1
|
Mach N. The forecasting power of the mucin-microbiome interplay in livestock respiratory diseases. Vet Q 2024; 44:1-18. [PMID: 38606662 PMCID: PMC11018052 DOI: 10.1080/01652176.2024.2340003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/31/2024] [Indexed: 04/13/2024] Open
Abstract
Complex respiratory diseases are a significant challenge for the livestock industry worldwide. These diseases considerably impact animal health and welfare and cause severe economic losses. One of the first lines of pathogen defense combines the respiratory tract mucus, a highly viscous material primarily composed of mucins, and a thriving multi-kingdom microbial ecosystem. The microbiome-mucin interplay protects from unwanted substances and organisms, but its dysfunction may enable pathogenic infections and the onset of respiratory disease. Emerging evidence also shows that noncoding regulatory RNAs might modulate the structure and function of the microbiome-mucin relationship. This opinion paper unearths the current understanding of the triangular relationship between mucins, the microbiome, and noncoding RNAs in the context of respiratory infections in animals of veterinary interest. There is a need to look at these molecular underpinnings that dictate distinct health and disease outcomes to implement effective prevention, surveillance, and timely intervention strategies tailored to the different epidemiological contexts.
Collapse
Affiliation(s)
- Núria Mach
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| |
Collapse
|
2
|
Li Y, He Y, Zheng Q, Zhang J, Pan X, Zhang X, Yuan H, Wang G, Liu X, Zhou X, Zhu X, Ren T, Sui P. Mitochondrial pyruvate carriers control airway basal progenitor cell function through glycolytic-epigenetic reprogramming. Cell Stem Cell 2024:S1934-5909(24)00329-1. [PMID: 39426380 DOI: 10.1016/j.stem.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 05/14/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024]
Abstract
Basal cells (BCs) are the progenitor cells responsible for tracheal epithelium integrity. Here, we demonstrate that mitochondrial pyruvate carriers (MPCs) act as metabolic checkpoints that are essential for BC fate decision. Inhibition of MPCs enables long-term expansion of BCs from both mice and humans. Genetic inactivation of Mpc2 in mice leads to BC hyperplasia and reduced ciliated cells during homeostasis, as well as delayed epithelial regeneration and accumulation of intermediate cells following injury. Mechanistically, MPC2 links glycolysis to ATP citrate lyase (ACLY)-dependent cytosolic acetyl-coenzyme A (CoA) generation, which is required for the epigenetic control of differentiation-related gene transcription. Modulating this metabolic-epigenetic axis partially rescues Yes-associated protein (YAP)-dysfunction-induced changes in BCs. Importantly, exogenous citrate promotes the differentiation of BCs from chronic obstructive lung disease (COPD) patients. Thus, beyond demonstrating the role of pyruvate metabolism in BC fate decision, our study suggests that targeting pyruvate-citrate metabolism may serve as a potential strategy to rectify abnormal BC behavior in lung diseases.
Collapse
Affiliation(s)
- Yawen Li
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yalin He
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qi Zheng
- Department of Respiratory and Clinical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jiazhu Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinwen Pan
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xi Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Huairui Yuan
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guangchuan Wang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin Liu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaolong Zhou
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Xueliang Zhu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tao Ren
- Department of Respiratory and Clinical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Pengfei Sui
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
3
|
Stewart CG, Hilkin BM, Gansemer ND, Adam RJ, Dick DW, Sunderland JJ, Stoltz DA, Zabner J, Abou Alaiwa MH. Mucociliary clearance is impaired in small airways of cystic fibrosis pigs. Am J Physiol Lung Cell Mol Physiol 2024; 327:L415-L422. [PMID: 39104314 PMCID: PMC11482522 DOI: 10.1152/ajplung.00010.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
Cystic fibrosis (CF) is a genetic disorder characterized by recurrent airway infections, inflammation, impaired mucociliary clearance, and progressive decline in lung function. The disease may start in the small airways; however, this is difficult to prove due to the limited accessibility of the small airways with the current single-photon mucociliary clearance assay. Here, we developed a dynamic positron emission tomography assay with high spatial and temporal resolution. We tested that mucociliary clearance is abnormal in the small airways of newborn cystic fibrosis pigs. Clearance of [68Ga]-tagged macroaggregated albumin from small airways started immediately after delivery and continued for the duration of the study. Initial clearance was fast but slowed down a few minutes after delivery. Cystic fibrosis pigs' small airways cleared significantly less than non-CF pigs' small airways (non-CF 25.1 ± 3.1% vs. CF 14.6 ± 0.1%). Stimulation of the cystic fibrosis airways with the purinergic secretagogue uridine-5'-triphosphate (UTP) further impaired clearance (non-CF with UTP 20.9 ± 0.3% vs. CF with UTP 13.0 ± 1.8%). None of the cystic fibrosis pigs treated with UTP (n = 6) cleared more than 20% of the delivered dose. These data indicate that mucociliary clearance in the small airways is fast and can easily be missed if the assay is not sensitive enough. The data also indicate that mucociliary clearance is impaired in the small airways of cystic fibrosis pigs. This defect is exacerbated by stimulation of mucus secretions with purinergic agonists.NEW & NOTEWORTHY We developed a novel positron emission tomography scan assay with unprecedented temporal and spatial resolution to measure mucociliary clearance in the small airways. We proved a long-standing but unproven assertion that mucociliary clearance is inherently abnormal in the small airways of newborn cystic fibrosis piglets that are otherwise free of infection or inflammation. This technique can be easily extended to other airway diseases such as asthma, idiopathic pulmonary fibrosis, or chronic obstructive pulmonary disease.
Collapse
Grants
- HL136813 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- K08 HL135433 NHLBI NIH HHS
- P30 CA086862 NCI NIH HHS
- HL051670 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P01 HL091842 NHLBI NIH HHS
- R01 HL136813 NHLBI NIH HHS
- HL167025 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P01 HL051670 NHLBI NIH HHS
- R01 HL167025 NHLBI NIH HHS
- HL135433 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- ABOU20A0-KB Cystic Fibrosis Foundation (CFF)
- HL091842 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Carley G Stewart
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, United States
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Brieanna M Hilkin
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Nicholas D Gansemer
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Ryan J Adam
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - David W Dick
- Department of Radiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - John J Sunderland
- Department of Radiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - David A Stoltz
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, United States
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
- Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Joseph Zabner
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, United States
- Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Mahmoud H Abou Alaiwa
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, United States
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
4
|
Burgener EB, Cai PC, Kratochvil MJ, Rojas-Hernandez LS, Joo NS, Gupta A, Secor PR, Heilshorn SC, Spakowitz AJ, Wine JJ, Bollyky PL, Milla CE. The lysogenic filamentous Pseudomonas bacteriophage phage Pf slows mucociliary transport. PNAS NEXUS 2024; 3:pgae390. [PMID: 39301510 PMCID: PMC11412248 DOI: 10.1093/pnasnexus/pgae390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024]
Abstract
Pseudomonas aeruginosa is a major pulmonary pathogen causing chronic pulmonary infections in people with cystic fibrosis (CF). The P. aeruginosa filamentous and lysogenic bacteriophage, Pf phage, is abundant in the airways of many people with CF and has been associated with poor outcomes in a cross-sectional cohort study. Previous studies have identified roles for Pf phage in biofilm formation, specifically forming higher-order birefringent, liquid crystals when in contact with other biopolymers in biofilms. Liquid crystalline biofilms are more adherent and viscous than those without liquid crystals. A key feature of biofilms is to enhance bacterial adherence and resist physical clearance. The effect of Pf phage on mucociliary transport is unknown. We found that primary CF and non-CF nasal epithelial cells cultured at air-liquid interface treated with Pf phage exhibit liquid crystalline structures in the overlying mucus. On these cell cultures, Pf phage entangles cilia but does not affect ciliary beat frequency. In both these in vitro cell cultures and in an ex vivo porcine trachea model, introduction of Pf phage decreases mucociliary transport velocity. Pf phage also blocks the rescue of mucociliary transport by CF transmembrane conductance regulator modulators in CF cultures. Thus, Pf phage may contribute to the pathogenesis of P. aeruginosa-associated CF lung disease via induction of liquid crystalline characteristics to airway secretions, leading to impaired mucociliary transport. Targeting Pf phage may be useful in treatment CF as well as other settings of chronic P. aeruginosa infections.
Collapse
Affiliation(s)
- Elizabeth B Burgener
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University, Stanford, CA 94305, USA
- Division of Pediatric Pulmonology and Sleep Medicine, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Pamela C Cai
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Michael J Kratochvil
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Laura S Rojas-Hernandez
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University, Stanford, CA 94305, USA
| | - Nam Soo Joo
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University, Stanford, CA 94305, USA
- Cystic Fibrosis Research Laboratory, School of Humanities and Sciences, Stanford University, Stanford, CA 94305, USA
| | - Aditi Gupta
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University, Stanford, CA 94305, USA
| | - Patrick R Secor
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Andrew J Spakowitz
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jeffrey J Wine
- Cystic Fibrosis Research Laboratory, School of Humanities and Sciences, Stanford University, Stanford, CA 94305, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Carlos E Milla
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Abou Alaiwa MA, Hilkin BM, Price MP, Gansemer ND, Rector MR, Stroik MR, Powers LS, Whitworth KM, Samuel MS, Jain A, Ostedgaard LS, Ernst SE, Philibert W, Boyken LD, Moninger TO, Karp PH, Hornick DB, Sinn PL, Fischer AJ, Pezzulo AA, McCray PB, Meyerholz DK, Zabner J, Prather RS, Welsh MJ, Stoltz DA. Development and Initial Characterization of Pigs with DNAI1 Mutations and Primary Ciliary Dyskinesia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.594822. [PMID: 39229081 PMCID: PMC11370470 DOI: 10.1101/2024.05.22.594822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Mutations in more than 50 different genes cause primary ciliary dyskinesia (PCD) by disrupting the activity of motile cilia that facilitate mucociliary transport (MCT). Knowledge of PCD has come from studies identifying disease-causing mutations, characterizing structural cilia abnormalities, finding genotype-phenotype relationships, and studying the cell biology of cilia. Despite these important findings, we still lack effective treatments and people with PCD have significant pulmonary impairment. As with many other diseases, a better understanding of pathogenic mechanisms may lead to effective treatments. To pursue disease mechanisms, we used CRISPR-Cas9 to develop a PCD pig with a disrupted DNAI1 gene. PCD pig airway cilia lacked the outer dynein arm and had impaired beating. MCT was impaired under both baseline conditions and after cholinergic stimulation in PCD pigs. Neonatal PCD pigs developed neonatal respiratory distress with evidence of atelectasis, air trapping, and airway mucus obstruction. Despite airway mucus accumulation, lung bacterial counts were similar between neonatal wild-type and PCD pigs. Sinonasal disease was present in all neonatal PCD pigs. Older PCD pigs developed worsening airway mucus obstruction, inflammation, and bacterial infection. This pig model closely mimics the disease phenotype seen in people with PCD and can be used to better understand the pathophysiology of PCD airway disease.
Collapse
Affiliation(s)
- Mahmoud A. Abou Alaiwa
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242
| | - Brie M. Hilkin
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Margaret P. Price
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Nicholas D. Gansemer
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Michael R. Rector
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Mal R. Stroik
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Linda S. Powers
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | | | - Melissa S. Samuel
- Division of Animal Sciences, University of Missouri, Columbia, Missouri 65211
| | - Akansha Jain
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Lynda S. Ostedgaard
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Sarah E. Ernst
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Winter Philibert
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242
| | - Linda D. Boyken
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Thomas O. Moninger
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Phillip H. Karp
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Douglas B. Hornick
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Patrick L. Sinn
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Anthony J. Fischer
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Alejandro A. Pezzulo
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Paul B. McCray
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - David K. Meyerholz
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Joseph Zabner
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Randy S. Prather
- Division of Animal Sciences, University of Missouri, Columbia, Missouri 65211
| | - Michael J. Welsh
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa 52242
| | - David A. Stoltz
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
6
|
Meyerholz DK, Burrough ER, Kirchhof N, Anderson DJ, Helke KL. Swine models in translational research and medicine. Vet Pathol 2024; 61:512-523. [PMID: 38197394 DOI: 10.1177/03009858231222235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Swine are increasingly studied as animal models of human disease. The anatomy, size, longevity, physiology, immune system, and metabolism of swine are more like humans than traditional rodent models. In addition, the size of swine is preferred for surgical placement and testing of medical devices destined for humans. These features make swine useful for biomedical, pharmacological, and toxicological research. With recent advances in gene-editing technologies, genetic modifications can readily and efficiently be made in swine to study genetic disorders. In addition, gene-edited swine tissues are necessary for studies testing and validating xenotransplantation into humans to meet the critical shortfall of viable organs versus need. Underlying all of these biomedical applications, the knowledge of husbandry, background diseases and lesions, and biosecurity needs are important for productive, efficient, and reproducible research when using swine as a human disease model for basic research, preclinical testing, and translational studies.
Collapse
|
7
|
Ciciriello F, Panariello F, Medino P, Biffi A, Alghisi F, Rosazza C, Annunziata P, Bouchè V, Grimaldi A, Guidone D, Venturini A, Alicandro G, Oggioni M, Cerino P, Paiola G, Gramegna A, Fiocchi A, Bandera A, Lucidi V, Cacchiarelli D, Galietta LJV, Colombo C. Covid-19 in cystic fibrosis patients compared to the general population: Severity and virus-host cell interactions. J Cyst Fibros 2024; 23:625-632. [PMID: 38508950 DOI: 10.1016/j.jcf.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/30/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND People with cystic fibrosis (pwCF) are considered at risk of developing severe forms of respiratory viral infections. We studied the consequences of COVID-19 and virus-host cell interactions in CF vs. non-CF individuals. METHODS We enrolled CF and non-CF individuals, with /without COVID-like symptoms, who underwent nasopharyngeal swab for detection of SARS-CoV-2. Gene expression was evaluated by RNA sequencing on the same nasopharyngeal swabs. Criteria for COVID-19 severity were hospitalization and requirement or increased need of oxygen therapy. RESULTS The study included 171 patients (65 pwCF and 106 non-CF individuals). Among them, 10 pwCF (15.4 %) and 43 people without CF (40.6 %) tested positive at RT-PCR. Symptomatic infections were observed in 8 pwCF (with 2 requiring hospitalization) and in 11 individuals without CF (6 requiring hospitalization). Host transcriptomic analysis revealed that genes involved in protein translation, particularly ribosomal components, were downregulated in CF samples irrespective of SARS-CoV-2 status. In SARS-CoV-2 negative individuals, we found a significant difference in genes involved with motile cilia expression and function, which were upregulated in CF samples. Pathway enrichment analysis indicated that interferon signaling in response to SARS-CoV-2 infection was upregulated in both pwCF and non-CF subjects. CONCLUSIONS COVID-19 does not seem to be more severe in CF, possibly due to factors intrinsic to this population: the lower expression of ribosomal genes may downregulate the protein translation machinery, thus creating an unfavorable environment for viral replication.
Collapse
Affiliation(s)
- Fabiana Ciciriello
- Cystic Fibrosis Center, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | - Francesco Panariello
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
| | - Paola Medino
- Pediatric Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilan, Italy
| | - Arianna Biffi
- Pediatric Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilan, Italy
| | - Federico Alghisi
- Cystic Fibrosis Center, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | - Chiara Rosazza
- Pediatric Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilan, Italy
| | - Patrizia Annunziata
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy; NEGEDIA (Next Generation Diagnostic srl), Pozzuoli, Italy
| | - Valentina Bouchè
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
| | - Antonio Grimaldi
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy; Department of Translational Medicine, University of Naples Federico II, Naples, Italy
| | - Daniela Guidone
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Arianna Venturini
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Gianfranco Alicandro
- Pediatric Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Massimo Oggioni
- Clinical Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - Pellegrino Cerino
- Centro di Referenza Nazionale per l'analisi e studio di correlazione tra ambiente, animale e uomo. Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Giulia Paiola
- Cystic Fibrosis Center, Azienda Ospedaliero Universitaria Integrata di Verona, Pl. Aristide Stefani 1 37126 Verona, Italy
| | - Andrea Gramegna
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandro Fiocchi
- Cystic Fibrosis Center, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | - Alessandra Bandera
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Clinic of Infectious Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Vincenzina Lucidi
- Cystic Fibrosis Center, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy; Department of Translational Medicine, University of Naples Federico II, Naples, Italy; School for Advanced Studies, Genomics and Experimental Medicine Program, University of Naples "Federico II", Naples, Italy
| | - Luis J V Galietta
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy; Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.
| | - Carla Colombo
- Pediatric Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| |
Collapse
|
8
|
Scott M, Lei L, Bierstedt KC, McCray PB, Xie Y. Dynamic measurement of airway surface liquid volume with an ex vivo trachea-chip. LAB ON A CHIP 2024; 24:3093-3100. [PMID: 38779981 PMCID: PMC11165946 DOI: 10.1039/d4lc00134f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
The volume and composition of airway surface liquid (ASL) is regulated by liquid secretion and absorption across airway epithelia, controlling the pH, solute concentration, and biophysical properties of ASL in health and disease. Here, we developed a method integrating explanted tracheal tissue with a micro-machined device (referred to as "ex vivo trachea-chip") to study the dynamic properties of ASL volume regulation. The ex vivo trachea-chip allows real-time measurement of ASL transport (Jv) with intact airway anatomic structures, environmental control, high-resolution, and enhanced experimental throughput. Applying this technology to freshly excised tissue we observed ASL absorption under basal conditions. The apical application of amiloride, an inhibitor of airway epithelial sodium channels (ENaC), reduced airway liquid absorption. Furthermore, the basolateral addition of NPPB, a Cl- channel inhibitor, reduced the basal rate of ASL absorption, implicating a role for basolateral Cl- channels in ASL volume regulation. When tissues were treated with apical amiloride and basolateral methacholine, a cholinergic agonist that stimulates secretion from airway submucosal glands, the net airway surface liquid production shifted from absorption to secretion. This ex vivo trachea-chip provides a new tool to investigate ASL transport dynamics in pulmonary disease states and may aid the development of new therapies targeting ASL regulation.
Collapse
Affiliation(s)
- Michael Scott
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, USA.
| | - Lei Lei
- Stead Family Department of Pediatrics and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, USA
| | - Kaleb C Bierstedt
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, USA.
| | - Paul B McCray
- Stead Family Department of Pediatrics and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, USA
| | - Yuliang Xie
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, USA.
| |
Collapse
|
9
|
Cho DY, Rivers NJ, Lim DJ, Zhang S, Skinner D, Yang L, Menon AJ, Kelly OJ, Jones MP, Bicknel BT, Grayson JW, Harris E, Rowe SM, Woodworth BA. Glutathione and bicarbonate nanoparticles improve mucociliary transport in cystic fibrosis epithelia. Int Forum Allergy Rhinol 2024; 14:1026-1035. [PMID: 37975554 PMCID: PMC11098968 DOI: 10.1002/alr.23301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF) airway disease is characterized by thick mucus and impaired mucociliary transport (MCT). Loss of functional cystic fibrosis transmembrane receptor (CFTR) leads to acidification and oxidation of airway surface mucus. Replacing bicarbonate (HCO3 -) topically fails due to rapid reabsorption and neutralization, while the scavenging antioxidant, glutathione sulfhydryl (GSH), is also rapidly degraded. The objective of this study is to investigate GSH/NaHCO3 nanoparticles as novel strategy for CF airway disease. METHODS GSH/NaHCO3 poly (lactic-co-glycolic acid) nanoparticles were tested on primary CF (F508del/F508del) epithelial cultures to evaluate dose-release curves, surface pH, toxicity, and MCT indices using micro-optical coherence tomography. In vivo tests were performed in three rabbits to assess safety and toxicity. After 1 week of daily injections, histopathology, computed tomography (CT), and blood chemistries were performed and compared to three controls. Fluorescent nanoparticles were injected into a rabbit with maxillary sinusitis and explants visualized with confocal microscopy. RESULTS Sustained release of GSH and HCO3 - with no cellular toxicity was observed over 2 weeks. Apical surface pH gradually increased from 6.54 ± 0.13 (baseline) to 7.07 ± 0.10 (24 h) (p < 0.001) and 6.87 ± 0.05 at 14 days (p < 0.001). MCT, ciliary beat frequency, and periciliary liquid were significantly increased. When injected into the maxillary sinuses of rabbits, there were no changes to histology, CT, or blood chemistries. Nanoparticles penetrated rabbit sinusitis mucus on confocal microscopy. CONCLUSION Findings suggest that GSH/NaHCO3 - nanoparticles are a promising treatment option for viscous mucus in CF and other respiratory diseases of mucus obstruction such as chronic rhinosinusitis.
Collapse
Affiliation(s)
- Do Yeon Cho
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Division of Otolaryngology, Department of Surgery, Veterans Affairs, Birmingham Alabama, United States of America
| | - Nicholas J. Rivers
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Dong-Jin Lim
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Shaoyan Zhang
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Daniel Skinner
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Lydia Yang
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Departments of Medicine, Pediatrics, Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Adithya J. Menon
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Olivia Jo Kelly
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Martin P. Jones
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Brenton T. Bicknel
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jessica W. Grayson
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Elex Harris
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Steven M. Rowe
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Departments of Medicine, Pediatrics, Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Bradford A. Woodworth
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
10
|
Stewart CG, Hilkin BM, Gansemer ND, Dick DW, Sunderland JJ, Stoltz DA, Abou Alaiwa MH, Zabner J. Mucociliary Clearance is Impaired in Small Airways of Cystic Fibrosis Pigs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595427. [PMID: 38826411 PMCID: PMC11142153 DOI: 10.1101/2024.05.22.595427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Rationale Cystic fibrosis is a genetic disorder characterized by recurrent airway infections, inflammation, and progressive decline in lung function. Autopsy and spirometry data suggest that cystic fibrosis may start in the small airways which, due to the fractal nature of the airways, account for most of the airway tree surface area. However, they are not easily accessible for testing. Objectives Here, we tested the hypothesis that mucociliary clearance is abnormal in the small airways of newborn cystic fibrosis pigs. Methods Current mucociliary clearance assays are limited therefore we developed a dynamic positron emission tomography scan assay with high spatial and temporal resolution. Each study was accompanied by a high-resolution computed tomography scan that helped identify the thin outer region of the lung that contained small airways. Measurements and Main Results Clearance of aerosolized [ 68 Ga]macro aggregated albumin from distal airways occurred within minutes after delivery and followed a two-phase process. In cystic fibrosis pigs, both early and late clearance rates were slower. Stimulation of the cystic fibrosis airways with the purinergic agonist UTP further impaired late clearance. Only 1 cystic fibrosis pig treated with UTP out of 6 cleared more than 20% of the delivered dose. Conclusions These data indicate that mucociliary transport in the small airways is fast and can easily be missed if the acquisition is not fast enough. The data also indicate that mucociliary transport is impaired in small airways of cystic fibrosis pigs. This defect is exacerbated by stimulation of mucus secretions with purinergic agonists.
Collapse
|
11
|
Bae H, Kim BR, Jung S, Le J, van der Heide D, Yu W, Park SH, Hilkin BM, Gansemer ND, Powers LS, Kang T, Meyerholz DK, Schuster VL, Jang C, Welsh MJ. Arteriovenous metabolomics in pigs reveals CFTR regulation of metabolism in multiple organs. J Clin Invest 2024; 134:e174500. [PMID: 38743489 PMCID: PMC11213515 DOI: 10.1172/jci174500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF), a multiorgan disease that is characterized by diverse metabolic defects. However, other than specific CFTR mutations, the factors that influence disease progression and severity remain poorly understood. Aberrant metabolite levels have been reported, but whether CFTR loss itself or secondary abnormalities (infection, inflammation, malnutrition, and various treatments) drive metabolic defects is uncertain. Here, we implemented comprehensive arteriovenous metabolomics in newborn CF pigs, and the results revealed CFTR as a bona fide regulator of metabolism. CFTR loss impaired metabolite exchange across organs, including disruption of lung uptake of fatty acids, yet enhancement of uptake of arachidonic acid, a precursor of proinflammatory cytokines. CFTR loss also impaired kidney reabsorption of amino acids and lactate and abolished renal glucose homeostasis. These and additional unexpected metabolic defects prior to disease manifestations reveal a fundamental role for CFTR in controlling multiorgan metabolism. Such discovery informs a basic understanding of CF, provides a foundation for future investigation, and has implications for developing therapies targeting only a single tissue.
Collapse
Affiliation(s)
- Hosung Bae
- Department of Biological Chemistry, University of California – Irvine, Irvine, California, USA
| | - Bo Ram Kim
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Sunhee Jung
- Department of Biological Chemistry, University of California – Irvine, Irvine, California, USA
| | - Johnny Le
- Department of Biological Chemistry, University of California – Irvine, Irvine, California, USA
| | | | - Wenjie Yu
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Sang Hee Park
- Department of Biological Chemistry, University of California – Irvine, Irvine, California, USA
| | - Brieanna M. Hilkin
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Nicholas D. Gansemer
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Linda S. Powers
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Taekyung Kang
- Department of Biological Chemistry, University of California – Irvine, Irvine, California, USA
| | - David K. Meyerholz
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Victor L. Schuster
- Department of Internal Medicine, Albert Einstein College of Medicine, Bronx, New York, New York, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California – Irvine, Irvine, California, USA
- Center for Complex Biological Systems and
- Center for Epigenetics and Metabolism, University of California – Irvine, Irvine, California, USA
| | - Michael J. Welsh
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa, USA
- Department of Molecular Physiology and Biophysics, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
12
|
Vijaykumar K, Leung HM, Barrios A, Wade J, Hathorne HY, Nichols DP, Tearney GJ, Rowe SM, Solomon GM. Longitudinal improvements in clinical and functional outcomes following initiation of elexacaftor/tezacaftor/ivacaftor in patients with cystic fibrosis. Heliyon 2024; 10:e29188. [PMID: 38681615 PMCID: PMC11052906 DOI: 10.1016/j.heliyon.2024.e29188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024] Open
Abstract
Background Use of elexacaftor/tezacaftor/ivacaftor (ETI) for treatment of cystic fibrosis (CF) has resulted in unprecedented clinical improvements necessitating development of outcome measures for monitoring disease course. Intranasal micro-optical coherence tomography (μOCT) has previously helped detect and characterize mucociliary abnormalities in patients with CF. This study was done to determine if μOCT can define the effects of ETI on nasal mucociliary clearance and monitor changes conferred to understand mechanistic effects of CFTR modulators beyond CFTR activation. Methods 26 subjects, with at least 1 F508del mutation were recruited and followed at baseline (visit 1), +1 month (visit 2) and +6 months (visit 4) following initiation of ETI therapy. Clinical outcomes were computed at visits 1, 2 and 4. Intranasal μOCT imaging and functional metrics analysis including mucociliary transport rate (MCT) estimation were done at visits 1 and 2. Results Percent predicted forced expiratory volume in 1 s (ppFEV1) showed a significant increase of +10.9 % at visit 2, which sustained at visit 4 (+10.6 %). Sweat chloride levels significantly decreased by -36.6 mmol/L and -41.3 mmol/L at visits 2 and 4, respectively. μOCT analysis revealed significant improvement in MCT rate (2.8 ± 1.5, visit 1 vs 4.0 ± 1.5 mm/min, visit 2; P = 0.048). Conclusions Treatment with ETI resulted in significant and sustained clinical improvements over 6 months. Functional improvements in MCT rate were evident within a month after initiation of ETI therapy indicating that μOCT imaging is sensitive to the treatment effect of HEMT and suggests improved mucociliary transport as a probable mechanism of action underlying the clinical benefits.
Collapse
Affiliation(s)
- Kadambari Vijaykumar
- Department of Medicine, University of Alabama at Birmingham, AL, United States
- Gregory Fleming James CF Research Center, Birmingham, AL, United States
| | - Hui Min Leung
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
| | - Amilcar Barrios
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
| | - Justin Wade
- Gregory Fleming James CF Research Center, Birmingham, AL, United States
| | | | | | - Guillermo J. Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
| | - Steven M. Rowe
- Department of Medicine, University of Alabama at Birmingham, AL, United States
- Gregory Fleming James CF Research Center, Birmingham, AL, United States
| | - George M. Solomon
- Department of Medicine, University of Alabama at Birmingham, AL, United States
- Gregory Fleming James CF Research Center, Birmingham, AL, United States
| |
Collapse
|
13
|
Wu M, Chen JH. CFTR dysfunction leads to defective bacterial eradication on cystic fibrosis airways. Front Physiol 2024; 15:1385661. [PMID: 38699141 PMCID: PMC11063615 DOI: 10.3389/fphys.2024.1385661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel by genetic mutations causes the inherited disease cystic fibrosis (CF). CF lung disease that involves multiple disorders of epithelial function likely results from loss of CFTR function as an anion channel conducting chloride and bicarbonate ions and its function as a cellular regulator modulating the activity of membrane and cytosol proteins. In the absence of CFTR activity, abundant mucus accumulation, bacterial infection and inflammation characterize CF airways, in which inflammation-associated tissue remodeling and damage gradually destroys the lung. Deciphering the link between CFTR dysfunction and bacterial infection in CF airways may reveal the pathogenesis of CF lung disease and guide the development of new treatments. Research efforts towards this goal, including high salt, low volume, airway surface liquid acidosis and abnormal mucus hypotheses are critically reviewed.
Collapse
Affiliation(s)
| | - Jeng-Haur Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| |
Collapse
|
14
|
Dagher R, Moldobaeva A, Gubbins E, Clark S, Madel Alfajaro M, Wilen CB, Hawkins F, Qu X, Chien Chiang C, Li Y, Clarke L, Ikeda Y, Brown C, Kolbeck R, Ma Q, Rojas M, Koff JL, Ghaedi M. Human iPSC-Based Model of COPD to Investigate Disease Mechanisms, Predict SARS-COV-2 Outcome, and Test Preventive Immunotherapy. Stem Cells 2024; 42:230-250. [PMID: 38183264 DOI: 10.1093/stmcls/sxad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/22/2023] [Indexed: 01/07/2024]
Abstract
Chronic inflammation and dysregulated repair mechanisms after epithelial damage have been implicated in chronic obstructive pulmonary disease (COPD). However, the lack of ex vivo-models that accurately reflect multicellular lung tissue hinders our understanding of epithelial-mesenchymal interactions in COPD. Through a combination of transcriptomic and proteomic approaches applied to a sophisticated in vitro iPSC-alveolosphere with fibroblasts model, epithelial-mesenchymal crosstalk was explored in COPD and following SARS-CoV-2 infection. These experiments profiled dynamic changes at single-cell level of the SARS-CoV-2-infected alveolar niche that unveiled the complexity of aberrant inflammatory responses, mitochondrial dysfunction, and cell death in COPD, which provides deeper insights into the accentuated tissue damage/inflammation/remodeling observed in patients with SARS-CoV-2 infection. Importantly, this 3D system allowed for the evaluation of ACE2-neutralizing antibodies and confirmed the potency of this therapy to prevent SARS-CoV-2 infection in the alveolar niche. Thus, iPSC-alveolosphere cultured with fibroblasts provides a promising model to investigate disease-specific mechanisms and to develop novel therapeutics.
Collapse
Affiliation(s)
- Rania Dagher
- Bioscience COPD/IPF, Research, and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Aigul Moldobaeva
- Bioscience COPD/IPF, Research, and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Elise Gubbins
- Bioscience COPD/IPF, Research, and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Sydney Clark
- Bioscience COPD/IPF, Research, and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Mia Madel Alfajaro
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Craig B Wilen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Finn Hawkins
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University, School of Medicine, Boston, MA, USA
| | - Xiaotao Qu
- Data Science and Artificial Intelligence, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Chia Chien Chiang
- Data Science and Artificial Intelligence, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Yang Li
- Bioscience COPD/IPF, Research, and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Lori Clarke
- Cell Therapeutics, Antibody Discovery, and Protein Engineering, BioPharmaceuticals R&D AstraZeneca, Gaithersburg, MD, USA
| | - Yasuhiro Ikeda
- Cell Therapeutics, Antibody Discovery, and Protein Engineering, BioPharmaceuticals R&D AstraZeneca, Gaithersburg, MD, USA
| | - Charles Brown
- CPSS, BioPharmaceuticals R&D AstraZeneca, Gaithersburg, MD, USA
| | | | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Mauricio Rojas
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, Davis Heart & Lung Research Institute, Ohio State University, Columbus, OH, USA
| | - Jonathan L Koff
- Department of Medicine, Section of Pulmonary, Critical Care & Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Mahboobe Ghaedi
- Bioscience COPD/IPF, Research, and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| |
Collapse
|
15
|
Fröhlich E. Animals in Respiratory Research. Int J Mol Sci 2024; 25:2903. [PMID: 38474149 DOI: 10.3390/ijms25052903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The respiratory barrier, a thin epithelial barrier that separates the interior of the human body from the environment, is easily damaged by toxicants, and chronic respiratory diseases are common. It also allows the permeation of drugs for topical treatment. Animal experimentation is used to train medical technicians, evaluate toxicants, and develop inhaled formulations. Species differences in the architecture of the respiratory tract explain why some species are better at predicting human toxicity than others. Some species are useful as disease models. This review describes the anatomical differences between the human and mammalian lungs and lists the characteristics of currently used mammalian models for the most relevant chronic respiratory diseases (asthma, chronic obstructive pulmonary disease, cystic fibrosis, pulmonary hypertension, pulmonary fibrosis, and tuberculosis). The generation of animal models is not easy because they do not develop these diseases spontaneously. Mouse models are common, but other species are more appropriate for some diseases. Zebrafish and fruit flies can help study immunological aspects. It is expected that combinations of in silico, in vitro, and in vivo (mammalian and invertebrate) models will be used in the future for drug development.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria
- Research Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
| |
Collapse
|
16
|
Seixas AMM, Gomes SC, Silva C, Moreira LM, Leitão JH, Sousa SA. A Polyclonal Antibody against a Burkholderia cenocepacia OmpA-like Protein Strongly Impairs Pseudomonas aeruginosa and B. multivorans Virulence. Vaccines (Basel) 2024; 12:207. [PMID: 38400190 PMCID: PMC10892634 DOI: 10.3390/vaccines12020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Despite advances in therapies, bacterial chronic respiratory infections persist as life-threatening to patients suffering from cystic fibrosis (CF). Pseudomonas aeruginosa and bacteria of the Burkholderia cepacia complex are among the most difficult of these infections to treat, due to factors like their resistance to multiple antibiotics and ability to form biofilms. The lack of effective antimicrobial strategies prompted our search for alternative immunotherapies that can effectively control and reduce those infections among CF patients. Previous work from our group showed that the anti-BCAL2645 goat polyclonal antibody strongly inhibited Burkholderia cenocepacia to adhere and invade cultured epithelial cells. In this work, we showed that the polyclonal antibody anti-BCAL2645 also strongly inhibited the ability of P. aeruginosa to form biofilms, and to adhere and invade the human bronchial epithelial cell line CFBE41o-. The polyclonal antibody also inhibited, to a lesser extent, the ability of B. multivorans to adhere and invade the human bronchial epithelial cell line CFBE41o. We also show that the ability of B. cenocepacia, P. aeruginosa and B. multivorans to kill larvae of the Galleria mellonella model of infection was impaired when bacteria were incubated with the anti-BCAL2645 antibody prior to the infection. Our findings show that an antibody against BCAL2645 possesses a significant potential for the development of new immunotherapies against these three important bacterial species capable of causing devastating and often lethal infections among CF patients.
Collapse
Affiliation(s)
- António M. M. Seixas
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (S.C.G.); (C.S.); (L.M.M.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sara C. Gomes
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (S.C.G.); (C.S.); (L.M.M.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Carolina Silva
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (S.C.G.); (C.S.); (L.M.M.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Leonilde M. Moreira
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (S.C.G.); (C.S.); (L.M.M.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Jorge H. Leitão
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (S.C.G.); (C.S.); (L.M.M.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sílvia A. Sousa
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (S.C.G.); (C.S.); (L.M.M.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
17
|
Bruorton M, Donnelley M, Goddard T, O'Connor A, Parsons D, Phillips J, Carson-Chahhoud K, Tai A. Pilot study of paediatric regional lung function assessment via X-ray velocimetry (XV) imaging in children with normal lungs and in children with cystic fibrosis. BMJ Open 2024; 14:e080034. [PMID: 38316593 PMCID: PMC10860032 DOI: 10.1136/bmjopen-2023-080034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/07/2024] [Indexed: 02/07/2024] Open
Abstract
INTRODUCTION Cystic fibrosis (CF) is a life-limiting autosomal recessive genetic condition. It is caused by mutations in the gene that encodes for a chloride and bicarbonate conducting transmembrane channel. X-ray velocimetry (XV) is a novel form of X-ray imaging that can generate lung ventilation data through the breathing cycle. XV technology has been validated in multiple animal models, including the β-ENaC mouse model of CF lung disease. It has since been assessed in early-phase clinical trials in adult human subjects; however, there is a paucity of data in the paediatric cohort, including in CF. The aim of this pilot study was to investigate the feasibility of performing a single-centre cohort study in paediatric patients with CF and in those with normal lungs to demonstrate the appropriateness of proceeding with further studies of XV in these cohorts. METHODS AND ANALYSIS This is a cross-sectional, single-centre, pilot study. It will recruit children aged 3-18 years to have XV lung imaging performed, as well as paired pulmonary function testing. The study will aim to recruit 20 children without CF with normal lungs and 20 children with CF. The primary outcome will be the feasibility of recruiting children and performing XV testing. Secondary outcomes will include comparisons between XV and current assessments of pulmonary function and structure. ETHICS AND DISSEMINATION This project has ethical approval granted by The Women's and Children's Hospital Human Research Ethics Committee (HREC ID 2021/HRE00396). Findings will be disseminated through peer-reviewed publication and conferences. TRIAL REGISTRATION NUMBER ACTRN12623000109606.
Collapse
Affiliation(s)
- Matthew Bruorton
- Adelaide Medical School and The Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Respiratory and Sleep Department, Women's and Children's Health Network, North Adelaide, South Australia, Australia
| | - Martin Donnelley
- Adelaide Medical School and The Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Thomas Goddard
- Adelaide Medical School and The Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Respiratory and Sleep Department, Women's and Children's Health Network, North Adelaide, South Australia, Australia
| | - Antonia O'Connor
- Sleep Department, Sydney Children's Hospitals Network, Westmead, New South Wales, Australia
- University of New South Wales, Sydney, Sydney, Australia
| | - David Parsons
- Adelaide Medical School and The Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Respiratory and Sleep Department, Women's and Children's Health Network, North Adelaide, South Australia, Australia
| | - Jessica Phillips
- Adelaide Medical School and The Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Respiratory and Sleep Department, Women's and Children's Health Network, North Adelaide, South Australia, Australia
| | - Kristin Carson-Chahhoud
- Adelaide Medical School and The Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Respiratory and Sleep Department, Women's and Children's Health Network, North Adelaide, South Australia, Australia
| | - Andrew Tai
- Adelaide Medical School and The Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Respiratory and Sleep Department, Women's and Children's Health Network, North Adelaide, South Australia, Australia
| |
Collapse
|
18
|
Abrami M, Biasin A, Tescione F, Tierno D, Dapas B, Carbone A, Grassi G, Conese M, Di Gioia S, Larobina D, Grassi M. Mucus Structure, Viscoelastic Properties, and Composition in Chronic Respiratory Diseases. Int J Mol Sci 2024; 25:1933. [PMID: 38339210 PMCID: PMC10856136 DOI: 10.3390/ijms25031933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
The respiratory mucus, a viscoelastic gel, effectuates a primary line of the airway defense when operated by the mucociliary clearance. In chronic respiratory diseases (CRDs), such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF), the mucus is overproduced and its solid content augments, changing its structure and viscoelastic properties and determining a derangement of essential defense mechanisms against opportunistic microbial (virus and bacteria) pathogens. This ensues in damaging of the airways, leading to a vicious cycle of obstruction and infection responsible for the harsh clinical evolution of these CRDs. Here, we review the essential features of normal and pathological mucus (i.e., sputum in CF, COPD, and asthma), i.e., mucin content, structure (mesh size), micro/macro-rheology, pH, and osmotic pressure, ending with the awareness that sputum biomarkers (mucins, inflammatory proteins and peptides, and metabolites) might serve to indicate acute exacerbation and response to therapies. There are some indications that old and novel treatments may change the structure, viscoelastic properties, and biomarker content of sputum; however, a wealth of work is still needed to embrace these measures as correlates of disease severity in association with (or even as substitutes of) pulmonary functional tests.
Collapse
Affiliation(s)
- Michela Abrami
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy; (M.A.); (A.B.); (M.G.)
| | - Alice Biasin
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy; (M.A.); (A.B.); (M.G.)
| | - Fabiana Tescione
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, P.le E. Fermi 1, I-80055 Portici, Italy; (F.T.); (D.L.)
| | - Domenico Tierno
- Clinical Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, University of Trieste, Strada di Fiume 447, I-34149 Trieste, Italy; (D.T.); (G.G.)
| | - Barbara Dapas
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, I-34127 Trieste, Italy;
| | - Annalucia Carbone
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, I-71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Gabriele Grassi
- Clinical Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, University of Trieste, Strada di Fiume 447, I-34149 Trieste, Italy; (D.T.); (G.G.)
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, I-71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, I-71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Domenico Larobina
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, P.le E. Fermi 1, I-80055 Portici, Italy; (F.T.); (D.L.)
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy; (M.A.); (A.B.); (M.G.)
| |
Collapse
|
19
|
Singh K, Bhushan B, Kumar S, Singh S, Macadangdang RR, Pandey E, Varma AK, Kumar S. Precision Genome Editing Techniques in Gene Therapy: Current State and Future Prospects. Curr Gene Ther 2024; 24:377-394. [PMID: 38258771 DOI: 10.2174/0115665232279528240115075352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Abstract
Precision genome editing is a rapidly evolving field in gene therapy, allowing for the precise modification of genetic material. The CRISPR and Cas systems, particularly the CRISPRCas9 system, have revolutionized genetic research and therapeutic development by enabling precise changes like single-nucleotide substitutions, insertions, and deletions. This technology has the potential to correct disease-causing mutations at their source, allowing for the treatment of various genetic diseases. Programmable nucleases like CRISPR-Cas9, transcription activator-like effector nucleases (TALENs), and zinc finger nucleases (ZFNs) can be used to restore normal gene function, paving the way for novel therapeutic interventions. However, challenges, such as off-target effects, unintended modifications, and ethical concerns surrounding germline editing, require careful consideration and mitigation strategies. Researchers are exploring innovative solutions, such as enhanced nucleases, refined delivery methods, and improved bioinformatics tools for predicting and minimizing off-target effects. The prospects of precision genome editing in gene therapy are promising, with continued research and innovation expected to refine existing techniques and uncover new therapeutic applications.
Collapse
Affiliation(s)
- Kuldeep Singh
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Bharat Bhushan
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Sunil Kumar
- Department of Pharmacology, P.K. University, Thanra, Karera, Shivpuri, Madhya Pradesh, India
| | - Supriya Singh
- Department of Pharmaceutics, Babu Banarasi Das Northern India Institute of Technology, Faizabaad road, Lucknow, Uttar Pradesh, India
| | | | - Ekta Pandey
- Department of Chemistry, Bundelkhand Institute of Engineering and Technology, Jhansi, Uttar Pradesh, India
| | - Ajit Kumar Varma
- Department of Pharmaceutics, Rama University, Kanpur, Uttar Pradesh, India
| | - Shivendra Kumar
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| |
Collapse
|
20
|
STOLTZ DAVIDA. INSIGHTS INTO THE ORIGINS OF CYSTIC FIBROSIS LUNG DISEASE. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2024; 134:29-36. [PMID: 39135587 PMCID: PMC11316882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
In this paper, I will discuss recent studies using a cystic fibrosis pig model to better understand the origins of cystic fibrosis lung disease. Specifically, I will review our work investigating how loss of the cystic fibrosis transmembrane conductance regulator function (CFTR) impairs mucociliary transport in the cystic fibrosis airway. These studies reveal new insights into the early, underlying mechanisms of cystic fibrosis lung disease and could lead to novel therapeutic interventions.
Collapse
|
21
|
Zajac M, Lepissier A, Dréano E, Chevalier B, Hatton A, Kelly-Aubert M, Guidone D, Planelles G, Edelman A, Girodon E, Hinzpeter A, Crambert G, Pranke I, Galietta LJV, Sermet-Gaudelus I. Putting bicarbonate on the spot: pharmacological insights for CFTR correction in the airway epithelium. Front Pharmacol 2023; 14:1293578. [PMID: 38149052 PMCID: PMC10750368 DOI: 10.3389/fphar.2023.1293578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/17/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction: Cystic fibrosis (CF) is caused by defective Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) proteins. CFTR controls chloride (Cl-) and bicarbonate (HCO3 -) transport into the Airway Surface Liquid (ASL). We investigated the impact of F508del-CFTR correction on HCO3 - secretion by studying transepithelial HCO3 - fluxes. Methods: HCO3 - secretion was measured by pH-stat technique in primary human respiratory epithelial cells from healthy subjects (WT) and people with CF (pwCF) carrying at least one F508del variant. Its changes after CFTR modulation by the triple combination VX445/661/770 and in the context of TNF-α+IL-17 induced inflammation were correlated to ASL pH and transcriptional levels of CFTR and other HCO3 - transporters of airway epithelia such as SLC26A4 (Pendrin), SLC26A9 and NBCe1. Results: CFTR-mediated HCO3 - secretion was not detected in F508del primary human respiratory epithelial cells. It was rescued up to ∼ 80% of the WT level by VX-445/661/770. In contrast, TNF-α+IL-17 normalized transepithelial HCO3 - transport and increased ASL pH. This was related to an increase in SLC26A4 and CFTR transcript levels. VX-445/661/770 induced an increase in pH only in the context of inflammation. Effects on HCO3 - transport were not different between F508del homozygous and F508del compound heterozygous CF airway epithelia. Conclusion: Our studies show that correction of F508del-CFTR HCO3 - is not sufficient to buffer acidic ASL and inflammation is a key regulator of HCO3 - secretion in CF airways. Prediction of the response to CFTR modulators by theratyping should take into account airway inflammation.
Collapse
Affiliation(s)
- Miroslaw Zajac
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Agathe Lepissier
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Elise Dréano
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Benoit Chevalier
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Aurélie Hatton
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Mairead Kelly-Aubert
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Daniela Guidone
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | | | - Aleksander Edelman
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Emmanuelle Girodon
- Université de Paris-Cité, Paris, France
- Service de Médecine Génomique des Maladies de Système et d’Organe, Hôpital Cochin, Paris, France
| | - Alexandre Hinzpeter
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Gilles Crambert
- U1138/CNRS ERL 8228, Centre de Recherche des Cordeliers, Paris, France
| | - Iwona Pranke
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | | | - Isabelle Sermet-Gaudelus
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
- European Reference Network for Rare Diseases, Frankfurt, Belgium
| |
Collapse
|
22
|
Kunzelmann K, Centeio R, Ousingsawat J, Talbi K, Seidler U, Schreiber R. SLC26A9 in airways and intestine: secretion or absorption? Channels (Austin) 2023; 17:2186434. [PMID: 36866602 PMCID: PMC9988340 DOI: 10.1080/19336950.2023.2186434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
SLC26A9 is one out of 11 proteins that belong to the SLC26A family of anion transporters. Apart from expression in the gastrointestinal tract, SLC26A9 is also found in the respiratory system, in male tissues and in the skin. SLC26A9 has gained attention because of its modifier role in the gastrointestinal manifestation of cystic fibrosis (CF). SLC26A9 appears to have an impact on the extent of intestinal obstruction caused by meconium ileus. SLC26A9 supports duodenal bicarbonate secretion, but was assumed to provide a basal Cl- secretory pathway in airways. However, recent results show that basal airway Cl- secretion is due to cystic fibrosis conductance regulator (CFTR), while SLC26A9 may rather secrete HCO3-, thereby maintaining proper airway surface liquid (ASL) pH. Moreover, SLC26A9 does not secrete but probably supports reabsorption of fluid particularly in the alveolar space, which explains early death by neonatal distress in Slc26a9-knockout animals. While the novel SLC26A9 inhibitor S9-A13 helped to unmask the role of SLC26A9 in the airways, it also provided evidence for an additional role in acid secretion by gastric parietal cells. Here we discuss recent data on the function of SLC26A9 in airways and gut, and how S9-A13 may be useful in unraveling the physiological role of SLC26A9.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Institut für Physiologie, Universität, Universitätsstraße 31, Regensburg, Germany
- CONTACT Karl Kunzelmann
| | - Raquel Centeio
- Institut für Physiologie, Universität, Universitätsstraße 31, Regensburg, Germany
| | - Jiraporn Ousingsawat
- Institut für Physiologie, Universität, Universitätsstraße 31, Regensburg, Germany
| | - Khaoula Talbi
- Institut für Physiologie, Universität, Universitätsstraße 31, Regensburg, Germany
| | - Ursula Seidler
- Department of Gastroenterology, Hannover Medical School, Hannover, Germany
| | - Rainer Schreiber
- Institut für Physiologie, Universität, Universitätsstraße 31, Regensburg, Germany
| |
Collapse
|
23
|
Earle K, Valero C, Conn DP, Vere G, Cook PC, Bromley MJ, Bowyer P, Gago S. Pathogenicity and virulence of Aspergillus fumigatus. Virulence 2023; 14:2172264. [PMID: 36752587 PMCID: PMC10732619 DOI: 10.1080/21505594.2023.2172264] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/16/2022] [Indexed: 02/09/2023] Open
Abstract
Pulmonary infections caused by the mould pathogen Aspergillus fumigatus are a major cause of morbidity and mortality globally. Compromised lung defences arising from immunosuppression, chronic respiratory conditions or more recently, concomitant viral or bacterial pulmonary infections are recognised risks factors for the development of pulmonary aspergillosis. In this review, we will summarise our current knowledge of the mechanistic basis of pulmonary aspergillosis with a focus on emerging at-risk populations.
Collapse
Affiliation(s)
- Kayleigh Earle
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Clara Valero
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Daniel P. Conn
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - George Vere
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Peter C. Cook
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Michael J. Bromley
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Paul Bowyer
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Sara Gago
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
24
|
Touré H, Herrmann JL, Szuplewski S, Girard-Misguich F. Drosophila melanogaster as an organism model for studying cystic fibrosis and its major associated microbial infections. Infect Immun 2023; 91:e0024023. [PMID: 37847031 PMCID: PMC10652941 DOI: 10.1128/iai.00240-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Cystic fibrosis (CF) is a human genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator gene that encodes a chloride channel. The most severe clinical manifestation is associated with chronic pulmonary infections by pathogenic and opportunistic microbes. Drosophila melanogaster has become the invertebrate model of choice for modeling microbial infections and studying the induced innate immune response. Here, we review its contribution to the understanding of infections with six major pathogens associated with CF (Staphylococcus aureus, Pseudomonas aeruginosa, Burkholderia cepacia, Mycobacterium abscessus, Streptococcus pneumoniae, and Aspergillus fumigatus) together with the perspectives opened by the recent availability of two CF models in this model organism.
Collapse
Affiliation(s)
- Hamadoun Touré
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-le-Bretonneux, France
| | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-le-Bretonneux, France
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Ile-de-France Ouest, GHU Paris-Saclay, Hôpital Raymond Poincaré, Garches, France
| | - Sébastien Szuplewski
- Université Paris-Saclay, UVSQ, Laboratoire de Génétique et Biologie Cellulaire, Montigny-le-Bretonneux, France
| | - Fabienne Girard-Misguich
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-le-Bretonneux, France
| |
Collapse
|
25
|
Harris ES, Novak L, Fernandez-Petty CM, Lindgren NR, Baker SM, Birket SE, Rowe SM. SNSP113 (PAAG) improves mucociliary transport and lung pathology in the Scnn1b-Tg murine model of CF lung disease. J Cyst Fibros 2023; 22:1104-1112. [PMID: 37714777 PMCID: PMC10843010 DOI: 10.1016/j.jcf.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/25/2023] [Accepted: 08/29/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Mucus stasis, a hallmark of muco-obstructive disease, results from impaired mucociliary transport and leads to lung function decline and chronic infection. Although therapeutics that target mucus stasis in the airway, such as hypertonic saline or rhDNAse, show some therapeutic benefit, they do not address the underlying electrostatic defect apparent in mucins in CF and related conditions. We have previously shown poly (acetyl, arginyl) glucosamine (PAAG, developed as SNSP113), a soluble, cationic polymer, significantly improves mucociliary transport in a rat model of CF by normalizing the charge defects of CF mucin. Here, we report efficacy in the CFTR-sufficient, ENaC hyperactive, Scnn1b-Tg mouse model that develops airway muco-obstruction due to sodium hyperabsorption and airway dehydration. METHODS Scnn1b-Tg mice were treated with either 250 µg/mL SNSP113 or vehicle control (1.38% glycerol in PBS) via nebulization once daily for 7 days and then euthanized for analysis. Micro-Optical Coherence Tomography-based evaluation of excised mouse trachea was used to determine the effect on the functional microanatomy. Tissue analysis was performed by routine histopathology. RESULTS Nebulized treatment of SNSP113 significantly improved mucociliary transport in the airways of Scnn1b-Tg mice, without altering the airway surface or periciliary liquid layer. In addition, SNSP113 significantly reversed epithelial hypertrophy and goblet cell metaplasia. Finally, SNSP113 significantly ameliorated eosinophilic crystalline pneumonia and lung consolidation in addition to inflammatory macrophage influx in this model. CONCLUSION Overall, this study extends the efficacy of SNSP113 as a potential therapeutic to alleviate mucus stasis in muco-obstructive diseases in CF and potentially in related conditions.
Collapse
Affiliation(s)
- Elex S Harris
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
| | - Lea Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Courtney M Fernandez-Petty
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
| | - Natalie R Lindgren
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Susan E Birket
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA; Departments of Pediatrics, and Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven M Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA; Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Departments of Pediatrics, and Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
26
|
Bos MF, Ermund A, Hansson GC, de Graaf J. Goblet cell interactions reorient bundled mucus strands for efficient airway clearance. PNAS NEXUS 2023; 2:pgad388. [PMID: 38024407 PMCID: PMC10661087 DOI: 10.1093/pnasnexus/pgad388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023]
Abstract
The respiratory tract of larger animals is cleared by sweeping bundled strands along the airway surface. These bundled strands can be millimetric in length and consist of MUC5B mucin. They are produced by submucosal glands, and upon emerging from these glands, the long axis of the bundled strands is oriented along the cilia-mediated flow toward the oral cavity. However, after release, the bundled strands are found to have turned orthogonal to the flow, which maximizes their clearance potential. How this unexpected reorientation is accomplished is presently not well understood. Recent experiments suggest that the reorientation process involves bundled strands sticking to MUC5AC mucus threads, which are tethered to the goblet cells. Such goblet cells are present in small numbers throughout the airway epithelium. Here, we develop a minimal model for reorientation of bundled mucus strands through adhesive interactions with surface goblet cells. Our simulations reveal that goblet cell interactions can reorient the bundled strands within 10 mm of release-making reorientation on the length scale of the tracheal tube feasible-and can stabilize the orthogonal orientation. Our model also reproduces other experimental observations such as strong velocity fluctuations and significant slow-down of the bundled strand with respect to the cilia-mediated flow. We further provide insight into the strand turning mechanism by examining the effect of strand shape on the impulse exerted by a single goblet cell. We conclude that goblet cell-mediated reorientation is a viable route for bundled strand reorientation, which should be further validated in future experiment.
Collapse
Affiliation(s)
- Meike F Bos
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| | - Anna Ermund
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30, Gothenburg, Sweden
| | - Gunnar C Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30, Gothenburg, Sweden
| | - Joost de Graaf
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| |
Collapse
|
27
|
Tedbury PR, Manfredi C, Degenhardt F, Conway J, Horwath MC, McCracken C, Sorscher AJ, Moreau S, Wright C, Edwards C, Brewer J, Guarner J, de Wit E, Williamson BN, Suthar MS, Ong YT, Roback JD, Alter DN, Holter JC, Karlsen TH, Sacchi N, Romero-Gómez M, Invernizzi P, Fernández J, Buti M, Albillos A, Julià A, Valenti L, Asselta R, Banales JM, Bujanda L, de Cid R, Sarafianos SG, Hong JS, Sorscher EJ, Ehrhardt A. Mechanisms by which the cystic fibrosis transmembrane conductance regulator may influence SARS-CoV-2 infection and COVID-19 disease severity. FASEB J 2023; 37:e23220. [PMID: 37801035 PMCID: PMC10760435 DOI: 10.1096/fj.202300077r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023]
Abstract
Patients with cystic fibrosis (CF) exhibit pronounced respiratory damage and were initially considered among those at highest risk for serious harm from SARS-CoV-2 infection. Numerous clinical studies have subsequently reported that individuals with CF in North America and Europe-while susceptible to severe COVID-19-are often spared from the highest levels of virus-associated mortality. To understand features that might influence COVID-19 among patients with cystic fibrosis, we studied relationships between SARS-CoV-2 and the gene responsible for CF (i.e., the cystic fibrosis transmembrane conductance regulator, CFTR). In contrast to previous reports, we found no association between CFTR carrier status (mutation heterozygosity) and more severe COVID-19 clinical outcomes. We did observe an unexpected trend toward higher mortality among control individuals compared with silent carriers of the common F508del CFTR variant-a finding that will require further study. We next performed experiments to test the influence of homozygous CFTR deficiency on viral propagation and showed that SARS-CoV-2 production in primary airway cells was not altered by the absence of functional CFTR using two independent protocols. On the contrary, experiments performed in vitro strongly indicated that virus proliferation depended on features of the mucosal fluid layer known to be disrupted by absent CFTR in patients with CF, including both low pH and increased viscosity. These results point to the acidic, viscous, and mucus-obstructed airways in patients with cystic fibrosis as unfavorable for the establishment of coronaviral infection. Our findings provide new and important information concerning relationships between the CF clinical phenotype and severity of COVID-19.
Collapse
Affiliation(s)
- Philip R. Tedbury
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States
| | - Candela Manfredi
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Frauke Degenhardt
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Joseph Conway
- Northeast Georgia Medical Center, Gainesville, Georgia, United States
| | - Michael C. Horwath
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Courtney McCracken
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Adam J. Sorscher
- Dartmouth University School of Medicine, Hanover, New Hampshire, United States
| | - Sandy Moreau
- Elliot Hospital, Manchester, New Hampshire, United States
| | | | - Carolina Edwards
- Northeast Georgia Medical Center, Gainesville, Georgia, United States
| | - Jo Brewer
- Northeast Georgia Medical Center, Gainesville, Georgia, United States
| | | | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, NIAID, National Institutes of Health, Hamilton, Montana, United States
| | - Brandi N. Williamson
- Laboratory of Virology, Division of Intramural Research, NIAID, National Institutes of Health, Hamilton, Montana, United States
| | - Mehul S. Suthar
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Yee T. Ong
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States
| | - John D. Roback
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - David N. Alter
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Jan C. Holter
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tom H. Karlsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute for Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Section for Gastroenterology, Department of Transplantation Medicine, Division for Cancer Medicine, Surgery and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | | | - Manuel Romero-Gómez
- Hospital Universitario Virgen del Rocío de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Biomedicina de Sevilla (IBIS), Sevilla, Spain
- University of Sevilla, Sevilla, Spain
- Digestive Diseases Unit, Virgen del Rocio University Hospital, Institute of Biomedicine of Seville, University of Seville, Seville, Spain
| | - Pietro Invernizzi
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Javier Fernández
- Hospital Clinic, University of Barcelona, and IDIBAPS, Barcelona, Spain
- European Foundation for the Study of Chronic Liver Failure (EF-CLIF), Barcelona, Spain
| | - Maria Buti
- Liver Unit. Hospital Universitario Valle Hebron and CIBEREHD del Instituto Carlos III. Barcelona, Spain
| | - Agustin Albillos
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Gastroenterology, Hospital Universitario Ramón y Cajal, University of Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Antonio Julià
- Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Barcelona, Spain
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Biological Resorce Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, Milan Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Jesus M. Banales
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute – Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, Ikerbasque, San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Luis Bujanda
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute – Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, Ikerbasque, San Sebastian, Spain
| | - Rafael de Cid
- Genomes for Life-GCAT lab. German Trias I Pujol Research Institute (IGTP), Badalona, Spain
| | | | - Stefan G. Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States
| | - Jeong S. Hong
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Eric J. Sorscher
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Annette Ehrhardt
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
28
|
Harris E, Easter M, Ren J, Krick S, Barnes J, Rowe SM. An ex vivo rat trachea model reveals abnormal airway physiology and a gland secretion defect in cystic fibrosis. PLoS One 2023; 18:e0293367. [PMID: 37874846 PMCID: PMC10597513 DOI: 10.1371/journal.pone.0293367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disease hallmarked by aberrant ion transport that results in delayed mucus clearance, chronic infection, and progressive lung function decline. Several animal models have been developed to study the airway anatomy and mucus physiology in CF, but they are costly and difficult to maintain, making them less accessible for many applications. A more available CFTR-/- rat model has been developed and characterized to develop CF airway abnormalities, but consistent dosing of pharmacologic agents and longitudinal evaluation remain a challenge. In this study, we report the development and characterization of a novel ex vivo trachea model that utilizes both wild type (WT) and CFTR-/- rat tracheae cultured on a porcine gelatin matrix. Here we show that the ex vivo tracheae remain viable for weeks, maintain a CF disease phenotype that can be readily quantified, and respond to stimulation of mucus and fluid secretion by cholinergic stimulation. Furthermore, we show that ex vivo tracheae may be used for well-controlled pharmacological treatments, which are difficult to perform on freshly excised trachea or in vivo models with this degree of scrutiny. With improved interrogation possible with a durable trachea, we also established firm evidence of a gland secretion defect in CFTR-/- rat tracheae compared to WT controls. Finally, we demonstrate that the ex vivo tracheae can be used to generate high mucus protein yields for subsequent studies, which are currently limited by in vivo mucus collection techniques. Overall, this study suggests that the ex vivo trachea model is an effective, easy to set up culture model to study airway and mucus physiology.
Collapse
Affiliation(s)
- Elex Harris
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Molly Easter
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Janna Ren
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Stefanie Krick
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Jarrod Barnes
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Steven M. Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
- Departments of Pediatrics and Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| |
Collapse
|
29
|
Hisert KB, Birket SE, Clancy JP, Downey DG, Engelhardt JF, Fajac I, Gray RD, Lachowicz-Scroggins ME, Mayer-Hamblett N, Thibodeau P, Tuggle KL, Wainwright CE, De Boeck K. Understanding and addressing the needs of people with cystic fibrosis in the era of CFTR modulator therapy. THE LANCET. RESPIRATORY MEDICINE 2023; 11:916-931. [PMID: 37699420 DOI: 10.1016/s2213-2600(23)00324-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/07/2023] [Accepted: 08/20/2023] [Indexed: 09/14/2023]
Abstract
Cystic fibrosis is a multiorgan disease caused by impaired function of the cystic fibrosis transmembrane conductance regulator (CFTR). Since the introduction of the CFTR modulator combination elexacaftor-tezacaftor-ivacaftor (ETI), which acts directly on mutant CFTR to enhance its activity, most people with cystic fibrosis (pwCF) have seen pronounced reductions in symptoms, and studies project marked increases in life expectancy for pwCF who are eligible for ETI. However, modulator therapy has not cured cystic fibrosis and the success of CFTR modulators has resulted in immediate questions about the new state of cystic fibrosis disease and clinical challenges in the care of pwCF. In this Series paper, we summarise key questions about cystic fibrosis disease in the era of modulator therapy, highlighting state-of-the-art research and clinical practices, knowledge gaps, new challenges faced by pwCF and the potential for future health-care challenges, and the pressing need for additional therapies to treat the underlying genetic or molecular causes of cystic fibrosis.
Collapse
Affiliation(s)
| | - Susan E Birket
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Damian G Downey
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Isabelle Fajac
- Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Robert D Gray
- Institution of Regeneration and Repair, Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
| | | | - Nicole Mayer-Hamblett
- Department of Pediatrics, Department of Biostatistics, Seattle Children's Research Institute, University of Washington, Seattle, WA, USA
| | | | | | | | | |
Collapse
|
30
|
Dębczyński M, Gorrieri G, Mojsak D, Guida F, Zara F, Scudieri P. ATP12A Proton Pump as an Emerging Therapeutic Target in Cystic Fibrosis and Other Respiratory Diseases. Biomolecules 2023; 13:1455. [PMID: 37892136 PMCID: PMC10605105 DOI: 10.3390/biom13101455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
ATP12A encodes the catalytic subunit of the non-gastric proton pump, which is expressed in many epithelial tissues and mediates the secretion of protons in exchange for potassium ions. In the airways, ATP12A-dependent proton secretion contributes to complex mechanisms regulating the composition and properties of the fluid and mucus lining the respiratory epithelia, which are essential to maintain the airway host defense and the respiratory health. Increased expression and activity of ATP12A in combination with the loss of other balancing activities, such as the bicarbonate secretion mediated by CFTR, leads to excessive acidification of the airway surface liquid and mucus dysfunction, processes that play relevant roles in the pathogenesis of cystic fibrosis and other chronic inflammatory respiratory disorders. In this review, we summarize the findings dealing with ATP12A expression, function, and modulation in the airways, which led to the consideration of ATP12A as a potential therapeutic target for the treatment of cystic fibrosis and other airway diseases; we also highlight the current advances and gaps regarding the development of therapeutic strategies aimed at ATP12A inhibition.
Collapse
Affiliation(s)
- Michał Dębczyński
- 2nd Department of Lung Diseases and Tuberculosis, Medical University of Bialystok, 15-540 Bialystok, Poland; (M.D.); (D.M.)
| | - Giulia Gorrieri
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, 16132 Genoa, Italy; (G.G.); (F.G.); (F.Z.)
| | - Damian Mojsak
- 2nd Department of Lung Diseases and Tuberculosis, Medical University of Bialystok, 15-540 Bialystok, Poland; (M.D.); (D.M.)
| | - Floriana Guida
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, 16132 Genoa, Italy; (G.G.); (F.G.); (F.Z.)
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, 16132 Genoa, Italy; (G.G.); (F.G.); (F.Z.)
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Paolo Scudieri
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, 16132 Genoa, Italy; (G.G.); (F.G.); (F.Z.)
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| |
Collapse
|
31
|
Kunzelmann K, Ousingsawat J, Kraus A, Park JH, Marquardt T, Schreiber R, Buchholz B. Pathogenic Relationships in Cystic Fibrosis and Renal Diseases: CFTR, SLC26A9 and Anoctamins. Int J Mol Sci 2023; 24:13278. [PMID: 37686084 PMCID: PMC10487509 DOI: 10.3390/ijms241713278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The Cl--transporting proteins CFTR, SLC26A9, and anoctamin (ANO1; ANO6) appear to have more in common than initially suspected, as they all participate in the pathogenic process and clinical outcomes of airway and renal diseases. In the present review, we will therefore concentrate on recent findings concerning electrolyte transport in the airways and kidneys, and the role of CFTR, SLC26A9, and the anoctamins ANO1 and ANO6. Special emphasis will be placed on cystic fibrosis and asthma, as well as renal alkalosis and polycystic kidney disease. In essence, we will summarize recent evidence indicating that CFTR is the only relevant secretory Cl- channel in airways under basal (nonstimulated) conditions and after stimulation by secretagogues. Information is provided on the expressions of ANO1 and ANO6, which are important for the correct expression and function of CFTR. In addition, there is evidence that the Cl- transporter SLC26A9 expressed in the airways may have a reabsorptive rather than a Cl--secretory function. In the renal collecting ducts, bicarbonate secretion occurs through a synergistic action of CFTR and the Cl-/HCO3- transporter SLC26A4 (pendrin), which is probably supported by ANO1. Finally, in autosomal dominant polycystic kidney disease (ADPKD), the secretory function of CFTR in renal cyst formation may have been overestimated, whereas ANO1 and ANO6 have now been shown to be crucial in ADPKD and therefore represent new pharmacological targets for the treatment of polycystic kidney disease.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Physiological Institute, University of Regensburg, University Street 31, 93053 Regensburg, Germany; (J.O.); (R.S.)
| | - Jiraporn Ousingsawat
- Physiological Institute, University of Regensburg, University Street 31, 93053 Regensburg, Germany; (J.O.); (R.S.)
| | - Andre Kraus
- Department of Nephrology and Hypertension, Friedrich Alexander University Erlangen Nuremberg, 91054 Erlangen, Germany; (A.K.); (B.B.)
| | - Julien H. Park
- Department of Pediatrics, University Hospital Münster, 48149 Münster, Germany; (J.H.P.); (T.M.)
| | - Thorsten Marquardt
- Department of Pediatrics, University Hospital Münster, 48149 Münster, Germany; (J.H.P.); (T.M.)
| | - Rainer Schreiber
- Physiological Institute, University of Regensburg, University Street 31, 93053 Regensburg, Germany; (J.O.); (R.S.)
| | - Björn Buchholz
- Department of Nephrology and Hypertension, Friedrich Alexander University Erlangen Nuremberg, 91054 Erlangen, Germany; (A.K.); (B.B.)
| |
Collapse
|
32
|
Rossy T, Distler T, Meirelles LA, Pezoldt J, Kim J, Talà L, Bouklas N, Deplancke B, Persat A. Pseudomonas aeruginosa type IV pili actively induce mucus contraction to form biofilms in tissue-engineered human airways. PLoS Biol 2023; 21:e3002209. [PMID: 37527210 PMCID: PMC10393179 DOI: 10.1371/journal.pbio.3002209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/21/2023] [Indexed: 08/03/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa causes antibiotic-recalcitrant pneumonia by forming biofilms in the respiratory tract. Despite extensive in vitro experimentation, how P. aeruginosa forms biofilms at the airway mucosa is unresolved. To investigate the process of biofilm formation in realistic conditions, we developed AirGels: 3D, optically accessible tissue-engineered human lung models that emulate the airway mucosal environment. AirGels recapitulate important factors that mediate host-pathogen interactions including mucus secretion, flow and air-liquid interface (ALI), while accommodating high-resolution live microscopy. With AirGels, we investigated the contributions of mucus to P. aeruginosa biofilm biogenesis in in vivo-like conditions. We found that P. aeruginosa forms mucus-associated biofilms within hours by contracting luminal mucus early during colonization. Mucus contractions facilitate aggregation, thereby nucleating biofilms. We show that P. aeruginosa actively contracts mucus using retractile filaments called type IV pili. Our results therefore suggest that, while protecting epithelia, mucus constitutes a breeding ground for biofilms.
Collapse
Affiliation(s)
- Tamara Rossy
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tania Distler
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lucas A Meirelles
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Joern Pezoldt
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jaemin Kim
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, United States of America
| | - Lorenzo Talà
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nikolaos Bouklas
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, United States of America
| | - Bart Deplancke
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alexandre Persat
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
33
|
Kienenberger ZE, Farber TO, Teresi ME, Milavetz F, Singh SB, Larson Ode K, Thoma T, Weiner RL, Burlage KR, Fischer AJ. Patient and Caregiver Perceptions of Airway Clearance Methods Used for Cystic Fibrosis. Can Respir J 2023; 2023:1422319. [PMID: 37547298 PMCID: PMC10403321 DOI: 10.1155/2023/1422319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/06/2023] [Accepted: 06/24/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Cystic Fibrosis Foundation guidelines recommend people with CF perform daily airway clearance. This can be difficult for patients, as some find it time consuming or uncomfortable. Data comparing airway clearance methods are limited. We surveyed patients and their families to understand which methods are preferred and identify obstacles to performing airway clearance. Methods We designed a REDCap survey and enrolled participants in 2021. Respondents reported information on airway clearance usage, time commitment, and medication use. They rated airway clearance methods for effectiveness, comfort, time commitment, importance, and compatibility with other treatments. The analysis included descriptive statistics and clustering. Results 60 respondents started and 52 completed the survey. The median patient age was 20 years. Respondents experienced a median of four airway clearance methods in their lifetime, including chest wall oscillation (vest, 92%), manual chest physical therapy (CPT, 88%), forced expiration technique (huff or cough, 77%), and exercise (75%). Past 30-day use was highest for exercise (62%) and vest (57%). The time commitment was generally less than 2 hours daily. Of those eligible for CFTR modulators, 53% reported decreased time commitment to airway clearance after starting treatment. On a scale of 0-100, respondents rated CFTR modulators as their most important treatment (median 99.5), followed by exercise (88). Discussion. Patients and caregivers are familiar with several methods of airway clearance for CF. They report distinct strengths and limitations of each method. Exercise and vest are the most common methods of airway clearance. The use of CFTR modulators may reduce patient-reported time commitment to airway clearance.
Collapse
Affiliation(s)
- Zoe E. Kienenberger
- Pediatrics, University of Iowa, Iowa City, IA, USA
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | | | | | | | | | | | | | | | - Kathryn R. Burlage
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | | |
Collapse
|
34
|
Wojnacki J, Lujan AL, Brouwers N, Aranda-Vallejo C, Bigliani G, Rodriguez MP, Foresti O, Malhotra V. Tetraspanin-8 sequesters syntaxin-2 to control biphasic release propensity of mucin granules. Nat Commun 2023; 14:3710. [PMID: 37349283 PMCID: PMC10287693 DOI: 10.1038/s41467-023-39277-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 06/06/2023] [Indexed: 06/24/2023] Open
Abstract
Agonist-mediated stimulated pathway of mucin and insulin release are biphasic in which rapid fusion of pre-docked granules is followed by slow docking and fusion of granules from the reserve pool. Here, based on a cell-culture system, we show that plasma membrane-located tetraspanin-8 sequesters syntaxin-2 to control mucin release. Tetraspanin-8 affects fusion of granules during the second phase of stimulated mucin release. The tetraspanin-8/syntaxin-2 complex does not contain VAMP-8, which functions with syntaxin-2 to mediate granule fusion. We suggest that by sequestering syntaxin-2, tetraspanin-8 prevents docking of granules from the reserve pool. In the absence of tetraspanin-8, more syntaxin-2 is available for docking and fusion of granules and thus doubles the quantities of mucins secreted. This principle also applies to insulin release and we suggest a cell type specific Tetraspanin/Syntaxin combination is a general mechanism regulating the fusion of dense core granules.
Collapse
Affiliation(s)
- José Wojnacki
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Agustin Leonardo Lujan
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Nathalie Brouwers
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Carla Aranda-Vallejo
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Gonzalo Bigliani
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Maria Pena Rodriguez
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Ombretta Foresti
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Vivek Malhotra
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
35
|
Zhang Y, Black KE, Phung TKN, Thundivalappil SR, Lin T, Wang W, Xu J, Zhang C, Hariri LP, Lapey A, Li H, Lerou PH, Ai X, Que J, Park JA, Hurley BP, Mou H. Human Airway Basal Cells Undergo Reversible Squamous Differentiation and Reshape Innate Immunity. Am J Respir Cell Mol Biol 2023; 68:664-678. [PMID: 36753317 PMCID: PMC10257070 DOI: 10.1165/rcmb.2022-0299oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/07/2023] [Indexed: 02/09/2023] Open
Abstract
Histological and lineage immunofluorescence examination revealed that healthy conducting airways of humans and animals harbor sporadic poorly differentiated epithelial patches mostly in the dorsal noncartilage regions that remarkably manifest squamous differentiation. In vitro analysis demonstrated that this squamous phenotype is not due to intrinsic functional change in underlying airway basal cells. Rather, it is a reversible physiological response to persistent Wnt signaling stimulation during de novo differentiation. Squamous epithelial cells have elevated gene signatures of glucose uptake and cellular glycolysis. Inhibition of glycolysis or a decrease in glucose availability suppresses Wnt-induced squamous epithelial differentiation. Compared with pseudostratified airway epithelial cells, a cascade of mucosal protective functions is impaired in squamous epithelial cells, featuring increased epithelial permeability, spontaneous epithelial unjamming, and enhanced inflammatory responses. Our study raises the possibility that the squamous differentiation naturally occurring in healthy airways identified herein may represent "vulnerable spots" within the airway mucosa that are sensitive to damage and inflammation when confronted by infection or injury. Squamous metaplasia and hyperplasia are hallmarks of many airway diseases, thereby expanding these areas of vulnerability with potential pathological consequences. Thus, investigation of physiological and reversible squamous differentiation from healthy airway basal cells may provide critical knowledge to understand pathogenic squamous remodeling, which is often nonreversible, progressive, and hyperinflammatory.
Collapse
Affiliation(s)
- Yihan Zhang
- The Mucosal Immunology & Biology Research Center
- Department of Pediatrics, Harvard Medical School, and
| | | | - Thien-Khoi N. Phung
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | | | - Tian Lin
- The Mucosal Immunology & Biology Research Center
- Department of Pediatrics, Harvard Medical School, and
| | - Wei Wang
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Cheng Zhang
- Center for Individualized Medicine, Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Lida P. Hariri
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Allen Lapey
- Division of Pediatric Pulmonary Medicine, Massachusetts General Hospital for Children, Boston, Massachusetts
| | - Hu Li
- Center for Individualized Medicine, Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Paul Hubert Lerou
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
| | - Xingbin Ai
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
| | - Jianwen Que
- Columbia Center for Human Development
- Division of Digestive and Liver Disease, Department of Medicine, and
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Jin-Ah Park
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Bryan P. Hurley
- The Mucosal Immunology & Biology Research Center
- Department of Pediatrics, Harvard Medical School, and
| | - Hongmei Mou
- The Mucosal Immunology & Biology Research Center
- Department of Pediatrics, Harvard Medical School, and
| |
Collapse
|
36
|
Campos-Gómez J, Fernandez Petty C, Mazur M, Tang L, Solomon GM, Joseph R, Li Q, Peabody Lever JE, Hussain SS, Harrod KS, Onuoha EE, Kim H, Rowe SM. Mucociliary clearance augmenting drugs block SARS-CoV-2 replication in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2023; 324:L493-L506. [PMID: 36809189 PMCID: PMC10042606 DOI: 10.1152/ajplung.00285.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/17/2023] [Accepted: 02/07/2023] [Indexed: 02/23/2023] Open
Abstract
The coronavirus disease (COVID-19) pandemic, caused by SARS-CoV-2 coronavirus, is devastatingly impacting human health. A prominent component of COVID-19 is the infection and destruction of the ciliated respiratory cells, which perpetuates dissemination and disrupts protective mucociliary transport (MCT) function, an innate defense of the respiratory tract. Thus, drugs that augment MCT could improve the barrier function of the airway epithelium and reduce viral replication and, ultimately, COVID-19 outcomes. We tested five agents known to increase MCT through distinct mechanisms for activity against SARS-CoV-2 infection using a model of human respiratory epithelial cells terminally differentiated in an air/liquid interphase. Three of the five mucoactive compounds tested showed significant inhibitory activity against SARS-CoV-2 replication. An archetype mucoactive agent, ARINA-1, blocked viral replication and therefore epithelial cell injury; thus, it was further studied using biochemical, genetic, and biophysical methods to ascertain the mechanism of action via the improvement of MCT. ARINA-1 antiviral activity was dependent on enhancing the MCT cellular response, since terminal differentiation, intact ciliary expression, and motion were required for ARINA-1-mediated anti-SARS-CoV2 protection. Ultimately, we showed that the improvement of cilia movement was caused by ARINA-1-mediated regulation of the redox state of the intracellular environment, which benefited MCT. Our study indicates that intact MCT reduces SARS-CoV-2 infection, and its pharmacologic activation may be effective as an anti-COVID-19 treatment.
Collapse
Affiliation(s)
- Javier Campos-Gómez
- Department of Medicine, University of Alabama at Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Alabama, United States
| | | | - Marina Mazur
- Department of Medicine, University of Alabama at Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Alabama, United States
| | - Liping Tang
- Department of Medicine, University of Alabama at Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Alabama, United States
| | - George M Solomon
- Department of Medicine, University of Alabama at Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Alabama, United States
| | - Reny Joseph
- Department of Medicine, University of Alabama at Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Alabama, United States
| | - Qian Li
- Department of Medicine, University of Alabama at Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Alabama, United States
| | - Jacelyn E Peabody Lever
- Department of Medicine, University of Alabama at Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Alabama, United States
- Medical Scientist Training Program, Heersink School of Medicine, University of Alabama at Birmingham, Alabama, United States
| | - Shah Saddad Hussain
- Department of Medicine, University of Alabama at Birmingham, Alabama, United States
| | - Kevin S Harrod
- Department of Medicine, University of Alabama at Birmingham, Alabama, United States
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Alabama, United States
| | - Ezinwanne E Onuoha
- Department of Biomedical Engineering, University of Alabama at Birmingham, Alabama, United States
| | - Harrison Kim
- Department of Radiology, University of Alabama at Birmingham, Alabama, United States
| | - Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Alabama, United States
| |
Collapse
|
37
|
Ehre C, Hansson GC, Thornton DJ, Ostedgaard LS. Mucus aberrant properties in CF: Insights from cells and animal models. J Cyst Fibros 2023; 22 Suppl 1:S23-S26. [PMID: 36117114 PMCID: PMC10018425 DOI: 10.1016/j.jcf.2022.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Cystic fibrosis (CF), an autosomal genetic disorder caused by the dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, is characterized by mucus accumulation in the lungs, the intestinal tract, and the pancreatic ducts. Mucins are high-molecular-weight glycoproteins that govern the biochemical and biophysical properties of mucus. In the CF lung, increased mucus viscoelasticity is associated with decreased mucociliary clearance and defects in host defense mechanisms. The link between defective ion channel and abnormal mucus properties has been investigated in studies involving cell and animal models. In this review article, we discuss recent progress toward understanding the different regions and cells that express CFTR in the airways and how mucus is produced and cleared from the lungs. In addition, we reflect on animal models that provided insights into the organization and the role of the mucin network and how mucus and antimicrobial activities act in concert to protect the lungs from invading pathogens.
Collapse
Affiliation(s)
- Camille Ehre
- University of North Carolina at Chapel Hill, Department of Pediatrics, Marsico Lung Institute, Chapel Hill, NC, USA
| | - Gunnar C Hansson
- Department Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - David J Thornton
- The Wellcome Trust Centre for Cell-Matrix Research, and The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Lynda S Ostedgaard
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
38
|
Abstract
Cystic fibrosis (CF) pathophysiology is hallmarked by excessive inflammation and the inability to resolve lung infections, contributing to morbidity and eventually mortality. Paradoxically, despite a robust inflammatory response, CF lungs fail to clear bacteria and are susceptible to chronic infections. Impaired mucociliary transport plays a critical role in chronic infection but the immune mechanisms contributing to the adaptation of bacteria to the lung microenvironment is not clear. CFTR modulator therapy has advanced CF life expectancy opening up the need to understand changes in immunity as CF patients age. Here, we have summarized the current understanding of immune dysregulation in CF.
Collapse
Affiliation(s)
- Emanuela M Bruscia
- Department of Pediatrics, Section of Pulmonology, Allergy, Immunology and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - Tracey L Bonfield
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
39
|
Guidone D, Buccirossi M, Scudieri P, Genovese M, Sarnataro S, De Cegli R, Cresta F, Terlizzi V, Planelles G, Crambert G, Sermet I, Galietta LJ. Airway surface hyperviscosity and defective mucociliary transport by IL-17/TNF-α are corrected by β-adrenergic stimulus. JCI Insight 2022; 7:164944. [PMID: 36219481 DOI: 10.1172/jci.insight.164944] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/05/2022] [Indexed: 12/15/2022] Open
Abstract
The fluid covering the surface of airway epithelia represents a first barrier against pathogens. The chemical and physical properties of the airway surface fluid are controlled by the activity of ion channels and transporters. In cystic fibrosis (CF), loss of CFTR chloride channel function causes airway surface dehydration, bacterial infection, and inflammation. We investigated the effects of IL-17A plus TNF-α, 2 cytokines with relevant roles in CF and other chronic lung diseases. Transcriptome analysis revealed a profound change with upregulation of several genes involved in ion transport, antibacterial defense, and neutrophil recruitment. At the functional level, bronchial epithelia treated in vitro with the cytokine combination showed upregulation of ENaC channel, ATP12A proton pump, ADRB2 β-adrenergic receptor, and SLC26A4 anion exchanger. The overall result of IL-17A/TNF-α treatment was hyperviscosity of the airway surface, as demonstrated by fluorescence recovery after photobleaching (FRAP) experiments. Importantly, stimulation with a β-adrenergic agonist switched airway surface to a low-viscosity state in non-CF but not in CF epithelia. Our study suggests that CF lung disease is sustained by a vicious cycle in which epithelia cannot exit from the hyperviscous state, thus perpetuating the proinflammatory airway surface condition.
Collapse
Affiliation(s)
- Daniela Guidone
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Paolo Scudieri
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genova, Italy
| | - Michele Genovese
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Sergio Sarnataro
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Rossella De Cegli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Federico Cresta
- Centro Fibrosi Cistica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Vito Terlizzi
- Meyer Children's Hospital, Cystic Fibrosis Regional Reference Center, Department of Paediatric Medicine, Firenze, Italy
| | - Gabrielle Planelles
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Paris, France.,CNRS EMR 8228, Paris, France
| | - Gilles Crambert
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Paris, France.,CNRS EMR 8228, Paris, France
| | | | - Luis Jv Galietta
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Department of Translational Medical Sciences (DISMET), University of Napoli "Federico II", Napoli, Italy
| |
Collapse
|
40
|
Melamed E, Palmer JL, Fonken C. Advantages and limitations of experimental autoimmune encephalomyelitis in breaking down the role of the gut microbiome in multiple sclerosis. Front Mol Neurosci 2022; 15:1019877. [PMID: 36407764 PMCID: PMC9672668 DOI: 10.3389/fnmol.2022.1019877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/11/2022] [Indexed: 08/22/2023] Open
Abstract
Since the first model of experimental autoimmune encephalomyelitis (EAE) was introduced almost a century ago, there has been an ongoing scientific debate about the risks and benefits of using EAE as a model of multiple sclerosis (MS). While there are notable limitations of translating EAE studies directly to human patients, EAE continues to be the most widely used model of MS, and EAE studies have contributed to multiple key breakthroughs in our understanding of MS pathogenesis and discovery of MS therapeutics. In addition, insights from EAE have led to a better understanding of modifiable environmental factors that can influence MS initiation and progression. In this review, we discuss how MS patient and EAE studies compare in our learning about the role of gut microbiome, diet, alcohol, probiotics, antibiotics, and fecal microbiome transplant in neuroinflammation. Ultimately, the combination of rigorous EAE animal studies, novel bioinformatic approaches, use of human cell lines, and implementation of well-powered, age- and sex-matched randomized controlled MS patient trials will be essential for improving MS patient outcomes and developing novel MS therapeutics to prevent and revert MS disease progression.
Collapse
Affiliation(s)
- Esther Melamed
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
| | | | | |
Collapse
|
41
|
Åstrand A, Libby EF, Shei RJ, Lever JEP, Kaza N, Adewale AT, Boitet E, Edwards L, Hemmerling M, Root J, Lindberg B, Wingren C, Malmgren A, Sabater J, Rowe SM. Preclinical evaluation of the epithelial sodium channel inhibitor AZD5634 and implications on human translation. Am J Physiol Lung Cell Mol Physiol 2022; 323:L536-L547. [PMID: 36098422 PMCID: PMC9602792 DOI: 10.1152/ajplung.00454.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Airway dehydration causes mucus stasis and bacterial overgrowth in cystic fibrosis (CF), resulting in recurrent respiratory infections and exacerbations. Strategies to rehydrate airway mucus including inhibition of the epithelial sodium channel (ENaC) have the potential to improve mucosal defense by enhancing mucociliary clearance (MCC) and reducing the risk of progressive decline in lung function. In the current work, we evaluated the effects of AZD5634, an ENaC inhibitor that shows extended lung retention and safety profile as compared with previously evaluated candidate drugs, in healthy and CF preclinical model systems. We found that AZD5634 elicited a potent inhibition of amiloride-sensitive current in non-CF airway cells and airway cells derived from F508del-homozygous individuals with CF that effectively increased airway surface liquid volume and improved mucociliary transport (MCT) rate. AZD5634 also demonstrated efficacious inhibition of ENaC in sheep bronchial epithelial cells, translating to dose-dependent improvement of mucus clearance in healthy sheep in vivo. Conversely, nebulization of AZD5634 did not notably improve airway hydration or MCT in CF rats that exhibit an MCC defect, consistent with findings from a first single-dose evaluation of AZD5634 on MCC in people with CF. Overall, these findings suggest that CF animal models demonstrating impaired mucus clearance translatable to the human situation may help to successfully predict and promote the successful translation of ENaC-directed therapies to the clinic.
Collapse
Affiliation(s)
- Annika Åstrand
- 1Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Emily Falk Libby
- 2Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ren-Jay Shei
- 2Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama,3Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jacelyn E. Peabody Lever
- 2Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama,3Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Niroop Kaza
- 3Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Evan Boitet
- 2Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lloyd Edwards
- 4Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Martin Hemmerling
- 1Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - James Root
- 1Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Botilda Lindberg
- 1Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Cecilia Wingren
- 1Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anna Malmgren
- 1Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Steven M. Rowe
- 2Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama,3Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama,5Department of Cellular, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama,6Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
42
|
Small Colonies, Bigger Problems? New Evidence That Staphylococcus aureus Small Colony Variants Can Worsen Lung Inflammation in Cystic Fibrosis Rats. Infect Immun 2022; 90:e0041322. [PMID: 36286497 PMCID: PMC9670989 DOI: 10.1128/iai.00413-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus
is the most prevalent cystic fibrosis (CF) pathogen. During chronic airway infections,
S. aureus
adaptation to antibiotics includes evolving small colony variants (SCVs).
Collapse
|
43
|
Hill DB, Button B, Rubinstein M, Boucher RC. Physiology and pathophysiology of human airway mucus. Physiol Rev 2022; 102:1757-1836. [PMID: 35001665 PMCID: PMC9665957 DOI: 10.1152/physrev.00004.2021] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023] Open
Abstract
The mucus clearance system is the dominant mechanical host defense system of the human lung. Mucus is cleared from the lung by cilia and airflow, including both two-phase gas-liquid pumping and cough-dependent mechanisms, and mucus transport rates are heavily dependent on mucus concentration. Importantly, mucus transport rates are accurately predicted by the gel-on-brush model of the mucociliary apparatus from the relative osmotic moduli of the mucus and periciliary-glycocalyceal (PCL-G) layers. The fluid available to hydrate mucus is generated by transepithelial fluid transport. Feedback interactions between mucus concentrations and cilia beating, via purinergic signaling, coordinate Na+ absorptive vs Cl- secretory rates to maintain mucus hydration in health. In disease, mucus becomes hyperconcentrated (dehydrated). Multiple mechanisms derange the ion transport pathways that normally hydrate mucus in muco-obstructive lung diseases, e.g., cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non-CF bronchiectasis (NCFB), and primary ciliary dyskinesia (PCD). A key step in muco-obstructive disease pathogenesis is the osmotic compression of the mucus layer onto the airway surface with the formation of adherent mucus plaques and plugs, particularly in distal airways. Mucus plaques create locally hypoxic conditions and produce airflow obstruction, inflammation, infection, and, ultimately, airway wall damage. Therapies to clear adherent mucus with hydrating and mucolytic agents are rational, and strategies to develop these agents are reviewed.
Collapse
Affiliation(s)
- David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Mechanical Engineering and Materials Science, Biomedical Engineering, Physics, and Chemistry, Duke University, Durham, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
44
|
Ludovico A, Moran O, Baroni D. Modulator Combination Improves In Vitro the Microrheological Properties of the Airway Surface Liquid of Cystic Fibrosis Airway Epithelia. Int J Mol Sci 2022; 23:ijms231911396. [PMID: 36232697 PMCID: PMC9569604 DOI: 10.3390/ijms231911396] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) protein, a plasma membrane protein expressed on the apical surface of secretory epithelia of the airways. In the airways, defective or absent function of the CFTR protein determines abnormalities of chloride and bicarbonate secretion and, in general, of the transepithelial homeostasis that lead to alterations of airway surface liquid (ASL) composition and properties. The reduction of ASL volume impairs ciliary beating with the consequent accumulation of a sticky mucus. This situation prevents normal mucociliary clearance, favoring the survival and proliferation of bacteria and contributing to the genesis of the CF pulmonary disease. We explored the potential of some CFTR modulators, namely ivacaftor, tezacaftor, elexacaftor and their combination KaftrioTM, capable of partially recovering the basic defects of the CFTR protein, to ameliorate the transepithelial fluid transport and the viscoelastic properties of the mucus when used singly or in combination. Primary human bronchial epithelial cells obtained from CF and non-CF patients were differentiated into a mucociliated epithelia in order to assess the effects of correctors tezacaftor, elexacaftor and their combination with potentiator ivacaftor on the key properties of ASL, such as fluid reabsorption, viscosity, protein content and pH. The treatment of airway epithelia bearing the deletion of a phenylalanine at position 508 (F508del) in the CFTR gene with tezacaftor and elexacaftor significantly improved the pericilial fluid composition, reducing the fluid reabsorption, correcting the ASL pH and reducing the viscosity of the mucus. KaftrioTM was more effective than single modulators in improving all the evaluated parameters, demonstrating once more that this combination recently approved for patients 6 years and older with cystic fibrosis who have at least one F508del mutation in the CFTR gene represents a valuable tool to defeat CF.
Collapse
Affiliation(s)
| | | | - Debora Baroni
- Correspondence: ; Tel.: +39-010-647-5559; Fax: +39-010-647-5500
| |
Collapse
|
45
|
Okuda K, Shaffer KM, Ehre C. Mucins and CFTR: Their Close Relationship. Int J Mol Sci 2022; 23:10232. [PMID: 36142171 PMCID: PMC9499620 DOI: 10.3390/ijms231810232] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 01/27/2023] Open
Abstract
Mucociliary clearance is a critical defense mechanism for the lungs governed by regionally coordinated epithelial cellular activities, including mucin secretion, cilia beating, and transepithelial ion transport. Cystic fibrosis (CF), an autosomal genetic disorder caused by the dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) channel, is characterized by failed mucociliary clearance due to abnormal mucus biophysical properties. In recent years, with the development of highly effective modulator therapies, the quality of life of a significant number of people living with CF has greatly improved; however, further understanding the cellular biology relevant to CFTR and airway mucus biochemical interactions are necessary to develop novel therapies aimed at restoring CFTR gene expression in the lungs. In this article, we discuss recent advances of transcriptome analysis at single-cell levels that revealed a heretofore unanticipated close relationship between secretory MUC5AC and MUC5B mucins and CFTR in the lungs. In addition, we review recent findings on airway mucus biochemical and biophysical properties, focusing on how mucin secretion and CFTR-mediated ion transport are integrated to maintain airway mucus homeostasis in health and how CFTR dysfunction and restoration of function affect mucus properties.
Collapse
Affiliation(s)
- Kenichi Okuda
- Marsico Lung Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kendall M. Shaffer
- Marsico Lung Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Camille Ehre
- Marsico Lung Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
46
|
Holliday ZM, Launspach JL, Durairaj L, Singh PK, Zabner J, Stoltz DA. Effects of Tham Nasal Alkalinization on Airway Microbial Communities: A Pilot Study in Non-CF and CF Adults. Ann Otol Rhinol Laryngol 2022; 131:1013-1020. [PMID: 34674574 PMCID: PMC9021322 DOI: 10.1177/00034894211051814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES In cystic fibrosis (CF), loss of CFTR-mediated bicarbonate secretion reduces the airway surface liquid (ASL) pH causing airway host defense defects. Aerosolized sodium bicarbonate can reverse these defects, but its effects are short-lived. Aerosolized tromethamine (THAM) also raises the ASL pH but its effects are much longer lasting. In this pilot study, we tested the hypothesis that nasally administered THAM would alter the nasal bacterial composition in adults with and without CF. METHODS Subjects (n = 32 total) received intranasally administered normal saline or THAM followed by a wash out period prior to receiving the other treatment. Nasal bacterial cultures were obtained prior to and after each treatment period. RESULTS At baseline, nasal swab bacterial counts were similar between non-CF and CF subjects, but CF subjects had reduced microbial diversity. Both nasal saline and THAM were well-tolerated. In non-CF subjects, nasal airway alkalinization decreased both the total bacterial density and the gram-positive bacterial species recovered. In both non-CF and CF subjects, THAM decreased the amount of Corynebacterium accolens detected, but increased the amount of Corynebacterium pseudodiphtheriticum recovered on nasal swabs. A reduction in Staphylococcus aureus nasal colonization was also found in subjects who grew C. pseudodiphtheriticum. CONCLUSIONS This study shows that aerosolized THAM is safe and well-tolerated and that nasal airway alkalinization alters the composition of mucosal bacterial communities. CLINICAL TRIAL REGISTRATION NCT00928135 (https://clinicaltrials.gov/ct2/show/NCT00928135).
Collapse
Affiliation(s)
- Zachary M Holliday
- Department of Internal Medicine, University of Iowa, Roy J and Lucille A. Carver College of Medicine, Iowa City, IA, USA
| | - Janice L Launspach
- Department of Internal Medicine, University of Iowa, Roy J and Lucille A Carver College of Medicine, Iowa City, IA, USA
| | - Lakshmi Durairaj
- Department of Internal Medicine, University of Iowa, Roy J and Lucille A Carver College of Medicine, Iowa City, IA, USA
| | - Pradeep K Singh
- Departments of Microbiology and Medicine, University of Washington, Seattle, WA, USA
| | - Joseph Zabner
- Department of Internal Medicine and Pappajohn Biomedical Institute, University of Iowa, Roy J and Lucille A Carver College of Medicine, Iowa City, IA, USA
| | - David A Stoltz
- Departments of Biomedical Engineering, Molecular Physiology and Biophysics, Internal Medicine and Pappajohn Biomedical Institute, University of Iowa, Roy J and Lucille A Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
47
|
Ash JJ, Hilkin BM, Gansemer ND, Hoffman EA, Zabner J, Stoltz DA, Abou Alaiwa MH. Tromethamine improves mucociliary clearance in cystic fibrosis pigs. Physiol Rep 2022; 10:e15340. [PMID: 36073059 PMCID: PMC9453173 DOI: 10.14814/phy2.15340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023] Open
Abstract
In cystic fibrosis (CF), the loss of cystic fibrosis transmembrane conductance regulator (CFTR) mediated Cl- and HCO3 - secretion across the epithelium acidifies the airway surface liquid (ASL). Acidic ASL alters two key host defense mechanisms: Rapid ASL bacterial killing and mucociliary transport (MCT). Aerosolized tromethamine (Tham) increases ASL pH and restores the ability of ASL to rapidly kill bacteria in CF pigs. In CF pigs, clearance of insufflated microdisks is interrupted due to abnormal mucus causing microdisks to abruptly recoil. Aerosolizing a reducing agent to break disulfide bonds that link mucins improves MCT. Here, we are interested in restoring MCT in CF by aerosolizing Tham, a buffer with a pH of 8.4. Because Tham is hypertonic to serum, we use an acidified formulation as a control. We measure MCT by tracking the caudal movement of individual tantalum microdisks with serial chest computed tomography scans. Alkaline Tham improves microdisk clearance to within the range of that seen in non-CF pigs. It also partially reverses MCT defects, including reduced microdisk recoil and elapse time until they start moving after methacholine stimulation in CF pig airways. The effect is not due to hypertonicity, as it is not seen with acidified Tham or hypertonic saline. This finding indicates acidic ASL impairs CF MCT and suggests that alkalinization of ASL pH with inhaled Tham may improve CF airway disease.
Collapse
Affiliation(s)
- Jamison J. Ash
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J and Lucille A Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Brieanna M. Hilkin
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J and Lucille A Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Nicholas D. Gansemer
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J and Lucille A Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Eric A. Hoffman
- Department of RadiologyRoy J and Lucille A Carver College of MedicineUniversity of IowaIowa CityIowaUSA
- Roy J Carver, Department of Biomedical EngineeringUniversity of IowaIowa CityIowaUSA
| | - Joseph Zabner
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J and Lucille A Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - David A. Stoltz
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J and Lucille A Carver College of MedicineUniversity of IowaIowa CityIowaUSA
- Roy J Carver, Department of Biomedical EngineeringUniversity of IowaIowa CityIowaUSA
- Department of Molecular Physiology and BiophysicsRoy J and Lucille A Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Mahmoud H. Abou Alaiwa
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J and Lucille A Carver College of MedicineUniversity of IowaIowa CityIowaUSA
- Roy J Carver, Department of Biomedical EngineeringUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
48
|
Völler M, Addante A, Rulff H, von Lospichl B, Gräber SY, Duerr J, Lauster D, Haag R, Gradzielski M, Mall MA. An optimized protocol for assessment of sputum macrorheology in health and muco-obstructive lung disease. Front Physiol 2022; 13:912049. [PMID: 35991170 PMCID: PMC9388721 DOI: 10.3389/fphys.2022.912049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Airway mucus provides important protective functions in health and abnormal viscoelasticity is a hallmark of muco-obstructive lung diseases such as cystic fibrosis (CF). However, previous studies of sputum macrorheology from healthy individuals and patients with CF using different experimental protocols yielded in part discrepant results and data on a systematic assessment across measurement settings and conditions remain limited. Objectives: The aim of this study was to develop an optimized and reliable protocol for standardized macrorheological measurements of airway mucus model systems and native human sputum from healthy individuals and patients with muco-obstructive lung disease. Methods: Oscillatory rheological shear measurements were performed using bovine submaxillary mucin (BSM) at different concentrations (2% and 10% solids) and sputum samples from healthy controls (n = 10) and patients with CF (n = 10). Viscoelastic properties were determined by amplitude and frequency sweeps at 25°C and 37°C with or without solvent trap using a cone-plate geometry. Results: Under saturated atmosphere, we did not observe any temperature-dependent differences in 2% and 10% BSM macrorheology, whereas in the absence of evaporation control 10% BSM demonstrated a significantly higher viscoelasticity at 37°C. Similarly, during the measurements without evaporation control at 37°C we observed a substantial increase in the storage modulus G′ and the loss modulus G″ of the highly viscoelastic CF sputum but not in the healthy sputum. Conclusion: Our data show systematically higher viscoelasticity of CF compared to healthy sputum at 25°C and 37°C. For measurements at the higher temperature using a solvent trap to prevent evaporation is essential for macrorheological analysis of mucus model systems and native human sputum. Another interesting finding is that the viscoelastic properties are not much sensitive to the applied experimental deformation and yield robust results despite their delicate consistency. The optimized protocol resulting from this work will facilitate standardized quantitative assessment of abnormalities in viscoelastic properties of airway mucus and response to muco-active therapies in patients with CF and other muco-obstructive lung diseases.
Collapse
Affiliation(s)
- Mirjam Völler
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Annalisa Addante
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Hanna Rulff
- Institute of Chemistry, Technische Universität Berlin, Berlin, Germany
| | | | - Simon Y. Gräber
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Julia Duerr
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Daniel Lauster
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Michael Gradzielski
- Institute of Chemistry, Technische Universität Berlin, Berlin, Germany
- *Correspondence: Michael Gradzielski, ; Marcus A. Mall,
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- *Correspondence: Michael Gradzielski, ; Marcus A. Mall,
| |
Collapse
|
49
|
A Splice Switch in SIGIRR Causes a Defect of IL-37-Dependent Anti-Inflammatory Activity in Cystic Fibrosis Airway Epithelial Cells. Int J Mol Sci 2022; 23:ijms23147748. [PMID: 35887095 PMCID: PMC9318995 DOI: 10.3390/ijms23147748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
Cystic fibrosis (CF) is a hereditary disease typically characterized by infection-associated chronic lung inflammation. The persistent activation of toll-like receptor (TLR) signals is considered one of the mechanisms for the CF hyperinflammatory phenotype; however, how negative regulatory signals of TLRs associate with CF inflammation is still elusive. Here, we showed that the cell surface expression of a single immunoglobulin interleukin-1 receptor (IL-1R)-related molecule (SIGIRR), a membrane protein essential for suppressing TLRs- and IL-1R-dependent signals, was remarkably decreased in CF airway epithelial cells compared to non-CF cells. Notably, CF airway epithelial cells specifically and highly expressed a unique, alternative splice isoform of the SIGIRR that lacks exon 8 (Δ8-SIGIRR), which results in the production of a C-terminal truncated form of the SIGIRR. Δ8-SIGIRR was expressed intracellularly, and its over-expression abolished the cell surface expression and function of the full-length SIGIRR (WT-SIGIRR), indicating its dominant-negative effect leading to the deficiency of anti-inflammatory activity in CF cells. Consistently, IL-37, a ligand for the SIGIRR, failed to suppress viral dsRNA analogue poly(I:C)-dependent JNK activation and IL-8 production, confirming the reduction in the functional WT-SIGIRR expression in the CF cells. Together, our studies reveal that SIGIRR-dependent anti-inflammatory activity is defective in CF airway epithelial cells due to the unique splicing switch of the SIGIRR gene and provides the first evidence of IL-37-SIGIRR signaling as a target of CF airway inflammation.
Collapse
|
50
|
Abstract
Coronavirus disease 2019 (COVID-19) is a worldwide pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has affected millions of lives. Individuals who survive severe COVID-19 can experience sustained respiratory symptoms that persist for months after initial infection. In other airway diseases, abnormal airway mucus contributes to sustained airway symptoms. However, the impact of SARS-CoV-2 on airway mucus has received limited attention. In the current review, we assess literature describing the impact of SARS-CoV-2 on airway pathophysiology with specific emphasis on mucus production. Accumulating evidence suggests that the 2 major secreted airway mucin glycoproteins, MUC5AC and MUC5B, are abnormal in some patients with COVID-19. Aberrations in MUC5AC or MUC5B in response to SARS-CoV-2 infection are likely due to inflammation, though the responsible mechanisms have yet to be determined. Thus, we also provide a proposed model highlighting mechanisms that can contribute to acute and sustained mucus abnormalities in SARS-CoV-2, with an emphasis on inflammatory cells and mediators, including mast cells and histamine. Last, we bring to light the challenges of studying abnormal mucus production in SARS-CoV-2 infections and discuss the strengths and limitations of model systems commonly used to study COVID-19. The evidence to date suggests that ferrets, nonhuman primates, and cats may have advantages over other models to investigate mucus in COVID-19.
Collapse
|