1
|
Liu C, Hao M, Tang N, Liang X, Cheng L. Threshold effects of vegetation cover on production-living-ecological functions coordination in Xiangyang City, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1202. [PMID: 39546074 DOI: 10.1007/s10661-024-13352-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024]
Abstract
Clarifying the nonlinear impacts of vegetation cover on production-living-ecological function (PLEF) coordination is essential to ecological restoration regulation and sustainable land use. However, the threshold effect of vegetation cover on PLEF coordination, particularly in major function-oriented zones (MFZs), has yet to receive attention. This study selected Xiangyang City, China, as the case area to identify the impact threshold of vegetation cover on PLEF coordination from the perspectives of the region as a whole and MFZ, respectively. The results showed that the PLEF coordination was high in the center and east while low in the west. For production-ecological function, 51.46% of the area was primarily coordinated and above, while for production-living function, 61.35% of the city area was severely uncoordinated. Vegetation cover was high in the west and low in the east. A negative correlation existed between vegetation cover and PLEF coordination. Urban built-up areas with lower vegetation cover showed higher levels of PLEF coordination, whereas western mountainous regions with higher vegetation cover demonstrated lower levels of PLEF coordination. Furthermore, vegetation cover exhibited a pronounced threshold effect on PLEF coordination, featuring conspicuous regional variations. The identified thresholds of vegetation cover for PLEF coordination in key development, agricultural production, and key ecological function zones were 0.3896, 0.2272, and 0.8161, respectively. Our study provides scientific references for the impact assessment of ecological restoration and the synergistic enhancement of land functions.
Collapse
Affiliation(s)
- Chao Liu
- Faculty of Political Science, College of Public Administration, Central China Normal University, Wuhan, 430079, China
- Hubei Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430074, China
- Shaanxi Key Laboratory of Land Consolidation, Chang'an University, Xi'an, 710054, China
| | - Meijing Hao
- Faculty of Political Science, College of Public Administration, Central China Normal University, Wuhan, 430079, China
| | - Niwen Tang
- Faculty of Political Science, College of Public Administration, Central China Normal University, Wuhan, 430079, China
| | - Xun Liang
- Hubei Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430074, China
| | - Long Cheng
- School of Political Science and Public Administration, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
2
|
Stubbusch AKM, Keegstra JM, Schwartzman J, Pontrelli S, Clerc EE, Charlton S, Stocker R, Magnabosco C, Schubert OT, Ackermann M, D'Souza GG. Polysaccharide breakdown products drive degradation-dispersal cycles of foraging bacteria through changes in metabolism and motility. eLife 2024; 13:RP93855. [PMID: 39429128 PMCID: PMC11493405 DOI: 10.7554/elife.93855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
Most of Earth's biomass is composed of polysaccharides. During biomass decomposition, polysaccharides are degraded by heterotrophic bacteria as a nutrient and energy source and are thereby partly remineralized into CO2. As polysaccharides are heterogeneously distributed in nature, following the colonization and degradation of a polysaccharide hotspot the cells need to reach new polysaccharide hotspots. Even though many studies indicate that these degradation-dispersal cycles contribute to the carbon flow in marine systems, we know little about how cells alternate between polysaccharide degradation and motility, and which environmental factors trigger this behavioral switch. Here, we studied the growth of the marine bacterium Vibrio cyclitrophicus ZF270 on the abundant marine polysaccharide alginate, both in its soluble polymeric form as well as on its breakdown products. We used microfluidics coupled to time-lapse microscopy to analyze motility and growth of individual cells, and RNA sequencing to study associated changes in gene expression. We found that single cells grow at reduced rate on alginate until they form large groups that cooperatively break down the polymer. Exposing cell groups to digested alginate accelerates cell growth and changes the expression of genes involved in alginate degradation and catabolism, central metabolism, ribosomal biosynthesis, and transport. However, exposure to digested alginate also triggers cells to become motile and disperse from cell groups, proportionally increasing with the group size before the nutrient switch, and this is accompanied by high expression of genes involved in flagellar assembly, chemotaxis, and quorum sensing. The motile cells chemotax toward polymeric but not digested alginate, likely enabling them to find new polysaccharide hotspots. Overall, our findings reveal cellular mechanisms that might also underlie bacterial degradation-dispersal cycles, which influence the remineralization of biomass in marine environments.
Collapse
Affiliation(s)
- Astrid Katharina Maria Stubbusch
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH ZurichZurichSwitzerland
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Geological Institute, Department of Earth Sciences, ETH ZurichZurichSwitzerland
| | - Johannes M Keegstra
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH ZurichZurichSwitzerland
| | - Julia Schwartzman
- Department of Civil and Environmental Engineering, MITCambridgeUnited States
- Department of Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Sammy Pontrelli
- Institute of Molecular Systems Biology, Department of Biology, ETH ZurichZurichSwitzerland
| | - Estelle E Clerc
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH ZurichZurichSwitzerland
| | - Samuel Charlton
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH ZurichZurichSwitzerland
| | - Roman Stocker
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH ZurichZurichSwitzerland
| | - Cara Magnabosco
- Geological Institute, Department of Earth Sciences, ETH ZurichZurichSwitzerland
| | - Olga T Schubert
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH ZurichZurichSwitzerland
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| | - Martin Ackermann
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH ZurichZurichSwitzerland
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Laboratory of Microbial Systems Ecology, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédéral de Lausanne (EPFL)LausanneSwitzerland
| | - Glen G D'Souza
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH ZurichZurichSwitzerland
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| |
Collapse
|
3
|
Valenzuela JJ, Immanuel SRC, Wilson J, Turkarslan S, Ruiz M, Gibbons SM, Hunt KA, Stopnisek N, Auer M, Zemla M, Stahl DA, Baliga NS. Origin of biogeographically distinct ecotypes during laboratory evolution. Nat Commun 2024; 15:7451. [PMID: 39198408 PMCID: PMC11358416 DOI: 10.1038/s41467-024-51759-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
Resource partitioning is central to the incredible productivity of microbial communities, including gigatons in annual methane emissions through syntrophic interactions. Previous work revealed how a sulfate reducer (Desulfovibrio vulgaris, Dv) and a methanogen (Methanococcus maripaludis, Mm) underwent evolutionary diversification in a planktonic context, improving stability, cooperativity, and productivity within 300-1000 generations. Here, we show that mutations in just 15 Dv and 7 Mm genes within a minimal assemblage of this evolved community gave rise to co-existing ecotypes that were spatially enriched within a few days of culturing in a fluidized bed reactor. The spatially segregated communities partitioned resources in the simulated subsurface environment, with greater lactate utilization by attached Dv but partial utilization of resulting H2 by low affinity hydrogenases of Mm in the same phase. The unutilized H2 was scavenged by high affinity hydrogenases of planktonic Mm, producing copious amounts of methane. Our findings show how a few mutations can drive resource partitioning amongst niche-differentiated ecotypes, whose interplay synergistically improves productivity of the entire mutualistic community.
Collapse
Affiliation(s)
| | | | - James Wilson
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | | | - Maryann Ruiz
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Sean M Gibbons
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
- eScience Institute, University of Washington, Seattle, WA, 98195, USA
| | - Kristopher A Hunt
- Civil and Environmental Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Nejc Stopnisek
- Civil and Environmental Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Manfred Auer
- Department of Biomedical Engineering, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
| | - Marcin Zemla
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David A Stahl
- Civil and Environmental Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Nitin S Baliga
- Institute for Systems Biology, Seattle, WA, 98109, USA.
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Biology, University of Washington, Seattle, WA, USA.
- Department of Microbiology, University of Washington, Seattle, WA, USA.
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Li N, Fan XY, Li X. Unveiling the characteristics of free-living and particle-associated antibiotic resistance genes associated with bacterial communities along different processes in a full-scale drinking water treatment plant. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135194. [PMID: 39003808 DOI: 10.1016/j.jhazmat.2024.135194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Antibiotic resistance genes (ARGs) as emerging contaminants, often co-occur with mobile genetic elements (MGEs) and are prevalent in drinking water treatment plants (DWTPs). In this study, the characteristics of free-living (FL) and particle-associated (PA) ARGs associated with bacterial communities were investigated along two processes within a full-scale DWTP. A total of 13 ARGs and two MGEs were detected. FL-ARGs with diverse subtypes and PA-ARGs with high abundances displayed significantly different structures. PA-MGEs showed a strong positive correlation with PA-ARGs. Chlorine dioxide disinfection achieved 1.47-log reduction of FL-MGEs in process A and 0.24-log reduction of PA-MGEs in process B. Notably, PA-fraction virtually disappeared after treatment, while blaTEM, sul2, mexE, mexF and IntI1 of FL-fraction remained in the finished water. Moreover, Acinetobacter lwoffii (0.04 % ∼ 45.58 %) and Acinetobacter schindleri (0.00 % ∼ 18.54 %) dominated the 16 pathogens, which were more abundant in FL than PA bacterial communities. PA bacteria exhibited a more complex structure with more keystone species than FL bacteria. MGEs contributed 20.23 % and 19.31 % to the changes of FL-ARGs and PA-ARGs respectively, and water quality was a key driver (21.73 %) for PA-ARGs variation. This study provides novel insights into microbial risk control associated with size-fractionated ARGs in drinking water.
Collapse
Affiliation(s)
- Na Li
- China Architecture Design and Research Group, Beijing 100044, PR China; Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Xiao-Yan Fan
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Xing Li
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
5
|
Bosi E, Taviani E, Avesani A, Doni L, Auguste M, Oliveri C, Leonessi M, Martinez-Urtaza J, Vetriani C, Vezzulli L. Pan-Genome Provides Insights into Vibrio Evolution and Adaptation to Deep-Sea Hydrothermal Vents. Genome Biol Evol 2024; 16:evae131. [PMID: 39007295 PMCID: PMC11247349 DOI: 10.1093/gbe/evae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2024] [Indexed: 07/16/2024] Open
Abstract
This study delves into the genomic features of 10 Vibrio strains collected from deep-sea hydrothermal vents in the Pacific Ocean, providing insights into their evolutionary history and ecological adaptations. Through sequencing and pan-genome analysis involving 141 Vibrio species, we found that deep-sea strains exhibit larger genomes with unique gene distributions, suggesting adaptation to the vent environment. The phylogenomic reconstruction of the investigated isolates revealed the presence of 2 main clades: The first is monophyletic, consisting exclusively of Vibrio alginolyticus, while the second forms a monophyletic clade comprising both Vibrio antiquarius and Vibrio diabolicus species, which were previously isolated from deep-sea vents. All strains carry virulence and antibiotic resistance genes related to those found in human pathogenic Vibrio species which may play a wider ecological role other than host infection in these environments. In addition, functional genomic analysis identified genes potentially related to deep-sea survival and stress response, alongside candidate genes encoding for novel antimicrobial agents. Ultimately, the pan-genome we generated represents a valuable resource for future studies investigating the taxonomy, evolution, and ecology of Vibrio species.
Collapse
Affiliation(s)
- Emanuele Bosi
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa 16132, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Elisa Taviani
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa 16132, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Alessia Avesani
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa 16132, Italy
| | - Lapo Doni
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa 16132, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Manon Auguste
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa 16132, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Caterina Oliveri
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa 16132, Italy
| | - Martina Leonessi
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa 16132, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Jaime Martinez-Urtaza
- Facultat de Biociéncies, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona 08193, Spain
| | - Costantino Vetriani
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Luigi Vezzulli
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa 16132, Italy
- National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
6
|
Letourneau J, Carrion VM, Jiang S, Osborne OW, Holmes ZC, Fox A, Epstein P, Tan CY, Kirtley M, Surana NK, David LA. Interplay between particle size and microbial ecology in the gut microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591376. [PMID: 38712077 PMCID: PMC11071529 DOI: 10.1101/2024.04.26.591376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Physical particles can serve as critical abiotic factors that structure the ecology of microbial communities. For non-human vertebrate gut microbiomes, fecal particle size (FPS) has been known to be shaped by chewing efficiency and diet. However, little is known about what drives FPS in the human gut. Here, we analyzed FPS by laser diffraction across a total of 76 individuals and found FPS to be strongly individualized. Surprisingly, a behavioral intervention with 41 volunteers designed to increase chewing efficiency did not impact FPS. Dietary patterns could also not be associated with FPS. Instead, we found evidence that mammalian and human gut microbiomes shaped FPS. Fecal samples from germ-free and antibiotic-treated mice exhibited increased FPS relative to colonized mice. In humans, markers of longer transit time were correlated with smaller FPS. Gut microbiota diversity and composition were also associated with FPS. Finally, ex vivo culture experiments using human fecal microbiota from distinct donors showed that differences in microbiota community composition can drive variation in particle size. Together, our results support an ecological model in which the human gut microbiome plays a key role in reducing the size of food particles during digestion, and that the microbiomes of individuals vary in this capacity. These new insights also suggest FPS in humans to be governed by processes beyond those found in other mammals and emphasize the importance of gut microbiota in shaping their own abiotic environment.
Collapse
Affiliation(s)
- Jeffrey Letourneau
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Verónica M Carrion
- Duke Office of Clinical Research, Duke University School of Medicine, Durham, NC 27710
| | - Sharon Jiang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Olivia W Osborne
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Zachary C Holmes
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Aiden Fox
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Piper Epstein
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Chin Yee Tan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710
| | - Michelle Kirtley
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Neeraj K Surana
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710
- Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710
| | - Lawrence A David
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
- Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710
- Program in Computational Biology and Bioinformatics, Duke University School of Medicine, Durham, NC 27710
| |
Collapse
|
7
|
Yu XA, McLean C, Hehemann JH, Angeles-Albores D, Wu F, Muszyński A, Corzett CH, Azadi P, Kujawinski EB, Alm EJ, Polz MF. Low-level resource partitioning supports coexistence among functionally redundant bacteria during successional dynamics. THE ISME JOURNAL 2024; 18:wrad013. [PMID: 38365244 PMCID: PMC10811730 DOI: 10.1093/ismejo/wrad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/09/2023] [Accepted: 12/05/2023] [Indexed: 02/18/2024]
Abstract
Members of microbial communities can substantially overlap in substrate use. However, what enables functionally redundant microorganisms to coassemble or even stably coexist remains poorly understood. Here, we show that during unstable successional dynamics on complex, natural organic matter, functionally redundant bacteria can coexist by partitioning low-concentration substrates even though they compete for one simple, dominant substrate. We allowed ocean microbial communities to self-assemble on leachates of the brown seaweed Fucus vesiculosus and then analyzed the competition among 10 taxonomically diverse isolates representing two distinct stages of the succession. All, but two isolates, exhibited an average of 90% ± 6% pairwise overlap in resource use, and functional redundancy of isolates from the same assembly stage was higher than that from between assembly stages, leading us to construct a simpler four-isolate community with two isolates from each of the early and late stages. We found that, although the short-term dynamics of the four-isolate communities in F. vesiculosus leachate was dependent on initial isolate ratios, in the long term, the four isolates stably coexist in F. vesiculosus leachate, albeit with some strains at low abundance. We therefore explored the potential for nonredundant substrate use by genomic content analysis and RNA expression patterns. This analysis revealed that the four isolates mainly differed in peripheral metabolic pathways, such as the ability to degrade pyrimidine, leucine, and tyrosine, as well as aromatic substrates. These results highlight the importance of fine-scale differences in metabolic strategies for supporting the frequently observed coexistence of large numbers of rare organisms in natural microbiomes.
Collapse
Affiliation(s)
- Xiaoqian Annie Yu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Division of Microbial Ecology, Department of Microbiology and Ecosystems Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1030, Austria
| | - Craig McLean
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
- MIT/WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Jan-Hendrik Hehemann
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - David Angeles-Albores
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Fuqing Wu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Artur Muszyński
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States
| | - Christopher H Corzett
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States
| | - Elizabeth B Kujawinski
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Eric J Alm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, United States
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Martin F Polz
- Division of Microbial Ecology, Department of Microbiology and Ecosystems Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1030, Austria
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| |
Collapse
|
8
|
Letourneau J, Carrion VM, Zeng J, Jiang S, Osborne OW, Holmes ZC, Fox A, Epstein P, Tan CY, Kirtley M, Surana NK, David LA. Interplay between particle size and microbial ecology in the gut microbiome. THE ISME JOURNAL 2024; 18:wrae168. [PMID: 39214074 PMCID: PMC11406467 DOI: 10.1093/ismejo/wrae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/30/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Physical particles can serve as critical abiotic factors that structure the ecology of microbial communities. For non-human vertebrate gut microbiomes, fecal particle size (FPS) has been known to be shaped by chewing efficiency and diet. However, little is known about what drives FPS in the human gut. Here, we analyzed FPS by laser diffraction across a total of 76 individuals and found FPS to be strongly individualized. Contrary to our initial hypothesis, a behavioral intervention with 41 volunteers designed to increase chewing efficiency did not impact FPS. Dietary patterns could also not be associated with FPS. Instead, we found evidence that human and mouse gut microbiomes shaped FPS. Fecal samples from germ-free and antibiotic-treated mice exhibited increased FPS relative to colonized mice. In humans, markers of longer transit time were correlated with smaller FPS. Gut microbiota diversity and composition were also associated with FPS. Finally, ex vivo culture experiments using human fecal microbiota from distinct donors showed that differences in microbiota community composition can drive variation in particle size. Together, our results support an ecological model in which the human gut microbiome plays a key role in reducing the size of food particles during digestion. This finding has important implications for our understanding of energy extraction and subsequent uptake in gastrointestinal tract. FPS may therefore be viewed as an informative functional readout, providing new insights into the metabolic state of the gut microbiome.
Collapse
Affiliation(s)
- Jeffrey Letourneau
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Verónica M Carrion
- Duke Office of Clinical Research, Duke University School of Medicine, Durham, NC 27710, United States
| | - Jun Zeng
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Sharon Jiang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Olivia W Osborne
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Zachary C Holmes
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Aiden Fox
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Piper Epstein
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Chin Yee Tan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, United States
| | - Michelle Kirtley
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Neeraj K Surana
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, United States
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, United States
- Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, United States
| | - Lawrence A David
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
- Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, United States
- Program in Computational Biology and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, United States
| |
Collapse
|
9
|
Steensen K, Séneca J, Bartlau N, Yu XA, Hussain FA, Polz MF. Tailless and filamentous prophages are predominant in marine Vibrio. THE ISME JOURNAL 2024; 18:wrae202. [PMID: 39423289 PMCID: PMC11630473 DOI: 10.1093/ismejo/wrae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/05/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Although tailed bacteriophages (phages) of the class Caudoviricetes are thought to constitute the most abundant and ecologically relevant group of phages that can integrate their genome into the host chromosome, it is becoming increasingly clear that other prophages are widespread. Here, we show that prophages derived from filamentous and tailless phages with genome sizes below 16 kb make up the majority of prophages in marine bacteria of the genus Vibrio. To estimate prophage prevalence unaffected by database biases, we combined comparative genomics and chemical induction of 58 diverse Vibrio cyclitrophicus isolates, resulting in 107 well-curated prophages. Complemented with computationally predicted prophages, we obtained 1158 prophages from 931 naturally co-existing strains of the family Vibrionaceae. Prophages resembling tailless and filamentous phages predominated, accounting for 80% of all prophages in V. cyclitrophicus and 60% across the Vibrionaceae. In our experimental model, prophages of all three viral realms actively replicated upon induction indicating their ability to transfer to new hosts. Indeed, prophages were rapidly gained and lost, as suggested by variable prophage content between closely related V. cyclitrophicus. Prophages related to filamentous and tailless phages were integrated into only three genomic locations and restored the function of their integration site. Despite their small size, they contained highly diverse accessory genes that may contribute to host fitness, such as phage defense systems. We propose that, like their well-studied tailed equivalent, tailless and filamentous temperate phages are active and highly abundant drivers of host ecology and evolution in marine Vibrio, which have been largely overlooked.
Collapse
Affiliation(s)
- Kerrin Steensen
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Djerassiplatz 1, 1030 Vienna, Vienna, Austria
| | - Joana Séneca
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030 Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Djerassiplatz 1, 1030 Vienna, Vienna, Austria
| | - Nina Bartlau
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Vienna, Austria
| | - Xiaoqian A Yu
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Vienna, Austria
| | - Fatima A Hussain
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 15 Vassar St., Cambridge MA 02138, United States
| | - Martin F Polz
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Vienna, Austria
| |
Collapse
|
10
|
Norfolk WA, Shue C, Henderson WM, Glinski DA, Lipp EK. Vibrio alginolyticus growth kinetics and the metabolic effects of iron. Microbiol Spectr 2023; 11:e0268023. [PMID: 37966200 PMCID: PMC10714744 DOI: 10.1128/spectrum.02680-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE Transmission of V. alginolyticus occurs opportunistically through direct seawater exposure and is a function of its abundance in the environment. Like other Vibrio spp., V. alginolyticus are considered conditionally rare taxa in marine waters, with populations capable of forming large, short-lived blooms under specific environmental conditions, which remain poorly defined. Prior research has established the importance of temperature and salinity as the major determinants of Vibrio geographical and temporal range. However, bloom formation can be strongly influenced by other factors that may be more episodic and localized, such as changes in iron availability. Here we confirm the broad temperature and salinity tolerance of V. alginolyticus and demonstrate the importance of iron supplementation as a key factor for growth in the absence of thermal or osmotic stress. The results of this research highlight the importance of episodic iron input as a crucial metric to consider for the assessment of V. alginolyticus risk.
Collapse
Affiliation(s)
- William A. Norfolk
- Department of Environmental Health Science, University of Georgia, Athens, Georgia, USA
| | - Charlyn Shue
- Department of Environmental Health Science, University of Georgia, Athens, Georgia, USA
| | - W. Matthew Henderson
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Athens, Georgia, USA
| | - Donna A. Glinski
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Athens, Georgia, USA
| | - Erin K. Lipp
- Department of Environmental Health Science, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
11
|
Lane BR, Anderson HM, Dicko AH, Fulcher MR, Kinkel LL. Temporal variability in nutrient use among Streptomyces suggests dynamic niche partitioning. Environ Microbiol 2023; 25:3527-3535. [PMID: 37669222 DOI: 10.1111/1462-2920.16498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023]
Abstract
Soil bacteria spend significant periods in dormant or semi-dormant states that are interrupted by resource pulses which can lead to periods of rapid growth and intense nutrient competition. Microbial populations have evolved diverse strategies to circumvent competitive interactions and facilitate coexistence. Here, we show that nutrient use of soilborne Streptomyces is temporally partitioned during experimental resource pulses, leading to reduced niche overlap, and potential coexistence. Streptomyces grew rapidly on the majority of distinct 95 carbon sources but varied in which individual resources were utilized in the first 24 h. Only a handful of carbon sources (19 out of 95) were consistently utilized (>95% of isolates) most rapidly in the first 24 h. These consistently utilized carbon sources also generated the majority of biomass accumulated by isolates. Our results shed new light on a novel mechanism microbes may employ to alleviate competitive interactions by temporally partitioning the consumption of carbon resources. As competitive interactions have been proposed to drive the suppression of disease-causing microbes in agronomic soils, our findings may hold widespread implications for soil management for plant health.
Collapse
Affiliation(s)
- Brett R Lane
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
| | - Hannah M Anderson
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
| | - Amadou H Dicko
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
- Faculty of Agronomy and Animal Sciences, University of Segou, Ségou, Mali
| | - Michael R Fulcher
- USDA Agricultural Research Service, Foreign Disease-Weed Science Research, Frederick, Maryland, USA
| | - Linda L Kinkel
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
12
|
Vos M, Padfield D, Quince C, Vos R. Adaptive radiations in natural populations of prokaryotes: innovation is key. FEMS Microbiol Ecol 2023; 99:fiad154. [PMID: 37996397 PMCID: PMC10710302 DOI: 10.1093/femsec/fiad154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023] Open
Abstract
Prokaryote diversity makes up most of the tree of life and is crucial to the functioning of the biosphere and human health. However, the patterns and mechanisms of prokaryote diversification have received relatively little attention compared to animals and plants. Adaptive radiation, the rapid diversification of an ancestor species into multiple ecologically divergent species, is a fundamental process by which macrobiological diversity is generated. Here, we discuss whether ecological opportunity could lead to similar bursts of diversification in bacteria. We explore how adaptive radiations in prokaryotes can be kickstarted by horizontally acquired key innovations allowing lineages to invade new niche space that subsequently is partitioned among diversifying specialist descendants. We discuss how novel adaptive zones are colonized and exploited after the evolution of a key innovation and whether certain types of are more prone to adaptive radiation. Radiation into niche specialists does not necessarily lead to speciation in bacteria when barriers to recombination are absent. We propose that in this scenario, niche-specific genes could accumulate within a single lineage, leading to the evolution of an open pangenome.
Collapse
Affiliation(s)
- Michiel Vos
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment and Sustainability Institute, Treliever Road, Penryn Campus, Penryn, TR10 9FE, United Kingdom
- Environment and Sustainability Institute, University of Exeter, Treliever Road, Penryn Campus, Penryn, TR10 9FE, United Kingdom
| | - Daniel Padfield
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment and Sustainability Institute, Treliever Road, Penryn Campus, Penryn, TR10 9FE, United Kingdom
- Environment and Sustainability Institute, University of Exeter, Treliever Road, Penryn Campus, Penryn, TR10 9FE, United Kingdom
| | - Christopher Quince
- Organisms and Ecosystems, Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, United Kingdom
- Gut Microbes and Health, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| | - Rutger Vos
- Naturalis Biodiversity Center, Understanding Evolution, Darwinweg 2, Leiden 2333 CR, the Netherlands
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, Leiden 2333 BE, the Netherlands
| |
Collapse
|
13
|
Nuttall RA, Moisander PH. Vibrio cyclitrophicus population-specific biofilm formation and epibiotic growth on marine copepods. Environ Microbiol 2023; 25:2534-2548. [PMID: 37612139 DOI: 10.1111/1462-2920.16483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 07/31/2023] [Indexed: 08/25/2023]
Abstract
Vibrio spp. form a part of the microbiome of copepods-an abundant component of marine mesozooplankton. The biological mechanisms of the Vibrio-copepod association are largely unknown. In this study we compared biofilm formation of V. cyclitrophicus isolated from copepods (L-strains related to other particle-associated strains) and closely related strains originating from seawater (S-strains), and visualized and quantified their attachment and growth on copepods. The S- and L-strains formed similar biofilms in the presence of complete sea salts, suggesting previously unknown biofilm mechanisms in the S-strains. No biofilms formed if sodium chloride was present as the only salt but added calcium significantly enhanced biofilms in the L-strains. GFP-L-strain cells attached to live copepods at higher numbers than the S-strains, suggesting distinct mechanisms, potentially including calcium, support their colonization of copepods. The cells grew on live copepods after attachment, demonstrating that copepods sustain epibiotic V. cyclitrophicus growth in situ. The results demonstrate that in spite of their 99.1% average nucleotide identity, these V. cyclitrophicus strains have a differential capacity to colonize marine copepods. The introduced V. cyclitrophicus-A. tonsa model could be informative in future studies on Vibrio-copepod association.
Collapse
Affiliation(s)
- Ryan A Nuttall
- Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts, USA
| | - Pia H Moisander
- Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts, USA
| |
Collapse
|
14
|
Fu X, Fu Q, Zhu X, Yang X, Chen H, Li S. Microdiversity sustains the distribution of rhizosphere-associated bacterial species from the root surface to the bulk soil region in maize crop fields. FRONTIERS IN PLANT SCIENCE 2023; 14:1266218. [PMID: 37905168 PMCID: PMC10613529 DOI: 10.3389/fpls.2023.1266218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/22/2023] [Indexed: 11/02/2023]
Abstract
Over the years, the microbial community of maize (Zea mays) rhizosphere has been extensively studied; however, the role of microdiversity sustain rhizosphere-associated microbial species distribution from root surface to bulk soil in mature maize is still unclear. Although operational taxonomic units (OTUs) have been used to classify species, amplicon sequence variants (ASVs) have been shown to be effective in representing microdiversity within OTUs at a finer genetic scale. Therefore, the aim of this study was to examine the role of microdiversity in influencing the distribution of rhizosphere-associated microbial species across environmental gradients from root surface to bulk soil at the OTU and ASV levels. Here, the microbial community structures of bulk, loosely bound, and tightly bound soil samples from maize rhizosphere were examined at OTU and ASV levels. The results showed that OTU and ASV methods exhibited similar microbial community structures in rhizosphere. Additionally, different ecotypes with varying distributions and habitat preferences were observed within the same bacterial OTU at the ASV level, indicating a rich bacterial microdiversity. In contrast, the fungal community exhibited low microdiversity, with no significant relationship between fungal microdiversity and persistence and variability. Moreover, the ecotypes observed within the bacterial OTUs were found to be positively or negatively associated with environmental factors, such as soil organic carbon (SOC), NO3 --N, NH4 +-N contents, and pH. Overall, the results showed that the rich microdiversity could sustain the distribution of rhizosphere-associated bacterial species across environmental gradients from root surface to bulk soil. Further genetic analyses of rhizosphere-associated bacterial species could have considerable implications for potential mediation of microdiversity for sustainable crop production.
Collapse
Affiliation(s)
- Xianheng Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resource, Shaanxi, China
| | - Qi Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaozheng Zhu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resource, Shaanxi, China
| | - Xian Yang
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Huaihai Chen
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Shiqing Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resource, Shaanxi, China
| |
Collapse
|
15
|
Oyanedel D, Lagorce A, Bruto M, Haffner P, Morot A, Labreuche Y, Dorant Y, de La Forest Divonne S, Delavat F, Inguimbert N, Montagnani C, Morga B, Toulza E, Chaparro C, Escoubas JM, Gueguen Y, Vidal-Dupiol J, de Lorgeril J, Petton B, Degremont L, Tourbiez D, Pimparé LL, Leroy M, Romatif O, Pouzadoux J, Mitta G, Le Roux F, Charrière GM, Travers MA, Destoumieux-Garzón D. Cooperation and cheating orchestrate Vibrio assemblages and polymicrobial synergy in oysters infected with OsHV-1 virus. Proc Natl Acad Sci U S A 2023; 120:e2305195120. [PMID: 37751557 PMCID: PMC10556616 DOI: 10.1073/pnas.2305195120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/10/2023] [Indexed: 09/28/2023] Open
Abstract
Polymicrobial infections threaten the health of humans and animals but remain understudied in natural systems. We recently described the Pacific Oyster Mortality Syndrome (POMS), a polymicrobial disease affecting oyster production worldwide. In the French Atlantic coast, the disease involves coinfection with ostreid herpesvirus 1 (OsHV-1) and virulent Vibrio. However, it is unknown whether consistent Vibrio populations are associated with POMS in different regions, how Vibrio contribute to POMS, and how they interact with OsHV-1 during pathogenesis. By connecting field-based approaches in a Mediterranean ecosystem, laboratory infection assays and functional genomics, we uncovered a web of interdependencies that shape the structure and function of the POMS pathobiota. We show that Vibrio harveyi and Vibrio rotiferianus are predominant in OsHV-1-diseased oysters and that OsHV-1 drives the partition of the Vibrio community observed in the field. However only V. harveyi synergizes with OsHV-1 by promoting mutual growth and accelerating oyster death. V. harveyi shows high-virulence potential and dampens oyster cellular defenses through a type 3 secretion system, making oysters a more favorable niche for microbe colonization. In addition, V. harveyi produces a key siderophore called vibrioferrin. This important resource promotes the growth of V. rotiferianus, which cooccurs with V. harveyi in diseased oysters, and behaves as a cheater by benefiting from V. harveyi metabolite sharing. Our data show that cooperative behaviors contribute to synergy between bacterial and viral coinfecting partners. Additional cheating behaviors further shape the polymicrobial consortium. Controlling cooperative behaviors or countering their effects opens avenues for mitigating polymicrobial diseases.
Collapse
Affiliation(s)
- Daniel Oyanedel
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Arnaud Lagorce
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Maxime Bruto
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, PlouzanéF-29280, France
- Sorbonne Université, Université Pierre et Marie Curie Paris 06, CNRS, UMR8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, RoscoffF-29680, France
| | - Philippe Haffner
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Amandine Morot
- Université de Bretagne Occidentale, CNRS, Institut de recherche pour le développement (IRD), Ifremer, Laboratoire des sciences de l'environnement marin (LEMAR), Plouzané,F-29280, France
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, Institut Universitaire Européen de la Mer, LorientF-56100, France
| | - Yannick Labreuche
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, PlouzanéF-29280, France
- Sorbonne Université, Université Pierre et Marie Curie Paris 06, CNRS, UMR8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, RoscoffF-29680, France
| | - Yann Dorant
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Sébastien de La Forest Divonne
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - François Delavat
- Nantes Université, CNRS, Unité en Sciences Biologiques et Biotechnologies (US2B), UMR6286, Nantes,F-44000, France
| | - Nicolas Inguimbert
- Centre de Recherches Insulaires et OBservatoire de l’Environnement (CRIOBE), UAR3278, Ecole Pratique des Hautes Etudes (EPHE), Université de Perpignan Via Domitia, CNRS, PerpignanF-66860, France
| | - Caroline Montagnani
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Benjamin Morga
- Ifremer, Adaptation Santé des invertébrés Marins (ASIM), La TrembladeF-17390, France
| | - Eve Toulza
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Cristian Chaparro
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Jean-Michel Escoubas
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Yannick Gueguen
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
- MARine Biodiversity, Exploitation and Conservation (MARBEC) Univ Montpellier, CNRS, Ifremer, IRD, SèteF-34200, France
| | - Jeremie Vidal-Dupiol
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Julien de Lorgeril
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, ENTROPIE, Nouméa, Nouvelle-Calédonie,F-98800, France
| | - Bruno Petton
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, PlouzanéF-29280, France
- Université de Bretagne Occidentale, CNRS, Institut de recherche pour le développement (IRD), Ifremer, Laboratoire des sciences de l'environnement marin (LEMAR), Plouzané,F-29280, France
| | - Lionel Degremont
- Ifremer, Adaptation Santé des invertébrés Marins (ASIM), La TrembladeF-17390, France
| | - Delphine Tourbiez
- Ifremer, Adaptation Santé des invertébrés Marins (ASIM), La TrembladeF-17390, France
| | - Léa-Lou Pimparé
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Marc Leroy
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Océane Romatif
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Juliette Pouzadoux
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Guillaume Mitta
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
- Ifremer, Université de Polynésie Française, IRD, Institut Louis Malardé (ILM), Ecosystèmes Insulaires Océaniens (EIO), VairaoF-98719, Polynésie Française
| | - Frédérique Le Roux
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, PlouzanéF-29280, France
- Sorbonne Université, Université Pierre et Marie Curie Paris 06, CNRS, UMR8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, RoscoffF-29680, France
| | - Guillaume M. Charrière
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Marie-Agnès Travers
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Delphine Destoumieux-Garzón
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| |
Collapse
|
16
|
Mincer TJ, Bos RP, Zettler ER, Zhao S, Asbun AA, Orsi WD, Guzzetta VS, Amaral-Zettler LA. Sargasso Sea Vibrio bacteria: Underexplored potential pathovars in a perturbed habitat. WATER RESEARCH 2023; 242:120033. [PMID: 37244770 DOI: 10.1016/j.watres.2023.120033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/25/2023] [Accepted: 05/01/2023] [Indexed: 05/29/2023]
Abstract
We fully sequenced the genomes of 16 Vibrio cultivars isolated from eel larvae, plastic marine debris (PMD), the pelagic brown macroalga Sargassum, and seawater samples collected from the Caribbean and Sargasso Seas of the North Atlantic Ocean. Annotation and mapping of these 16 bacterial genome sequences to a PMD-derived Vibrio metagenome-assembled genome created for this study showcased vertebrate pathogen genes closely-related to cholera and non-cholera pathovars. Phenotype testing of cultivars confirmed rapid biofilm formation, hemolytic, and lipophospholytic activities, consistent with pathogenic potential. Our study illustrates that open ocean vibrios represent a heretofore undescribed group of microbes, some representing potential new species, possessing an amalgam of pathogenic and low nutrient acquisition genes, reflecting their pelagic habitat and the substrates and hosts they colonize.
Collapse
Affiliation(s)
- Tracy J Mincer
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA; Department of Biology, Wilkes Honors College, Florida Atlantic University, Jupiter, FL, USA.
| | - Ryan P Bos
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA
| | - Erik R Zettler
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Texel, the Netherlands
| | - Shiye Zhao
- Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushimacho, Yokosuka 237-0061, Japan
| | - Alejandro A Asbun
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Texel, the Netherlands
| | - William D Orsi
- Department of Earth and Environmental Sciences, Paleontology and Geobiology,Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | | | - Linda A Amaral-Zettler
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Texel, the Netherlands; Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands; Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA.
| |
Collapse
|
17
|
Ecological divergence of syntopic marine bacterial species is shaped by gene content and expression. THE ISME JOURNAL 2023; 17:813-822. [PMID: 36871069 DOI: 10.1038/s41396-023-01390-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
Identifying mechanisms by which bacterial species evolve and maintain genomic diversity is particularly challenging for the uncultured lineages that dominate the surface ocean. A longitudinal analysis of bacterial genes, genomes, and transcripts during a coastal phytoplankton bloom revealed two co-occurring, highly related Rhodobacteraceae species from the deeply branching and uncultured NAC11-7 lineage. These have identical 16S rRNA gene amplicon sequences, yet their genome contents assembled from metagenomes and single cells indicate species-level divergence. Moreover, shifts in relative dominance of the species during dynamic bloom conditions over 7 weeks confirmed the syntopic species' divergent responses to the same microenvironment at the same time. Genes unique to each species and genes shared but divergent in per-cell inventories of mRNAs accounted for 5% of the species' pangenome content. These analyses uncover physiological and ecological features that differentiate the species, including capacities for organic carbon utilization, attributes of the cell surface, metal requirements, and vitamin biosynthesis. Such insights into the coexistence of highly related and ecologically similar bacterial species in their shared natural habitat are rare.
Collapse
|
18
|
Lau DYL, Aguirre Sánchez JR, Baker-Austin C, Martinez-Urtaza J. What Whole Genome Sequencing Has Told Us About Pathogenic Vibrios. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:337-352. [PMID: 36792883 DOI: 10.1007/978-3-031-22997-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
When the first microbial genome sequences were published just 20 years ago, our understanding regarding the microbial world changed dramatically. The genomes of the first pathogenic vibrios sequenced, including Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus revealed a functional and phylogenetic diversity previously unimagined as well as a genome structure indelibly shaped by horizontal gene transfer. The initial glimpses into these organisms also revealed a genomic plasticity that allowed these bacteria to thrive in challenging and varied aquatic and marine environments, but critically also a suite of pathogenicity attributes. In this review we outline how our understanding of vibrios has changed over the last two decades with the advent of genomics and advances in bioinformatic and data analysis techniques, it has become possible to provide a more cohesive understanding regarding these bacteria: how these pathogens have evolved and emerged from environmental sources, their evolutionary routes through time and space, how they interact with other bacteria and the human host, as well as initiate disease. We outline novel approaches to the use of whole genome sequencing for this important group of bacteria and how new sequencing technologies may be applied to study these organisms in future studies.
Collapse
Affiliation(s)
- Dawn Yan Lam Lau
- Centre for Environment, Fisheries and Aquaculture (CEFAS), Weymouth, Dorset, UK
| | - Jose Roberto Aguirre Sánchez
- Centre for Environment, Fisheries and Aquaculture (CEFAS), Weymouth, Dorset, UK.,Centro de Investigación en Alimentación y Desarrollo (CIAD), Culiacán, Sinaloa, Mexico
| | - Craig Baker-Austin
- Centre for Environment, Fisheries and Aquaculture (CEFAS), Weymouth, Dorset, UK
| | - Jaime Martinez-Urtaza
- Centre for Environment, Fisheries and Aquaculture (CEFAS), Weymouth, Dorset, UK. .,Department of Genetics and Microbiology, Facultat de Biociències, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain.
| |
Collapse
|
19
|
Oyanedel D, Rojas R, Brokordt K, Schmitt P. Crassostrea gigas oysters from a non-intensive farming area naturally harbor potentially pathogenic vibrio strains. J Invertebr Pathol 2023; 196:107856. [PMID: 36414122 DOI: 10.1016/j.jip.2022.107856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 09/05/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Farming intensification and climate change are inevitably linked to pathogen emergence in aquaculture. In this context, infectious diseases associated with vibrios span all developmental stages of the Pacific Oyster Crassostrea gigas. Moreover, virulence factors associated with pathogenicity spread among the vibrio community through horizontal gene transfer as part of the natural eco-evolutive dynamic of this group. Therefore, risk factors associated with the emergence of pathogens should be assessed before the appearance of mass mortalities in developing rearing areas. In this context, we characterized the vibrios community associated with oysters cultured in a non-intensive area free of massive mortalities located at Tongoy bay, Chile, through a culture-dependent approach. We taxonomically affiliated our isolates at the species level through the partial sequencing of the heat shock protein 60 gene and estimated their virulence potential through experimental infection of juvenile C. gigas. The vibrio community belonged almost entirely to the Splendidus clade, with Vibrio lentus being the most abundant species. The virulence potential of selected isolates was highly contrasted with oyster survival ranging between 100 and 30 %. Moreover, different vibrio species affected oyster survival at different rates, for instance V. splendidus TO2_12 produced most mortalities just 24 h after injection, while the V. lentus the most virulent strain TO6_11 produced sustained mortalities reaching 30 % of survival at day 4 after injection. Production of enzymes associated with pathogenicity was detected and hemolytic activity was positive for 50 % of the virulent strains and negative for 90 % of non-virulent strains, representing the phenotype that better relates to the virulence status of strains. Overall, results highlight that virulence is a trait present in the absence of disease expression, and therefore the monitoring of potentially pathogenic groups such as vibrios is essential to anticipate and manage oyster disease emergence in both established and under-development rearing areas.
Collapse
Affiliation(s)
- Daniel Oyanedel
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile.
| | - Rodrigo Rojas
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1780000, Chile; Centro de Innovación Acuícola (AquaPacífico), Universidad Católica del Norte, Coquimbo 1780000, Chile
| | - Katherina Brokordt
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1780000, Chile; Centro de Estudios avanzados en Zonas Áridas (CEAZA), Coquimbo 1780000, Chile; Centro de Innovación Acuícola (AquaPacífico), Universidad Católica del Norte, Coquimbo 1780000, Chile
| | - Paulina Schmitt
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile
| |
Collapse
|
20
|
Strachan CR, Yu XA, Neubauer V, Mueller AJ, Wagner M, Zebeli Q, Selberherr E, Polz MF. Differential carbon utilization enables co-existence of recently speciated Campylobacteraceae in the cow rumen epithelial microbiome. Nat Microbiol 2023; 8:309-320. [PMID: 36635570 PMCID: PMC9894753 DOI: 10.1038/s41564-022-01300-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/05/2022] [Indexed: 01/14/2023]
Abstract
The activities of different microbes in the cow rumen have been shown to modulate the host's ability to utilize plant biomass, while the host-rumen interface has received little attention. As datasets collected worldwide have pointed to Campylobacteraceae as particularly abundant members of the rumen epithelial microbiome, we targeted this group in a subset of seven cows with meta- and isolate genome analysis. We show that the dominant Campylobacteraceae lineage has recently speciated into two populations that were structured by genome-wide selective sweeps followed by population-specific gene import and recombination. These processes led to differences in gene expression and enzyme domain composition that correspond to the ability to utilize acetate, the main carbon source for the host, at the cost of inhibition by propionate. This trade-off in competitive ability further manifests itself in differential dynamics of the two populations in vivo. By exploring population-level adaptations that otherwise remain cryptic in culture-independent analyses, our results highlight how recent evolutionary dynamics can shape key functional roles in the rumen microbiome.
Collapse
Affiliation(s)
- Cameron R Strachan
- Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation FFoQSI GmbH, Tulln, Austria
| | - Xiaoqian A Yu
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Viktoria Neubauer
- Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation FFoQSI GmbH, Tulln, Austria
| | - Anna J Mueller
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- University of Vienna, Doctoral School in Microbiology and Environmental Science, Vienna, Austria
| | - Martin Wagner
- Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation FFoQSI GmbH, Tulln, Austria
| | - Qendrim Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Evelyne Selberherr
- Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Public Health, University of Veterinary Medicine Vienna, Vienna, Austria.
| | - Martin F Polz
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
21
|
Genome-Centric Dynamics Shape the Diversity of Oral Bacterial Populations. mBio 2022; 13:e0241422. [PMID: 36214570 PMCID: PMC9765137 DOI: 10.1128/mbio.02414-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two major viewpoints have been put forward for how microbial populations change, differing in whether adaptation is driven principally by gene-centric or genome-centric processes. Longitudinal sampling at microbially relevant timescales, i.e., days to weeks, is critical for distinguishing these mechanisms. Because of its significance for both microbial ecology and human health and its accessibility and high level of curation, we used the oral microbiota to study bacterial intrapopulation genome dynamics. Metagenomes were generated by shotgun sequencing of total community DNA from the healthy tongues of 17 volunteers at four to seven time points obtained over intervals of days to weeks. We obtained 390 high-quality metagenome-assembled genomes (MAGs) defining population genomes from 55 genera. The vast majority of genes in each MAG were tightly linked over the 2-week sampling window, indicating that the majority of the population's genomes were temporally stable at the MAG level. MAG-defined populations were composed of up to 5 strains, as determined by single-nucleotide-variant frequencies. Although most were stable over time, individual strains carrying over 100 distinct genes that rose from low abundance to dominance in a population over a period of days were detected. These results indicate a genome-wide as opposed to a gene-level process of population change. We infer that genome-wide selection of ecotypes is the dominant mode of adaptation in the oral populations over short timescales. IMPORTANCE The oral microbiome represents a microbial community of critical relevance to human health. Recent studies have documented the diversity and dynamics of different bacteria to reveal a rich, stable ecosystem characterized by strain-level dynamics. However, bacterial populations and their genomes are neither monolithic nor static; their genomes are constantly evolving to lose, gain, or alter their functional potential. To better understand how microbial genomes change in complex communities, we used culture-independent approaches to reconstruct the genomes (MAGs) for bacterial populations that approximated different species, in 17 healthy donors' mouths over a 2-week window. Our results underscored the importance of strain-level dynamics, which agrees with and expands on the conclusions of previous research. Altogether, these observations reveal patterns of genomic dynamics among strains of oral bacteria occurring over a matter of days.
Collapse
|
22
|
Lemonnier C, Chalopin M, Huvet A, Le Roux F, Labreuche Y, Petton B, Maignien L, Paul-Pont I, Reveillaud J. Time-series incubations in a coastal environment illuminates the importance of early colonizers and the complexity of bacterial biofilm dynamics on marine plastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:119994. [PMID: 36028078 DOI: 10.1016/j.envpol.2022.119994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/26/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
The problematic of microplastics pollution in the marine environment is tightly linked to their colonization by a wide diversity of microorganisms, the so-called plastisphere. The composition of the plastisphere relies on a complex combination of multiple factors including the surrounding environment, the time of incubation along with the polymer type, making it difficult to understand how the biofilm evolves during the microplastic lifetime over the oceans. To better define bacterial community assembly processes on plastics, we performed a 5 months spatio-temporal survey of the plastisphere in an oyster farming area in the Bay of Brest (France). We deployed three types of plastic pellets in two positions in the foreshore and in the water column. Plastic-associated biofilm composition in all these conditions was monitored using 16 S rRNA metabarcoding and compared to free-living and attached bacterial members of seawater. We observed that bacterial families associated to plastic pellets were significantly distinct from the ones found in seawater, with a significant prevalence of filamentous Cyanobacteria on plastics. No convergence towards a unique plastisphere was detected between polymers exposed in the intertidal and subtidal area, emphasizing the central role of the surrounding environment on constantly shaping the plastisphere community diversity. However, we could define a bulk of early-colonizers of marine biofilms such as Alteromonas, Pseudoalteromonas or Vibrio. These early-colonizers could reach high abundances in floating microplastics collected in field-sampling studies, suggesting the plastic-associated biofilms could remain at early development stages across large oceanic scales. Our study raises the hypothesis that most members of the plastisphere, including putative pathogens, could result of opportunistic colonization processes and unlikely long-term transport.
Collapse
Affiliation(s)
- C Lemonnier
- Univ Brest (UBO), CNRS, IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280, Plouzané, France.
| | - M Chalopin
- Univ Brest (UBO), CNRS, IFREMER, IRD, LEMAR, F-29280, Plouzané, France
| | - A Huvet
- Univ Brest (UBO), CNRS, IFREMER, IRD, LEMAR, F-29280, Plouzané, France
| | - F Le Roux
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de La Pointe Du Diable, CS 10070, F-29280, Plouzané, France
| | - Y Labreuche
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de La Pointe Du Diable, CS 10070, F-29280, Plouzané, France; Sorbonne Universités, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff Cedex, France
| | - B Petton
- Univ Brest (UBO), CNRS, IFREMER, IRD, LEMAR, F-29280, Plouzané, France
| | - L Maignien
- Univ Brest (UBO), CNRS, IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280, Plouzané, France
| | - I Paul-Pont
- Univ Brest (UBO), CNRS, IFREMER, IRD, LEMAR, F-29280, Plouzané, France
| | - J Reveillaud
- MIVEGEC, University of Montpellier, INRAe, CNRS, IRD, Montpellier, France
| |
Collapse
|
23
|
Didelot X, Parkhill J. A scalable analytical approach from bacterial genomes to epidemiology. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210246. [PMID: 35989600 PMCID: PMC9393561 DOI: 10.1098/rstb.2021.0246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/17/2022] [Indexed: 12/21/2022] Open
Abstract
Recent years have seen a remarkable increase in the practicality of sequencing whole genomes from large numbers of bacterial isolates. The availability of this data has huge potential to deliver new insights into the evolution and epidemiology of bacterial pathogens, but the scalability of the analytical methodology has been lagging behind that of the sequencing technology. Here we present a step-by-step approach for such large-scale genomic epidemiology analyses, from bacterial genomes to epidemiological interpretations. A central component of this approach is the dated phylogeny, which is a phylogenetic tree with branch lengths measured in units of time. The construction of dated phylogenies from bacterial genomic data needs to account for the disruptive effect of recombination on phylogenetic relationships, and we describe how this can be achieved. Dated phylogenies can then be used to perform fine-scale or large-scale epidemiological analyses, depending on the proportion of cases for which genomes are available. A key feature of this approach is computational scalability and in particular the ability to process hundreds or thousands of genomes within a matter of hours. This is a clear advantage of the step-by-step approach described here. We discuss other advantages and disadvantages of the approach, as well as potential improvements and avenues for future research. This article is part of a discussion meeting issue 'Genomic population structures of microbial pathogens'.
Collapse
Affiliation(s)
- Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| |
Collapse
|
24
|
Deb S. Pan-genome evolution and its association with divergence of metabolic functions in Bifidobacterium genus. World J Microbiol Biotechnol 2022; 38:231. [PMID: 36205822 DOI: 10.1007/s11274-022-03430-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/30/2022] [Indexed: 10/10/2022]
Abstract
Previous studies were mainly focused on genomic evolution and diversity of type species of Bifidobacterium genus due to their health-promoting effect on host. However, those studies were mainly based on species-level taxonomic resolution, adaptation, and characterization of carbohydrate metabolic features of the bifidobacterial species. Here, a comprehensive analysis of the type strain genome unveils the association of pan-genome evolution with the divergence of metabolic function of the Bifidobacterium genus. This study has also demonstrated that horizontal gene transfer, as well as genome expansion and reduction events, leads to the divergence of metabolic functions in Bifidobacterium genus. Furthermore, the genome-based search of probiotic traits among all the available bifidobacterial type strains gives hints on type species, that could confer health benefits to nutrient-deficient individuals. Altogether, the present study provides insight into the developments of genomic evolution, functional divergence, and potential probiotic type species of the Bifidobacterium genus.
Collapse
Affiliation(s)
- Sushanta Deb
- Department of Molecular Biology and Bioinformatics, Tripura University, Suryamaninagar, 799022, Tripura, India. .,All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India.
| |
Collapse
|
25
|
Jiang C, Kasai H, Mino S, Romalde JL, Sawabe T. The pan‐genome of Splendidus clade species in the family
Vibrionaceae
: insights into evolution, adaptation, and pathogenicity. Environ Microbiol 2022; 24:4587-4606. [DOI: 10.1111/1462-2920.16209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Chunqi Jiang
- Laboratory of Microbiology, Faculty of Fisheries Sciences Hokkaido University Hakodate Japan
| | - Hisae Kasai
- Laboratory of Marine Biotechnology and Microbiology, Faculty of Fisheries Sciences Hokkaido University Hakodate Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences Hokkaido University Hakodate Japan
| | - Jesús L. Romalde
- Departamento de Microbiología y Parasitología, CRETUS & CIBUS‐Facultad de Biología. Universidade de Santiago de Compostela Spain
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences Hokkaido University Hakodate Japan
| |
Collapse
|
26
|
Stanojković A, Skoupý S, Škaloud P, Dvořák P. High genomic differentiation and limited gene flow indicate recent cryptic speciation within the genus Laspinema (cyanobacteria). Front Microbiol 2022; 13:977454. [PMID: 36160208 PMCID: PMC9500459 DOI: 10.3389/fmicb.2022.977454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
The sympatric occurrence of closely related lineages displaying conserved morphological and ecological traits is often characteristic of free-living microbes. Gene flow, recombination, selection, and mutations govern the genetic variability between these cryptic lineages and drive their differentiation. However, sequencing conservative molecular markers (e.g., 16S rRNA) coupled with insufficient population-level sampling hindered the study of intra-species genetic diversity and speciation in cyanobacteria. We used phylogenomics and a population genomic approach to investigate the extent of local genomic diversity and the mechanisms underlying sympatric speciation of Laspinema thermale. We found two cryptic lineages of Laspinema. The lineages were highly genetically diverse, with recombination occurring more frequently within than between them. That suggests the existence of a barrier to gene flow, which further maintains divergence. Genomic regions of high population differentiation harbored genes associated with possible adaptations to high/low light conditions and stress stimuli, although with a weak diversifying selection. Overall, the diversification of Laspinema species might have been affected by both genomic and ecological processes.
Collapse
Affiliation(s)
| | - Svatopluk Skoupý
- Department of Botany, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Pavel Škaloud
- Department of Botany, Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Petr Dvořák
- Department of Botany, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
27
|
Schwartzman JA, Ebrahimi A, Chadwick G, Sato Y, Roller BRK, Orphan VJ, Cordero OX. Bacterial growth in multicellular aggregates leads to the emergence of complex life cycles. Curr Biol 2022; 32:3059-3069.e7. [PMID: 35777363 PMCID: PMC9496226 DOI: 10.1016/j.cub.2022.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/03/2022] [Accepted: 06/07/2022] [Indexed: 01/12/2023]
Abstract
Facultative multicellular behaviors expand the metabolic capacity and physiological resilience of bacteria. Despite their ubiquity in nature, we lack an understanding of how these behaviors emerge from cellular-scale phenomena. Here, we show how the coupling between growth and resource gradient formation leads to the emergence of multicellular lifecycles in a marine bacterium. Under otherwise carbon-limited growth conditions, Vibrio splendidus 12B01 forms clonal multicellular groups to collectively harvest carbon from soluble polymers of the brown-algal polysaccharide alginate. As they grow, groups phenotypically differentiate into two spatially distinct sub-populations: a static "shell" surrounding a motile, carbon-storing "core." Differentiation of these two sub-populations coincides with the formation of a gradient in nitrogen-source availability within clusters. Additionally, we find that populations of cells containing a high proportion of carbon-storing individuals propagate and form new clusters more readily on alginate than do populations with few carbon-storing cells. Together, these results suggest that local metabolic activity and differential partitioning of resources leads to the emergence of reproductive cycles in a facultatively multicellular bacterium.
Collapse
Affiliation(s)
- Julia A Schwartzman
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Ali Ebrahimi
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Grayson Chadwick
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yuya Sato
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Benjamin R K Roller
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Center for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, Vienna 1030, Austria; Department of Environmental Systems Sciences, ETH Zürich, Universitätsstrasse 16, Zürich 8092, Switzerland; Department of Environmental Microbiology, Eawag, Ueberlandstrasse 133, Dübendorf 8600, Switzerland
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Otto X Cordero
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
28
|
Clemente CCC, Paresque K, Santos PJP. Impact of plastic bags on the benthic system of a tropical estuary: An experimental study. MARINE POLLUTION BULLETIN 2022; 178:113623. [PMID: 35367696 DOI: 10.1016/j.marpolbul.2022.113623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Plastic bags are among the most discarded waste items as they are generally only used once and are often improperly eliminated and transported by rivers and estuaries to the ocean. We developed an experimental design to mimic the effect of plastic bag deposition in a tropical estuary and investigated its short-term impact on benthic community structure. We observed a significant influence of the presence of plastic bags on the abundance, richness and diversity of benthic fauna after an eight-week exposure period. Plastic bags acted as a barrier and interfered in processes that occur at the water-sediment interface, such as organic matter and silt-clay deposition. Our results indicate that plastic bags, in addition to directly affecting benthic fauna, may alter processes such as carbon burying, known as "blue carbon", thus making its storage in the sediment more difficult.
Collapse
Affiliation(s)
- Caroline C C Clemente
- Departamento de Zoologia, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rêgo s/n, Cidade Universitária, 50670-420 Recife, PE, Brazil; Programa de Pós-Graduação em Oceanografia (PPGO), Centro de Tecnologia e Geociências, Universidade Federal de Pernambuco, Brazil; Programa de Pós-Graduação em Biologia Animal (PPGBA), Centro de Biociências, Universidade Federal de Pernambuco, Brazil.
| | | | - Paulo J P Santos
- Departamento de Zoologia, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rêgo s/n, Cidade Universitária, 50670-420 Recife, PE, Brazil
| |
Collapse
|
29
|
Zoccarato L, Sher D, Miki T, Segrè D, Grossart HP. A comparative whole-genome approach identifies bacterial traits for marine microbial interactions. Commun Biol 2022; 5:276. [PMID: 35347228 PMCID: PMC8960797 DOI: 10.1038/s42003-022-03184-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/30/2021] [Indexed: 12/11/2022] Open
Abstract
Microbial interactions shape the structure and function of microbial communities with profound consequences for biogeochemical cycles and ecosystem health. Yet, most interaction mechanisms are studied only in model systems and their prevalence is unknown. To systematically explore the functional and interaction potential of sequenced marine bacteria, we developed a trait-based approach, and applied it to 473 complete genomes (248 genera), representing a substantial fraction of marine microbial communities. We identified genome functional clusters (GFCs) which group bacterial taxa with common ecology and life history. Most GFCs revealed unique combinations of interaction traits, including the production of siderophores (10% of genomes), phytohormones (3-8%) and different B vitamins (57-70%). Specific GFCs, comprising Alpha- and Gammaproteobacteria, displayed more interaction traits than expected by chance, and are thus predicted to preferentially interact synergistically and/or antagonistically with bacteria and phytoplankton. Linked trait clusters (LTCs) identify traits that may have evolved to act together (e.g., secretion systems, nitrogen metabolism regulation and B vitamin transporters), providing testable hypotheses for complex mechanisms of microbial interactions. Our approach translates multidimensional genomic information into an atlas of marine bacteria and their putative functions, relevant for understanding the fundamental rules that govern community assembly and dynamics.
Collapse
Affiliation(s)
- Luca Zoccarato
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 16775, Stechlin, Germany.
| | - Daniel Sher
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, 3498838, Haifa, Israel.
| | - Takeshi Miki
- Faculty of Advanced Science and Technology, Ryukoku University, 520-2194, Otsu, Japan
| | - Daniel Segrè
- Departments of Biology, Biomedical Engineering, Physics, Boston University, 02215, Boston, MA, USA
- Bioinformatics Program & Biological Design Center, Boston University, 02215, Boston, MA, USA
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 16775, Stechlin, Germany.
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany.
- Institute of Biochemistry and Biology, Potsdam University, 14476, Potsdam, Germany.
| |
Collapse
|
30
|
Koh XP, Shen Z, Woo CF, Yu Y, Lun HI, Cheung SW, Kwan JKC, Lau SCK. Genetic and Ecological Diversity of Escherichia coli and Cryptic Escherichia Clades in Subtropical Aquatic Environments. Front Microbiol 2022; 13:811755. [PMID: 35250929 PMCID: PMC8891540 DOI: 10.3389/fmicb.2022.811755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli not only inhabit the large intestines of human and warm-blooded animals but could also persist in the external environment. However, current knowledge was largely based on host-associated strains. Moreover, cryptic Escherichia clades that were often misidentified as E. coli by conventional diagnostic methods were discovered. Failure to distinguish them from E. coli sensu stricto could lead to inaccurate conclusions about the population genetics of E. coli. Based on seven housekeeping genes, we determine the genetic and ecological diversity of E. coli and cryptic clades as they occupy aquatic habitats with different characteristics and human impact levels in subtropical Hong Kong. Contrary to previous reports, clade II was the most abundant cryptic lineage co-isolated with E. coli, being especially abundant in relatively pristine subtropical aquatic environments. The phylogenetically distinct cryptic clades and E. coli showed limited recombination and significant genetic divergence. Analyses indicated that these clade II strains were ecologically differentiated from typical E. coli; some may even represent novel environmental Escherichia clades that were closely related to the original clade II strains of fecal origins. E. coli of diverse origins exhibited clonality amidst divergent genotypes STs, echoing other studies in that recombination in housekeeping genes was insufficient to disrupt phylogenetic signals of the largely clonal E. coli. Notably, environmental E. coli were less diverse than fecal isolates despite contributing many new alleles and STs. Finally, we demonstrated that human activities influenced the distribution of E. coli and clade II in a small aquatic continuum. Moving from relatively pristine sites toward areas with higher human disturbance, the abundance of clade II isolates and new E. coli genotypes reduces, while E. coli bearing class I integrons and belonging to CCs of public health concern accumulates. Altogether, this work revealed the new genetic diversity of E. coli and cryptic clades embedded in selected subtropical aquatic habitats, especially relatively pristine sites, which will aid a more thorough understanding of the extent of their genetic and functional variations in relation to diverse habitats with varied conditions.
Collapse
Affiliation(s)
- Xiu Pei Koh
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Zhiyong Shen
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Chun Fai Woo
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Yanping Yu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Hau In Lun
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Sze Wan Cheung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong SAR, China
| | - Joseph Kai Cho Kwan
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Stanley Chun Kwan Lau
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- *Correspondence: Stanley Chun Kwan Lau,
| |
Collapse
|
31
|
Li W, Chen X, Li M, Cai Z, Gong H, Yan M. Microplastics as an aquatic pollutant affect gut microbiota within aquatic animals. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127094. [PMID: 34530278 DOI: 10.1016/j.jhazmat.2021.127094] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 05/27/2023]
Abstract
The adverse impact of microplastics (MPs) on gut microbiota within aquatic animals depends on the overall effect of chemicals and biofilm of MPs. Thus, it is ideal to fully understand the influences that arise from each or even all of these characteristics, which should give us a whole picture of consequences that are brought by MPs. Harmful effects of MPs on gut microbiota within aquatic organisms start from the ingestion of MPs by aquatic organisms. According to this, the present review will discuss the ingestion of MPs and its following results on gut microbial communities within aquatic animals, in which chemical components, such as plastic polymers, heavy metals and POPs, and the biofilm of MPs would be involved. This review firstly analyzed the impacts of MPs on aquatic organisms in detail about its chemical components and biofilm based on previous relevant studies. At last, the significance of field studies, functional studies and complex dynamics of gut microbial ecology in the future research of MPs affecting gut microbiota is discussed.
Collapse
Affiliation(s)
- Weixin Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Xiaofeng Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Minqian Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Zeming Cai
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Han Gong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China.
| | - Muting Yan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
32
|
Dlugosch L, Poehlein A, Wemheuer B, Pfeiffer B, Badewien TH, Daniel R, Simon M. Significance of gene variants for the functional biogeography of the near-surface Atlantic Ocean microbiome. Nat Commun 2022; 13:456. [PMID: 35075131 PMCID: PMC8786918 DOI: 10.1038/s41467-022-28128-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 01/06/2022] [Indexed: 01/21/2023] Open
Abstract
Microbial communities are major drivers of global elemental cycles in the oceans due to their high abundance and enormous taxonomic and functional diversity. Recent studies assessed microbial taxonomic and functional biogeography in global oceans but microbial functional biogeography remains poorly studied. Here we show that in the near-surface Atlantic and Southern Ocean between 62°S and 47°N microbial communities exhibit distinct taxonomic and functional adaptations to regional environmental conditions. Richness and diversity showed maxima around 40° latitude and intermediate temperatures, especially in functional genes (KEGG-orthologues, KOs) and gene profiles. A cluster analysis yielded three clusters of KOs but five clusters of genes differing in the abundance of genes involved in nutrient and energy acquisition. Gene profiles showed much higher distance-decay rates than KO and taxonomic profiles. Biotic factors were identified as highly influential in explaining the observed patterns in the functional profiles, whereas temperature and biogeographic province mainly explained the observed taxonomic patterns. Our results thus indicate fine-tuned genetic adaptions of microbial communities to regional biotic and environmental conditions in the Atlantic and Southern Ocean. The taxonomic and functional diversity of marine microbial communities are shaped by both environmental and biotic factors. Here, the authors investigate the functional biogeography of epipelagic prokaryotic communities along a 13,000-km transect in the Southern and Atlantic Oceans, showing finely tuned genetic adaptations to regional conditions.
Collapse
Affiliation(s)
- Leon Dlugosch
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Str. 9-11, D-26129, Oldenburg, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Bernd Wemheuer
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Birgit Pfeiffer
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Thomas H Badewien
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Str. 9-11, D-26129, Oldenburg, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Str. 9-11, D-26129, Oldenburg, Germany. .,Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstr. 231, D-26129, Oldenburg, Germany.
| |
Collapse
|
33
|
Kauffman KM, Chang WK, Brown JM, Hussain FA, Yang J, Polz MF, Kelly L. Resolving the structure of phage-bacteria interactions in the context of natural diversity. Nat Commun 2022; 13:372. [PMID: 35042853 PMCID: PMC8766483 DOI: 10.1038/s41467-021-27583-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
Microbial communities are shaped by viral predators. Yet, resolving which viruses (phages) and bacteria are interacting is a major challenge in the context of natural levels of microbial diversity. Thus, fundamental features of how phage-bacteria interactions are structured and evolve in the wild remain poorly resolved. Here we use large-scale isolation of environmental marine Vibrio bacteria and their phages to obtain estimates of strain-level phage predator loads, and use all-by-all host range assays to discover how phage and host genomic diversity shape interactions. We show that lytic interactions in environmental interaction networks (as observed in agar overlay) are sparse-with phage predator loads being low for most bacterial strains, and phages being host-strain-specific. Paradoxically, we also find that although overlap in killing is generally rare between tailed phages, recombination is common. Together, these results suggest that recombination during cryptic co-infections is an important mode of phage evolution in microbial communities. In the development of phages for bioengineering and therapeutics it is important to consider that nucleic acids of introduced phages may spread into local phage populations through recombination, and that the likelihood of transfer is not predictable based on lytic host range.
Collapse
Affiliation(s)
- Kathryn M Kauffman
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Oral Biology, The University at Buffalo, Buffalo, NY, 14214, USA
| | - William K Chang
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Julia M Brown
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, 04544, USA
| | - Fatima A Hussain
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Joy Yang
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Martin F Polz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
| | - Libusha Kelly
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
34
|
Igai K, Kitade O, Fu J, Omata K, Yonezawa T, Ohkuma M, Hongoh Y. Fine-scale genetic diversity and putative ecotypes of oxymonad protists coinhabiting the hindgut of Reticulitermes speratus. Mol Ecol 2021; 31:1317-1331. [PMID: 34865251 DOI: 10.1111/mec.16309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 11/29/2022]
Abstract
The hindgut of lower termites is generally coinhabited by multiple morphologically identifiable protist species. However, it is unclear how many protist species truly coexist in this miniaturized environment, and moreover, it is difficult to define the fundamental unit of protist diversity. Species delineation of termite gut protists has therefore been guided without a theory-based concept of species. Here, we focused on the hindgut of the termite Reticulitermes speratus, where 10 or 11 morphologically distinct oxymonad cell types, that is, morphospecies, coexist. We elucidated the phylogenetic structure of all co-occurring oxymonads and addressed whether their diversity can be explained by the "ecotype" hypothesis. Oxymonad-specific 18S rRNA gene amplicon sequencing analyses of whole-gut samples, combined with single-cell 18S rRNA sequencing of the oxymonad morphospecies, identified 210 one-nucleotide-level variants. The phylogenetic analysis of these variants revealed the presence of microdiverse clusters typically within 1% sequence divergence. Each known oxymonad morphospecies comprised one to several monophyletic or paraphyletic microdiverse clusters. Using these sequence data sets, we conducted computational simulation to predict the rates of ecotype formation and periodic selection, and to demarcate putative ecotypes. Our simulations suggested that the oxymonad genetic divergence is constrained primarily by strong selection, in spite of limited population size and possible bottlenecks during intergenerational transmission. A total of 33 oxymonad ecotypes were predicted, and most of the putative ecotypes were consistently detected among different colonies and host individuals. These findings provide a possible theoretical basis for species diversity and underlying mechanisms of coexistence of termite gut protists.
Collapse
Affiliation(s)
- Katsura Igai
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Osamu Kitade
- College of Science, Ibaraki University, Ibaraki, Japan
| | - Jieyang Fu
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Kazumi Omata
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan.,Department of Hematology, Rheumatology and Infectious Disease, Kumamoto University Hospital, Kumamoto, Japan
| | - Takahiro Yonezawa
- Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Kanagawa, Japan
| | - Moriya Ohkuma
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Yuichi Hongoh
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan.,Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Ibaraki, Japan
| |
Collapse
|
35
|
Saghaï A, Banjeree S, Degrune F, Edlinger A, García-Palacios P, Garland G, van der Heijden MGA, Herzog C, Maestre FT, Pescador DS, Philippot L, Rillig MC, Romdhane S, Hallin S. Diversity of archaea and niche preferences among putative ammonia-oxidizing Nitrososphaeria dominating across European arable soils. Environ Microbiol 2021; 24:341-356. [PMID: 34796612 DOI: 10.1111/1462-2920.15830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/28/2021] [Accepted: 10/27/2021] [Indexed: 01/04/2023]
Abstract
Archaeal communities in arable soils are dominated by Nitrososphaeria, a class within Thaumarchaeota comprising all known ammonia-oxidizing archaea (AOA). AOA are key players in the nitrogen cycle and defining their niche specialization can help predicting effects of environmental change on these communities. However, hierarchical effects of environmental filters on AOA and the delineation of niche preferences of nitrososphaerial lineages remain poorly understood. We used phylogenetic information at fine scale and machine learning approaches to identify climatic, edaphic and geomorphological drivers of Nitrososphaeria and other archaea along a 3000 km European gradient. Only limited insights into the ecology of the low-abundant archaeal classes could be inferred, but our analyses underlined the multifactorial nature of niche differentiation within Nitrososphaeria. Mean annual temperature, C:N ratio and pH were the best predictors of their diversity, evenness and distribution. Thresholds in the predictions could be defined for C:N ratio and cation exchange capacity. Furthermore, multiple, independent and recent specializations to soil pH were detected in the Nitrososphaeria phylogeny. The coexistence of widespread ecophysiological differences between closely related soil Nitrososphaeria highlights that their ecology is best studied at fine phylogenetic scale.
Collapse
Affiliation(s)
- Aurélien Saghaï
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Florine Degrune
- Institute of Biology, Freie Universität Berlin, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Anna Edlinger
- Plant-Soil Interactions Group, Agroscope, Zurich, Switzerland.,Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Pablo García-Palacios
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Gina Garland
- Plant-Soil Interactions Group, Agroscope, Zurich, Switzerland.,Soil Quality and Use Group, Agroscope, Zurich, Switzerland.,Department of Environmental System Sciences, Soil Resources Group, ETH Zurich, Zurich, Switzerland
| | - Marcel G A van der Heijden
- Plant-Soil Interactions Group, Agroscope, Zurich, Switzerland.,Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Chantal Herzog
- Plant-Soil Interactions Group, Agroscope, Zurich, Switzerland.,Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Fernando T Maestre
- Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef", Universidad de Alicante, Alicante, Spain.,Departamento de Ecología, Universidad de Alicante, Alicante, Spain
| | - David S Pescador
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Escuela Superior de Ciencias Experimentales y Tecnología, Móstoles, Spain
| | - Laurent Philippot
- Department of Agroecology, University of Bourgogne Franche-Comté, INRAE, AgroSup Dijon, Dijon, France
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Sana Romdhane
- Department of Agroecology, University of Bourgogne Franche-Comté, INRAE, AgroSup Dijon, Dijon, France
| | - Sara Hallin
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
36
|
Hussain FA, Dubert J, Elsherbini J, Murphy M, VanInsberghe D, Arevalo P, Kauffman K, Rodino-Janeiro BK, Gavin H, Gomez A, Lopatina A, Le Roux F, Polz MF. Rapid evolutionary turnover of mobile genetic elements drives bacterial resistance to phages. Science 2021; 374:488-492. [PMID: 34672730 DOI: 10.1126/science.abb1083] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Fatima Aysha Hussain
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Javier Dubert
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Microbiology and Parasitology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Joseph Elsherbini
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mikayla Murphy
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David VanInsberghe
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Philip Arevalo
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kathryn Kauffman
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bruno Kotska Rodino-Janeiro
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Hannah Gavin
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Annika Gomez
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna Lopatina
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Frédérique Le Roux
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, CS 10070, F-29280 Plouzané, France.,Sorbonne Universités, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff Cedex, France
| | - Martin F Polz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| |
Collapse
|
37
|
Matsumoto K, Sakami T, Watanabe T, Taniuchi Y, Kuwata A, Kakehi S, Engkong T, Igarashi Y, Kinoshita S, Asakawa S, Hattori M, Watabe S, Ishino Y, Kobayashi T, Gojobori T, Ikeo K. Metagenomic analysis provides functional insights into seasonal change of a non-cyanobacterial prokaryotic community in temperate coastal waters. PLoS One 2021; 16:e0257862. [PMID: 34637433 PMCID: PMC8509957 DOI: 10.1371/journal.pone.0257862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/14/2021] [Indexed: 12/05/2022] Open
Abstract
The taxonomic compositions of marine prokaryotic communities are known to follow seasonal cycles, but functional metagenomic insights into this seasonality is still limited. We analyzed a total of 22 metagenomes collected at 11 time points over a 14-month period from two sites in Sendai Bay, Japan to obtain seasonal snapshots of predicted functional profiles of the non-cyanobacterial prokaryotic community. Along with taxonomic composition, functional gene composition varied seasonally and was related to chlorophyll a concentration, water temperature, and salinity. Spring phytoplankton bloom stimulated increased abundances of putative genes that encode enzymes in amino acid metabolism pathways. Several groups of functional genes, including those related to signal transduction and cellular communication, increased in abundance during the mid- to post-bloom period, which seemed to be associated with a particle-attached lifestyle. Alternatively, genes in carbon metabolism pathways were generally more abundant in the low chlorophyll a period than the bloom period. These results indicate that changes in trophic condition associated with seasonal phytoplankton succession altered the community function of prokaryotes. Our findings on seasonal changes of predicted function provide fundamental information for future research on the mechanisms that shape marine microbial communities.
Collapse
Affiliation(s)
- Kaoru Matsumoto
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
- * E-mail: (KM); (KI)
| | - Tomoko Sakami
- Tohoku National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Shiogama, Miyagi, Japan
| | - Tsuyoshi Watanabe
- Tohoku National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Shiogama, Miyagi, Japan
| | - Yukiko Taniuchi
- Hokkaido National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Kushiro, Hokkaido, Japan
| | - Akira Kuwata
- Tohoku National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Shiogama, Miyagi, Japan
| | - Shigeho Kakehi
- Tohoku National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Shiogama, Miyagi, Japan
| | - Tan Engkong
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Yoji Igarashi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Shigeharu Kinoshita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Masahira Hattori
- Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
| | - Shugo Watabe
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Takanori Kobayashi
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, Japan
| | - Takashi Gojobori
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Kazuho Ikeo
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
- * E-mail: (KM); (KI)
| |
Collapse
|
38
|
Sjöqvist C, Delgado LF, Alneberg J, Andersson AF. Ecologically coherent population structure of uncultivated bacterioplankton. THE ISME JOURNAL 2021; 15:3034-3049. [PMID: 33953362 PMCID: PMC8443644 DOI: 10.1038/s41396-021-00985-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 02/03/2023]
Abstract
Bacterioplankton are main drivers of biogeochemical cycles and important components of aquatic food webs. While sequencing-based studies have revealed how bacterioplankton communities are structured in time and space, relatively little is known about intraspecies diversity patterns and their ecological relevance. Here, we use the newly developed software POGENOM (POpulation GENomics from Metagenomes) to investigate genomic diversity and differentiation in metagenome-assembled genomes from the Baltic Sea, and investigate their genomic variation using metagenome data spanning a 1700 km transect and covering seasonal variation at one station. The majority of the investigated species, representing several major bacterioplankton clades, displayed population structures correlating significantly with environmental factors such as salinity and temperature. Population differentiation was more pronounced over spatial than temporal scales. We discovered genes that have undergone adaptation to different salinity regimes, potentially responsible for the populations' existence along with the salinity range. This in turn implies the broad existence of ecotypes that may remain undetected by rRNA gene sequencing. Our findings emphasize the importance of physiological barriers, and highlight the role of adaptive divergence as a structuring mechanism of bacterioplankton species.
Collapse
Affiliation(s)
- Conny Sjöqvist
- grid.5037.10000000121581746KTH Royal Institute of Technology, Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Stockholm, Sweden ,grid.13797.3b0000 0001 2235 8415Åbo Akademi University, Faculty of Science and Engineering, Environmental and Marine Biology, Åbo, Finland
| | - Luis Fernando Delgado
- grid.5037.10000000121581746KTH Royal Institute of Technology, Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Stockholm, Sweden
| | - Johannes Alneberg
- grid.5037.10000000121581746KTH Royal Institute of Technology, Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Stockholm, Sweden
| | - Anders F. Andersson
- grid.5037.10000000121581746KTH Royal Institute of Technology, Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Stockholm, Sweden
| |
Collapse
|
39
|
Fodelianakis S, Washburne AD, Bourquin M, Pramateftaki P, Kohler TJ, Styllas M, Tolosano M, De Staercke V, Schön M, Busi SB, Brandani J, Wilmes P, Peter H, Battin TJ. Microdiversity characterizes prevalent phylogenetic clades in the glacier-fed stream microbiome. ISME JOURNAL 2021; 16:666-675. [PMID: 34522009 PMCID: PMC8857233 DOI: 10.1038/s41396-021-01106-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 08/14/2021] [Accepted: 09/02/2021] [Indexed: 02/01/2023]
Abstract
Glacier-fed streams (GFSs) are extreme and rapidly vanishing ecosystems, and yet they harbor diverse microbial communities. Although our understanding of the GFS microbiome has recently increased, we do not know which microbial clades are ecologically successful in these ecosystems, nor do we understand potentially underlying mechanisms. Ecologically successful clades should be more prevalent across GFSs compared to other clades, which should be reflected as clade-wise distinctly low phylogenetic turnover. However, methods to assess such patterns are currently missing. Here we developed and applied a novel analytical framework, “phyloscore analysis”, to identify clades with lower spatial phylogenetic turnover than other clades in the sediment microbiome across twenty GFSs in New Zealand. These clades constituted up to 44% and 64% of community α-diversity and abundance, respectively. Furthermore, both their α-diversity and abundance increased as sediment chlorophyll a decreased, corroborating their ecological success in GFS habitats largely devoid of primary production. These clades also contained elevated levels of putative microdiversity than others, which could potentially explain their high prevalence in GFSs. This hitherto unknown microdiversity may be threatened as glaciers shrink, urging towards further genomic and functional exploration of the GFS microbiome.
Collapse
Affiliation(s)
- Stilianos Fodelianakis
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland.
| | | | - Massimo Bourquin
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Paraskevi Pramateftaki
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Tyler J Kohler
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Michail Styllas
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Matteo Tolosano
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Vincent De Staercke
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Martina Schön
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Susheel Bhanu Busi
- Systems Ecology Research Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jade Brandani
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Paul Wilmes
- Systems Ecology Research Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Hannes Peter
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Tom J Battin
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland.
| |
Collapse
|
40
|
Behringer MG. Multi-omic Characterization of Intraspecies Variation in Laboratory and Natural Environments. mSystems 2021; 6:e0076421. [PMID: 34427516 PMCID: PMC8409731 DOI: 10.1128/msystems.00764-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Investigation of microbial communities has led to many advances in our understanding of ecosystem function, whether that ecosystem is a subglacial lake or the human gut. Within these communities, much emphasis has been placed on interspecific variation and between-species relationships. However, with current advances in sequencing technology resulting in both the reduction in sequencing costs and the rise of shotgun metagenomic sequencing, the importance of intraspecific variation and within-species relationships is becoming realized. Our group conducts multi-omic analyses to understand how spatial structure and resource availability influence diversification within a species and the potential for long-term coexistence of multiple ecotypes within a microbial community. Here, we present examples of ecotypic variation observed in the lab and in the wild, current challenges faced when investigating intraspecies diversity, and future developments that we expect to define the field over the next 5 years.
Collapse
Affiliation(s)
- Megan G. Behringer
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Microbiome Initiative, Nashville, Tennessee, USA
| |
Collapse
|
41
|
Fields B, Moffat EK, Harrison E, Andersen SU, Young JPW, Friman VP. Genetic variation is associated with differences in facilitative and competitive interactions in the Rhizobium leguminosarum species complex. Environ Microbiol 2021; 24:3463-3485. [PMID: 34398510 DOI: 10.1111/1462-2920.15720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/08/2021] [Accepted: 08/10/2021] [Indexed: 12/01/2022]
Abstract
Competitive and facilitative interactions influence bacterial community composition, diversity and functioning. However, the role of genetic diversity for determining interactions between coexisting strains of the same, or closely related, species remains poorly understood. Here, we investigated the type (facilitative/inhibitory) and potential underlying mechanisms of pairwise interactions between 24 genetically diverse bacterial strains belonging to three genospecies (gsA,C,E) of the Rhizobium leguminosarum species complex. Interactions were determined indirectly, based on secreted compounds in cell-free supernatants, and directly, as growth inhibition in cocultures. We found supernatants mediated both facilitative and inhibitory interactions that varied greatly between strains and genospecies. Overall, gsE strains indirectly suppressed growth of gsA strains, while their own growth was facilitated by other genospecies' supernatants. Similar genospecies-level patterns were observed in direct competition, where gsA showed the highest susceptibility and gsE the highest inhibition capacity. At the genetic level, increased gsA susceptibility was associated with a non-random distribution of quorum sensing and secondary metabolite genes across genospecies. Together, our results suggest that genetic variation is associated with facilitative and competitive interactions, which could be important ecological mechanisms explaining R. leguminosarum diversity.
Collapse
Affiliation(s)
| | - Emma K Moffat
- Department of Biology, University of York, York, UK.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Ellie Harrison
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Stig U Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
42
|
Brumfield KD, Usmani M, Chen KM, Gangwar M, Jutla AS, Huq A, Colwell RR. Environmental parameters associated with incidence and transmission of pathogenic Vibrio spp. Environ Microbiol 2021; 23:7314-7340. [PMID: 34390611 DOI: 10.1111/1462-2920.15716] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/27/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
Vibrio spp. thrive in warm water and moderate salinity, and they are associated with aquatic invertebrates, notably crustaceans and zooplankton. At least 12 Vibrio spp. are known to cause infection in humans, and Vibrio cholerae is well documented as the etiological agent of pandemic cholera. Pathogenic non-cholera Vibrio spp., e.g., Vibrio parahaemolyticus and Vibrio vulnificus, cause gastroenteritis, septicemia, and other extra-intestinal infections. Incidence of vibriosis is rising globally, with evidence that anthropogenic factors, primarily emissions of carbon dioxide associated with atmospheric warming and more frequent and intense heatwaves, significantly influence environmental parameters, e.g., temperature, salinity, and nutrients, all of which can enhance growth of Vibrio spp. in aquatic ecosystems. It is not possible to eliminate Vibrio spp., as they are autochthonous to the aquatic environment and many play a critical role in carbon and nitrogen cycling. Risk prediction models provide an early warning that is essential for safeguarding public health. This is especially important for regions of the world vulnerable to infrastructure instability, including lack of 'water, sanitation, and hygiene' (WASH), and a less resilient infrastructure that is vulnerable to natural calamity, e.g., hurricanes, floods, and earthquakes, and/or social disruption and civil unrest, arising from war, coups, political crisis, and economic recession. Incorporating environmental, social, and behavioural parameters into such models allows improved prediction, particularly of cholera epidemics. We have reported that damage to WASH infrastructure, coupled with elevated air temperatures and followed by above average rainfall, promotes exposure of a population to contaminated water and increases the risk of an outbreak of cholera. Interestingly, global predictive risk models successful for cholera have the potential, with modification, to predict diseases caused by other clinically relevant Vibrio spp. In the research reported here, the focus was on environmental parameters associated with incidence and distribution of clinically relevant Vibrio spp. and their role in disease transmission. In addition, molecular methods designed for detection and enumeration proved useful for predictive modelling and are described, namely in the context of prediction of environmental conditions favourable to Vibrio spp., hence human health risk.
Collapse
Affiliation(s)
- Kyle D Brumfield
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA.,University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
| | - Moiz Usmani
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Kristine M Chen
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Mayank Gangwar
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Antarpreet S Jutla
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Rita R Colwell
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA.,University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
| |
Collapse
|
43
|
Izabel-Shen D, Höger AL, Jürgens K. Abundance-Occupancy Relationships Along Taxonomic Ranks Reveal a Consistency of Niche Differentiation in Marine Bacterioplankton With Distinct Lifestyles. Front Microbiol 2021; 12:690712. [PMID: 34262550 PMCID: PMC8273345 DOI: 10.3389/fmicb.2021.690712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/25/2021] [Indexed: 01/23/2023] Open
Abstract
Abundance-occupancy relationships (AORs) are an important determinant of biotic community dynamics and habitat suitability. However, little is known about their role in complex bacterial communities, either within a phylogenetic framework or as a function of niche breadth. Based on data obtained in a field study in the St. Lawrence Estuary, we used 16S rRNA gene sequencing to examine the vertical patterns, strength, and character of AORs for particle-attached and free-living bacterial assemblages. Free-living communities were phylogenetically more diverse than particle-attached communities. The dominant taxa were consistent in terms of their presence/absence but population abundances differed in surface water vs. the cold intermediate layer. Significant, positive AORs characterized all of the surveyed communities across all taxonomic ranks of bacteria, thus demonstrating an ecologically conserved trend for both free-living and particle-attached bacteria. The strength of the AORs was low at the species level but higher at and above the genus level. These results demonstrate that an assessment of the distributions and population densities of finely resolved taxa does not necessarily improve determinations of apparent niche differences in marine bacterioplankton communities at regional scales compared with the information inferred from a broad taxonomic classification.
Collapse
Affiliation(s)
- Dandan Izabel-Shen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Department of Biological Oceanography Leibniz Institute for Baltic Sea Research, Rostock, Germany
| | - Anna-Lena Höger
- Department of Biological Oceanography Leibniz Institute for Baltic Sea Research, Rostock, Germany
- Department of Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Köthen, Germany
| | - Klaus Jürgens
- Department of Biological Oceanography Leibniz Institute for Baltic Sea Research, Rostock, Germany
| |
Collapse
|
44
|
Wei W, Wang L, Fang J, Liu R. Population structure, activity potential and ecotype partitioning of Pseudoalteromonas along the vertical water column of the New Britain Trench. FEMS Microbiol Lett 2021; 368:6308368. [PMID: 34160584 DOI: 10.1093/femsle/fnab078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/21/2021] [Indexed: 11/14/2022] Open
Abstract
Microbial degradation of organic matter along the vertical profile of the water column is a major process driving the carbon cycle in the ocean. Pseudoalteromonas has been identified as a dominant genus in pelagic marine environments worldwide, playing important roles in the remineralization of organic carbon. However, the current understanding of Pseudoalteromonas was mainly based on shallow water populations or cultivated species. This study analyzed for the first time the structure, activity potential and ecotypes differentiation of Pseudoalteromonas in the water column of the New Britain Trench (NBT) down to 6000 m. Analysis on diversities of the 16S rRNA gene and their transcripts showed that Pseudoalteromonas was greatly enriched in deep-sea waters and showed high activity potentials. The deep-sea Pseudoalteromonas were significantly different from their shallow-water counterparts, suggesting an obvious ecotype division along with the vertical profile. Phylogenetic analysis on the 16S rRNA gene and hsp60 gene of 219 Pseudoalteromonas strains isolated from different depths further showed that the vertical ecotype division could even occur at the strain level, which might be a result of long-term adaptation to environmental conditions at different depths. The discovered depth-specific strains provide valuable models for further studies on adaptation, evolution and functions of the deep-sea Pseudoalteromonas.
Collapse
Affiliation(s)
- Wenxia Wei
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai,201306, China.,National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, 201306, China
| | - Li Wang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai,201306, China.,National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, 201306, China
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai,201306, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao,266000, China.,Department of Natural Sciences, Hawaii Pacific University, Honolulu, HI 96813, USA
| | - Rulong Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai,201306, China.,National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
45
|
Adaptive differentiation and rapid evolution of a soil bacterium along a climate gradient. Proc Natl Acad Sci U S A 2021; 118:2101254118. [PMID: 33906949 PMCID: PMC8106337 DOI: 10.1073/pnas.2101254118] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Increasing evidence suggests that evolutionary processes frequently shape ecological patterns; however, most microbiome studies thus far have focused on only the ecological responses of these communities. By using parallel field experiments and focusing in on a model soil bacterium, we showed that bacterial “species” are differentially adapted to local climates, leading to changes in their composition. Furthermore, we detected strain-level evolution, providing direct evidence that both ecological and evolutionary processes operate on annual timescales. The consideration of eco-evolutionary dynamics may therefore be important to understand the response of soil microbiomes to future environmental change. Microbial community responses to environmental change are largely associated with ecological processes; however, the potential for microbes to rapidly evolve and adapt remains relatively unexplored in natural environments. To assess how ecological and evolutionary processes simultaneously alter the genetic diversity of a microbiome, we conducted two concurrent experiments in the leaf litter layer of soil over 18 mo across a climate gradient in Southern California. In the first experiment, we reciprocally transplanted microbial communities from five sites to test whether ecological shifts in ecotypes of the abundant bacterium, Curtobacterium, corresponded to past adaptive differentiation. In the transplanted communities, ecotypes converged toward that of the native communities growing on a common litter substrate. Moreover, these shifts were correlated with community-weighted mean trait values of the Curtobacterium ecotypes, indicating that some of the trait variation among ecotypes could be explained by local adaptation to climate conditions. In the second experiment, we transplanted an isogenic Curtobacterium strain and tracked genomic mutations associated with the sites across the same climate gradient. Using a combination of genomic and metagenomic approaches, we identified a variety of nonrandom, parallel mutations associated with transplantation, including mutations in genes related to nutrient acquisition, stress response, and exopolysaccharide production. Together, the field experiments demonstrate how both demographic shifts of previously adapted ecotypes and contemporary evolution can alter the diversity of a soil microbiome on the same timescale.
Collapse
|
46
|
Heins A, Reintjes G, Amann RI, Harder J. Particle Collection in Imhoff Sedimentation Cones Enriches Both Motile Chemotactic and Particle-Attached Bacteria. Front Microbiol 2021; 12:643730. [PMID: 33868201 PMCID: PMC8047139 DOI: 10.3389/fmicb.2021.643730] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
Marine heterotrophic microorganisms remineralize about half of the annual primary production, with the microbiomes on and around algae and particles having a major contribution. These microbiomes specifically include free-living chemotactic and particle-attached bacteria, which are often difficult to analyze individually, as the standard method of size-selective filtration only gives access to particle-attached bacteria. In this study, we demonstrated that particle collection in Imhoff sedimentation cones enriches microbiomes that included free-living chemotactic bacteria and were distinct from particle microbiomes obtained by filtration or centrifugation. Coastal seawater was collected during North Sea phytoplankton spring blooms, and the microbiomes were investigated using 16S rRNA amplicon sequencing and fluorescence microscopy. Enrichment factors of individual operational taxonomic units (OTUs) were calculated for comparison of fractionated communities after separation with unfractionated seawater communities. Filtration resulted in a loss of cells and yielded particle fractions including bacterial aggregates, filaments, and large cells. Centrifugation had the lowest separation capacity. Particles with a sinking rate of >2.4 m day-1 were collected in sedimentation cones as a bottom fraction and enriched in free-living chemotactic bacteria, i.e., Sulfitobacter, Pseudoalteromonas, and Vibrio. Subfractions of these bottom fractions, obtained by centrifugation, showed enrichment of either free-living or particle-attached bacteria. We identified five distinct enrichment patterns across all separation techniques: mechano-sensitive and mechano-stable free-living bacteria and three groups of particle-attached bacteria. Simultaneous enrichment of particle-attached and chemotactic free-living bacteria in Imhoff sedimentation cones is a novel experimental access to these groups providing more insights into the diversity, structure, and function of particle-associated microbiomes, including members of the phycosphere.
Collapse
Affiliation(s)
- Anneke Heins
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Greta Reintjes
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany.,Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Rudolf I Amann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Jens Harder
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
47
|
Moussa M, Cauvin E, Le Piouffle A, Lucas O, Bidault A, Paillard C, Benoit F, Thuillier B, Treilles M, Travers MA, Garcia C. A MALDI-TOF MS database for fast identification of Vibrio spp. potentially pathogenic to marine mollusks. Appl Microbiol Biotechnol 2021; 105:2527-2539. [PMID: 33590268 PMCID: PMC7954726 DOI: 10.1007/s00253-021-11141-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/15/2021] [Accepted: 01/25/2021] [Indexed: 02/05/2023]
Abstract
In mollusk aquaculture, a large number of Vibrio species are considered major pathogens. Conventional methods based on DNA amplification and sequencing used to accurately identify Vibrio species are unsuitable for monitoring programs because they are time-consuming and expensive. The aim of this study was, therefore, to develop the MALDI-TOF MS method in order to establish a rapid identification technique for a large panel of Vibrio species. We created the EnviBase containing 120 main spectra projections (MSP) of the Vibrio species that are potentially responsible for mollusk diseases, comprising 25 species: V. aestuarianus, V. cortegadensis, V. tapetis and species belonging to the Coralliilyticus, Harveyi, Mediterranei, and Orientalis clades. Each MSP was constructed by the merger of raw spectra obtained from three different media and generated by three collaborating laboratories to increase the diversity of the conditions and thus obtain a good technique robustness. Perfect discrimination was obtained with all of the MSP created for the Vibrio species and even for very closely related species as V. europaeus and V. bivalvicida. The new EnviBase library was validated through a blind test on 100 Vibrio strains performed by our three collaborators who used the direct transfer and protein extraction methods. The majority of the Vibrio strains were successfully identified with the newly created EnviBase by the three laboratories for both protocol methods. This study documents the first development of a freely accessible database exclusively devoted to Vibrio found in marine environments, taking into account the high diversity of this genus. KEY POINTS: • Development of a MALDI-TOF MS database to quickly affiliate Vibrio species. • Increase of the reactivity when faced with Vibrio associated with mollusk diseases. • Validation of MALDI-TOF MS as routine diagnostic tool.
Collapse
Affiliation(s)
- M Moussa
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, F-17390, La Tremblade, France
| | - E Cauvin
- Labeo-Manche, 1352 avenue de Paris, 50000, Saint-Lô, France
| | - A Le Piouffle
- Labocea, Avenue de la Plage des Gueux, 29330, Quimper, France
| | - O Lucas
- Qualyse, ZI Montplaisir, 79220, Champdeniers Saint-Denis, France
| | - A Bidault
- Univ Brest, CNRS, IRD, Ifremer, UMR6539 LEMAR, F-29280, Plouzané, France
| | - C Paillard
- Univ Brest, CNRS, IRD, Ifremer, UMR6539 LEMAR, F-29280, Plouzané, France
| | - F Benoit
- Labeo-Manche, 1352 avenue de Paris, 50000, Saint-Lô, France
| | - B Thuillier
- Labocea, Avenue de la Plage des Gueux, 29330, Quimper, France
| | - M Treilles
- Qualyse, ZI Montplaisir, 79220, Champdeniers Saint-Denis, France
| | - M A Travers
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, F-17390, La Tremblade, France
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, F-34090, Montpellier, France
| | - Céline Garcia
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, F-17390, La Tremblade, France.
| |
Collapse
|
48
|
Sörenson E, Capo E, Farnelid H, Lindehoff E, Legrand C. Temperature Stress Induces Shift From Co-Existence to Competition for Organic Carbon in Microalgae-Bacterial Photobioreactor Community - Enabling Continuous Production of Microalgal Biomass. Front Microbiol 2021; 12:607601. [PMID: 33643237 PMCID: PMC7905023 DOI: 10.3389/fmicb.2021.607601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/12/2021] [Indexed: 12/17/2022] Open
Abstract
To better predict the consequences of environmental change on aquatic microbial ecosystems it is important to understand what enables community resilience. The mechanisms by which a microbial community maintain its overall function, for example, the cycling of carbon, when exposed to a stressor, can be explored by considering three concepts: biotic interactions, functional adaptations, and community structure. Interactions between species are traditionally considered as, e.g., mutualistic, parasitic, or neutral but are here broadly defined as either coexistence or competition, while functions relate to their metabolism (e.g., autotrophy or heterotrophy) and roles in ecosystem functioning (e.g., oxygen production, organic matter degradation). The term structure here align with species richness and diversity, where a more diverse community is though to exhibit a broader functional capacity than a less diverse community. These concepts have here been combined with ecological theories commonly used in resilience studies, i.e., adaptive cycles, panarchy, and cross-scale resilience, that describe how the status and behavior at one trophic level impact that of surrounding levels. This allows us to explore the resilience of a marine microbial community, cultivated in an outdoor photobioreactor, when exposed to a naturally occurring seasonal stress. The culture was monitored for 6weeks during which it was exposed to two different temperature regimes (21 ± 2 and 11 ± 1°C). Samples were taken for metatranscriptomic analysis, in order to assess the regulation of carbon uptake and utilization, and for amplicon (18S and 16S rRNA gene) sequencing, to characterize the community structure of both autotrophs (dominated by the green microalgae Mychonastes) and heterotrophs (associated bacterioplankton). Differential gene expression analyses suggested that community function at warm temperatures was based on concomitant utilization of inorganic and organic carbon assigned to autotrophs and heterotrophs, while at colder temperatures, the uptake of organic carbon was performed primarily by autotrophs. Upon the shift from high to low temperature, community interactions shifted from coexistence to competition for organic carbon. Network analysis indicated that the community structure showed opposite trends for autotrophs and heterotrophs in having either high or low diversity. Despite an abrupt change of temperature, the microbial community as a whole responded in a way that maintained the overall level of diversity and function within and across autotrophic and heterotrophic levels. This is in line with cross-scale resilience theory describing how ecosystems may balance functional overlaps within and functional redundancy between levels in order to be resilient to environmental change (such as temperature).
Collapse
Affiliation(s)
- Eva Sörenson
- Department of Biology and Environmental Science, Centre of Ecology and Evolution and Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Eric Capo
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Hanna Farnelid
- Department of Biology and Environmental Science, Centre of Ecology and Evolution and Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Elin Lindehoff
- Department of Biology and Environmental Science, Centre of Ecology and Evolution and Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Catherine Legrand
- Department of Biology and Environmental Science, Centre of Ecology and Evolution and Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
49
|
Abstract
Genome-wide association studies in bacteria have great potential to deliver a better understanding of the genetic basis of many biologically important phenotypes, including antibiotic resistance, pathogenicity, and host adaptation. Such studies need however to account for the specificities of bacterial genomics, especially in terms of population structure, homologous recombination, and genomic plasticity. A powerful way to tackle this challenge is to use a phylogenetic approach, which is based on long-standing methodology for the evolutionary analysis of bacterial genomic data. Here we present both the theoretical and practical aspects involved in the use of phylogenetic methods for bacterial genome-wide association studies.
Collapse
Affiliation(s)
- Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry, UK.
| |
Collapse
|
50
|
Yu K, Li P, He Y, Zhang B, Chen Y, Yang J. Unveiling dynamics of size-dependent antibiotic resistome associated with microbial communities in full-scale wastewater treatment plants. WATER RESEARCH 2020; 187:116450. [PMID: 32998097 DOI: 10.1016/j.watres.2020.116450] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/31/2020] [Accepted: 09/22/2020] [Indexed: 05/25/2023]
Abstract
Serious concerns have been raised regarding antibiotic resistance genes (ARGs) with respect to their potential threat to human health. Wastewater treatment plants (WWTPs) have been considered to be hotspots for ARGs. In this study, high-throughput quantitative polymerase chain reaction (HT-qPCR) was used to profile size-dependent ARGs and mobile genetic elements (MGEs) divided by particle-associated (PA) assemblages (>3.0-μm), free-living (FL) bacteria (0.2 - 3.0-μm) and cell-free (CF) DNA (< 0.2-μm) in two full-scale WWTPs (plants A and B) and a receiving stream. The results revealed that FL-ARGs were predominant in WWTPs and the receiving stream, especially in the final effluent of both plants. More than 40 types of CF-ARGs and CF-MGEs were detected with absolute abundances ranging from 6.0 ± 0.7 × 105 to 1.0 ± 0.2 × 108 copies/mL in wastewater, and relatively high abundances were also detected in the final effluent of the two plants, suggesting that CF-ARGs were important sources spreading from the WWTPs to the receiving environment. Plant A exhibited higher log-removal of size-fractionated ARGs and MGEs than was observed for plant B, which was attributed to the enhanced settleability of PA assemblages and FL bacteria by additional macrophytes and chemical coagulants. Ultraviolet disinfection had limited effects on ARGs and MGEs of the PA and FL fractions, which was probably ascribed to the protective matrices of the particles and cell walls. The bacterial communities of the two plants were significantly different among the size fractions (p < 0.01). The variation partitioning analysis (VPA) indicated that the microbial community structures and MGEs contributed a variation of 68.2% in total to the relative abundance changes of size-fractionated ARGs. Procrustes analyses and Mantel tests showed that the relative abundances of ARGs were significantly correlated with bacterial community structures. These results suggested that the bacterial community structures and MGEs might have been the main drivers of the size-fractionated ARG disseminations. This study provides novel insights into size-fractionated ARGs and MGEs in full-scale WWTPs and may lead to the identification of key targets to control the spread of ARGs.
Collapse
Affiliation(s)
- Kaifeng Yu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Peng Li
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yiliang He
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.; Shanghai Institute of Pollution Control and Ecological Security, 800 Dongchuan Road, Shanghai 200240, China.
| | - Bo Zhang
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yihan Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 246011, China
| | - Jinghan Yang
- School of Environmental and Municipal Engineering, Lanzhou Jiao Tong University, Lanzhou 730070, China
| |
Collapse
|