1
|
Trus M, Atlas D. Non-ionotropic voltage-gated calcium channel signaling. Channels (Austin) 2024; 18:2341077. [PMID: 38601983 PMCID: PMC11017947 DOI: 10.1080/19336950.2024.2341077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Voltage-gated calcium channels (VGCCs) are the major conduits for calcium ions (Ca2+) within excitable cells. Recent studies have highlighted the non-ionotropic functionality of VGCCs, revealing their capacity to activate intracellular pathways independently of ion flow. This non-ionotropic signaling mode plays a pivotal role in excitation-coupling processes, including gene transcription through excitation-transcription (ET), synaptic transmission via excitation-secretion (ES), and cardiac contraction through excitation-contraction (EC). However, it is noteworthy that these excitation-coupling processes require extracellular calcium (Ca2+) and Ca2+ occupancy of the channel ion pore. Analogous to the "non-canonical" characterization of the non-ionotropic signaling exhibited by the N-methyl-D-aspartate receptor (NMDA), which requires extracellular Ca2+ without the influx of ions, VGCC activation requires depolarization-triggered conformational change(s) concomitant with Ca2+ binding to the open channel. Here, we discuss the contributions of VGCCs to ES, ET, and EC coupling as Ca2+ binding macromolecules that transduces external stimuli to intracellular input prior to elevating intracellular Ca2+. We emphasize the recognition of calcium ion occupancy within the open ion-pore and its contribution to the excitation coupling processes that precede the influx of calcium. The non-ionotropic activation of VGCCs, triggered by the upstroke of an action potential, provides a conceptual framework to elucidate the mechanistic aspects underlying the microseconds nature of synaptic transmission, cardiac contractility, and the rapid induction of first-wave genes.
Collapse
Affiliation(s)
- Michael Trus
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daphne Atlas
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
2
|
Ng XW, DiGruccio MR, Kong C, Lee J, Piston DW. Role of Complexin 2 in the regulation of hormone secretion from the islet of Langerhans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620710. [PMID: 39554053 PMCID: PMC11565807 DOI: 10.1101/2024.10.28.620710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Regulated secretion of insulin from β-cells, glucagon from α-cells, and somatostatin from δ-cells is necessary for the maintenance of glucose homeostasis. The release of these hormones from pancreatic islet cells requires the assembly and disassembly of the SNARE protein complex to control vesicle fusion and exocytosis. Complexin 2 (Cplx 2) is a small soluble synaptic protein that participates in the priming and release steps of vesicle fusion. It plays a dual role as a molecular switch that first clamps and prevents fusion pore opening, and subsequently undergoes a conformational change upon Ca 2+ binding to synaptotagmin to facilitate exocytosis. Using a Cplx 2 knockout (KO) mouse model, we show a direct inhibitory role of Cplx 2 for glucagon and somatostatin secretion, along with an indirect role in the paracrine inhibition of insulin secretion by somatostatin. Deletion of Cplx 2 increases glucagon and somatostatin secretion from intact mouse islets, while there is no difference in insulin secretion between WT and Cplx 2 KO islets. The normal paracrine inhibition of insulin secretion by somatostatin is disrupted in Cplx 2 KO islets. On the contrary, deletion of Cplx 2 did not affect the known role of somatostatin in the paracrine inhibition of glucagon at elevated glucose levels, since the paracrine inhibition of glucagon secretion by somatostatin is similar for both WT and Cplx 2 KO islets. In both β- and α-cells, the secretion profiles are parallel to Ca 2+ activity changes following somatostatin treatment of WT and Cplx 2 KO islets. The loss of paracrine inhibition of insulin secretion is substantiated by direct measurements of insulin vesicle fusion events in Cplx 2 KO islets. Together, these data show a differential role for Cplx 2 in regulating hormone secretion from pancreatic islets.
Collapse
|
3
|
López-Murcia FJ, Lin KH, Berns MMM, Ranjan M, Lipstein N, Neher E, Brose N, Reim K, Taschenberger H. Complexin has a dual synaptic function as checkpoint protein in vesicle priming and as a promoter of vesicle fusion. Proc Natl Acad Sci U S A 2024; 121:e2320505121. [PMID: 38568977 PMCID: PMC11009659 DOI: 10.1073/pnas.2320505121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
The presynaptic SNARE-complex regulator complexin (Cplx) enhances the fusogenicity of primed synaptic vesicles (SVs). Consequently, Cplx deletion impairs action potential-evoked transmitter release. Conversely, though, Cplx loss enhances spontaneous and delayed asynchronous release at certain synapse types. Using electrophysiology and kinetic modeling, we show that such seemingly contradictory transmitter release phenotypes seen upon Cplx deletion can be explained by an additional of Cplx in the control of SV priming, where its ablation facilitates the generation of a "faulty" SV fusion apparatus. Supporting this notion, a sequential two-step priming scheme, featuring reduced vesicle fusogenicity and increased transition rates into the faulty primed state, reproduces all aberrations of transmitter release modes and short-term synaptic plasticity seen upon Cplx loss. Accordingly, we propose a dual presynaptic function for the SNARE-complex interactor Cplx, one as a "checkpoint" protein that guarantees the proper assembly of the fusion machinery during vesicle priming, and one in boosting vesicle fusogenicity.
Collapse
Affiliation(s)
- Francisco José López-Murcia
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
| | - Kun-Han Lin
- Laboratory of Membrane Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
| | - Manon M. M. Berns
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
| | - Mrinalini Ranjan
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
- Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, Georg August University Göttingen, Göttingen37077, Germany
| | - Noa Lipstein
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
| | - Erwin Neher
- Laboratory of Membrane Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
- Cluster of Excellence ‘Multiscale Bioimaging’, Georg August University Göttingen, Göttingen37073, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
- Cluster of Excellence ‘Multiscale Bioimaging’, Georg August University Göttingen, Göttingen37073, Germany
| | - Kerstin Reim
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
| |
Collapse
|
4
|
Hong S, Yang T, Go A, Kim H, Yoon TY, Shon MJ. High-speed measurements of SNARE-complexin interactions using magnetic tweezers. Methods Enzymol 2024; 694:109-135. [PMID: 38492948 DOI: 10.1016/bs.mie.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
In neuroscience, understanding the mechanics of synapses, especially the function of force-sensitive proteins at the molecular level, is essential. This need emphasizes the importance of precise measurement of synaptic protein interactions. Addressing this, we introduce high-resolution magnetic tweezers (MT) as a novel method to probe the mechanics of synapse-related proteins with high precision. We demonstrate this technique through studying SNARE-complexin interactions, crucial for synaptic transmission, showcasing its capability to apply specific forces to individual molecules. Our results reveal that high-resolution MT provides in-depth insights into the stability and dynamic transitions of synaptic protein complexes. This method is a significant advancement in synapse biology, offering a new tool for researchers to investigate the impact of mechanical forces on synaptic functions and their implications for neurological disorders.
Collapse
Affiliation(s)
- Seokyun Hong
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Taehyun Yang
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Ara Go
- Engitein Research Institute, Engitein, Siheung, Republic of Korea
| | - Haesoo Kim
- Engitein Research Institute, Engitein, Siheung, Republic of Korea
| | - Tae-Young Yoon
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea; Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, Republic of Korea.
| | - Min Ju Shon
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
| |
Collapse
|
5
|
Bera M, Radhakrishnan A, Coleman J, K. Sundaram RV, Ramakrishnan S, Pincet F, Rothman JE. Synaptophysin chaperones the assembly of 12 SNAREpins under each ready-release vesicle. Proc Natl Acad Sci U S A 2023; 120:e2311484120. [PMID: 37903271 PMCID: PMC10636311 DOI: 10.1073/pnas.2311484120] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/19/2023] [Indexed: 11/01/2023] Open
Abstract
The synaptic vesicle protein Synaptophysin (Syp) has long been known to form a complex with the Vesicle associated soluble N-ethylmaleimide sensitive fusion protein attachment receptor (v-SNARE) Vesicle associated membrane protein (VAMP), but a more specific molecular function or mechanism of action in exocytosis has been lacking because gene knockouts have minimal effects. Utilizing fully defined reconstitution and single-molecule measurements, we now report that Syp functions as a chaperone that determines the number of SNAREpins assembling between a ready-release vesicle and its target membrane bilayer. Specifically, Syp directs the assembly of 12 ± 1 SNAREpins under each docked vesicle, even in the face of an excess of SNARE proteins. The SNAREpins assemble in successive waves of 6 ± 1 and 5 ± 2 SNAREpins, respectively, tightly linked to oligomerization of and binding to the vesicle Ca++ sensor Synaptotagmin. Templating of 12 SNAREpins by Syp is likely the direct result of its hexamer structure and its binding of VAMP2 dimers, both of which we demonstrate in detergent extracts and lipid bilayers.
Collapse
Affiliation(s)
- Manindra Bera
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT06520
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Abhijith Radhakrishnan
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT06520
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Jeff Coleman
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT06520
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - R. Venkat K. Sundaram
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT06520
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Sathish Ramakrishnan
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT06520
- Department of Pathology, Yale University School of Medicine, New Haven, CT06520
| | - Frederic Pincet
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT06520
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris Sciences et Lettres Research University, CNRS, Sorbonne Université, Université de Paris Cité, 75005Paris, France
| | - James E. Rothman
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT06520
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| |
Collapse
|
6
|
Bera M, Radhakrishnan A, Coleman J, Sundaram RVK, Ramakrishnan S, Pincet F, Rothman JE. Synaptophysin Chaperones the Assembly of 12 SNAREpins under each Ready-Release Vesicle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547834. [PMID: 37461465 PMCID: PMC10349951 DOI: 10.1101/2023.07.05.547834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
The synaptic vesicle protein Synaptophysin has long been known to form a complex with the v-SNARE VAMP, but a more specific molecular function or mechanism of action in exocytosis has been lacking because gene knockouts have minimal effects. Utilizing fully-defined reconstitution and single-molecule measurements, we now report that Synaptophysin functions as a chaperone that determines the number of SNAREpins assembling between a ready-release vesicle and its target membrane bilayer. Specifically, Synaptophysin directs the assembly of 12 ± 1 SNAREpins under each docked vesicle, even in the face of an excess of SNARE proteins. The SNAREpins assemble in successive waves of 6 ± 1 and 5 ± 2 SNAREpins, respectively, tightly linked to oligomerization of and binding to the vesicle Ca++ sensor Synaptotagmin. Templating of 12 SNAREpins by Synaptophysin is likely the direct result of its hexamer structure and its binding of VAMP2 dimers, both of which we demonstrate in detergent extracts and lipid bilayers.
Collapse
Affiliation(s)
- Manindra Bera
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Abhijith Radhakrishnan
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jeff Coleman
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ramalingam Venkat Kalyana Sundaram
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sathish Ramakrishnan
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Frederic Pincet
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
- Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
| | - James E. Rothman
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
7
|
Buzzatto MV, Berberián MV, Di Bartolo AL, Masone D, Tomes CN. α-Synuclein is required for sperm exocytosis at a post-fusion stage. Front Cell Dev Biol 2023; 11:1125988. [PMID: 37287458 PMCID: PMC10242118 DOI: 10.3389/fcell.2023.1125988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
The sperm acrosome is a large dense-core granule whose contents are secreted by regulated exocytosis at fertilization through the opening of numerous fusion pores between the acrosomal and plasma membranes. In other cells, the nascent pore generated when the membrane surrounding a secretory vesicle fuses with the plasma membrane may have different fates. In sperm, pore dilation leads to the vesiculation and release of these membranes, together with the granule contents. α-Synuclein is a small cytosolic protein claimed to exhibit different roles in exocytic pathways in neurons and neuroendocrine cells. Here, we scrutinized its function in human sperm. Western blot revealed the presence of α-synuclein and indirect immunofluorescence its localization to the acrosomal domain of human sperm. Despite its small size, the protein was retained following permeabilization of the plasma membrane with streptolysin O. α-Synuclein was required for acrosomal release, as demonstrated by the inability of an inducer to elicit exocytosis when permeabilized human sperm were loaded with inhibitory antibodies to human α-synuclein. The antibodies halted calcium-induced secretion when introduced after the acrosome docked to the cell membrane. Two functional assays, fluorescence and transmission electron microscopies revealed that the stabilization of open fusion pores was responsible for the secretion blockage. Interestingly, synaptobrevin was insensitive to neurotoxin cleavage at this point, an indication of its engagement in cis SNARE complexes. The very existence of such complexes during AE reflects a new paradigm. Recombinant α-synuclein rescued the inhibitory effects of the anti-α-synuclein antibodies and of a chimeric Rab3A-22A protein that also inhibits AE after fusion pore opening. We applied restrained molecular dynamics simulations to compare the energy cost of expanding a nascent fusion pore between two model membranes and found it higher in the absence than in the presence of α-synuclein. Hence, our results suggest that α-synuclein is essential for expanding fusion pores.
Collapse
Affiliation(s)
- Micaela Vanina Buzzatto
- Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET-Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María Victoria Berberián
- Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET-Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Ciencias Básicas (ICB)-CONICET-Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Ary Lautaro Di Bartolo
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Diego Masone
- Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET-Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ingeniería, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Claudia Nora Tomes
- Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET-Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
8
|
Bykhovskaia M. Molecular Dynamics Simulations of the Proteins Regulating Synaptic Vesicle Fusion. MEMBRANES 2023; 13:307. [PMID: 36984694 PMCID: PMC10058449 DOI: 10.3390/membranes13030307] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/11/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Neuronal transmitters are packaged in synaptic vesicles (SVs) and released by the fusion of SVs with the presynaptic membrane (PM). An inflow of Ca2+ into the nerve terminal triggers fusion, and the SV-associated protein Synaptotagmin 1 (Syt1) serves as a Ca2+ sensor. In preparation for fusion, SVs become attached to the PM by the SNARE protein complex, a coiled-coil bundle that exerts the force overcoming SV-PM repulsion. A cytosolic protein Complexin (Cpx) attaches to the SNARE complex and differentially regulates the evoked and spontaneous release components. It is still debated how the dynamic interactions of Syt1, SNARE proteins and Cpx lead to fusion. This problem is confounded by heterogeneity in the conformational states of the prefusion protein-lipid complex and by the lack of tools to experimentally monitor the rapid conformational transitions of the complex, which occur at a sub-millisecond scale. However, these complications can be overcome employing molecular dynamics (MDs), a computational approach that enables simulating interactions and conformational transitions of proteins and lipids. This review discusses the use of molecular dynamics for the investigation of the pre-fusion protein-lipid complex. We discuss the dynamics of the SNARE complex between lipid bilayers, as well as the interactions of Syt1 with lipids and SNARE proteins, and Cpx regulating the assembly of the SNARE complex.
Collapse
Affiliation(s)
- Maria Bykhovskaia
- Neurology Department, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
9
|
Yang X, Tu W, Gao X, Zhang Q, Guan J, Zhang J. Functional regulation of syntaxin-1: An underlying mechanism mediating exocytosis in neuroendocrine cells. Front Endocrinol (Lausanne) 2023; 14:1096365. [PMID: 36742381 PMCID: PMC9892835 DOI: 10.3389/fendo.2023.1096365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
The fusion of the secretory vesicle with the plasma membrane requires the assembly of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein complexes formed by synaptobrevin, syntaxin-1, and SNAP-25. Within the pathway leading to exocytosis, the transitions between the "open" and "closed" conformations of syntaxin-1 function as a switch for the fusion of vesicles with the plasma membranes; rapid assembly and disassembly of syntaxin-1 clusters on the plasma membrane provide docking and fusion sites for secretory vesicles in neuroendocrine cells; and the fully zippered trans-SNARE complex, which requires the orderly, rapid and accurate binding of syntaxin-1 to other SNARE proteins, play key roles in triggering fusion. All of these reactions that affect exocytosis under physiological conditions are tightly regulated by multiple factors. Here, we review the current evidence for the involvement of syntaxin-1 in the mechanism of neuroendocrine cell exocytosis, discuss the roles of multiple factors such as proteins, lipids, protein kinases, drugs, and toxins in SNARE complex-mediated membrane fusion, and present an overview of syntaxin-1 mutation-associated diseases with a view to developing novel mechanistic therapeutic targets for the treatment of neuroendocrine disorders.
Collapse
Affiliation(s)
- Xinquan Yang
- Anesthesia and Perioperative Medicine laboratory, the Affiliated Lianyungang Hospital of Jiangsu University, Lianyungang, China
| | - Weifeng Tu
- Faculty of Anesthesioloy, Suzhou Hospital Affiliated to Medical School of Nanjing University, Suzhou, China
| | - Xuzhu Gao
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, China
| | - Qi Zhang
- Anesthesia and Perioperative Medicine laboratory, the Affiliated Lianyungang Hospital of Jiangsu University, Lianyungang, China
| | - Jinping Guan
- Anesthesia and Perioperative Medicine laboratory, the Affiliated Lianyungang Hospital of Jiangsu University, Lianyungang, China
| | - Junlong Zhang
- Anesthesia and Perioperative Medicine laboratory, the Affiliated Lianyungang Hospital of Jiangsu University, Lianyungang, China
- *Correspondence: Junlong Zhang,
| |
Collapse
|
10
|
Jaczynska K, Esquivies L, Pfuetzner RA, Alten B, Brewer KD, Zhou Q, Kavalali ET, Brunger AT, Rizo J. Analysis of tripartite Synaptotagmin-1-SNARE-complexin-1 complexes in solution. FEBS Open Bio 2023; 13:26-50. [PMID: 36305864 PMCID: PMC9811660 DOI: 10.1002/2211-5463.13503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 01/07/2023] Open
Abstract
Characterizing interactions of Synaptotagmin-1 with the SNARE complex is crucial to understand the mechanism of neurotransmitter release. X-ray crystallography revealed how the Synaptotagmin-1 C2 B domain binds to the SNARE complex through a so-called primary interface and to a complexin-1-SNARE complex through a so-called tripartite interface. Mutagenesis and electrophysiology supported the functional relevance of both interfaces, and extensive additional data validated the primary interface. However, ITC evidence suggesting that binding via the tripartite interface occurs in solution was called into question by subsequent NMR data. Here, we describe joint efforts to address this apparent contradiction. Using the same ITC approach with the same C2 B domain mutant used previously (C2 BKA-Q ) but including ion exchange chromatography to purify it, which is crucial to remove polyacidic contaminants, we were unable to observe the substantial endothermic ITC signal that was previously attributed to binding of this mutant to the complexin-1-SNARE complex through the tripartite interface. We were also unable to detect substantial populations of the tripartite interface in NMR analyses of the ITC samples or in measurements of paramagnetic relaxation effects, despite the high sensitivity of this method to detect weak protein complexes. However, these experiments do not rule out the possibility of very low affinity (KD > 1 mm) binding through this interface. These results emphasize the need to develop methods to characterize the structure of synaptotagmin-1-SNARE complexes between two membranes and to perform further structure-function analyses to establish the physiological relevance of the tripartite interface.
Collapse
Affiliation(s)
- Klaudia Jaczynska
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Luis Esquivies
- Department of Molecular and Cellular PhysiologyStanford UniversityCAUSA
- Department of Neurology and Neurological SciencesStanford UniversityCAUSA
- Department of Structural BiologyStanford UniversityCAUSA
- Department of Photon ScienceStanford UniversityCAUSA
- Howard Hughes Medical InstituteStanford UniversityCAUSA
| | - Richard A. Pfuetzner
- Department of Molecular and Cellular PhysiologyStanford UniversityCAUSA
- Department of Neurology and Neurological SciencesStanford UniversityCAUSA
- Department of Structural BiologyStanford UniversityCAUSA
- Department of Photon ScienceStanford UniversityCAUSA
- Howard Hughes Medical InstituteStanford UniversityCAUSA
| | - Baris Alten
- Department of PharmacologyVanderbilt UniversityNashvilleTNUSA
- Vanderbilt Brain InstituteVanderbilt UniversityNashvilleTNUSA
- Present address:
Department of NeurologyMassachusetts General HospitalBostonMAUSA
- Present address:
Department of NeurologyBrigham and Women's HospitalBostonMAUSA
- Present address:
Harvard Medical SchoolBostonMAUSA
| | - Kyle D. Brewer
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Present address:
ETTA BiotechnologyPalo AltoCAUSA
| | - Qiangjun Zhou
- Vanderbilt Brain InstituteVanderbilt UniversityNashvilleTNUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTNUSA
| | - Ege T. Kavalali
- Department of PharmacologyVanderbilt UniversityNashvilleTNUSA
- Vanderbilt Brain InstituteVanderbilt UniversityNashvilleTNUSA
| | - Axel T. Brunger
- Department of Molecular and Cellular PhysiologyStanford UniversityCAUSA
- Department of Neurology and Neurological SciencesStanford UniversityCAUSA
- Department of Structural BiologyStanford UniversityCAUSA
- Department of Photon ScienceStanford UniversityCAUSA
- Howard Hughes Medical InstituteStanford UniversityCAUSA
| | - Josep Rizo
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| |
Collapse
|
11
|
Palfreyman MT, West SE, Jorgensen EM. SNARE Proteins in Synaptic Vesicle Fusion. ADVANCES IN NEUROBIOLOGY 2023; 33:63-118. [PMID: 37615864 DOI: 10.1007/978-3-031-34229-5_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Neurotransmitters are stored in small membrane-bound vesicles at synapses; a subset of synaptic vesicles is docked at release sites. Fusion of docked vesicles with the plasma membrane releases neurotransmitters. Membrane fusion at synapses, as well as all trafficking steps of the secretory pathway, is mediated by SNARE proteins. The SNAREs are the minimal fusion machinery. They zipper from N-termini to membrane-anchored C-termini to form a 4-helix bundle that forces the apposed membranes to fuse. At synapses, the SNAREs comprise a single helix from syntaxin and synaptobrevin; SNAP-25 contributes the other two helices to complete the bundle. Unc13 mediates synaptic vesicle docking and converts syntaxin into the permissive "open" configuration. The SM protein, Unc18, is required to initiate and proofread SNARE assembly. The SNAREs are then held in a half-zippered state by synaptotagmin and complexin. Calcium removes the synaptotagmin and complexin block, and the SNAREs drive vesicle fusion. After fusion, NSF and alpha-SNAP unwind the SNAREs and thereby recharge the system for further rounds of fusion. In this chapter, we will describe the discovery of the SNAREs, their relevant structural features, models for their function, and the central role of Unc18. In addition, we will touch upon the regulation of SNARE complex formation by Unc13, complexin, and synaptotagmin.
Collapse
Affiliation(s)
- Mark T Palfreyman
- School of Biological Sciences, and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Sam E West
- School of Biological Sciences, and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Erik M Jorgensen
- School of Biological Sciences, and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
12
|
López-Murcia FJ, Reim K, Taschenberger H. Complexins: Ubiquitously Expressed Presynaptic Regulators of SNARE-Mediated Synaptic Vesicle Fusion. ADVANCES IN NEUROBIOLOGY 2023; 33:255-285. [PMID: 37615870 DOI: 10.1007/978-3-031-34229-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Neurotransmitter release is a spatially and temporally tightly regulated process, which requires assembly and disassembly of SNARE complexes to enable the exocytosis of transmitter-loaded synaptic vesicles (SVs) at presynaptic active zones (AZs). While the requirement for the core SNARE machinery is shared by most membrane fusion processes, SNARE-mediated fusion at AZs is uniquely regulated to allow very rapid Ca2+-triggered SV exocytosis following action potential (AP) arrival. To enable a sub-millisecond time course of AP-triggered SV fusion, synapse-specific accessory SNARE-binding proteins are required in addition to the core fusion machinery. Among the known SNARE regulators specific for Ca2+-triggered SV fusion are complexins, which are almost ubiquitously expressed in neurons. This chapter summarizes the structural features of complexins, models for their molecular interactions with SNAREs, and their roles in SV fusion.
Collapse
Affiliation(s)
- Francisco José López-Murcia
- Department of Pathology and Experimental Therapy, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Kerstin Reim
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
13
|
Rizo J, David G, Fealey ME, Jaczynska K. On the difficulties of characterizing weak protein interactions that are critical for neurotransmitter release. FEBS Open Bio 2022; 12:1912-1938. [PMID: 35986639 PMCID: PMC9623538 DOI: 10.1002/2211-5463.13473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 01/25/2023] Open
Abstract
The mechanism of neurotransmitter release has been extensively characterized, showing that vesicle fusion is mediated by the SNARE complex formed by syntaxin-1, SNAP-25 and synaptobrevin. This complex is disassembled by N-ethylmaleimide sensitive factor (NSF) and SNAPs to recycle the SNAREs, whereas Munc18-1 and Munc13s organize SNARE complex assembly in an NSF-SNAP-resistant manner. Synaptotagmin-1 acts as the Ca2+ sensor that triggers exocytosis in a tight interplay with the SNAREs and complexins. Here, we review technical aspects associated with investigation of protein interactions underlying these steps, which is hindered because the release machinery is assembled between two membranes and is highly dynamic. Moreover, weak interactions, which are difficult to characterize, play key roles in neurotransmitter release, for instance by lowering energy barriers that need to be overcome in this highly regulated process. We illustrate the crucial role that structural biology has played in uncovering mechanisms underlying neurotransmitter release, but also discuss the importance of considering the limitations of the techniques used, including lessons learned from research in our lab and others. In particular, we emphasize: (a) the promiscuity of some protein sequences, including membrane-binding regions that can mediate irrelevant interactions with proteins in the absence of their native targets; (b) the need to ensure that weak interactions observed in crystal structures are biologically relevant; and (c) the limitations of isothermal titration calorimetry to analyze weak interactions. Finally, we stress that even studies that required re-interpretation often helped to move the field forward by improving our understanding of the system and providing testable hypotheses.
Collapse
Affiliation(s)
- Josep Rizo
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Guillaume David
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Michael E. Fealey
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Klaudia Jaczynska
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| |
Collapse
|
14
|
Rizo J, Sari L, Qi Y, Im W, Lin MM. All-atom molecular dynamics simulations of Synaptotagmin-SNARE-complexin complexes bridging a vesicle and a flat lipid bilayer. eLife 2022; 11:76356. [PMID: 35708237 PMCID: PMC9239685 DOI: 10.7554/elife.76356] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/15/2022] [Indexed: 12/14/2022] Open
Abstract
Synaptic vesicles are primed into a state that is ready for fast neurotransmitter release upon Ca2+-binding to Synaptotagmin-1. This state likely includes trans-SNARE complexes between the vesicle and plasma membranes that are bound to Synaptotagmin-1 and complexins. However, the nature of this state and the steps leading to membrane fusion are unclear, in part because of the difficulty of studying this dynamic process experimentally. To shed light into these questions, we performed all-atom molecular dynamics simulations of systems containing trans-SNARE complexes between two flat bilayers or a vesicle and a flat bilayer with or without fragments of Synaptotagmin-1 and/or complexin-1. Our results need to be interpreted with caution because of the limited simulation times and the absence of key components, but suggest mechanistic features that may control release and help visualize potential states of the primed Synaptotagmin-1-SNARE-complexin-1 complex. The simulations suggest that SNAREs alone induce formation of extended membrane-membrane contact interfaces that may fuse slowly, and that the primed state contains macromolecular assemblies of trans-SNARE complexes bound to the Synaptotagmin-1 C2B domain and complexin-1 in a spring-loaded configuration that prevents premature membrane merger and formation of extended interfaces, but keeps the system ready for fast fusion upon Ca2+ influx.
Collapse
Affiliation(s)
- Josep Rizo
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Levent Sari
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, United States.,Green Center for Systems Biology, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Yife Qi
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Wonpil Im
- Department of Biological Sciences, Lehigh University, Bethlehem, United States.,Department of Chemistry, Lehigh University, Bethlehem, United States.,Department of Bioengineering, Lehigh University, Bethlehem, United States.,Department of Computer Science and Engineering, Lehigh University, Bethlehem, United States
| | - Milo M Lin
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, United States.,Green Center for Systems Biology, The University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
15
|
Bera M, Ramakrishnan S, Coleman J, Krishnakumar SS, Rothman JE. Molecular determinants of complexin clamping and activation function. eLife 2022; 11:e71938. [PMID: 35442188 PMCID: PMC9020821 DOI: 10.7554/elife.71938] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Previously we reported that Synaptotagmin-1 and Complexin synergistically clamp the SNARE assembly process to generate and maintain a pool of docked vesicles that fuse rapidly and synchronously upon Ca2+ influx (Ramakrishnan et al., 2020). Here, using the same in vitro single-vesicle fusion assay, we determine the molecular details of the Complexin-mediated fusion clamp and its role in Ca2+-activation. We find that a delay in fusion kinetics, likely imparted by Synaptotagmin-1, is needed for Complexin to block fusion. Systematic truncation/mutational analyses reveal that continuous alpha-helical accessory-central domains of Complexin are essential for its inhibitory function and specific interaction of the accessory helix with the SNAREpins enhances this functionality. The C-terminal domain promotes clamping by locally elevating Complexin concentration through interactions with the membrane. Independent of their clamping functions, the accessory-central helical domains of Complexin also contribute to rapid Ca2+-synchronized vesicle release by increasing the probability of fusion from the clamped state.
Collapse
Affiliation(s)
- Manindra Bera
- Yale Nanobiology InstituteNew HavenUnited States
- Department of Cell Biology, Yale University School of MedicineNew HavenUnited States
| | - Sathish Ramakrishnan
- Yale Nanobiology InstituteNew HavenUnited States
- Department of Pathology, Yale University School of MedicineNew HavenUnited States
| | - Jeff Coleman
- Yale Nanobiology InstituteNew HavenUnited States
- Department of Cell Biology, Yale University School of MedicineNew HavenUnited States
| | - Shyam S Krishnakumar
- Yale Nanobiology InstituteNew HavenUnited States
- Departments of Neurology, Yale University School of MedicineNew HavenUnited States
| | - James E Rothman
- Yale Nanobiology InstituteNew HavenUnited States
- Department of Cell Biology, Yale University School of MedicineNew HavenUnited States
| |
Collapse
|
16
|
Abstract
Fundamental discoveries have shaped our molecular understanding of presynaptic processes, such as neurotransmitter release, active zone organization and mechanisms of synaptic vesicle (SV) recycling. However, certain regulatory steps still remain incompletely understood. Protein liquid-liquid phase separation (LLPS) and its role in SV clustering and active zone regulation now introduce a new perception of how the presynapse and its different compartments are organized. This article highlights the newly emerging concept of LLPS at the synapse, providing a systematic overview on LLPS tendencies of over 500 presynaptic proteins, spotlighting individual proteins and discussing recent progress in the field. Newly discovered LLPS systems like ELKS/liprin-alpha and Eps15/FCho are put into context, and further LLPS candidate proteins, including epsin1, dynamin, synaptojanin, complexin and rabphilin-3A, are highlighted.
Collapse
Affiliation(s)
- Janin Lautenschläger
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| |
Collapse
|
17
|
Newman ZL, Bakshinskaya D, Schultz R, Kenny SJ, Moon S, Aghi K, Stanley C, Marnani N, Li R, Bleier J, Xu K, Isacoff EY. Determinants of synapse diversity revealed by super-resolution quantal transmission and active zone imaging. Nat Commun 2022; 13:229. [PMID: 35017509 PMCID: PMC8752601 DOI: 10.1038/s41467-021-27815-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 12/06/2021] [Indexed: 01/23/2023] Open
Abstract
Neural circuit function depends on the pattern of synaptic connections between neurons and the strength of those connections. Synaptic strength is determined by both postsynaptic sensitivity to neurotransmitter and the presynaptic probability of action potential evoked transmitter release (Pr). Whereas morphology and neurotransmitter receptor number indicate postsynaptic sensitivity, presynaptic indicators and the mechanism that sets Pr remain to be defined. To address this, we developed QuaSOR, a super-resolution method for determining Pr from quantal synaptic transmission imaging at hundreds of glutamatergic synapses at a time. We mapped the Pr onto super-resolution 3D molecular reconstructions of the presynaptic active zones (AZs) of the same synapses at the Drosophila larval neuromuscular junction (NMJ). We find that Pr varies greatly between synapses made by a single axon, quantify the contribution of key AZ proteins to Pr diversity and find that one of these, Complexin, suppresses spontaneous and evoked transmission differentially, thereby generating a spatial and quantitative mismatch between release modes. Transmission is thus regulated by the balance and nanoscale distribution of release-enhancing and suppressing presynaptic proteins to generate high signal-to-noise evoked transmission.
Collapse
Affiliation(s)
- Zachary L Newman
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Dariya Bakshinskaya
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Ryan Schultz
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Samuel J Kenny
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Seonah Moon
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Krisha Aghi
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Cherise Stanley
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Nadia Marnani
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Rachel Li
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Julia Bleier
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Ke Xu
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrated BioImaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ehud Y Isacoff
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA.
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Integrated BioImaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Weill Neurohub, University of California Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
18
|
Szule JA. Hypothesis Relating the Structure, Biochemistry and Function of Active Zone Material Macromolecules at a Neuromuscular Junction. Front Synaptic Neurosci 2022; 13:798225. [PMID: 35069169 PMCID: PMC8766674 DOI: 10.3389/fnsyn.2021.798225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/14/2021] [Indexed: 12/22/2022] Open
Abstract
This report integrates knowledge of in situ macromolecular structures and synaptic protein biochemistry to propose a unified hypothesis for the regulation of certain vesicle trafficking events (i.e., docking, priming, Ca2+-triggering, and membrane fusion) that lead to neurotransmitter secretion from specialized “active zones” of presynaptic axon terminals. Advancements in electron tomography, to image tissue sections in 3D at nanometer scale resolution, have led to structural characterizations of a network of different classes of macromolecules at the active zone, called “Active Zone Material’. At frog neuromuscular junctions, the classes of Active Zone Material macromolecules “top-masts”, “booms”, “spars”, “ribs” and “pins” direct synaptic vesicle docking while “pins”, “ribs” and “pegs” regulate priming to influence Ca2+-triggering and membrane fusion. Other classes, “beams”, “steps”, “masts”, and “synaptic vesicle luminal filaments’ likely help organize and maintain the structural integrity of active zones. Extensive studies on the biochemistry that regulates secretion have led to comprehensive characterizations of the many conserved proteins universally involved in these trafficking events. Here, a hypothesis including a partial proteomic atlas of Active Zone Material is presented which considers the common roles, binding partners, physical features/structure, and relative positioning in the axon terminal of both the proteins and classes of macromolecules involved in the vesicle trafficking events. The hypothesis designates voltage-gated Ca2+ channels and Ca2+-gated K+ channels to ribs and pegs that are connected to macromolecules that span the presynaptic membrane at the active zone. SNARE proteins (Syntaxin, SNAP25, and Synaptobrevin), SNARE-interacting proteins Synaptotagmin, Munc13, Munc18, Complexin, and NSF are designated to ribs and/or pins. Rab3A and Rabphillin-3A are designated to top-masts and/or booms and/or spars. RIM, Bassoon, and Piccolo are designated to beams, steps, masts, ribs, spars, booms, and top-masts. Spectrin is designated to beams. Lastly, the luminal portions of SV2 are thought to form the bulk of the observed synaptic vesicle luminal filaments. The goal here is to help direct future studies that aim to bridge Active Zone Material structure, biochemistry, and function to ultimately determine how it regulates the trafficking events in vivo that lead to neurotransmitter secretion.
Collapse
|
19
|
Pierson J, Shin YK. Stabilization of the SNARE Core by Complexin-1 Facilitates Fusion Pore Expansion. Front Mol Biosci 2022; 8:805000. [PMID: 34970598 PMCID: PMC8712692 DOI: 10.3389/fmolb.2021.805000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
In the neuron, neurotransmitter release is an essential function that must be both consistent and tightly regulated. The continuity of neurotransmitter release is dependent in large part on vesicle recycling. However, the protein factors that dictate the vesicle recycling pathway are elusive. Here, we use a single vesicle-to-supported bilayer fusion assay to investigate complexin-1 (cpx1)’s influence on SNARE-dependent fusion pore expansion. With total internal reflection (TIR) microscopy using a 10 kDa polymer fluorescence probe, we are able to detect the presence of large fusion pores. With cpx1, however, we observe a significant increase of the probability of the formation of large fusion pores. The domain deletion analysis reveals that the SNARE-binding core domain of cpx1 is mainly responsible for its ability to promote the fusion pore expansion. In addition, the results show that cpx1 helps the pore to expand larger, which results in faster release of the polymer probe. Thus, the results demonstrate a reciprocal relationship between event duration and the size of the fusion pore. Based on the data, a hypothetical mechanistic model can be deduced. In this mechanistic model, the cpx1 binding stabilizes the four-helix bundle structure of the SNARE core throughout the fusion pore expansion, whereby the highly curved bilayer within the fusion pore is stabilized by the SNARE pins.
Collapse
Affiliation(s)
- Josh Pierson
- Professor Yeon-Kyun Shin Lab, Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Yeon-Kyun Shin
- Professor Yeon-Kyun Shin Lab, Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
20
|
Sauvola CW, Littleton JT. SNARE Regulatory Proteins in Synaptic Vesicle Fusion and Recycling. Front Mol Neurosci 2021; 14:733138. [PMID: 34421538 PMCID: PMC8377282 DOI: 10.3389/fnmol.2021.733138] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/20/2021] [Indexed: 01/01/2023] Open
Abstract
Membrane fusion is a universal feature of eukaryotic protein trafficking and is mediated by the soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) family. SNARE proteins embedded in opposing membranes spontaneously assemble to drive membrane fusion and cargo exchange in vitro. Evolution has generated a diverse complement of SNARE regulatory proteins (SRPs) that ensure membrane fusion occurs at the right time and place in vivo. While a core set of SNAREs and SRPs are common to all eukaryotic cells, a specialized set of SRPs within neurons confer additional regulation to synaptic vesicle (SV) fusion. Neuronal communication is characterized by precise spatial and temporal control of SNARE dynamics within presynaptic subdomains specialized for neurotransmitter release. Action potential-elicited Ca2+ influx at these release sites triggers zippering of SNAREs embedded in the SV and plasma membrane to drive bilayer fusion and release of neurotransmitters that activate downstream targets. Here we discuss current models for how SRPs regulate SNARE dynamics and presynaptic output, emphasizing invertebrate genetic findings that advanced our understanding of SRP regulation of SV cycling.
Collapse
Affiliation(s)
- Chad W Sauvola
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
21
|
Bera M, Ramakrishnan S, Coleman J, Krishnakumar SS, Rothman JE. Molecular Determinants of Complexin Clamping in Reconstituted Single-Vesicle Fusion.. [DOI: 10.1101/2021.07.05.451112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
ABSTRACTPreviously we reported that Synaptotagmin-1 and Complexin synergistically clamp the SNARE assembly process to generate and maintain a pool of docked vesicles that fuse rapidly and synchronously upon Ca2+ influx (Ramakrishnan et al. 2020). Here using the same in vitro single-vesicle fusion assay, we establish the molecular details of the Complexin clamp and its physiological relevance. We find that a delay in fusion kinetics, likely imparted by Synaptotagmin-1, is needed for Complexin to block fusion. Systematic truncation/mutational analyses reveal that continuous alpha-helical accessory-central domains of Complexin are essential for its inhibitory function and specific interaction of the accessory helix with the SNAREpins, analogous to the trans clamping model, enhances this functionality. The c-terminal domain promotes clamping by locally elevating Complexin concentration through interactions with the membrane. Further, we find that Complexin likely contributes to rapid Ca2+-synchronized vesicular release by preventing un-initiated fusion rather than by directly facilitating vesicle fusion.
Collapse
|
22
|
Wu Z, Dharan N, McDargh ZA, Thiyagarajan S, O'Shaughnessy B, Karatekin E. The neuronal calcium sensor Synaptotagmin-1 and SNARE proteins cooperate to dilate fusion pores. eLife 2021; 10:68215. [PMID: 34190041 PMCID: PMC8294851 DOI: 10.7554/elife.68215] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
All membrane fusion reactions proceed through an initial fusion pore, including calcium-triggered release of neurotransmitters and hormones. Expansion of this small pore to release cargo is energetically costly and regulated by cells, but the mechanisms are poorly understood. Here, we show that the neuronal/exocytic calcium sensor Synaptotagmin-1 (Syt1) promotes expansion of fusion pores induced by SNARE proteins. Pore dilation relied on calcium-induced insertion of the tandem C2 domain hydrophobic loops of Syt1 into the membrane, previously shown to reorient the C2 domain. Mathematical modelling suggests that C2B reorientation rotates a bound SNARE complex so that it exerts force on the membranes in a mechanical lever action that increases the height of the fusion pore, provoking pore dilation to offset the bending energy penalty. We conclude that Syt1 exerts novel non-local calcium-dependent mechanical forces on fusion pores that dilate pores and assist neurotransmitter and hormone release.
Collapse
Affiliation(s)
- Zhenyong Wu
- Department of Cellular and Molecular Physiology, Yale University, New Haven, United States.,Nanobiology Institute, Yale University, West Haven, United States
| | - Nadiv Dharan
- Department of Chemical Engineering, Columbia University, New York, United States
| | - Zachary A McDargh
- Department of Chemical Engineering, Columbia University, New York, United States
| | - Sathish Thiyagarajan
- Department of Chemical Engineering, Columbia University, New York, United States
| | - Ben O'Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, United States
| | - Erdem Karatekin
- Department of Cellular and Molecular Physiology, Yale University, New Haven, United States.,Nanobiology Institute, Yale University, West Haven, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States.,Saints-Pères Paris Institute for the Neurosciences (SPPIN), Université de Paris, Centre National de la Recherche Scientifique (CNRS) UMR 8003, Paris, France
| |
Collapse
|
23
|
Bowman SL, Le L, Zhu Y, Harper DC, Sitaram A, Theos AC, Sviderskaya EV, Bennett DC, Raposo-Benedetti G, Owen DJ, Dennis MK, Marks MS. A BLOC-1-AP-3 super-complex sorts a cis-SNARE complex into endosome-derived tubular transport carriers. J Cell Biol 2021; 220:212016. [PMID: 33886957 PMCID: PMC8077166 DOI: 10.1083/jcb.202005173] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 02/15/2021] [Accepted: 03/19/2021] [Indexed: 02/02/2023] Open
Abstract
Membrane transport carriers fuse with target membranes through engagement of cognate vSNAREs and tSNAREs on each membrane. How vSNAREs are sorted into transport carriers is incompletely understood. Here we show that VAMP7, the vSNARE for fusing endosome-derived tubular transport carriers with maturing melanosomes in melanocytes, is sorted into transport carriers in complex with the tSNARE component STX13. Sorting requires either recognition of VAMP7 by the AP-3δ subunit of AP-3 or of STX13 by the pallidin subunit of BLOC-1, but not both. Consequently, melanocytes expressing both AP-3δ and pallidin variants that cannot bind their respective SNARE proteins are hypopigmented and fail to sort BLOC-1-dependent cargo, STX13, or VAMP7 into transport carriers. However, SNARE binding does not influence BLOC-1 function in generating tubular transport carriers. These data reveal a novel mechanism of vSNARE sorting by recognition of redundant sorting determinants on a SNARE complex by an AP-3-BLOC-1 super-complex.
Collapse
Affiliation(s)
- Shanna L. Bowman
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA,Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA,Department of Physiology, University of Pennsylvania, Philadelphia, PA,Department of Biology, Linfield University, McMinnville, OR
| | - Linh Le
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA,Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA,Department of Physiology, University of Pennsylvania, Philadelphia, PA,Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA
| | - Yueyao Zhu
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA,Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA,Department of Physiology, University of Pennsylvania, Philadelphia, PA,Department of Biology, University of Pennsylvania, Philadelphia, PA
| | - Dawn C. Harper
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA,Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA,Department of Physiology, University of Pennsylvania, Philadelphia, PA
| | - Anand Sitaram
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA,Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA,Department of Physiology, University of Pennsylvania, Philadelphia, PA
| | | | - Elena V. Sviderskaya
- Cell Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, UK
| | - Dorothy C. Bennett
- Cell Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, UK
| | - Graça Raposo-Benedetti
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique Unité Mixte de Recherche 144, Compartiments de Structure et de Membrane, Paris, France
| | - David J. Owen
- Cambridge Institute for Medical Research, Cambridge, UK
| | - Megan K. Dennis
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA,Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA,Department of Physiology, University of Pennsylvania, Philadelphia, PA,Department of Biology, Marist College, Poughkeepsie, NY
| | - Michael S. Marks
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA,Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA,Department of Physiology, University of Pennsylvania, Philadelphia, PA,Correspondence to Michael S. Marks:
| |
Collapse
|
24
|
The Accessory Helix of Complexin Stabilizes a Partially Unzippered State of the SNARE Complex and Mediates the Complexin Clamping Function In Vivo. eNeuro 2021; 8:ENEURO.0526-20.2021. [PMID: 33692090 PMCID: PMC8026252 DOI: 10.1523/eneuro.0526-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/16/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
Spontaneous synaptic transmission is regulated by the protein complexin (Cpx). Cpx binds the SNARE complex, a coil-coiled four-helical bundle that mediates the attachment of a synaptic vesicle (SV) to the presynaptic membrane (PM). Cpx is thought to clamp spontaneous fusion events by stabilizing a partially unraveled state of the SNARE bundle; however, the molecular detail of this mechanism is still debated. We combined electrophysiology, molecular modeling, and site-directed mutagenesis in Drosophila to develop and validate the atomic model of the Cpx-mediated clamped state of the SNARE complex. We took advantage of botulinum neurotoxins (BoNTs) B and G, which cleave the SNARE protein synaptobrevin (Syb) at different sites. Monitoring synaptic depression on BoNT loading revealed that the clamped state of the SNARE complex has two or three unraveled helical turns of Syb. Site-directed mutagenesis showed that the Cpx clamping function is predominantly maintained by its accessory helix (AH), while molecular modeling suggested that the Cpx AH interacts with the unraveled C terminus of Syb and the SV lipid bilayer. The developed molecular model was employed to design new Cpx poor-clamp and super-clamp mutations and to tested the predictions in silico employing molecular dynamics simulations. Subsequently, we generated Drosophila lines harboring these mutations and confirmed the poor-clamp and super-clamp phenotypes in vivo. Altogether, these results validate the atomic model of the Cpx-mediated fusion clamp, wherein the Cpx AH inserts between the SNARE bundle and the SV lipid bilayer, simultaneously binding the unraveled C terminus of Syb and preventing full SNARE assembly.
Collapse
|
25
|
Georgiev DD. Quantum information theoretic approach to the mind–brain problem. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 158:16-32. [DOI: 10.1016/j.pbiomolbio.2020.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 12/25/2022]
|
26
|
Voleti R, Jaczynska K, Rizo J. Ca 2+-dependent release of synaptotagmin-1 from the SNARE complex on phosphatidylinositol 4,5-bisphosphate-containing membranes. eLife 2020; 9:57154. [PMID: 32808925 PMCID: PMC7498268 DOI: 10.7554/elife.57154] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/12/2020] [Indexed: 11/13/2022] Open
Abstract
The Ca2+ sensor synaptotagmin-1 and the SNARE complex cooperate to trigger neurotransmitter release. Structural studies elucidated three distinct synaptotagmin-1-SNARE complex binding modes involving 'polybasic', 'primary' and 'tripartite' interfaces of synaptotagmin-1. We investigated these interactions using NMR and fluorescence spectroscopy. Synaptotagmin-1 binds to the SNARE complex through the polybasic and primary interfaces in solution. Ca2+-free synaptotagmin-1 binds to SNARE complexes anchored on PIP2-containing nanodiscs. R398Q/R399Q and E295A/Y338W mutations at the primary interface, which strongly impair neurotransmitter release, disrupt and enhance synaptotagmin-1-SNARE complex binding, respectively. Ca2+ induces tight binding of synaptotagmin-1 to PIP2-containing nanodiscs, disrupting synaptotagmin-1-SNARE interactions. Specific effects of mutations in the polybasic region on Ca2+-dependent synaptotagmin-1-PIP2-membrane interactions correlate with their effects on release. Our data suggest that synaptotagmin-1 binds to the SNARE complex through the primary interface and that Ca2+ releases this interaction, inducing PIP2/membrane binding and allowing cooperation between synaptotagmin-1 and the SNAREs in membrane fusion to trigger release.
Collapse
Affiliation(s)
- Rashmi Voleti
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Klaudia Jaczynska
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
27
|
Magdziarek M, Bolembach AA, Stepien KP, Quade B, Liu X, Rizo J. Re-examining how Munc13-1 facilitates opening of syntaxin-1. Protein Sci 2020; 29:1440-1458. [PMID: 32086964 DOI: 10.1002/pro.3844] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 11/06/2022]
Abstract
Munc13-1 is crucial for neurotransmitter release and, together with Munc18-1, orchestrates assembly of the neuronal SNARE complex formed by syntaxin-1, SNAP-25, and synaptobrevin. Assembly starts with syntaxin-1 folded into a self-inhibited closed conformation that binds to Munc18-1. Munc13-1 is believed to catalyze the opening of syntaxin-1 to facilitate SNARE complex formation. However, different types of Munc13-1-syntaxin-1 interactions have been reported to underlie this activity, and the critical nature of Munc13-1 for release may arise because of its key role in bridging the vesicle and plasma membranes. To shed light into the mechanism of action of Munc13-1, we have used NMR spectroscopy, SNARE complex assembly experiments, and liposome fusion assays. We show that point mutations in a linker region of syntaxin-1 that forms intrinsic part of the closed conformation strongly impair stimulation of SNARE complex assembly and liposome fusion mediated by Munc13-1 fragments, even though binding of this linker region to Munc13-1 is barely detectable. Conversely, the syntaxin-1 SNARE motif clearly binds to Munc13-1, but a mutation that disrupts this interaction does not affect SNARE complex assembly or liposome fusion. We also show that Munc13-1 cannot be replaced by an artificial tethering factor to mediate liposome fusion. Overall, these results emphasize how very weak interactions can play fundamental roles in promoting conformational transitions and strongly support a model whereby the critical nature of Munc13-1 for neurotransmitter release arises not only from its ability to bridge two membranes but also from an active role in opening syntaxin-1 via interactions with the linker.
Collapse
Affiliation(s)
- Magdalena Magdziarek
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Agnieszka A Bolembach
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Karolina P Stepien
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Bradley Quade
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xiaoxia Liu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
28
|
Synaptotagmin 1 oligomers clamp and regulate different modes of neurotransmitter release. Proc Natl Acad Sci U S A 2020; 117:3819-3827. [PMID: 32015138 PMCID: PMC7035618 DOI: 10.1073/pnas.1920403117] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Release of neurotransmitters relies on submillisecond coupling of synaptic vesicle fusion to the triggering signal: AP-evoked presynaptic Ca2+ influx. The key player that controls exocytosis of the synaptic vesicle is the Ca2+ sensor synaptotagmin 1 (Syt1). While the Ca2+ activation of Syt1 has been extensively characterized, how Syt1 reversibly clamps vesicular fusion remains enigmatic. Here, using a targeted mutation combined with fluorescence imaging and electrophysiology, we show that the structural feature of Syt1 to self-oligomerize provides the molecular basis for clamping of spontaneous and asynchronous release but is not required for triggering of synchronous release. Our findings propose a mechanistic model that explains how Syt1 oligomers regulate different modes of transmitter release in neuronal synapses. Synaptotagmin 1 (Syt1) synchronizes neurotransmitter release to action potentials (APs) acting as the fast Ca2+ release sensor and as the inhibitor (clamp) of spontaneous and delayed asynchronous release. While the Syt1 Ca2+ activation mechanism has been well-characterized, how Syt1 clamps transmitter release remains enigmatic. Here we show that C2B domain-dependent oligomerization provides the molecular basis for the Syt1 clamping function. This follows from the investigation of a designed mutation (F349A), which selectively destabilizes Syt1 oligomerization. Using a combination of fluorescence imaging and electrophysiology in neocortical synapses, we show that Syt1F349A is more efficient than wild-type Syt1 (Syt1WT) in triggering synchronous transmitter release but fails to clamp spontaneous and synaptotagmin 7 (Syt7)-mediated asynchronous release components both in rescue (Syt1−/− knockout background) and dominant-interference (Syt1+/+ background) conditions. Thus, we conclude that Ca2+-sensitive Syt1 oligomers, acting as an exocytosis clamp, are critical for maintaining the balance among the different modes of neurotransmitter release.
Collapse
|
29
|
Vasan R, Rudraraju S, Akamatsu M, Garikipati K, Rangamani P. A mechanical model reveals that non-axisymmetric buckling lowers the energy barrier associated with membrane neck constriction. SOFT MATTER 2020; 16:784-797. [PMID: 31830191 DOI: 10.1039/c9sm01494b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Membrane neck formation is essential for scission, which, as recent experiments on tubules have demonstrated, can be location dependent. The diversity of biological machinery that can constrict a neck such as dynamin, actin, ESCRTs and BAR proteins, and the range of forces and deflection over which they operate, suggest that the constriction process is functionally mechanical and robust to changes in biological environment. In this study, we used a mechanical model of the lipid bilayer to systematically investigate the influence of location, symmetry constraints, and helical forces on membrane neck constriction. Simulations from our model demonstrated that the energy barriers associated with constriction of a membrane neck are location-dependent. Importantly, if symmetry restrictions are relaxed, then the energy barrier for constriction is dramatically lowered and the membrane buckles at lower values of forcing parameters. Our simulations also show that constriction due to helical proteins further reduces the energy barrier for neck formation when compared to cylindrical proteins. These studies establish that despite different molecular mechanisms of neck formation in cells, the mechanics of constriction naturally leads to a loss of symmetry that can lower the energy barrier to constriction.
Collapse
Affiliation(s)
- R Vasan
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | |
Collapse
|
30
|
Courtney NA, Bao H, Briguglio JS, Chapman ER. Synaptotagmin 1 clamps synaptic vesicle fusion in mammalian neurons independent of complexin. Nat Commun 2019; 10:4076. [PMID: 31501440 PMCID: PMC6733930 DOI: 10.1038/s41467-019-12015-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 08/12/2019] [Indexed: 02/01/2023] Open
Abstract
Synaptic vesicle (SV) exocytosis is mediated by SNARE proteins. Reconstituted SNAREs are constitutively active, so a major focus has been to identify fusion clamps that regulate their activity in synapses: the primary candidates are synaptotagmin (syt) 1 and complexin I/II. Syt1 is a Ca2+ sensor for SV release that binds Ca2+ via tandem C2-domains, C2A and C2B. Here, we first determined whether these C2-domains execute distinct functions. Remarkably, the C2B domain profoundly clamped all forms of SV fusion, despite synchronizing residual evoked release and rescuing the readily-releasable pool. Release was strongly enhanced by an adjacent C2A domain, and by the concurrent binding of complexin to trans-SNARE complexes. Knockdown of complexin had no impact on C2B-mediated clamping of fusion. We postulate that the C2B domain of syt1, independent of complexin, is the molecular clamp that arrests SVs prior to Ca2+-triggered fusion.
Collapse
Affiliation(s)
- Nicholas A Courtney
- Department of Neuroscience and Howard Hughes Medical Institute, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Huan Bao
- Department of Neuroscience and Howard Hughes Medical Institute, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Joseph S Briguglio
- Department of Neuroscience and Howard Hughes Medical Institute, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Edwin R Chapman
- Department of Neuroscience and Howard Hughes Medical Institute, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705, USA.
| |
Collapse
|
31
|
Ruete MC, Zarelli VEP, Masone D, de Paola M, Bustos DM, Tomes CN. A connection between reversible tyrosine phosphorylation and SNARE complex disassembly activity of N-ethylmaleimide-sensitive factor unveiled by the phosphomimetic mutant N-ethylmaleimide-sensitive factor-Y83E. ACTA ACUST UNITED AC 2019; 25:344-358. [DOI: 10.1093/molehr/gaz031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/16/2019] [Accepted: 06/03/2019] [Indexed: 12/26/2022]
Abstract
Abstract
N-ethylmaleimide-sensitive factor (NSF) disassembles fusion-incompetent cis soluble-NSF attachment protein receptor (SNARE) complexes making monomeric SNAREs available for subsequent trans pairing and fusion. In most cells the activity of NSF is constitutive, but in Jurkat cells and sperm it is repressed by tyrosine phosphorylation; the phosphomimetic mutant NSF–Y83E inhibits secretion in the former. The questions addressed here are if and how the NSF mutant influences the configuration of the SNARE complex. Our model is human sperm, where the initiation of exocytosis (acrosome reaction (AR)) de-represses the activity of NSF through protein tyrosine phosphatase 1B (PTP1B)-mediated dephosphorylation. We developed a fluorescence microscopy-based method to show that capacitation increased, and challenging with an AR inducer decreased, the number of cells with tyrosine-phosphorylated PTP1B substrates in the acrosomal domain. Results from bioinformatic and biochemical approaches using purified recombinant proteins revealed that NSF–Y83E bound PTP1B and thereupon inhibited its catalytic activity. Mutant NSF introduced into streptolysin O-permeabilized sperm impaired cis SNARE complex disassembly, blocking the AR; subsequent addition of PTP1B rescued exocytosis. We propose that NSF–Y83E prevents endogenous PTP1B from dephosphorylating sperm NSF, thus maintaining NSF’s activity in a repressed mode and the SNARE complex unable to dissociate. The contribution of this paper to the sperm biology field is the detection of PTP1B substrates, one of them likely being NSF, whose tyrosine phosphorylation status varies during capacitation and the AR. The contribution of this paper to the membrane traffic field is to have generated direct evidence that explains the dominant-negative role of the phosphomimetic mutant NSF–Y83E.
Collapse
Affiliation(s)
- María Celeste Ruete
- Instituto de Histología y Embriología de Mendoza Dr Mario H. Burgos–CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Valeria Eugenia Paola Zarelli
- Instituto de Histología y Embriología de Mendoza Dr Mario H. Burgos–CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Diego Masone
- Instituto de Histología y Embriología de Mendoza Dr Mario H. Burgos–CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ingeniería, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Matilde de Paola
- Instituto de Histología y Embriología de Mendoza Dr Mario H. Burgos–CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Medicina y Biología Experimental de Cuyo–Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Diego Martín Bustos
- Instituto de Histología y Embriología de Mendoza Dr Mario H. Burgos–CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Claudia Nora Tomes
- Instituto de Histología y Embriología de Mendoza Dr Mario H. Burgos–CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
32
|
Grushin K, Wang J, Coleman J, Rothman JE, Sindelar CV, Krishnakumar SS. Structural basis for the clamping and Ca 2+ activation of SNARE-mediated fusion by synaptotagmin. Nat Commun 2019; 10:2413. [PMID: 31160571 PMCID: PMC6546687 DOI: 10.1038/s41467-019-10391-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/08/2019] [Indexed: 12/22/2022] Open
Abstract
Synapotagmin-1 (Syt1) interacts with both SNARE proteins and lipid membranes to synchronize neurotransmitter release to calcium (Ca2+) influx. Here we report the cryo-electron microscopy structure of the Syt1-SNARE complex on anionic-lipid containing membranes. Under resting conditions, the Syt1 C2 domains bind the membrane with a magnesium (Mg2+)-mediated partial insertion of the aliphatic loops, alongside weak interactions with the anionic lipid headgroups. The C2B domain concurrently interacts the SNARE bundle via the 'primary' interface and is positioned between the SNAREpins and the membrane. In this configuration, Syt1 is projected to sterically delay the complete assembly of the associated SNAREpins and thus, contribute to clamping fusion. This Syt1-SNARE organization is disrupted upon Ca2+-influx as Syt1 reorients into the membrane, likely displacing the attached SNAREpins and reversing the fusion clamp. We thus conclude that the cation (Mg2+/Ca2+) dependent membrane interaction is a key determinant of the dual clamp/activator function of Synaptotagmin-1.
Collapse
Affiliation(s)
- Kirill Grushin
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Jing Wang
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Jeff Coleman
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - James E Rothman
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Charles V Sindelar
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
| | - Shyam S Krishnakumar
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, Queens Square House, London, WC1 3BG, UK.
| |
Collapse
|
33
|
Prinslow EA, Stepien KP, Pan YZ, Xu J, Rizo J. Multiple factors maintain assembled trans-SNARE complexes in the presence of NSF and αSNAP. eLife 2019; 8:38880. [PMID: 30657450 PMCID: PMC6353594 DOI: 10.7554/elife.38880] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 01/17/2019] [Indexed: 11/13/2022] Open
Abstract
Neurotransmitter release requires formation of trans-SNARE complexes between the synaptic vesicle and plasma membranes, which likely underlies synaptic vesicle priming to a release-ready state. It is unknown whether Munc18-1, Munc13-1, complexin-1 and synaptotagmin-1 are important for priming because they mediate trans-SNARE complex assembly and/or because they prevent trans-SNARE complex disassembly by NSF-αSNAP, which can lead to de-priming. Here we show that trans-SNARE complex formation in the presence of NSF-αSNAP requires both Munc18-1 and Munc13-1, as proposed previously, and is facilitated by synaptotagmin-1. Our data also show that Munc18-1, Munc13-1, complexin-1 and likely synaptotagmin-1 contribute to maintaining assembled trans-SNARE complexes in the presence of NSF-αSNAP. We propose a model whereby Munc18-1 and Munc13-1 are critical not only for mediating vesicle priming but also for precluding de-priming by preventing trans-SNARE complex disassembly; in this model, complexin-1 also impairs de-priming, while synaptotagmin-1 may assist in priming and hinder de-priming.
Collapse
Affiliation(s)
- Eric A Prinslow
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Karolina P Stepien
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Yun-Zu Pan
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Junjie Xu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
34
|
Ma L, Jiao J, Zhang Y. Single-Molecule Optical Tweezers Study of Regulated SNARE Assembly. Methods Mol Biol 2019; 1860:95-114. [PMID: 30317500 DOI: 10.1007/978-1-4939-8760-3_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Intracellular membrane fusion mediates material and information exchange among different cells or cellular compartments with high accuracy and spatiotemporal resolution. Fusion is driven by ordered folding and assembly of soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptors (SNAREs) and regulated by many other proteins. Understanding regulated SNARE assembly is key to dissecting mechanisms and physiologies of various fusion processes and their associated diseases. Yet, it remains challenging to study regulated SNARE assembly using traditional ensemble-based experimental approaches. Here, we describe our new method to measure the energy and kinetics of neuronal SNARE assembly in the presence of α-SNAP, using a single-molecule manipulation approach based on high-resolution optical tweezers. Detailed experimental protocols and methods of data analysis are shown. This approach can be widely applied to elucidate the effects of regulatory proteins on SNARE assembly and membrane fusion.
Collapse
Affiliation(s)
- Lu Ma
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Junyi Jiao
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Integrated Graduate Program in Physical and Engineering Biology, New Haven, CT, USA
| | - Yongli Zhang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
35
|
Abstract
Modulation of neurotransmitter exocytosis by activated Gi/o coupled G-protein coupled receptors (GPCRs) is a universal regulatory mechanism used both to avoid overstimulation and to influence circuitry. One of the known modulation mechanisms is the interaction between Gβγ and the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNAREs). There are 5 Gβ and 12 Gγ subunits, but specific Gβγs activated by a given GPCR and the specificity to effectors, such as SNARE, in vivo are not known. Although less studied, Gβγ binding to the exocytic fusion machinery (i.e. SNARE) provides a more direct regulatory mechanism for neurotransmitter release. Here, we review some recent insights in the architecture of the synaptic terminal, modulation of synaptic transmission, and implications of G protein modulation of synaptic transmission in diseases. Numerous presynaptic proteins are involved in the architecture of synaptic terminals, particularly the active zone, and their importance in the regulation of exocytosis is still not completely understood. Further understanding of the Gβγ-SNARE interaction and the architecture and mechanisms of exocytosis may lead to the discovery of novel therapeutic targets to help patients with various disorders such as hypertension, attention-deficit/hyperactivity disorder, post-traumatic stress disorder, and acute/chronic pain.
Collapse
Affiliation(s)
- Yun Young Yim
- Department of Pharmacology, Vanderbilt University, Nashville 37232-6600, TN, United States
| | - Zack Zurawski
- Department of Pharmacology, Vanderbilt University, Nashville 37232-6600, TN, United States
| | - Heidi Hamm
- Department of Pharmacology, Vanderbilt University, Nashville 37232-6600, TN, United States.
| |
Collapse
|
36
|
McDargh ZA, Polley A, O'Shaughnessy B. SNARE-mediated membrane fusion is a two-stage process driven by entropic forces. FEBS Lett 2018; 592:3504-3515. [PMID: 30346036 DOI: 10.1002/1873-3468.13277] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 11/08/2022]
Abstract
SNARE proteins constitute the core of the exocytotic membrane fusion machinery. Fusion occurs when vesicle-associated and target membrane-associated SNAREs zipper into trans-SNARE complexes ('SNAREpins'), but the number required is controversial and the mechanism of cooperative fusion is poorly understood. We developed a highly coarse-grained molecular dynamics simulation to access the long fusion timescales, which revealed a two-stage process. First, zippering energy was dissipated and cooperative entropic forces assembled the SNAREpins into a ring; second, entropic forces expanded the ring, pressing membranes together and catalyzing fusion. We predict that any number of SNAREs fuses membranes, but fusion is faster with more SNAREs.
Collapse
Affiliation(s)
- Zachary A McDargh
- Department of Chemical Engineering, Columbia University, New York City, NY, USA
| | - Anirban Polley
- Department of Chemical Engineering, Columbia University, New York City, NY, USA
| | - Ben O'Shaughnessy
- Department of Chemical Engineering, Columbia University, New York City, NY, USA
| |
Collapse
|
37
|
Karatekin E. Toward a unified picture of the exocytotic fusion pore. FEBS Lett 2018; 592:3563-3585. [PMID: 30317539 PMCID: PMC6353554 DOI: 10.1002/1873-3468.13270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/30/2018] [Accepted: 10/10/2018] [Indexed: 11/07/2022]
Abstract
Neurotransmitter and hormone release involve calcium-triggered fusion of a cargo-loaded vesicle with the plasma membrane. The initial connection between the fusing membranes, called the fusion pore, can evolve in various ways, including rapid dilation to allow full cargo release, slow expansion, repeated opening-closing and resealing. Pore dynamics determine the kinetics of cargo release and the mode of vesicle recycling, but how these processes are controlled is poorly understood. Previous reconstitutions could not monitor single pores, limiting mechanistic insight they could provide. Recently developed nanodisc-based fusion assays allow reconstitution and monitoring of single pores with unprecedented detail and hold great promise for future discoveries. They recapitulate various aspects of exocytotic fusion pores, but comparison is difficult because different approaches suggested very different exocytotic fusion pore properties, even for the same cell type. In this Review, I discuss how most of the data can be reconciled, by recognizing how different methods probe different aspects of the same fusion process. The resulting picture is that fusion pores have broadly distributed properties arising from stochastic processes which can be modulated by physical constraints imposed by proteins, lipids and membranes.
Collapse
Affiliation(s)
- Erdem Karatekin
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Centre National de la Recherche Scientifique (CNRS), Paris, France
| |
Collapse
|
38
|
Snead D, Eliezer D. Spectroscopic Characterization of Structure-Function Relationships in the Intrinsically Disordered Protein Complexin. Methods Enzymol 2018; 611:227-286. [PMID: 30471689 DOI: 10.1016/bs.mie.2018.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Complexins play a critical role in the regulation of neurotransmission by regulating SNARE-mediated exocytosis of synaptic vesicles. Complexins can exert either a facilitatory or an inhibitory effect on neurotransmitter release, depending on the context, and different complexin domains contribute differently to these opposing roles. Structural characterization of the central helix domain of complexin bound to the assembled SNARE bundle provided key insights into the functional mechanism of this domain of complexin, which is critical for both complexin activities, but many questions remain, particularly regarding the roles and mechanisms of other complexin domains. Recent progress has clarified the structural properties of these additional domains, and has led to various proposals regarding how they contribute to complexin function. This chapter describes spectroscopic approaches used in our laboratory and others, primarily involving circular dichroism and solution-state NMR spectroscopy, to characterize structure within complexins when isolated or when bound to interaction partners. The ability to characterize complexin structure enables structure/function studies employing in vitro or in vivo assays of complexin function. More generally, these types of approaches can be used to study the binding of other intrinsically disordered proteins or protein regions to membrane surfaces or for that matter to other large physiological binding partners.
Collapse
Affiliation(s)
- David Snead
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, United States
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
39
|
Focused clamping of a single neuronal SNARE complex by complexin under high mechanical tension. Nat Commun 2018; 9:3639. [PMID: 30194295 PMCID: PMC6128827 DOI: 10.1038/s41467-018-06122-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/14/2018] [Indexed: 01/10/2023] Open
Abstract
Neuronal soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) catalyze synaptic vesicle fusion with presynaptic membranes through the formation of SNARE complexes. Complexin (Cpx) is the only presynaptic protein that tightly binds to SNAREs and regulates membrane fusion, but how it modulates the energy landscape of SNARE complex assembly, especially under mechanical tension on the complex, remains unclear. Here, using magnetic tweezers, we report how Cpx interacts with single SNARE complexes. The effects of Cpx manifest only under high mechanical tensions above 13 pN. Cpx stabilizes the central four-helix bundle of SNARE motifs and, at the same time, prevents the complete zippering of SNAREs by inhibiting linker-domain assembly. These results suggest that Cpx generates a focused clamp for the neuronal SNARE complex in a linker-open conformation. Our results provide a hint as to how Cpx cooperates with neuronal SNAREs to prime synaptic vesicles in preparation for synchronous neurotransmitter release. The SNARE complex enables the fusion of synaptic vesicles with presynaptic membrane via a zippering process that is modulated by the protein complexin, though the precise mechanism remains unclear. Here, the authors used magnetic tweezers to show how complexin prepares a SNARE complex for fusion under mechanical tension.
Collapse
|
40
|
Kweon DH, Kong B, Shin YK. Search for a minimal machinery for Ca 2+-triggered millisecond neuroexocytosis. Neuroscience 2018; 420:4-11. [PMID: 30056116 DOI: 10.1016/j.neuroscience.2018.07.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/11/2018] [Accepted: 07/18/2018] [Indexed: 11/25/2022]
Abstract
Neurons have the remarkable ability to release a batch of neurotransmitters into the synapse immediately after an action potential. This signature event is made possible by the simultaneous fusion of a number of synaptic vesicles to the plasma membrane upon Ca2+ entry into the active zone. The outcomes of both cellular and in vitro studies suggest that soluble N-ethylmaleimide-sensitive-factor attachment protein receptors (SNAREs) and synaptotagmin 1 (Syt1) constitute the minimal fast exocytosis machinery in the neuron. Syt1 is the major Ca2+-sensor and orchestrates the synchronous start of individual vesicle fusion events while SNAREs are the membrane fusion machinery that dictates the kinetics of each single fusion event. The data also suggest that Ca2+-bound Syt1 is involved in the upstream docking step which leads to an increase in the number of fusion events or the size of the release, leaving the SNARE complex alone to carry out membrane fusion by themselves.
Collapse
Affiliation(s)
- Dae-Hyuk Kweon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea
| | - Byoungjae Kong
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea
| | - Yeon-Kyun Shin
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
41
|
Makke M, Mantero Martinez M, Gaya S, Schwarz Y, Frisch W, Silva-Bermudez L, Jung M, Mohrmann R, Dhara M, Bruns D. A mechanism for exocytotic arrest by the Complexin C-terminus. eLife 2018; 7:38981. [PMID: 30044227 PMCID: PMC6075865 DOI: 10.7554/elife.38981] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/24/2018] [Indexed: 12/29/2022] Open
Abstract
ComplexinII (CpxII) inhibits non-synchronized vesicle fusion, but the underlying mechanisms have remained unclear. Here, we provide evidence that the far C-terminal domain (CTD) of CpxII interferes with SNARE assembly, thereby arresting tonic exocytosis. Acute infusion of a CTD-derived peptide into mouse chromaffin cells enhances synchronous release by diminishing premature vesicle fusion like full-length CpxII, indicating a direct, inhibitory function of the CTD that sets the magnitude of the primed vesicle pool. We describe a high degree of structural similarity between the CpxII CTD and the SNAP25-SN1 domain (C-terminal half) and show that the CTD peptide lowers the rate of SDS-resistant SNARE complex formation in vitro. Moreover, corresponding CpxII:SNAP25 chimeras do restore complexin's function and even 'superclamp' tonic secretion. Collectively, these results support a so far unrecognized clamping mechanism wherein the CpxII C-terminus hinders spontaneous SNARE complex assembly, enabling the build-up of a release-ready pool of vesicles for synchronized Ca2+-triggered exocytosis.
Collapse
Affiliation(s)
- Mazen Makke
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Maria Mantero Martinez
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Surya Gaya
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Yvonne Schwarz
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Walentina Frisch
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Lina Silva-Bermudez
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Martin Jung
- Institute for Medical Biochemistry and Molecular Biology, University of Saarland, Homburg, Germany
| | - Ralf Mohrmann
- Institute for Physiology, Otto-von-Guericke University, Magdeburg, Germany
| | - Madhurima Dhara
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Dieter Bruns
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| |
Collapse
|
42
|
Rizo J. Mechanism of neurotransmitter release coming into focus. Protein Sci 2018; 27:1364-1391. [PMID: 29893445 DOI: 10.1002/pro.3445] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022]
Abstract
Research for three decades and major recent advances have provided crucial insights into how neurotransmitters are released by Ca2+ -triggered synaptic vesicle exocytosis, leading to reconstitution of basic steps that underlie Ca2+ -dependent membrane fusion and yielding a model that assigns defined functions for central components of the release machinery. The soluble N-ethyl maleimide sensitive factor attachment protein receptors (SNAREs) syntaxin-1, SNAP-25, and synaptobrevin-2 form a tight SNARE complex that brings the vesicle and plasma membranes together and is key for membrane fusion. N-ethyl maleimide sensitive factor (NSF) and soluble NSF attachment proteins (SNAPs) disassemble the SNARE complex to recycle the SNAREs for another round of fusion. Munc18-1 and Munc13-1 orchestrate SNARE complex formation in an NSF-SNAP-resistant manner by a mechanism whereby Munc18-1 binds to synaptobrevin and to a self-inhibited "closed" conformation of syntaxin-1, thus forming a template to assemble the SNARE complex, and Munc13-1 facilitates assembly by bridging the vesicle and plasma membranes and catalyzing opening of syntaxin-1. Synaptotagmin-1 functions as the major Ca2+ sensor that triggers release by binding to membrane phospholipids and to the SNAREs, in a tight interplay with complexins that accelerates membrane fusion. Many of these proteins act as both inhibitors and activators of exocytosis, which is critical for the exquisite regulation of neurotransmitter release. It is still unclear how the actions of these various proteins and multiple other components that control release are integrated and, in particular, how they induce membrane fusion, but it can be expected that these fundamental questions can be answered in the near future, building on the extensive knowledge already available.
Collapse
Affiliation(s)
- Josep Rizo
- Departments of Biophysics, Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| |
Collapse
|
43
|
Georgiev DD, Glazebrook JF. The quantum physics of synaptic communication via the SNARE protein complex. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 135:16-29. [DOI: 10.1016/j.pbiomolbio.2018.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/01/2017] [Accepted: 01/18/2018] [Indexed: 12/27/2022]
|
44
|
Abstract
This review summarizes current knowledge of synaptic proteins that are central to synaptic vesicle fusion in presynaptic active zones, including SNAREs (soluble N-ethylmaleimide sensitive factor attachment protein receptors), synaptotagmin, complexin, Munc18 (mammalian uncoordinated-18), and Munc13 (mammalian uncoordinated-13), and highlights recent insights in the cooperation of these proteins for neurotransmitter release. Structural and functional studies of the synaptic fusion machinery suggest new molecular models of synaptic vesicle priming and Ca2+-triggered fusion. These studies will be a stepping-stone toward answering the question of how the synaptic vesicle fusion machinery achieves such high speed and sensitivity.
Collapse
Affiliation(s)
- Axel T Brunger
- Department of Molecular and Cellular Physiology, Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA;
| | - Ucheor B Choi
- Department of Molecular and Cellular Physiology, Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA;
| | - Ying Lai
- Department of Molecular and Cellular Physiology, Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA;
| | - Jeremy Leitz
- Department of Molecular and Cellular Physiology, Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA;
| | - Qiangjun Zhou
- Department of Molecular and Cellular Physiology, Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA;
| |
Collapse
|
45
|
Robinson SW, Bourgognon JM, Spiers JG, Breda C, Campesan S, Butcher A, Mallucci GR, Dinsdale D, Morone N, Mistry R, Smith TM, Guerra-Martin M, Challiss RAJ, Giorgini F, Steinert JR. Nitric oxide-mediated posttranslational modifications control neurotransmitter release by modulating complexin farnesylation and enhancing its clamping ability. PLoS Biol 2018; 16:e2003611. [PMID: 29630591 PMCID: PMC5890968 DOI: 10.1371/journal.pbio.2003611] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 02/20/2018] [Indexed: 11/18/2022] Open
Abstract
Nitric oxide (NO) regulates neuronal function and thus is critical for tuning neuronal communication. Mechanisms by which NO modulates protein function and interaction include posttranslational modifications (PTMs) such as S-nitrosylation. Importantly, cross signaling between S-nitrosylation and prenylation can have major regulatory potential. However, the exact protein targets and resulting changes in function remain elusive. Here, we interrogated the role of NO-dependent PTMs and farnesylation in synaptic transmission. We found that NO compromises synaptic function at the Drosophila neuromuscular junction (NMJ) in a cGMP-independent manner. NO suppressed release and reduced the size of available vesicle pools, which was reversed by glutathione (GSH) and occluded by genetic up-regulation of GSH-generating and de-nitrosylating glutamate-cysteine-ligase and S-nitroso-glutathione reductase activities. Enhanced nitrergic activity led to S-nitrosylation of the fusion-clamp protein complexin (cpx) and altered its membrane association and interactions with active zone (AZ) and soluble N-ethyl-maleimide-sensitive fusion protein Attachment Protein Receptor (SNARE) proteins. Furthermore, genetic and pharmacological suppression of farnesylation and a nitrosylation mimetic mutant of cpx induced identical physiological and localization phenotypes as caused by NO. Together, our data provide evidence for a novel physiological nitrergic molecular switch involving S-nitrosylation, which reversibly suppresses farnesylation and thereby enhances the net-clamping function of cpx. These data illustrate a new mechanistic signaling pathway by which regulation of farnesylation can fine-tune synaptic release.
Collapse
Affiliation(s)
- Susan W. Robinson
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | | | - Jereme G. Spiers
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Carlo Breda
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Susanna Campesan
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Adrian Butcher
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Giovanna R. Mallucci
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - David Dinsdale
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Nobuhiro Morone
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Raj Mistry
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Tim M. Smith
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | | | - R. A. John Challiss
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Flaviano Giorgini
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Joern R. Steinert
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
46
|
Williams CL, Smith SM. Calcium dependence of spontaneous neurotransmitter release. J Neurosci Res 2018; 96:335-347. [PMID: 28699241 PMCID: PMC5766384 DOI: 10.1002/jnr.24116] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 01/14/2023]
Abstract
Spontaneous release of neurotransmitters is regulated by extracellular [Ca2+ ] and intracellular [Ca2+ ]. Curiously, some of the mechanisms of Ca2+ signaling at central synapses are different at excitatory and inhibitory synapses. While the stochastic activity of voltage-activated Ca2+ channels triggers a majority of spontaneous release at inhibitory synapses, this is not the case at excitatory nerve terminals. Ca2+ release from intracellular stores regulates spontaneous release at excitatory and inhibitory terminals, as do agonists of the Ca2+ -sensing receptor. Molecular machinery triggering spontaneous vesicle fusion may differ from that underlying evoked release and may be one of the sources of heterogeneity in release mechanisms.
Collapse
Affiliation(s)
- Courtney L. Williams
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, 97239, USA
- Section of Pulmonary & Critical Care Medicine, VA Portland Health Care System, Portland, Oregon, USA
| | - Stephen M. Smith
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, 97239, USA
- Section of Pulmonary & Critical Care Medicine, VA Portland Health Care System, Portland, Oregon, USA
| |
Collapse
|
47
|
Yu Y, Chen S, Mo X, Gong J, Li C, Yang X. Accessory and Central α-helices of Complexin Selectively Activate Ca 2+ Triggering of Synaptic Exocytosis. Front Mol Neurosci 2018. [PMID: 29535609 PMCID: PMC5834437 DOI: 10.3389/fnmol.2018.00061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Complexins, binding to assembling soluble NSF-attachment protein receptor (SNARE) complexes, activate Ca2+ triggered exocytosis and clamp spontaneous release in the presynaptic terminal. Functions of complexin are structural dependent and mechanistically distinct. To further understand the functional/structural dependence of complexin, here we show that the accessory and central α-helices of complexin are sufficient in activation of Ca2+ triggered vesicle fusion but not in clamping spontaneous release. Targeting the two α-helices to synaptic vesicle suppresses spontaneous release, thus further emphasizing the importance of curvature membrane localization in clamping function.
Collapse
Affiliation(s)
- Yi Yu
- Key Laboratory of Cognitive Science, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
| | - Su Chen
- Key Laboratory of Cognitive Science, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
| | - Xiaoqiang Mo
- Youjiang Medical University for Nationalities, Baise, China
| | - Jihong Gong
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chenhong Li
- Key Laboratory of Cognitive Science, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
| | - Xiaofei Yang
- Key Laboratory of Cognitive Science, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
48
|
Chen C, Arai I, Satterfield R, Young SM, Jonas P. Synaptotagmin 2 Is the Fast Ca 2+ Sensor at a Central Inhibitory Synapse. Cell Rep 2017; 18:723-736. [PMID: 28099850 PMCID: PMC5276807 DOI: 10.1016/j.celrep.2016.12.067] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/18/2016] [Accepted: 12/20/2016] [Indexed: 11/24/2022] Open
Abstract
GABAergic synapses in brain circuits generate inhibitory output signals with submillisecond latency and temporal precision. Whether the molecular identity of the release sensor contributes to these signaling properties remains unclear. Here, we examined the Ca2+ sensor of exocytosis at GABAergic basket cell (BC) to Purkinje cell (PC) synapses in cerebellum. Immunolabeling suggested that BC terminals selectively expressed synaptotagmin 2 (Syt2), whereas synaptotagmin 1 (Syt1) was enriched in excitatory terminals. Genetic elimination of Syt2 reduced action potential-evoked release to ∼10%, identifying Syt2 as the major Ca2+ sensor at BC-PC synapses. Differential adenovirus-mediated rescue revealed that Syt2 triggered release with shorter latency and higher temporal precision and mediated faster vesicle pool replenishment than Syt1. Furthermore, deletion of Syt2 severely reduced and delayed disynaptic inhibition following parallel fiber stimulation. Thus, the selective use of Syt2 as release sensor at BC-PC synapses ensures fast and efficient feedforward inhibition in cerebellar microcircuits. Syt2 is the Ca2+ sensor of fast transmitter release at a cerebellar GABAergic synapse Syt2 triggers transmitter release with faster time course than Syt1 Syt2 ensures faster replenishment of the readily releasable pool than Syt1 Syt2 is essential for fast feedforward inhibition in cerebellar microcircuits
Collapse
Affiliation(s)
- Chong Chen
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Itaru Arai
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Rachel Satterfield
- Max Planck Florida Institute for Neuroscience, Research Group Molecular Mechanisms of Synaptic Function, Jupiter, FL 33458, USA
| | - Samuel M Young
- Max Planck Florida Institute for Neuroscience, Research Group Molecular Mechanisms of Synaptic Function, Jupiter, FL 33458, USA
| | - Peter Jonas
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
49
|
Kim J, Shin YK. Productive and Non-productive Pathways for Synaptotagmin 1 to Support Ca 2+-Triggered Fast Exocytosis. Front Mol Neurosci 2017; 10:380. [PMID: 29187811 PMCID: PMC5695160 DOI: 10.3389/fnmol.2017.00380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/01/2017] [Indexed: 12/17/2022] Open
Abstract
Ca2+-triggered SNARE-mediated membrane fusion is essential for neuronal communication. The speed of this process is of particular importance because it sets a time limit to cognitive and physical activities. In this work, we expand the proteoliposome-to-supported bilayer (SBL) fusion assay by successfully incorporating synaptotagmin 1 (Syt1), a major Ca2+ sensor. We report that Syt1 and Ca2+ together can elicit more than a 50-fold increase in the number of membrane fusion events when compared with membrane fusion mediated by SNAREs only. What is remarkable is that ~55% of all vesicle fusion events occurs within 20 ms upon vesicle docking. Furthermore, pre-binding of Syt1 to SNAREs prior to Ca2+ inhibits spontaneous fusion, but intriguingly, this leads to a complete loss of the Ca2+ responsiveness. Thus, our results suggest that there is a productive and a non-productive pathway for Syt1, depending on whether there is a premature interaction between Syt1 and SNAREs. Our results show that Ca2+ binding to Syt1 prior to Syt1's binding to SNAREs may be a prerequisite for the productive pathway. The successful reconstitution of Syt1 activities in the physiological time scale provides new opportunities to test the current mechanistic models for Ca2+-triggered exocytosis.
Collapse
Affiliation(s)
| | - Yeon-Kyun Shin
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
50
|
Michalski N, Goutman JD, Auclair SM, Boutet de Monvel J, Tertrais M, Emptoz A, Parrin A, Nouaille S, Guillon M, Sachse M, Ciric D, Bahloul A, Hardelin JP, Sutton RB, Avan P, Krishnakumar SS, Rothman JE, Dulon D, Safieddine S, Petit C. Otoferlin acts as a Ca 2+ sensor for vesicle fusion and vesicle pool replenishment at auditory hair cell ribbon synapses. eLife 2017; 6:e31013. [PMID: 29111973 PMCID: PMC5700815 DOI: 10.7554/elife.31013] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/06/2017] [Indexed: 01/01/2023] Open
Abstract
Hearing relies on rapid, temporally precise, and sustained neurotransmitter release at the ribbon synapses of sensory cells, the inner hair cells (IHCs). This process requires otoferlin, a six C2-domain, Ca2+-binding transmembrane protein of synaptic vesicles. To decipher the role of otoferlin in the synaptic vesicle cycle, we produced knock-in mice (OtofAla515,Ala517/Ala515,Ala517) with lower Ca2+-binding affinity of the C2C domain. The IHC ribbon synapse structure, synaptic Ca2+ currents, and otoferlin distribution were unaffected in these mutant mice, but auditory brainstem response wave-I amplitude was reduced. Lower Ca2+ sensitivity and delay of the fast and sustained components of synaptic exocytosis were revealed by membrane capacitance measurement upon modulations of intracellular Ca2+ concentration, by varying Ca2+ influx through voltage-gated Ca2+-channels or Ca2+ uncaging. Otoferlin thus functions as a Ca2+ sensor, setting the rates of primed vesicle fusion with the presynaptic plasma membrane and synaptic vesicle pool replenishment in the IHC active zone.
Collapse
Affiliation(s)
- Nicolas Michalski
- Unité de Génétique et Physiologie de l’AuditionInstitut PasteurParisFrance
- UMRS 1120, Institut National de la Santé et de la Recherche MédicaleParisFrance
- Sorbonne Universités, UPMC Université Paris 06, Complexité du VivantParisFrance
| | - Juan D Goutman
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina
| | - Sarah Marie Auclair
- Department of Cell BiologyYale University School of MedicineNew HavenUnited States
| | - Jacques Boutet de Monvel
- Unité de Génétique et Physiologie de l’AuditionInstitut PasteurParisFrance
- UMRS 1120, Institut National de la Santé et de la Recherche MédicaleParisFrance
- Sorbonne Universités, UPMC Université Paris 06, Complexité du VivantParisFrance
| | - Margot Tertrais
- UMRS 1120, Institut National de la Santé et de la Recherche MédicaleParisFrance
- Laboratoire de Neurophysiologie de la Synapse Auditive, Bordeaux NeurocampusUniversité de BordeauxBordeauxFrance
| | - Alice Emptoz
- Unité de Génétique et Physiologie de l’AuditionInstitut PasteurParisFrance
- UMRS 1120, Institut National de la Santé et de la Recherche MédicaleParisFrance
- Sorbonne Universités, UPMC Université Paris 06, Complexité du VivantParisFrance
| | - Alexandre Parrin
- Unité de Génétique et Physiologie de l’AuditionInstitut PasteurParisFrance
- UMRS 1120, Institut National de la Santé et de la Recherche MédicaleParisFrance
- Sorbonne Universités, UPMC Université Paris 06, Complexité du VivantParisFrance
| | - Sylvie Nouaille
- Unité de Génétique et Physiologie de l’AuditionInstitut PasteurParisFrance
- UMRS 1120, Institut National de la Santé et de la Recherche MédicaleParisFrance
- Sorbonne Universités, UPMC Université Paris 06, Complexité du VivantParisFrance
| | - Marc Guillon
- Wave Front Engineering Microscopy Group, Neurophotonics Laboratory, Centre National de la Recherche Scientifique, UMR 8250University Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Martin Sachse
- Center for Innovation & Technological ResearchUltrapole, Institut PasteurParisFrance
| | - Danica Ciric
- Unité de Génétique et Physiologie de l’AuditionInstitut PasteurParisFrance
- UMRS 1120, Institut National de la Santé et de la Recherche MédicaleParisFrance
- Sorbonne Universités, UPMC Université Paris 06, Complexité du VivantParisFrance
| | - Amel Bahloul
- Unité de Génétique et Physiologie de l’AuditionInstitut PasteurParisFrance
- UMRS 1120, Institut National de la Santé et de la Recherche MédicaleParisFrance
- Sorbonne Universités, UPMC Université Paris 06, Complexité du VivantParisFrance
- Centre National de la Recherche ScientifiqueFrance
| | - Jean-Pierre Hardelin
- Unité de Génétique et Physiologie de l’AuditionInstitut PasteurParisFrance
- UMRS 1120, Institut National de la Santé et de la Recherche MédicaleParisFrance
- Sorbonne Universités, UPMC Université Paris 06, Complexité du VivantParisFrance
| | - Roger Bryan Sutton
- Department of Cell Physiology and Molecular BiophysicsTexas Tech University Health Sciences CenterLubbockUnited States
- Center for Membrane Protein ResearchTexas Tech University Health Sciences CenterLubbockUnited States
| | - Paul Avan
- Laboratoire de Biophysique SensorielleUniversité Clermont AuvergneClermont-FerrandFrance
- UMR 1107, Institut National de la Santé et de la Recherche MédicaleClermont-FerrandFrance
- Centre Jean PerrinClermont-FerrandFrance
| | - Shyam S Krishnakumar
- Department of Cell BiologyYale University School of MedicineNew HavenUnited States
- Department of Clinical and Experimental EpilepsyInstitute of Neurology, University College LondonLondonUnited Kingdom
| | - James E Rothman
- Department of Cell BiologyYale University School of MedicineNew HavenUnited States
- Department of Clinical and Experimental EpilepsyInstitute of Neurology, University College LondonLondonUnited Kingdom
| | - Didier Dulon
- UMRS 1120, Institut National de la Santé et de la Recherche MédicaleParisFrance
- Laboratoire de Neurophysiologie de la Synapse Auditive, Bordeaux NeurocampusUniversité de BordeauxBordeauxFrance
| | - Saaid Safieddine
- Unité de Génétique et Physiologie de l’AuditionInstitut PasteurParisFrance
- UMRS 1120, Institut National de la Santé et de la Recherche MédicaleParisFrance
- Sorbonne Universités, UPMC Université Paris 06, Complexité du VivantParisFrance
- Centre National de la Recherche ScientifiqueFrance
| | - Christine Petit
- Unité de Génétique et Physiologie de l’AuditionInstitut PasteurParisFrance
- UMRS 1120, Institut National de la Santé et de la Recherche MédicaleParisFrance
- Sorbonne Universités, UPMC Université Paris 06, Complexité du VivantParisFrance
- Syndrome de Usher et Autres Atteintes Rétino-CochléairesInstitut de la VisionParisFrance
- Collège de FranceParisFrance
| |
Collapse
|