as dermatitis, ocular damage, and epilepsy. Zoonotic onchocerciasis is thought to be an emerging human parasitic disease, with the need to take measures such as One Health Strategies, in order to identify and control new cases in humans.
Collapse
|
27
|
Ashour DS, Othman AA. Parasite-bacteria interrelationship. Parasitol Res 2020; 119:3145-3164. [PMID: 32748037 DOI: 10.1007/s00436-020-06804-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022]
Abstract
Parasites and bacteria have co-evolved with humankind, and they interact all the time in a myriad of ways. For example, some bacterial infections result from parasite-dwelling bacteria as in the case of Salmonella infection during schistosomiasis. Other bacteria synergize with parasites in the evolution of human disease as in the case of the interplay between Wolbachia endosymbiont bacteria and filarial nematodes as well as the interaction between Gram-negative bacteria and Schistosoma haematobium in the pathogenesis of urinary bladder cancer. Moreover, secondary bacterial infections may complicate several parasitic diseases such as visceral leishmaniasis and malaria, due to immunosuppression of the host during parasitic infections. Also, bacteria may colonize the parasitic lesions; for example, hydatid cysts and skin lesions of ectoparasites. Remarkably, some parasitic helminths and arthropods exhibit antibacterial activity usually by the release of specific antimicrobial products. Lastly, some parasite-bacteria interactions are induced as when using probiotic bacteria to modulate the outcome of a variety of parasitic infections. In sum, parasite-bacteria interactions involve intricate processes that never cease to intrigue the researchers. However, understanding and exploiting these interactions could have prophylactic and curative potential for infections by both types of pathogens.
Collapse
Affiliation(s)
- Dalia S Ashour
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt.
| | - Ahmad A Othman
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
28
|
Hotterbeekx A, Lammens M, Idro R, Akun PR, Lukande R, Akena G, Nath A, Taylor J, Olwa F, Kumar-Singh S, Colebunders R. Neuroinflammation and Not Tauopathy Is a Predominant Pathological Signature of Nodding Syndrome. J Neuropathol Exp Neurol 2020; 78:1049-1058. [PMID: 31553445 PMCID: PMC6839030 DOI: 10.1093/jnen/nlz090] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Indexed: 11/15/2022] Open
Abstract
Nodding syndrome (NS) is an epileptic disorder occurring in children in African onchocerciasis endemic regions. Here, we describe the pathological changes in 9 individuals from northern Uganda who died with NS (n = 5) or other forms of onchocerciasis-associated epilepsy (OAE) (n = 4). Postmortem examinations were performed and clinical information was obtained. Formalin-fixed brain samples were stained by hematoxylin and eosin and immunohistochemistry was used to stain astrocytes (GFAP), macrophages (CD68), ubiquitin, α-synuclein, p62, TDP-43, amyloid β, and tau (AT8). The cerebellum showed atrophy and loss of Purkinje cells with hyperplasia of the Bergmann glia. Gliosis and features of past ventriculitis and/or meningitis were observed in all but 1 participant. CD68-positive macrophage clusters were observed in all cases in various degrees. Immunohistochemistry for amyloid β, α-synuclein, or TDP-43 was negative. Mild to sparse AT8-positive neurofibrillary tangle-like structures and threads were observed in 4/5 NS and 2/4 OAE cases, preferentially in the frontal and parietal cortex, thalamic- and hypothalamic regions, mesencephalon and corpus callosum. Persons who died with NS and other forms of OAE presented similar pathological changes but no generalized tauopathy, suggesting that NS and other forms of OAE are different clinical presentations of a same disease with a common etiology.
Collapse
Affiliation(s)
- An Hotterbeekx
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Martin Lammens
- Department of Pathology, Antwerp University Hospital, Antwerp, Belgium
| | - Richard Idro
- Department of Neuropathology, Born-Bunge Institute, University of Antwerp, Antwerp, Belgium
| | - Pamela R Akun
- Department of Paediatrics and Child Health, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Robert Lukande
- Department of Pathology, Makerere University, Medical School, Kampala, Uganda
| | | | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological, Disorders and Stroke, National Institutes of Health, Bethesda
| | - Joneé Taylor
- Department of Forensic Medicine, New York University, School of Medicine, New York City Office of the Chief Medical Examiner, New York, New York
| | - Francis Olwa
- Department of Diagnostics, Faculty of Health Sciences, Lira University, Lira, Uganda
| | - Samir Kumar-Singh
- Molecular Pathology Group, Laboratory of Cell Biology & Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Robert Colebunders
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
29
|
Epis S, Varotto-Boccazzi I, Crotti E, Damiani C, Giovati L, Mandrioli M, Biggiogera M, Gabrieli P, Genchi M, Polonelli L, Daffonchio D, Favia G, Bandi C. Chimeric symbionts expressing a Wolbachia protein stimulate mosquito immunity and inhibit filarial parasite development. Commun Biol 2020; 3:105. [PMID: 32144396 PMCID: PMC7060271 DOI: 10.1038/s42003-020-0835-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/18/2020] [Indexed: 12/28/2022] Open
Abstract
Wolbachia can reduce the capability of mosquitoes to transmit infectious diseases to humans and is currently exploited in campaigns for the control of arboviruses, like dengue and Zika. Under the assumption that Wolbachia-mediated activation of insect immunity plays a role in the reduction of mosquito vectorial capacity, we focused our attention on the Wolbachia surface protein (WSP), a potential inductor of innate immunity. We hypothesized that the heterologous expression of this protein in gut- and tissue-associated symbionts may reduce parasite transmission. We thus engineered the mosquito bacterial symbiont Asaia to express WSP (AsaiaWSP). AsaiaWSP induced activation of the host immune response in Aedes aegypti and Anopheles stephensi mosquitoes, and inhibited the development of the heartworm parasite Dirofilaria immitis in Ae. aegypti. These results consolidate previous evidence on the immune-stimulating property of WSP and make AsaiaWSP worth of further investigations as a potential tool for the control of mosquito-borne diseases. Epis and Varotto-Boccazzi et al. show that Wolbachia surface protein (WSP) activates host innate immunity in mosquitoes, inhibiting the development of the heartworm parasite in its insect host. This study suggests the possibility that the WSP-expressing symbiont may be harnessed to control mosquito-borne diseases.
Collapse
Affiliation(s)
- Sara Epis
- Department of Biosciences and Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", University of Milan, Milan, Italy.,Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Milan, Italy
| | - Ilaria Varotto-Boccazzi
- Department of Biosciences and Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", University of Milan, Milan, Italy.,Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Milan, Italy
| | - Elena Crotti
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Claudia Damiani
- Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Milan, Italy.,School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Laura Giovati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mauro Mandrioli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Biggiogera
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Paolo Gabrieli
- Department of Biosciences and Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", University of Milan, Milan, Italy.,Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Milan, Italy
| | - Marco Genchi
- Department of Veterinary Sciences, University of Parma, Parma, Italy
| | - Luciano Polonelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Daniele Daffonchio
- King Abdullah University of Science and Technology, Red Sea Research Center, Thuwal, Saudi Arabia
| | - Guido Favia
- Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Milan, Italy.,School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Claudio Bandi
- Department of Biosciences and Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", University of Milan, Milan, Italy. .,Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Milan, Italy.
| |
Collapse
|
30
|
Showler AJ, Kubofcik J, Ricciardi A, Nutman TB. Differences in the Clinical and Laboratory Features of Imported Onchocerciasis in Endemic Individuals and Temporary Residents. Am J Trop Med Hyg 2020; 100:1216-1222. [PMID: 30761981 DOI: 10.4269/ajtmh.18-0757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Many parasitic infections have different presenting features in endemic individuals (ENDs) and immunologically naive temporary residents (TRs). Temporary residents with loiasis often display acute symptoms and hypereosinophilia, in contrast to a parasite-induced subclinical state in chronically infected ENDs. Few studies have examined differences in ENDs and TRs infected with the related filarial parasite Onchocerca volvulus. We identified 40 TRs and 36 ENDs with imported onchocerciasis at the National Institutes of Health between 1976 and 2016. All study subjects received an extensive pretreatment medical history, physical examination, and laboratory investigations. We performed additional parasite-specific serologic testing on stored patient sera. Asymptomatic infection occurred in 12.5% of TRs and no ENDs (P = 0.06). Papular dermatitis was more common in TRs (47.5% versus 2.7%, P < 0.001), whereas more pigmentation changes occurred in ENDs (41.7% versus 15%, P = 0.01). Only endemic patients reported visual disturbance (13% versus 0%, P = 0.03). One TR (3.3%) had onchocercal eye disease, compared with 22.6% of ENDs (P = 0.053). Absolute eosinophil counts (AECs) were similar in ENDs and TRs (P = 0.5), and one-third of subjects had a normal AEC. Endemic individuals had higher filarial-specific IgG4 and were more likely to be positive for IgG4 antibodies to Ov-16. Temporary residents and ENDs with imported O. volvulus infection presented with different dermatologic manifestations; ocular involvement occurred almost exclusively in ENDs. Unlike Loa loa, clinical differences appear not to be eosinophil-mediated and may reflect chronicity, intensity of infection, or the presence of Wolbachia in O. volvulus.
Collapse
Affiliation(s)
- Adrienne J Showler
- Division of Infectious Disease, Georgetown University, Washington, District of Columbia.,Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Joseph Kubofcik
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Alessandra Ricciardi
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Thomas B Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
31
|
Abstract
Prokaryotes commonly undergo genome reduction, particularly in the case of symbiotic bacteria. Genome reductions tend toward the energetically favorable removal of unnecessary, redundant, or nonfunctional genes. However, without mechanisms to compensate for these losses, deleterious mutation and genetic drift might otherwise overwhelm a population. Among the mechanisms employed to counter gene loss and share evolutionary success within a population, gene transfer agents (GTAs) are increasingly becoming recognized as important contributors. Although viral in origin, GTA particles package fragments of their "host" genome for distribution within a population of cells, often in a synchronized manner, rather than selfishly packaging genes necessary for their spread. Microbes as diverse as archaea and alpha-proteobacteria have been known to produce GTA particles, which are capable of transferring selective advantages such as virulence factors and antibiotic resistance. In this review, we discuss the various types of GTAs identified thus far, focusing on a defined set of symbiotic alpha-proteobacteria known to carry them. Drawing attention to the predicted presence of these genes, we discuss their potential within the selective marine and terrestrial environments occupied by mutualistic, parasitic, and endosymbiotic microbes.
Collapse
Affiliation(s)
- Steen Christensen
- Department of Biological Sciences, Florida International University, Miami, FL, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Laura R Serbus
- Department of Biological Sciences, Florida International University, Miami, FL, USA. .,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
32
|
Short-course quinazoline drug treatments are effective in the Litomosoides sigmodontis and Brugia pahangi jird models. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2019; 12:18-27. [PMID: 31869759 PMCID: PMC6931063 DOI: 10.1016/j.ijpddr.2019.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 12/26/2022]
Abstract
The quinazolines CBR417 and CBR490 were previously shown to be potent anti-wolbachials that deplete Wolbachia endosymbionts of filarial nematodes and present promising pre-clinical candidates for human filarial diseases such as onchocerciasis. In the present study we tested both candidates in two models of chronic filarial infection, namely the Litomosoides sigmodontis and Brugia pahangi jird model and assessed their long-term effect on Wolbachia depletion, microfilariae counts and filarial embryogenesis 16−18 weeks after treatment initiation (wpt). Once per day (QD) oral treatment with CBR417 (50 mg/kg) for 4 days or twice per day (BID) with CBR490 (25 mg/kg) for 7 days during patent L. sigmodontis infection reduced the Wolbachia load by >99% and completely cleared peripheral microfilaremia from 10–14 wpt. Similarly, 7 days of QD treatments (40 mg/kg) with CBR417 or CBR490 cleared >99% of Wolbachia from B. pahangi and reduced peritoneal microfilariae counts by 93% in the case of CBR417 treatment. Transmission electron microscopy analysis indicated intensive damage to the B. pahangi ovaries following CBR417 treatment and in accordance filarial embryogenesis was inhibited in both models after CBR417 or CBR490 treatment. Suboptimal treatment regimens of CBR417 or CBR490 did not lead to a maintained reduction of the microfilariae and Wolbachia load. In conclusion, CBR417 or CBR490 are pre-clinical candidates for filarial diseases, which achieve long-term clearance of Wolbachia endosymbionts of filarial nematodes, inhibit filarial embryogenesis and clear microfilaremia with treatments as short as 7 days. CBR417 and CBR490 provide long-term effects in 2 chronic filaria jird models. CBR417 and CBR490 deplete >99% Wolbachia in B. pahangi and L. sigmodontis filariae. CBR417 and CBR490 clear L. sigmodontis microfilariae after 10–14 weeks. CBR417 and CBR490 inhibit filarial embryogenesis in both models. Suboptimal doses do not maintain reduction of microfilariae and Wolbachia.
Collapse
|
33
|
Cho-Ngwa F, Mbah GE, Ayiseh RB, Ndi EM, Monya E, Tumanjong IM, Mainsah EN, Sakanari J, Lustigman S. Development and validation of an Onchocerca ochengi adult male worm gerbil model for macrofilaricidal drug screening. PLoS Negl Trop Dis 2019; 13:e0007556. [PMID: 31260456 PMCID: PMC6625737 DOI: 10.1371/journal.pntd.0007556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 07/12/2019] [Accepted: 06/18/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Onchocerciasis currently afflicts an estimated 15 million people and is the second leading infectious cause of blindness world-wide. The development of a macrofilaricide to cure the disease has been hindered by the lack of appropriate small laboratory animal models. This study therefore, was aimed at developing and validating the Mongolian gerbil, as an Onchocerca ochengi (the closest in phylogeny to O. volvulus) adult male worm model. METHODOLOGY/PRINCIPAL FINDINGS Mongolian gerbils (Meriones unguiculatus) were each implanted with 20 O. ochengi male worms (collected from infected cattle), in the peritoneum. Following drug or placebo treatments, the implanted worms were recovered from the animals and analyzed for burden, motility and viability. Worm recovery in control gerbils was on average 35%, with 89% of the worms being 100% motile. Treatment of the gerbils implanted with male worms with flubendazole (FBZ) resulted in a significant reduction (p = 0.0021) in worm burden (6.0% versus 27.8% in the control animals); all recovered worms from the treated group had 0% worm motility versus 91.1% motility in control animals. FBZ treatment had similar results even after four different experiments. Using this model, we tested a related drug, oxfendazole (OFZ), and found it to also significantly (p = 0.0097) affect worm motility (22.7% versus 95.0% in the control group). CONCLUSIONS/SIGNIFICANCE We have developed and validated a novel gerbil O. ochengi adult male worm model for testing new macrofilaricidal drugs in vivo. It was also used to determine the efficacy of oxfendazole in vivo.
Collapse
Affiliation(s)
- Fidelis Cho-Ngwa
- ANDI Centre of Excellence for Onchocerciasis Drug Research, Biotechnology Unit, Faculty of Science, University of Buea, Buea, Cameroon
| | - Glory Enjong Mbah
- ANDI Centre of Excellence for Onchocerciasis Drug Research, Biotechnology Unit, Faculty of Science, University of Buea, Buea, Cameroon
| | - Rene Bilingwe Ayiseh
- ANDI Centre of Excellence for Onchocerciasis Drug Research, Biotechnology Unit, Faculty of Science, University of Buea, Buea, Cameroon
| | - Emmanuel Menang Ndi
- ANDI Centre of Excellence for Onchocerciasis Drug Research, Biotechnology Unit, Faculty of Science, University of Buea, Buea, Cameroon
| | - Elvis Monya
- ANDI Centre of Excellence for Onchocerciasis Drug Research, Biotechnology Unit, Faculty of Science, University of Buea, Buea, Cameroon
| | - Irene Memeh Tumanjong
- ANDI Centre of Excellence for Onchocerciasis Drug Research, Biotechnology Unit, Faculty of Science, University of Buea, Buea, Cameroon
| | - Evans Ngandung Mainsah
- ANDI Centre of Excellence for Onchocerciasis Drug Research, Biotechnology Unit, Faculty of Science, University of Buea, Buea, Cameroon
| | - Judy Sakanari
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
| | - Sara Lustigman
- Lindsley F. Kimball Research Institute, New York City, New York, United States of America
| |
Collapse
|
34
|
Rowan-Nash AD, Korry BJ, Mylonakis E, Belenky P. Cross-Domain and Viral Interactions in the Microbiome. Microbiol Mol Biol Rev 2019; 83:e00044-18. [PMID: 30626617 PMCID: PMC6383444 DOI: 10.1128/mmbr.00044-18] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The importance of the microbiome to human health is increasingly recognized and has become a major focus of recent research. However, much of the work has focused on a few aspects, particularly the bacterial component of the microbiome, most frequently in the gastrointestinal tract. Yet humans and other animals can be colonized by a wide array of organisms spanning all domains of life, including bacteria and archaea, unicellular eukaryotes such as fungi, multicellular eukaryotes such as helminths, and viruses. As they share the same host niches, they can compete with, synergize with, and antagonize each other, with potential impacts on their host. Here, we discuss these major groups making up the human microbiome, with a focus on how they interact with each other and their multicellular host.
Collapse
Affiliation(s)
- Aislinn D Rowan-Nash
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Benjamin J Korry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Eleftherios Mylonakis
- Infectious Diseases Division, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
35
|
Veale CGL. Unpacking the Pathogen Box-An Open Source Tool for Fighting Neglected Tropical Disease. ChemMedChem 2019; 14:386-453. [PMID: 30614200 DOI: 10.1002/cmdc.201800755] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 12/13/2022]
Abstract
The Pathogen Box is a 400-strong collection of drug-like compounds, selected for their potential against several of the world's most important neglected tropical diseases, including trypanosomiasis, leishmaniasis, cryptosporidiosis, toxoplasmosis, filariasis, schistosomiasis, dengue virus and trichuriasis, in addition to malaria and tuberculosis. This library represents an ensemble of numerous successful drug discovery programmes from around the globe, aimed at providing a powerful resource to stimulate open source drug discovery for diseases threatening the most vulnerable communities in the world. This review seeks to provide an in-depth analysis of the literature pertaining to the compounds in the Pathogen Box, including structure-activity relationship highlights, mechanisms of action, related compounds with reported activity against different diseases, and, where appropriate, discussion on the known and putative targets of compounds, thereby providing context and increasing the accessibility of the Pathogen Box to the drug discovery community.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
36
|
Trichinella Spiralis: Impact on the Expression of Toll-like Receptor 4 ( TLR4) Gene During the Intestinal Phase of Experimental Trichinellosis. J Vet Res 2018; 62:493-496. [PMID: 30729207 PMCID: PMC6364173 DOI: 10.2478/jvetres-2018-0063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/08/2018] [Indexed: 11/20/2022] Open
Abstract
Introduction Toll-like receptors (TLRs) play a key role in the rapid activation of the innate immune response to a variety of pathogens. The aim of this study was to evaluate the effect of Trichinella spiralis infection on the level of expression of the tlr4 gene in mouse intestines during the intestinal phase of experimental trichinellosis. Material and Methods The experimental material consisted of the small and large intestines of BALB/c mice infected with Trichinella spiralis sampled at 4, 8, and 16 days post infection (dpi). Results A statistically significant increase was demonstrated in the tlr4 mRNA level isolated from the infected mice jejunum at 4, 8, and 16 dpi over the uninfected control. Moreover, at 4, 8, and 16 dpi in the jejunum of infected mice, a strong positive reaction for the presence of TLR4 protein compared with that of uninfected mice was observed. Conclusion Infection with T. spiralis changes the expression of the tlr4 gene in the small intestine of the mouse host.
Collapse
|
37
|
Hotterbeekx A, Namale Ssonko V, Oyet W, Lakwo T, Idro R. Neurological manifestations in Onchocerca volvulus infection: A review. Brain Res Bull 2018; 145:39-44. [PMID: 30458251 PMCID: PMC6382410 DOI: 10.1016/j.brainresbull.2018.08.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/22/2018] [Accepted: 08/25/2018] [Indexed: 11/17/2022]
Abstract
Human onchocerciasis, caused by infection by the filarial nematode Onchocerca volvulus, is a major neglected public health problem that affects millions of people in the endemic regions of sub-Saharan Africa and Latin America. Onchocerciasis is known to be associated with skin and eye disease and more recently, neurological features have been recognized as a major manifestation. Especially the latter poses a severe burden on affected individuals and their families. Although definite studies are awaited, preliminary evidence suggests that neurological disease may include the nodding syndrome, Nakalanga syndrome and epilepsy but to date, the exact pathophysiological mechanisms remain unclear. Currently, the only way to prevent Onchocera volvulus associated disease is through interventions that target the elimination of onchocerciasis through community distribution of ivermectin and larviciding the breeding sites of the Similium or blackfly vector in rivers. In this review, we discuss the epidemiology, potential pathological mechanisms as well as prevention and treatment strategies of onchocerciasis, focusing on the neurological disease.
Collapse
Affiliation(s)
- An Hotterbeekx
- University of Antwerp, Global Health Institute, Antwerp, Belgium
| | | | | | - Thomson Lakwo
- Ministry of Health, Division of Vector Control, Kampala, Uganda
| | - Richard Idro
- Makerere University College of Health Sciences, Kampala, Uganda; Centre for Tropical Neuroscience, Kampala, Uganda; University of Oxford, Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford, UK.
| |
Collapse
|
38
|
Rajamanickam A, Munisankar S, Bhootra Y, Dolla C, Nutman TB, Babu S. Elevated Systemic and Parasite-Antigen Stimulated Levels of Type III IFNs in a Chronic Helminth Infection and Reversal Following Anthelmintic Treatment. Front Immunol 2018; 9:2353. [PMID: 30405603 PMCID: PMC6205947 DOI: 10.3389/fimmu.2018.02353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/24/2018] [Indexed: 12/26/2022] Open
Abstract
Type III IFNs are important players in immunity to viral and bacterial infections. However, their association with helminth infections has not been examined. To explore the association of Type III IFNs with Strongyloides stercoralis (Ss) infection, we examined the systemic levels of IFN lambda-1, IFN lambda-2 and IFN lambda-3, IL-10, and CXCL10/IP-10 in Ss infected (INF, n = 44), helminth—uninfected (UN, n = 44) and in post-treatment INF individuals. We also examined the levels of IFN lambda-1, IFN lambda-2 and IFN lambda-3, IL-10, and CXCL10/IP-10 in whole blood culture supernatants stimulated with Ss somatic antigens, or PPD or LPS. Finally, we performed correlations of systemic Type III IFN levels with absolute numbers of dendritic cell subsets. Ss infection is characterized by elevated systemic levels of IFN lambda-1, IFN lambda-2 and IFN lambda-3, IL-10, and CXCL10/IP-10 in comparison to UN individuals and a significant reduction following anthelmintic treatment. Ss infection is also characterized by elevated levels of unstimulated or Ss antigen stimulated levels of IFN lambda-1, IFN lambda-2 and IFN lambda-3, CXCL10/IP-10 and a significant reduction following treatment. In addition, Ss infection is characterized by increased numbers of plasmacytoid and myeloid dendritic cells in comparison to UN individuals, with a significant reduction following anthelmintic treatment of INF individuals. Finally, Ss infection exhibits a significant positive correlation between the systemic levels of IFN lambda-2 and IFN lambda-3 and the numbers of plasmacytoid dendritic cells. Thus, Ss infection is characterized by elevations in systemic and antigen—induced levels of Type III IFNs, which is positively associated with the numbers of plasmacytoid dendritic cells and reversed upon anthelmintic treatment.
Collapse
Affiliation(s)
- Anuradha Rajamanickam
- National Institute of Health-NIRT-International Center for Excellence in Research, Chennai, India
| | - Saravanan Munisankar
- National Institute of Health-NIRT-International Center for Excellence in Research, Chennai, India
| | - Yukthi Bhootra
- National Institute of Health-NIRT-International Center for Excellence in Research, Chennai, India
| | | | - Thomas B Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Subash Babu
- National Institute of Health-NIRT-International Center for Excellence in Research, Chennai, India.,Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
39
|
Boursou D, Ndjonka D, Eisenbarth A, Manchang K, Paguem A, Ngwasiri NN, Vildina JD, Abanda B, Krumkamp R, van Hoorn S, Renz A, Achukwi MD, Liebau E, Brattig NW. Onchocerca - infected cattle produce strong antibody responses to excretory-secretory proteins released from adult male Onchocerca ochengi worms. BMC Infect Dis 2018; 18:200. [PMID: 29716541 PMCID: PMC5930424 DOI: 10.1186/s12879-018-3109-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 04/24/2018] [Indexed: 11/10/2022] Open
Abstract
Background The front line molecules from filarial worms and other nematodes or helminthes are their Excretory-Secretory (ES) products. Their interaction with the host cells, proteins and immune system accounts for the skin and eye pathology or hyposensitivity observed in human onchocerciasis. ES products and adult worms’ crude extracts from Onchocerca ochengi, a filarial nematode that infects the African zebu cattle, were utilized in the present study as a model for studying Onchocerca volvulus that causes river blindness in man. Methods The ES products were generated from adult male and female worms in vitro and analyzed with poly acrylamide gel electrophoresis (PAGE) and enzyme-linked immunosorbent assay (ELISA) using sera from Onchocerca-infected cattle and humans. The cattle sera were collected from a herd that had been exposed for six years to natural transmission of Onchocerca spp. The expressed reactivity was evaluated and differences analyzed statistically using Kruskal-Wallis rank and Chi-square tests. Results The gel electrophoretic analyses of 156 ES products from O. ochengi female and male worms and of two somatic extracts from three females and 25 males revealed differences in the protein pattern showing pronounced bands at 15, 30–50 and 75 kDa for male ES proteins and 15, 25 and 40–75 kDa for somatic extracts, respectively and less than 100 kDa for female worms. Proteins in the ES products and somatic extracts from female and male Onchocerca ochengi worms were recognized by IgG in sera from both Onchocerca-exposed cattle and humans. Bovine serum antibodies reacted more strongly with proteins in the somatic extracts than with those in the ES products. Interestingly, the reaction was higher with male ES products than with ES products from female worms, suggesting that the males which migrate from one nodule to another are more exposed to the host immune system than the females which remain encapsulated in intradermal nodules. Conclusions This study demonstrates that O. ochengi ES products and, in particular, extracts from male filariae may represent a good source of immunogenic proteins and potential vaccine candidates.
Collapse
Affiliation(s)
- Djafsia Boursou
- University of Ngaoundéré, Faculty of Science, Ngaoundéré, Cameroon
| | | | - Albert Eisenbarth
- Programme Onchocercoses, Field research station of the University of Tübingen, Ngaoundéré, Cameroon.,Eberhard Karls University, Institute of Evolution and Ecology, Comparative Zoology, Tübingen, Germany
| | - Kingsley Manchang
- Veterinary Research Laboratory, IRAD Wakwa Regional Centre, Ngaoundéré, Cameroon
| | - Archille Paguem
- University of Ngaoundéré, Faculty of Science, Ngaoundéré, Cameroon
| | | | | | - Babette Abanda
- University of Ngaoundéré, Faculty of Science, Ngaoundéré, Cameroon
| | - Ralf Krumkamp
- Bernhard Nocht Institute of Tropical Medicine, Disease Epidemiology Department, Hamburg, Germany
| | - Silke van Hoorn
- Bernhard Nocht Institute of Tropical Medicine, Disease Epidemiology Department, Hamburg, Germany
| | - Alfons Renz
- Eberhard Karls University, Institute of Evolution and Ecology, Comparative Zoology, Tübingen, Germany
| | | | | | - Norbert W Brattig
- Bernhard Nocht Institute of Tropical Medicine, Disease Epidemiology Department, Hamburg, Germany
| |
Collapse
|
40
|
Dietel AK, Kaltenpoth M, Kost C. Convergent Evolution in Intracellular Elements: Plasmids as Model Endosymbionts. Trends Microbiol 2018; 26:755-768. [PMID: 29650391 DOI: 10.1016/j.tim.2018.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 11/29/2022]
Abstract
Endosymbionts are organisms that live inside the cells of other species. This lifestyle is ubiquitous across the tree of life and is featured by unicellular eukaryotes, prokaryotes, and by extrachromosomal genetic elements such as plasmids. Given that all of these elements dwell in the cytoplasm of their host cell, they should be subject to similar selection pressures. Here we show that strikingly similar features have evolved in both bacterial endosymbionts and plasmids. Since host and endosymbiont are often metabolically tightly intertwined, they are difficult to disentangle experimentally. We propose that using plasmids as tractable model systems can help to solve this problem, thus allowing fundamental questions to be experimentally addressed about the ecology and evolution of endosymbiotic interactions.
Collapse
Affiliation(s)
- Anne-Kathrin Dietel
- Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Martin Kaltenpoth
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University, 55128 Mainz, Germany
| | - Christian Kost
- Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; Current address: Department of Ecology, School of Biology/Chemistry, University of Osnabrück, 49069 Osnabrück, Germany.
| |
Collapse
|
41
|
Jančaříková G, Houser J, Dobeš P, Demo G, Hyršl P, Wimmerová M. Characterization of novel bangle lectin from Photorhabdus asymbiotica with dual sugar-binding specificity and its effect on host immunity. PLoS Pathog 2017; 13:e1006564. [PMID: 28806750 PMCID: PMC5584973 DOI: 10.1371/journal.ppat.1006564] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 09/05/2017] [Accepted: 07/31/2017] [Indexed: 01/08/2023] Open
Abstract
Photorhabdus asymbiotica is one of the three recognized species of the Photorhabdus genus, which consists of gram-negative bioluminescent bacteria belonging to the family Morganellaceae. These bacteria live in a symbiotic relationship with nematodes from the genus Heterorhabditis, together forming a complex that is highly pathogenic for insects. Unlike other Photorhabdus species, which are strictly entomopathogenic, P. asymbiotica is unique in its ability to act as an emerging human pathogen. Analysis of the P. asymbiotica genome identified a novel fucose-binding lectin designated PHL with a strong sequence similarity to the recently described P. luminescens lectin PLL. Recombinant PHL exhibited high affinity for fucosylated carbohydrates and the unusual disaccharide 3,6-O-Me2-Glcβ1-4(2,3-O-Me2)Rhaα-O-(p-C6H4)-OCH2CH2NH2 from Mycobacterium leprae. Based on its crystal structure, PHL forms a seven-bladed β-propeller assembling into a homo-dimer with an inter-subunit disulfide bridge. Investigating complexes with different ligands revealed the existence of two sets of binding sites per monomer-the first type prefers l-fucose and its derivatives, whereas the second type can bind d-galactose. Based on the sequence analysis, PHL could contain up to twelve binding sites per monomer. PHL was shown to interact with all types of red blood cells and insect haemocytes. Interestingly, PHL inhibited the production of reactive oxygen species induced by zymosan A in human blood and antimicrobial activity both in human blood, serum and insect haemolymph. Concurrently, PHL increased the constitutive level of oxidants in the blood and induced melanisation in haemolymph. Our results suggest that PHL might play a crucial role in the interaction of P. asymbiotica with both human and insect hosts.
Collapse
Affiliation(s)
- Gita Jančaříková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Josef Houser
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavel Dobeš
- Department of Animal Physiology and Immunology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Gabriel Demo
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavel Hyršl
- Department of Animal Physiology and Immunology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michaela Wimmerová
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
42
|
Wilson AJ, Morgan ER, Booth M, Norman R, Perkins SE, Hauffe HC, Mideo N, Antonovics J, McCallum H, Fenton A. What is a vector? Philos Trans R Soc Lond B Biol Sci 2017; 372:20160085. [PMID: 28289253 PMCID: PMC5352812 DOI: 10.1098/rstb.2016.0085] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2016] [Indexed: 11/18/2022] Open
Abstract
Many important and rapidly emerging pathogens of humans, livestock and wildlife are 'vector-borne'. However, the term 'vector' has been applied to diverse agents in a broad range of epidemiological systems. In this perspective, we briefly review some common definitions, identify the strengths and weaknesses of each and consider the functional differences between vectors and other hosts from a range of ecological, evolutionary and public health perspectives. We then consider how the use of designations can afford insights into our understanding of epidemiological and evolutionary processes that are not otherwise apparent. We conclude that from a medical and veterinary perspective, a combination of the 'haematophagous arthropod' and 'mobility' definitions is most useful because it offers important insights into contact structure and control and emphasizes the opportunities for pathogen shifts among taxonomically similar species with similar feeding modes and internal environments. From a population dynamics and evolutionary perspective, we suggest that a combination of the 'micropredator' and 'sequential' definition is most appropriate because it captures the key aspects of transmission biology and fitness consequences for the pathogen and vector itself. However, we explicitly recognize that the value of a definition always depends on the research question under study.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'.
Collapse
Affiliation(s)
- Anthony James Wilson
- Vector-borne Viral Diseases Programme, The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK
| | - Eric René Morgan
- School of Veterinary Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Mark Booth
- School of Medicine, Pharmacy and Health, Durham University, Thornaby TS17 6BH, UK
| | - Rachel Norman
- School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Sarah Elizabeth Perkins
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
- Department of Biodiversity and Molecular Ecology, Centre for Research and Innovation, Fondazione Edmund Mach, Via E. Mach 1, 38010 S Michele all'Adige (TN), Italy
| | - Heidi Christine Hauffe
- Department of Biodiversity and Molecular Ecology, Centre for Research and Innovation, Fondazione Edmund Mach, Via E. Mach 1, 38010 S Michele all'Adige (TN), Italy
| | - Nicole Mideo
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Janis Antonovics
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Hamish McCallum
- Environmental Futures Research Institute, Griffith University, Nathan 4111, Queensland, Australia
| | - Andy Fenton
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
43
|
Armoo S, Doyle SR, Osei-Atweneboana MY, Grant WN. Significant heterogeneity in Wolbachia copy number within and between populations of Onchocerca volvulus. Parasit Vectors 2017; 10:188. [PMID: 28420428 PMCID: PMC5395808 DOI: 10.1186/s13071-017-2126-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/30/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Wolbachia are intracellular bacteria found in arthropods and several filarial nematode species. The filarial Wolbachia have been proposed to be involved in the immunopathology associated with onchocerciasis. Higher Wolbachia-to-nematode ratios have been reported in the savannah-ecotype compared to the forest-ecotype, and have been interpreted as consistent with a correlation between Wolbachia density and disease severity. However, factors such as geographic stratification and ivermectin drug exposure can lead to significant genetic heterogeneity in the nematode host populations, so we investigated whether Wolbachia copy number variation is also associated with these underlying factors. METHODS Genomic DNA was prepared from single adult nematodes representing forest and savannah ecotypes sampled from Togo, Ghana, Côte d'Ivoire and Mali. A qPCR assay was developed to measure the number of Wolbachia genome(s) per nematode genome. Next-generation sequencing (NGS) was also used to measure relative Wolbachia copy number, and independently verify the qPCR assay. RESULTS Significant variation was observed within the forest (range: 0.02 to 452.99; median: 10.58) and savannah (range: 0.01 to 1106.25; median: 9.10) ecotypes, however, no significant difference between ecotypes (P = 0.645) was observed; rather, strongly significant Wolbachia variation was observed within and between the nine study communities analysed (P = 0.021), independent of ecotype. Analysis of ivermectin-treated and untreated nematodes by qPCR showed no correlation (P = 0.869); however, an additional analysis of a subset of the nematodes by qPCR and NGS revealed a correlation between response to ivermectin treatment and Wolbachia copy number (P = 0.020). CONCLUSIONS This study demonstrates that extensive within and between population variation exists in the Wolbachia content of individual adult O. volvulus. The origin and functional significance of such variation (up to ~ 100,000-fold between worms; ~10 to 100-fold between communities) in the context of the proposed mutualistic relationship between the worms and the bacteria, and between the presence of Wolbachia and clinical outcome of infection, remains unclear. These data do not support a correlation between Wolbachia copy number and forest or savannah ecotype, and may have implications for the development of anti-Wolbachia drugs as a macrofilaricidal treatment of onchocerciasis. The biological significance of a correlation between variation in Wolbachia copy number and ivermectin response remains unexplained.
Collapse
Affiliation(s)
- Samuel Armoo
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Bundoora, 3083, VIC, Australia.,Environmental Biology and Health Division, Council for Scientific and Industrial Research, Water Research Institute, Accra, Ghana
| | - Stephen R Doyle
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Bundoora, 3083, VIC, Australia.,Present address: Parasite Genomics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Mike Y Osei-Atweneboana
- Environmental Biology and Health Division, Council for Scientific and Industrial Research, Water Research Institute, Accra, Ghana
| | - Warwick N Grant
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Bundoora, 3083, VIC, Australia.
| |
Collapse
|
44
|
Kwarteng A, Ahuno ST. Immunity in Filarial Infections: Lessons from Animal Models and Human Studies. Scand J Immunol 2017; 85:251-257. [DOI: 10.1111/sji.12533] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 01/27/2017] [Indexed: 02/03/2023]
Affiliation(s)
- A. Kwarteng
- Department of Biochemistry and Biotechnology; Kwame Nkrumah University of Science Technology, PMB; Kumasi Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR); KNUST, PMB; Kumasi Ghana
| | - S. T. Ahuno
- Department of Biochemistry and Biotechnology; Kwame Nkrumah University of Science Technology, PMB; Kumasi Ghana
| |
Collapse
|
45
|
Murdoch ME, Murdoch IE, Evans J, Yahaya H, Njepuome N, Cousens S, Jones BR, Abiose A. Pre-control relationship of onchocercal skin disease with onchocercal infection in Guinea Savanna, Northern Nigeria. PLoS Negl Trop Dis 2017; 11:e0005489. [PMID: 28355223 PMCID: PMC5386293 DOI: 10.1371/journal.pntd.0005489] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 04/10/2017] [Accepted: 03/13/2017] [Indexed: 01/22/2023] Open
Abstract
Background Onchocerca volvulus infection can result in blindness, itching and skin lesions. Previous research concentrated on blindness. Methods A clinical classification system of the cutaneous changes in onchocerciasis was used for the first time in this study within the context of an early ivermectin drug trial in the savanna region of Kaduna State, northern Nigeria. Skin examinations were performed in 6,790 individuals aged 5+ years in endemic communities and 1,343 individuals in nonendemic communities. Results / Discussion There was increased risk for all forms of onchocercal skin disease in endemic communities with the most common finding being the presence of nodules (1,438 individuals, 21.2%), followed by atrophy (367, 6.1% of those < 50 years), acute papular onchodermatitis, APOD (233, 3.4%), depigmentation (216, 3.2%) and chronic papular onchodermatitis, CPOD (155, 2.3%). A further 645 individuals (9.5%) complained of pruritus but had completely normal skin. APOD was more common in males whereas atrophy, hanging groin and nodules were more common in females. After controlling for age and sex, microfilarial positivity was a risk factor for CPOD, depigmentation, hanging groin and nodules (OR 1.54, p = 0.046; OR 2.29, p = 0.002; OR 2.18, p = 0.002 and OR 3.80, p <0.001 respectively). Comparable results were found using presence of nodules as the marker for infection. Microfilarial load showed similar, though weaker, results. A total of 2621(38.6%) endemic residents had itching with normal skin, or had one or more types of onchocercal skin disease including nodules, which may be considered as a composite index of the overall prevalence of onchocercal skin disease. Conclusion Significant levels of onchocercal skin disease were documented in this savanna area, which subsequently resulted in a reassessment of the true burden of skin disease in onchocerciasis. This paper represents the first detailed report of the association of onchocercal skin disease with markers for onchocercal infection. Onchocerciasis is a tropical parasitic infection caused by the nematode worm Onchocerca volvulus. The disease mainly occurs across tropical Africa and infection can result in blindness, debilitating itching and a variety of skin changes. Initial research concentrated mainly on the problem of blindness. A number of studies on onchocercal skin disease were performed but were difficult to interpret and compare because of the use of inconsistent terminology. Within the setting of one of the early trials of ivermectin in a savanna area of northern Nigeria, where there were known high rates of onchocercal blindness, we used a novel clinical classification of the skin changes in onchocerciasis. We identified significant levels of itching and various forms of onchocercal skin disease within these endemic communities. A positive skin-snip result proved to be a significant risk factor for the presence of chronic papular onchodermatitis (CPOD), depigmentation, hanging groin and onchocercal nodules. Comparable results were found when the presence of nodules was used as the marker for infection and similar, though weaker odds ratios were found with microfilarial load per se. The findings triggered a reassessment of the true burden of skin disease in onchocerciasis. It is the first detailed report of the association between onchocercal skin disease and markers of infection.
Collapse
Affiliation(s)
- Michele E. Murdoch
- St. John's Institute of Dermatology, London, United Kingdom
- Department of Dermatology, Watford General Hospital, West Herts Hospitals NHS Trust, Watford, Herts., United Kingdom
- * E-mail:
| | - Ian E. Murdoch
- Department of Ophthalmology, Ahmadu Bello University Hospital, Kaduna, Nigeria
- International Centre for Eye Health, Institute of Ophthalmology, London, United Kingdom
| | - Jennifer Evans
- Department of Ophthalmology, Ahmadu Bello University Hospital, Kaduna, Nigeria
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Haliru Yahaya
- Department of Medicine, Ahmadu Bello University Teaching Hospital, Kaduna, Nigeria
| | - Ngozi Njepuome
- Department of Medicine, Ahmadu Bello University Teaching Hospital, Kaduna, Nigeria
| | - Simon Cousens
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Barrie R. Jones
- Department of Ophthalmology, Ahmadu Bello University Hospital, Kaduna, Nigeria
- International Centre for Eye Health, Institute of Ophthalmology, London, United Kingdom
| | - Adenike Abiose
- Department of Ophthalmology, Ahmadu Bello University Hospital, Kaduna, Nigeria
- National Eye Centre, Kaduna, Nigeria
| |
Collapse
|
46
|
|
47
|
Ajendra J, Specht S, Ziewer S, Schiefer A, Pfarr K, Parčina M, Kufer TA, Hoerauf A, Hübner MP. NOD2 dependent neutrophil recruitment is required for early protective immune responses against infectious Litomosoides sigmodontis L3 larvae. Sci Rep 2016; 6:39648. [PMID: 28004792 PMCID: PMC5177913 DOI: 10.1038/srep39648] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/15/2016] [Indexed: 12/22/2022] Open
Abstract
Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) recognizes muramyl dipeptide (MDP) of bacterial cell walls, triggering NFκB-induced pro-inflammation. As most human pathogenic filariae contain Wolbachia endobacteria that synthesize the MDP-containing cell wall precursor lipid II, NOD2’s role during infection with the rodent filaria Litomosoides sigmodontis was investigated. In NFκB reporter-cells, worm-extract containing Wolbachia induced NOD2 and NOD1. NOD2-deficient mice infected with L. sigmodontis had significantly more worms than wildtype controls early in infection. Increased worm burden was not observed after subcutaneous infection, suggesting that protective NOD2-dependent immune responses occur within the skin. Flow cytometry demonstrated that neutrophil recruitment to the skin was impaired in NOD2−/− mice after intradermal injection of third stage larvae (L3), and blood neutrophil numbers were reduced after L. sigmodontis infection. PCR array supported the requirement of NOD2 for recruitment of neutrophils to the skin, as genes associated with neutrophil recruitment and activation were downregulated in NOD2−/− mice after intradermal L3 injection. Neutrophil depletion before L. sigmodontis infection increased worm recovery in wildtype mice, confirming that neutrophils are essential against invading L3 larvae. This study indicates that NOD-like receptors are implemented in first-line protective immune responses against filarial nematodes.
Collapse
Affiliation(s)
- Jesuthas Ajendra
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Sabine Specht
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Sebastian Ziewer
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Andrea Schiefer
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Kenneth Pfarr
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany.,German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Marijo Parčina
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Thomas A Kufer
- Institute of Nutritional Medicine, University Hohenheim, Stuttgart, Germany
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany.,German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Marc P Hübner
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| |
Collapse
|
48
|
Wolbachia endosymbionts induce neutrophil extracellular trap formation in human onchocerciasis. Sci Rep 2016; 6:35559. [PMID: 27752109 PMCID: PMC5067710 DOI: 10.1038/srep35559] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 10/03/2016] [Indexed: 12/12/2022] Open
Abstract
The endosymbiotic bacteria, Wolbachia, induce neutrophilic responses to the human helminth pathogen Onchocerca volvulus. The formation of Neutrophil Extracellular Traps (NETs), has been implicated in anti-microbial defence, but has not been identified in human helminth infection. Here, we demonstrate NETs formation in human onchocerciasis. Extracellular NETs and neutrophils were visualised around O. volvulus in nodules excised from untreated patients but not in nodules from patients treated with the anti-Wolbachia drug, doxycycline. Whole Wolbachia or microspheres coated with a synthetic Wolbachia lipopeptide (WoLP) of the major nematode Wolbachia TLR2/6 ligand, peptidoglycan associated lipoprotein, induced NETosis in human neutrophils in vitro. TLR6 dependency of Wolbachia and WoLP NETosis was demonstrated using purified neutrophils from TLR6 deficient mice. Thus, we demonstrate for the first time that NETosis occurs during natural human helminth infection and demonstrate a mechanism of NETosis induction via Wolbachia endobacteria and direct ligation of Wolbachia lipoprotein by neutrophil TLR2/6.
Collapse
|
49
|
Ocular parasitoses: A comprehensive review. Surv Ophthalmol 2016; 62:161-189. [PMID: 27720858 DOI: 10.1016/j.survophthal.2016.09.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 12/14/2022]
Abstract
Parasitic infections of the eyes are a major cause of ocular diseases across the globe. The causative agents range from simple organisms such as unicellular protozoans to complex metazoan helminths. The disease spectrum varies depending on the geographic location, prevailing hygiene, living and eating habits of the inhabitants, and the type of animals that surround them. They cause enormous ocular morbidity and mortality not because they are untreatable, but largely due to late or misdiagnosis, often from unfamiliarity with the diseases produced. We provide an up-to-date comprehensive overview of the ophthalmic parasitoses. Each section describes the causative agent, mode of transmission, geographic distribution, ocular pathologies, and their management for common parasites with brief mention of the ones that are rare.
Collapse
|
50
|
Kwarteng A, Ahuno ST, Akoto FO. Killing filarial nematode parasites: role of treatment options and host immune response. Infect Dis Poverty 2016; 5:86. [PMID: 27716412 PMCID: PMC5047298 DOI: 10.1186/s40249-016-0183-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/05/2016] [Indexed: 02/08/2023] Open
Abstract
Background There is compelling evidence that not only do anti-filarials significantly reduce larval forms, but that host immune responses also contribute to the clearance of filarial parasites; however, the underlying mechanisms have not been fully elucidated. Main text Filarial infections caused by Wuchereria bancrofti and Brugia species (lymphatic filariasis) and Onchocerca volvulus (onchocerciasis) affect almost 200 million individuals worldwide and pose major public health challenges in endemic regions. Indeed, the collective disability-adjusted life years for both infections is 3.3 million. Infections with these thread-like nematodes are chronic and, although most individuals develop a regulated state, a portion develop severe forms of pathology. Mass drug administration (MDA) programmes on endemic populations focus on reducing prevalence of people with microfilariae, the worm's offspring in the blood, to less than 1 %. Although this has been successful in some areas, studies show that MDA will be required for longer than initially conceived. Conclusion This paper highlights the mode of action of the various antifilarial treatment strategies and role of host immune response. Electronic supplementary material The online version of this article (doi:10.1186/s40249-016-0183-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexander Kwarteng
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), PMB, KNUST, Kumasi, Ghana. .,Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science Technology, PMB, Kumasi, Ghana.
| | - Samuel Terkper Ahuno
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science Technology, PMB, Kumasi, Ghana
| | - Freda Osei Akoto
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science Technology, PMB, Kumasi, Ghana
| |
Collapse
|