1
|
Ji CM, Feng XY, Huang YW, Chen RA. The Applications of Nanopore Sequencing Technology in Animal and Human Virus Research. Viruses 2024; 16:798. [PMID: 38793679 PMCID: PMC11125791 DOI: 10.3390/v16050798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, an increasing number of viruses have triggered outbreaks that pose a severe threat to both human and animal life, as well as caused substantial economic losses. It is crucial to understand the genomic structure and epidemiology of these viruses to guide effective clinical prevention and treatment strategies. Nanopore sequencing, a third-generation sequencing technology, has been widely used in genomic research since 2014. This technology offers several advantages over traditional methods and next-generation sequencing (NGS), such as the ability to generate ultra-long reads, high efficiency, real-time monitoring and analysis, portability, and the ability to directly sequence RNA or DNA molecules. As a result, it exhibits excellent applicability and flexibility in virus research, including viral detection and surveillance, genome assembly, the discovery of new variants and novel viruses, and the identification of chemical modifications. In this paper, we provide a comprehensive review of the development, principles, advantages, and applications of nanopore sequencing technology in animal and human virus research, aiming to offer fresh perspectives for future studies in this field.
Collapse
Affiliation(s)
- Chun-Miao Ji
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China; (C.-M.J.); (X.-Y.F.)
| | - Xiao-Yin Feng
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China; (C.-M.J.); (X.-Y.F.)
| | - Yao-Wei Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China;
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rui-Ai Chen
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China; (C.-M.J.); (X.-Y.F.)
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China;
| |
Collapse
|
2
|
Ao J, Ma AX, Li J, Wang CY, Fu DD, Du L, Yu C, Liu SL, Wang ZG, Pang DW. Real-Time Dissection of the Exosome Pathway for Influenza Virus Infection. ACS NANO 2024; 18:4507-4519. [PMID: 38270127 DOI: 10.1021/acsnano.3c11309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Exosomes play an important role in the spread of viral infections and immune escape. However, the exact ability and mechanisms by which exosomes produced during viral infections (vExos) infect host cells are still not fully understood. In this study, we developed a dual-color exosome labeling strategy that simultaneously labels the external and internal structures of exosomes with quantum dots to enable in situ monitoring of the transport process of vExos in live cells using the single-particle tracking technique. Our finding revealed that vExos contains the complete influenza A virus (IAV) genome and viral ribonucleoprotein complexes (vRNPs) proteins but lacks viral envelope proteins. Notably, these vExos have the ability to infect cells and produce progeny viruses. We also found that vExos are transported in three stages, slow-fast-slow, and move to the perinuclear region via microfilaments and microtubules. About 30% of internalized vExos shed the external membrane and release the internal vRNPs into the cytoplasm by fusion with endolysosomes. This study suggested that vExos plays a supporting role in IAV infection by assisting with IAV propagation in a virus-independent manner. It emphasizes the need to consider the infectious potential of vExos and draws attention to the potential risk of exosomes produced by viral infections.
Collapse
Affiliation(s)
- Jian Ao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Ai-Xin Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Jing Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Chun-Yu Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Dan-Dan Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Lei Du
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Cong Yu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Dai-Wen Pang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
3
|
Gilbertson B, Subbarao K. What Have We Learned by Resurrecting the 1918 Influenza Virus? Annu Rev Virol 2023; 10:25-47. [PMID: 37774132 DOI: 10.1146/annurev-virology-111821-104408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
The 1918 Spanish influenza pandemic was one of the deadliest infectious disease events in recorded history, resulting in approximately 50-100 million deaths worldwide. The origins of the 1918 virus and the molecular basis for its exceptional virulence remained a mystery for much of the 20th century because the pandemic predated virologic techniques to isolate, passage, and store influenza viruses. In the late 1990s, overlapping fragments of influenza viral RNA preserved in the tissues of several 1918 victims were amplified and sequenced. The use of influenza reverse genetics then permitted scientists to reconstruct the 1918 virus entirely from cloned complementary DNA, leading to new insights into the origin of the virus and its pathogenicity. Here, we discuss some of the advances made by resurrection of the 1918 virus, including the rise of innovative molecular research, which is a topic in the dual use debate.
Collapse
Affiliation(s)
- Brad Gilbertson
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Victoria, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia;
| |
Collapse
|
4
|
Kutter JS, Linster M, de Meulder D, Bestebroer TM, Lexmond P, Rosu ME, Richard M, de Vries RP, Fouchier RAM, Herfst S. Continued adaptation of A/H2N2 viruses during pandemic circulation in humans. J Gen Virol 2023; 104:001881. [PMID: 37650875 PMCID: PMC10721047 DOI: 10.1099/jgv.0.001881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/27/2023] [Indexed: 09/01/2023] Open
Abstract
Influenza A viruses of the H2N2 subtype sparked a pandemic in 1957 and circulated in humans until 1968. Because A/H2N2 viruses still circulate in wild birds worldwide and human population immunity is low, the transmissibility of six avian A/H2N2 viruses was investigated in the ferret model. None of the avian A/H2N2 viruses was transmitted between ferrets, suggesting that their pandemic risk may be low. The transmissibility, receptor binding preference and haemagglutinin (HA) stability of human A/H2N2 viruses were also investigated. Human A/H2N2 viruses from 1957 and 1958 bound to human-type α2,6-linked sialic acid receptors, but the 1958 virus had a more stable HA, indicating adaptation to replication and spread in the new host. This increased stability was caused by a previously unknown stability substitution G205S in the 1958 H2N2 HA, which became fixed in A/H2N2 viruses after 1958. Although individual substitutions were identified that affected the HA receptor binding and stability properties, they were not found to have a substantial effect on transmissibility of A/H2N2 viruses via the air in the ferret model. Our data demonstrate that A/H2N2 viruses continued to adapt during the first year of pandemic circulation in humans, similar to what was previously shown for the A/H1N1pdm09 virus.
Collapse
Affiliation(s)
- Jasmin S. Kutter
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Martin Linster
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
- Present address: Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Dennis de Meulder
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Theo M. Bestebroer
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Pascal Lexmond
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Miruna E. Rosu
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Robert P. de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Sander Herfst
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
5
|
Park J, Song CS, Chung DH, Choi S, Kwon J, Youk S, Lee DH. Chimeric H5 influenza virus-like particle vaccine elicits broader cross-clade antibody responses in chickens than in ducks. Front Vet Sci 2023; 10:1158233. [PMID: 37396994 PMCID: PMC10310301 DOI: 10.3389/fvets.2023.1158233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Eurasian-lineage highly pathogenic avian influenza (HPAI) H5 viruses have spread throughout Asia, the Middle East, Europe, Africa, and most recently, North and South America. These viruses are independently evolving into genetically and antigenically divergent clades, and broad-spectrum vaccines protecting against these divergent clades are needed. In this study, we developed a chimeric virus-like particle (VLP) vaccine co-expressing hemagglutinins from two clades (clades 1 and 2.3.2.1) of HPAI H5 viruses and performed comparative cross-clade hemagglutination inhibition (HI) analysis in chickens and ducks. The chimeric VLP immunization induced a significantly broader spectrum of antibodies against various clades of HPAI H5 viruses than monovalent VLPs both in chickens and ducks. While the chimeric VLP led to broadened antibody responses in both species, significantly lower levels of HI antibodies were elicited in ducks than in chickens. Moreover, boost immunization failed to increase antibody responses in ducks regardless of the VLPs used, in contrast to chickens that showed significantly enhanced antibody responses upon boost immunization. These results suggest (1) the potential application of the chimeric VLP technology in poultry to help control HPAI H5 viruses by offering broader antibody responses against antigenically different strains and (2) possible obstacles in generating high levels of antibody responses against HPAI H5 viruses in ducks via vaccination, implying the need for advanced vaccination strategies for ducks.
Collapse
Affiliation(s)
- Jaekeun Park
- College of Veterinary Medicine, Konkuk University, Seoul, South Korea
- Department of Veterinary Medicine, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, United States
| | - Chang-Seon Song
- College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - David Hyunjung Chung
- Department of Pathobiology and Veterinary Sciences, University of Connecticut, Storrs, CT, United States
| | - Sangyong Choi
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, United States
| | - Junghoon Kwon
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sungsu Youk
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Dong-Hun Lee
- College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| |
Collapse
|
6
|
Bustanji Y, Shihab KHA, El-Huneidi W, Semreen MH, Abu-Gharbieh E, Alzoubi KH, Alqudah MAY, Abuhelwa AY, Abu-Rish EY, Bajes H, Obaideen K, Hamad I, Soares NC, Faris ME. Analysis and mapping of global scientific research on human monkeypox over the past 20 years. Vet World 2023; 16:693-703. [PMID: 37235145 PMCID: PMC10206959 DOI: 10.14202/vetworld.2023.693-703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 02/27/2023] [Indexed: 05/28/2023] Open
Abstract
Background and Aim Human monkeypox is an emerging global threat. Hundreds of publications were disseminated in the last few months. This study aimed to map, analyze, and evaluate the bibliometric indicators of the global monkeypox research output. Materials and Methods All documents published in the past 20 years were retrieved using the Scopus database. Papers published in English and peer-reviewed journals were included. VOSviewer was used to create density and network visualization maps. Results A total of 1725 published documents were retrieved. Of these, 53% were published in 2022. The average number of authors per document was 4.2. Authors from the USA were the most active and published about 42.1% of the total documents. International collaboration was evident between the USA and both UK and Congo. Keywords mapping identified the main research lines in this field that correlate monkeypox with public health, smallpox, vaccination, and antiviral treatment. Conclusion This study analyzed and mapped the expanding field of monkeypox research across the world. The bibliometric analysis revealed that the United States has contributed greatly in terms of both individual researchers and academic institutions. There was less cooperation on a global scale than was anticipated. Fostering international cooperation is essential for countering this worldwide danger. Additional scientific research should be conducted to investigate the link between smallpox immunization and monkeypox epidemics.
Collapse
Affiliation(s)
- Yasser Bustanji
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272 United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| | - Katia H. Abu Shihab
- Department of Clinical Nutrition and Dietetics, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Waseem El-Huneidi
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272 United Arab Emirates
| | - Mohammad H. Semreen
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272 United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Eman Abu-Gharbieh
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272 United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Karem H. Alzoubi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272 United Arab Emirates
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mohammad A. Y. Alqudah
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272 United Arab Emirates
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Ahmad Y. Abuhelwa
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272 United Arab Emirates
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Eman Y. Abu-Rish
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| | - Hana Bajes
- Atlantic Cape Community College, Atlantic County, New Jersey, USA
| | - Khaled Obaideen
- Department of Sustainable Energy and Power Systems Research Centre, RISE, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Islam Hamad
- Department of Pharmacy, Faculty of Health Sciences, American University of Madaba, Amman, Jordan
| | - Nelson C. Soares
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272 United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Laboratory of Proteomics, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Av.a Padre Cruz, Lisbon, 1649-016, Portugal
| | - MoezAlIslam E. Faris
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272 United Arab Emirates
- Department of Clinical Nutrition and Dietetics, University of Sharjah, Sharjah, 27272, United Arab Emirates
| |
Collapse
|
7
|
The impact of COVID-19 on the economic performance of Wuhan, China (2019-2021). QUALITY & QUANTITY 2023; 57:847-862. [PMID: 35431342 PMCID: PMC8999993 DOI: 10.1007/s11135-022-01392-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/24/2022] [Indexed: 02/03/2023]
Abstract
This paper attempts to evaluate the impact of massive infectious and contagious diseases and its final impact on the economic performance anywhere and anytime. We are considering to evaluate the case of Wuhan, China. We are taking in consideration the case of COVID-19 to be evaluated under a domestic, national, and international level impact. In this paper, we also propose a new simulator to evaluate the impact of massive infections and contagious diseases on the economic performance subsequently. This simulator is entitled "The Impact of Pandemics on the Economic Performance Simulator (IPEP-Simulator)" Hence, this simulator tries to show a macro and micro analysis with different possible scenarios simultaneously. Finally, the IPEP-Simulator was applied to the case of Wuhan-China respectively.
Collapse
|
8
|
Mushtaq I, Umer M, Khan MA, Kadry S. Customer Prioritization Integrated Supply Chain Optimization Model with Outsourcing Strategies. BIG DATA 2022. [PMID: 35486833 DOI: 10.1089/big.2021.0292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pre-COVID-19, most of the supply chains functioned with more capacity than demand. However, COVID-19 changed traditional supply chains' dynamics, resulting in more demand than their production capacity. This article presents a multiobjective and multiperiod supply chain network design along with customer prioritization, keeping in view price discounts and outsourcing strategies to deal with the situation when demand exceeds the production capacity. Initially, a multiperiod, multiobjective supply chain network is designed that incorporates prices discounts, customer prioritization, and outsourcing strategies. The main objectives are profit and prioritization maximization and time minimization. The introduction of the prioritization objective function having customer ranking as a parameter and considering less capacity than demand and outsourcing differentiates this model from the literature. A four-valued neutrosophic multiobjective optimization method is introduced to solve the model developed. To validate the model, a case study of the supply chain of a surgical mask is presented as the real-life application of research. The research findings are useful for the managers to make price discounts and preferred customer prioritization decisions under uncertainty and imbalance between supply and demand. In future, the logic in the proposed model can be used to create web application for optimal decision-making in supply chains.
Collapse
Affiliation(s)
- Iram Mushtaq
- Department of Management Sciences, Sir Syed CASE Institute of Technology (SS-CASE-IT), Islamabad, Pakistan
| | - Muhammad Umer
- Department of Management Sciences, Sir Syed CASE Institute of Technology (SS-CASE-IT), Islamabad, Pakistan
| | | | - Seifedine Kadry
- Faculty of Applied Computing and Technology, Noroff University College, Kristiansand, Norway
| |
Collapse
|
9
|
Nguyen TT, Nguyen TTD, Tran NMA, Nguyen HT, Vo GV. Microneedles enable the development of skin-targeted vaccines against coronaviruses and influenza viruses. Pharm Dev Technol 2021; 27:83-94. [PMID: 34802372 DOI: 10.1080/10837450.2021.2008967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Throughout the COVID-19 pandemic, many have seriously worried that the plus burden of seasonal influenza that might create a destructive scenario, resulting in overwhelmed healthcare capacities and onwards loss of life. Many efforts to develop a safe and efficacious vaccine to prevent infection by coronavirus and influenza, highlight the importance of vaccination to combat infectious pathogens. While vaccines are traditionally given as injections into the muscle, microneedle (MN) patches designed to precisely deliver cargos into the cutaneous microenvironment, rich in immune cells, provide a noninvasive and self-applicable vaccination approach, reducing overall costs and improving access to vaccines in places with limited supply. The current review aimed to highlight advances in research on the development of MNs-mediated cutaneous vaccine delivery. Concluding remarks and challenges on MNs-based skin immunization are also provided to contribute to the rational development of safe and effective MN-delivered vaccines against these emerging infectious diseases.
Collapse
Affiliation(s)
- Thuy Trang Nguyen
- Faculty of Pharmacy, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Vietnam
| | - Thi Thuy Dung Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Nguyen-Minh-An Tran
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Huy Truong Nguyen
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University - Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam.,Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, Vietnam National University - Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam.,Vietnam National University - Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| |
Collapse
|
10
|
Wang Y, Yuan C, Xu X, Chong TH, Zhang L, Cheung PPH, Huang X. The mechanism of action of T-705 as a unique delayed chain terminator on influenza viral polymerase transcription. Biophys Chem 2021; 277:106652. [PMID: 34237555 DOI: 10.1016/j.bpc.2021.106652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 01/18/2023]
Abstract
Favipiravir (T-705) has been developed as a potent anti-influenza drug and exhibited a strong inhibition effect against a broad spectrum of RNA viruses. Its active form, ribofuranosyl-triphosphate (T-705-RTP), functions as a competitive substrate for the RNA-dependent RNA polymerase (RdRp) of the influenza A virus (IAV). However, the exact inhibitory mechanisms of T-705 remain elusive and subject to a long-standing debate. Although T-705 has been proposed to inhibit transcription by acting as a chain terminator, it is also paradoxically suggested to be a mutagen towards IAV RdRp by inducing mutations due to its ambiguous base pairing of C and U. Here, we combined biochemical assay with molecular dynamics (MD) simulations to elucidate the molecular mechanism underlying the inhibitory functions exerted by T-705 in IAV RdRp. Our in vitro transcription assay illustrated that IAV RdRp could recognize T-705 as a purine analogue and incorporate it into the nascent RNA strand. Incorporating a single T-705 is incapable of inhibiting transcription as extra natural nucleotides can be progressively added. However, when two consecutive T-705 are incorporated, viral transcription is completely terminated. MD simulations reveal that the sequential appearance of two T-705 in the nascent strand destabilizes the active site and disrupts the base stacking of the nascent RNA. Altogether, our results provide a plausible explanation for the inhibitory roles of T-705 targeting IAV RdRp by integrating the computational and experimental methods. Our study also offers a comprehensive platform to investigate the inhibition effect of antivirals and a novel explanation for the designing of anti-flu drugs.
Collapse
Affiliation(s)
- Yuqing Wang
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China; Bioengineering Graduate Program, Department of Biological and Chemical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Congmin Yuan
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China; Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Xinzhou Xu
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China; Bioengineering Graduate Program, Department of Biological and Chemical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Tin Hang Chong
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China; Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Lu Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peter Pak-Hang Cheung
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China; Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong; Li Ka Shing Institute of Health Sciences, Li Ka Shing Medical Sciences Building, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Xuhui Huang
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China; Bioengineering Graduate Program, Department of Biological and Chemical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong; Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong.
| |
Collapse
|
11
|
Saadati A, Kholafazad kordasht H, Ehsani M, Hasanzadeh M, Seidi F, Shadjou N. An innovative flexible and portable DNA based biodevice towards sensitive identification of Haemophilus influenzae bacterial genome: A new platform for the rapid and low cost recognition of pathogenic bacteria using point of care (POC) analysis. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Jaziri R, Miralam M. The impact of crisis and disasters risk management in COVID-19 times: Insights and lessons learned from Saudi Arabia. ETHICS, MEDICINE, AND PUBLIC HEALTH 2021; 18:100705. [PMID: 36569742 PMCID: PMC9765402 DOI: 10.1016/j.jemep.2021.100705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/25/2021] [Indexed: 12/27/2022]
Abstract
Background All countries all over the world strive to fight the outbreak of COVID-19 pandemic and their governments are facing unprecedented strains and challenges. Since COVID-19 has engendered socioeconomic recession and the deterioration of health systems, Insights and lessons from some countries can illustrate various approaches designing their people-centric health and socioeconomic policies. The kingdom of Saudi Arabia has implemented various measures and strategies to mitigate the spread of pandemic and to save the lives of people. Therefore, we investigate the role of the Saudi disaster risk reduction system (DRRS) to fight the virus outbreak and provide a safe environment for the well-being of its inhabitants. Methodology We use a qualitative case study methodology to document and analyze the crisis and disasters risk management framework within the hazard management process. The case study methodology is suitable in investigating a phenomenon in its real-life settings and contexts. Thus, we outline lessons learned from Saudi disaster risk management experience in combating COVID-19 pandemic. Results During COVID-19 disaster, we found that the Saudi disaster risk reduction system (DRRS) is structured into three main levels: strategic, operational and tactical. The strategic level represents the strategic planning division and runs audit and monitoring of overall decentralized units of crisis management at operational and tactical levels. The findings show that there are three policy implications: keep vigilance at the public national level, remaining flexible in a national management structure and good governance at local administration level. Conclusion The application of disaster risk reduction framework in COVID-19 times requires the use of multi-level strategies to protect vulnerable peoples during the four stages of mitigation (readiness), preparedness, response (implementation) and recovery (post-COVID).
Collapse
Affiliation(s)
- R. Jaziri
- College of Business, University of Jeddah, Asfan Road 285, P.O. Box: 42801, Jeddah 21551, Saudi Arabia,LAREMFIQ Laboratory, University of Sousse, Tunisia,Corresponding author at: College of Business, University of Jeddah, Asfan Road 285, P.O. Box: 42801, Jeddah 21551, Saudi Arabia
| | - M.S. Miralam
- College of Business, University of Jeddah, Asfan Road 285, P.O. Box: 42801, Jeddah 21551, Saudi Arabia
| |
Collapse
|
13
|
Xu Y, Lewandowski K, Downs LO, Kavanagh J, Hender T, Lumley S, Jeffery K, Foster D, Sanderson ND, Vaughan A, Morgan M, Vipond R, Carroll M, Peto T, Crook D, Walker AS, Matthews PC, Pullan ST. Nanopore metagenomic sequencing of influenza virus directly from respiratory samples: diagnosis, drug resistance and nosocomial transmission, United Kingdom, 2018/19 influenza season. ACTA ACUST UNITED AC 2021; 26. [PMID: 34240696 PMCID: PMC8268652 DOI: 10.2807/1560-7917.es.2021.26.27.2000004] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BackgroundInfluenza virus presents a considerable challenge to public health by causing seasonal epidemics and occasional pandemics. Nanopore metagenomic sequencing has the potential to be deployed for near-patient testing, providing rapid infection diagnosis, rationalising antimicrobial therapy, and supporting infection-control interventions.AimTo evaluate the applicability of this sequencing approach as a routine laboratory test for influenza in clinical settings.MethodsWe conducted Oxford Nanopore Technologies (Oxford, United Kingdom (UK)) metagenomic sequencing for 180 respiratory samples from a UK hospital during the 2018/19 influenza season, and compared results to routine molecular diagnostic standards (Xpert Xpress Flu/RSV assay; BioFire FilmArray Respiratory Panel 2 assay). We investigated drug resistance, genetic diversity, and nosocomial transmission using influenza sequence data.ResultsCompared to standard testing, Nanopore metagenomic sequencing was 83% (75/90) sensitive and 93% (84/90) specific for detecting influenza A viruses. Of 59 samples with haemagglutinin subtype determined, 40 were H1 and 19 H3. We identified an influenza A(H3N2) genome encoding the oseltamivir resistance S331R mutation in neuraminidase, potentially associated with an emerging distinct intra-subtype reassortant. Whole genome phylogeny refuted suspicions of a transmission cluster in a ward, but identified two other clusters that likely reflected nosocomial transmission, associated with a predominant community-circulating strain. We also detected other potentially pathogenic viruses and bacteria from the metagenome.ConclusionNanopore metagenomic sequencing can detect the emergence of novel variants and drug resistance, providing timely insights into antimicrobial stewardship and vaccine design. Full genome generation can help investigate and manage nosocomial outbreaks.
Collapse
Affiliation(s)
- Yifei Xu
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Kuiama Lewandowski
- Public Health England, National Infection Service, Porton Down, Salisbury, United Kingdom
| | - Louise O Downs
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom.,Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - James Kavanagh
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Thomas Hender
- Public Health England, National Infection Service, Porton Down, Salisbury, United Kingdom
| | - Sheila Lumley
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom.,Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Katie Jeffery
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Dona Foster
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Nicholas D Sanderson
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Ali Vaughan
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Marcus Morgan
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Richard Vipond
- Public Health England, National Infection Service, Porton Down, Salisbury, United Kingdom
| | - Miles Carroll
- Public Health England, National Infection Service, Porton Down, Salisbury, United Kingdom
| | - Timothy Peto
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom.,Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Derrick Crook
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom.,Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - A Sarah Walker
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Philippa C Matthews
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom.,Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom.,Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Steven T Pullan
- Public Health England, National Infection Service, Porton Down, Salisbury, United Kingdom
| |
Collapse
|
14
|
Bissinger T, Wu Y, Marichal-Gallardo P, Riedel D, Liu X, Genzel Y, Tan WS, Reichl U. Towards integrated production of an influenza A vaccine candidate with MDCK suspension cells. Biotechnol Bioeng 2021; 118:3996-4013. [PMID: 34219217 DOI: 10.1002/bit.27876] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/01/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022]
Abstract
Seasonal influenza epidemics occur both in northern and southern hemispheres every year. Despite the differences in influenza virus surface antigens and virulence of seasonal subtypes, manufacturers are well-adapted to respond to this periodical vaccine demand. Due to decades of influenza virus research, the development of new influenza vaccines is relatively straight forward. In similarity with the ongoing coronavirus disease 2019 pandemic, vaccine manufacturing is a major bottleneck for a rapid supply of the billions of doses required worldwide. In particular, egg-based vaccine production would be difficult to schedule and shortages of other egg-based vaccines with high demands also have to be anticipated. Cell culture-based production systems enable the manufacturing of large amounts of vaccines within a short time frame and expand significantly our options to respond to pandemics and emerging viral diseases. In this study, we present an integrated process for the production of inactivated influenza A virus vaccines based on a Madin-Darby Canine Kidney (MDCK) suspension cell line cultivated in a chemically defined medium. Very high titers of 3.6 log10 (HAU/100 µl) were achieved using fast-growing MDCK cells at concentrations up to 9.5 × 106 cells/ml infected with influenza A/PR/8/34 H1N1 virus in 1 L stirred tank bioreactors. A combination of membrane-based steric-exclusion chromatography followed by pseudo-affinity chromatography with a sulfated cellulose membrane adsorber enabled full recovery for the virus capture step and up to 80% recovery for the virus polishing step. Purified virus particles showed a homogenous size distribution with a mean diameter of 80 nm. Based on a monovalent dose of 15 µg hemagglutinin (single-radial immunodiffusion assay), the level of total protein and host cell DNA was 58 µg and 10 ng, respectively. Furthermore, all process steps can be fully scaled up to industrial quantities for commercial manufacturing of either seasonal or pandemic influenza virus vaccines. Fast production of up to 300 vaccine doses per liter within 4-5 days makes this process competitive not only to other cell-based processes but to egg-based processes as well.
Collapse
Affiliation(s)
- Thomas Bissinger
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Yixiao Wu
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Pavel Marichal-Gallardo
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Dietmar Riedel
- Facility for Transmission Electron Microscopy, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Xuping Liu
- Shanghai BioEngine Sci-Tech Co., Shanghai, China
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Shanghai BioEngine Sci-Tech Co., Shanghai, China
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.,Chair of Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
15
|
Chen CL, Lai CC, Luh DL, Chuang SY, Yang KC, Yeh YP, Ming-Fang Yen A, Chang KJ, Chang RE, Li-Sheng Chen S. Review of epidemic, containment strategies, clinical management, and economic evaluation of COVID-19 pandemic. J Formos Med Assoc 2021; 120 Suppl 1:S6-S18. [PMID: 34116896 PMCID: PMC8156902 DOI: 10.1016/j.jfma.2021.05.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/08/2023] Open
Abstract
The spread of the emerging pathogen, named as SARS-CoV-2, has led to an unprecedented COVID-19 pandemic since 1918 influenza pandemic. This review first sheds light on the similarity on global transmission, surges of pandemics, and the disparity of prevention between two pandemics. Such a brief comparison also provides an insight into the potential sequelae of COVID-19 based on the inference drawn from the fact that a cascade of successive influenza pandemic occurred after 1918 and also the previous experience on the epidemic of SARS and MERS occurring in 2003 and 2015, respectively. We then propose a systematic framework for elucidating emerging infectious disease (EID) such as COVID-19 with a panorama viewpoint from natural infection and disease process, public health interventions (non-pharmaceutical interventions (NPIs) and vaccine), clinical treatments and therapies (antivirals), until global aspects of health and economic loss, and economic evaluation of interventions with emphasis on mass vaccination. This review not only concisely delves for evidence-based scientific literatures from the origin of outbreak, the spread of SARS-CoV-2 to three surges of pandemic, and NPIs and vaccine uptakes but also provides a new insight into how to apply big data analytics to identify unprecedented discoveries through COVID-19 pandemic scenario embracing from biomedical to economic viewpoints.
Collapse
Affiliation(s)
- Chi-Ling Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chao-Chih Lai
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Emergency Department of Taipei City Hospital, Ren-Ai Branch, Taiwan
| | - Dih-Ling Luh
- Department of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Shao-Yuan Chuang
- Institute of Population Health Sciences, National Health Research Institutes, Taiwan
| | - Kuen-Cheh Yang
- Department of Family Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Po Yeh
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Changhua County Public Health Bureau, Changhua, Taiwan
| | - Amy Ming-Fang Yen
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - King-Jen Chang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Ray-E Chang
- Institute of Health Policy and Management, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Sam Li-Sheng Chen
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
16
|
Derailment or Turning Point? The Effect of the COVID-19 Pandemic on Sustainability-Related Thinking. SUSTAINABILITY 2021. [DOI: 10.3390/su13105506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A pandemic has always been a milestone, forcing intellectuals to reassess the directions of development at their time. This fact has generated vivid debates about the possible reactions to the new situation, highlighting the vulnerability of current socio-economic structures as well as the need to reconsider the current way of development. The new challenge has created an unprecedented increase in academic publications. The aim of the current paper is to analyze the socio-economic aspects of the growing interest in the sustainability-related facets of the pandemic. Based on English language journal articles (n = 1326), collected on the Web of Science website, the authors analyze the different aspects of COVID-related discussions connected to sustainability. Applying the triangulation approach, the publications have been classified on the basis of their intellectual roots, co-occurrence of different words and strategic diagramming. Results highlight that, notwithstanding the remarkable number of papers, there is a strong need for the in-depth analysis of the long-term consequences in the fields of (1) health logistics and policy; (2) the future of education and work, based on experience and evidence; (3) the re-thinking of the resilience of large-scale supply systems; (4) global governance of world affairs, (5) the role of distant teaching, telecommunication, telework, telehealth, teleservices.
Collapse
|
17
|
Sun N, Li C, Li XF, Deng YQ, Jiang T, Zhang NN, Zu S, Zhang RR, Li L, Chen X, Liu P, Gold S, Lu N, Du P, Wang J, Qin CF, Cheng G. Type-IInterferon-Inducible SERTAD3 Inhibits Influenza A Virus Replication by Blocking the Assembly of Viral RNA Polymerase Complex. Cell Rep 2021; 33:108342. [PMID: 33147462 DOI: 10.1016/j.celrep.2020.108342] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/03/2020] [Accepted: 10/12/2020] [Indexed: 01/08/2023] Open
Abstract
Influenza A virus (IAV) infection stimulates a type I interferon (IFN-I) response in host cells that exerts antiviral effects by inducing the expression of hundreds of IFN-stimulated genes (ISGs). However, most ISGs are poorly studied for their roles in the infection of IAV. Herein, we demonstrate that SERTA domain containing 3 (SERTAD3) has a significant inhibitory effect on IAV replication in vitro. More importantly, Sertad3-/- mice develop more severe symptoms upon IAV infection. Mechanistically, we find SERTAD3 reduces IAV replication through interacting with viral polymerase basic protein 2 (PB2), polymerase basic protein 1 (PB1), and polymerase acidic protein (PA) to disrupt the formation of the RNA-dependent RNA polymerase (RdRp) complex. We further identify an 8-amino-acid peptide of SERTAD3 as a minimum interacting motif that can disrupt RdRp complex formation and inhibit IAV replication. Thus, our studies not only identify SERTAD3 as an antiviral ISG, but also provide the mechanism of potential application of SERTAD3-derived peptide in suppressing influenza replication.
Collapse
Affiliation(s)
- Nina Sun
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China; Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of System Medicine, Suzhou, Jiangsu 215123, China
| | - Chunfeng Li
- Institute for Immunity, Transplantation and Infection, Department of Pathology, Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Xiao-Feng Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yong-Qiang Deng
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Tao Jiang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Na-Na Zhang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Shulong Zu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China; Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of System Medicine, Suzhou, Jiangsu 215123, China
| | - Rong-Rong Zhang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Lili Li
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of System Medicine, Suzhou, Jiangsu 215123, China
| | - Xiang Chen
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Ping Liu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Sarah Gold
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ning Lu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Peishuang Du
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Jingfeng Wang
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of System Medicine, Suzhou, Jiangsu 215123, China; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| | - Genhong Cheng
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
18
|
Harrington WN, Kackos CM, Webby RJ. The evolution and future of influenza pandemic preparedness. Exp Mol Med 2021; 53:737-749. [PMID: 33953324 PMCID: PMC8099712 DOI: 10.1038/s12276-021-00603-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/17/2022] Open
Abstract
The influenza virus is a global threat to human health causing unpredictable yet recurring pandemics, the last four emerging over the course of a hundred years. As our knowledge of influenza virus evolution, distribution, and transmission has increased, paths to pandemic preparedness have become apparent. In the 1950s, the World Health Organization (WHO) established a global influenza surveillance network that is now composed of institutions in 122 member states. This and other surveillance networks monitor circulating influenza strains in humans and animal reservoirs and are primed to detect influenza strains with pandemic potential. Both the United States Centers for Disease Control and Prevention and the WHO have also developed pandemic risk assessment tools that evaluate specific aspects of emerging influenza strains to develop a systematic process of determining research and funding priorities according to the risk of emergence and potential impact. Here, we review the history of influenza pandemic preparedness and the current state of preparedness, and we propose additional measures for improvement. We also comment on the intersection between the influenza pandemic preparedness network and the current SARS-CoV-2 crisis. We must continually evaluate and revise our risk assessment and pandemic preparedness plans and incorporate new information gathered from research and global crises.
Collapse
Affiliation(s)
- Walter N Harrington
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Christina M Kackos
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
- St. Jude Children's Research Hospital, Graduate School of Biomedical Sciences, Memphis, TN, USA
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
19
|
Yang F, Pang B, Lai KK, Cheung NN, Dai J, Zhang W, Zhang J, Chan KH, Chen H, Sze KH, Zhang H, Hao Q, Yang D, Yuen KY, Kao RY. Discovery of a Novel Specific Inhibitor Targeting Influenza A Virus Nucleoprotein with Pleiotropic Inhibitory Effects on Various Steps of the Viral Life Cycle. J Virol 2021; 95:e01432-20. [PMID: 33627391 PMCID: PMC8104107 DOI: 10.1128/jvi.01432-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 01/29/2021] [Indexed: 11/23/2022] Open
Abstract
Influenza A viruses (IAVs) continue to pose an imminent threat to humans due to annual influenza epidemic outbreaks and episodic pandemics with high mortality rates. In this context, the suboptimal vaccine coverage and efficacy, coupled with recurrent events of viral resistance against a very limited antiviral portfolio, emphasize an urgent need for new additional prophylactic and therapeutic options, including new antiviral targets and drugs with new mechanisms of action to prevent and treat influenza virus infection. Here, we characterized a novel influenza A virus nucleoprotein (NP) inhibitor, FA-6005, that inhibited a broad spectrum of human pandemic and seasonal influenza A and B viruses in vitro and protects mice against lethal influenza A virus challenge. The small molecule FA-6005 targeted a conserved NP I41 domain and acted as a potentially broad, multimechanistic anti-influenza virus therapeutic since FA-6005 suppressed influenza virus replication and perturbed intracellular trafficking of viral ribonucleoproteins (vRNPs) from early to late stages. Cocrystal structures of the NP/FA-6005 complex reconciled well with concurrent mutational studies. This study provides the first line of direct evidence suggesting that the newly identified NP I41 pocket is an attractive target for drug development that inhibits multiple functions of NP. Our results also highlight FA-6005 as a promising candidate for further development as an antiviral drug for the treatment of IAV infection and provide chemical-level details for inhibitor optimization.IMPORTANCE Current influenza antivirals have limitations with regard to their effectiveness and the potential emergence of resistance. Therefore, there is an urgent need for broad-spectrum inhibitors to address the considerable challenges posed by the rapid evolution of influenza viruses that limit the effectiveness of vaccines and lead to the emergence of antiviral drug resistance. Here, we identified a novel influenza A virus NP antagonist, FA-6005, with broad-spectrum efficacy against influenza viruses, and our study presents a comprehensive study of the mode of action of FA-6005 with the crystal structure of the compound in complex with NP. The influenza virus inhibitor holds promise as an urgently sought-after therapeutic option offering a mechanism of action complementary to existing antiviral drugs for the treatment of influenza virus infection and should further aid in the development of universal therapeutics.
Collapse
Affiliation(s)
- Fang Yang
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Bo Pang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Kin Kui Lai
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Nam Nam Cheung
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Jun Dai
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Weizhe Zhang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Jinxia Zhang
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Kwok-Hung Chan
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Honglin Chen
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
- Research Center of Infection and Immunology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Kong-Hung Sze
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Hongmin Zhang
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
- SUSTech-HKU Joint Laboratories for Matrix Biology and Diseases, Southern University of Science and Technology, Shenzhen, China
| | - Quan Hao
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Dan Yang
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
- Research Center of Infection and Immunology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Richard Y Kao
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
- Research Center of Infection and Immunology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
20
|
O’Shea J, Prausnitz MR, Rouphael N. Dissolvable Microneedle Patches to Enable Increased Access to Vaccines against SARS-CoV-2 and Future Pandemic Outbreaks. Vaccines (Basel) 2021; 9:320. [PMID: 33915696 PMCID: PMC8066809 DOI: 10.3390/vaccines9040320] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 01/02/2023] Open
Abstract
Vaccines are an essential component of pandemic preparedness but can be limited due to challenges in production and logistical implementation. While vaccine candidates were rapidly developed against severe acute respiratory syndrome coronavirus 2 (SARS-COV-2), immunization campaigns remain an obstacle to achieving herd immunity. Dissolvable microneedle patches are advantageous for many possible reasons: improved immunogenicity; dose-sparing effects; expected low manufacturing cost; elimination of sharps; reduction of vaccine wastage; no need for reconstitution; simplified supply chain, with reduction of cold chain supply through increased thermostability; ease of use, reducing the need for healthcare providers; and greater acceptability compared to traditional hypodermic injections. When applied to coronavirus disease 2019 (COVID-19) and future pandemic outbreaks, microneedle patches have great potential to improve vaccination globally and save many lives.
Collapse
Affiliation(s)
- Jesse O’Shea
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, 500 Irvin Court, Suite 200, Decatur, Atlanta, GA 30030, USA;
| | - Mark R. Prausnitz
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Nadine Rouphael
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, 500 Irvin Court, Suite 200, Decatur, Atlanta, GA 30030, USA;
| |
Collapse
|
21
|
Yang W, Schountz T, Ma W. Bat Influenza Viruses: Current Status and Perspective. Viruses 2021; 13:v13040547. [PMID: 33805956 PMCID: PMC8064322 DOI: 10.3390/v13040547] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Bats are natural reservoirs for many viruses, including several that are zoonotic. Two unusual H17N10 and H18N11 influenza viruses have been found in New World bats. Although neither of these viruses have been isolated, infectious clone technology has permitted significant progress to understand their biology, which include unique features compared to all other known influenza A viruses. In addition, an H9N2-like influenza A virus was isolated from Old World bats and it shows similar characteristics of normal influenza A viruses. In this review, current status and perspective on influenza A viruses identified in bats is reviewed and discussed.
Collapse
Affiliation(s)
- Wenyu Yang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA;
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Tony Schountz
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA;
| | - Wenjun Ma
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA;
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
- Correspondence:
| |
Collapse
|
22
|
Salentijn W, Antony J, Douglas J. Six Sigma to distinguish patterns in COVID-19 approaches. TQM JOURNAL 2021. [DOI: 10.1108/tqm-11-2020-0271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PurposeCOVID-19 has changed life as we know. Data are scarce and necessary for making decisions on fighting COVID-19. The purpose of this paper is to apply Six Sigma techniques on the current COVID-19 pandemic to distinguish between special cause and common cause variation. In the DMAIC structure, different approaches applied in three countries are compared.Design/methodology/approachFor three countries the mortality is compared to the population to distinguish between special cause variation and common cause variation. This variation and the patterns in it are assessed to the countries' different approaches to COVID-19.FindingsIn the DMAIC problem-solving approach, patterns in the data are distinguished. The special cause variation is assessed to the special causes and approaches. The moment on which measures were taken has been essential, as well as policies on testing and distancing.Research limitations/implicationsCross-national data comparisons are a challenge as countries have different moments on which they register data on their population. Furthermore, different intervals are taken, varying from registering weekly to registering yearly. For the research, three countries with similar data registration and different approaches in fighting COVID-19 were taken.Originality/valueThis is the first study with Master Black Belts from different countries on the application of Six Sigma techniques and the DMAIC from the viewpoint of special cause variation on COVID-19.
Collapse
|
23
|
Huang H, Chen Y, Ma Y. Modeling the competitive diffusions of rumor and knowledge and the impacts on epidemic spreading. APPLIED MATHEMATICS AND COMPUTATION 2021; 388:125536. [PMID: 32834190 PMCID: PMC7382352 DOI: 10.1016/j.amc.2020.125536] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/02/2020] [Accepted: 07/12/2020] [Indexed: 06/02/2023]
Abstract
The interaction between epidemic spreading and information diffusion is an interdisciplinary research problem. During an epidemic, people tend to take self-protective measures to reduce the infection risk. However, with the diffusion of rumor, people may be difficult to make an appropriate choice. How to reduce the negative impact of rumor and to control epidemic has become a critical issue in the social network. Elaborate mathematical model is instructive to understand such complex dynamics. In this paper, we develop a two-layer network to model the interaction between the spread of epidemic and the competitive diffusions of information. The results show that knowledge diffusion can eradicate both rumor and epidemic, where the penetration intensity of knowledge into rumor plays a vital role. Specifically, the penetration intensity of knowledge significantly increases the thresholds for rumor and epidemic to break out, even when the self-protective measure is not perfectly effective. But eradicating rumor shouldn't be equated with eradicating epidemic. The epidemic can be eradicated with rumor still diffusing, and the epidemic may keep spreading with rumor being eradicated. Moreover, the communication-layer network structure greatly affects the spread of epidemic in the contact-layer network. When people have more connections in the communication-layer network, the knowledge is more likely to diffuse widely, and the rumor and epidemic can be eradicated more efficiently. When the communication-layer network is sparse, a larger penetration intensity of knowledge into rumor is required to promote the diffusion of knowledge.
Collapse
Affiliation(s)
- He Huang
- School of Economics and Management, China University of Geosciences (Beijing), Beijing 100083, China
- School of Economics and Management, Tsinghua University, Beijing 100084, China
| | - Yahong Chen
- School of Information, Beijing Wuzi University, Beijing 101149, China
| | - Yefeng Ma
- Institute of Quantitative & Technical Economics, Chinese Academy of Social Sciences, Beijing 100732, China
| |
Collapse
|
24
|
Zhou J, Ma X, Yang Y, Zhang T. A Diffusive Sveir Epidemic Model with Time Delay and General Incidence. ACTA MATHEMATICA SCIENTIA = SHU XUE WU LI XUE BAO 2021; 41:1385-1404. [PMID: 34092838 PMCID: PMC8167310 DOI: 10.1007/s10473-021-0421-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 10/01/2020] [Indexed: 05/11/2023]
Abstract
UNLABELLED In this paper, we consider a delayed diffusive SVEIR model with general incidence. We first establish the threshold dynamics of this model. Using a Nonstandard Finite Difference (NSFD) scheme, we then give the discretization of the continuous model. Applying Lyapunov functions, global stability of the equilibria are established. Numerical simulations are presented to validate the obtained results. The prolonged time delay can lead to the elimination of the infectiousness. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material is available in the online version of this article at 10.1007/s10473-021-0421-9.
Collapse
Affiliation(s)
- Jinling Zhou
- Department of Mathematics, Zhejiang International Studies University, Hangzhou, 310023 China
| | - Xinsheng Ma
- Department of Mathematics, Zhejiang International Studies University, Hangzhou, 310023 China
| | - Yu Yang
- School of Statistics and Mathematics, Shanghai Lixin University of Accounting and Finance, Shanghai, 201209 China
| | - Tonghua Zhang
- Department of Mathematics, Swinburne University of Technology, Hawthorn, Victoria 3122 Australia
| |
Collapse
|
25
|
Wang L, Yan B, Boasson V. A national fight against COVID-19: lessons and experiences from China. Aust N Z J Public Health 2020; 44:502-507. [PMID: 33044796 PMCID: PMC7675353 DOI: 10.1111/1753-6405.13042] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/01/2020] [Accepted: 08/01/2020] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE This paper aims to review the public health measures and actions taken during the fight against COVID-19 in China, to generate a model for prevention and control public health emergency by summarising the lessons and experiences gained. METHODS This paper adopts a widely accepted qualitative research and coding method to form an analysis on word materials. RESULTS Although Chinese CDC didn't work effectively in the early stages on risk identification and warning, China was able to respond quickly and successfully to this medical emergency after the initial shock of the awareness of a novel epidemic with a swift implementation of national-scale health emergency management. CONCLUSIONS The success in fighting against COVID-19 in China can be attributed to: 1) adaptable governance to changing situations; 2) culture of moral compliance with rules; 3) trusted collaboration between government and people; 4) an advanced technical framework ABCD+5G (A-Artificial intelligence; B-Block chain; C-Cloud computing; D-Big data). Implications for public health: This paper constructs a conceptual model for pandemic management based on the lessons and experiences of fighting COVID-19 in China. It provides insights for pandemic control and public emergency management in similar context.
Collapse
Affiliation(s)
- Lixia Wang
- SILC Business School, Shanghai University, P.R. China,Correspondence to: Lixia Wang, SILC Business School, Shanghai University, No. 20, Chengzhong Rd, Jiading District, Shanghai, 200899, P. R. China
| | - Beibei Yan
- SILC Business School, Shanghai University, P.R. China
| | - Vigdis Boasson
- College of Business Administration, Central Michigan University, United States
| |
Collapse
|
26
|
Abstract
In the recent past, epidemics and pandemics caused by viral infections have had extraordinary effects on human life, leading to severe social and financial challenges. One such event related to the outbreak of the SARS-CoV-2 virus has already taken more than 917,417 lives globally (as of September 13, 2020). The nosocomial route of viral transmission has also been playing a significant role in the community spreading of viruses. Unfortunately, none of the existing strategies are apt for preventing the spread of viral infections. In order to contain the viral transmission, the principal target would be to stop the virus from reaching the otherwise healthy individuals. Nanomaterials, due to its unique physical and chemical properties, have been used to develop novel antiviral agents. In this review, we have discussed several nanotechnological strategies that can be used as an antiviral coating to inhibit viral transmission by preventing viral entry into the host cells.
Collapse
|
27
|
Li Z, Zaiser SA, Shang P, Heiden DL, Hajovsky H, Katwal P, DeVries B, Baker J, Richt JA, Li Y, He B, Fang Y, Huber VC. A chimeric influenza hemagglutinin delivered by parainfluenza virus 5 vector induces broadly protective immunity against genetically divergent influenza a H1 viruses in swine. Vet Microbiol 2020; 250:108859. [PMID: 33039727 PMCID: PMC7500346 DOI: 10.1016/j.vetmic.2020.108859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/15/2020] [Indexed: 11/25/2022]
Abstract
An HA-based vaccine candidate, created by DNA shuffling (HA-113), can be immunogenic when recombinant antigen is expressed by PIV5 (PIV5-113). Immunity induced by the PIV5-113 vaccine can protect mice against infection with 4 of 5 parental HAs used to create the vaccine. Immunity induced by PIV5-113 can protect pigs against infection with an influenza virus isolate that is known to be infectious in pigs.
Pigs are an important reservoir for human influenza viruses, and influenza causes significant economic loss to the swine industry. As demonstrated during the 2009 H1N1 pandemic, control of swine influenza virus infection is a critical step toward blocking emergence of human influenza virus. An effective vaccine that can induce broadly protective immunity against heterologous influenza virus strains is critically needed. In our previous studies [McCormick et al., 2015; PLoS One, 10(6):e0127649], we used molecular breeding (DNA shuffling) strategies to increase the breadth of the variable and conserved epitopes expressed within a single influenza A virus chimeric hemagglutinin (HA) protein. Chimeric HAs were constructed using parental HAs from the 2009 pandemic virus and swine influenza viruses that had a history of zoonotic transmission to humans. In the current study, we used parainfluenza virus 5 (PIV-5) as a vector to express one of these chimeric HA antigens, HA-113. Recombinant PIV-5 expressing HA-113 (PIV5-113) were rescued, and immunogenicity and protective efficacy were tested in both mouse and pig models. The results showed that PIV5-113 can protect mice and pigs against challenge with viruses expressing parental HAs. The protective immunity was extended against other genetically diversified influenza H1-expressing viruses. Our work demonstrates that PIV5-based influenza vaccines are efficacious as vaccines for pigs. The PIV5 vaccine vector and chimeric HA-113 antigen are discussed in the context of the development of universal influenza vaccines and the potential contribution of PIV5-113 as a candidate universal vaccine.
Collapse
Affiliation(s)
- Zhuo Li
- College of Veterinary Medicine, Department of Infectious Disease, University of Georgia, United States
| | - Sarah A Zaiser
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, United States
| | - Pengcheng Shang
- College of Veterinary Medicine, Department of Diagnostic Medicine/Pathobiology, Kansas State University, United States
| | - Dustin L Heiden
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, United States
| | - Heather Hajovsky
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, United States
| | - Pratik Katwal
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, United States
| | - Baylor DeVries
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, United States
| | - Jack Baker
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, United States
| | - Juergen A Richt
- College of Veterinary Medicine, Department of Diagnostic Medicine/Pathobiology, Kansas State University, United States
| | - Yanhua Li
- College of Veterinary Medicine, Department of Diagnostic Medicine/Pathobiology, Kansas State University, United States
| | - Biao He
- College of Veterinary Medicine, Department of Infectious Disease, University of Georgia, United States.
| | - Ying Fang
- College of Veterinary Medicine, Department of Diagnostic Medicine/Pathobiology, Kansas State University, United States.
| | - Victor C Huber
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, United States.
| |
Collapse
|
28
|
Abstract
Licorice is a traditional medicine commonly used in China and many other countries. Over the last 50 years, the structure and pharmacological effects of coumarin compounds in licorice have been investigated. However, a comprehensive review of the literature summarizing current trends is currently lacking. Thus, the aim of the present review is to provide an up-to-date summary of the scientific literature regarding the pharmacological effects of coumarin compounds in licorice, thereby laying the foundation for further research and optimal utilization of licorice. We retrieved 111 articles on the coumarin components of licorice and their potential pharmacological effects, based on titles, keywords, and abstracts from databases (including PubMed and Web of Science). Glycycoumarin, isoglycycoumarin, licoarylcoumarin, licopyranocoumarin, glycyrin, isotrifoliol, glycyrol, and glycyrurol have been investigated for their anticancer, hepatoprotective, antispasmodic, immunosuppressive, anti-inflammatory, and antibacterial properties, and use as therapeutic agents in metabolic syndrome, thereby demonstrating their potential for clinical applications. Future research should further explore the pharmacological mechanisms of action of coumarin compounds, including their antibacterial activities. Investigations into the pharmacological activities of different glycycoumarin isomers might open new research frontiers.
Collapse
Affiliation(s)
- Yimei Zang
- Pharmacy Teaching and Research Office, Biomedicine College, Beijing City University, Beijing, P. R. China
| |
Collapse
|
29
|
Chimeric hemagglutinin vaccine elicits broadly protective CD4 and CD8 T cell responses against multiple influenza strains and subtypes. Proc Natl Acad Sci U S A 2020; 117:17757-17763. [PMID: 32669430 DOI: 10.1073/pnas.2004783117] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vaccination has been used to control the spread of seasonal flu; however, the virus continues to evolve and escape from host immune response through mutation and increasing glycosylation. Efforts have been directed toward development of a universal vaccine with broadly protective activity against multiple influenza strains and subtypes. Here we report the design and evaluation of various chimeric vaccines based on the most common avian influenza H5 and human influenza H1 sequences. Of these constructs, the chimeric HA (cHA) vaccine with consensus H5 as globular head and consensus H1 as stem was shown to elicit broadly protective CD4+ and CD8+ T cell responses. Interestingly, the monoglycosylated cHA (cHAmg) vaccine with GlcNAc on each glycosite induced more stem-specific antibodies, with higher antibody-dependent cellular cytotoxicity (ADCC), and better neutralizing and stronger cross-protection activities against H1, H3, H5, and H7 strains and subtypes. Moreover, the cHAmg vaccine combined with a glycolipid adjuvant designed for class switch further enhanced the vaccine efficacy with more IFN-γ, IL-4, and CD8+ memory T cells produced.
Collapse
|
30
|
Adjuvanted H5N1 influenza vaccine enhances both cross-reactive memory B cell and strain-specific naive B cell responses in humans. Proc Natl Acad Sci U S A 2020; 117:17957-17964. [PMID: 32661157 DOI: 10.1073/pnas.1906613117] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
There is a need for improved influenza vaccines. In this study we compared the antibody responses in humans after vaccination with an AS03-adjuvanted versus nonadjuvanted H5N1 avian influenza virus inactivated vaccine. Healthy young adults received two doses of either formulation 3 wk apart. We found that AS03 significantly enhanced H5 hemagglutinin (HA)-specific plasmablast and antibody responses compared to the nonadjuvanted vaccine. Plasmablast response after the first immunization was exclusively directed to the conserved HA stem region and came from memory B cells. Monoclonal antibodies (mAbs) derived from these plasmablasts had high levels of somatic hypermutation (SHM) and recognized the HA stem region of multiple influenza virus subtypes. Second immunization induced a plasmablast response to the highly variable HA head region. mAbs derived from these plasmablasts exhibited minimal SHM (naive B cell origin) and largely recognized the HA head region of the immunizing H5N1 strain. Interestingly, the antibody response to H5 HA stem region was much lower after the second immunization, and this suppression was most likely due to blocking of these epitopes by stem-specific antibodies induced by the first immunization. Taken together, these findings show that an adjuvanted influenza vaccine can substantially increase antibody responses in humans by effectively recruiting preexisting memory B cells as well as naive B cells into the response. In addition, we show that high levels of preexisting antibody can have a negative effect on boosting. These findings have implications toward the development of a universal influenza vaccine.
Collapse
|
31
|
Rengeling D. [The 2020 Corona Pandemic-Beyond Omnipresent Prevention]. NTM 2020; 28:211-217. [PMID: 32382897 PMCID: PMC7203714 DOI: 10.1007/s00048-020-00256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This paper is part of Forum COVID-19: Perspectives in the Humanities and Social Sciences. The Spanish Flu 1918-1920 caused between 50 and 100 million deaths. Despite this, West German officials ignored the pandemics of 1957/1958 and 1968-1970. Patient perseverance seems to be an appropriate label for the lack of any action. The appearance of new viruses had a massive impact on the discourse concerning pandemics: "patient perseverance" became "omnipresent prevention." The actual measures against SARS-CoV‑2 exceed the "omnipresent prevention" used during the 2009 swine flu pandemic by far.
Collapse
Affiliation(s)
- David Rengeling
- , Scheuerwiesen 3, 71069, Sindelfingen-Maichingen, Deutschland.
| |
Collapse
|
32
|
Limbani B, Bera S, Mondal D. Synthetic Advancement of Neuraminidase Inhibitor “Tamiflu”. ChemistrySelect 2020. [DOI: 10.1002/slct.202000675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Bhagirath Limbani
- School of Chemical Sciences Central University of Gujarat Gandhinagar, Gujarat 382030 India
| | - Smritilekha Bera
- School of Chemical Sciences Central University of Gujarat Gandhinagar, Gujarat 382030 India
| | - Dhananjoy Mondal
- School of Chemical Sciences Central University of Gujarat Gandhinagar, Gujarat 382030 India
| |
Collapse
|
33
|
Hu Y, Jacob J, Parker GJM, Hawkes DJ, Hurst JR, Stoyanov D. The challenges of deploying artificial intelligence models in a rapidly evolving pandemic. NAT MACH INTELL 2020. [DOI: 10.1038/s42256-020-0185-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
34
|
Sportelli MC, Izzi M, Kukushkina EA, Hossain SI, Picca RA, Ditaranto N, Cioffi N. Can Nanotechnology and Materials Science Help the Fight against SARS-CoV-2? NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E802. [PMID: 32326343 PMCID: PMC7221591 DOI: 10.3390/nano10040802] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/17/2022]
Abstract
Since 2004, we have been developing nanomaterials with antimicrobial properties, the so-called nanoantimicrobials. When the coronavirus disease 2019 (COVID-19) emerged, we started investigating new and challenging routes to nanoantivirals. The two fields have some important points of contact. We would like to share with the readership our vision of the role a (nano)materials scientist can play in the fight against the COVID-19 pandemic. As researchers specifically working on surfaces and nanomaterials, in this letter we underline the importance of nanomaterial-based technological solutions in several aspects of the fight against the virus. While great resources are understandably being dedicated to treatment and diagnosis, more efforts could be dedicated to limit the virus spread. Increasing the efficacy of personal protection equipment, developing synergistic antiviral coatings, are only two of the cases discussed. This is not the first nor the last pandemic: our nanomaterials community may offer several technological solutions to challenge the ongoing and future global health emergencies. Readers' feedback and suggestions are warmly encouraged.
Collapse
Affiliation(s)
- Maria Chiara Sportelli
- Chemistry Department, University of Bari “Aldo Moro”, via E. Orabona 4, 70126 Bari, Italy; (M.C.S.); (M.I.); (E.A.K.); (S.I.H.); (R.A.P.); (N.D.)
- IFN-CNR, Physics Department “M. Merlin”, Bari, Italy, via Amendola 173, 70126 Bari, Italy
- CSGI (Center for Colloid and Surface Science) c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy
| | - Margherita Izzi
- Chemistry Department, University of Bari “Aldo Moro”, via E. Orabona 4, 70126 Bari, Italy; (M.C.S.); (M.I.); (E.A.K.); (S.I.H.); (R.A.P.); (N.D.)
| | - Ekaterina A. Kukushkina
- Chemistry Department, University of Bari “Aldo Moro”, via E. Orabona 4, 70126 Bari, Italy; (M.C.S.); (M.I.); (E.A.K.); (S.I.H.); (R.A.P.); (N.D.)
| | - Syed Imdadul Hossain
- Chemistry Department, University of Bari “Aldo Moro”, via E. Orabona 4, 70126 Bari, Italy; (M.C.S.); (M.I.); (E.A.K.); (S.I.H.); (R.A.P.); (N.D.)
| | - Rosaria Anna Picca
- Chemistry Department, University of Bari “Aldo Moro”, via E. Orabona 4, 70126 Bari, Italy; (M.C.S.); (M.I.); (E.A.K.); (S.I.H.); (R.A.P.); (N.D.)
- CSGI (Center for Colloid and Surface Science) c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy
| | - Nicoletta Ditaranto
- Chemistry Department, University of Bari “Aldo Moro”, via E. Orabona 4, 70126 Bari, Italy; (M.C.S.); (M.I.); (E.A.K.); (S.I.H.); (R.A.P.); (N.D.)
- CSGI (Center for Colloid and Surface Science) c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy
| | - Nicola Cioffi
- Chemistry Department, University of Bari “Aldo Moro”, via E. Orabona 4, 70126 Bari, Italy; (M.C.S.); (M.I.); (E.A.K.); (S.I.H.); (R.A.P.); (N.D.)
- CSGI (Center for Colloid and Surface Science) c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
35
|
Abstract
In 1918, a strain of influenza A virus caused a human pandemic resulting in the deaths of 50 million people. A century later, with the advent of sequencing technology and corresponding phylogenetic methods, we know much more about the origins, evolution and epidemiology of influenza epidemics. Here we review the history of avian influenza viruses through the lens of their genetic makeup: from their relationship to human pandemic viruses, starting with the 1918 H1N1 strain, through to the highly pathogenic epidemics in birds and zoonoses up to 2018. We describe the genesis of novel influenza A virus strains by reassortment and evolution in wild and domestic bird populations, as well as the role of wild bird migration in their long-range spread. The emergence of highly pathogenic avian influenza viruses, and the zoonotic incursions of avian H5 and H7 viruses into humans over the last couple of decades are also described. The threat of a new avian influenza virus causing a human pandemic is still present today, although control in domestic avian populations can minimize the risk to human health. This article is part of the theme issue ‘Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes’. This issue is linked with the subsequent theme issue ‘Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control’.
Collapse
Affiliation(s)
| | | | - Paul Digard
- The Roslin Institute, University of Edinburgh , Edinburgh , UK
| |
Collapse
|
36
|
Peng L, Du W, Balhuizen MD, Haagsman HP, de Haan CAM, Veldhuizen EJA. Antiviral Activity of Chicken Cathelicidin B1 Against Influenza A Virus. Front Microbiol 2020; 11:426. [PMID: 32265870 PMCID: PMC7096384 DOI: 10.3389/fmicb.2020.00426] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 02/27/2020] [Indexed: 01/05/2023] Open
Abstract
Cathelicidins (CATHs) are host defense peptides (HDPs) that play an important role in the innate immune response against infections. Although multiple functions of cathelicidins have been described, including direct antimicrobial activity and several immunomodulatory effects on the host, relatively little is known about their antiviral activity. Therefore, in vitro antiviral activity of chicken cathelicidins and the underlying mechanism was investigated in this study against different influenza A virus (IAV) strains. Our results show that chicken CATH-B1 has broad anti-IAV activity compared to other cathelicidins (CATH-1, -2, -3, LL-37, PMAP-23, and K9CATH) with an inhibition of viral infection up to 80% against three tested IAV strains (H1N1, H3N1, and H5N1). In agreement herewith, CATH-B1 affected virus-induced inflammatory cytokines expression (IFN-β, IL-1β, IL-6, and IL-8). Incubation of cells with CATH-B1 prior to or after their inoculation with virus did not reduce viral infection indicating that direct interaction of virus with the peptide was required for CATH-B1’s antiviral activity. Experiments using combined size exclusion and affinity-based separation of virus and peptide also indicated that CATH-B1 bound to viral particles. In addition, using electron microscopy, no morphological change of the virus itself was seen upon incubation with CATH-B1 but large aggregates of CATH-B1 and viral particles were observed, indicating that aggregation might be the mechanism of action reducing IAV infectivity. Neuraminidase (NA) activity assays using monovalent or multivalent substrates, indicated that CATH-B1 did not affect NA activity per se, but negatively affected the ability of virus particles to interact with multivalent receptors, presumably by interfering with hemagglutinin activity. In conclusion, our results show CATH-B1 has good antiviral activity against IAV by binding to the viral particle and thereby blocking viral entry.
Collapse
Affiliation(s)
- Lianci Peng
- Department of Infectious Diseases & Immunology, Division of Molecular Host Defense, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Wenjuan Du
- Department of Infectious Diseases & Immunology, Division Virology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Melanie D Balhuizen
- Department of Infectious Diseases & Immunology, Division of Molecular Host Defense, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Henk P Haagsman
- Department of Infectious Diseases & Immunology, Division of Molecular Host Defense, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Cornelis A M de Haan
- Department of Infectious Diseases & Immunology, Division Virology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Edwin J A Veldhuizen
- Department of Infectious Diseases & Immunology, Division of Molecular Host Defense, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
37
|
Brett T, Ajelli M, Liu QH, Krauland MG, Grefenstette JJ, van Panhuis WG, Vespignani A, Drake JM, Rohani P. Detecting critical slowing down in high-dimensional epidemiological systems. PLoS Comput Biol 2020; 16:e1007679. [PMID: 32150536 PMCID: PMC7082051 DOI: 10.1371/journal.pcbi.1007679] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 03/19/2020] [Accepted: 01/23/2020] [Indexed: 01/05/2023] Open
Abstract
Despite medical advances, the emergence and re-emergence of infectious diseases continue to pose a public health threat. Low-dimensional epidemiological models predict that epidemic transitions are preceded by the phenomenon of critical slowing down (CSD). This has raised the possibility of anticipating disease (re-)emergence using CSD-based early-warning signals (EWS), which are statistical moments estimated from time series data. For EWS to be useful at detecting future (re-)emergence, CSD needs to be a generic (model-independent) feature of epidemiological dynamics irrespective of system complexity. Currently, it is unclear whether the predictions of CSD-derived from simple, low-dimensional systems-pertain to real systems, which are high-dimensional. To assess the generality of CSD, we carried out a simulation study of a hierarchy of models, with increasing structural complexity and dimensionality, for a measles-like infectious disease. Our five models included: i) a nonseasonal homogeneous Susceptible-Exposed-Infectious-Recovered (SEIR) model, ii) a homogeneous SEIR model with seasonality in transmission, iii) an age-structured SEIR model, iv) a multiplex network-based model (Mplex) and v) an agent-based simulator (FRED). All models were parameterised to have a herd-immunity immunization threshold of around 90% coverage, and underwent a linear decrease in vaccine uptake, from 92% to 70% over 15 years. We found evidence of CSD prior to disease re-emergence in all models. We also evaluated the performance of seven EWS: the autocorrelation, coefficient of variation, index of dispersion, kurtosis, mean, skewness, variance. Performance was scored using the Area Under the ROC Curve (AUC) statistic. The best performing EWS were the mean and variance, with AUC > 0.75 one year before the estimated transition time. These two, along with the autocorrelation and index of dispersion, are promising candidate EWS for detecting disease emergence.
Collapse
Affiliation(s)
- Tobias Brett
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Marco Ajelli
- Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, Boston, Massachusetts, United States of America
- Bruno Kessler Foundation, Trento, Italy
| | - Quan-Hui Liu
- Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, Boston, Massachusetts, United States of America
- College of Computer Science, Sichuan University, Chengdu, China
| | - Mary G. Krauland
- University of Pittsburgh, Department of Health Policy and Management, Pittsburgh, Pennsylvania, United States of America
| | - John J. Grefenstette
- University of Pittsburgh, Department of Health Policy and Management, Pittsburgh, Pennsylvania, United States of America
| | - Willem G. van Panhuis
- University of Pittsburgh, Department of Epidemiology, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh, Department of Biomedical Informatics, Pittsburgh, Pennsylvania, United States of America
| | - Alessandro Vespignani
- Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, Boston, Massachusetts, United States of America
- ISI Foundation, Turin, Italy
| | - John M. Drake
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Pejman Rohani
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
38
|
Chen X, Zhou T, Feng L, Liang J, Liljeros F, Havlin S, Hu Y. Nontrivial resource requirement in the early stage for containment of epidemics. Phys Rev E 2020; 100:032310. [PMID: 31640028 DOI: 10.1103/physreve.100.032310] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Indexed: 11/07/2022]
Abstract
During epidemic control, containment of the disease is usually achieved through increasing a devoted resource to reduce the infectiousness. However, the impact of this resource expenditure has not been studied quantitatively. For disease spread, the recovery rate can be positively correlated with the average amount of resource devoted to infected individuals. By incorporating this relation we build a novel model and find that insufficient resource leads to an abrupt increase in the infected population size, which is in marked contrast with the continuous phase transitions believed previously. Counterintuitively, this abrupt phase transition is more pronounced in less contagious diseases. Furthermore, we find that even for a single infection source, the public resource needs to be available in a significant amount, which is proportional to the total population size, to ensure epidemic containment. Our findings provide a theoretical foundation for efficient epidemic containment strategies in the early stage.
Collapse
Affiliation(s)
- Xiaolong Chen
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China.,Web Sciences Center, University of Electronic Science and Technology of China, Chengdu 611731, China.,Big Data Research Center, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Tianshou Zhou
- School of Mathematics, Sun Yat-sen University, Guangzhou 510006, China
| | - Ling Feng
- Institute of High Performance Computing, A*STAR, 138632 Singapore.,Department of Physics, National University of Singapore, 117551 Singapore
| | - Junhao Liang
- School of Mathematics, Sun Yat-sen University, Guangzhou 510006, China
| | - Fredrik Liljeros
- Department of Sociology, Stockholm University, 17177 Stockholm, Sweden
| | - Shlomo Havlin
- Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Yanqing Hu
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China.,Big Data Research Center, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
39
|
Abstract
MicroRNAs (miRNAs) are small, non-coding RNA molecules that inhibit protein translation from target mRNAs. Accumulating evidence suggests that miRNAs can regulate a broad range of biological pathways, including cell differentiation, apoptosis, and carcinogenesis. With the development of miRNAs, the investigation of miRNA functions has emerged as a hot research field. Due to the intensive farming in recent decades, chickens are easily influenced by various pathogen transmissions, and this has resulted in large economic losses. Recent reports have shown that miRNAs can play critical roles in the regulation of chicken diseases. Therefore, the aim of this review is to briefly discuss the current knowledge regarding the effects of miRNAs on chickens suffering from common viral diseases, mycoplasmosis, necrotic enteritis, and ovarian tumors. Additionally, the detailed targets of miRNAs and their possible functions are also summarized. This review intends to highlight the key role of miRNAs in regard to chickens and presents the possibility of improving chicken disease resistance through the regulation of miRNAs.
Collapse
|
40
|
COVID-19 impact on sustainable production and operations management. SUSTAINABLE OPERATIONS AND COMPUTERS 2020; 1. [PMCID: PMC7443395 DOI: 10.1016/j.susoc.2020.06.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The global production and supply chain system is mostly disrupted due to widespread of the coronavirus pandemic (COVID-19). Most of the industrial managers and policymakers are searching for adequate strategies and policies for revamping production patterns and meet consumer demand. Form global supply chain perspectives, the majority of raw materials are imported from China and other Asian developing nations. The COVID-19 pandemic has broken the most of transportation links and distribution mechanisms between suppliers, production facilities and customers. Therefore, it is imperative to discuss sustainable production and consumption pattern in the post-COVID-19 pandemic era. Most of the prominent economies around the world enforced a total lockdown, and the focus has since shifted to surge in demand for essential products and services. This has led to a decline in demand for some nonessential products and services. The production and operations management challenges of the pandemic situations are discussed and adequately proposes policy strategies for improving the resilience and sustainability of the system. This paper also discusses the different operations and supply chain perspectives for handling such disruptions in the future.
Collapse
|
41
|
Biswas A, Chakrabarti AK, Dutta S. Current challenges: from the path of “original antigenic sin” towards the development of universal flu vaccines. Int Rev Immunol 2019; 39:21-36. [DOI: 10.1080/08830185.2019.1685990] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Asim Biswas
- Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Alok K. Chakrabarti
- Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
42
|
Miyagawa T, Hongo S, Nakamura N, Horiguchi Y, Miyahara Y, Shibata H. A Novel Diagnostic System for Infectious Diseases Using Solid-State Nanopore Devices. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:2833-2836. [PMID: 30440991 DOI: 10.1109/embc.2018.8512856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nanopore-based diagnostic systems are a promising tool for counting viruses in a specimen one by one. However, despite intensive R&D efforts, it remains difficult to recognize virus subtypes by nanopore devices. We thus propose a novel diagnostic system that combines a specialized virus recognition procedure with a nanopore detection procedure. This recognition procedure consists of three steps: 1) capture target viruses using specific probes for recognition; 2) release captured targets; and 3) detect released targets by nanopore. Proof-of-concept tests are conducted using avidin-modified fluorescent particles (as a model for viruses) and biotin-modified alkane thiol (as a model for probes). The avidin-modified particles are confirmed to be captured on electrode by biotin-modified probes and then, the particles are electrochemically released from the electrode. Consequently, the released particles are successfully detected by nanopore devices. Furthermore, the concept is also proved by using human influenza viruses (H1N1, A/PR/8/34) and sugar chain (6'-sialyllactose)-modified probes. This suggests that our concept is applicable to various infectious diseases by changing probes (ligands).
Collapse
|
43
|
Toth E, Dawson ED, Taylor AW, Stoughton RS, Blair RH, Johnson JE, Slinskey A, Fessler R, Smith CB, Talbot S, Rowlen K. FluChip-8G Insight: HA and NA subtyping of potentially pandemic influenza A viruses in a single assay. Influenza Other Respir Viruses 2019; 14:55-60. [PMID: 31608599 PMCID: PMC6928037 DOI: 10.1111/irv.12683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/26/2019] [Accepted: 09/11/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Global influenza surveillance in humans and animals is a critical component of pandemic preparedness. The FluChip-8G Insight assay was developed to subtype both seasonal and potentially pandemic influenza viruses in a single assay with a same day result. FluChip-8G Insight uses whole gene segment RT-PCR-based amplification to provide robustness against genetic drift and subsequent microarray detection with artificial neural network-based data interpretation. OBJECTIVES The objective of this study was to verify and validate the performance of the FluChip-8G Insight assay for the detection and positive identification of human and animal origin non-seasonal influenza A specimens. METHODS We evaluated the ability of the FluChip-8G Insight technology to type and HA and NA subtype a sample set consisting of 297 results from 180 unique non-seasonal influenza A strains (49 unique subtypes). RESULTS FluChip-8G Insight demonstrated a positive percent agreement ≥93% for 5 targeted HA and 5 targeted NA subtypes except for H9 (88%), and negative percent agreement exceeding 95% for all targeted subtypes. CONCLUSIONS The FluChip-8G Insight neural network-based algorithm used for virus identification performed well over a data set of 297 naïve sample results, and can be easily updated to improve performance on emerging strains without changing the underlying assay chemistry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Catherine B Smith
- Influenza Division, the Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sarah Talbot
- Influenza Division, the Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
44
|
Su Y, Meng L, Sun J, Li W, Shao L, Chen K, Zhou D, Yang F, Yu F. Design, synthesis of oleanolic acid-saccharide conjugates using click chemistry methodology and study of their anti-influenza activity. Eur J Med Chem 2019; 182:111622. [PMID: 31425909 DOI: 10.1016/j.ejmech.2019.111622] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
Abstract
The development of entry inhibitors is an emerging approach to the inhibition of influenza virus. In our previous research, oleanolic acid (OA) was discovered as a mild influenza hemagglutinin (HA) inhibitor. Herein, as a further study, we report the preparation of a series of OA-saccharide conjugates via the CuAAC reaction, and the anti-influenza activity of these compounds was evaluated in vitro. Among them, compound 11b, an OA-glucose conjugate, showed a significantly increased anti-influenza activity with an IC50 of 5.47 μM, and no obvious cytotoxic effect on MDCK cells was observed at 100 μM. Hemagglutination inhibition assay and docking experiment indicated that 11b might interfere with influenza virus infection by acting on HA protein. Broad-spectrum anti-influenza experiments showed 11b to be robustly potent against 5 different strains, including influenza A and B viruses, with IC50 values at the low-micromole level. Overall, this finding further extends the utility of OA-saccharide conjugates in anti-influenza virus drug design.
Collapse
Affiliation(s)
- Yangqing Su
- Medical School of Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Lingkuan Meng
- Medical School of Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Jiaqi Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Weijia Li
- Medical School of Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Liang Shao
- Medical School of Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Kexuan Chen
- Medical School of Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Fan Yang
- Medical School of Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Fei Yu
- Medical School of Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| |
Collapse
|
45
|
Szollosi D, Bill A. Potential Role of Endonuclease Inhibition and Other Targets in the Treatment of Influenza. Curr Drug Targets 2019; 21:202-211. [PMID: 31368872 DOI: 10.2174/1389450120666190801115130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Influenza is a single-stranded RNA virus that is highly contagious and infects millions of people in the U.S. annually. Due to complications, approximately 959,000 people were hospitalized and another 79,400 people died during the 2017-2018 flu season. While the best methods of prevention continue to be vaccination and hygiene, antiviral treatments may help reduce symptoms for those who are infected. Until recently, the only antiviral drugs in use have been the neuraminidase inhibitors: oseltamivir, zanamivir, and peramivir. OBJECTIVE We reviewed novel drug targets that can be used in the treatment of influenza, particularly in the case of neuraminidase inhibitor-resistant strains that may emerge. RESULTS More recently, a drug with a new mechanism of action has been approved. Baloxavir marboxil inhibits the influenza cap-dependent endonuclease that is needed for the virus to initiate replication within the host cell. This endonuclease target is within the polymerase acid (PA) subunit of RNA polymerase. Since the RNA-dependent RNA polymerase consists of two other subunits, polymerase basic 1 and 2, RNA polymerase has several targets that prevent viral replication. Other targets still under investigation include viral kinases, endocytosis, and viral fusion. CONCLUSION Due to the possibility of viral mutations and resistance, it is important to have antivirals with different mechanisms available, especially in the case of a new pandemic strain. Several novel antivirals are within various stages of development and may represent new classes of treatments that can reduce symptoms and complications in those patients who may be at higher risk.
Collapse
Affiliation(s)
- Doreen Szollosi
- University of Saint Joseph, School of Pharmacy & Physician Assistant Studies 229 Trumbull Street, Hartford, CT 06103, United States
| | - Ashley Bill
- University of Saint Joseph, School of Pharmacy & Physician Assistant Studies 229 Trumbull Street, Hartford, CT 06103, United States
| |
Collapse
|
46
|
Welkers MRA, Pawestri HA, Fonville JM, Sampurno OD, Pater M, Holwerda M, Han AX, Russell CA, Jeeninga RE, Setiawaty V, de Jong MD, Eggink D. Genetic diversity and host adaptation of avian H5N1 influenza viruses during human infection. Emerg Microbes Infect 2019; 8:262-271. [PMID: 30866780 PMCID: PMC6455201 DOI: 10.1080/22221751.2019.1575700] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The continuing pandemic threat posed by avian influenza A/H5N1 viruses calls for improved insights into their evolution during human infection. We performed whole genome deep sequencing of respiratory specimens from 44 H5N1-infected individuals from Indonesia and found substantial within-host viral diversity. At nearly 30% of genome positions multiple amino acids were observed within or across samples, including positions implicated in aerosol transmission between ferrets. Amino acid variants detected our cohort were often found more frequently in available H5N1 sequences of human than avian isolates. We additionally identified previously unreported amino acid variants and multiple variants that increased in proportion over time in available sequential samples. Given the importance of the polymerase complex for host adaptation, we tested 121 amino acid variants found in the PB2, PB1 and PA subunits for their effects on polymerase activity in human cells. We identified multiple single amino acid variants in all three polymerase subunits that substantially increase polymerase activity including some with effects comparable to that of the widely recognized adaption and virulence marker PB2-E627 K. These results indicate highly dynamic evolutionary processes during human H5N1 virus infection and the potential existence of previously undocumented adaptive pathways.
Collapse
Affiliation(s)
- Matthijs R A Welkers
- a Department of Medical Microbiology , Academic Medical Center , Amsterdam , Netherlands
| | - Hana A Pawestri
- b National Institute of Health Research and Development, Ministry of Health , Jakarta , Indonesia
| | - Judy M Fonville
- a Department of Medical Microbiology , Academic Medical Center , Amsterdam , Netherlands.,c Department of Zoology , University of Cambridge , Cambridge , UK.,e Department of Medical Microbiology , PAMM , Veldhoven , Netherlands
| | - Ondri D Sampurno
- b National Institute of Health Research and Development, Ministry of Health , Jakarta , Indonesia
| | - Maarten Pater
- a Department of Medical Microbiology , Academic Medical Center , Amsterdam , Netherlands
| | - Melle Holwerda
- a Department of Medical Microbiology , Academic Medical Center , Amsterdam , Netherlands
| | - Alvin X Han
- a Department of Medical Microbiology , Academic Medical Center , Amsterdam , Netherlands.,d Bioinformatics Institute, A*STAR , Singapore , Singapore
| | - Colin A Russell
- a Department of Medical Microbiology , Academic Medical Center , Amsterdam , Netherlands
| | - Rienk E Jeeninga
- a Department of Medical Microbiology , Academic Medical Center , Amsterdam , Netherlands
| | - Vivi Setiawaty
- b National Institute of Health Research and Development, Ministry of Health , Jakarta , Indonesia
| | - Menno D de Jong
- a Department of Medical Microbiology , Academic Medical Center , Amsterdam , Netherlands
| | - Dirk Eggink
- a Department of Medical Microbiology , Academic Medical Center , Amsterdam , Netherlands
| |
Collapse
|
47
|
Barratt AS, Rich KM, Eze JI, Porphyre T, Gunn GJ, Stott AW. Framework for Estimating Indirect Costs in Animal Health Using Time Series Analysis. Front Vet Sci 2019; 6:190. [PMID: 31275949 PMCID: PMC6592220 DOI: 10.3389/fvets.2019.00190] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/29/2019] [Indexed: 11/13/2022] Open
Abstract
Traditionally, cost-benefit analyses (CBAs) focus on the direct costs of animal disease, including animal mortality, morbidity, and associated response costs. However, such approaches often fail to capture the wider, dynamic market impacts that could arise. The duration of these market dislocations could last well after an initial disease outbreak. More generally, current approaches also muddle definitions of indirect costs, confusing debate on the scope of the totalities of disease-induced economic impacts. The aim of this work was to clarify definitions of indirect costs in the context of animal diseases and to apply this definition to a time series methodological framework to estimate the indirect costs of animal disease control strategies, using a foot and mouth disease (FMD) outbreak in Scotland as a case study. Time series analysis is an econometric method for analyzing statistical relationships between data series over time, thus allowing insights into how market dynamics may change following a disease outbreak. First an epidemiological model simulated FMD disease dynamics based on alternative control strategies. Output from the epidemiological model was used to quantify direct costs and applied in a multivariate vector error correction model to quantify the indirect costs of alternative vaccine stock strategies as a result of FMD. Indirect costs were defined as the economic losses incurred in markets after disease freedom is declared. As such, our definition of indirect costs captures the knock-on price and quantity effects in six agricultural markets after a disease outbreak. Our results suggest that controlling a FMD epidemic with vaccination is less costly in direct and indirect costs relative to a no vaccination (i.e., "cull only") strategy, when considering large FMD outbreaks in Scotland. Our research clarifies and provides a framework for estimating indirect costs, which is applicable to both exotic and endemic diseases. Standard accounting CBAs only capture activities in isolation, ignore linkages across sectors, and do not consider price effects. However, our framework not only delineates when indirect costs start, but also captures the wider knock-on price effects between sectors, which are often omitted from CBAs but are necessary to support decision-making in animal disease prevention and control strategies.
Collapse
Affiliation(s)
- Alyson S Barratt
- Department of Rural Economy, Environment and Society, Scotland's Rural College, Faculty of Rural Science and Policy, Edinburgh, United Kingdom
| | - Karl M Rich
- East and Southeast Asia Regional Office, International Livestock Research Institute, Hanoi, Vietnam.,Epidemiology Research Unit, Department of Veterinary and Animal Science, Northern Faculty, Scotland's Rural College, Inverness, United Kingdom
| | - Jude I Eze
- Epidemiology Research Unit, Department of Veterinary and Animal Science, Northern Faculty, Scotland's Rural College, Inverness, United Kingdom.,Biomathematics and Statistics Scotland, JCMB, The King's Buildings, Edinburgh, United Kingdom
| | - Thibaud Porphyre
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - George J Gunn
- Epidemiology Research Unit, Department of Veterinary and Animal Science, Northern Faculty, Scotland's Rural College, Inverness, United Kingdom
| | - Alistair W Stott
- Department of Rural Economy, Environment and Society, Scotland's Rural College, Faculty of Rural Science and Policy, Edinburgh, United Kingdom
| |
Collapse
|
48
|
Kumar R, Nayak M, Sahoo GC, Pandey K, Sarkar MC, Ansari Y, Das V, Topno R, Bhawna, Madhukar M, Das P. Iron oxide nanoparticles based antiviral activity of H1N1 influenza A virus. J Infect Chemother 2019; 25:325-329. [DOI: 10.1016/j.jiac.2018.12.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 12/25/2022]
|
49
|
Detecting the Onset of Infectious Disease Outbreaks Using School Sign-out Logs. Epidemiology 2019; 30:e18-e19. [DOI: 10.1097/ede.0000000000000969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Yan H, Ma L, Wang H, Wu S, Huang H, Gu Z, Jiang J, Li Y. Luteolin decreases the yield of influenza A virus in vitro by interfering with the coat protein I complex expression. J Nat Med 2019; 73:487-496. [PMID: 30758716 DOI: 10.1007/s11418-019-01287-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/03/2019] [Indexed: 11/28/2022]
Abstract
Influenza is an acute transmissible respiratory infectious disease in humans and animals with high morbidity and mortality. It was reported that luteolin, extracted from Chinese herbs, could potently inhibit influenza virus replication in vitro. To assess the effect and explore the fundamental mechanism of luteolin, we infected several cell lines with two subtypes of influenza A virus (IAV), including A/Jiangxi/312/2006 (H3N2) and A/Fort Monmouth/1/1947 (H1N1) and demonstrated that luteolin suppressed the replication of IAV by cytopathic effect reduction method, qRT-PCR, immunofluorescence and Western blot assays. A time-of-addition assay indicated that this compound interfered with viral replication at the early stage of infection. In addition, we found that luteolin suppressed coat protein I complex expression, which was related to influenza virus entry and endocytic pathway. Overall, our findings demonstrated the antiviral effect of luteolin against IAV and its novel antiviral mechanism.
Collapse
Affiliation(s)
- Haiyan Yan
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Linlin Ma
- Key Laboratory of Molecular Imaging of Shanghai Education Commission, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Huiqiang Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuo Wu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hua Huang
- Xinjiang Institute of Materia Medica, Ürümqi, China
| | - Zhengyi Gu
- Xinjiang Institute of Materia Medica, Ürümqi, China
| | - Jiandong Jiang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yuhuan Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|