1
|
Zhao DS, Chen YT, Xu JM, Liu XL, Xu YC, Cao P, Li J, Wang S, Li N, Li Y, Li SM, Yan X, Pang Q, Zou HX. Overexpression of PtNRPS1 enhances diatom-mediated bioremediation of salicylate pollution. BIORESOURCE TECHNOLOGY 2025; 416:131782. [PMID: 39521186 DOI: 10.1016/j.biortech.2024.131782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/01/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The accumulation of the emerging pollutant salicylic acid (SA) in the environment has gained much attention. In this study, overexpression of the non-ribosomal peptide synthase (NRPS) gene, PtNRPS1 in the marine diatom Phaeodactylum tricornutum (PtNRPS1-OE) increased resistance to SA pollutants. It was assumed that the enhanced tolerance was due to the high binding affinity between recombinant PtNRPS1 (rNRPS1) and SA pollutants. Moreover, tandem mass spectrometry analysis determined the amino acids that participated in the covalently binding of SA. The removal efficiency of SA pollutants by PtNRPS1-OE cells was found to be markedly elevated. The mechanism underlying the removal of SA and 5-substituted SA (5-sSA) was proposed, following the co-localization analysis of rNRPS1 and SA. The purpose of this study was not about using PtNRPS1 as an enzyme to catalyze the synthesis of metabolite. Rather, it explored the possibility of using PtNRPS1 to remove pollutants, which further improves practical feasibility of microalgae-mediated bioremediation.
Collapse
Affiliation(s)
- Dong-Sheng Zhao
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yu-Ting Chen
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Jia-Min Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Xiao-Li Liu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Yi-Cheng Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Peng Cao
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Junliang Li
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Shengqin Wang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Nan Li
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Yong Li
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Strasse 4, 35037 Marburg, Germany
| | - Xiufeng Yan
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Qiuying Pang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Hui-Xi Zou
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
2
|
Rai KK, Raj A, Rai R, Singh S, Rai LC. All1750 of Anabaena PCC 7120 encodes a novel NAD +-dependent amine dehydrogenase having broad substrate range. Int J Biol Macromol 2025; 287:138507. [PMID: 39647724 DOI: 10.1016/j.ijbiomac.2024.138507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Native amine dehydrogenases (AmDHs) are rare and typically have narrow substrate specificity and low processivity. Therefore, they are often modified using protein engineering for industrial and pharmaceutical applications. This study presents identification and characterization of a novel native amine dehydrogenase (AmDH) encoding WD40 protein (All1750) from Anabaena PCC 7120. Heterologous expression of all1750 in E. coli enhanced its tolerance to abiotic stressors such as drought, cadmium, and NaCl, as evidenced by increase in gene expression (2-10-fold), spot assay results (3-4-fold) and decreased ROS generation (0.2-1.8-fold). Molecular docking analysis showed that All1750 has broad substrate binding activity, indicating its catalytic potential in amine oxidation. All1750 exhibited the appreciable enzymatic activity with acetophenone (0.8-1.0-fold increase), followed by 4-fluorophenyl acetone and 4-fluoropropiophenone. The Km values for acetophenone and 4-fluorophenyl acetone were 4.2-12.1-fold higher, suggesting a greater affinity of All1750 for these low-cost substrates compared to the expensive 4-fluoropropiophenone. Recombinant All1750 showed optimal enzyme activity at pH 8.0 and maintained thermo-stability at 70 °C with a half-life of approximately 3 h. Our findings provide valuable insights into the industrial application of the All1750 protein. This native AmDH from Anabaena can effectively utilize diverse cost-effective substrates, making it a promising biocatalyst for chiral amine biosynthesis.
Collapse
Affiliation(s)
- Krishna Kumar Rai
- Department of Biotechnology, Amity School of Biological Sciences, Amity University, Mohali 140306, Punjab, India; Molecular Biology Section, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Alka Raj
- Molecular Biology Section, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ruchi Rai
- Molecular Biology Section, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Shilpi Singh
- Molecular Biology Section, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - L C Rai
- Molecular Biology Section, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
3
|
Sarıtaş S, Kalkan AE, Yılmaz K, Gurdal S, Göksan T, Witkowska AM, Lombardo M, Karav S. Biological and Nutritional Applications of Microalgae. Nutrients 2024; 17:93. [PMID: 39796527 PMCID: PMC11722913 DOI: 10.3390/nu17010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/18/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Microalgae are photosynthetic microorganisms that have a rapid growth cycle and carbon fixation ability. They have diverse cellular structures, ranging from prokaryotic cyanobacteria to more complex eukaryotic forms, which enable them to thrive in a variety of environments and support biomass production. They utilize both photosynthesis and heterotrophic pathways, indicating their ecological importance and potential for biotechnological applications. Reproducing primarily through asexual means, microalgae have complex cell cycles that are crucial for their growth and ability to adapt to changing conditions. Additionally, microalgae possess bioactive compounds that make them both nutritious and functional. Thanks to their content of proteins, lipids, carbohydrates, vitamins, and minerals, they play an important role in the development of functional food products, particularly by enhancing nutritional content and product quality. Furthermore, studies have demonstrated that algae and algal bioactive compounds support cardiovascular health, immune function, and gut health, especially in relation to obesity and other metabolic diseases. They also contribute to skin health and cognitive functions, including memory. This review article explores the biological, nutritional, and functional properties of microalgae based on the studies conducted.
Collapse
Affiliation(s)
- Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, 17100 Çanakkale, Türkiye; (S.S.); (A.E.K.)
| | - Arda Erkan Kalkan
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, 17100 Çanakkale, Türkiye; (S.S.); (A.E.K.)
| | - Kadir Yılmaz
- Çanakkale Onsekiz Mart University Rectorate, Çanakkale Onsekiz Mart University, 17100 Çanakkale, Türkiye;
| | - Savas Gurdal
- Science and Technology Application and Research Center, Çanakkale Onsekiz Mart University, 17100 Çanakkale, Türkiye;
| | - Tolga Göksan
- Faculty of Marine Sciences and Technology, Çanakkale Onsekiz Mart University, 17100 Çanakkale, Türkiye;
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | - Mauro Lombardo
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy;
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, 17100 Çanakkale, Türkiye; (S.S.); (A.E.K.)
| |
Collapse
|
4
|
Feng Y, Li Z, Yang Y, Shen L, Li X, Liu X, Zhang X, Zhang J, Ren F, Wang Y, Liu C, Han G, Wang X, Kuang T, Shen JR, Wang W. Structures of PSI-FCPI from Thalassiosira pseudonana grown under high light provide evidence for convergent evolution and light-adaptive strategies in diatom FCPIs. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024. [PMID: 39670505 DOI: 10.1111/jipb.13816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024]
Abstract
Diatoms rely on fucoxanthin chlorophyll a/c-binding proteins (FCPs) for light harvesting and energy quenching under marine environments. Here we report two cryo-electron microscopic structures of photosystem I (PSI) with either 13 or five fucoxanthin chlorophyll a/c-binding protein Is (FCPIs) at 2.78 and 3.20 Å resolutions from Thalassiosira pseudonana grown under high light (HL) conditions. Among them, five FCPIs are stably associated with the PSI core, these include Lhcr3, RedCAP, Lhcq8, Lhcf10, and FCP3. The eight additional Lhcr-type FCPIs are loosely associated with the PSI core and detached under the present purification conditions. The pigments of this centric diatom showed a higher proportion of chlorophylls a, diadinoxanthins, and diatoxanthins; some of the chlorophyll as and diadinoxanthins occupy the locations of fucoxanthins found in the huge PSI-FCPI from another centric diatom Chaetoceros gracilis grown under low-light conditions. These additional chlorophyll as may form more energy transfer pathways and additional diadinoxanthins may form more energy dissipation sites relying on the diadinoxanthin-diatoxanthin cycle. These results reveal the assembly mechanism of FCPIs and corresponding light-adaptive strategies of T. pseudonana PSI-FCPI, as well as the convergent evolution of the diatom PSI-FCPI structures.
Collapse
Affiliation(s)
- Yue Feng
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenhua Li
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Yang
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Lili Shen
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyi Li
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Xueyang Liu
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofei Zhang
- Department of Chemistry and Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Jinyang Zhang
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Ren
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Wang
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Liu
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- Academician Workstation of Agricultural High-Tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Guangye Han
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Xuchu Wang
- Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Tingyun Kuang
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Jian-Ren Shen
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Research Institute for Interdisciplinary Science, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Wenda Wang
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- Academician Workstation of Agricultural High-Tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| |
Collapse
|
5
|
Du F, Li Y, Bilcke G, Sato S, Xu K. Distinct interspecies thermal resistance strategies exhibited by euplanktonic, tychoplanktonic and benthic diatoms under marine heatwaves. MARINE ENVIRONMENTAL RESEARCH 2024; 204:106859. [PMID: 39631319 DOI: 10.1016/j.marenvres.2024.106859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/15/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
Extreme climate events, such as marine heatwaves (MHWs), are expected to occur more frequently and intensely in the future, resulting in a substantial impact on marine life. The way that diatoms respond to MHWs may have crucial effects on global primary production and biogeochemical cycles. Euplanktonic diatoms appear to benefit from MHWs directly, but this phenomenon needs an explanation. As concerns tychoplanktonic and benthic diatoms, no studies have been addressed on their thermal response strategies. To address this, we investigated the responses and underlying mechanisms of three typical growth forms of diatoms, Pseudo-nitzschia multiseries (euplanktonic), Paralia guyana (tychoplanktonic) and Navicula avium (benthic), under heat stress by combining a growth experiment with transcriptomic analysis. Our results showed that the physiological responses of diatoms to MHWs and underlying molecular mechanisms are largely related to their growth forms. The euplanktonic diatom was first depressed, but then had a distinct increase in the growth rate accompanied by inducing zeatin and unsaturated fatty acid biosynthesis and repressing substance assimilation and energy metabolism. Contrarily, the benthic diatom showed elevated substance and energy demands for macromolecules accumulation by reducing cell division and increasing photosynthesis and nitrogen assimilation. The tychoplanktonic diatom exhibited higher physiological plasticity to maintain growth and cellular homeostasis. Our results indicate the increased rate of cell division in euplanktonic diatoms under heat stress is likely an emergency response strategy promoting diatom dispersal for survival, but at the cost of disturbances of metabolic balance.
Collapse
Affiliation(s)
- Feichao Du
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhang Li
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Gust Bilcke
- VIB Center for Plant Systems Biology, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; Protistology and Aquatic Ecology, Department of Biology, Ghent University, Ghent, Belgium
| | - Shinya Sato
- Fukui Prefectural University, 1-1 Gakuen-cho, Obama, Fukui, 917-0003, Japan
| | - Kuidong Xu
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Zhou C, Feng Y, Li Z, Shen L, Li X, Wang Y, Han G, Kuang T, Liu C, Shen JR, Wang W. Structural and spectroscopic insights into fucoxanthin chlorophyll a/c-binding proteins of diatoms in diverse oligomeric states. PLANT COMMUNICATIONS 2024; 5:101041. [PMID: 39030906 PMCID: PMC11589303 DOI: 10.1016/j.xplc.2024.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/20/2024] [Accepted: 07/15/2024] [Indexed: 07/22/2024]
Abstract
Diatoms, a group of prevalent marine algae, contribute significantly to global primary productivity. Their substantial biomass is linked to enhanced absorption of blue-green light underwater, facilitated by fucoxanthin chlorophyll (Chl) a/c-binding proteins (FCPs), which exhibit oligomeric diversity across diatom species. Using mild clear native PAGE analysis of solubilized thylakoid membranes, we displayed monomeric, dimeric, trimeric, tetrameric, and pentameric FCPs in diatoms. Mass spectrometry analysis revealed that each oligomeric FCP has a specific protein composition, and together they constitute a large Lhcf family of FCP antennas. In addition, we resolved the structures of the Thalassiosira pseudonana FCP (Tp-FCP) homotrimer and the Chaetoceros gracilis FCP (Cg-FCP) pentamer by cryoelectron microscopy at 2.73-Å and 2.65-Å resolution, respectively. The distinct pigment compositions and organizations of various oligomeric FCPs affect their blue-green light-harvesting, excitation energy transfer pathways. Compared with dimeric and trimeric FCPs, the Cg-FCP tetramer and Cg-FCP pentamer exhibit stronger absorption by Chl c, redshifted and broader Chl a fluorescence emission, and more robust circular dichroism signals originating from Chl a-carotenoid dimers. These spectroscopic characteristics indicate that Chl a molecules in the Cg-FCP tetramer and Cg-FCP pentamer are more heterogeneous than in both dimers and the Tp-FCP trimer. The structural and spectroscopic insights provided by this study contribute to a better understanding of the mechanisms that empower diatoms to adapt to fluctuating light environments.
Collapse
Affiliation(s)
- Cuicui Zhou
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P.R. China; University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yue Feng
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P.R. China; University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhenhua Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P.R. China; University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Lili Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P.R. China; University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xiaoyi Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P.R. China; China National Botanical Garden, Beijing 100093, P.R. China; Academician Workstation of the Agricultural High-Tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, P.R. China
| | - Yumei Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, P.R. China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P.R. China; China National Botanical Garden, Beijing 100093, P.R. China; Academician Workstation of the Agricultural High-Tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, P.R. China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P.R. China; China National Botanical Garden, Beijing 100093, P.R. China; Academician Workstation of the Agricultural High-Tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, P.R. China
| | - Cheng Liu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P.R. China; China National Botanical Garden, Beijing 100093, P.R. China; Academician Workstation of the Agricultural High-Tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, P.R. China.
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P.R. China; Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P.R. China; China National Botanical Garden, Beijing 100093, P.R. China; Academician Workstation of the Agricultural High-Tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, P.R. China.
| |
Collapse
|
7
|
Lampe RH, Coale TH, McQuaid JB, Allen AE. Molecular Mechanisms for Iron Uptake and Homeostasis in Marine Eukaryotic Phytoplankton. Annu Rev Microbiol 2024; 78:213-232. [PMID: 39018471 DOI: 10.1146/annurev-micro-041222-023252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
The micronutrient iron is essential for phytoplankton growth due to its central role in a wide variety of key metabolic processes including photosynthesis and nitrate assimilation. As a result of scarce bioavailable iron in seawater, marine primary productivity is often iron-limited with future iron supplies remaining uncertain. Although evolutionary constraints resulted in high cellular iron requirements, phytoplankton evolved diverse mechanisms that enable uptake of multiple forms of iron, storage of iron over short and long timescales, and modulation of their iron requirement under stress. Genomics continues to increase our understanding of iron-related proteins that are homologous to those characterized in other model organisms, while recently, molecular and cell biology have been revealing unique genes and processes with connections to iron acquisition or use. Moreover, there are an increasing number of examples showing the interplay between iron uptake and extracellular processes such as boundary layer chemistry and microbial interactions.
Collapse
Affiliation(s)
- Robert H Lampe
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA; , ,
- Microbial and Environmental Genomics Department, J. Craig Venter Institute, La Jolla, California, USA
| | - Tyler H Coale
- Department of Ocean Sciences, University of California, Santa Cruz, California, USA;
| | - Jeffrey B McQuaid
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA; , ,
- Microbial and Environmental Genomics Department, J. Craig Venter Institute, La Jolla, California, USA
| | - Andrew E Allen
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA; , ,
- Microbial and Environmental Genomics Department, J. Craig Venter Institute, La Jolla, California, USA
| |
Collapse
|
8
|
Jian J, Du F, Wang B, Fang X, Larsen TO, Li Y, Sonnenschein EC. A high-quality genome of the early diverging tychoplanktonic diatom Paralia guyana. Sci Data 2024; 11:1175. [PMID: 39477953 PMCID: PMC11525933 DOI: 10.1038/s41597-024-03843-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/29/2024] [Indexed: 11/02/2024] Open
Abstract
The diatom Paralia guyana is a tychoplanktonic microalgal species that represents one of the early diverging diatoms. P. guyana can thrive in both planktonic and benthic habitats, making a significant contribution to the occurrence of red tide events. Although a dozen diatom genomes have been sequenced, the identity of the early diverging diatoms remains elusive. The understanding of the evolutionary clades and mechanisms of ecological adaptation in P. guyana is limited by the absence of a high-quality genome assembly. In this study, the first high-quality genome assembly for the early diverging diatom P. guyana was established using PacBio single molecular sequencing. The assembled genome has a size of 558.85 Mb, making it the largest diatom genome on record, with a contig N50 size of 26.06 Mb. A total of 27,121 protein-coding genes were predicted in the P. guyana genome, of which 22,904 predicted genes (84.45%) were functionally annotated. This data and analysis provide innovative genomic resources for tychoplanktonic microalgal species and shed light on the evolutionary origins of diatoms.
Collapse
Affiliation(s)
- Jianbo Jian
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- BGI Genomics, Shenzhen, China
| | - Feichao Du
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | | | | | - Thomas Ostenfeld Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Yuhang Li
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Eva C Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, Wales, UK.
| |
Collapse
|
9
|
Frail S, Steele-Ogus M, Doenier J, Moulin SL, Braukmann T, Xu S, Yeh E. Genomes of nitrogen-fixing eukaryotes reveal a non-canonical model of organellogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609708. [PMID: 39253440 PMCID: PMC11383321 DOI: 10.1101/2024.08.27.609708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Endosymbiont gene transfer and import of host-encoded proteins are considered hallmarks of organelles necessary for stable integration of two cells. However, newer endosymbiotic models have challenged the origin and timing of such genetic integration during organellogenesis. Epithemia diatoms contain diazoplasts, closely related to recently-described nitrogen-fixing organelles, that are also stably integrated and co-speciating with their host algae. We report genomic analyses of two species, freshwater E.clementina and marine E.pelagica, which are highly divergent but share a common endosymbiotic origin. We found minimal evidence of genetic integration: nonfunctional diazoplast-to-nuclear DNA transfers in the E.clementina genome and 6 host-encoded proteins of unknown function in the E.clementina diazoplast proteome, far fewer than in other recently-acquired organelles. Epithemia diazoplasts are a valuable counterpoint to existing organellogenesis models, demonstrating that endosymbionts can be stably integrated and inherited absent significant genetic integration. The minimal genetic integration makes diazoplasts valuable blueprints for bioengineering endosymbiotic compartments de novo.
Collapse
Affiliation(s)
- Sarah Frail
- Department of Biochemistry, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Melissa Steele-Ogus
- Department of Pathology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Jon Doenier
- Department of Biochemistry, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Solène L.Y. Moulin
- Department of Pathology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Tom Braukmann
- Department of Biochemistry, Stanford School of Medicine, Stanford, CA 94305, USA
- Department of Pathology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Shouling Xu
- Department of Plant Biology, Carnegie Institution, Stanford, CA 94305, USA
| | - Ellen Yeh
- Department of Pathology, Stanford School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology & Immunology, Stanford School of Medicine, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, California 94158, USA
- Lead contact
- Senior author
| |
Collapse
|
10
|
Knjaz M, Baricevic A, Tankovic MS, Kuzat N, Vlasicek I, Grizancic L, Podolsak I, Pfannkuchen M, Kogovsek T, Pfannkuchen DM. First regional reference database of northern Adriatic diatom transcriptomes. Sci Rep 2024; 14:16209. [PMID: 39003315 PMCID: PMC11246432 DOI: 10.1038/s41598-024-67043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024] Open
Abstract
Marine microbial communities form the basis for the functioning of marine ecosystems and the conservation of biodiversity. With the application of metagenomics and metatranscriptomics in marine environmental studies, significant progress has been made in analysing the functioning of microbial communities as a whole. These molecular techniques are highly dependent on reliable, well-characterised, comprehensive and taxonomically diverse sequenced reference transcriptomes of microbial organisms. Here we present a set of 12 individual transcriptome assemblies derived from 6 representative diatom species from the northern Adriatic Sea grown under 2 environmentally relevant growth conditions (phosphate replete vs. phosphate deprived). After filtering the reads and assembly, an average number of 64,932 transcripts per assembly was obtained, of which an average of 8856 were assigned to functionally known proteins. Of all assigned transcripts, an average of 6483 proteins were taxonomically assigned to diatoms (Bacillariophyta). On average, a higher number of assigned proteins was detected in the transcriptome assemblies of diatoms grown under replete media condition. On average, 50% of the mapped proteins were shared between the two growth conditions. All recorded proteins in the dataset were classified into 24 COG categories, with approximately 25% belonging to the unknown function and the remaining 75% belonging to all other categories. The resulting diatom reference database for the northern Adriatic, focussing on the response to nutrient limitation as characteristic for the region and predicted for the future world oceans, provides a valuable resource for analysing environmental metatranscriptome and metagenome data. Each northern Adriatic transcriptome can also be used by itself as a reference database for the (meta)transcriptomes and gene expression studies of the associated species that will be generated in the future.
Collapse
Affiliation(s)
- Mia Knjaz
- Center for Marine Research, Ruđer Bošković Institute, Rovinj, Croatia
| | - Ana Baricevic
- Center for Marine Research, Ruđer Bošković Institute, Rovinj, Croatia.
| | | | - Natasa Kuzat
- Center for Marine Research, Ruđer Bošković Institute, Rovinj, Croatia
| | - Ivan Vlasicek
- Center for Marine Research, Ruđer Bošković Institute, Rovinj, Croatia
| | - Lana Grizancic
- Center for Marine Research, Ruđer Bošković Institute, Rovinj, Croatia
| | - Ivan Podolsak
- Center for Marine Research, Ruđer Bošković Institute, Rovinj, Croatia
| | | | - Tjasa Kogovsek
- Center for Marine Research, Ruđer Bošković Institute, Rovinj, Croatia
| | | |
Collapse
|
11
|
Iwai M, Patel-Tupper D, Niyogi KK. Structural Diversity in Eukaryotic Photosynthetic Light Harvesting. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:119-152. [PMID: 38360524 DOI: 10.1146/annurev-arplant-070623-015519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Photosynthesis has been using energy from sunlight to assimilate atmospheric CO2 for at least 3.5 billion years. Through evolution and natural selection, photosynthetic organisms have flourished in almost all aquatic and terrestrial environments. This is partly due to the diversity of light-harvesting complex (LHC) proteins, which facilitate photosystem assembly, efficient excitation energy transfer, and photoprotection. Structural advances have provided angstrom-level structures of many of these proteins and have expanded our understanding of the pigments, lipids, and residues that drive LHC function. In this review, we compare and contrast recently observed cryo-electron microscopy structures across photosynthetic eukaryotes to identify structural motifs that underlie various light-harvesting strategies. We discuss subtle monomer changes that result in macroscale reorganization of LHC oligomers. Additionally, we find recurring patterns across diverse LHCs that may serve as evolutionary stepping stones for functional diversification. Advancing our understanding of LHC protein-environment interactions will improve our capacity to engineer more productive crops.
Collapse
Affiliation(s)
- Masakazu Iwai
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA;
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Dhruv Patel-Tupper
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Krishna K Niyogi
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA;
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California, USA
| |
Collapse
|
12
|
Akhtar P, Feng Y, Jana S, Wang W, Shen JR, Tan HS, Lambrev PH. Ultrafast Energy Transfer in a Diatom Photosystem II Supercomplex. J Phys Chem Lett 2024; 15:5838-5847. [PMID: 38788163 DOI: 10.1021/acs.jpclett.4c01029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The light-harvesting complexes (LHCs) of diatoms, specifically fucoxanthin-Chl a/c binding proteins (FCPs), exhibit structural and functional diversity, as highlighted by recent structural studies of photosystem II-FCP (PSII-FCPII) supercomplexes from different diatom species. The excitation dynamics of PSII-FCPII supercomplexes isolated from the diatom Thalassiosira pseudonana was explored using time-resolved fluorescence spectroscopy and two-dimensional electronic spectroscopy at room temperature and 77 K. Energy transfer between FCPII and PSII occurred remarkably fast (<5 ps), emphasizing the efficiency of FCPII as a light-harvesting antenna. The presence of long-wavelength chlorophylls may further help concentrate excitations in the core complex and increase the efficiency of light harvesting. Structure-based calculations reveal remarkably strong excitonic couplings between chlorophylls in the FCP antenna and between FCP and the PSII core antenna that are the basis for the rapid energy transfer.
Collapse
Affiliation(s)
- Parveen Akhtar
- HUN-REN Biological Research Centre, Szeged, Temesvári körút 62, Szeged 6726, Hungary
| | - Yue Feng
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Sanjib Jana
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Howe-Siang Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Petar H Lambrev
- HUN-REN Biological Research Centre, Szeged, Temesvári körút 62, Szeged 6726, Hungary
| |
Collapse
|
13
|
Li Y, He J, Zhang X, Deng X. The draft genome of Nitzschia closterium f. minutissima and transcriptome analysis reveals novel insights into diatom biosilicification. BMC Genomics 2024; 25:560. [PMID: 38840265 PMCID: PMC11151724 DOI: 10.1186/s12864-024-10479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Nitzschia closterium f. minutissima is a commonly available diatom that plays important roles in marine aquaculture. It was originally classified as Nitzschia (Bacillariaceae, Bacillariophyta) but is currently regarded as a heterotypic synonym of Phaeodactylum tricornutum. The aim of this study was to obtain the draft genome of the marine microalga N. closterium f. minutissima to understand its phylogenetic placement and evolutionary specialization. Given that the ornate hierarchical silicified cell walls (frustules) of diatoms have immense applications in nanotechnology for biomedical fields, biosensors and optoelectric devices, transcriptomic data were generated by using reference genome-based read mapping to identify significantly differentially expressed genes and elucidate the molecular processes involved in diatom biosilicification. RESULTS In this study, we generated 13.81 Gb of pass reads from the PromethION sequencer. The draft genome of N. closterium f. minutissima has a total length of 29.28 Mb, and contains 28 contigs with an N50 value of 1.23 Mb. The GC content was 48.55%, and approximately 18.36% of the genome assembly contained repeat sequences. Gene annotation revealed 9,132 protein-coding genes. The results of comparative genomic analysis showed that N. closterium f. minutissima was clustered as a sister lineage of Phaeodactylum tricornutum and the divergence time between them was estimated to be approximately 17.2 million years ago (Mya). CAFF analysis demonstrated that 220 gene families that significantly changed were unique to N. closterium f. minutissima and that 154 were specific to P. tricornutum, moreover, only 26 gene families overlapped between these two species. A total of 818 DEGs in response to silicon were identified in N. closterium f. minutissima through RNA sequencing, these genes are involved in various molecular processes such as transcription regulator activity. Several genes encoding proteins, including silicon transporters, heat shock factors, methyltransferases, ankyrin repeat domains, cGMP-mediated signaling pathways-related proteins, cytoskeleton-associated proteins, polyamines, glycoproteins and saturated fatty acids may contribute to the formation of frustules in N. closterium f. minutissima. CONCLUSIONS Here, we described a draft genome of N. closterium f. minutissima and compared it with those of eight other diatoms, which provided new insight into its evolutionary features. Transcriptome analysis to identify DEGs in response to silicon will help to elucidate the underlying molecular mechanism of diatom biosilicification in N. closterium f. minutissima.
Collapse
Affiliation(s)
- Yajun Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS) & Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Haikou, 571101, China.
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou, 571101, China.
| | - Jinman He
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS) & Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Haikou, 571101, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou, 571101, China
| | - Xiuxia Zhang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS) & Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Haikou, 571101, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou, 571101, China
| | - Xiaodong Deng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS) & Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Haikou, 571101, China.
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou, 571101, China.
| |
Collapse
|
14
|
Einhaus A, Baier T, Kruse O. Molecular design of microalgae as sustainable cell factories. Trends Biotechnol 2024; 42:728-738. [PMID: 38092627 DOI: 10.1016/j.tibtech.2023.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 06/09/2024]
Abstract
Microalgae are regarded as sustainable and potent chassis for biotechnology. Their capacity for efficient photosynthesis fuels dynamic growth independent from organic carbon sources and converts atmospheric CO2 directly into various valuable hydrocarbon-based metabolites. However, approaches to gene expression and metabolic regulation have been inferior to those in more established heterotrophs (e.g., prokaryotes or yeast) since the genetic tools and insights in expression regulation have been distinctly less advanced. In recent years, however, these tools and their efficiency have dramatically improved. Various examples have demonstrated new trends in microalgal biotechnology and the potential of microalgae for the transition towards a sustainable bioeconomy.
Collapse
Affiliation(s)
- Alexander Einhaus
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Thomas Baier
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Olaf Kruse
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
15
|
Hamilton M, Ferrer‐González FX, Moran MA. Heterotrophic bacteria trigger transcriptome remodelling in the photosynthetic picoeukaryote Micromonas commoda. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13285. [PMID: 38778545 PMCID: PMC11112143 DOI: 10.1111/1758-2229.13285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Marine biogeochemical cycles are built on interactions between surface ocean microbes, particularly those connecting phytoplankton primary producers to heterotrophic bacteria. Details of these associations are not well understood, especially in the case of direct influences of bacteria on phytoplankton physiology. Here we catalogue how the presence of three marine bacteria (Ruegeria pomeroyi DSS-3, Stenotrophomonas sp. SKA14 and Polaribacter dokdonensis MED152) individually and uniquely impact gene expression of the picoeukaryotic alga Micromonas commoda RCC 299. We find a dramatic transcriptomic remodelling by M. commoda after 8 h in co-culture, followed by an increase in cell numbers by 56 h compared with the axenic cultures. Some aspects of the algal transcriptomic response are conserved across all three bacterial co-cultures, including an unexpected reduction in relative expression of photosynthesis and carbon fixation pathways. Expression differences restricted to a single bacterium are also observed, with the Flavobacteriia P. dokdonensis uniquely eliciting changes in relative expression of algal genes involved in biotin biosynthesis and the acquisition and assimilation of nitrogen. This study reveals that M. commoda has rapid and extensive responses to heterotrophic bacteria in ways that are generalizable, as well as in a taxon specific manner, with implications for the diversity of phytoplankton-bacteria interactions ongoing in the surface ocean.
Collapse
Affiliation(s)
- Maria Hamilton
- Department of Marine SciencesUniversity of GeorgiaAthensGeorgiaUSA
| | | | - Mary Ann Moran
- Department of Marine SciencesUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
16
|
Kalvelage J, Wöhlbrand L, Senkler J, Schumacher J, Ditz N, Bischof K, Winklhofer M, Klingl A, Braun HP, Rabus R. Conspicuous chloroplast with light harvesting-photosystem I/II megacomplex in marine Prorocentrum cordatum. PLANT PHYSIOLOGY 2024; 195:306-325. [PMID: 38330164 PMCID: PMC11181951 DOI: 10.1093/plphys/kiae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 02/10/2024]
Abstract
Marine photosynthetic (micro)organisms drive multiple biogeochemical cycles and display a large diversity. Among them, the bloom-forming, free-living dinoflagellate Prorocentrum cordatum CCMP 1329 (formerly P. minimum) stands out with its distinct cell biological features. Here, we obtained insights into the structural properties of the chloroplast and the photosynthetic machinery of P. cordatum using microscopic and proteogenomic approaches. High-resolution FIB/SEM analysis revealed a single large chloroplast (∼40% of total cell volume) with a continuous barrel-like structure, completely lining the inner face of the cell envelope and enclosing a single reticular mitochondrium, the Golgi apparatus, as well as diverse storage inclusions. Enriched thylakoid membrane fractions of P. cordatum were comparatively analyzed with those of the well-studied model-species Arabidopsis (Arabidopsis thaliana) using 2D BN DIGE. Strikingly, P. cordatum possessed a large photosystem-light harvesting megacomplex (>1.5 MDa), which is dominated by photosystems I and II (PSI, PSII), chloroplast complex I, and chlorophyll a-b binding light harvesting complex proteins. This finding parallels the absence of grana in its chloroplast and distinguishes from the predominant separation of PSI and PSII complexes in A. thaliana, indicating a different mode of flux balancing. Except for the core elements of the ATP synthase and the cytb6f-complex, the composition of the other complexes (PSI, PSII, and pigment-binding proteins, PBPs) of P. cordatum differed markedly from those of A. thaliana. Furthermore, a high number of PBPs was detected, accounting for a large share of the total proteomic data (∼65%) and potentially providing P. cordatum with flexible adaptation to changing light regimes.
Collapse
Affiliation(s)
- Jana Kalvelage
- School of Mathematics and Science, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Lars Wöhlbrand
- School of Mathematics and Science, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Jennifer Senkler
- Faculty of Natural Sciences, Institute of Plant Genetics, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Julian Schumacher
- School of Mathematics and Science, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Noah Ditz
- Faculty of Natural Sciences, Institute of Plant Genetics, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Kai Bischof
- Faculty Biology/Chemistry, University of Bremen & MARUM, 28359 Bremen, Germany
| | - Michael Winklhofer
- School of Mathematics and Science, Institute of Biology and Environmental Sciences (IBU), Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
- Research Center Neurosensory Science, School of Mathematics and Science, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
| | - Andreas Klingl
- Faculty of Biology, Botany, Ludwig-Maximilians-Universität LMU München, 82152 Planegg-Martinsried, Germany
| | - Hans-Peter Braun
- Faculty of Natural Sciences, Institute of Plant Genetics, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Ralf Rabus
- School of Mathematics and Science, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
17
|
Murphy EA, Kleiner FH, Helliwell KE, Wheeler GL. Channels of Evolution: Unveiling Evolutionary Patterns in Diatom Ca 2+ Signalling. PLANTS (BASEL, SWITZERLAND) 2024; 13:1207. [PMID: 38732422 PMCID: PMC11085791 DOI: 10.3390/plants13091207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/13/2024]
Abstract
Diatoms are important primary producers in marine and freshwater environments, but little is known about the signalling mechanisms they use to detect changes in their environment. All eukaryotic organisms use Ca2+ signalling to perceive and respond to environmental stimuli, employing a range of Ca2+-permeable ion channels to facilitate the movement of Ca2+ across cellular membranes. We investigated the distribution of different families of Ca2+ channels in diatom genomes, with comparison to other members of the stramenopile lineage. The four-domain voltage-gated Ca2+ channels (Cav) are present in some centric diatoms but almost completely absent in pennate diatoms, whereas single-domain voltage-gated EukCatA channels were found in all diatoms. Glutamate receptors (GLRs) and pentameric ligand-gated ion channels (pLGICs) also appear to have been lost in several pennate species. Transient receptor potential (TRP) channels are present in all diatoms, but have not undergone the significant expansion seen in brown algae. All diatom species analysed lacked the mitochondrial uniporter (MCU), a highly conserved channel type found in many eukaryotes, including several stramenopile lineages. These results highlight the unique Ca2+-signalling toolkit of diatoms and indicate that evolutionary gains or losses of different Ca2+ channels may contribute to differences in cellular-signalling mechanisms between species.
Collapse
Affiliation(s)
- Eleanor A. Murphy
- Marine Biological Association, Plymouth PL1 2PB, UK (K.E.H.)
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | | | - Katherine E. Helliwell
- Marine Biological Association, Plymouth PL1 2PB, UK (K.E.H.)
- Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Glen L. Wheeler
- Marine Biological Association, Plymouth PL1 2PB, UK (K.E.H.)
| |
Collapse
|
18
|
Liu S, Chen N. Chromosome-level genome assembly of marine diatom Skeletonema tropicum. Sci Data 2024; 11:403. [PMID: 38643276 PMCID: PMC11032307 DOI: 10.1038/s41597-024-03238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/08/2024] [Indexed: 04/22/2024] Open
Abstract
Skeletonema tropicum is a marine diatom of the genus Skeletonema that also includes many well-known species including S. marinoi. S. tropicum is a high temperature preferring species thriving in tropical ocean regions or temperate ocean regions during summer-autumn. However, mechanisms of ecological adaptation of S. tropicum remain poorly understood due partially to the lack of a high-quality whole genome assembly. Here, we report the first high-quality chromosome-scale genome assembly for S. tropicum, using cutting-edge technologies including PacBio single molecular sequencing and high-throughput chromatin conformation capture. The assembled genome has a size of 78.78 Mb with a scaffold N50 of 3.17 Mb, anchored to 23 pseudo-chromosomes. In total, 20,613 protein-coding genes were predicted, of which 17,757 (86.14%) genes were functionally annotated. Collinearity analysis of the genomes of S. tropicum and S. marinoi revealed that these two genomes were highly homologous. This chromosome-level genome assembly of S. tropicum provides a valuable genomic platform for comparative analysis of mechanisms of ecological adaption.
Collapse
Affiliation(s)
- Shuya Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266200, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada.
| |
Collapse
|
19
|
Du Y, Huang Q, Li S, Cai M, Liu F, Huang X, Zheng F, Lin L. Carbon sequestration reduced by the interference of nanoplastics on copper bioavailability. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133841. [PMID: 38394898 DOI: 10.1016/j.jhazmat.2024.133841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/06/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Microplastics (MPs) have been recognized as a serious new pollutant, especially nanoplastics (NPs) pose a greater threat to marine ecosystem than larger MPs. Within these ecosystems, phytoplankton serve as the foundational primary producers, playing a critical role in carbon sequestration. Copper (Cu), a vital cofactor for both photosynthesis and respiration in phytoplankton, directly influences their capacity to regulate atmospheric carbon. Therefore, we assessed the impact of NPs on Cu bioavailability and carbon sequestration capacity. The results showed that polystyrene nanoplastics (PS-NPs) could inhibit the growth of Thalassiosira weissflogii (a commonly used model marine diatom) and Chlorella pyrenoidosa (a standard strain of green algae). The concentration of Cu uptake by algae has a significant negative correlation with COPT1 (a Cu uptake protein), but positive with P-ATPase (a Cu efflux protein). Interestingly, PS-NPs exposure could reduce Cu uptake and carbon Cu sequestration capacity of algae, i.e., when the concentration of PS-NPs increases by 1 mg/L, the concentration of fixed carbon dioxide decreases by 0.0023 ppm. This provides a new perspective to reveal the influence mechanisms of PS-NPs on the relationship between Cu biogeochemical cycling and carbon source and sink.
Collapse
Affiliation(s)
- Yanting Du
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Qianyan Huang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Shunxing Li
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Minggang Cai
- College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Fengjiao Liu
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China.
| | - Xuguang Huang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Fengying Zheng
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Luxiu Lin
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| |
Collapse
|
20
|
Wang H, Wu P, Xiong L, Kim HS, Kim JH, Ki JS. Nuclear genome of dinoflagellates: Size variation and insights into evolutionary mechanisms. Eur J Protistol 2024; 93:126061. [PMID: 38394997 DOI: 10.1016/j.ejop.2024.126061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024]
Abstract
Recent progress in high-throughput sequencing technologies has dramatically increased availability of genome data for prokaryotes and eukaryotes. Dinoflagellates have distinct chromosomes and a huge genome size, which make their genomic analysis complicated. Here, we reviewed the nuclear genomes of core dinoflagellates, focusing on the genome and cell size. Till now, the genome sizes of several dinoflagellates (more than 25) have been measured by certain methods (e.g., flow cytometry), showing a range of 3-250 pg of genomic DNA per cell. In contrast to their relatively small cell size, their genomes are huge (about 1-80 times the human haploid genome). In the present study, we collected the genome and cell size data of dinoflagellates and compared their relationships. We found that dinoflagellate genome size exhibits a positive correlation with cell size. On the other hand, we recognized that the genome size is not correlated with phylogenetic relatedness. These may be caused by genome duplication, increased gene copy number, repetitive non-coding DNA, transposon expansion, horizontal gene transfer, organelle-to-nucleus gene transfer, and/or mRNA reintegration into the genome. Ultimate verification of these factors as potential causative mechanisms would require sequencing of more dinoflagellate genomes in the future.
Collapse
Affiliation(s)
- Hui Wang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; Department of Life Science, Sangmyung University, Seoul 03016, Republic of Korea
| | - Peiling Wu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Lu Xiong
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Han-Sol Kim
- Department of Life Science, Sangmyung University, Seoul 03016, Republic of Korea
| | - Jin Ho Kim
- Department of Earth and Marine Science, College of Ocean Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Jang-Seu Ki
- Department of Life Science, Sangmyung University, Seoul 03016, Republic of Korea; Department of Biotechnology, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
21
|
Luo Z, Wang Z, Tang Y, Sun Y, Jiang Y, Yang W, Chen G, Huang L. Complete mitochondrial genome of an oleaginous microalga Vischeria punctata (Eustigmatophyceae: Chlorobotryaceae) and phylogenetic analysis. Mitochondrial DNA B Resour 2024; 9:94-99. [PMID: 38249358 PMCID: PMC10798287 DOI: 10.1080/23802359.2023.2301027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Vischeria punctata, as first described by Vischer in 1945, is a member of the family Chlorobotryaceae, within the order Eustigmatales. This species is recognized for its potential as a source of biofuels and other high-value products. In the present investigation, the whole genome of V. punctata was sequenced utilizing the Illumina HiSeq 4000 platform, enabling the assembly and annotation of its complete mitochondrial genome. The resulting circular genome spans 41,528 base pairs (bp) with a guanine-cytosine (GC) content of 27.3%. This genome encompasses 36 protein-coding genes, alongside 28 transfer RNA (tRNA), and three ribosomal RNA (rRNA) genes. The evolutionary trajectory of V. punctata was further explored by constructing a phylogenetic tree derived from the mitochondrial 33 gene dataset of 16 Ochrophyta species. Comparative analysis reveals that V. punctata bears closer ties to Vischeria sp. CAUP Q202 than to Vischeria stellata strain SAG 33.83, suggesting shared evolutionary pathways and phenotypic traits. This investigation constitutes the inaugural study into the mitochondrial evolution and phylogenetic patterning of the mitogenome in V. punctata. The outcomes from this research bolster our understanding of the genetic diversity and evolutionary processes within the class Eustigmatophyceae. In particular, the mitochondrial genome of V. punctata serves as a valuable resource in elucidating these aspects.
Collapse
Affiliation(s)
- Zhouwei Luo
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Zihao Wang
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yanhang Tang
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yuexin Sun
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yu Jiang
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Wenjie Yang
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Ge Chen
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Luodong Huang
- College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
22
|
Huang T, Pan Y, Maréchal E, Hu H. Proteomes reveal the lipid metabolic network in the complex plastid of Phaeodactylum tricornutum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:385-403. [PMID: 37733835 DOI: 10.1111/tpj.16477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
Phaeodactylum tricornutum plastid is surrounded by four membranes, and its protein composition and function remain mysterious. In this study, the P. tricornutum plastid-enriched fraction was obtained and 2850 proteins were identified, including 92 plastid-encoded proteins, through label-free quantitative proteomic technology. Among them, 839 nuclear-encoded proteins were further determined to be plastidial proteins based on the BLAST alignments within Plant Proteome DataBase and subcellular localization prediction, in spite of the strong contamination by mitochondria-encoded proteins and putative plasma membrane proteins. According to our proteomic data, we reconstructed the metabolic pathways and highlighted the hybrid nature of this diatom plastid. Triacylglycerol (TAG) hydrolysis and glycolysis, as well as photosynthesis, glycan metabolism, and tocopherol and triterpene biosynthesis, occur in the plastid. In addition, the synthesis of long-chain acyl-CoAs, elongation, and desaturation of fatty acids (FAs), and synthesis of lipids including TAG are confined in the four-layered-membrane plastid based on the proteomic and GFP-fusion localization data. The whole process of generation of docosahexaenoic acid (22:6) from palmitic acid (16:0), via elongation and desaturation of FAs, occurs in the chloroplast endoplasmic reticulum membrane, the outermost membrane of the plastid. Desaturation that generates 16:4 from 16:0 occurs in the plastid stroma and outer envelope membrane. Quantitative analysis of glycerolipids between whole cells and isolated plastids shows similar composition, and the FA profile of TAG was not different. This study shows that the diatom plastid combines functions usually separated in photosynthetic eukaryotes, and differs from green alga and plant chloroplasts by undertaking the whole process of lipid biosynthesis.
Collapse
Affiliation(s)
- Teng Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yufang Pan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CEA, CNRS, INRA, IRIG-LPCV, 38054, Grenoble Cedex 9, France
| | - Hanhua Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
23
|
Grypioti E, Richard H, Kryovrysanaki N, Jaubert M, Falciatore A, Verret F, Kalantidis K. Dicer-dependent heterochromatic small RNAs in the model diatom species Phaeodactylum tricornutum. THE NEW PHYTOLOGIST 2024; 241:811-826. [PMID: 38044751 DOI: 10.1111/nph.19429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/17/2023] [Indexed: 12/05/2023]
Abstract
Diatoms are eukaryotic microalgae responsible for nearly half of the marine productivity. RNA interference (RNAi) is a mechanism of regulation of gene expression mediated by small RNAs (sRNAs) processed by the endoribonuclease Dicer (DCR). To date, the mechanism and physiological role of RNAi in diatoms are unknown. We mined diatom genomes and transcriptomes for key RNAi effectors and retraced their phylogenetic history. We generated DCR knockout lines in the model diatom species Phaeodactylum tricornutum and analyzed their mRNA and sRNA populations, repression-associated histone marks, and acclimatory response to nitrogen starvation. Diatoms presented a diversification of key RNAi effectors whose distribution across species suggests the presence of distinct RNAi pathways. P. tricornutum DCR was found to process 26-31-nt-long double-stranded sRNAs originating mostly from transposons covered by repression-associated epigenetic marks. In parallel, P. tricornutum DCR was necessary for the maintenance of the repression-associated histone marks H3K9me2/3 and H3K27me3. Finally, PtDCR-KO lines presented a compromised recovery post nitrogen starvation suggesting a role for P. tricornutum DCR in the acclimation to nutrient stress. Our study characterized the molecular function of the single DCR homolog of P. tricornutum suggesting an association between RNAi and heterochromatin maintenance in this model diatom species.
Collapse
Affiliation(s)
- Emilia Grypioti
- Department of Biology, University of Crete, PO Box 2208, 70013, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Crete, Greece
- Institute of Marine Biology and Aquaculture, Hellenic Center for Marine Research, 71500, Gournes, Crete, Greece
- Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, UMR 7238 Sorbonne Université, 75005, Paris, France
| | - Hugues Richard
- Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, UMR 7238 Sorbonne Université, 75005, Paris, France
- Bioinformatics Unit, Genome Competence Center (MF1), Robert Koch Institute, 13353, Berlin, Germany
| | - Nikoleta Kryovrysanaki
- Department of Biology, University of Crete, PO Box 2208, 70013, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Crete, Greece
| | - Marianne Jaubert
- Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, UMR 7238 Sorbonne Université, 75005, Paris, France
- Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR7141 Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, 75005, Paris, France
| | - Angela Falciatore
- Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, UMR 7238 Sorbonne Université, 75005, Paris, France
- Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR7141 Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, 75005, Paris, France
| | - Frédéric Verret
- Department of Biology, University of Crete, PO Box 2208, 70013, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Crete, Greece
- Institute of Marine Biology and Aquaculture, Hellenic Center for Marine Research, 71500, Gournes, Crete, Greece
| | - Kriton Kalantidis
- Department of Biology, University of Crete, PO Box 2208, 70013, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Crete, Greece
| |
Collapse
|
24
|
Füssy Z, Oborník M. Complex Endosymbioses I: From Primary to Complex Plastids, Serial Endosymbiotic Events. Methods Mol Biol 2024; 2776:21-41. [PMID: 38502496 DOI: 10.1007/978-1-0716-3726-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
A considerable part of the diversity of eukaryotic phototrophs consists of algae with plastids that evolved from endosymbioses between two eukaryotes. These complex plastids are characterized by a high number of envelope membranes (more than two) and some of them contain a residual nucleus of the endosymbiotic alga called a nucleomorph. Complex plastid-bearing algae are thus chimeric cell assemblies, eukaryotic symbionts living in a eukaryotic host. In contrast, the primary plastids of the Archaeplastida (plants, green algae, red algae, and glaucophytes) possibly evolved from a single endosymbiosis with a cyanobacterium and are surrounded by two membranes. Complex plastids have been acquired several times by unrelated groups of eukaryotic heterotrophic hosts, suggesting that complex plastids are somewhat easier to obtain than primary plastids. Evidence suggests that complex plastids arose twice independently in the green lineage (euglenophytes and chlorarachniophytes) through secondary endosymbiosis, and four times in the red lineage, first through secondary endosymbiosis in cryptophytes, then by higher-order events in stramenopiles, alveolates, and haptophytes. Engulfment of primary and complex plastid-containing algae by eukaryotic hosts (secondary, tertiary, and higher-order endosymbioses) is also responsible for numerous plastid replacements in dinoflagellates. Plastid endosymbiosis is accompanied by massive gene transfer from the endosymbiont to the host nucleus and cell adaptation of both endosymbiotic partners, which is related to the trophic switch to phototrophy and loss of autonomy of the endosymbiont. Such a process is essential for the metabolic integration and division control of the endosymbiont in the host. Although photosynthesis is the main advantage of acquiring plastids, loss of photosynthesis often occurs in algae with complex plastids. This chapter summarizes the essential knowledge of the acquisition, evolution, and function of complex plastids.
Collapse
Affiliation(s)
- Zoltán Füssy
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Miroslav Oborník
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
| |
Collapse
|
25
|
Groussman RD, Blaskowski S, Coesel SN, Armbrust EV. MarFERReT, an open-source, version-controlled reference library of marine microbial eukaryote functional genes. Sci Data 2023; 10:926. [PMID: 38129449 PMCID: PMC10739892 DOI: 10.1038/s41597-023-02842-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Metatranscriptomics generates large volumes of sequence data about transcribed genes in natural environments. Taxonomic annotation of these datasets depends on availability of curated reference sequences. For marine microbial eukaryotes, current reference libraries are limited by gaps in sequenced organism diversity and barriers to updating libraries with new sequence data, resulting in taxonomic annotation of about half of eukaryotic environmental transcripts. Here, we introduce Marine Functional EukaRyotic Reference Taxa (MarFERReT), a marine microbial eukaryotic sequence library designed for use with taxonomic annotation of eukaryotic metatranscriptomes. We gathered 902 publicly accessible marine eukaryote genomes and transcriptomes and assessed their sequence quality and cross-contamination issues, selecting 800 validated entries for inclusion in MarFERReT. Version 1.1 of MarFERReT contains reference sequences from 800 marine eukaryotic genomes and transcriptomes, covering 453 species- and strain-level taxa, totaling nearly 28 million protein sequences with associated NCBI and PR2 Taxonomy identifiers and Pfam functional annotations. The MarFERReT project repository hosts containerized build scripts, documentation on installation and use case examples, and information on new versions of MarFERReT.
Collapse
Affiliation(s)
- R D Groussman
- School of Oceanography, University of Washington, Benjamin Hall IRB, Room 306 616 NE Northlake Place, Seattle, WA, 98105, USA.
| | - S Blaskowski
- School of Oceanography, University of Washington, Benjamin Hall IRB, Room 306 616 NE Northlake Place, Seattle, WA, 98105, USA
- Molecular Engineering and Sciences Institute, University of Washington, Molecular Engineering & Sciences Building 3946 W Stevens Way NE, Seattle, WA, 98195, USA
| | - S N Coesel
- School of Oceanography, University of Washington, Benjamin Hall IRB, Room 306 616 NE Northlake Place, Seattle, WA, 98105, USA
| | - E V Armbrust
- School of Oceanography, University of Washington, Benjamin Hall IRB, Room 306 616 NE Northlake Place, Seattle, WA, 98105, USA.
| |
Collapse
|
26
|
Russo MT, Rogato A, Jaubert M, Karas BJ, Falciatore A. Phaeodactylum tricornutum: An established model species for diatom molecular research and an emerging chassis for algal synthetic biology. JOURNAL OF PHYCOLOGY 2023; 59:1114-1122. [PMID: 37975560 DOI: 10.1111/jpy.13400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 11/19/2023]
Abstract
Diatoms are prominent and highly diverse microalgae in aquatic environments. Compared with other diatom species, Phaeodactylum tricornutum is an "atypical diatom" displaying three different morphotypes and lacking the usual silica shell. Despite being of limited ecological relevance, its ease of growth in the laboratory and well-known physiology, alongside the steady increase in genome-enabled information coupled with effective tools for manipulating gene expression, have meant it has gained increased recognition as a powerful experimental model for molecular research on diatoms. We here present a brief overview of how over the last 25 years P. tricornutum has contributed to the unveiling of fundamental aspects of diatom biology, while also emerging as a new tool for algal process engineering and synthetic biology.
Collapse
Affiliation(s)
- Monia T Russo
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Alessandra Rogato
- Institute of Biosciences and Bioresources, National Research Council, IBBR-CNR, Naples, Italy
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Marianne Jaubert
- UMR7141 Laboratoire de Biologie du chloroplaste et perception de la lumière chez les micro-algues, Institut de Biologie Physico-Chimique, Paris, France
| | - Bogumil J Karas
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Angela Falciatore
- UMR7141 Laboratoire de Biologie du chloroplaste et perception de la lumière chez les micro-algues, Institut de Biologie Physico-Chimique, Paris, France
| |
Collapse
|
27
|
Bryłka K, Pinseel E, Roberts WR, Ruck EC, Conley DJ, Alverson AJ. Gene Duplication, Shifting Selection, and Dosage Balance of Silicon Transporter Proteins in Marine and Freshwater Diatoms. Genome Biol Evol 2023; 15:evad212. [PMID: 37996067 PMCID: PMC10700740 DOI: 10.1093/gbe/evad212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/15/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
Numerous factors shape the evolution of protein-coding genes, including shifts in the strength or type of selection following gene duplications or changes in the environment. Diatoms and other silicifying organisms use a family of silicon transporters (SITs) to import dissolved silicon from the environment. Freshwaters contain higher silicon levels than oceans, and marine diatoms have more efficient uptake kinetics and less silicon in their cell walls, making them better competitors for a scarce resource. We compiled SITs from 37 diatom genomes to characterize shifts in selection following gene duplications and marine-freshwater transitions. A deep gene duplication, which coincided with a whole-genome duplication, gave rise to two gene lineages. One of them (SIT1-2) is present in multiple copies in most species and is known to actively import silicon. These SITs have evolved under strong purifying selection that was relaxed in freshwater taxa. Episodic diversifying selection was detected but not associated with gene duplications or habitat shifts. In contrast, genes in the second SIT lineage (SIT3) were present in just half the species, the result of multiple losses. Despite conservation of SIT3 in some lineages for the past 90-100 million years, repeated losses, relaxed selection, and low expression highlighted the dispensability of SIT3, consistent with a model of deterioration and eventual loss due to relaxed selection on SIT3 expression. The extensive but relatively balanced history of duplications and losses, together with paralog-specific expression patterns, suggest diatoms continuously balance gene dosage and expression dynamics to optimize silicon transport across major environmental gradients.
Collapse
Affiliation(s)
| | - Eveline Pinseel
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Wade R Roberts
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Elizabeth C Ruck
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | | | - Andrew J Alverson
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
28
|
Liu S, Xu Q, Chen N. Expansion of photoreception-related gene families may drive ecological adaptation of the dominant diatom species Skeletonema marinoi. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165384. [PMID: 37422237 DOI: 10.1016/j.scitotenv.2023.165384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Diatom species of the genus Skeletonema are dominant in global coastal waters with important roles in marine primary production and global biogeochemical cycling. Many Skeletonema species have been extensively studied also because they can cause harmful algae blooms (HABs) with negative impacts on marine ecosystems and aquaculture. In this study, the first chromosome-level assembly of the genome of Skeletonema marinoi was constructed. The genome size was 64.99 Mb with a contig N50 of 1.95 Mb. Up to 97.12 % of contigs were successfully anchored on 24 chromosomes. Analysis of the annotated genes revealed 28 large syntenic blocks with 2397 collinear gene pairs in the genome of S. marinoi, suggesting large-scale segmental duplication events in evolution. Substantial expansion of light-harvesting genes encoding fucoxanthin-chlorophyll a/c binding proteins, as well as expansion of photoreceptor gene families encoding aureochromes and cyptochromes (CRY) in S. marinoi were found, which may have shaped ecological adaptation of S. marinoi. In conclusion, the construction of the first high-quality Skeletonema genome assembly offers valuable clues on the ecological and evolutionary characteristics of this dominant coastal diatom species.
Collapse
Affiliation(s)
- Shuya Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qing Xu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; College of Basic Medical Sciences, China Three Gorges University, Yichang 443000, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 niversity Drive, Burnaby, British Columbia V5A 1S6, Canada.
| |
Collapse
|
29
|
Roberts WR, Ruck EC, Downey KM, Pinseel E, Alverson AJ. Resolving Marine-Freshwater Transitions by Diatoms Through a Fog of Gene Tree Discordance. Syst Biol 2023; 72:984-997. [PMID: 37335140 DOI: 10.1093/sysbio/syad038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 06/02/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023] Open
Abstract
Despite the obstacles facing marine colonists, most lineages of aquatic organisms have colonized and diversified in freshwaters repeatedly. These transitions can trigger rapid morphological or physiological change and, on longer timescales, lead to increased rates of speciation and extinction. Diatoms are a lineage of ancestrally marine microalgae that have diversified throughout freshwater habitats worldwide. We generated a phylogenomic data set of genomes and transcriptomes for 59 diatom taxa to resolve freshwater transitions in one lineage, the Thalassiosirales. Although most parts of the species tree were consistently resolved with strong support, we had difficulties resolving a Paleocene radiation, which affected the placement of one freshwater lineage. This and other parts of the tree were characterized by high levels of gene tree discordance caused by incomplete lineage sorting and low phylogenetic signal. Despite differences in species trees inferred from concatenation versus summary methods and codons versus amino acids, traditional methods of ancestral state reconstruction supported six transitions into freshwaters, two of which led to subsequent species diversification. Evidence from gene trees, protein alignments, and diatom life history together suggest that habitat transitions were largely the product of homoplasy rather than hemiplasy, a condition where transitions occur on branches in gene trees not shared with the species tree. Nevertheless, we identified a set of putatively hemiplasious genes, many of which have been associated with shifts to low salinity, indicating that hemiplasy played a small but potentially important role in freshwater adaptation. Accounting for differences in evolutionary outcomes, in which some taxa became locked into freshwaters while others were able to return to the ocean or become salinity generalists, might help further distinguish different sources of adaptive mutation in freshwater diatoms.
Collapse
Affiliation(s)
- Wade R Roberts
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Elizabeth C Ruck
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Kala M Downey
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Eveline Pinseel
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Andrew J Alverson
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| |
Collapse
|
30
|
Feng Y, Li Z, Li X, Shen L, Liu X, Zhou C, Zhang J, Sang M, Han G, Yang W, Kuang T, Wang W, Shen JR. Structure of a diatom photosystem II supercomplex containing a member of Lhcx family and dimeric FCPII. SCIENCE ADVANCES 2023; 9:eadi8446. [PMID: 37878698 PMCID: PMC10599620 DOI: 10.1126/sciadv.adi8446] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/23/2023] [Indexed: 10/27/2023]
Abstract
Diatoms rely on fucoxanthin chlorophyll a/c-binding proteins (FCPs) for their great success in oceans, which have a great diversity in their pigment, protein compositions, and subunit organizations. We report a unique structure of photosystem II (PSII)-FCPII supercomplex from Thalassiosira pseudonana at 2.68-Å resolution by cryo-electron microscopy. FCPIIs within this PSII-FCPII supercomplex exist in dimers and monomers, and a homodimer and a heterodimer were found to bind to a PSII core. The FCPII homodimer is formed by Lhcf7 and associates with PSII through an Lhcx family antenna Lhcx6_1, whereas the heterodimer is formed by Lhcf6 and Lhcf11 and connects to the core together with an Lhcf5 monomer through Lhca2 monomer. An extended pigment network consisting of diatoxanthins, diadinoxanthins, fucoxanthins, and chlorophylls a/c is revealed, which functions in efficient light harvesting, energy transfer, and dissipation. These results provide a structural basis for revealing the energy transfer and dissipation mechanisms and also for the structural diversity of FCP antennas in diatoms.
Collapse
Affiliation(s)
- Yue Feng
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenhua Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyi Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Lili Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueyang Liu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cuicui Zhou
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinyang Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Sang
- China National Botanical Garden, Beijing 100093, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Wenqiang Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
31
|
Mijovilovich A, Cloetens P, Lanzirotti A, Newville M, Wellenreuther G, Kumari P, Katsaros C, Carrano CJ, Küpper H, Küpper FC. Synchrotron X-rays reveal the modes of Fe binding and trace metal storage in the brown algae Laminaria digitata and Ectocarpus siliculosus. Metallomics 2023; 15:mfad058. [PMID: 37740572 PMCID: PMC10588612 DOI: 10.1093/mtomcs/mfad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/21/2023] [Indexed: 09/24/2023]
Abstract
Iron is accumulated symplastically in kelp in a non-ferritin core that seems to be a general feature of brown algae. Microprobe studies show that Fe binding depends on tissue type. The sea is generally an iron-poor environment and brown algae were recognized in recent years for having a unique, ferritin-free iron storage system. Kelp (Laminaria digitata) and the filamentous brown alga Ectocarpus siliculosus were investigated using X-ray microprobe imaging and nanoprobe X-ray fluorescence tomography to explore the localization of iron, arsenic, strontium, and zinc, and micro-X-ray absorption near-edge structure (μXANES) to study Fe binding. Fe distribution in frozen hydrated environmental samples of both algae shows higher accumulation in the cortex with symplastic subcellular localization. This should be seen in the context of recent ultrastructural insight by cryofixation-freeze substitution that found a new type of cisternae that may have a storage function but differs from the apoplastic Fe accumulation found by conventional chemical fixation. Zn distribution co-localizes with Fe in E. siliculosus, whereas it is chiefly located in the L. digitata medulla, which is similar to As and Sr. Both As and Sr are mostly found at the cell wall of both algae. XANES spectra indicate that Fe in L. digitata is stored in a mineral non-ferritin core, due to the lack of ferritin-encoding genes. We show that the L. digitata cortex contains mostly a ferritin-like mineral, while the meristoderm may include an additional component.
Collapse
Affiliation(s)
- Ana Mijovilovich
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics and Biochemistry, Branišovska 1160/31, 370 05 Česke Budějovice, Czech Republic
| | - Peter Cloetens
- ESRF—The European Synchrotron Radiation Facility, Beamline ID16A, 71, avenue des Martyrs CS 40220 38043 Grenoble Cedex 9, France
| | - Antonio Lanzirotti
- Argonne National Laboratory, The University of Chicago, Building 434A, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Matt Newville
- Argonne National Laboratory, The University of Chicago, Building 434A, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | | | - Puja Kumari
- School of Biological Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen AB24 3UU, UK
| | - Christos Katsaros
- Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 157 84, Hellas, Greece
| | - Carl J Carrano
- Department of Chemistry and Biochemistry, San Diego State University, CA 92182-1030,USA
| | - Hendrik Küpper
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics and Biochemistry, Branišovska 1160/31, 370 05 Česke Budějovice, Czech Republic
- Department of Experimental Plant Biology, University of South Bohemia, Branišovská 31/1160, 370 05 České Budějovice, Czech Republic
| | - Frithjof C Küpper
- School of Biological Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen AB24 3UU, UK
- Department of Chemistry and Biochemistry, San Diego State University, CA 92182-1030,USA
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK
| |
Collapse
|
32
|
Walworth NG, Espinoza JL, Argyle PA, Hinners J, Levine NM, Doblin MA, Dupont CL, Collins S. Genus-Wide Transcriptional Landscapes Reveal Correlated Gene Networks Underlying Microevolutionary Divergence in Diatoms. Mol Biol Evol 2023; 40:msad218. [PMID: 37874344 PMCID: PMC10595192 DOI: 10.1093/molbev/msad218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/24/2023] [Accepted: 09/21/2023] [Indexed: 10/25/2023] Open
Abstract
Marine microbes like diatoms make up the base of marine food webs and drive global nutrient cycles. Despite their key roles in ecology, biogeochemistry, and biotechnology, we have limited empirical data on how forces other than adaptation may drive diatom diversification, especially in the absence of environmental change. One key feature of diatom populations is frequent extreme reductions in population size, which can occur both in situ and ex situ as part of bloom-and-bust growth dynamics. This can drive divergence between closely related lineages, even in the absence of environmental differences. Here, we combine experimental evolution and transcriptome landscapes (t-scapes) to reveal repeated evolutionary divergence within several species of diatoms in a constant environment. We show that most of the transcriptional divergence can be captured on a reduced set of axes, and that repeatable evolution can occur along a single major axis of variation defined by core ortholog expression comprising common metabolic pathways. Previous work has associated specific transcriptional changes in gene networks with environmental factors. Here, we find that these same gene networks diverge in the absence of environmental change, suggesting these pathways may be central in generating phenotypic diversity as a result of both selective and random evolutionary forces. If this is the case, these genes and the functions they encode may represent universal axes of variation. Such axes that capture suites of interacting transcriptional changes during diversification improve our understanding of both global patterns in local adaptation and microdiversity, as well as evolutionary forces shaping algal cultivation.
Collapse
Affiliation(s)
- Nathan G Walworth
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-0371, USA
- J.Craig Venter Institute, La Jolla, CA 92037, USA
| | | | - Phoebe A Argyle
- Climate Change Cluster, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Jana Hinners
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
- Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
| | - Naomi M Levine
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-0371, USA
| | - Martina A Doblin
- Climate Change Cluster, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | | | - Sinéad Collins
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
33
|
Poulsen N, Kröger N. Thalassiosira pseudonana (Cyclotella nana) (Hustedt) Hasle et Heimdal (Bacillariophyceae): A genetically tractable model organism for studying diatom biology, including biological silica formation. JOURNAL OF PHYCOLOGY 2023; 59:809-817. [PMID: 37424141 DOI: 10.1111/jpy.13362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023]
Abstract
In 2004, Thalassiosira pseudonana was the first eukaryotic marine alga to have its genome sequenced. Since then, this species has quickly emerged as a valuable model species for investigating the molecular underpinnings of essentially all aspects of diatom life, particularly bio-morphogenesis of the cell wall. An important prerequisite for the model status of T. pseudonana is the ongoing development of increasingly precise tools to study the function of gene networks and their encoded proteins in vivo. Here, we briefly review the current toolbox for genetic manipulation, highlight specific examples of its application in studying diatom metabolism, and provide a peek into the role of diatoms in the emerging field of silica biotechnology.
Collapse
Affiliation(s)
- Nicole Poulsen
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Nils Kröger
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
34
|
Li Z, Zhang Y, Li W, Irwin AJ, Finkel ZV. Common environmental stress responses in a model marine diatom. THE NEW PHYTOLOGIST 2023; 240:272-284. [PMID: 37488721 DOI: 10.1111/nph.19147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/30/2023] [Indexed: 07/26/2023]
Abstract
Marine planktonic diatoms are among the most important contributors to phytoplankton blooms and marine net primary production. Their ecological success has been attributed to their ability to rapidly respond to changing environmental conditions. Here, we report common molecular mechanisms used by the model marine diatom Thalassiosira pseudonana to respond to 10 diverse environmental stressors using RNA-Seq analysis. We identify a specific subset of 1076 genes that are differentially expressed in response to stressors that induce an imbalance between energy or resource supply and metabolic capacity, which we termed the diatom environmental stress response (d-ESR). The d-ESR is primarily composed of genes that maintain proteome homeostasis and primary metabolism. Photosynthesis is strongly regulated in response to environmental stressors but chloroplast-encoded genes were predominantly upregulated while the nuclear-encoded genes were mostly downregulated in response to low light and high temperature. In aggregate, these results provide insight into the molecular mechanisms used by diatoms to respond to a range of environmental perturbations and the unique role of the chloroplast in managing environmental stress in diatoms. This study facilitates our understanding of the molecular mechanisms underpinning the ecological success of diatoms in the ocean.
Collapse
Affiliation(s)
- Zhengke Li
- School of Biological and Pharmaceutical Sciences, Shannxi University of Science and Technology, Xi'an, Shannxi, 710021, China
- Department of Oceanography, Dalhousie University, 1355 Oxford Street, Halifax, NS, B3H 4R2, Canada
| | - Yong Zhang
- Department of Oceanography, Dalhousie University, 1355 Oxford Street, Halifax, NS, B3H 4R2, Canada
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Wei Li
- College of Life and Environmental Sciences, Huangshan University, Huangshan, Anhui, 245041, China
| | - Andrew J Irwin
- Department of Mathematics & Statistics, Dalhousie University, 1355 Oxford Street, Halifax, NS, B3H 4R2, Canada
| | - Zoe V Finkel
- Department of Oceanography, Dalhousie University, 1355 Oxford Street, Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
35
|
Gomes KM, Nunn BL, Chappell PD, Jenkins BD. Subcellular proteomics for determining iron-limited remodeling of plastids in the model diatom Thalassiosira pseudonana (Bacillariophyta). JOURNAL OF PHYCOLOGY 2023; 59:1085-1099. [PMID: 37615442 DOI: 10.1111/jpy.13379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/25/2023]
Abstract
Diatoms are important primary producers in the world's oceans, yet their growth is constrained in large regions by low bioavailable iron (Fe). Low-Fe stress-induced limitation of primary production is due to requirements for Fe in components of essential metabolic pathways including photosynthesis and other chloroplast plastid functions. Studies have shown that under low-Fe stress, diatoms alter plastid-specific processes, including components of electron transport. These physiological changes suggest changes of protein content and in protein abundances within the diatom plastid. While in silico predictions provide putative information on plastid-localized proteins, knowledge of diatom plastid proteins remains limited in comparison to well-studied model photosynthetic organisms. To address this, we employed shotgun proteomics to investigate the proteome of subcellular plastid-enriched fractions from Thalassiosira pseudonana to gain a better understanding of how the plastid proteome is remodeled in response to Fe limitation. Using mass spectrometry-based peptide identification and quantification, we analyzed T. pseudonana grown under Fe-replete and -limiting conditions. Through these analyses, we inferred the relative quantities of each protein, revealing that Fe limitation regulates major metabolic pathways in the plastid, including the Calvin cycle. Additionally, we observed changes in the expression of light-harvesting proteins. In silico localization predictions of proteins identified in this plastid-enriched proteome allowed for an in-depth comparison of theoretical versus observed plastid-localization, providing evidence for the potential of additional protein import pathways into the diatom plastid.
Collapse
Affiliation(s)
- Kristofer M Gomes
- Department of Biological Sciences, University of Rhode Island, Rhode Island, Kingston, USA
| | - Brook L Nunn
- Department of Genome Sciences, University of Washington, Washington, Seattle, USA
| | - P Dreux Chappell
- College of Marine Science, University of South Florida, Florida, St. Petersburg, USA
| | - Bethany D Jenkins
- Department of Cell and Molecular Biology, University of Rhode Island, Rhode Island, Kingston, USA
- Graduate School of Oceanography, University of Rhode Island, Rhode Island, Narragansett, USA
| |
Collapse
|
36
|
Mo J, Lv R, Qin X, Wu X, Chen H, Yan N, Shi J, Wu Y, Liu W, Kong RYC, Guo J. Mechanistic insights into hormesis induced by erythromycin in the marine alga Thalassiosira weissflogii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115242. [PMID: 37441949 DOI: 10.1016/j.ecoenv.2023.115242] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/17/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Erythromycin (ERY) is a typical macrolide antibiotic with large production and extensive use on a global scale. Detection of ERY in both freshwaters and coaster seawaters, as well as relatively high ecotoxicity of ERY have been documented. Notably, hormesis has been reported on several freshwater algae under ERY stress, where growth was promoted at relatively lower exposures but inhibited at higher treatment levels. On the contrary, there is limited information of ERY toxicity in marine algae, hampering the risk assessment on ERY in the coaster waters. The presence of hormesis may challenge the current concept of dose-response adopted in chemical risk assessment. Whether and how exposure to ERY can induce dose-dependent toxicity in marine algae remain virtually unknown, especially at environmentally relevant concentrations. The present study used a model marine diatom Thalassiosira weissflogii (T. weissflogii) to reveal its toxicological responses to ERY at different biological levels and decipher the underlying mechanisms. Assessment of multiple apical endpoints shows an evident growth promotion following ERY exposure at an environmentally relevant concentration (1 µg/L), associated with increased contents reactive oxygen species (ROS) and chlorophyll-a (Chl-a), activated signaling pathways related to ribosome biosynthesis and translation, and production of total soluble protein. By contrast, growth inhibition in the 750 and 2500 µg/L treatments was attributed to reduced viability, increased ROS formation, reduced content of total soluble protein, inhibited photosynthesis, and perturbed signaling pathways involved in xenobiotic metabolism, ribosome, metabolism of amino acid, and nitrogen metabolism. Measurements of multiple apical endpoints coupled with de novo transcriptomics analysis applied in the present study, a systems biology approach, can generate detailed mechanistic information of chemical toxicity including dose-response and species sensitivity difference used in environmental risk assessment.
Collapse
Affiliation(s)
- Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region.
| | - Runnan Lv
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Xian Qin
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Xintong Wu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Haibo Chen
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Neng Yan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Jingchun Shi
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Yinglin Wu
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang, Guangdong 524048, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Richard Y C Kong
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| |
Collapse
|
37
|
Roussel A, Mériot V, Jauffrais T, Berteaux-Lecellier V, Lebouvier N. OMICS Approaches to Assess Dinoflagellate Responses to Chemical Stressors. BIOLOGY 2023; 12:1234. [PMID: 37759633 PMCID: PMC10525455 DOI: 10.3390/biology12091234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 09/29/2023]
Abstract
Dinoflagellates are important primary producers known to form Harmful Algae Blooms (HABs). In water, nutrient availability, pH, salinity and anthropogenic contamination constitute chemical stressors for them. The emergence of OMICs approaches propelled our understanding of dinoflagellates' responses to stressors. However, in dinoflagellates, these approaches are still biased, as transcriptomic approaches are largely conducted compared to proteomic and metabolomic approaches. Furthermore, integrated OMICs approaches are just emerging. Here, we report recent contributions of the different OMICs approaches to the investigation of dinoflagellates' responses to chemical stressors and discuss the current challenges we need to face to push studies further despite the lack of genomic resources available for dinoflagellates.
Collapse
Affiliation(s)
- Alice Roussel
- ISEA, EA7484, Campus de Nouville, Université de la Nouvelle Calédonie, Noumea 98851, New Caledonia; (A.R.); (V.M.)
| | - Vincent Mériot
- ISEA, EA7484, Campus de Nouville, Université de la Nouvelle Calédonie, Noumea 98851, New Caledonia; (A.R.); (V.M.)
- Ifremer, IRD, CNRS, Univ. de la Réunion, Univ. de la Nouvelle Calédonie, UMR 9220 ENTROPIE, 101 Promenade Roger Laroque, Noumea 98897, New Caledonia;
| | - Thierry Jauffrais
- Ifremer, IRD, CNRS, Univ. de la Réunion, Univ. de la Nouvelle Calédonie, UMR 9220 ENTROPIE, 101 Promenade Roger Laroque, Noumea 98897, New Caledonia;
| | - Véronique Berteaux-Lecellier
- CNRS, Ifremer, IRD, Univ. de la Réunion, Univ. de la Nouvelle Calédonie, UMR 9220 ENTROPIE, 101 Promenade Roger Laroque, Noumea 98897, New Caledonia;
| | - Nicolas Lebouvier
- ISEA, EA7484, Campus de Nouville, Université de la Nouvelle Calédonie, Noumea 98851, New Caledonia; (A.R.); (V.M.)
| |
Collapse
|
38
|
Juchem DP, Schimani K, Holzinger A, Permann C, Abarca N, Skibbe O, Zimmermann J, Graeve M, Karsten U. Lipid degradation and photosynthetic traits after prolonged darkness in four Antarctic benthic diatoms, including the newly described species Planothidium wetzelii sp. nov. Front Microbiol 2023; 14:1241826. [PMID: 37720158 PMCID: PMC10500929 DOI: 10.3389/fmicb.2023.1241826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/08/2023] [Indexed: 09/19/2023] Open
Abstract
In polar regions, the microphytobenthos has important ecological functions in shallow-water habitats, such as on top of coastal sediments. This community is dominated by benthic diatoms, which contribute significantly to primary production and biogeochemical cycling while also being an important component of polar food webs. Polar diatoms are able to cope with markedly changing light conditions and prolonged periods of darkness during the polar night in Antarctica. However, the underlying mechanisms are poorly understood. In this study, five strains of Antarctic benthic diatoms were isolated in the field, and the resulting unialgal cultures were identified as four distinct species, of which one is described as a new species, Planothidium wetzelii sp. nov. All four species were thoroughly examined using physiological, cell biological, and biochemical methods over a fully controlled dark period of 3 months. The results showed that the utilization of storage lipids is one of the key mechanisms in Antarctic benthic diatoms to survive the polar night, although different fatty acids were involved in the investigated taxa. In all tested species, the storage lipid content declined significantly, along with an ultrastructurally observable degradation of the chloroplasts. Surprisingly, photosynthetic performance did not change significantly despite chloroplasts decreasing in thylakoid membranes and an increased number of plastoglobules. Thus, a combination of biochemical and cell biological mechanisms allows Antarctic benthic diatoms to survive the polar night.
Collapse
Affiliation(s)
- Desirée P. Juchem
- Applied Ecology and Phycology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Katherina Schimani
- Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, Berlin, Germany
| | - Andreas Holzinger
- Department of Botany, Functional Plant Biology, University of Innsbruck, Innsbruck, Austria
| | - Charlotte Permann
- Department of Botany, Functional Plant Biology, University of Innsbruck, Innsbruck, Austria
| | - Nélida Abarca
- Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, Berlin, Germany
| | - Oliver Skibbe
- Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, Berlin, Germany
| | - Jonas Zimmermann
- Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, Berlin, Germany
| | - Martin Graeve
- Alfred-Wegener-Institute Helmholtz-Center for Polar and Marine Research, Ecological Chemistry, Bremerhaven, Germany
| | - Ulf Karsten
- Applied Ecology and Phycology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| |
Collapse
|
39
|
Du L, Jiang Z, Zhou Y, Shen L, He J, Xia X, Zhang L, Yang X. Genome-Wide Identification and Expression Analysis of Respiratory Burst Oxidase Homolog ( RBOH) Gene Family in Eggplant ( Solanum melongena L.) under Abiotic and Biotic Stress. Genes (Basel) 2023; 14:1665. [PMID: 37761805 PMCID: PMC10531080 DOI: 10.3390/genes14091665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Respiratory burst oxidase homologs (RBOHs) are important proteins that catalyze the production of reactive oxygen species (ROS), which play important roles in growth and stress response. For a comprehensive analysis of SmRBOH genes, we conducted genome-wide identification of the SmRBOH gene family in eggplant (Solanum melongena L.) and analyzed the expression of SmRBOHs under abiotic (salt, high-temperature, and low-temperature) and biotic stress (Verticillium dahliae inoculation) by quantitative real-time PCR (qRT-PCR). The result showed that a total of eight SmRBOH members were identified from the genome database of eggplant, and they were relatively evenly distributed across seven chromosomes. The analysis of Motif and the conserved domain showed that SmRBOHs have high similarity in protein sequences and functions. Based on phylogenetics, SmRBOHs were classified into three distinct clades. Furthermore, the promoter regions of SmRBOHs were found to contain different cis-elements. Additionally, the results of the qRT-PCR demonstrated differential expression patterns of SmRBOHs in different tissues (the roots, stems, and leaves) and stress conditions. SmRBOHB, SmRBOHD, SmRBOHH1, and SmRBOHH2 showed significant upregulation (>20-fold) under at least one stress condition. Subcellular localization analysis of the above four members further confirmed that they localized on the plasma membrane. This study provides a theoretical foundation for understanding the functions of SmRBOHs in eggplant.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xu Yang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China (J.H.); (X.X.); (L.Z.)
| |
Collapse
|
40
|
Petrova DP, Morozov AA, Potapova NA, Bedoshvili YD. Analysis of Predicted Amino Acid Sequences of Diatom Microtubule Center Components. Int J Mol Sci 2023; 24:12781. [PMID: 37628962 PMCID: PMC10454807 DOI: 10.3390/ijms241612781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Diatoms synthesize species-specific exoskeletons inside cells under the control of the cytoskeleton and microtubule center. Previous studies have been conducted with the visualization of the microtubule center; however, its composition has not been studied and reliably established. In the present study, several components of MTOC in diatoms, GCP (gamma complex proteins), Aurora A, and centrins have been identified. Analysis of the predicted amino acid sequences of these proteins revealed structural features typical for diatoms. We analyzed the conserved amino acids and the motives necessary for the functioning of proteins. Phylogenetic analysis of GCP showed that all major groups of diatoms are distributed over phylogenetic trees according to their systematic position. This work is a theoretical study; however, it allows drawing some conclusions about the functioning of the studied components and possible ways to regulate them.
Collapse
Affiliation(s)
- Darya P. Petrova
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk 664033, Russia
| | - Alexey A. Morozov
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk 664033, Russia
| | - Nadezhda A. Potapova
- Institute for Information Transmission Problems (Kharkevich Institute) of the Russian Academy of Sciences, Moscow 127051, Russia
| | | |
Collapse
|
41
|
Wu Y, Tirichine L. Chromosome-Wide Distribution and Characterization of H3K36me3 and H3K27Ac in the Marine Model Diatom Phaeodactylum tricornutum. PLANTS (BASEL, SWITZERLAND) 2023; 12:2852. [PMID: 37571007 PMCID: PMC10421102 DOI: 10.3390/plants12152852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
Histone methylation and acetylation play a crucial role in response to developmental cues and environmental changes. Previously, we employed mass spectrometry to identify histone modifications such as H3K27ac and H3K36me3 in the model diatom Phaeodactylum tricornutum, which have been shown to be important for transcriptional activation in animal and plant species. To further investigate their evolutionary implications, we utilized chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) and explored their genome-wide distribution in P. tricornutum. Our study aimed to determine their role in transcriptional regulation of genes and transposable elements (TEs) and their co-occurrence with other histone marks. Our results revealed that H3K27ac and H3K36me3 were predominantly localized in promoters and genic regions indicating a high conservation pattern with studies of the same marks in plants and animals. Furthermore, we report the diversity of genes encoding H3 lysine 36 (H3K36) trimethylation-specific methyltransferase in microalgae leveraging diverse sequencing resources including the Marine Microbial Eukaryote Transcriptome Sequencing Project database (MMETSP). Our study expands the repertoire of epigenetic marks in a model microalga and provides valuable insights into the evolutionary context of epigenetic-mediated gene regulation. These findings shed light on the intricate interplay between histone modifications and gene expression in microalgae, contributing to our understanding of the broader epigenetic landscape in eukaryotic organisms.
Collapse
Affiliation(s)
| | - Leila Tirichine
- Nantes Université, CNRS, US2B, UMR 6286, F-44000 Nantes, France;
| |
Collapse
|
42
|
Ban H, Sato S, Yoshikawa S, Yamada K, Nakamura Y, Ichinomiya M, Sato N, Blanc-Mathieu R, Endo H, Kuwata A, Ogata H. Genome analysis of Parmales, the sister group of diatoms, reveals the evolutionary specialization of diatoms from phago-mixotrophs to photoautotrophs. Commun Biol 2023; 6:697. [PMID: 37420035 PMCID: PMC10328945 DOI: 10.1038/s42003-023-05002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/31/2023] [Indexed: 07/09/2023] Open
Abstract
The order Parmales (class Bolidophyceae) is a minor group of pico-sized eukaryotic marine phytoplankton that contains species with cells surrounded by silica plates. Previous studies revealed that Parmales is a member of ochrophytes and sister to diatoms (phylum Bacillariophyta), the most successful phytoplankton group in the modern ocean. Therefore, parmalean genomes can serve as a reference to elucidate both the evolutionary events that differentiated these two lineages and the genomic basis for the ecological success of diatoms vs. the more cryptic lifestyle of parmaleans. Here, we compare the genomes of eight parmaleans and five diatoms to explore their physiological and evolutionary differences. Parmaleans are predicted to be phago-mixotrophs. By contrast, diatoms have lost genes related to phagocytosis, indicating the ecological specialization from phago-mixotrophy to photoautotrophy in their early evolution. Furthermore, diatoms show significant enrichment in gene sets involved in nutrient uptake and metabolism, including iron and silica, in comparison with parmaleans. Overall, our results suggest a strong evolutionary link between the loss of phago-mixotrophy and specialization to a silicified photoautotrophic life stage early in diatom evolution after diverging from the Parmales lineage.
Collapse
Affiliation(s)
- Hiroki Ban
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Shinya Sato
- Department of Marine Science and Technology, Fukui Prefectural University, 1-1 Gakuen-cho, Obama City, Fukui, 917-0003, Japan
| | - Shinya Yoshikawa
- Department of Marine Science and Technology, Fukui Prefectural University, 1-1 Gakuen-cho, Obama City, Fukui, 917-0003, Japan
| | - Kazumasa Yamada
- Department of Marine Science and Technology, Fukui Prefectural University, 1-1 Gakuen-cho, Obama City, Fukui, 917-0003, Japan
| | - Yoji Nakamura
- Bioinformatics and Biosciences Division, Fisheries Stock Assessment Center, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fuku-ura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan
| | - Mutsuo Ichinomiya
- Prefectural University of Kumamoto, 3-1-100 Tsukide, Kumamoto, 862-8502, Japan
| | - Naoki Sato
- Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Romain Blanc-Mathieu
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
- Laboratoire de Physiologie Cellulaire & Végétale, CEA, Univ. Grenoble Alpes, CNRS, INRA, IRIG, Grenoble, France
| | - Hisashi Endo
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Akira Kuwata
- Shiogama field station, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, 3-27-5 Shinhama-cho, Shiogama, Miyagi, Japan.
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
43
|
Liu F, Wang Y, Huang H, Chen N. Evolutionary dynamics of plastomes in coscinodiscophycean diatoms revealed by comparative genomics. Front Microbiol 2023; 14:1203780. [PMID: 37396366 PMCID: PMC10307964 DOI: 10.3389/fmicb.2023.1203780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
To understand the evolution of coscinodiscophycean diatoms, plastome sequences of six coscinodiscophycean diatom species were constructed and analyzed in this study, doubling the number of constructed plastome sequences in Coscinodiscophyceae (radial centrics). The platome sizes varied substantially in Coscinodiscophyceae, ranging from 119.1 kb of Actinocyclus subtilis to 135.8 kb of Stephanopyxis turris. Plastomes in Paraliales and Stephanopyxales tended to be larger than those in Rhizosoleniales and Coscinodiacales, which were due to the expansion of the inverted repeats (IRs) and to the marked increase of the large single copy (LSC). Phylogenomic analysis indicated that Paralia and Stephanopyxis clustered tightly to form the Paraliales-Stephanopyxales complex, which was sister to the Rhizosoleniales-Coscinodiscales complex. The divergence time between Paraliales and Stephanopyxales was estimated at 85 MYA in the middle Upper Cretaceous, indicating that Paraliales and Stephanopyxales appeared later than Coscinodiacales and Rhizosoleniales according to their phylogenetic relationships. Frequent losses of housekeeping protein-coding genes (PCGs) were observed in these coscinodiscophycean plastomes, indicating that diatom plastomes showed an ongoing reduction in gene content during evolution. Two acpP genes (acpP1 and acpP2) detected in diatom plastomes were found to be originated from an early gene duplication event occurred in the common progenitor after diatom emergence, rather than multiple independent gene duplications occurring in different lineages of diatoms. The IRs in Stephanopyxis turris and Rhizosolenia fallax-imbricata exhibited a similar trend of large expansion to the small single copy (SSC) and slightly small contraction from the LSC, which eventually led to the conspicuous increase in IR size. Gene order was highly conserved in Coscinodiacales, while multiple rearrangements were observed in Rhizosoleniales and between Paraliales and Stephanopyxales. Our results greatly expanded the phylogenetic breadth in Coscinodiscophyceae and gained novel insights into the evolution of plastomes in diatoms.
Collapse
Affiliation(s)
- Feng Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Marine Ecology and Environmental Science Laboratory, Laoshan Laboratory, Qingdao, Shandong, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Yichao Wang
- Chinese Academy of Fishery Sciences, Beijing, China
| | - Hailong Huang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Marine Ecology and Environmental Science Laboratory, Laoshan Laboratory, Qingdao, Shandong, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, China
| |
Collapse
|
44
|
Gao B, Xu M, Shan D, Zhang C, Yang Y, Dong Z, Zhang H, Han B, Huang L, Zhang C. The genomes of Vischeria oleaginous microalgae shed light on the molecular basis of hyper-accumulation of lipids. BMC Biol 2023; 21:133. [PMID: 37280620 DOI: 10.1186/s12915-023-01618-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND With the urgent need to reduce carbon emissions, and the dwindling reserves of easily exploitable fossil fuel, microalgae-based biofuels that can be used for transport systems and CO2 abatement have attracted great attention worldwide in recent years. One useful characteristic of microalgae is their ability to accumulate high levels of lipid content, in particular under conditions of nitrogen deprivation, with numerous species identified so far. However, a trade-off between levels of lipid accumulation and biomass productivity hinders the commercial applicability of lipids from microalgae. Here, we sequenced the genomes of Vischeria sp. CAUP H4302 and Vischeria stellata SAG 33.83, which can accumulate high content of lipids rich in nutraceutical fatty acids and with excellent biomass yield in nitrogen-limiting culture. RESULTS A whole-genome duplication (WGD) event was revealed in V. sp. CAUP H4302, which is a rare event in unicellular microalgae. Comparative genomic analyses showed that a battery of genes encoding pivotal enzymes involved in fatty acids and triacylglycerol biosynthesis, storage polysaccharide hydrolysis, and nitrogen and amino acid-related metabolisms are expanded in the genus Vischeria or only in V. sp. CAUP H4302. The most highlighted is the expansion of cyanate lyase genes in the genus Vischeria, which may enhance their detoxification ability against the toxic cyanate by decomposing cyanate to NH3 and CO2, especially under nitrogen-limiting conditions, resulting in better growth performance and sustained accumulation of biomass under the aforementioned stress conditions. CONCLUSIONS This study presents a WGD event in microalgae, providing new insights into the genetic and regulatory mechanism underpinning hyper-accumulation of lipids and offering potentially valuable targets for future improvements in oleaginous microalgae by metabolic engineering.
Collapse
Affiliation(s)
- Baoyan Gao
- Department of Ecology & Research Center for Hydrobiology, Jinan University, Guangzhou, 510632, China
| | - Meng Xu
- Department of Ecology & Research Center for Hydrobiology, Jinan University, Guangzhou, 510632, China
| | - Dai Shan
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Chi Zhang
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yulan Yang
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | | | - Hu Zhang
- Department of Ecology & Research Center for Hydrobiology, Jinan University, Guangzhou, 510632, China
| | - Boping Han
- Department of Ecology & Research Center for Hydrobiology, Jinan University, Guangzhou, 510632, China.
| | - Luodong Huang
- Department of Ecology & Research Center for Hydrobiology, Jinan University, Guangzhou, 510632, China.
| | - Chengwu Zhang
- Department of Ecology & Research Center for Hydrobiology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
45
|
Nieves-Morión M, Camargo S, Bardi S, Ruiz MT, Flores E, Foster RA. Heterologous expression of genes from a cyanobacterial endosymbiont highlights substrate exchanges with its diatom host. PNAS NEXUS 2023; 2:pgad194. [PMID: 37383020 PMCID: PMC10299089 DOI: 10.1093/pnasnexus/pgad194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023]
Abstract
A few genera of diatoms are widespread and thrive in low-nutrient waters of the open ocean due to their close association with N2-fixing, filamentous heterocyst-forming cyanobacteria. In one of these symbioses, the symbiont, Richelia euintracellularis, has penetrated the cell envelope of the host, Hemiaulus hauckii, and lives inside the host cytoplasm. How the partners interact, including how the symbiont sustains high rates of N2 fixation, is unstudied. Since R. euintracellularis has evaded isolation, heterologous expression of genes in model laboratory organisms was performed to identify the function of proteins from the endosymbiont. Gene complementation of a cyanobacterial invertase mutant and expression of the protein in Escherichia coli showed that R. euintracellularis HH01 possesses a neutral invertase that splits sucrose producing glucose and fructose. Several solute-binding proteins (SBPs) of ABC transporters encoded in the genome of R. euintracellularis HH01 were expressed in E. coli, and their substrates were characterized. The selected SBPs directly linked the host as the source of several substrates, e.g. sugars (sucrose and galactose), amino acids (glutamate and phenylalanine), and a polyamine (spermidine), to support the cyanobacterial symbiont. Finally, transcripts of genes encoding the invertase and SBPs were consistently detected in wild populations of H. hauckii collected from multiple stations and depths in the western tropical North Atlantic. Our results support the idea that the diatom host provides the endosymbiotic cyanobacterium with organic carbon to fuel N2 fixation. This knowledge is key to understanding the physiology of the globally significant H. hauckii-R. euintracellularis symbiosis.
Collapse
Affiliation(s)
- Mercedes Nieves-Morión
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm SE-106 91, Sweden
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville E-41092, Spain
| | - Sergio Camargo
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville E-41092, Spain
| | - Sepehr Bardi
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm SE-106 91, Sweden
| | - María Teresa Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville E-41092, Spain
| | | | | |
Collapse
|
46
|
Wang S, Zhou X, Wu S, Zhao M, Hu Z. Transcriptomic and metabolomic analyses revealed regulation mechanism of mixotrophic Cylindrotheca sp. glycerol utilization and biomass promotion. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:84. [PMID: 37208696 DOI: 10.1186/s13068-023-02338-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Diatoms have been viewed as ideal cell factories for production of some high-value bioactive metabolites, such as fucoxanthin, but their applications are restrained by limited biomass yield. Mixotrophy, by using both CO2 and organic carbon source, is believed effective to crack the bottleneck of biomass accumulation and achieve a sustainable bioproduct supply. RESULTS Glycerol, among tested carbon sources, was proved as the sole that could significantly promote growth of Cylindrotheca sp. with illumination, a so-called growth pattern, mixotrophy. Biomass and fucoxanthin yields of Cylindrotheca sp., grown in medium with glycerol (2 g L-1), was increased by 52% and 29%, respectively, as compared to the autotrophic culture (control) without compromise in photosynthetic performance. As Cylindrotheca sp. was unable to use glycerol without light, a time-series transcriptomic analysis was carried out to elucidate the light regulation on glycerol utilization. Among the genes participating in glycerol utilization, GPDH1, TIM1 and GAPDH1, showed the highest dependence on light. Their expressions decreased dramatically when the alga was transferred from light into darkness. Despite the reduced glycerol uptake in the dark, expressions of genes associating with pyrimidine metabolism and DNA replication were upregulated when Cylindrotheca sp. was cultured mixotrophically. Comparative transcriptomic and metabolomic analyses revealed amino acids and aminoacyl-tRNA metabolisms were enhanced at different timepoints of diurnal cycles in mixotrophic Cylindrotheca sp., as compared to the control. CONCLUSIONS Conclusively, this study not only provides an alternative for large-scale cultivation of Cylindrotheca, but also pinpoints the limiting enzymes subject to further metabolic manipulation. Most importantly, the novel insights in this study should aid to understand the mechanism of biomass promotion in mixotrophic Cylindrotheca sp.
Collapse
Affiliation(s)
- Song Wang
- Guangdong Technology Research Center for Marine Algal Bioengineering; Guangdong Provincial Key Laboratory for Plant Epigenetics; Shenzhen Engineering Laboratory for Marine Algal Biotechnology; Longhua Innovation Institute for Biotechnology; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Xiyi Zhou
- Guangdong Technology Research Center for Marine Algal Bioengineering; Guangdong Provincial Key Laboratory for Plant Epigenetics; Shenzhen Engineering Laboratory for Marine Algal Biotechnology; Longhua Innovation Institute for Biotechnology; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Sha Wu
- Guangdong Technology Research Center for Marine Algal Bioengineering; Guangdong Provincial Key Laboratory for Plant Epigenetics; Shenzhen Engineering Laboratory for Marine Algal Biotechnology; Longhua Innovation Institute for Biotechnology; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Mengkai Zhao
- Guangdong Technology Research Center for Marine Algal Bioengineering; Guangdong Provincial Key Laboratory for Plant Epigenetics; Shenzhen Engineering Laboratory for Marine Algal Biotechnology; Longhua Innovation Institute for Biotechnology; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering; Guangdong Provincial Key Laboratory for Plant Epigenetics; Shenzhen Engineering Laboratory for Marine Algal Biotechnology; Longhua Innovation Institute for Biotechnology; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
47
|
Schmollinger S, Chen S, Merchant SS. Quantitative elemental imaging in eukaryotic algae. Metallomics 2023; 15:mfad025. [PMID: 37186252 PMCID: PMC10209819 DOI: 10.1093/mtomcs/mfad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/03/2023] [Indexed: 05/17/2023]
Abstract
All organisms, fundamentally, are made from the same raw material, namely the elements of the periodic table. Biochemical diversity is achieved by how these elements are utilized, for what purpose, and in which physical location. Determining elemental distributions, especially those of trace elements that facilitate metabolism as cofactors in the active centers of essential enzymes, can determine the state of metabolism, the nutritional status, or the developmental stage of an organism. Photosynthetic eukaryotes, especially algae, are excellent subjects for quantitative analysis of elemental distribution. These microbes utilize unique metabolic pathways that require various trace nutrients at their core to enable their operation. Photosynthetic microbes also have important environmental roles as primary producers in habitats with limited nutrient supplies or toxin contaminations. Accordingly, photosynthetic eukaryotes are of great interest for biotechnological exploitation, carbon sequestration, and bioremediation, with many of the applications involving various trace elements and consequently affecting their quota and intracellular distribution. A number of diverse applications were developed for elemental imaging, allowing subcellular resolution, with X-ray fluorescence microscopy (XFM, XRF) being at the forefront, enabling quantitative descriptions of intact cells in a non-destructive method. This Tutorial Review summarizes the workflow of a quantitative, single-cell elemental distribution analysis of a eukaryotic alga using XFM.
Collapse
Affiliation(s)
- Stefan Schmollinger
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Departments of Molecular and Cell Biology and Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Si Chen
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Sabeeha S Merchant
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Departments of Molecular and Cell Biology and Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
48
|
Huapaya K, Echeveste P. Physiological responses of Humboldt current system diatoms to Fe and Cu co-limitation. MARINE ENVIRONMENTAL RESEARCH 2023; 187:105937. [PMID: 36958199 DOI: 10.1016/j.marenvres.2023.105937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Diatoms account for ∼20% of global primary production, often limited by the availability of Fe and other trace nutrients such as Cu. The present study examined the role of both metals in the physiology of two diatoms isolated from the Humboldt Currents System, the centric Chaetoceros c.f. dicipiens and the pennate Nitzschia c.f. draveillensis. Under Fe limitation, a decrease in specific growth rates and sizes of both species was observed, especially in Chaetoceros. However, regarding different photosynthetic parameters, Nitzschia was more impacted. The increase in Cu concentrations improved the physiology of both diatoms, mostly of Chaetoceros. When grown in mixed cultures and under co-limiting conditions, both species remained competive due to morphological advantages (i.e., lower cell size). These results may suggest that the increase of Cu under Fe limitation benefited C. c.f. dicipiens over N. c.f. draveillensis.
Collapse
Affiliation(s)
- Katiuska Huapaya
- Instituto de Ciencias Naturales Alexander von Humboldt, Facultad de Ciencias Del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile.
| | - Pedro Echeveste
- Instituto de Ciencias Naturales Alexander von Humboldt, Facultad de Ciencias Del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile; Instituto Milenio de Oceanografía, Chile
| |
Collapse
|
49
|
Cheng W, Hwang S, Guo Q, Qian L, Liu W, Yu Y, Liu L, Tao Y, Cao H. The Special and General Mechanism of Cyanobacterial Harmful Algal Blooms. Microorganisms 2023; 11:microorganisms11040987. [PMID: 37110410 PMCID: PMC10144548 DOI: 10.3390/microorganisms11040987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Cyanobacterial harmful algal blooms (CyanoHABs) are longstanding aquatic hazards worldwide, of which the mechanism is not yet fully understood, i.e., the process in which cyanobacteria establish dominance over coexisting algae in the same eutrophic waters. The dominance of CyanoHABs represents a deviation from their low abundance under conventional evolution in the oligotrophic state, which has been the case since the origin of cyanobacteria on early Earth. To piece together a comprehensive mechanism of CyanoHABs, we revisit the origin and adaptive radiation of cyanobacteria in oligotrophic Earth, demonstrating ubiquitous adaptive radiation enabled by corresponding biological functions under various oligotrophic conditions. Next, we summarize the biological functions (ecophysiology) which drive CyanoHABs and ecological evidence to synthesize a working mechanism at the population level (the special mechanism) for CyanoHABs: CyanoHABs are the consequence of the synergistic interaction between superior cyanobacterial ecophysiology and elevated nutrients. Interestingly, these biological functions are not a result of positive selection by water eutrophication, but an adaptation to a longstanding oligotrophic state as all the genes in cyanobacteria are under strong negative selection. Last, to address the relative dominance of cyanobacteria over coexisting algae, we postulate a "general" mechanism of CyanoHABs at the community level from an energy and matter perspective: cyanobacteria are simpler life forms and thus have lower per capita nutrient demand for growth than coexisting eukaryotic algae. We prove this by comparing cyanobacteria and eukaryotic algae in cell size and structure, genome size, size of genome-scale metabolic networks, cell content, and finally the golden standard-field studies with nutrient supplementation in the same waters. To sum up, the comprehensive mechanism of CyanoHABs comprises a necessary condition, which is the general mechanism, and a sufficient condition, which is the special mechanism. One prominent prediction based on this tentative comprehensive mechanism is that eukaryotic algal blooms will coexist with or replace CyanoHABs if eutrophication continues and goes over the threshold nutrient levels for eukaryotic algae. This two-fold comprehensive mechanism awaits further theoretic and experimental testing and provides an important guide to control blooms of all algal species.
Collapse
Affiliation(s)
- Wenduo Cheng
- Division of Natural and Applied Sciences, Duke Kunshan University, 8 Duke Ave, Kunshan 215316, China
| | - Somin Hwang
- Division of Natural and Applied Sciences, Duke Kunshan University, 8 Duke Ave, Kunshan 215316, China
| | - Qisen Guo
- Division of Natural and Applied Sciences, Duke Kunshan University, 8 Duke Ave, Kunshan 215316, China
| | - Leyuan Qian
- Division of Natural and Applied Sciences, Duke Kunshan University, 8 Duke Ave, Kunshan 215316, China
| | - Weile Liu
- Division of Natural and Applied Sciences, Duke Kunshan University, 8 Duke Ave, Kunshan 215316, China
| | - Yang Yu
- Division of Natural and Applied Sciences, Duke Kunshan University, 8 Duke Ave, Kunshan 215316, China
| | - Li Liu
- Division of Natural and Applied Sciences, Duke Kunshan University, 8 Duke Ave, Kunshan 215316, China
| | - Yi Tao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Huansheng Cao
- Division of Natural and Applied Sciences, Duke Kunshan University, 8 Duke Ave, Kunshan 215316, China
| |
Collapse
|
50
|
Jeong BR, Jang J, Jin E. Genome engineering via gene editing technologies in microalgae. BIORESOURCE TECHNOLOGY 2023; 373:128701. [PMID: 36746216 DOI: 10.1016/j.biortech.2023.128701] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
CRISPR-Cas has revolutionized genetic modification with its comparative simplicity and accuracy, and it can be used even at the genomic level. Microalgae are excellent feedstocks for biofuels and nutraceuticals because they contain high levels of fatty acids, carotenoids, and other metabolites; however, genome engineering for microalgae is not yet as developed as for other model organisms. Microalgal engineering at the genetic and metabolic levels is relatively well established, and a few genomic resources are available. Their genomic information was used for a "safe harbor" site for stable transgene expression in microalgae. This review proposes further genome engineering schemes including the construction of sgRNA libraries, pan-genomic and epigenomic resources, and mini-genomes, which can together be developed into synthetic biology for carbon-based engineering in microalgae. Acetyl-CoA is at the center of carbon metabolic pathways and is further reviewed for the production of molecules including terpenoids in microalgae.
Collapse
Affiliation(s)
- Byeong-Ryool Jeong
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Junhwan Jang
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea; Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea.
| |
Collapse
|