1
|
Lu X, Franz EA, Robertson SP, Markie D. Aberrant connectivity of the lateralized readiness system in non-syndromic congenital mirror movements. Clin Neurophysiol 2024; 167:61-73. [PMID: 39293386 DOI: 10.1016/j.clinph.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/20/2024]
Abstract
OBJECTIVES Non-syndromic CMM has a complex phenotype. Abnormal corpus callosum and corticospinal tract processes are suggested mechanisms of the mirror movements. To further explore behavioural and neural phenotype(s) the present study tests the hypothesis that the response readiness network comprising supplementary motor area (SMA) and connections with motor cortex (M1) functions abnormally in CMM. METHODS Twelve participants with (non-syndromic) CMM and a control group (n = 28) were tested on a probabilistic Go-NoGo task while electroencephalography (EEG) was recorded to assess possible group differences in lateralized readiness of voluntary hand movements together with measures of SMA-M1 functional connectivity. RESULTS The CMM group demonstrated delayed lateralized readiness and stronger functional connectivity between left-brain SMA-M1 regions. Connectivity strength was correlated with measures of behavioural performance but not with extent of mirroring. CONCLUSIONS Abnormalities in brain processes upstream of movement output likely reflect neurocompensation as a result of lifelong experience with mirroring in CMM. SIGNIFICANCE These findings extend the known neural abnormalities in CMM to include brain networks upstream from those involved in motor output and raise the question of whether neurocompensatory plasticity might be involved.
Collapse
Affiliation(s)
- Xueyao Lu
- Action Brain and Cognition Lab, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Elizabeth A Franz
- Action Brain and Cognition Lab, Department of Psychology, University of Otago, Dunedin, New Zealand.
| | - Stephen P Robertson
- Clinical Genetics Group, Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand
| | - David Markie
- Department of Pathology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Sullivan KG, Bashaw GJ. Commissureless acts as a substrate adapter in a conserved Nedd4 E3 ubiquitin ligase pathway to promote axon growth across the midline. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.13.562283. [PMID: 37905056 PMCID: PMC10614773 DOI: 10.1101/2023.10.13.562283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
In both vertebrates and invertebrates, commissural neurons prevent premature responsiveness to the midline repellant Slit by downregulating surface levels of its receptor Roundabout1 (Robo1). In Drosophila, Commissureless (Comm) plays a critical role in this process; however, there is conflicting data on the underlying molecular mechanism. Here, we demonstrate that the conserved PY motifs in the cytoplasmic domain of Comm are required allow the ubiquitination and lysosomal degradation of Robo1. Disruption of these motifs prevents Comm from localizing to Lamp1 positive late endosomes and to promote axon growth across the midline in vivo. In addition, we conclusively demonstrate a role for Nedd4 in midline crossing. Genetic analysis shows that nedd4 mutations result in midline crossing defects in the Drosophila embryonic nerve cord, which can be rescued by introduction of exogenous Nedd4. Biochemical evidence shows that Nedd4 incorporates into a three-member complex with Comm and Robo1 in a PY motif-dependent manner. Finally, we present genetic evidence that Nedd4 acts with Comm in the embryonic nerve cord to downregulate Robo1 levels. Taken together, these findings demonstrate that Comm promotes midline crossing in the nerve cord by facilitating Robo1 ubiquitination by Nedd4, ultimately leading to its degradation.
Collapse
Affiliation(s)
- Kelly G. Sullivan
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, 415 Curie Blvd., Philadelphia, PA, 19104, USA
| | - Greg J. Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, 415 Curie Blvd., Philadelphia, PA, 19104, USA
| |
Collapse
|
3
|
Chaudhari K, Zhang K, Yam PT, Zang Y, Kramer DA, Gagnon S, Schlienger S, Calabretta S, Michaud JF, Collins M, Wang J, Srour M, Chen B, Charron F, Bashaw GJ. A human DCC variant causing mirror movement disorder reveals that the WAVE regulatory complex mediates axon guidance by netrin-1-DCC. Sci Signal 2024; 17:eadk2345. [PMID: 39353037 PMCID: PMC11568466 DOI: 10.1126/scisignal.adk2345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 05/06/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
The axon guidance cue netrin-1 signals through its receptor DCC (deleted in colorectal cancer) to attract commissural axons to the midline. Variants in DCC are frequently associated with congenital mirror movements (CMMs). A CMM-associated variant in the cytoplasmic tail of DCC is located in a conserved motif predicted to bind to a regulator of actin dynamics called the WAVE (Wiskott-Aldrich syndrome protein-family verprolin homologous protein) regulatory complex (WRC). Here, we explored how this variant affects DCC function and may contribute to CMM. We found that a conserved WRC-interacting receptor sequence (WIRS) motif in the cytoplasmic tail of DCC mediated the interaction between DCC and the WRC. This interaction was required for netrin-1-mediated axon guidance in cultured rodent commissural neurons. Furthermore, the WIRS motif of Fra, the Drosophila DCC ortholog, was required for attractive signaling in vivo at the Drosophila midline. The CMM-associated R1343H variant of DCC, which altered the WIRS motif, prevented the DCC-WRC interaction and impaired axon guidance in cultured commissural neurons and in Drosophila. The findings reveal the WRC as a pivotal component of netrin-1-DCC signaling and uncover a molecular mechanism explaining how a human genetic variant in the cytoplasmic tail of DCC may lead to CMM.
Collapse
Affiliation(s)
- Karina Chaudhari
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- These authors contributed equally
| | - Kaiyue Zhang
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC, H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3A 2B4, Canada
- These authors contributed equally
| | - Patricia T. Yam
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC, H2W 1R7, Canada
| | - Yixin Zang
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daniel A. Kramer
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Sarah Gagnon
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sabrina Schlienger
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC, H2W 1R7, Canada
- Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montreal, QC, H3A 0G4, Canada
| | - Sara Calabretta
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC, H2W 1R7, Canada
| | - Jean-Francois Michaud
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC, H2W 1R7, Canada
| | - Meagan Collins
- McGill University Health Center Research Institute, Montreal, QC, H4A 3J1, Canada
| | - Junmei Wang
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Myriam Srour
- Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Quebec, Canada
- Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montreal, QC, H4A 3J1, Canada
- McGill University Health Center Research Institute, Montreal, QC, H4A 3J1, Canada
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Frédéric Charron
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC, H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3A 2B4, Canada
- Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montreal, QC, H3A 0G4, Canada
- Department of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Greg J. Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
4
|
Hu L, Liu XY, Zhao L, Hu ZB, Li ZX, Liu WT, Song NN, Hu YQ, Jiang LP, Zhang L, Tao YC, Zhang Q, Chen JY, Lang B, Wang YB, Yue L, Ding YQ. Ventricular Netrin-1 deficiency leads to defective pyramidal decussation and mirror movement in mice. Cell Death Dis 2024; 15:343. [PMID: 38760361 PMCID: PMC11101614 DOI: 10.1038/s41419-024-06719-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/19/2024]
Abstract
The corticospinal tract (CST) is the principal neural pathway responsible for conducting voluntary movement in the vertebrate nervous system. Netrin-1 is a well-known guidance molecule for midline crossing of commissural axons during embryonic development. Families with inherited Netrin-1 mutations display congenital mirror movements (CMM), which are associated with malformations of pyramidal decussation in most cases. Here, we investigated the role of Netrin-1 in CST formation by generating conditional knockout (CKO) mice using a Gfap-driven Cre line. A large proportion of CST axons spread laterally in the ventral medulla oblongata, failed to decussate and descended in the ipsilateral spinal white matter of Ntn1Gfap CKO mice. Netrin-1 mRNA was expressed in the ventral ventricular zone (VZ) and midline, while Netrin-1 protein was transported by radial glial cells to the ventral medulla, through which CST axons pass. The level of transported Netrin-1 protein was significantly reduced in Ntn1Gfap CKO mice. In addition, Ntn1Gfap CKO mice displayed increased symmetric movements. Our findings indicate that VZ-derived Netrin-1 deletion leads to an abnormal trajectory of the CST in the spinal cord due to the failure of CST midline crossing and provides novel evidence supporting the idea that the Netrin-1 signalling pathway is involved in the pathogenesis of CMM.
Collapse
Affiliation(s)
- Ling Hu
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China.
| | - Xi-Yue Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Li Zhao
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
| | - Zhi-Bin Hu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ze-Xuan Li
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
| | - Wei-Tang Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ning-Ning Song
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
| | - Yun-Qing Hu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Luo-Peng Jiang
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
| | - Lei Zhang
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Yun-Chao Tao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Qiong Zhang
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
| | - Jia-Yin Chen
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
| | - Bing Lang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410083, China
| | - Yu-Bing Wang
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Lei Yue
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Yu-Qiang Ding
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
5
|
Tsytsarev V, Plachez C, Zhao S, O'Connor DH, Erzurumlu RS. Bilateral Whisker Representations in the Primary Somatosensory Cortex in Robo3cKO Mice Are Reflected in the Primary Motor Cortex. Neuroscience 2024; 544:128-137. [PMID: 38447690 PMCID: PMC11146016 DOI: 10.1016/j.neuroscience.2024.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/09/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
In Robo3cKO mice, midline crossing defects of the trigeminothalamic projections from the trigeminal principal sensory nucleus result in bilateral whisker maps in the somatosensory thalamus and consequently in the face representation area of the primary somatosensory (S1) cortex (Renier et al., 2017; Tsytsarev et al., 2017). We investigated whether this bilateral sensory representation in the whisker-barrel cortex is also reflected in the downstream projections from the S1 to the primary motor (M1) cortex. To label these projections, we injected anterograde viral axonal tracer in S1 cortex. Corticocortical projections from the S1 distribute to similar areas across the ipsilateral hemisphere in control and Robo3cKO mice. Namely, in both genotypes they extend to the M1, premotor/prefrontal cortex (PMPF), secondary somatosensory (S2) cortex. Next, we performed voltage-sensitive dye imaging (VSDi) in the left hemisphere following ipsilateral and contralateral single whisker stimulation. While controls showed only activation in the contralateral whisker barrel cortex and M1 cortex, the Robo3cKO mouse left hemisphere was activated bilaterally in both the barrel cortex and the M1 cortex. We conclude that the midline crossing defect of the trigeminothalamic projections leads to bilateral whisker representations not only in the thalamus and the S1 cortex but also downstream from the S1, in the M1 cortex.
Collapse
Affiliation(s)
- Vassiliy Tsytsarev
- Department of Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSF-2, Baltimore, MD 21201, USA.
| | - Céline Plachez
- Department of Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSF-2, Baltimore, MD 21201, USA.
| | - Shuxin Zhao
- Department of Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSF-2, Baltimore, MD 21201, USA.
| | - Daniel H O'Connor
- The Zanvyl Krieger Mind/Brain Institute, The Johns Hopkins University, 3400 N. Charles Street, 338 Krieger Hall, Baltimore, MD 21218, USA.
| | - Reha S Erzurumlu
- Department of Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSF-2, Baltimore, MD 21201, USA.
| |
Collapse
|
6
|
Mitchell KJ. Variability in Neural Circuit Formation. Cold Spring Harb Perspect Biol 2024; 16:a041504. [PMID: 38253418 PMCID: PMC10910361 DOI: 10.1101/cshperspect.a041504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The study of neural development is usually concerned with the question of how nervous systems get put together. Variation in these processes is usually of interest as a means of revealing these normative mechanisms. However, variation itself can be an object of study and is of interest from multiple angles. First, the nature of variation in both the processes and the outcomes of neural development is relevant to our understanding of how these processes and outcomes are encoded in the genome. Second, variation in the wiring of the brain in humans may underlie variation in all kinds of psychological and behavioral traits, as well as neurodevelopmental disorders. And third, genetic variation that affects circuit development provides the raw material for evolutionary change. Here, I examine these different aspects of variation in circuit development and consider what they may tell us about these larger questions.
Collapse
Affiliation(s)
- Kevin J Mitchell
- Smurfit Institute of Genetics and Institute of Neuroscience, Trinity College Dublin, Dublin D02 PN40, Ireland
| |
Collapse
|
7
|
Prato A, Cirnigliaro L, Maugeri F, Luca A, Giuliano L, Vitiello G, Errichiello E, Valente EM, Del Giudice E, Mostile G, Rizzo R, Barone R. Paroxysmal Dystonic Posturing Mimicking Nocturnal Leg Cramps as a Presenting Sign in an Infant with DCC Mutation, Callosal Agenesis and Mirror Movements. J Clin Med 2024; 13:1109. [PMID: 38398422 PMCID: PMC10889236 DOI: 10.3390/jcm13041109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Background/Objectives: Pathogenic variants in the deleted in colorectal cancer gene (DCC), encoding the Netrin-1 receptor, may lead to mirror movements (MMs) associated with agenesis/dysgenesis of the corpus callosum (ACC) and cognitive and/or neuropsychiatric issues. The clinical phenotype is related to the biological function of DCC in the corpus callosum and corticospinal tract development as Netrin-1 is implicated in the guidance of developing axons toward the midline. We report on a child with a novel inherited, monoallelic, pathogenic variant in the DCC gene. Methods: Standardized measures and clinical scales were used to assess psychomotor development, communication and social skills, emotional and behavioural difficulties. MMs were measured via the Woods and Teuber classification. Exome sequencing was performed on affected and healthy family members. Results: The patient's clinical presentation during infancy consisted of paroxysmal dystonic posturing when asleep, mimicking nocturnal leg cramps. A brain magnetic resonance imaging (MRI) showed complete ACC. He developed typical upper limb MMs during childhood and a progressively evolving neuro-phenotype with global development delay and behavioural problems. We found an intrafamilial clinical variability associated with DCC mutations: the proband's father and uncle shared the same DCC variant, with a milder clinical phenotype. The atypical early clinical presentation of the present patient expands the clinical spectrum associated with DCC variants, especially those in the paediatric age. Conclusions: This study underlines the importance of in-depth genetic investigations in young children with ACC and highlights the need for further detailed analyses of early motor symptoms in infants with DCC mutations.
Collapse
Affiliation(s)
- Adriana Prato
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (A.P.); (L.C.); (F.M.); (R.R.)
| | - Lara Cirnigliaro
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (A.P.); (L.C.); (F.M.); (R.R.)
| | - Federica Maugeri
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (A.P.); (L.C.); (F.M.); (R.R.)
| | - Antonina Luca
- Department “G.F. Ingrassia”, Section of Neurosciences, University of Catania, 95123 Catania, Italy; (A.L.); (L.G.); (G.M.)
| | - Loretta Giuliano
- Department “G.F. Ingrassia”, Section of Neurosciences, University of Catania, 95123 Catania, Italy; (A.L.); (L.G.); (G.M.)
| | - Giuseppina Vitiello
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy;
| | - Edoardo Errichiello
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (E.E.); (E.M.V.)
- Neurogenetics Research Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Enza Maria Valente
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (E.E.); (E.M.V.)
- Neurogenetics Research Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Ennio Del Giudice
- Child Neurology, Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy;
| | - Giovanni Mostile
- Department “G.F. Ingrassia”, Section of Neurosciences, University of Catania, 95123 Catania, Italy; (A.L.); (L.G.); (G.M.)
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, OASI Research Institute-IRCCS, 94018 Troina, Italy
| | - Renata Rizzo
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (A.P.); (L.C.); (F.M.); (R.R.)
| | - Rita Barone
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (A.P.); (L.C.); (F.M.); (R.R.)
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, OASI Research Institute-IRCCS, 94018 Troina, Italy
| |
Collapse
|
8
|
Collins Hutchinson ML, St-Onge J, Schlienger S, Boudrahem-Addour N, Mougharbel L, Michaud JF, Lloyd C, Bruneau E, Roux C, Sahly AN, Osterman B, Myers KA, Rouleau GA, Jimenez Cruz DA, Rivière JB, Accogli A, Charron F, Srour M. Defining the Genetic Landscape of Congenital Mirror Movements in 80 Affected Individuals. Mov Disord 2024; 39:400-410. [PMID: 38314870 DOI: 10.1002/mds.29669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Congenital mirror movements (CMM) is a rare neurodevelopmental disorder characterized by involuntary movements from one side of the body that mirror voluntary movements on the opposite side. To date, five genes have been associated with CMM, namely DCC, RAD51, NTN1, ARHGEF7, and DNAL4. OBJECTIVE The aim of this study is to characterize the genetic landscape of CMM in a large group of 80 affected individuals. METHODS We screened 80 individuals with CMM from 43 families for pathogenic variants in CMM genes. In large CMM families, we tested for presence of pathogenic variants in multiple affected and unaffected individuals. In addition, we evaluated the impact of three missense DCC variants on binding between DCC and Netrin-1 in vitro. RESULTS Causal pathogenic/likely pathogenic variants were found in 35% of probands overall, and 70% with familial CMM. The most common causal gene was DCC, responsible for 28% of CMM probands and 80% of solved cases. RAD51, NTN1, and ARHGEF7 were rare causes of CMM, responsible for 2% each. Penetrance of CMM in DCC pathogenic variant carriers was 68% and higher in males than females (74% vs. 54%). The three tested missense variants (p.Ile164Thr; p.Asn176Ser; and p.Arg1343His) bind Netrin-1 similarly to wild type DCC. CONCLUSIONS A genetic etiology can be identified in one third of CMM individuals, with DCC being the most common gene involved. Two thirds of CMM individuals were unsolved, highlighting that CMM is genetically heterogeneous and other CMM genes are yet to be discovered. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Meagan L Collins Hutchinson
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Judith St-Onge
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | | | | | - Lina Mougharbel
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | | | - Clara Lloyd
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Elena Bruneau
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Cedric Roux
- Bioinformatics Platform, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Ahmed N Sahly
- Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montreal, Quebec, Canada
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia
| | - Bradley Osterman
- Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Kenneth A Myers
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Guy A Rouleau
- Montréal Neurological Institute-Hospital, McGill University, Montréal, Quebec, Canada
| | | | - Jean-Baptiste Rivière
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Andrea Accogli
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Frederic Charron
- Montreal Clinical Research Institute, Montreal, Quebec, Canada
- Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Myriam Srour
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Trouillard O, Dupaigne P, Dunoyer M, Doulazmi M, Herlin MK, Frismand S, Riou A, Legros V, Chevreux G, Veaute X, Busso D, Fouquet C, Saint-Martin C, Méneret A, Trembleau A, Dusart I, Dubacq C, Roze E. Congenital mirror movements are associated with defective polymerisation of RAD51. J Med Genet 2023; 60:1116-1126. [PMID: 37308287 DOI: 10.1136/jmg-2023-109189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/21/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Mirror movements are involuntary movements of one hand that mirror intentional movements of the other hand. Congenital mirror movements (CMM) is a rare genetic disorder with autosomal dominant inheritance, in which mirror movements are the main neurological manifestation. CMM is associated with an abnormal decussation of the corticospinal tract, a major motor tract for voluntary movements. RAD51 is known to play a key role in homologous recombination with a critical function in DNA repair. While RAD51 haploinsufficiency was first proposed to explain CMM, other mechanisms could be involved. METHODS We performed Sanger sequencing of RAD51 in five newly identified CMM families to identify new pathogenic variants. We further investigated the expression of wild-type and mutant RAD51 in the patients' lymphoblasts at mRNA and protein levels. We then characterised the functions of RAD51 altered by non-truncating variants using biochemical approaches. RESULTS The level of wild-type RAD51 protein was lower in the cells of all patients with CMM compared with their non-carrier relatives. The reduction was less pronounced in asymptomatic carriers. In vitro, mutant RAD51 proteins showed loss-of-function for polymerisation, DNA binding and strand exchange activity. CONCLUSION Our study demonstrates that RAD51 haploinsufficiency, including loss-of-function of non-truncating variants, results in CMM. The incomplete penetrance likely results from post-transcriptional compensation. Changes in RAD51 levels and/or polymerisation properties could influence guidance of the corticospinal axons during development. Our findings open up new perspectives to understand the role of RAD51 in neurodevelopment.
Collapse
Affiliation(s)
- Oriane Trouillard
- INSERM, CNRS, Institut de Biologie Paris Seine, IBPS, Neuroscience Paris Seine, NPS, Sorbonne Université, F-75005 Paris, France
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Pauline Dupaigne
- Genome Maintenance and Molecular Microscopy UMR9019 CNRS, Université Paris-Saclay, Gustave Roussy, F-94805 Villejuif Cedex, France
| | - Margaux Dunoyer
- Hôpital Pitié-Salpêtrière, Département de Neurologie, AP-HP, Paris, France
| | - Mohamed Doulazmi
- INSERM, CNRS, Institut de Biologie Paris Seine, IBPS, Biological Adaptation and Ageing, B2A, Sorbonne Université, F-75005 Paris, France
| | - Morten Krogh Herlin
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | | | - Audrey Riou
- Service de génétique clinique & Service de neurologie, CHU Rennes, Rennes, France
| | - Véronique Legros
- CNRS, Institut Jacques Monod, Université Paris Cité, F-75013 Paris, France
| | - Guillaume Chevreux
- CNRS, Institut Jacques Monod, Université Paris Cité, F-75013 Paris, France
| | - Xavier Veaute
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, CIGEx/iRCM/IBFJ, Université Paris Cité, F-92260 Fontenay-aux-Roses, France
| | - Didier Busso
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, CIGEx/iRCM/IBFJ, Université Paris Cité, F-92260 Fontenay-aux-Roses, France
| | - Coralie Fouquet
- INSERM, CNRS, Institut de Biologie Paris Seine, IBPS, Neuroscience Paris Seine, NPS, Sorbonne Université, F-75005 Paris, France
| | - Cécile Saint-Martin
- AP-HP, Hôpital Pitié-Salpêtrière, Département de Génétique Médicale, Sorbonne Université, Paris, France
| | - Aurélie Méneret
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France
- Hôpital Pitié-Salpêtrière, DMU Neuroscience 6, AP-HP, Paris, France
| | - Alain Trembleau
- INSERM, CNRS, Institut de Biologie Paris Seine, IBPS, Neuroscience Paris Seine, NPS, Sorbonne Université, F-75005 Paris, France
| | - Isabelle Dusart
- INSERM, CNRS, Institut de Biologie Paris Seine, IBPS, Neuroscience Paris Seine, NPS, Sorbonne Université, F-75005 Paris, France
| | - Caroline Dubacq
- INSERM, CNRS, Institut de Biologie Paris Seine, IBPS, Neuroscience Paris Seine, NPS, Sorbonne Université, F-75005 Paris, France
| | - Emmanuel Roze
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France
- Hôpital Pitié-Salpêtrière, DMU Neuroscience 6, AP-HP, Paris, France
| |
Collapse
|
10
|
Rapti G. Regulation of axon pathfinding by astroglia across genetic model organisms. Front Cell Neurosci 2023; 17:1241957. [PMID: 37941606 PMCID: PMC10628440 DOI: 10.3389/fncel.2023.1241957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/07/2023] [Indexed: 11/10/2023] Open
Abstract
Glia and neurons are intimately associated throughout bilaterian nervous systems, and were early proposed to interact for patterning circuit assembly. The investigations of circuit formation progressed from early hypotheses of intermediate guideposts and a "glia blueprint", to recent genetic and cell manipulations, and visualizations in vivo. An array of molecular factors are implicated in axon pathfinding but their number appears small relatively to circuit complexity. Comprehending this circuit complexity requires to identify unknown factors and dissect molecular topographies. Glia contribute to both aspects and certain studies provide molecular and functional insights into these contributions. Here, I survey glial roles in guiding axon navigation in vivo, emphasizing analogies, differences and open questions across major genetic models. I highlight studies pioneering the topic, and dissect recent findings that further advance our current molecular understanding. Circuits of the vertebrate forebrain, visual system and neural tube in zebrafish, mouse and chick, the Drosophila ventral cord and the C. elegans brain-like neuropil emerge as major contexts to study glial cell functions in axon navigation. I present astroglial cell types in these models, and their molecular and cellular interactions that drive axon guidance. I underline shared principles across models, conceptual or technical complications, and open questions that await investigation. Glia of the radial-astrocyte lineage, emerge as regulators of axon pathfinding, often employing common molecular factors across models. Yet this survey also highlights different involvements of glia in embryonic navigation or pioneer axon pathfinding, and unknowns in the molecular underpinnings of glial cell functions. Future cellular and molecular investigations should complete the comprehensive view of glial roles in circuit assembly.
Collapse
Affiliation(s)
- Georgia Rapti
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, Rome, Italy
- Interdisciplinary Center of Neurosciences, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
11
|
Quattrone A, Latorre A, Magrinelli F, Mulroy E, Rajan R, Neo RJ, Quattrone A, Rothwell JC, Bhatia KP. A Reflection on Motor Overflow, Mirror Phenomena, Synkinesia and Entrainment. Mov Disord Clin Pract 2023; 10:1243-1252. [PMID: 37772299 PMCID: PMC10525069 DOI: 10.1002/mdc3.13798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 09/30/2023] Open
Abstract
In patients with movement disorders, voluntary movements can sometimes be accompanied by unintentional muscle contractions in other body regions. In this review, we discuss clinical and pathophysiological aspects of several motor phenomena including mirror movements, dystonic overflow, synkinesia, entrainment and mirror dystonia, focusing on their similarities and differences. These phenomena share some common clinical and pathophysiological features, which often leads to confusion in their definition. However, they differ in several aspects, such as the body part showing the undesired movement, the type of this movement (identical or not to the intentional movement), the underlying neurological condition, and the role of primary motor areas, descending pathways and inhibitory circuits involved, suggesting that these are distinct phenomena. We summarize the main features of these fascinating clinical signs aiming to improve the clinical recognition and standardize the terminology in research studies. We also suggest that the term "mirror dystonia" may be not appropriate to describe this peculiar phenomenon which may be closer to dystonic overflow rather than to the classical mirror movements.
Collapse
Affiliation(s)
- Andrea Quattrone
- Institute of NeurologyUniversity “Magna Graecia”CatanzaroItaly
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Eoin Mulroy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Roopa Rajan
- Department of NeurologyAll India Institute of Medical Sciences (AIIMS)New DelhiIndia
| | - Ray Jen Neo
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
- Department of NeurologyHospital Kuala LumpurKuala LumpurMalaysia
| | - Aldo Quattrone
- Neuroscience Research Center, Department of Medical and Surgical SciencesUniversity “Magna Graecia”CatanzaroItaly
| | - John C. Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Kailash P. Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| |
Collapse
|
12
|
Nickerson KR, Tom I, Cortés E, Abolafia JR, Özkan E, Gonzalez LC, Jaworski A. WFIKKN2 is a bifunctional axon guidance cue that signals through divergent DCC family receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.544950. [PMID: 37398498 PMCID: PMC10312737 DOI: 10.1101/2023.06.15.544950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Axon pathfinding is controlled by attractive and repulsive molecular cues that activate receptors on the axonal growth cone, but the full repertoire of axon guidance molecules remains unknown. The vertebrate DCC receptor family contains the two closely related members DCC and Neogenin with prominent roles in axon guidance and three additional, divergent members - Punc, Nope, and Protogenin - for which functions in neural circuit formation have remained elusive. We identified a secreted Punc/Nope/Protogenin ligand, WFIKKN2, which guides mouse peripheral sensory axons through Nope-mediated repulsion. In contrast, WFIKKN2 attracts motor axons, but not via Nope. These findings identify WFIKKN2 as a bifunctional axon guidance cue that acts through divergent DCC family members, revealing a remarkable diversity of ligand interactions for this receptor family in nervous system wiring. One-Sentence Summary WFIKKN2 is a ligand for the DCC family receptors Punc, Nope, and Prtg that repels sensory axons and attracts motor axons.
Collapse
|
13
|
Schlienger S, Yam PT, Balekoglu N, Ducuing H, Michaud JF, Makihara S, Kramer DK, Chen B, Fasano A, Berardelli A, Hamdan FF, Rouleau GA, Srour M, Charron F. Genetics of mirror movements identifies a multifunctional complex required for Netrin-1 guidance and lateralization of motor control. SCIENCE ADVANCES 2023; 9:eadd5501. [PMID: 37172092 PMCID: PMC10181192 DOI: 10.1126/sciadv.add5501] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 04/06/2023] [Indexed: 05/14/2023]
Abstract
Mirror movements (MM) disorder is characterized by involuntary movements on one side of the body that mirror intentional movements on the opposite side. We performed genetic characterization of a family with autosomal dominant MM and identified ARHGEF7, a RhoGEF, as a candidate MM gene. We found that Arhgef7 and its partner Git1 bind directly to Dcc. Dcc is the receptor for Netrin-1, an axon guidance cue that attracts commissural axons to the midline, promoting the midline crossing of axon tracts. We show that Arhgef7 and Git1 are required for Netrin-1-mediated axon guidance and act as a multifunctional effector complex. Arhgef7/Git1 activates Rac1 and Cdc42 and inhibits Arf1 downstream of Netrin-1. Furthermore, Arhgef7/Git1, via Arf1, mediates the Netrin-1-induced increase in cell surface Dcc. Mice heterozygous for Arhgef7 have defects in commissural axon trajectories and increased symmetrical paw placements during skilled walking, a MM-like phenotype. Thus, we have delineated how ARHGEF7 mutation causes MM.
Collapse
Affiliation(s)
- Sabrina Schlienger
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
- Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Patricia T. Yam
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
| | - Nursen Balekoglu
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Hugo Ducuing
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
| | - Jean-Francois Michaud
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
| | - Shirin Makihara
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Daniel K. Kramer
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, ON, Canada
- Division of Neurology, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, Toronto, ON, Canada
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli (IS), Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Fadi F. Hamdan
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and University of Montreal, Montreal, QC H3T1C5, Canada
| | - Guy A. Rouleau
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and University of Montreal, Montreal, QC H3T1C5, Canada
- Department of Human Genetics, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Myriam Srour
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montreal, QC H4A 3J1, Canada
- McGill University Health Center Research Institute, Montreal, QC H4A 3J1, Canada
| | - Frederic Charron
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
- Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
14
|
AlAbdi L, Desbois M, Rusnac DV, Sulaiman RA, Rosenfeld JA, Lalani S, Murdock DR, Burrage LC, Billie Au PY, Towner S, Wilson WG, Wong L, Brunet T, Strobl-Wildemann G, Burton JE, Hoganson G, McWalter K, Begtrup A, Zarate YA, Christensen EL, Opperman KJ, Giles AC, Helaby R, Kania A, Zheng N, Grill B, Alkuraya FS. Loss-of-function variants in MYCBP2 cause neurobehavioural phenotypes and corpus callosum defects. Brain 2023; 146:1373-1387. [PMID: 36200388 PMCID: PMC10319777 DOI: 10.1093/brain/awac364] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 11/14/2022] Open
Abstract
The corpus callosum is a bundle of axon fibres that connects the two hemispheres of the brain. Neurodevelopmental disorders that feature dysgenesis of the corpus callosum as a core phenotype offer a valuable window into pathology derived from abnormal axon development. Here, we describe a cohort of eight patients with a neurodevelopmental disorder characterized by a range of deficits including corpus callosum abnormalities, developmental delay, intellectual disability, epilepsy and autistic features. Each patient harboured a distinct de novo variant in MYCBP2, a gene encoding an atypical really interesting new gene (RING) ubiquitin ligase and signalling hub with evolutionarily conserved functions in axon development. We used CRISPR/Cas9 gene editing to introduce disease-associated variants into conserved residues in the Caenorhabditis elegans MYCBP2 orthologue, RPM-1, and evaluated functional outcomes in vivo. Consistent with variable phenotypes in patients with MYCBP2 variants, C. elegans carrying the corresponding human mutations in rpm-1 displayed axonal and behavioural abnormalities including altered habituation. Furthermore, abnormal axonal accumulation of the autophagy marker LGG-1/LC3 occurred in variants that affect RPM-1 ubiquitin ligase activity. Functional genetic outcomes from anatomical, cell biological and behavioural readouts indicate that MYCBP2 variants are likely to result in loss of function. Collectively, our results from multiple human patients and CRISPR gene editing with an in vivo animal model support a direct link between MYCBP2 and a human neurodevelopmental spectrum disorder that we term, MYCBP2-related developmental delay with corpus callosum defects (MDCD).
Collapse
Affiliation(s)
- Lama AlAbdi
- Department of Zoology, College of Science, King Saud University, Riyadh 11362, Saudi Arabia
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Muriel Desbois
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Domniţa-Valeria Rusnac
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Raashda A Sulaiman
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Seema Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - David R Murdock
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Ping Yee Billie Au
- Department of Medical Genetics, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Shelley Towner
- Pediatric Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - William G Wilson
- Pediatric Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Lawrence Wong
- Department of Genetics, Northern California Kaiser Permanente, Oakland, CA 94611, USA
| | - Theresa Brunet
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Neurogenomics (ING), Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | | | - Jennifer E Burton
- Department of Genetics, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | - George Hoganson
- Department of Genetics, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | - Kirsty McWalter
- Genedx, Inc., 207 Perry Parkway, Gaithersburg, MD 20877, USA
| | - Amber Begtrup
- Genedx, Inc., 207 Perry Parkway, Gaithersburg, MD 20877, USA
| | - Yuri A Zarate
- Section of Genetics and Metabolism, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Elyse L Christensen
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Karla J Opperman
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Andrew C Giles
- Division of Medical Sciences, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada
| | - Rana Helaby
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Artur Kania
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, QC H3A 2B4, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC H3A 2B2, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| | - Ning Zheng
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| |
Collapse
|
15
|
Thomas M, Dubacq C, Rabut E, Lopez BS, Guirouilh-Barbat J. Noncanonical Roles of RAD51. Cells 2023; 12:cells12081169. [PMID: 37190078 DOI: 10.3390/cells12081169] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Homologous recombination (HR), an evolutionary conserved pathway, plays a paramount role(s) in genome plasticity. The pivotal HR step is the strand invasion/exchange of double-stranded DNA by a homologous single-stranded DNA (ssDNA) covered by RAD51. Thus, RAD51 plays a prime role in HR through this canonical catalytic strand invasion/exchange activity. The mutations in many HR genes cause oncogenesis. Surprisingly, despite its central role in HR, the invalidation of RAD51 is not classified as being cancer prone, constituting the "RAD51 paradox". This suggests that RAD51 exercises other noncanonical roles that are independent of its catalytic strand invasion/exchange function. For example, the binding of RAD51 on ssDNA prevents nonconservative mutagenic DNA repair, which is independent of its strand exchange activity but relies on its ssDNA occupancy. At the arrested replication forks, RAD51 plays several noncanonical roles in the formation, protection, and management of fork reversal, allowing for the resumption of replication. RAD51 also exhibits noncanonical roles in RNA-mediated processes. Finally, RAD51 pathogenic variants have been described in the congenital mirror movement syndrome, revealing an unexpected role in brain development. In this review, we present and discuss the different noncanonical roles of RAD51, whose presence does not automatically result in an HR event, revealing the multiple faces of this prominent actor in genomic plasticity.
Collapse
Affiliation(s)
- Mélissa Thomas
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Université de Paris Cité, 24 rue du Faubourg St. Jacques, F-75014 Paris, France
| | - Caroline Dubacq
- Institut de Biologie Paris Seine, IBPS, Neuroscience Paris Seine, NPS, INSERM, CNRS, Sorbonne Université, F-75005 Paris, France
| | - Elise Rabut
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Université de Paris Cité, 24 rue du Faubourg St. Jacques, F-75014 Paris, France
| | - Bernard S Lopez
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Université de Paris Cité, 24 rue du Faubourg St. Jacques, F-75014 Paris, France
| | - Josée Guirouilh-Barbat
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Université de Paris Cité, 24 rue du Faubourg St. Jacques, F-75014 Paris, France
| |
Collapse
|
16
|
Darcq E, Nouel D, Hernandez G, Pokinko M, Ash P, Moquin L, Gratton A, Kieffer B, Flores C. Reduced dopamine release in Dcc haploinsufficiency male mice abolishes the rewarding effects of cocaine but not those of morphine and ethanol. Psychopharmacology (Berl) 2023; 240:637-646. [PMID: 36471064 PMCID: PMC10296775 DOI: 10.1007/s00213-022-06288-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
RATIONALE The Netrin-1/DCC guidance cue pathway is critically involved in the adolescent organization of the mesocorticolimbic dopamine circuitry. Adult mice heterozygous for Dcc show reduced dopamine release in the nucleus accumbens in response to amphetamine and, in turn, blunted sensitivity to the rewarding effects of this drug. OBJECTIVE Here, we tested whether the protective effects of Dcc haploinsufficiency are specific to stimulant drugs of abuse or instead extrapolate to opioids and ethanol. METHODS We used the place preference paradigm to measure the rewarding effects of cocaine (20 mg/kg), morphine (5 or 10 mg/Kg), or ethanol (20%) in adult (PND 75) male Dcc haploinsufficient mice or their wild-type litter mates. In a second experiment, we compared in these two genotypes, in vivo dopamine release in the nucleus accumbens after a single i.p. injection of morphine (10 mg/kg). RESULTS We found reduced morphine-induced dopamine release in the nucleus accumbens of Dcc haploinsufficient male mice, but, contrary to the effects of stimulant drugs, there is no effect of genotype on morphine-induced conditioned preference. CONCLUSION These findings show that reduced drug-induced mesolimbic dopamine in Dcc haploinsufficient male mice protects specifically against the rewarding effects of stimulant drugs, but not against the rewarding properties of morphine and ethanol. These results suggest that these drugs exert their rewarding effect via different brain circuits.
Collapse
Affiliation(s)
- Emmanuel Darcq
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
- INSERM U1114, Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Dominique Nouel
- Douglas Mental Health University Institute, Montréal, Québec, Canada
| | | | - Matthew Pokinko
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Integrated Program in Neuroscience (IPN), McGill University, Montréal, Québec, Canada
| | - Polina Ash
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Integrated Program in Neuroscience (IPN), McGill University, Montréal, Québec, Canada
| | - Luc Moquin
- Douglas Mental Health University Institute, Montréal, Québec, Canada
| | - Alain Gratton
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | - Brigitte Kieffer
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
- INSERM U1114, Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Cecilia Flores
- Douglas Mental Health University Institute, Montréal, Québec, Canada.
- Department of Psychiatry, McGill University, Montréal, Québec, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada.
- Department of Psychiatry, Douglas Mental Health University Institute, Perry Pavilion, Room 2111, 6875 LaSalle Boulevard, Montréal (Verdun), Québec, H4H 1R3, Canada.
| |
Collapse
|
17
|
Zang Y, Chaudhari K, Bashaw GJ. Tace/ADAM17 is a bi-directional regulator of axon guidance that coordinates distinct Frazzled and Dcc receptor signaling outputs. Cell Rep 2022; 41:111785. [PMID: 36476876 DOI: 10.1016/j.celrep.2022.111785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/07/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Frazzled (Fra) and deleted in colorectal cancer (Dcc) are homologous receptors that promote axon attraction in response to netrin. In Drosophila, Fra also acts independently of netrin by releasing an intracellular domain (ICD) that activates gene transcription. How neurons coordinate these pathways to make accurate guidance decisions is unclear. Here we show that the ADAM metalloprotease Tace cleaves Fra, and this instructs the switch between the two pathways. Genetic manipulations that either increase or decrease Tace levels disrupt midline crossing of commissural axons. These conflicting phenotypes reflect Tace's function as a bi-directional regulator of axon guidance, a function conserved in its vertebrate homolog ADAM17: while Tace induces the formation of the Fra ICD to activate transcription, excessive Tace cleavage of Fra and Dcc suppresses the response to netrin. We propose that Tace and ADAM17 are key regulators of midline axon guidance by establishing the balance between netrin-dependent and netrin-independent signaling.
Collapse
Affiliation(s)
- Yixin Zang
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karina Chaudhari
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
18
|
Corroenne R, Arthuis C, Kasprian G, Mahallati H, Ville Y, Millischer Bellaiche AE, Henry C, Grevent D, Salomon LJ. Diffusion tensor imaging of fetal brain: principles, potential and limitations of promising technique. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 60:470-476. [PMID: 35561129 DOI: 10.1002/uog.24935] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Human brain development is a complex process that begins in the third week of gestation. During early development, the fetal brain undergoes dynamic morphological changes. These changes result from events such as neurogenesis, neuronal migration, synapse formation, axonal growth and myelination. Disruption of any of these processes is thought to be responsible for a wide array of different pathologies. Recent advances in magnetic resonance imaging, especially diffusion-weighted imaging and diffusion tensor imaging (DTI), have enabled characterization and evaluation of brain development in utero. In this review, aimed at practitioners involved in fetal medicine and high-risk pregnancies, we provide a comprehensive overview of fetal DTI studies focusing on characterization of early normal brain development as well as evaluation of brain pathology in utero. We also discuss the reliability and limitations of fetal brain DTI. © 2022 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- R Corroenne
- Department of Obstetrics, Fetal Medicine and Surgery, Necker-Enfants Malades Hospital, APHP, Paris, France
- EA FETUS 7328 and LUMIERE Platform, University of Paris, Paris, France
| | - C Arthuis
- EA FETUS 7328 and LUMIERE Platform, University of Paris, Paris, France
- Department of Obstetrics, University Hospital of Nantes, Nantes, France
| | - G Kasprian
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - H Mahallati
- Department of Radiology, University of Calgary, Calgary, Canada
| | - Y Ville
- Department of Obstetrics, Fetal Medicine and Surgery, Necker-Enfants Malades Hospital, APHP, Paris, France
| | | | - C Henry
- EA FETUS 7328 and LUMIERE Platform, University of Paris, Paris, France
| | - D Grevent
- EA FETUS 7328 and LUMIERE Platform, University of Paris, Paris, France
- Department of Radiology, Necker-Enfants Malades Hospital, APHP, Paris, France
| | - L J Salomon
- Department of Obstetrics, Fetal Medicine and Surgery, Necker-Enfants Malades Hospital, APHP, Paris, France
- EA FETUS 7328 and LUMIERE Platform, University of Paris, Paris, France
| |
Collapse
|
19
|
Pânzaru MC, Popa S, Lupu A, Gavrilovici C, Lupu VV, Gorduza EV. Genetic heterogeneity in corpus callosum agenesis. Front Genet 2022; 13:958570. [PMID: 36246626 PMCID: PMC9562966 DOI: 10.3389/fgene.2022.958570] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
The corpus callosum is the largest white matter structure connecting the two cerebral hemispheres. Agenesis of the corpus callosum (ACC), complete or partial, is one of the most common cerebral malformations in humans with a reported incidence ranging between 1.8 per 10,000 livebirths to 230–600 per 10,000 in children and its presence is associated with neurodevelopmental disability. ACC may occur as an isolated anomaly or as a component of a complex disorder, caused by genetic changes, teratogenic exposures or vascular factors. Genetic causes are complex and include complete or partial chromosomal anomalies, autosomal dominant, autosomal recessive or X-linked monogenic disorders, which can be either de novo or inherited. The extreme genetic heterogeneity, illustrated by the large number of syndromes associated with ACC, highlight the underlying complexity of corpus callosum development. ACC is associated with a wide spectrum of clinical manifestations ranging from asymptomatic to neonatal death. The most common features are epilepsy, motor impairment and intellectual disability. The understanding of the genetic heterogeneity of ACC may be essential for the diagnosis, developing early intervention strategies, and informed family planning. This review summarizes our current understanding of the genetic heterogeneity in ACC and discusses latest discoveries.
Collapse
Affiliation(s)
- Monica-Cristina Pânzaru
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Setalia Popa
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- *Correspondence: Setalia Popa, ; Vasile Valeriu Lupu,
| | - Ancuta Lupu
- Department of Pediatrics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Cristina Gavrilovici
- Department of Pediatrics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Vasile Valeriu Lupu
- Department of Pediatrics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- *Correspondence: Setalia Popa, ; Vasile Valeriu Lupu,
| | - Eusebiu Vlad Gorduza
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
20
|
Popa N, Bachar D, Roberts AC, Santangelo AM, Gascon E. Region-specific microRNA alterations in marmosets carrying SLC6A4 polymorphisms are associated with anxiety-like behavior. EBioMedicine 2022; 82:104159. [PMID: 35905539 PMCID: PMC9334339 DOI: 10.1016/j.ebiom.2022.104159] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Psychiatric diseases such as depression and anxiety are multifactorial conditions, highly prevalent in western societies. Human studies have identified a number of high-risk genetic variants for these diseases. Among them, polymorphisms in the promoter region of the serotonin transporter gene (SLC6A4) have attracted much attention. However, due to the paucity of experimental models, molecular alterations induced by these genetic variants and how they correlate to behavioral deficits have not been examined. In this regard, marmosets have emerged as a powerful model in translational neuroscience to investigate molecular underpinnings of complex behaviors. METHODS Here, we took advantage of naturally occurring genetic polymorphisms in marmoset SLC6A4 gene that have been linked to anxiety-like behaviors. Using FACS-sorting, we profiled microRNA contents in different brain regions of genotyped and behaviorally-phenotyped marmosets. FINDINGS We revealed that marmosets bearing different SLC6A4 variants exhibit distinct microRNAs signatures in a region of the prefrontal cortex whose activity has been consistently altered in patients with depression/anxiety. We also identified Deleted in Colorectal Cancer (DCC), a gene previously linked to these diseases, as a downstream target of the differently expressed microRNAs. Significantly, we showed that levels of both microRNAs and DCC in this region were highly correlated to anxiety-like behaviors. INTERPRETATION Our findings establish links between genetic variants, molecular modifications in specific cortical regions and complex behavioral responses, providing new insights into gene-behavior relationships underlying human psychopathology. FUNDING This work was supported by France National Agency, NRJ Foundation, Celphedia and Fondation de France as well as the Wellcome Trust.
Collapse
Affiliation(s)
- Natalia Popa
- Aix Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
| | - Dipankar Bachar
- Aix Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
| | - Angela C Roberts
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Andrea M Santangelo
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Eduardo Gascon
- Aix Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France.
| |
Collapse
|
21
|
Yaron Y, Ofen Glassner V, Mory A, Zunz Henig N, Kurolap A, Bar Shira A, Brabbing Goldstein D, Marom D, Ben Sira L, Baris Feldman H, Malinger G, Krajden Haratz K, Reches A. Exome sequencing as first-tier test for fetuses with severe central nervous system structural anomalies. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 60:59-67. [PMID: 35229910 PMCID: PMC9328397 DOI: 10.1002/uog.24885] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 05/08/2023]
Abstract
OBJECTIVE Prenatally detected central nervous system (CNS) anomalies present a diagnostic challenge. In this study, we compared the diagnostic yield of exome sequencing (ES) and chromosomal microarray analysis (CMA) in fetuses with a major CNS anomaly. METHODS This was a retrospective study of 114 cases referred for genetic evaluation following termination of pregnancy (TOP) due to a major CNS anomaly detected on prenatal ultrasound. All fetuses were first analyzed by CMA. All CMA-negative cases were offered ES. CMA-positive cases were reanalyzed using ES to assess its ability to detect copy-number variants (CNVs). RESULTS CMA identified a pathogenic or likely pathogenic (P/LP) CNV in 11/114 (10%) cases. Eighty-six CMA-negative cases were analyzed using ES, which detected P/LP sequence variants in 38/86 (44%). Among recurrent cases (i.e. cases with a previously affected pregnancy), the incidence of P/LP sequence variants was non-significantly higher compared with non-recurrent ones (12/19 (63%) vs 26/67 (39%); P = 0.06). Among the 38 cases with an ES diagnosis, 20 (53%) were inherited and carried a significant risk of recurrence. Reanalysis of 10 CMA-positive cases by ES demonstrated that the bioinformatics pipeline used for sequence variant analysis also detected all P/LP CNVs, as well as three previously known non-causative CNVs. CONCLUSIONS In our study, ES provided a high diagnostic yield (> 50%) in fetuses with severe CNS structural anomalies, which may have been partly due to the highly selected case series that included post-TOP cases from a specialist referral center. These data suggest that ES may be considered as a first-tier test for the prenatal diagnosis of major fetal CNS anomalies, detecting both P/LP sequence variants and CNVs. This is of particular importance given the time constraints of an ongoing pregnancy and the risk of recurrence in future pregnancies. © 2022 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- Y. Yaron
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - V. Ofen Glassner
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
| | - A. Mory
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
| | - N. Zunz Henig
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
| | - A. Kurolap
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
| | - A. Bar Shira
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
| | - D. Brabbing Goldstein
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
- Division of Obstetric Ultrasound, Lis Maternity HospitalTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - D. Marom
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - L. Ben Sira
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Radiology DepartmentTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - H. Baris Feldman
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - G. Malinger
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Division of Obstetric Ultrasound, Lis Maternity HospitalTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - K. Krajden Haratz
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Division of Obstetric Ultrasound, Lis Maternity HospitalTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - A. Reches
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
- Division of Obstetric Ultrasound, Lis Maternity HospitalTel Aviv Sourasky Medical CenterTel AvivIsrael
| |
Collapse
|
22
|
Heterozygous Dcc Mutant Mice Have a Subtle Locomotor Phenotype. eNeuro 2022; 9:ENEURO.0216-18.2021. [PMID: 35115383 PMCID: PMC8906791 DOI: 10.1523/eneuro.0216-18.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
Axon guidance receptors such as deleted in colorectal cancer (DCC) contribute to the normal formation of neural circuits, and their mutations can be associated with neural defects. In humans, heterozygous mutations in DCC have been linked to congenital mirror movements, which are involuntary movements on one side of the body that mirror voluntary movements of the opposite side. In mice, obvious hopping phenotypes have been reported for bi-allelic Dcc mutations, while heterozygous mutants have not been closely examined. We hypothesized that a detailed characterization of Dcc heterozygous mice may reveal impaired corticospinal and spinal functions. Anterograde tracing of the Dcc+/− motor cortex revealed a normally projecting corticospinal tract, intracortical microstimulation (ICMS) evoked normal contralateral motor responses, and behavioral tests showed normal skilled forelimb coordination. Gait analyses also showed a normal locomotor pattern and rhythm in adult Dcc+/− mice during treadmill locomotion, except for a decreased occurrence of out-of-phase walk and an increased duty cycle of the stance phase at slow walking speed. Neonatal isolated Dcc+/− spinal cords had normal left-right and flexor-extensor coupling, along with normal locomotor pattern and rhythm, except for an increase in the flexor-related motoneuronal output. Although Dcc+/− mice do not exhibit any obvious bilateral impairments like those in humans, they exhibit subtle motor deficits during neonatal and adult locomotion.
Collapse
|
23
|
Lo PS, Rymar VV, Kennedy TE, Sadikot AF. The Netrin-1 Receptor DCC Promotes the Survival of a Subpopulation of Midbrain Dopaminergic Neurons: Relevance for Ageing and Parkinson's Disease. J Neurochem 2022; 161:254-265. [PMID: 35118677 PMCID: PMC9305203 DOI: 10.1111/jnc.15579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 12/04/2022]
Abstract
Mechanisms that determine the survival of midbrain dopaminergic (mDA) neurons in the adult central nervous system (CNS) are not fully understood. Netrins are a family of secreted proteins that are essential for normal neural development. In the mature CNS, mDA neurons express particularly high levels of netrin‐1 and its receptor Deleted in Colorectal Cancer (DCC). Recent findings indicate that overexpressing netrin‐1 protects mDA neurons in animal models of Parkinson’s disease (PD), with a proposed pro‐apoptotic dependence function for DCC that triggers cell death in the absence of a ligand. Here, we sought to determine if DCC expression influences mDA neuron survival in young adult and ageing mice. To circumvent the perinatal lethality of DCC null mice, we selectively deleted DCC from mDA neurons utilizing DATcre/loxP gene‐targeting and examined neuronal survival in adult and aged animals. Reduced numbers of mDA neurons were detected in the substantia nigra pars compacta (SNc) of young adult DATcre/DCCfl/fl mice, with further reduction in aged DATcre/DCCfl/fl animals. In contrast to young adults, aged mice also exhibited a gene dosage effect, with fewer SNc mDA neurons in DCC heterozygotes (DATcre/DCCfl/wt). Notably, loss of mDA neurons in the SN was not uniform. Neuronal loss in the SN was limited to ventral tier mDA neurons, while mDA neurons in the dorsal tier of the SN, which resist degeneration in PD, were spared from the effect of DCC deletion in both young and aged mice. In the ventral tegmental area (VTA), young adult mice with conditional deletion of DCC had normal mDA neuronal numbers, while significant loss occurred in aged DATcre/DCCfl/fl and DATcre/DCCfl/wt mice compared to age‐matched wild‐type mice. Our results indicate that expression of DCC is required for the survival of subpopulations of mDA neurons and may be relevant to the degenerative processes in PD.![]()
Collapse
Affiliation(s)
- Pik-Shan Lo
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Qc, Canada.,Cone Laboratory, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Vladimir V Rymar
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Qc, Canada.,Cone Laboratory, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Timothy E Kennedy
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Qc, Canada
| | - Abbas F Sadikot
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Qc, Canada.,Cone Laboratory, Montreal Neurological Institute, Montreal, Quebec, Canada
| |
Collapse
|
24
|
Restrepo-Lozano JM, Pokhvisneva I, Wang Z, Patel S, Meaney MJ, Silveira PP, Flores C. Corticolimbic DCC gene co-expression networks as predictors of impulsivity in children. Mol Psychiatry 2022; 27:2742-2750. [PMID: 35388180 PMCID: PMC9156406 DOI: 10.1038/s41380-022-01533-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/04/2022] [Accepted: 03/16/2022] [Indexed: 12/16/2022]
Abstract
Inhibitory control deficits are prevalent in multiple neuropsychiatric conditions. The communication- as well as the connectivity- between corticolimbic regions of the brain are fundamental for eliciting inhibitory control behaviors, but early markers of vulnerability to this behavioral trait are yet to be discovered. The gradual maturation of the prefrontal cortex (PFC), in particular of the mesocortical dopamine innervation, mirrors the protracted development of inhibitory control; both are present early in life, but reach full maturation by early adulthood. Evidence suggests the involvement of the Netrin-1/DCC signaling pathway and its associated gene networks in corticolimbic development. Here we investigated whether an expression-based polygenic score (ePRS) based on corticolimbic-specific DCC gene co-expression networks associates with impulsivity-related phenotypes in community samples of children. We found that lower ePRS scores associate with higher measurements of impulsive choice in 6-year-old children tested in the Information Sampling Task and with impulsive action in 6- and 10-year-old children tested in the Stop Signal Task. We also found the ePRS to be a better overall predictor of impulsivity when compared to a conventional PRS score comparable in size to the ePRS (4515 SNPs in our discovery cohort) and derived from the latest GWAS for ADHD. We propose that the corticolimbic DCC-ePRS can serve as a novel type of marker for impulsivity-related phenotypes in children. By adopting a systems biology approach based on gene co-expression networks and genotype-gene expression (rather than genotype-disease) associations, these results further validate our methodology to construct polygenic scores linked to the overall biological function of tissue-specific gene networks.
Collapse
Affiliation(s)
- Jose M. Restrepo-Lozano
- grid.14709.3b0000 0004 1936 8649Integrated Program in Neuroscience, McGill University, Montreal, QC Canada ,grid.412078.80000 0001 2353 5268Douglas Mental Health University Institute, Montreal, QC Canada
| | - Irina Pokhvisneva
- grid.412078.80000 0001 2353 5268Douglas Mental Health University Institute, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, QC Canada
| | - Zihan Wang
- grid.412078.80000 0001 2353 5268Douglas Mental Health University Institute, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, QC Canada
| | - Sachin Patel
- grid.412078.80000 0001 2353 5268Douglas Mental Health University Institute, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, QC Canada
| | - Michael J. Meaney
- grid.412078.80000 0001 2353 5268Douglas Mental Health University Institute, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC Canada ,grid.452264.30000 0004 0530 269XSingapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, Singapore, Singapore
| | - Patricia P. Silveira
- grid.412078.80000 0001 2353 5268Douglas Mental Health University Institute, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC Canada
| | - Cecilia Flores
- Douglas Mental Health University Institute, Montreal, QC, Canada. .,Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada. .,Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
25
|
Ahmed G, Shinmyo Y. Multiple Functions of Draxin/Netrin-1 Signaling in the Development of Neural Circuits in the Spinal Cord and the Brain. Front Neuroanat 2021; 15:766911. [PMID: 34899198 PMCID: PMC8655782 DOI: 10.3389/fnana.2021.766911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/22/2021] [Indexed: 11/30/2022] Open
Abstract
Axon guidance proteins play key roles in the formation of neural circuits during development. We previously identified an axon guidance cue, named draxin, that has no homology with other axon guidance proteins. Draxin is essential for the development of various neural circuits including the spinal cord commissure, corpus callosum, and thalamocortical projections. Draxin has been shown to not only control axon guidance through netrin-1 receptors, deleted in colorectal cancer (Dcc), and neogenin (Neo1) but also modulate netrin-1-mediated axon guidance and fasciculation. In this review, we summarize the multifaceted functions of draxin and netrin-1 signaling in neural circuit formation in the central nervous system. Furthermore, because recent studies suggest that the distributions and functions of axon guidance cues are highly regulated by glycoproteins such as Dystroglycan and Heparan sulfate proteoglycans, we discuss a possible function of glycoproteins in draxin/netrin-1-mediated axon guidance.
Collapse
Affiliation(s)
- Giasuddin Ahmed
- Department of Neuroscience and Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yohei Shinmyo
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
26
|
Trigeminal-Abducens Pseudosynkinesis: Distinguishing Unconscious Motor Habits From True Synkinesis. J Neuroophthalmol 2021; 41:e337-e338. [PMID: 32868567 DOI: 10.1097/wno.0000000000001069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Nissenkorn A, Yosovich K, Leibovitz Z, Hartman TG, Zelcer I, Hugirat M, Lev D, Lerman-Sagie T, Blumkin L. Congenital Mirror Movements Associated With Brain Malformations. J Child Neurol 2021; 36:545-555. [PMID: 33413009 DOI: 10.1177/0883073820984068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Congenital mirror movements are involuntary movements of a side of the body imitating intentional movements on the opposite side, appearing in early childhood and persisting beyond 7 years of age. Congenital mirror movements are usually idiopathic but have been reported in association with various brain malformations. METHODS We describe clinical, genetic, and radiologic features in 9 individuals from 5 families manifesting congenital mirror movements. RESULTS The brain malformations associated with congenital mirror movements were: dysplastic corpus callosum in father and daughter with a heterozygous p.Met1* mutation in DCC; hypoplastic corpus callosum, dysgyria, and malformed vermis in a mother and son with a heterozygous p.Thr312Met mutation in TUBB3; dysplastic corpus callosum, dysgyria, abnormal vermis, and asymmetric ventricles in a father and 2 daughters with a heterozygous p.Arg121Trp mutation in TUBB; hypoplastic corpus callosum, dysgyria, malformed basal ganglia and abnormal vermis in a patient with a heterozygous p.Glu155Asp mutation in TUBA1A; hydrocephalus, hypoplastic corpus callosum, polymicrogyria, and cerebellar cysts in a patient with a homozygous p.Pro312Leu mutation in POMGNT1. CONCLUSION DCC, TUBB3, TUBB, TUBA1A, POMGNT1 cause abnormal axonal guidance via different mechanisms and result in congenital mirror movements associated with brain malformations.
Collapse
Affiliation(s)
- Andreea Nissenkorn
- Metabolic Neurogenetic Service, 58883Wolfson Medical Center, Holon, Israel.,Pediatric Neurology Unit, 58883Wolfson Medical Center, Holon, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Keren Yosovich
- Metabolic Neurogenetic Service, 58883Wolfson Medical Center, Holon, Israel.,Molecular Genetics Laboratory, 58883Wolfson Medical Center, Holon, Israel
| | - Zvi Leibovitz
- Fetal Neurology Clinic, 58883Wolfson Medical Center, Holon, Israel
| | - Tamar Gur Hartman
- Pediatric Neurology Unit, 58883Wolfson Medical Center, Holon, Israel.,Pediatric Movement Disorders Service, 58883Wolfson Medical Center, Holon, Israel
| | - Itay Zelcer
- Pediatric Neurology Unit, 61172HaEmek Medical Center, Afula, Israel
| | - Mohammad Hugirat
- Pediatric Neurology Unit, 61172HaEmek Medical Center, Afula, Israel
| | - Dorit Lev
- Metabolic Neurogenetic Service, 58883Wolfson Medical Center, Holon, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Rina Mor Institute of Medical Genetics, 58883Wolfson Medical Center, Holon, Israel
| | - Tally Lerman-Sagie
- Metabolic Neurogenetic Service, 58883Wolfson Medical Center, Holon, Israel.,Pediatric Neurology Unit, 58883Wolfson Medical Center, Holon, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Fetal Neurology Clinic, 58883Wolfson Medical Center, Holon, Israel
| | - Lubov Blumkin
- Metabolic Neurogenetic Service, 58883Wolfson Medical Center, Holon, Israel.,Pediatric Neurology Unit, 58883Wolfson Medical Center, Holon, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Pediatric Movement Disorders Service, 58883Wolfson Medical Center, Holon, Israel
| |
Collapse
|
28
|
Chelban V, Breza M, Szaruga M, Vandrovcova J, Murphy D, Lee C, Alikhwan S, Bourinaris T, Vavougios G, Ilyas M, Halim SA, Al‐Harrasi A, Kartanou C, Ronald C, Blumcke I, Alexoudi A, Gatzonis S, Stefanis L, Karadima G, Wood NW, Chávez‐Gutiérrez L, Hardy J, Houlden H, Koutsis G. Spastic paraplegia preceding PSEN1-related familial Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12186. [PMID: 33969176 PMCID: PMC8088589 DOI: 10.1002/dad2.12186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 11/08/2022]
Abstract
INTRODUCTION We investigated the frequency, neuropathology, and phenotypic characteristics of spastic paraplegia (SP) that precedes dementia in presenilin 1 (PSEN1) related familial Alzheimer's disease (AD). METHODS We performed whole exome sequencing (WES) in 60 probands with hereditary spastic paraplegia (HSP) phenotype that was negative for variants in known HSP-related genes. Where PSEN1 mutation was identified, brain biopsy was performed. We investigated the link between HSP and AD with PSEN1 in silico pathway analysis and measured in vivo the stability of PSEN1 mutant γ-secretase. RESULTS We identified a PSEN1 variant (p.Thr291Pro) in an individual presenting with pure SP at 30 years of age. Three years later, SP was associated with severe, fast cognitive decline and amyloid deposition with diffuse cortical plaques on brain biopsy. Biochemical analysis of p.Thr291Pro PSEN1 revealed that although the mutation does not alter active γ-secretase reconstitution, it destabilizes γ-secretase-amyloid precursor protein (APP)/amyloid beta (Aβn) interactions during proteolysis, enhancing the production of longer Aβ peptides. We then extended our analysis to all 226 PSEN1 pathogenic variants reported and show that 7.5% were associated with pure SP onset followed by cognitive decline later in the disease. We found that PSEN1 cases manifesting initially as SP have a later age of onset, are associated with mutations located beyond codon 200, and showed larger diffuse, cored plaques, amyloid-ring arteries, and severe CAA. DISCUSSION We show that pure SP can precede dementia onset in PSEN1-related familial AD. We recommend PSEN1 genetic testing in patients presenting with SP with no variants in known HSP-related genes, particularly when associated with a family history of cognitive decline.
Collapse
Affiliation(s)
- Viorica Chelban
- Department of Neuromuscular Disease, Queen Square Institute of NeurologyUniversity College LondonLondonUK
- Department of Neurology and NeurosurgeryInstitute of Emergency MedicineToma Ciorbă 1ChisinauRepublic of Moldova
| | - Marianthi Breza
- Neurogenetics Unit1st Department of NeurologyEginition HospitalSchool of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Maria Szaruga
- KU Leuven‐VIB Center for Brain & Disease ResearchLeuvenBelgium
- Department of NeurosciencesLeuven Institute for Neuroscience and Disease (LIND)KU LeuvenLeuvenBelgium
- Neurobiology DivisionMRC Laboratory of Molecular BiologyFrancis Crick AvenueCambridgeCB2 0QHUK
| | - Jana Vandrovcova
- Department of Neuromuscular Disease, Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - David Murphy
- Department of Clinical and Movement NeurosciencesQueen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Chia‐Ju Lee
- Department of Neuromuscular Disease, Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Sondos Alikhwan
- Department of Neuromuscular Disease, Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Thomas Bourinaris
- Department of Neuromuscular Disease, Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | | | - Muhammad Ilyas
- Centre for Omic ScienceIslamia College PeshawarPeshawarPakistan
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research CenterUniversity of NizwaPakistan
| | - Ahmed Al‐Harrasi
- Natural and Medical Sciences Research CenterUniversity of NizwaPakistan
| | - Chrisoula Kartanou
- Neurogenetics Unit1st Department of NeurologyEginition HospitalSchool of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Coras Ronald
- Institute of NeuropathologyUniversitätsklinikum ErlangenErlangenGermany
| | - Ingmar Blumcke
- Institute of NeuropathologyUniversitätsklinikum ErlangenErlangenGermany
| | - Athanasia Alexoudi
- Department of NeurosurgeryEvangelismos HospitalUniversity of AthensGreece
| | - Stylianos Gatzonis
- Department of NeurosurgeryEvangelismos HospitalUniversity of AthensGreece
| | - Leonidas Stefanis
- 1st Department of NeurologySchool of MedicineEginition HospitalNational and Kapodistrian University of AthensAthensGreece
| | - Georgia Karadima
- Neurogenetics Unit1st Department of NeurologyEginition HospitalSchool of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Nicholas W. Wood
- Department of Neuromuscular Disease, Queen Square Institute of NeurologyUniversity College LondonLondonUK
- Neurogenetics LaboratoryNational Hospital for Neurology and NeurosurgeryQueen SquareLondonUK
| | - Lucía Chávez‐Gutiérrez
- KU Leuven‐VIB Center for Brain & Disease ResearchLeuvenBelgium
- Department of NeurosciencesLeuven Institute for Neuroscience and Disease (LIND)KU LeuvenLeuvenBelgium
| | - John Hardy
- Department of Neurodegenerative DiseaseReta Lila Weston LaboratoriesQueen Square GenomicsUCL Dementia Research InstituteLondonUK
| | - Henry Houlden
- Department of Neuromuscular Disease, Queen Square Institute of NeurologyUniversity College LondonLondonUK
- Neurogenetics LaboratoryNational Hospital for Neurology and NeurosurgeryQueen SquareLondonUK
| | - Georgios Koutsis
- Neurogenetics Unit1st Department of NeurologyEginition HospitalSchool of MedicineNational and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
29
|
Johnston KJA, Ward J, Ray PR, Adams MJ, McIntosh AM, Smith BH, Strawbridge RJ, Price TJ, Smith DJ, Nicholl BI, Bailey MES. Sex-stratified genome-wide association study of multisite chronic pain in UK Biobank. PLoS Genet 2021; 17:e1009428. [PMID: 33830993 PMCID: PMC8031124 DOI: 10.1371/journal.pgen.1009428] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/16/2021] [Indexed: 12/30/2022] Open
Abstract
Chronic pain is highly prevalent worldwide and imparts a significant socioeconomic and public health burden. Factors influencing susceptibility to, and mechanisms of, chronic pain development, are not fully understood, but sex is thought to play a significant role, and chronic pain is more prevalent in women than in men. To investigate sex differences in chronic pain, we carried out a sex-stratified genome-wide association study of Multisite Chronic Pain (MCP), a derived chronic pain phenotype, in UK Biobank on 178,556 men and 209,093 women, as well as investigating sex-specific genetic correlations with a range of psychiatric, autoimmune and anthropometric phenotypes and the relationship between sex-specific polygenic risk scores for MCP and chronic widespread pain. We also assessed whether MCP-associated genes showed expression pattern enrichment across tissues. A total of 123 SNPs at five independent loci were significantly associated with MCP in men. In women, a total of 286 genome-wide significant SNPs at ten independent loci were discovered. Meta-analysis of sex-stratified GWAS outputs revealed a further 87 independent associated SNPs. Gene-level analyses revealed sex-specific MCP associations, with 31 genes significantly associated in females, 37 genes associated in males, and a single gene, DCC, associated in both sexes. We found evidence for sex-specific pleiotropy and risk for MCP was found to be associated with chronic widespread pain in a sex-differential manner. Male and female MCP were highly genetically correlated, but at an rg of significantly less than 1 (0.92). All 37 male MCP-associated genes and all but one of 31 female MCP-associated genes were found to be expressed in the dorsal root ganglion, and there was a degree of enrichment for expression in sex-specific tissues. Overall, the findings indicate that sex differences in chronic pain exist at the SNP, gene and transcript abundance level, and highlight possible sex-specific pleiotropy for MCP. Results support the proposition of a strong central nervous-system component to chronic pain in both sexes, additionally highlighting a potential role for the DRG and nociception.
Collapse
Affiliation(s)
- Keira J. A. Johnston
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, Scotland, United Kingdom
- Division of Psychiatry, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- School of Life Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Joey Ward
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Pradipta R. Ray
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, United States of America
| | - Mark J. Adams
- Division of Psychiatry, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Andrew M. McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Blair H. Smith
- Division of Population Health Sciences, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom
| | - Rona J. Strawbridge
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, Scotland, United Kingdom
- Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Theodore J. Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, United States of America
| | - Daniel J. Smith
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Barbara I. Nicholl
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Mark E. S. Bailey
- School of Life Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
30
|
Lysosomal Function and Axon Guidance: Is There a Meaningful Liaison? Biomolecules 2021; 11:biom11020191. [PMID: 33573025 PMCID: PMC7911486 DOI: 10.3390/biom11020191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 01/25/2023] Open
Abstract
Axonal trajectories and neural circuit activities strongly rely on a complex system of molecular cues that finely orchestrate the patterning of neural commissures. Several of these axon guidance molecules undergo continuous recycling during brain development, according to incompletely understood intracellular mechanisms, that in part rely on endocytic and autophagic cascades. Based on their pivotal role in both pathways, lysosomes are emerging as a key hub in the sophisticated regulation of axonal guidance cue delivery, localization, and function. In this review, we will attempt to collect some of the most relevant research on the tight connection between lysosomal function and axon guidance regulation, providing some proof of concepts that may be helpful to understanding the relation between lysosomal storage disorders and neurodegenerative diseases.
Collapse
|
31
|
Bourojeni FB, Zeilhofer HU, Kania A. Netrin-1 receptor DCC is required for the contralateral topography of lamina I anterolateral system neurons. Pain 2021; 162:161-175. [PMID: 32701653 PMCID: PMC7737868 DOI: 10.1097/j.pain.0000000000002012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/30/2022]
Abstract
Anterolateral system (AS) neurons relay nociceptive information from the spinal cord to the brain, protecting the body from harm by evoking a variety of behaviours and autonomic responses. The developmental programs that guide the connectivity of AS neurons remain poorly understood. Spinofugal axons cross the spinal midline in response to Netrin-1 signalling through its receptor deleted in colorectal carcinoma (DCC); however, the relevance of this canonical pathway to AS neuron development has only been demonstrated recently. Here, we disrupted Netrin-1:DCC signalling developmentally in AS neurons and assessed the consequences on the path finding of the different classes of spinofugal neurons. Many lamina I AS neurons normally innervate the lateral parabrachial nucleus and periaqueductal gray on the contralateral side. The loss of DCC in the developing spinal cord resulted in increased frequency of ipsilateral projection of spinoparabrachial and spinoperiaqueductal gray neurons. Given that contralateral spinofugal projections are largely associated with somatotopic representation of the body, changes in the laterality of AS spinofugal projections may contribute to reduced precision in pain localization observed in mice and humans carrying Dcc mutations.
Collapse
Affiliation(s)
- Farin B. Bourojeni
- Research Unit in Neural Circuit Development, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Switzerland
| | - Artur Kania
- Research Unit in Neural Circuit Development, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Division of Experimental Medicine, Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| |
Collapse
|
32
|
Thams S, Islam M, Lindefeldt M, Nordgren A, Granberg T, Tesi B, Barbany G, Nilsson D, Paucar M. Heterozygous variants in DCC: Beyond congenital mirror movements. NEUROLOGY-GENETICS 2020; 6:e526. [PMID: 33209984 PMCID: PMC7670573 DOI: 10.1212/nxg.0000000000000526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/31/2020] [Indexed: 11/18/2022]
Abstract
Objective To perform a comprehensive characterization of a cohort of patients with congenital mirror movements (CMMs) in Sweden. Methods Clinical examination with the Woods and Teuber scale for mirror movements (MMs), neuroimaging, navigated transcranial magnetic stimulation (nTMS), and massive parallel sequencing (MPS) were applied. Results The cohort is ethnically diverse and includes a total of 7 patients distributed in 2 families and 2 sporadic cases. The degree of MMs was variable in this cohort. MPS revealed 2 novel heterozygous frameshift variants in DCC netrin 1 receptor (DCC). Two siblings harboring the pathogenic variant in c.1466_1476del display a complex syndrome featuring MMs and in 1 case receptive-expressive language disorder, chorea, epilepsy, and agenesis of the corpus callosum. The second DCC variant, c.1729delG, was associated with a typical benign CMM phenotype. No variants in DCC, NTN1, RAD51, or DNAL4 were found for the 2 sporadic CMM cases. However, one of these sporadic cases had concomitant high-risk myelodysplastic syndrome and a homozygous variant in ERCC excision repair like 2 (ERCC6L2). Reorganized corticospinal projection patterns to upper extremities were demonstrated with nTMS. Conclusions The presence of chorea expands the clinical spectrum of syndromes associated with variants in DCC. Biallelic pathogenic variants in ERCC6L2 cause bone marrow failure, but a potential association with CMM remains to be studied in larger cohorts.
Collapse
Affiliation(s)
- Sebastian Thams
- Department of Clinical Neuroscience (S.T., T.G., M.P.), Karolinska Institutet; Department of Neurology (S.T., M.P.), Karolinska University Hospital; Department of Neurophysiology (M.I.), Karolinska University Hospital; Department of Pediatric Neurology (M.L.), Astrid Lindgren's Hospital; Department of Clinical Genetics (A.N., B.T., G.B.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (A.N., B.T., G.B., D.N.), Karolinska Institutet; and Department of Neuroradiology (T.G.), Karolinska University Hospital, Stockholm, Sweden
| | - Mominul Islam
- Department of Clinical Neuroscience (S.T., T.G., M.P.), Karolinska Institutet; Department of Neurology (S.T., M.P.), Karolinska University Hospital; Department of Neurophysiology (M.I.), Karolinska University Hospital; Department of Pediatric Neurology (M.L.), Astrid Lindgren's Hospital; Department of Clinical Genetics (A.N., B.T., G.B.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (A.N., B.T., G.B., D.N.), Karolinska Institutet; and Department of Neuroradiology (T.G.), Karolinska University Hospital, Stockholm, Sweden
| | - Marie Lindefeldt
- Department of Clinical Neuroscience (S.T., T.G., M.P.), Karolinska Institutet; Department of Neurology (S.T., M.P.), Karolinska University Hospital; Department of Neurophysiology (M.I.), Karolinska University Hospital; Department of Pediatric Neurology (M.L.), Astrid Lindgren's Hospital; Department of Clinical Genetics (A.N., B.T., G.B.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (A.N., B.T., G.B., D.N.), Karolinska Institutet; and Department of Neuroradiology (T.G.), Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Clinical Neuroscience (S.T., T.G., M.P.), Karolinska Institutet; Department of Neurology (S.T., M.P.), Karolinska University Hospital; Department of Neurophysiology (M.I.), Karolinska University Hospital; Department of Pediatric Neurology (M.L.), Astrid Lindgren's Hospital; Department of Clinical Genetics (A.N., B.T., G.B.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (A.N., B.T., G.B., D.N.), Karolinska Institutet; and Department of Neuroradiology (T.G.), Karolinska University Hospital, Stockholm, Sweden
| | - Tobias Granberg
- Department of Clinical Neuroscience (S.T., T.G., M.P.), Karolinska Institutet; Department of Neurology (S.T., M.P.), Karolinska University Hospital; Department of Neurophysiology (M.I.), Karolinska University Hospital; Department of Pediatric Neurology (M.L.), Astrid Lindgren's Hospital; Department of Clinical Genetics (A.N., B.T., G.B.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (A.N., B.T., G.B., D.N.), Karolinska Institutet; and Department of Neuroradiology (T.G.), Karolinska University Hospital, Stockholm, Sweden
| | - Bianca Tesi
- Department of Clinical Neuroscience (S.T., T.G., M.P.), Karolinska Institutet; Department of Neurology (S.T., M.P.), Karolinska University Hospital; Department of Neurophysiology (M.I.), Karolinska University Hospital; Department of Pediatric Neurology (M.L.), Astrid Lindgren's Hospital; Department of Clinical Genetics (A.N., B.T., G.B.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (A.N., B.T., G.B., D.N.), Karolinska Institutet; and Department of Neuroradiology (T.G.), Karolinska University Hospital, Stockholm, Sweden
| | - Gisela Barbany
- Department of Clinical Neuroscience (S.T., T.G., M.P.), Karolinska Institutet; Department of Neurology (S.T., M.P.), Karolinska University Hospital; Department of Neurophysiology (M.I.), Karolinska University Hospital; Department of Pediatric Neurology (M.L.), Astrid Lindgren's Hospital; Department of Clinical Genetics (A.N., B.T., G.B.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (A.N., B.T., G.B., D.N.), Karolinska Institutet; and Department of Neuroradiology (T.G.), Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Nilsson
- Department of Clinical Neuroscience (S.T., T.G., M.P.), Karolinska Institutet; Department of Neurology (S.T., M.P.), Karolinska University Hospital; Department of Neurophysiology (M.I.), Karolinska University Hospital; Department of Pediatric Neurology (M.L.), Astrid Lindgren's Hospital; Department of Clinical Genetics (A.N., B.T., G.B.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (A.N., B.T., G.B., D.N.), Karolinska Institutet; and Department of Neuroradiology (T.G.), Karolinska University Hospital, Stockholm, Sweden
| | - Martin Paucar
- Department of Clinical Neuroscience (S.T., T.G., M.P.), Karolinska Institutet; Department of Neurology (S.T., M.P.), Karolinska University Hospital; Department of Neurophysiology (M.I.), Karolinska University Hospital; Department of Pediatric Neurology (M.L.), Astrid Lindgren's Hospital; Department of Clinical Genetics (A.N., B.T., G.B.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (A.N., B.T., G.B., D.N.), Karolinska Institutet; and Department of Neuroradiology (T.G.), Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
33
|
Méndez-Guerrero A, Martínez de Aragón A, López-Blanco R, Llamas-Velasco S. Teaching Video NeuroImages: Congenital mirror movements: A paradigmatic video case. Neurology 2020; 95:e2460-e2461. [PMID: 32788241 DOI: 10.1212/wnl.0000000000010599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Antonio Méndez-Guerrero
- From the Neurology Department (A.M.-G., S.L.V.), Movement Disorders Section (A.M.-G.), Health Research Institute (A.M.-G., R.L.-B., S.L.V.), and Radiology Department, Neuroradiology Section (A.M.-D.A.), Hospital Universitario 12 de Octubre; Integrated Neurology Department (R.L.-B.), Hospital Universitario Rey Juan Carlos & Hospital General de Villalba & Hospital Universitario Infanta Elena; Department of Medicine (R.L.-B.), Faculty of Medicine, Universidad Complutense de Madrid; and Biomedical Research Networking Center in Neurodegenerative Disease (CIBERNED) (S.L.V.), Madrid, Spain.
| | - Ana Martínez de Aragón
- From the Neurology Department (A.M.-G., S.L.V.), Movement Disorders Section (A.M.-G.), Health Research Institute (A.M.-G., R.L.-B., S.L.V.), and Radiology Department, Neuroradiology Section (A.M.-D.A.), Hospital Universitario 12 de Octubre; Integrated Neurology Department (R.L.-B.), Hospital Universitario Rey Juan Carlos & Hospital General de Villalba & Hospital Universitario Infanta Elena; Department of Medicine (R.L.-B.), Faculty of Medicine, Universidad Complutense de Madrid; and Biomedical Research Networking Center in Neurodegenerative Disease (CIBERNED) (S.L.V.), Madrid, Spain
| | - Roberto López-Blanco
- From the Neurology Department (A.M.-G., S.L.V.), Movement Disorders Section (A.M.-G.), Health Research Institute (A.M.-G., R.L.-B., S.L.V.), and Radiology Department, Neuroradiology Section (A.M.-D.A.), Hospital Universitario 12 de Octubre; Integrated Neurology Department (R.L.-B.), Hospital Universitario Rey Juan Carlos & Hospital General de Villalba & Hospital Universitario Infanta Elena; Department of Medicine (R.L.-B.), Faculty of Medicine, Universidad Complutense de Madrid; and Biomedical Research Networking Center in Neurodegenerative Disease (CIBERNED) (S.L.V.), Madrid, Spain
| | - Sara Llamas-Velasco
- From the Neurology Department (A.M.-G., S.L.V.), Movement Disorders Section (A.M.-G.), Health Research Institute (A.M.-G., R.L.-B., S.L.V.), and Radiology Department, Neuroradiology Section (A.M.-D.A.), Hospital Universitario 12 de Octubre; Integrated Neurology Department (R.L.-B.), Hospital Universitario Rey Juan Carlos & Hospital General de Villalba & Hospital Universitario Infanta Elena; Department of Medicine (R.L.-B.), Faculty of Medicine, Universidad Complutense de Madrid; and Biomedical Research Networking Center in Neurodegenerative Disease (CIBERNED) (S.L.V.), Madrid, Spain
| |
Collapse
|
34
|
Trans-Axonal Signaling in Neural Circuit Wiring. Int J Mol Sci 2020; 21:ijms21145170. [PMID: 32708320 PMCID: PMC7404203 DOI: 10.3390/ijms21145170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/24/2022] Open
Abstract
The development of neural circuits is a complex process that relies on the proper navigation of axons through their environment to their appropriate targets. While axon–environment and axon–target interactions have long been known as essential for circuit formation, communication between axons themselves has only more recently emerged as another crucial mechanism. Trans-axonal signaling governs many axonal behaviors, including fasciculation for proper guidance to targets, defasciculation for pathfinding at important choice points, repulsion along and within tracts for pre-target sorting and target selection, repulsion at the target for precise synaptic connectivity, and potentially selective degeneration for circuit refinement. This review outlines the recent advances in identifying the molecular mechanisms of trans-axonal signaling and discusses the role of axon–axon interactions during the different steps of neural circuit formation.
Collapse
|
35
|
Cangiano B, Swee DS, Quinton R, Bonomi M. Genetics of congenital hypogonadotropic hypogonadism: peculiarities and phenotype of an oligogenic disease. Hum Genet 2020; 140:77-111. [PMID: 32200437 DOI: 10.1007/s00439-020-02147-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/04/2020] [Indexed: 12/30/2022]
Abstract
A genetic basis of congenital isolated hypogonadotropic hypogonadism (CHH) can be defined in almost 50% of cases, albeit not necessarily the complete genetic basis. Next-generation sequencing (NGS) techniques have led to the discovery of a great number of loci, each of which has illuminated our understanding of human gonadotropin-releasing hormone (GnRH) neurons, either in respect of their embryonic development or their neuroendocrine regulation as the "pilot light" of human reproduction. However, because each new gene linked to CHH only seems to underpin another small percentage of total patient cases, we are still far from achieving a comprehensive understanding of the genetic basis of CHH. Patients have generally not benefited from advances in genetics in respect of novel therapies. In most cases, even genetic counselling is limited by issues of apparent variability in expressivity and penetrance that are likely underpinned by oligogenicity in respect of known and unknown genes. Robust genotype-phenotype relationships can generally only be established for individuals who are homozygous, hemizygous or compound heterozygotes for the same gene of variant alleles that are predicted to be deleterious. While certain genes are purely associated with normosmic CHH (nCHH) some purely with the anosmic form (Kallmann syndrome-KS), other genes can be associated with both nCHH and KS-sometimes even within the same kindred. Even though the anticipated genetic overlap between CHH and constitutional delay in growth and puberty (CDGP) has not materialised, previously unanticipated genetic relationships have emerged, comprising conditions of combined (or multiple) pituitary hormone deficiency (CPHD), hypothalamic amenorrhea (HA) and CHARGE syndrome. In this review, we report the current evidence in relation to phenotype and genetic peculiarities regarding 60 genes whose loss-of-function variants can disrupt the central regulation of reproduction at many levels: impairing GnRH neurons migration, differentiation or activation; disrupting neuroendocrine control of GnRH secretion; preventing GnRH neuron migration or function and/or gonadotropin secretion and action.
Collapse
Affiliation(s)
- Biagio Cangiano
- Department of Clinical Sciences and Community Health, University of Milan, 20100, Milan, Italy.,Department of Endocrine and Metabolic Diseases and Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy
| | - Du Soon Swee
- Department of Endocrinology, Singapore General Hospital, Singapore, Singapore
| | - Richard Quinton
- Endocrine Unit, Royal Victoria Infirmary, Department of Endocrinology, Diabetes and Metabolism, Newcastle-Upon-Tyne Hospitals, Newcastle-Upon-Tyne, NE1 4LP, UK. .,Translational and Clinical Research Institute, University of Newcastle-Upon-Tyne, Newcastle-Upon-Tyne, UK.
| | - Marco Bonomi
- Department of Clinical Sciences and Community Health, University of Milan, 20100, Milan, Italy. .,Department of Endocrine and Metabolic Diseases and Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy.
| |
Collapse
|
36
|
Abstract
The spinal cord receives, relays and processes sensory information from the periphery and integrates this information with descending inputs from supraspinal centres to elicit precise and appropriate behavioural responses and orchestrate body movements. Understanding how the spinal cord circuits that achieve this integration are wired during development is the focus of much research interest. Several families of proteins have well-established roles in guiding developing spinal cord axons, and recent findings have identified new axon guidance molecules. Nevertheless, an integrated view of spinal cord network development is lacking, and many current models have neglected the cellular and functional diversity of spinal cord circuits. Recent advances challenge the existing spinal cord axon guidance dogmas and have provided a more complex, but more faithful, picture of the ontogenesis of vertebrate spinal cord circuits.
Collapse
|
37
|
Vigouroux RJ, Cesar Q, Chédotal A, Nguyen-Ba-Charvet KT. Revisiting the role of Dcc in visual system development with a novel eye clearing method. eLife 2020; 9:51275. [PMID: 32096760 PMCID: PMC7062470 DOI: 10.7554/elife.51275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/24/2020] [Indexed: 12/22/2022] Open
Abstract
The Deleted in Colorectal Carcinoma (Dcc) receptor plays a critical role in optic nerve development. Whilst Dcc is expressed postnatally in the eye, its function remains unknown as Dcc knockouts die at birth. To circumvent this drawback, we generated an eye-specific Dcc mutant. To study the organization of the retina and visual projections in these mice, we also established EyeDISCO, a novel tissue clearing protocol that removes melanin allowing 3D imaging of whole eyes and visual pathways. We show that in the absence of Dcc, some ganglion cell axons stalled at the optic disc, whereas others perforated the retina, separating photoreceptors from the retinal pigment epithelium. A subset of visual axons entered the CNS, but these projections are perturbed. Moreover, Dcc-deficient retinas displayed a massive postnatal loss of retinal ganglion cells and a large fraction of photoreceptors. Thus, Dcc is essential for the development and maintenance of the retina.
Collapse
Affiliation(s)
- Robin J Vigouroux
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Quénol Cesar
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Alain Chédotal
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | | |
Collapse
|
38
|
Aizawa S, Okada T, Keino-Masu K, Doan TH, Koganezawa T, Akiyama M, Tamaoka A, Masu M. Abnormal Pyramidal Decussation and Bilateral Projection of the Corticospinal Tract Axons in Mice Lacking the Heparan Sulfate Endosulfatases, Sulf1 and Sulf2. Front Mol Neurosci 2020; 12:333. [PMID: 32038163 PMCID: PMC6985096 DOI: 10.3389/fnmol.2019.00333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/27/2019] [Indexed: 11/13/2022] Open
Abstract
The corticospinal tract (CST) plays an important role in controlling voluntary movement. Because the CST has a long trajectory throughout the brain toward the spinal cord, many axon guidance molecules are required to navigate the axons correctly during development. Previously, we found that double-knockout (DKO) mouse embryos lacking the heparan sulfate endosulfatases, Sulf1 and Sulf2, showed axon guidance defects of the CST owing to the abnormal accumulation of Slit2 protein on the brain surface. However, postnatal development of the CST, especially the pyramidal decussation and spinal cord projection, could not be assessed because DKO mice on a C57BL/6 background died soon after birth. We recently found that Sulf1/2 DKO mice on a mixed C57BL/6 and CD-1/ICR background can survive into adulthood and therefore investigated the anatomy and function of the CST in the adult DKO mice. In Sulf1/2 DKO mice, abnormal dorsal deviation of the CST fibers on the midbrain surface persisted after maturation of the CST. At the pyramidal decussation, some CST fibers located near the midline crossed the midline, whereas others located more laterally extended ipsilaterally. In the spinal cord, the crossed CST fibers descended in the dorsal funiculus on the contralateral side and entered the contralateral gray matter normally, whereas the uncrossed fibers descended in the lateral funiculus on the ipsilateral side and entered the ipsilateral gray matter. As a result, the CST fibers that originated from 1 side of the brain projected bilaterally in the DKO spinal cord. Consistently, microstimulation of 1 side of the motor cortex evoked electromyogram responses only in the contralateral forelimb muscles of the wild-type mice, whereas the same stimulation evoked bilateral responses in the DKO mice. The functional consequences of the CST defects in the Sulf1/2 DKO mice were examined using the grid-walking, staircase, and single pellet-reaching tests, which have been used to evaluate motor function in mice. Compared with the wild-type mice, the Sulf1/2 DKO mice showed impaired performance in these tests, indicating deficits in motor function. These findings suggest that disruption of Sulf1/2 genes leads to both anatomical and functional defects of the CST.
Collapse
Affiliation(s)
- Satoshi Aizawa
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Molecular Neurobiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takuya Okada
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Molecular Neurobiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazuko Keino-Masu
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Molecular Neurobiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tri Huu Doan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Physiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tadachika Koganezawa
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Physiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masahiro Akiyama
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akira Tamaoka
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masayuki Masu
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Molecular Neurobiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
39
|
Vosberg DE, Leyton M, Flores C. The Netrin-1/DCC guidance system: dopamine pathway maturation and psychiatric disorders emerging in adolescence. Mol Psychiatry 2020; 25:297-307. [PMID: 31659271 PMCID: PMC6974431 DOI: 10.1038/s41380-019-0561-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 02/02/2023]
Abstract
Axon guidance molecules direct growing axons toward their targets, assembling the intricate wiring of the nervous system. One of these molecules, Netrin-1, and its receptor, DCC (deleted in colorectal cancer), has profound effects, in laboratory animals, on the adolescent expansion of mesocorticolimbic pathways, particularly dopamine. Now, a rapidly growing literature suggests that (1) these same alterations could occur in humans, and (2) genetic variants in Netrin-1 and DCC are associated with depression, schizophrenia, and substance use. Together, these findings provide compelling evidence that Netrin-1 and DCC influence mesocorticolimbic-related psychopathological states that emerge during adolescence.
Collapse
Affiliation(s)
- Daniel E Vosberg
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada
- Population Neuroscience and Developmental Neuroimaging, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Marco Leyton
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada.
- Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
| | - Cecilia Flores
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada.
- Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Douglas Mental Health University Institute, Montreal, QC, Canada.
| |
Collapse
|
40
|
Sagi-Dain L, Kurolap A, Ilivitzki A, Mory A, Paperna T, Kedar R, Gonzaga-Jauregui C, Peleg A, Baris Feldman H. A novel heterozygous loss-of-function DCC Netrin 1 receptor variant in prenatal agenesis of corpus callosum and review of the literature. Am J Med Genet A 2019; 182:205-212. [PMID: 31697046 DOI: 10.1002/ajmg.a.61404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 11/12/2022]
Abstract
Agenesis of the corpus callosum (ACC) is a common prenatally-detected brain anomaly. Recently, an association between mutations in the DCC Netrin 1 receptor (DCC) gene and ACC, with or without mirror movements, has been demonstrated. In this manuscript, we present a family with a novel heterozygous frameshift mutation in DCC, review the available literature, and discuss the challenges involved in the genetic counseling for recently discovered disorders with paucity of medical information. We performed whole exome sequencing in a healthy nonconsanguineous couple that underwent two pregnancy terminations due to prenatal diagnosis of ACC. A heterozygous variant c.2774dupA (p.Asn925Lysfs*17) in the DCC gene was demonstrated in fetal and paternal DNA samples, as well as in a healthy 4-year-old offspring. When directly questioned, both father and child reported having mirror movements not affecting quality of life. Segregation analysis demonstrated the variant in three paternal siblings, two of them having mirror movements. Brain imaging revealed normal corpus callosum. Summary of literature data describing heterozygous loss-of-function variants in DCC (n = 61) revealed 63.9% penetrance for mirror movements, 9.8% for ACC, and 5% for both. No significant neurodevelopmental abnormalities were reported among the seven published patients with DCC loss-of-function variants and ACC. Prenatal diagnosis of ACC should prompt a specific anamnesis regarding any neurological disorder, as well as intentional physical examination of both parents aimed to detect mirror movements. In suspicious cases, detection of DCC pathogenic variants might markedly improve the predicted prognosis, alleviate the parental anxiety, and possibly prevent pregnancy termination.
Collapse
Affiliation(s)
- Lena Sagi-Dain
- Genetics Institute, Carmel Medical Center, Affiliated to the Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Alina Kurolap
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Anat Ilivitzki
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Pediatric Radiology Unit, Radiology Department, Rambam Health Care Campus, Haifa, Israel
| | - Adi Mory
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Tamar Paperna
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | | | - Reuven Kedar
- Obstetrics and Gynecology department, Carmel Medical Center, Haifa, Israel
| | | | - Amir Peleg
- Genetics Institute, Carmel Medical Center, Affiliated to the Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Hagit Baris Feldman
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
41
|
Accogli A, Calabretta S, St-Onge J, Boudrahem-Addour N, Dionne-Laporte A, Joset P, Azzarello-Burri S, Rauch A, Krier J, Fieg E, Pallais JC, McConkie-Rosell A, McDonald M, Freedman SF, Rivière JB, Lafond-Lapalme J, Simpson BN, Hopkin RJ, Trimouille A, Van-Gils J, Begtrup A, McWalter K, Delphine H, Keren B, Genevieve D, Argilli E, Sherr EH, Severino M, Rouleau GA, Yam PT, Charron F, Srour M. De Novo Pathogenic Variants in N-cadherin Cause a Syndromic Neurodevelopmental Disorder with Corpus Collosum, Axon, Cardiac, Ocular, and Genital Defects. Am J Hum Genet 2019; 105:854-868. [PMID: 31585109 DOI: 10.1016/j.ajhg.2019.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/05/2019] [Indexed: 01/06/2023] Open
Abstract
Cadherins constitute a family of transmembrane proteins that mediate calcium-dependent cell-cell adhesion. The extracellular domain of cadherins consists of extracellular cadherin (EC) domains, separated by calcium binding sites. The EC interacts with other cadherin molecules in cis and in trans to mechanically hold apposing cell surfaces together. CDH2 encodes N-cadherin, whose essential roles in neural development include neuronal migration and axon pathfinding. However, CDH2 has not yet been linked to a Mendelian neurodevelopmental disorder. Here, we report de novo heterozygous pathogenic variants (seven missense, two frameshift) in CDH2 in nine individuals with a syndromic neurodevelopmental disorder characterized by global developmental delay and/or intellectual disability, variable axon pathfinding defects (corpus callosum agenesis or hypoplasia, mirror movements, Duane anomaly), and ocular, cardiac, and genital anomalies. All seven missense variants (c.1057G>A [p.Asp353Asn]; c.1789G>A [p.Asp597Asn]; c.1789G>T [p.Asp597Tyr]; c.1802A>C [p.Asn601Thr]; c.1839C>G [p.Cys613Trp]; c.1880A>G [p.Asp627Gly]; c.2027A>G [p.Tyr676Cys]) result in substitution of highly conserved residues, and six of seven cluster within EC domains 4 and 5. Four of the substitutions affect the calcium-binding site in the EC4-EC5 interdomain. We show that cells expressing these variants in the EC4-EC5 domains have a defect in cell-cell adhesion; this defect includes impaired binding in trans with N-cadherin-WT expressed on apposing cells. The two frameshift variants (c.2563_2564delCT [p.Leu855Valfs∗4]; c.2564_2567dupTGTT [p.Leu856Phefs∗5]) are predicted to lead to a truncated cytoplasmic domain. Our study demonstrates that de novo heterozygous variants in CDH2 impair the adhesive activity of N-cadherin, resulting in a multisystemic developmental disorder, that could be named ACOG syndrome (agenesis of corpus callosum, axon pathfinding, cardiac, ocular, and genital defects).
Collapse
Affiliation(s)
- Andrea Accogli
- Department of Pediatrics, Division of Pediatric Neurology, McGill University, H4A 3J1, Montreal, QC, Canada; Medical Genetics Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; Dipartimento di Neuroscienze, Reabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili, Università degli Studi di Genova, 16132 Genova Italy
| | - Sara Calabretta
- Montreal Clinical Research Institute, H2W 1R7 Montreal, QC, Canada
| | - Judith St-Onge
- McGill University Health Center Research Institute, H4A 3J1, Montreal, QC, Canada
| | | | | | - Pascal Joset
- Institute of Medical Genetics, University of Zurich, CH-8952 Schlieren, Switzerland
| | | | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, CH-8952 Schlieren, Switzerland
| | - Joel Krier
- Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | - Allyn McConkie-Rosell
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, NC 27707, USA
| | - Marie McDonald
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, NC 27707, USA
| | - Sharon F Freedman
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Joël Lafond-Lapalme
- McGill University Health Center Research Institute, H4A 3J1, Montreal, QC, Canada
| | - Brittany N Simpson
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Robert J Hopkin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Aurélien Trimouille
- Centre Hospitalier Universitaire Bordeaux, Service de Génétique Médicale, 33076 Bordeaux, France; Laboratoire Maladies Rares: Génétique et Métabolisme, Inserm U1211, Université de Bordeaux, 33076 Bordeaux, France
| | - Julien Van-Gils
- Centre Hospitalier Universitaire Bordeaux, Service de Génétique Médicale, 33076 Bordeaux, France; Laboratoire Maladies Rares: Génétique et Métabolisme, Inserm U1211, Université de Bordeaux, 33076 Bordeaux, France
| | | | | | - Heron Delphine
- Département de Génétique, Centre de Référence des Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 75013 Paris
| | - Boris Keren
- Département de Génétique, Centre de Référence des Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 75013 Paris
| | - David Genevieve
- Département de Genetique Médicale, Maladies Rares et Médecine Personnalisée, Centre de Référence Anomalies du Développement, Université Montpellier, Unité Inserm U1183, Centre Hospitalier Universitaire Montpellier, 34000 Montpellier, France
| | - Emanuela Argilli
- Departments of Neurology and Pediatrics, Weill Institute of Neuroscience and Institute of Human Genetics, University of California, CA 94143 San Francisco
| | - Elliott H Sherr
- Departments of Neurology and Pediatrics, Weill Institute of Neuroscience and Institute of Human Genetics, University of California, CA 94143 San Francisco
| | - Mariasavina Severino
- Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Guy A Rouleau
- Montreal Neurological Institute, McGill University, H3A 2B4, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, H3A 2B4, Montreal, QC, Canada
| | - Patricia T Yam
- Montreal Clinical Research Institute, H2W 1R7 Montreal, QC, Canada
| | - Frédéric Charron
- Montreal Clinical Research Institute, H2W 1R7 Montreal, QC, Canada; Department of Medicine, University of Montreal, H3C 3J7, Montreal, QC, Canada; Department of Anatomy and Cell Biology, McGill University, H4A 3J1, Montreal, QC, Canada; Department of Experimental Medicine, McGill University, H4A 3J1, Montreal, QC, Canada.
| | - Myriam Srour
- Department of Pediatrics, Division of Pediatric Neurology, McGill University, H4A 3J1, Montreal, QC, Canada; McGill University Health Center Research Institute, H4A 3J1, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, H3A 2B4, Montreal, QC, Canada.
| |
Collapse
|
42
|
Comer JD, Alvarez S, Butler SJ, Kaltschmidt JA. Commissural axon guidance in the developing spinal cord: from Cajal to the present day. Neural Dev 2019; 14:9. [PMID: 31514748 PMCID: PMC6739980 DOI: 10.1186/s13064-019-0133-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022] Open
Abstract
During neuronal development, the formation of neural circuits requires developing axons to traverse a diverse cellular and molecular environment to establish synaptic contacts with the appropriate postsynaptic partners. Essential to this process is the ability of developing axons to navigate guidance molecules presented by specialized populations of cells. These cells partition the distance traveled by growing axons into shorter intervals by serving as intermediate targets, orchestrating the arrival and departure of axons by providing attractive and repulsive guidance cues. The floor plate in the central nervous system (CNS) is a critical intermediate target during neuronal development, required for the extension of commissural axons across the ventral midline. In this review, we begin by giving a historical overview of the ventral commissure and the evolutionary purpose of decussation. We then review the axon guidance studies that have revealed a diverse assortment of midline guidance cues, as well as genetic and molecular regulatory mechanisms required for coordinating the commissural axon response to these cues. Finally, we examine the contribution of dysfunctional axon guidance to neurological diseases.
Collapse
Affiliation(s)
- J D Comer
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.,Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.,Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - S Alvarez
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.,Molecular Biology Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - S J Butler
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - J A Kaltschmidt
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
43
|
Kim ED, Kim GW, Won YH, Ko MH, Seo JH, Park SH. Ten-Year Follow-Up of Transcranial Magnetic Stimulation Study in a Patient With Congenital Mirror Movements: A Case Report. Ann Rehabil Med 2019; 43:524-529. [PMID: 31499606 PMCID: PMC6734025 DOI: 10.5535/arm.2019.43.4.524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/06/2018] [Indexed: 12/02/2022] Open
Abstract
Most studies concerning congenital mirror movements (CMMs) have been focused on the motor organization in the distal hand muscles exclusively. To the best of our knowledge, there is no data on motor organization pattern of lower extremities, and a scarcity of data on the significance of forearm and arm muscles in CMMs. Here, we describe the case of a 19-year-old boy presenting mirror movements. In these terms, a 10-year transcranial magnetic stimulation study demonstrated that the motor organization pattern of the arm muscles was different from that of distal hand and forearm muscles even in the same upper extremity, and that the lower extremities showed the same pathways as healthy children. Moreover, in this case, an ipsilateral motor evoked potentials (MEPs) for distal hand muscles increased in amplitude with age, even though the intensity of mirror movements decreased. In the arm muscles, however, it was concluded that the contralateral MEPs increased in amplitude with age.
Collapse
Affiliation(s)
- Eu-Deum Kim
- Department of Physical Medicine and Rehabilitation, Chonbuk National University Medical School, Jeonju, Korea
| | - Gi-Wook Kim
- Department of Physical Medicine and Rehabilitation, Chonbuk National University Medical School, Jeonju, Korea.,Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | - Yu Hui Won
- Department of Physical Medicine and Rehabilitation, Chonbuk National University Medical School, Jeonju, Korea.,Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | - Myoung-Hwan Ko
- Department of Physical Medicine and Rehabilitation, Chonbuk National University Medical School, Jeonju, Korea.,Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | - Jeong-Hwan Seo
- Department of Physical Medicine and Rehabilitation, Chonbuk National University Medical School, Jeonju, Korea.,Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | - Sung-Hee Park
- Department of Physical Medicine and Rehabilitation, Chonbuk National University Medical School, Jeonju, Korea.,Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| |
Collapse
|
44
|
Duquette PM, Lamarche-Vane N. The calcium-activated protease calpain regulates netrin-1 receptor deleted in colorectal cancer-induced axon outgrowth in cortical neurons. J Neurochem 2019; 152:315-332. [PMID: 31344270 DOI: 10.1111/jnc.14837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 07/02/2019] [Accepted: 07/17/2019] [Indexed: 12/15/2022]
Abstract
During development, neurons extend axons toward their appropriate synaptic targets to establish functional neuronal connections. The growth cone, a highly motile structure at the tip of the axon, is capable of recognizing extracellular guidance cues and translating them into directed axon outgrowth through modulation of the actin cytoskeleton. Netrin-1 mediates its attractive function through the receptor deleted in colorectal cancer (DCC) to promote axon outgrowth and guidance. The calcium-activated protease calpain is involved in the cleavage of cytoskeletal proteins, which plays an important role during adhesion turnover and cell migration. However, its function during neuronal development is less understood. Here we demonstrate that netrin-1 activated calpain in embryonic rat cortical neurons in an extracellular-regulated kinase 1/2-dependent manner. In addition, we found that netrin-1 stimulation led to an increase in calpain-1 localization in the axon, whereas its endogenous inhibitor calpastatin was decreased in the growth cones of cortical neurons by indirect immunofluorescence. Interestingly, calpain-1 was able to cleave DCC in vitro. Furthermore, netrin-1 induced the cleavage of the cytoskeletal proteins spectrin and focal adhesion kinase concomitantly with the intracellular domain of DCC in a calpain-dependent manner in embryonic rat cortical neurons. Cortical neurons over-expressing calpastatin or calpain-depleted neurons displayed increased basal axon length and were unresponsive to netrin-1 stimulation. Altogether, we propose a novel model whereby netrin-1/DCC-mediated axon outgrowth is modulated by calpain-mediated proteolysis of DCC and cytoskeletal targets in embryonic cortical neurons. Open Science: This manuscript was awarded with the Open Materials Badge For more information see: https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Philippe M Duquette
- Cancer Research Program, Research Institute of the McGill University Health Center (RI-MUHC), Montréal, Québec, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada
| | - Nathalie Lamarche-Vane
- Cancer Research Program, Research Institute of the McGill University Health Center (RI-MUHC), Montréal, Québec, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
45
|
Vosberg DE, Beaulé V, Torres-Berrío A, Cooke D, Chalupa A, Jaworska N, Cox SML, Larcher K, Zhang Y, Allard D, Durand F, Dagher A, Benkelfat C, Srour M, Tampieri D, La Piana R, Joober R, Lepore F, Rouleau G, Pascual-Leone A, Fox MD, Flores C, Leyton M, Théoret H. Neural function in DCC mutation carriers with and without mirror movements. Ann Neurol 2019; 85:433-442. [PMID: 30666715 PMCID: PMC6444183 DOI: 10.1002/ana.25418] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 01/08/2023]
Abstract
Objective Recently identified mutations of the axon guidance molecule receptor gene, DCC, present an opportunity to investigate, in living human brain, mechanisms affecting neural connectivity and the basis of mirror movements, involuntary contralateral responses that mirror voluntary unilateral actions. We hypothesized that haploinsufficient DCC+/− mutation carriers with mirror movements would exhibit decreased DCC mRNA expression, a functional ipsilateral corticospinal tract, greater “mirroring” motor representations, and reduced interhemispheric inhibition. DCC+/− mutation carriers without mirror movements might exhibit some of these features. Methods The participants (n = 52) included 13 DCC+/− mutation carriers with mirror movements, 7 DCC+/− mutation carriers without mirror movements, 13 relatives without the mutation or mirror movements, and 19 unrelated healthy volunteers. The multimodal approach comprised quantitative real time polymerase chain reaction, transcranial magnetic stimulation (TMS), functional magnetic resonance imaging (fMRI) under resting and task conditions, and measures of white matter integrity. Results Mirror movements were associated with reduced DCC mRNA expression, increased ipsilateral TMS‐induced motor evoked potentials, increased fMRI responses in the mirroring M1 and cerebellum, and markedly reduced interhemispheric inhibition. The DCC+/− mutation, irrespective of mirror movements, was associated with reduced functional connectivity and white matter integrity. Interpretation Diverse connectivity abnormalities were identified in mutation carriers with and without mirror movements, but corticospinal effects and decreased peripheral DCC mRNA appeared driven by the mirror movement phenotype. ANN NEUROL 2019;85:433–442.
Collapse
Affiliation(s)
- Daniel E Vosberg
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Vincent Beaulé
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Angélica Torres-Berrío
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.,Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Danielle Cooke
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Amanda Chalupa
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Natalia Jaworska
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada.,Institute of Mental Health Research, affiliated with the University of Ottawa, Ottawa, Ontario, Canada
| | - Sylvia M L Cox
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Kevin Larcher
- Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Yu Zhang
- Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Dominique Allard
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - France Durand
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Alain Dagher
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.,Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Chawki Benkelfat
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.,Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Myriam Srour
- Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | | | - Roberta La Piana
- Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Ridha Joober
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.,Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Franco Lepore
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Guy Rouleau
- Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | | | - Michael D Fox
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Cecilia Flores
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.,Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Marco Leyton
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.,Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Hugo Théoret
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
46
|
Bouilly J, Messina A, Papadakis G, Cassatella D, Xu C, Acierno JS, Tata B, Sykiotis G, Santini S, Sidis Y, Elowe-Gruau E, Phan-Hug F, Hauschild M, Bouloux PM, Quinton R, Lang-Muritano M, Favre L, Marino L, Giacobini P, Dwyer AA, Niederländer NJ, Pitteloud N. DCC/NTN1 complex mutations in patients with congenital hypogonadotropic hypogonadism impair GnRH neuron development. Hum Mol Genet 2019; 27:359-372. [PMID: 29202173 DOI: 10.1093/hmg/ddx408] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic disease characterized by absent puberty and infertility due to GnRH deficiency, and is often associated with anosmia [Kallmann syndrome (KS)]. The genetic etiology of CHH is heterogeneous, and more than 30 genes have been implicated in approximately 50% of patients with CHH. We hypothesized that genes encoding axon-guidance proteins containing fibronectin type-III (FN3) domains (similar to ANOS1, the first gene associated with KS), are mutated in CHH. We performed whole-exome sequencing in a cohort of 133 CHH probands to test this hypothesis, and identified rare sequence variants (RSVs) in genes encoding for the FN3-domain encoding protein deleted in colorectal cancer (DCC) and its ligand Netrin-1 (NTN1). In vitro studies of these RSVs revealed altered intracellular signaling associated with defects in cell morphology, and confirmed five heterozygous DCC mutations in 6 probands-5 of which presented as KS. Two KS probands carry heterozygous mutations in both DCC and NTN1 consistent with oligogenic inheritance. Further, we show that Netrin-1 promotes migration in immortalized GnRH neurons (GN11 cells). This study implicates DCC and NTN1 mutations in the pathophysiology of CHH consistent with the role of these two genes in the ontogeny of GnRH neurons in mice.
Collapse
Affiliation(s)
- Justine Bouilly
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Andrea Messina
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Georgios Papadakis
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Daniele Cassatella
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Cheng Xu
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - James S Acierno
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Brooke Tata
- UMR-S 1172-JPArc-Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, University of Lille, 59000 Lille, France.,Laboratory of Development and Plasticity of the Neuroendocrine Brain, Inserm, UMR-S 1172, 59000 Lille, France
| | - Gerasimos Sykiotis
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Sara Santini
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Yisrael Sidis
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Eglantine Elowe-Gruau
- Division of Endocrinology, Diabetology and Obesity, Department of Pediatrics, Centre Hospitalier Universitaire Vaudois Lausanne, 1005 Lausanne, Switzerland
| | - Franziska Phan-Hug
- Division of Endocrinology, Diabetology and Obesity, Department of Pediatrics, Centre Hospitalier Universitaire Vaudois Lausanne, 1005 Lausanne, Switzerland
| | - Michael Hauschild
- Division of Endocrinology, Diabetology and Obesity, Department of Pediatrics, Centre Hospitalier Universitaire Vaudois Lausanne, 1005 Lausanne, Switzerland
| | - Pierre-Marc Bouloux
- Center for Neuroendocrinology, Royal Free Campus, University College Medical School, London WC1E6BT, UK
| | - Richard Quinton
- Institute of Genetic Medicine and the Royal Victoria Infirmary, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne NE13BZ, UK
| | - Mariarosaria Lang-Muritano
- Department of Endocrinology/Diabetology and Children's Research Centre, University Children's Hospital Zurich, 8091 Zurich, Switzerland
| | - Lucie Favre
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Laura Marino
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Paolo Giacobini
- UMR-S 1172-JPArc-Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, University of Lille, 59000 Lille, France.,Laboratory of Development and Plasticity of the Neuroendocrine Brain, Inserm, UMR-S 1172, 59000 Lille, France
| | - Andrew A Dwyer
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland.,Institute of Higher Education and Research in Healthcare, University of Lausanne, 1005 Lausanne, Switzerland
| | - Nicolas J Niederländer
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Nelly Pitteloud
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland.,Division of Endocrinology, Diabetology and Obesity, Department of Pediatrics, Centre Hospitalier Universitaire Vaudois Lausanne, 1005 Lausanne, Switzerland
| |
Collapse
|
47
|
Demirayak P, Onat OE, Gevrekci AÖ, Gülsüner S, Uysal H, Bilgen RS, Doerschner K, Özçelik TS, Boyacı H. Abnormal subcortical activity in congenital mirror movement disorder with RAD51 mutation. ACTA ACUST UNITED AC 2018; 24:392-401. [PMID: 30406765 DOI: 10.5152/dir.2018.18096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE Congenital mirror movement disorder (CMMD) is characterized by unintended, nonsuppressible, homologous mirroring activity contralateral to the movement on the intended side of the body. In healthy controls, unilateral movements are accompanied with predominantly contralateral cortical activity, whereas in CMMD, in line with the abnormal behavior, bilateral cortical activity is observed for unilateral motor tasks. However, task-related activities in subcortical structures, which are known to play critical roles in motor actions, have not been investigated in CMMD previously. METHODS We investigated the functional activation patterns of the motor components in CMMD patients. By using linkage analysis and exome sequencing, common mutations were revealed in seven affected individuals from the same family. Next, using functional magnetic resonance imaging (fMRI) we investigated cortical and subcortical activity during manual motor actions in two right-handed affected brothers and sex, age, education, and socioeconomically matched healthy individuals. RESULTS Genetic analyses revealed heterozygous RAD51 c.401C>T mutation which cosegregated with the phenotype in two affected members of the family. Consistent with previous literature, our fMRI results on these two affected individuals showed that mirror movements were closely related to abnormal cortical activity in M1 and SMA during unimanual movements. Furthermore, we have found previously unknown abnormal task-related activity in subcortical structures. Specifically, we have found increased and bilateral activity during unimanual movements in thalamus, striatum, and globus pallidus in CMMD patients. CONCLUSION These findings reveal further neural correlates of CMMD, and may guide our understanding of the critical roles of subcortical structures for unimanual movements in healthy individuals.
Collapse
Affiliation(s)
- Pınar Demirayak
- Neuroscience Graduate Program, Bilkent University; A.S. Brain Research Center and National Magnetic Resonance Research Center, Bilkent University, Ankara, Turkey
| | - Onur Emre Onat
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | | | - Süleyman Gülsüner
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Hilmi Uysal
- Department of Neurology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Rengin S Bilgen
- Department of Neurology, Bezmialem University School of Medicine, İstanbul, Turkey
| | - Katja Doerschner
- Neuroscience Graduate Program, A.S. Brain Research Center and National Magnetic Resonance Research Center and Psychology, Bilkent University, Ankara, Turkey; Department of Psychology, JL Giessen University, Giessen, Germany
| | - Tayfun S Özçelik
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Hüseyin Boyacı
- Neuroscience Graduate Program, A.S. Brain Research Center and National Magnetic Resonance Research Center and Psychology, Bilkent University, Ankara, Turkey; Department of Psychology, JL Giessen University, Giessen, Germany
| |
Collapse
|
48
|
Bierhals T, Korenke GC, Baethmann M, Marín LL, Staudt M, Kutsche K. Novel DCC variants in congenital mirror movements and evaluation of disease-associated missense variants. Eur J Med Genet 2018; 61:329-334. [DOI: 10.1016/j.ejmg.2018.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/04/2018] [Accepted: 01/19/2018] [Indexed: 12/15/2022]
|
49
|
Mesocorticolimbic Connectivity and Volumetric Alterations in DCC Mutation Carriers. J Neurosci 2018; 38:4655-4665. [PMID: 29712788 DOI: 10.1523/jneurosci.3251-17.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/29/2018] [Accepted: 04/07/2018] [Indexed: 01/25/2023] Open
Abstract
The axon guidance cue receptor DCC (deleted in colorectal cancer) plays a critical role in the organization of mesocorticolimbic pathways in rodents. To investigate whether this occurs in humans, we measured (1) anatomical connectivity between the substantia nigra/ventral tegmental area (SN/VTA) and forebrain targets, (2) striatal and cortical volumes, and (3) putatively associated traits and behaviors. To assess translatability, morphometric data were also collected in Dcc-haploinsufficient mice. The human volunteers were 20 DCC+/- mutation carriers, 16 DCC+/+ relatives, and 20 DCC+/+ unrelated healthy volunteers (UHVs; 28 females). The mice were 11 Dcc+/- and 16 wild-type C57BL/6J animals assessed during adolescence and adulthood. Compared with both control groups, the human DCC+/- carriers exhibited the following: (1) reduced anatomical connectivity from the SN/VTA to the ventral striatum [DCC+/+: p = 0.0005, r(effect size) = 0.60; UHV: p = 0.0029, r = 0.48] and ventral medial prefrontal cortex (DCC+/+: p = 0.0031, r = 0.53; UHV: p = 0.034, r = 0.35); (2) lower novelty-seeking scores (DCC+/+: p = 0.034, d = 0.82; UHV: p = 0.019, d = 0.84); and (3) reduced striatal volume (DCC+/+: p = 0.0009, d = 1.37; UHV: p = 0.0054, d = 0.93). Striatal volumetric reductions were also present in Dcc+/- mice, and these were seen during adolescence (p = 0.0058, d = 1.09) and adulthood (p = 0.003, d = 1.26). Together these findings provide the first evidence in humans that an axon guidance gene is involved in the formation of mesocorticolimbic circuitry and related behavioral traits, providing mechanisms through which DCC mutations might affect susceptibility to diverse neuropsychiatric disorders.SIGNIFICANCE STATEMENT Opportunities to study the effects of axon guidance molecules on human brain development have been rare. Here, the identification of a large four-generational family that carries a mutation to the axon guidance molecule receptor gene, DCC, enabled us to demonstrate effects on mesocorticolimbic anatomical connectivity, striatal volumes, and personality traits. Reductions in striatal volumes were replicated in DCC-haploinsufficient mice. Together, these processes might influence mesocorticolimbic function and susceptibility to diverse neuropsychiatric disorders.
Collapse
|
50
|
Arbeille E, Bashaw GJ. Brain Tumor promotes axon growth across the midline through interactions with the microtubule stabilizing protein Apc2. PLoS Genet 2018; 14:e1007314. [PMID: 29617376 PMCID: PMC5902039 DOI: 10.1371/journal.pgen.1007314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/16/2018] [Accepted: 03/19/2018] [Indexed: 11/20/2022] Open
Abstract
Commissural axons must cross the midline to establish reciprocal connections between the two sides of the body. This process is highly conserved between invertebrates and vertebrates and depends on guidance cues and their receptors to instruct axon trajectories. The DCC family receptor Frazzled (Fra) signals chemoattraction and promotes midline crossing in response to its ligand Netrin. However, in Netrin or fra mutants, the loss of crossing is incomplete, suggesting the existence of additional pathways. Here, we identify Brain Tumor (Brat), a tripartite motif protein, as a new regulator of midline crossing in the Drosophila CNS. Genetic analysis indicates that Brat acts independently of the Netrin/Fra pathway. In addition, we show that through its B-Box domains, Brat acts cell autonomously to regulate the expression and localization of Adenomatous polyposis coli-2 (Apc2), a key component of the Wnt canonical signaling pathway, to promote axon growth across the midline. Genetic evidence indicates that the role of Brat and Apc2 to promote axon growth across the midline is independent of Wnt and Beta-catenin-mediated transcriptional regulation. Instead, we propose that Brat promotes midline crossing through directing the localization or stability of Apc2 at the plus ends of microtubules in navigating commissural axons. These findings define a new mechanism in the coordination of axon growth and guidance at the midline. The establishment of neuronal connections that cross the midline of the animal is essential to generate neural circuits that coordinate the left and right sides of the body. Axons that cross the midline to form these connections are called commissural axons and the molecules and mechanisms that control midline axon crossing are remarkably conserved across animal evolution. In this study we have used a genetic screen in the fruit fly in an attempt to uncover additional players in this key developmental process, and have identified a novel role for the Brain Tumor (Brat) protein in promoting commissural axon growth across the midline. Unlike its previous described functions, in the context of midline axon guidance Brat cooperates with the microtubule stabilizing protein Apc2 to coordinate axon growth and guidance. Molecular and genetic analyses point to the conserved B box motifs of the Brat protein as key in promoting the association of Apc2 with the plus ends of microtubules. Brat is highly conserved and future studies will determine whether homologous genes play analogous roles in mammalian neural development.
Collapse
Affiliation(s)
- Elise Arbeille
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Greg J. Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|