1
|
Meier C, Brieger A. The role of IL-8 in cancer development and its impact on immunotherapy resistance. Eur J Cancer 2025; 218:115267. [PMID: 39899909 DOI: 10.1016/j.ejca.2025.115267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/05/2025]
Abstract
Tumors are structures of high complexity. Plurality of their structural and functional components - heterogeneity, diversity, directionality, interdependence and integration of signaling pathways - seem to follow isolated local rules, whereby a superordinate structure remains largely unknown. Understanding the complexity of cancer is the mainstay in finding determinants and developing effective therapies. Interleukin 8 (IL-8) is a potent pro-inflammatory chemokine that is significantly elevated in many different tumor entities. In contrast to its initially postulated anti-tumor properties, an increasing number of studies have been published in recent years linking this chemokine with tumor-promoting features and poor prognosis. This review summarizes the current state and diversity of the role of IL-8 in the development of cancer.
Collapse
Affiliation(s)
- Clara Meier
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Biomedical Research Laboratory, Frankfurt am Main, Germany
| | - Angela Brieger
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Biomedical Research Laboratory, Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Folorunso OS, Sinha NR, Singh A, Xi L, Pulimamidi VK, Cho WJ, Mittal SK, Chauhan SK. TIMP-2 Promotes Wound Healing by Suppressing Matrix Metalloproteinases and Inflammatory Cytokines in Corneal Epithelial Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2024:S0002-9440(24)00470-X. [PMID: 39732392 DOI: 10.1016/j.ajpath.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/10/2024] [Accepted: 11/06/2024] [Indexed: 12/30/2024]
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) modulate extracellular matrix (ECM) remodeling for maintaining homeostasis and promoting cell migration and proliferation. Pathological conditions can alter TIMP homeostasis and aggravate disease progression. The roles of TIMPs have been studied in tissue-related disorders; however, their contributions to tissue repair during corneal injury are undefined. Here, the TIMP expression in human corneal epithelial (HCLE) cells under homeostatic and inflammatory milieus was profiled to examine their contribution to the healing of injured cornea epithelia. Transcriptionally, TIMP-2 was highly expressed in HCLE when stimulated with 100 ng/mL IL-1β or scratch-wounded. Unlike TIMP-1, recombinant TIMP-2 (rTIMP-2) significantly promoted epithelial cell wound closure compared to untreated and TIMP-2-neutralizing conditions. At 12 hours, the Ki-67+ cells significantly increased 3-fold compared to untreated cells, suggesting that rTIMP-2 is associated with cell proliferation. Furthermore, rTIMP-2 treatment significantly suppressed inflammatory cytokine expression (IL-1β, IL-6, IL-8, and TNFα) and injury-induced matrix metalloproteinases (MMP-1, -2, -3, -9, -10, and -13). Topical treatment of injured mouse cornea with 0.1 mg/mL rTIMP-2 significantly promoted corneal re-epithelialization and improved tissue integrity. The treatment suppressed the expression of inflammatory cytokines and MMPs, as well as the infiltration of neutrophils at the injury site. These findings indicate that TIMP-2 promotes faster wound healing by suppressing injury-induced inflammation and MMP expression, suggesting a potential therapeutic target for corneal wound management.
Collapse
Affiliation(s)
- Olufemi S Folorunso
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Nishant R Sinha
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Aastha Singh
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Lei Xi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Vinay K Pulimamidi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - WonKyung J Cho
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Sharad K Mittal
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Sunil K Chauhan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
3
|
Wang Y, Bai M, Peng Q, Li L, Tian F, Guo Y, Jing C. Angiogenesis, a key point in the association of gut microbiota and its metabolites with disease. Eur J Med Res 2024; 29:614. [PMID: 39710789 DOI: 10.1186/s40001-024-02224-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024] Open
Abstract
The gut microbiota is a complex and dynamic ecosystem that plays a crucial role in human health and disease, including obesity, diabetes, cardiovascular diseases, neurodegenerative diseases, inflammatory bowel disease, and cancer. Chronic inflammation is a common feature of these diseases and is closely related to angiogenesis (the process of forming new blood vessels), which is often dysregulated in pathological conditions. Inflammation potentially acts as a central mediator. This abstract aims to elucidate the connection between the gut microbiota and angiogenesis in various diseases. The gut microbiota influences angiogenesis through various mechanisms, including the production of metabolites that directly or indirectly affect vascularization. For example, short-chain fatty acids (SCFAs) such as butyrate, propionate, and acetate are known to regulate immune responses and inflammation, thereby affecting angiogenesis. In the context of cardiovascular diseases, the gut microbiota promotes atherosclerosis and vascular dysfunction by producing trimethylamine N-oxide (TMAO) and other metabolites that promote inflammation and endothelial dysfunction. Similarly, in neurodegenerative diseases, the gut microbiota may influence neuroinflammation and the integrity of the blood-brain barrier, thereby affecting angiogenesis. In cases of fractures and wound healing, the gut microbiota promotes angiogenesis by activating inflammatory responses and immune effects, facilitating the healing of tissue damage. In cancer, the gut microbiota can either inhibit or promote tumor growth and angiogenesis, depending on the specific bacterial composition and their metabolites. For instance, some bacteria can activate inflammasomes, leading to the production of inflammatory factors that alter the tumor immune microenvironment and activate angiogenesis-related signaling pathways, affecting tumor angiogenesis and metastasis. Some bacteria can directly interact with tumor cells, activating angiogenesis-related signaling pathways. Diet, as a modifiable factor, significantly influences angiogenesis through diet-derived microbial metabolites. Diet can rapidly alter the composition of the microbiota and its metabolic activity, thereby changing the concentration of microbial-derived metabolites and profoundly affecting the host's immune response and angiogenesis. For example, a high animal protein diet promotes the production of pro-atherogenic metabolites like TMAO, activating inflammatory pathways and interfering with platelet function, which is associated with the severity of coronary artery plaques, peripheral artery disease, and cardiovascular diseases. A diet rich in dietary fiber promotes the production of SCFAs, which act as ligands for cell surface or intracellular receptors, regulating various biological processes, including inflammation, tissue homeostasis, and immune responses, thereby influencing angiogenesis. In summary, the role of the gut microbiota in angiogenesis is multifaceted, playing an important role in disease progression by affecting various biological processes such as inflammation, immune responses, and multiple signaling pathways. Diet-derived microbial metabolites play a crucial role in linking the gut microbiota and angiogenesis. Understanding the complex interactions between diet, the gut microbiota, and angiogenesis has the potential to uncover novel therapeutic targets for managing these conditions. Therefore, interventions targeting the gut microbiota and its metabolites, such as through fecal microbiota transplantation (FMT) and the application of probiotics to alter the composition of the gut microbiota and enhance the production of beneficial metabolites, present a promising therapeutic strategy.
Collapse
Affiliation(s)
- Yan Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Mingshuai Bai
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Qifan Peng
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Feng Tian
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Ying Guo
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Changqing Jing
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
4
|
Schindler A, Fischer J, Beeskow AB, Lincke T, Ebel S, Seehofer D, Denecke T, Veelken R, Sabri O, Öcal O, Seidensticker M, Berg T, van Bömmel F. Impact of IL-8 on survival after TARE in HCC: a comprehensive investigation and external validation from the SORAMIC trial. J Cancer Res Clin Oncol 2024; 150:486. [PMID: 39503874 PMCID: PMC11541297 DOI: 10.1007/s00432-024-05947-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/10/2024] [Indexed: 11/09/2024]
Abstract
PURPOSE In the treatment of hepatocellular carcinoma (HCC) with transarterial radioembolization (TARE), identifying reliable biomarkers for predicting survival outcomes remains a critical challenge. We aimed to address this gap by investigating the significance of serum cytokines associated with inflammation as potential biomarkers for the selection of patients for TARE. METHODS Our retrospective study involved 161 patients diagnosed with HCC who underwent Y90 radioembolization at our medical center between 2010 and 2020. Serum samples from a subset of 78 patients were retrospectively analyzed to determine the concentrations of pro-inflammatory cytokines. The results from the prospective SORAMIC trial were used for independent validation. RESULTS With a median overall survival of 36 weeks (range 4-436), our study showed the strongest correlation between 12-week survival and IL-8 levels before treatment (p < 0.001), while other relevant interleukins, interferon-α2, INF-γ, TNF-α and MCP-1 were not associated with survival. IL-8 levels below the cut-off of 190 pg/mL were significantly associated with increased 12-week and 24-week survival, with hazard ratios of 19.01 (95% CI: 2.29-157.89) and 2.57 (95% CI: 1.05-6.31), respectively (p = 0.006 and p = 0.039, respectively). In the adjusted multivariate analysis, the 190 pg/mL cut-off for IL-8 remained independently associated with 12- (p = 0.011) and 24-week survival (p = 0.039). Similarly, the SORAMIC population showed a strong association between IL-8 levels and 36-week survival (p = 0.03). CONCLUSION Our study emphasizes the pivotal role of IL-8 as a valuable parameter, demonstrating its potential for predicting treatment outcomes and assessing liver function in patients with HCC undergoing TARE. The robustness of these findings warrants further validation.
Collapse
Affiliation(s)
- Aaron Schindler
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Liebigstrasse 20, 04103, Leipzig, Germany
- University Liver Tumor Center (ULTC), Leipzig University Medical Center, Leipzig, Germany
| | - Janett Fischer
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Liebigstrasse 20, 04103, Leipzig, Germany
- University Liver Tumor Center (ULTC), Leipzig University Medical Center, Leipzig, Germany
- Division of Hepatology, Department of Medicine II, Laboratory for Clinical and Experimental Hepatology, Leipzig University Medical Center, Leipzig, Germany
| | - Anne-Bettina Beeskow
- Department of Diagnostic and Interventional Radiology, Leipzig University Medical Center, Leipzig, Germany
- University Liver Tumor Center (ULTC), Leipzig University Medical Center, Leipzig, Germany
| | - Thomas Lincke
- Department of Nuclear Medicine, Leipzig University Medical Center, 04103, Leipzig, Germany
- University Liver Tumor Center (ULTC), Leipzig University Medical Center, Leipzig, Germany
| | - Sebastian Ebel
- Department of Diagnostic and Interventional Radiology, Leipzig University Medical Center, Leipzig, Germany
- University Liver Tumor Center (ULTC), Leipzig University Medical Center, Leipzig, Germany
| | - Daniel Seehofer
- Department of Visceral, Thoracic and Vascular Surgery, Leipzig University Medical Center, Leipzig, Germany
- University Liver Tumor Center (ULTC), Leipzig University Medical Center, Leipzig, Germany
| | - Timm Denecke
- Department of Diagnostic and Interventional Radiology, Leipzig University Medical Center, Leipzig, Germany
- University Liver Tumor Center (ULTC), Leipzig University Medical Center, Leipzig, Germany
| | - Rhea Veelken
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Liebigstrasse 20, 04103, Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, Leipzig University Medical Center, 04103, Leipzig, Germany
- University Liver Tumor Center (ULTC), Leipzig University Medical Center, Leipzig, Germany
| | - Osman Öcal
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Max Seidensticker
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Thomas Berg
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Liebigstrasse 20, 04103, Leipzig, Germany
- University Liver Tumor Center (ULTC), Leipzig University Medical Center, Leipzig, Germany
- Division of Hepatology, Department of Medicine II, Laboratory for Clinical and Experimental Hepatology, Leipzig University Medical Center, Leipzig, Germany
| | - Florian van Bömmel
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Liebigstrasse 20, 04103, Leipzig, Germany.
- University Liver Tumor Center (ULTC), Leipzig University Medical Center, Leipzig, Germany.
- Division of Hepatology, Department of Medicine II, Laboratory for Clinical and Experimental Hepatology, Leipzig University Medical Center, Leipzig, Germany.
| |
Collapse
|
5
|
Liang C, Kan J, Wang J, Lu W, Mo X, Zhang B. Nasopharyngeal carcinoma-associated inflammatory cytokines: ongoing biomarkers. Front Immunol 2024; 15:1448012. [PMID: 39483474 PMCID: PMC11524805 DOI: 10.3389/fimmu.2024.1448012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/02/2024] [Indexed: 11/03/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a neoplasm related to inflammation; the expression of cytokines, such as CCL3, CCL4, CCL20, IL-1α, IL-1β, IL-6, IL-8, and IL-10, among others, is presumed to be associated with NPC occurrence and development. Therefore, the circulating levels of these cytokines may be potential biomarkers for assessing tumor aggressiveness, exploring cellular interactions, and monitoring tumor therapeutic responses. Numerous scholars have comprehensively explored the putative mechanisms through which these inflammatory factors affect NPC progression and therapeutic responses. Moreover, investigations have focused on elucidating the correlation between the systemic levels of these cytokines and the incidence and prognosis of NPC. This comprehensive review aims to delineate the advancements in research concerning the relationship between inflammatory factors and NPC while considering their prospective roles as novel prognostic and predictive biomarkers in the context of NPC.
Collapse
Affiliation(s)
- Chuwen Liang
- TCM&VIP Inpatient Department, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun Kan
- TCM&VIP Inpatient Department, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jingli Wang
- TCM&VIP Inpatient Department, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei Lu
- TCM&VIP Inpatient Department, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaoyan Mo
- TCM&VIP Inpatient Department, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bei Zhang
- TCM&VIP Inpatient Department, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
6
|
Jha A, Moore E. YIGSR, A Laminin-Derived Peptide, Dictates a Concentration-Dependent Impact on Macrophage Phenotype Response. Cell Mol Bioeng 2024; 17:423-440. [PMID: 39513005 PMCID: PMC11538123 DOI: 10.1007/s12195-024-00810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/18/2024] [Indexed: 11/15/2024] Open
Abstract
Purpose Macrophage immune cells play crucial roles in the inflammatory (M1) and regenerative (M2) processes. The extracellular matrix (ECM) composition, including presentation of embedded ligands, governs macrophage function. Laminin concentration is abundant in the basement membrane and is dependent on pathological state: reduced in inflammation and increased during regeneration. Distinct laminin ligands, such as IKVAV and YIGSR, have disparate roles in dictating cell function. For example, IKVAV, derived from the alpha chain of laminin, promotes angiogenesis and metastasis of cancer cells whereas YIGSR, beta chain derived, impedes angiogenesis and tumor progression. Previous work has demonstrated IKVAV's inflammation inhibiting properties in macrophages. Given the divergent role of IKVAV and YIGSR in interacting with cells through varied integrin receptors, we ask: what role does laminin derived peptide YIGSR play in governing macrophage function? Methods We quantified the influence of YIGSR on macrophage phenotype in 2D and 3D via immunostaining assessments for M1 marker inducible nitric oxide synthase (iNOS) and M2 marker Arginase-1 (Arg-1). We also analysed the secretome of human and murine macrophage response to YIGSR via a Luminex bead assay. Results YIGSR impact on macrophage phenotype occurs in a concentration-dependent manner. At lower concentrations of YIGSR, macrophage inflammation was increased whereas, at higher concentrations of YIGSR the opposite effect was seen within the same time frame. Secretomic assessments also demonstrate that pro-inflammatory chemokines and cytokines were increased at low YIGSR concentrations in M0, M1, M2 macrophages while pro-inflammatory secretion was reduced at higher concentrations. Conclusions YIGSR can be used as a tool to modulate macrophage inflammatory state within M1 and M2 phenotypes depending on the concentration of peptide. YIGSR's impact on macrophage function can be leveraged for the development of immunoengineering strategies in regenerative medicine and cancer therapy. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00810-5.
Collapse
Affiliation(s)
- Aakanksha Jha
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Erika Moore
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
7
|
Sung C, Wang J, Chang J, Wong AK. Review of treatment strategies after lymphadenectomy: From molecular therapeutics to immediate microsurgical lymphatic reconstruction. J Vasc Surg Venous Lymphat Disord 2024; 12:101844. [PMID: 38316291 PMCID: PMC11523459 DOI: 10.1016/j.jvsv.2024.101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/07/2024]
Abstract
OBJECTIVE Lymphedema is a common complication of cancer treatment, such as lymphadenectomy and radiation therapy. It is a debilitating condition with pathologic tissue changes that hinder effective curative treatment and jeopardize patients' quality of life. Various attempts to prevent the development of lymphedema have been made, with improvements in the incidence of the pathology. However, it is still prevalent among survivors of cancer. In this paper, we review both molecular therapeutics and immediate surgical lymphatic reconstruction as treatment strategies after lymphadenectomy. Specifically, we discuss pro-lymphangiogenic molecules that have proved efficient in animal models of lymphedema and clinical trials, and review currently available microsurgical techniques of immediate lymphatic reconstruction. METHODS A literature search was conducted in PubMed, Embase, Cochrane Library, and Google Scholar through May 2022. Searches were done separately for molecular therapeutics and microsurgical techniques for immediate lymphatic reconstruction. Search terms used for (1) non-surgical methods include 'lymphangiogenesis,' 'lymphedema,' 'growth factor,' and 'gene therapy.' Search terms used for (2) surgical methods include 'lymphedema,' 'lymph node excision,' 'lymphatic vessels,' 'primary prevention,' and 'microsurgery.' RESULTS Various pro-lymphangiogenic factors with therapeutic potential include VEGF-C, VEGF-D, HGF, bFGF, PDGF, IGF, Retinoic acid, Ang-1, S1P, TLR4, and IL-8. Microsurgical lymphatic reconstruction for prevention of secondary lymphedema includes lymphovenous anastomosis, vascularized lymph node flap transfer, and lymph-interpositional flap transfer, with promising clinical outcomes. CONCLUSIONS With growing knowledge of the lymphangiogenic pathway and lymphedema pathology and advances in microsurgical techniques to restore lymphatic channels, molecular and surgical approaches may represent a promising method for primary prevention of lymphedema.
Collapse
Affiliation(s)
- Cynthia Sung
- Division of Plastic Surgery, City of Hope National Medical Center, Duarte, CA; Keck School of Medicine of USC, Los Angeles, CA; Division of Plastic Surgery, City of Hope National Medical Center, Duarte, CA
| | - Jin Wang
- Division of Plastic Surgery, City of Hope National Medical Center, Duarte, CA
| | - Jeff Chang
- Division of Plastic Surgery, City of Hope National Medical Center, Duarte, CA
| | - Alex K Wong
- Division of Plastic Surgery, City of Hope National Medical Center, Duarte, CA.
| |
Collapse
|
8
|
Marečková M, Garcia-Alonso L, Moullet M, Lorenzi V, Petryszak R, Sancho-Serra C, Oszlanczi A, Icoresi Mazzeo C, Wong FCK, Kelava I, Hoffman S, Krassowski M, Garbutt K, Gaitskell K, Yancheva S, Woon EV, Male V, Granne I, Hellner K, Mahbubani KT, Saeb-Parsy K, Lotfollahi M, Prigmore E, Southcombe J, Dragovic RA, Becker CM, Zondervan KT, Vento-Tormo R. An integrated single-cell reference atlas of the human endometrium. Nat Genet 2024; 56:1925-1937. [PMID: 39198675 PMCID: PMC11387200 DOI: 10.1038/s41588-024-01873-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 07/17/2024] [Indexed: 09/01/2024]
Abstract
The complex and dynamic cellular composition of the human endometrium remains poorly understood. Previous endometrial single-cell atlases profiled few donors and lacked consensus in defining cell types. We introduce the Human Endometrial Cell Atlas (HECA), a high-resolution single-cell reference atlas (313,527 cells) combining published and new endometrial single-cell transcriptomics datasets of 63 women with and without endometriosis. HECA assigns consensus and identifies previously unreported cell types, mapped in situ using spatial transcriptomics and validated using a new independent single-nuclei dataset (312,246 nuclei, 63 donors). In the functionalis, we identify intricate stromal-epithelial cell coordination via transforming growth factor beta (TGFβ) signaling. In the basalis, we define signaling between fibroblasts and an epithelial population expressing progenitor markers. Integration of HECA with large-scale endometriosis genome-wide association study data pinpoints decidualized stromal cells and macrophages as most likely dysregulated in endometriosis. The HECA is a valuable resource for studying endometrial physiology and disorders, and for guiding microphysiological in vitro systems development.
Collapse
Affiliation(s)
- Magda Marečková
- Wellcome Sanger Institute, Cambridge, UK
- Oxford Endometriosis Care Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | | | | | - Valentina Lorenzi
- Wellcome Sanger Institute, Cambridge, UK
- European Bioinformatics Institute-European Molecular Biology Laboratory, Cambridge, UK
| | | | | | | | | | | | - Iva Kelava
- Wellcome Sanger Institute, Cambridge, UK
| | | | - Michał Krassowski
- Oxford Endometriosis Care Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kurtis Garbutt
- Oxford Endometriosis Care Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Kezia Gaitskell
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Department of Cellular Pathology, John Radcliffe Hospital, Oxford, UK
| | - Slaveya Yancheva
- Department of Cellular Pathology, John Radcliffe Hospital, Oxford, UK
| | - Ee Von Woon
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
- The Fertility Centre, Chelsea and Westminster Hospital, London, UK
| | - Victoria Male
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Ingrid Granne
- Oxford Endometriosis Care Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Karin Hellner
- Oxford Endometriosis Care Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Krishnaa T Mahbubani
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Biorepository for Translational Medicine (CBTM), NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Cambridge Biorepository for Translational Medicine (CBTM), NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Mohammad Lotfollahi
- Wellcome Sanger Institute, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | | | - Jennifer Southcombe
- Oxford Endometriosis Care Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Rebecca A Dragovic
- Oxford Endometriosis Care Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Christian M Becker
- Oxford Endometriosis Care Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Krina T Zondervan
- Oxford Endometriosis Care Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK.
- Centre for Human Genetics, University of Oxford, Oxford, UK.
| | | |
Collapse
|
9
|
Yamamori Y, Shirai R, Ohkura K, Nagamune H, Tomoyasu T, Tabata A. Streptolysin S induces proinflammatory cytokine expression in calcium ion-influx-dependent manner. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100265. [PMID: 39211836 PMCID: PMC11359966 DOI: 10.1016/j.crmicr.2024.100265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Anginosus group streptococci (AGS) are opportunistic pathogens that reside in the human oral cavity. The β-hemolytic strains of Streptococcus anginosus subsp. anginosus (SAA) produce streptolysin S (SLS), a streptococcal peptide hemolysin. In recent clinical scenarios, AGS, including this species, have frequently been isolated from infections and disorders beyond those in the oral cavity. Consequently, investigating this situation will reveal the potential pathogenicity of AGS to ectopic infections in humans. However, the precise mechanism underlying the cellular response induced by secreted SLS and its relevance to the pathogenicity of AGS strains remain largely unknown. This study aims to elucidate the mechanism underlying the host cellular response of the human acute monocytic leukemia cell line THP-1 to secreted SLS. In THP-1 cells incubated with the culture supernatant of β-hemolytic SAA containing SLS as the sole cytotoxic factor, increased Ca2+ influx and elevated expression of proinflammatory cytokines were observed. Significantly reduced expression of SLS-dependent upregulated cytokine genes under Ca2+-chelating conditions suggests that Ca2+ influx triggers SLS-dependent cellular responses. Furthermore, SLS-dependent enhanced expression of IL-8 was also implicated in the activation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) signaling pathways. The findings presented in this study are crucial for a comprehensive understanding of the real pathogenicity of SLS-producing β-hemolytic AGS in the latest clinical situations.
Collapse
Affiliation(s)
- Yugo Yamamori
- Division of Bioresource Science, Graduate School of Sciences and Technology for Innovation, Tokushima University Graduate School, 2-1 Minamijousanjima-cho, Tokushima, Tokushima 770-8513, Japan
| | - Rina Shirai
- Division of Bioresource Science, Graduate School of Sciences and Technology for Innovation, Tokushima University Graduate School, 2-1 Minamijousanjima-cho, Tokushima, Tokushima 770-8513, Japan
| | - Kazuto Ohkura
- Division of Clinical Pharmacy and Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki-cho, Suzuka, Mie 513-8670, Japan
| | - Hideaki Nagamune
- Division of Bioresource Science, Graduate School of Sciences and Technology for Innovation, Tokushima University Graduate School, 2-1 Minamijousanjima-cho, Tokushima, Tokushima 770-8513, Japan
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, 2-1 Minamijousanjima-cho, Tokushima, Tokushima 770-8513, Japan
| | - Toshifumi Tomoyasu
- Division of Bioresource Science, Graduate School of Sciences and Technology for Innovation, Tokushima University Graduate School, 2-1 Minamijousanjima-cho, Tokushima, Tokushima 770-8513, Japan
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, 2-1 Minamijousanjima-cho, Tokushima, Tokushima 770-8513, Japan
| | - Atsushi Tabata
- Division of Bioresource Science, Graduate School of Sciences and Technology for Innovation, Tokushima University Graduate School, 2-1 Minamijousanjima-cho, Tokushima, Tokushima 770-8513, Japan
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, 2-1 Minamijousanjima-cho, Tokushima, Tokushima 770-8513, Japan
| |
Collapse
|
10
|
Yang F, Lee G, Fan Y. Navigating tumor angiogenesis: therapeutic perspectives and myeloid cell regulation mechanism. Angiogenesis 2024; 27:333-349. [PMID: 38580870 PMCID: PMC11303583 DOI: 10.1007/s10456-024-09913-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Sustained angiogenesis stands as a hallmark of cancer. The intricate vascular tumor microenvironment fuels cancer progression and metastasis, fosters therapy resistance, and facilitates immune evasion. Therapeutic strategies targeting tumor vasculature have emerged as transformative for cancer treatment, encompassing anti-angiogenesis, vessel normalization, and endothelial reprogramming. Growing evidence suggests the dynamic regulation of tumor angiogenesis by infiltrating myeloid cells, such as macrophages, myeloid-derived suppressor cells (MDSCs), and neutrophils. Understanding these regulatory mechanisms is pivotal in paving the way for successful vasculature-targeted cancer treatments. Therapeutic interventions aimed to disrupt myeloid cell-mediated tumor angiogenesis may reshape tumor microenvironment and overcome tumor resistance to radio/chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Fan Yang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Gloria Lee
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
11
|
Omidvar S, Vahedian V, Sourani Z, Yari D, Asadi M, Jafari N, Khodavirdilou L, Bagherieh M, Shirzad M, Hosseini V. The molecular crosstalk between innate immunity and DNA damage repair/response: Interactions and effects in cancers. Pathol Res Pract 2024; 260:155405. [PMID: 38981346 DOI: 10.1016/j.prp.2024.155405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024]
Abstract
DNA damage can lead to erroneous alterations and mutations which in turn can result into wide range of disease condition including aging, severe inflammation, and, most importantly, cancer. Due to the constant exposure to high-risk factors such as exogenous and endogenous DNA-damaging agents, cells may experience DNA damage impairing stability and integrity of the genome. These perturbations in DNA structure can arise from several mutations in the genome. Therefore, DNA Damage Repair/Response (DDR) detects and then corrects these potentially tumorigenic problems by inducing processes such as DNA repair, cell cycle arrest, apoptosis, etc. Additionally, DDR can activate signaling pathways related to immune system as a protective mechanism against genome damage. These protective machineries are ignited and spread through a network of molecules including DNA damage sensors, transducers, kinases and downstream effectors. In this review, we are going to discuss the molecular crosstalk between innate immune system and DDR, as well as their potential effects on cancer pathophysiology.
Collapse
Affiliation(s)
- Sahar Omidvar
- Cancer Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Vahid Vahedian
- Department of Hematology, Transfusion Medicine and Cellular Therapy, Division of Hematology/Oncology, Clinical Hospital, Faculty of Medicine, University of Sao Paulo (FMUSP-HC), Sao Paulo, Brazil; Department of Clinical Medicine, Division of Medical Investigation Laboratory (LIM-31), Clinical Hospital, Faculty of Medicine, University of Sao Paulo (FMUSP-HC), Sao Paulo, Brazil; Comprehensive Center for Translational and Precision Oncology (CTO), SP State Cancer Institute (ICESP), Sao Paulo, Brazil.
| | - Zahra Sourani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Davood Yari
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Mehrdad Asadi
- Department of Medical Laboratory Sciences and Microbiology, Faculty of Medical Sciences, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran.
| | - Negin Jafari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Lida Khodavirdilou
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA.
| | - Molood Bagherieh
- Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran.
| | - Moein Shirzad
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Vahid Hosseini
- Department of Medical Laboratory Sciences and Microbiology, Faculty of Medical Sciences, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran; Infectious Diseases Research Center, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
12
|
Bianconi S, Leppik L, Oppermann E, Marzi I, Henrich D. Direct Current Electrical Stimulation Shifts THP-1-Derived Macrophage Polarization towards Pro-Regenerative M2 Phenotype. Int J Mol Sci 2024; 25:7272. [PMID: 39000377 PMCID: PMC11242703 DOI: 10.3390/ijms25137272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/14/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
A macrophage shift from the M1 to the M2 phenotype is relevant for promoting tissue repair and regeneration. In a previous in vivo study, we found that direct current (DC) electrical stimulation (EStim) increased the proportion of M2 macrophages in healing tissues and directed the balance of the injury response away from healing/scarring towards regeneration. These observations led us to hypothesize that DC EStim regulates macrophage polarization towards an M2 phenotype. THP-1-derived M0, M1 (IFN-γ and LPS), and M2 (IL-4 and IL-13) macrophages were exposed (or not: control group) to 100 mV/mm of DC EStim, 1 h/day for three days. Macrophage polarization was assessed through gene and surface marker expressions and cytokine secretion profiles. Following DC EStim treatment, M0 cells exhibited an upregulation of M2 marker genes IL10, CD163, and PPARG. In M1 cells, DC EStim upregulated the gene expressions of M2 markers IL10, TGM2, and CD206 and downregulated M1 marker gene CD86. EStim treatment also reduced the surface expression of CD86 and secretion of pro-inflammatory cytokines IL-1β and IL-6. Our results suggest that DC EStim differentially exerts pro-M2 effects depending on the macrophage phenotype: it upregulates typical M2 genes in M0 and M1 cells while inhibiting M1 marker CD86 at the nuclear and protein levels and the secretion of pro-inflammatory interleukins in M1 cells. Conversely, M2 cells appear to be less responsive to the EStim treatment employed in this study.
Collapse
Affiliation(s)
- Santiago Bianconi
- Department of Trauma Surgery and Orthopedics, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Liudmila Leppik
- Department of Trauma Surgery and Orthopedics, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Elsie Oppermann
- Department of General, Visceral, Transplant and Thoracic Surgery, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Ingo Marzi
- Department of Trauma Surgery and Orthopedics, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Dirk Henrich
- Department of Trauma Surgery and Orthopedics, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| |
Collapse
|
13
|
Olejnik AE, Kuźnar-Kamińska B. Association of Obesity and Severe Asthma in Adults. J Clin Med 2024; 13:3474. [PMID: 38930006 PMCID: PMC11204497 DOI: 10.3390/jcm13123474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
The incidence of obesity and asthma continues to enhance, significantly impacting global public health. Adipose tissue is an organ that secretes hormones and cytokines, causes meta-inflammation, and contributes to the intensification of bronchial hyperreactivity, oxidative stress, and consequently affects the different phenotypes of asthma in obese people. As body weight increases, the risk of severe asthma increases, as well as more frequent exacerbations requiring the use of glucocorticoids and hospitalization, which consequently leads to a deterioration of the quality of life. This review discusses the relationship between obesity and severe asthma, the underlying molecular mechanisms, changes in respiratory function tests in obese people, its impact on the occurrence of comorbidities, and consequently, a different response to conventional asthma treatment. The article also reviews research on possible future therapies for severe asthma. The manuscript is a narrative review of clinical trials in severe asthma and comorbid obesity. The articles were found in the PubMed database using the keywords asthma and obesity. Studies on severe asthma were then selected for inclusion in the article. The sections: 'The classification connected with asthma and obesity', 'Obesity-related changes in pulmonary functional tests', and 'Obesity and inflammation', include studies on subjects without asthma or non-severe asthma, which, according to the authors, familiarize the reader with the pathophysiology of obesity-related asthma.
Collapse
Affiliation(s)
- Aneta Elżbieta Olejnik
- Department of Pulmonology, Allergology and Pulmonary Oncology, Poznan University of Medical Sciences, Szamarzewskiego 84 Street, 60-569 Poznan, Poland;
| | | |
Collapse
|
14
|
Cuffaro F, Russo E, Amedei A. Endometriosis, Pain, and Related Psychological Disorders: Unveiling the Interplay among the Microbiome, Inflammation, and Oxidative Stress as a Common Thread. Int J Mol Sci 2024; 25:6473. [PMID: 38928175 PMCID: PMC11203696 DOI: 10.3390/ijms25126473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Endometriosis (EM), a chronic condition in endometrial tissue outside the uterus, affects around 10% of reproductive-age women, significantly affecting fertility. Its prevalence remains elusive due to the surgical confirmation needed for diagnosis. Manifesting with a range of symptoms, including dysmenorrhea, dyschezia, dysuria, dyspareunia, fatigue, and gastrointestinal discomfort, EM significantly impairs quality of life due to severe chronic pelvic pain (CPP). Psychological manifestations, notably depression and anxiety, frequently accompany the physical symptoms, with CPP serving as a key mediator. Pain stems from endometrial lesions, involving oxidative stress, neuroinflammation, angiogenesis, and sensitization processes. Microbial dysbiosis appears to be crucial in the inflammatory mechanisms underlying EM and associated CPP, as well as psychological symptoms. In this scenario, dietary interventions and nutritional supplements could help manage EM symptoms by targeting inflammation, oxidative stress, and the microbiome. Our manuscript starts by delving into the complex relationship between EM pain and psychological comorbidities. It subsequently addresses the emerging roles of the microbiome, inflammation, and oxidative stress as common links among these abovementioned conditions. Furthermore, the review explores how dietary and nutritional interventions may influence the composition and function of the microbiome, reduce inflammation and oxidative stress, alleviate pain, and potentially affect EM-associated psychological disorders.
Collapse
Affiliation(s)
- Francesca Cuffaro
- Division of Interdisciplinary Internal Medicine, Careggi University Hospital of Florence, 50134 Florence, Italy;
| | - Edda Russo
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50139 Florence, Italy
| |
Collapse
|
15
|
Fellhofer-Hofer J, Franz C, Vey JA, Kahlert C, Kalkum E, Mehrabi A, Halama N, Probst P, Klupp F. Chemokines as Prognostic Factor in Colorectal Cancer Patients: A Systematic Review and Meta-Analysis. Int J Mol Sci 2024; 25:5374. [PMID: 38791414 PMCID: PMC11121014 DOI: 10.3390/ijms25105374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Chemokines orchestrate many aspects of tumorigenic processes such as angiogenesis, apoptosis and metastatic spread, and related receptors are expressed on tumor cells as well as on inflammatory cells (e.g., tumor-infiltrating T cells, TILs) in the tumor microenvironment. Expressional changes of chemokines and their receptors in solid cancers are common and well known, especially in affecting colorectal cancer patient outcomes. Therefore, the aim of this current systematic review and meta-analysis was to classify chemokines as a prognostic biomarker in colorectal cancer patients. A systematic literature search was conducted in PubMed, CENTRAL and Web of Science. Information on the chemokine expression of 25 chemokines in colorectal cancer tissue and survival data of the patients were investigated. The hazard ratio of overall survival and disease-free survival with chemokine expression was examined. The risk of bias was analyzed using Quality in Prognosis Studies. Random effects meta-analysis was performed to determine the impact on overall respectively disease survival. For this purpose, the pooled hazard ratios (HR) and their 95% confidence intervals (CI) were used for calculation. Twenty-five chemokines were included, and the search revealed 5556 publications. A total of thirty-one publications were included in this systematic review and meta-analysis. Overexpression of chemokine receptor CXCR4 was associated with both a significantly reduced overall survival (HR = 2.70, 95%-CI: 1.57 to 4.66, p = 0.0003) as well as disease-free survival (HR = 2.68, 95%-CI: 1.41 to 5.08, p = 0.0026). All other chemokines showed either heterogeneous results or few studies were available. The overall risk of bias for CXCR4 was rated low. At the current level of evidence, this study demonstrates that CXCR4 overexpression in patients with colorectal cancer is associated with a significantly diminished overall as well as disease-free survival. Summed up, this systematic review and meta-analysis reveals CXCR4 as a promising prognostic biomarker. Nevertheless, more evidence is needed to evaluate CXCR4 and its antagonists serving as new therapeutic targets.
Collapse
Affiliation(s)
- Johanna Fellhofer-Hofer
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (J.F.-H.); (C.F.); (C.K.); (A.M.); (P.P.)
| | - Clemens Franz
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (J.F.-H.); (C.F.); (C.K.); (A.M.); (P.P.)
| | - Johannes A. Vey
- Institute of Medical Biometry (IMBI), University Hospital Heidelberg, Im Neuenheimer Feld 130/3, 69120 Heidelberg, Germany;
| | - Christoph Kahlert
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (J.F.-H.); (C.F.); (C.K.); (A.M.); (P.P.)
| | - Eva Kalkum
- Study Center of the German Society of Surgery (SDGC), University of Heidelberg, Im Neuenheimer Feld 130/3, 69120 Heidelberg, Germany;
| | - Arianeb Mehrabi
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (J.F.-H.); (C.F.); (C.K.); (A.M.); (P.P.)
| | - Niels Halama
- National Center for Tumor Diseases, Medical Oncology and Internal Medicine VI, Tissue Imaging and Analysis Center, Bioquant, University of Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany;
- Helmholtz Institute for Translational Oncology (HI-TRON), Department of Cancer Immunology & Cancer Immunotherapy, German Cancer Research Center (DKFZ), 55131 Mainz, Germany
| | - Pascal Probst
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (J.F.-H.); (C.F.); (C.K.); (A.M.); (P.P.)
- Department of Surgery, Cantonal Hospital Thurgau, Pfaffenholzstrasse 4, 8501 Frauenfeld, Switzerland
| | - Fee Klupp
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (J.F.-H.); (C.F.); (C.K.); (A.M.); (P.P.)
| |
Collapse
|
16
|
Abbas TO, Parangusan H, Yalcin HC, Hassan M, Zakrif L, Zandi N, Pennisi CP. Trilayer composite scaffold for urethral reconstruction: in vitroevaluation of mechanical, biological, and angiogenic properties. Biomed Mater 2024; 19:025022. [PMID: 38194708 DOI: 10.1088/1748-605x/ad1c9c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
Regeneration of damaged urethral tissue remains a major challenge in the field of lower urinary tract reconstruction. To address this issue, various synthetic and natural biodegradable biomaterials are currently being explored for the fabrication of scaffolds that promote urethral regeneration and healing. In this study, we present an approach to fabricate a trilayer hybrid scaffold comprising a central layer of poly(lactic acid) (PLA) between two layers of chitosan. The chitosan/PLA/chitosan (CPC) scaffolds were fabricated by a sequential electrospinning process and their properties were evaluated for their suitability for urethral tissue engineering. The physical and biological properties of the CPC scaffolds were evaluated in comparison to electrospun PLA scaffolds and acellular dermis (Alloderm) as controls for a synthetic and a natural scaffold, respectively. Compared to the controls, the CPC scaffolds exhibited higher elastic modulus and ultimate tensile strength, while maintaining extensibility and suture retention strength appropriate for clinical use. The CPC scaffolds displayed significant hydrophilicity, which was associated with a higher water absorption capacity of the chitosan nanofibres. The degradation products of the CPC scaffolds did not exhibit cytotoxicity and promoted wound closure by fibroblastsin vitro. In addition, CPC scaffolds showed increased growth of smooth muscle cells, an essential component for functional regeneration of urethral tissue. Furthermore, in a chicken embryo-based assay, CPC scaffolds demonstrated significantly higher angiogenic potential, indicating their ability to promote vascularisation, a crucial aspect for successful urethral reconstruction. Overall, these results suggest that CPC hybrid scaffolds containing both natural and synthetic components offer significant advantages over conventional acellular or synthetic materials alone. CPC scaffolds show promise as potential candidates for further research into the reconstruction of the urethrain vivo.
Collapse
Affiliation(s)
- Tariq O Abbas
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Pediatric Surgery Department, Hamad General Hospital, Doha, Qatar
- College of Medicine, Qatar University, Doha, Qatar
- Weill Cornell Medicine-Qatar, Doha, Qatar
- Urology Division, Urology Department, Sidra Medicine, Doha, Qatar
| | | | - Huseyin C Yalcin
- Biomedical Research Centre, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Mohamed Hassan
- Centre for Advanced Materials, Qatar University, Doha, Qatar
| | - Lubna Zakrif
- Biomedical Research Centre, Qatar University, Doha, Qatar
| | - Nooshin Zandi
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Cristian P Pennisi
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
17
|
Ling XC, Huang PH, Chen HC, Hsueh YJ, Lee CW, Lien R, Lee CC, Chu SM, Chen KJ, Hwang YS, Lai CC, Chiang MC, Wu WC. Association of serum levels of inflammatory cytokines with retinopathy of prematurity in preterm infants. Front Pediatr 2024; 11:1195904. [PMID: 38259597 PMCID: PMC10800500 DOI: 10.3389/fped.2023.1195904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Retinopathy of prematurity (ROP) is a retinal vascular developmental disease associated with risks factors such as supplementary oxygen use or low birth weight/early gestational age. Multiple studies have reported associations between ROP and systemic inflammation. In this study, we investigated serum cytokines associated with ROP development and severity and assessed their applicability as potential biomarkers of ROP. Methods This prospective study was conducted at an institutional referral center between 2019 and 2021. To measure the serum levels of 40 inflammatory cytokines in eligible premature patients, we collected their serum samples during the enrollment of patients or the intravitreal injection of anti-vascular endothelial growth factor (VEGF) agents and after 2 and 4 weeks. Results Fifty patients were enrolled. In patients with type 1 ROP who received anti-VEGF agents (n = 22), the levels of serum intercellular adhesion molecule-1 decreased significantly (p < 0.05) at 4 weeks compared with the baseline level, whereas those of serum granulocyte-macrophage colony-stimulating factor increased significantly (p < 0.05). In patients with ROP who did not require any treatment (n = 14), no significant change was noted in the level of any of the 40 inflammatory cytokines. In control infants without ROP (n = 14), the serum levels of tumor necrosis factor-α, interleukin (IL)-15, and IL-12p40 increased significantly (p < 0.05) at 4 weeks. The changes in the levels of serum inflammatory cytokines did not vary significantly among the aforementioned three groups. A generalized estimating equation indicated that zone 1 ROP, stage 3 ROP, older postmenstrual age, respiratory distress syndrome, necrotizing enterocolitis, and sepsis were associated with the changes in serum cytokine levels. Conclusions Although significant changes (compared with baseline) were observed in the serum levels of certain inflammatory cytokines in patients with type 1 ROP and infants without ROP, no significant difference in cytokine level fluctuations were noted among the three groups. Changes in serum inflammatory cytokine levels may not predict ROP development or severity. Additional comprehensive studies are warranted to establish their definitive role and significance in ROP, emphasizing the need for continued research in this area.
Collapse
Affiliation(s)
- Xiao Chun Ling
- Department of Ophthalmology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Pin-Hsuan Huang
- Center for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hung-Chi Chen
- Department of Ophthalmology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Jen Hsueh
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Chia-Wen Lee
- Department of Ophthalmology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Reyin Lien
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Neonatology, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chien-Chung Lee
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Neonatology, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shih-Ming Chu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Neonatology, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuan-Jen Chen
- Department of Ophthalmology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yih-Shiou Hwang
- Department of Ophthalmology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Chun Lai
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Ming-Chou Chiang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Neonatology, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wei-Chi Wu
- Department of Ophthalmology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
18
|
Yan W, Hou N, Zheng J, Zhai W. Predictive genomic biomarkers of therapeutic effects in renal cell carcinoma. Cell Oncol (Dordr) 2023; 46:1559-1575. [PMID: 37223875 DOI: 10.1007/s13402-023-00827-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND In recent years, there have been great improvements in the therapy of renal cell carcinoma. Nevertheless, the therapeutic effect varies significantly from person to person. To discern the effective treatment for different populations, predictive molecular biomarkers in response to target, immunological, and combined therapies are widely studied. CONCLUSION This review summarized those studies from three perspectives (SNPs, mutation, and expression level) and listed the relationship between biomarkers and therapeutic effect, highlighting the great potential of predictive molecular biomarkers in metastatic RCC therapy. However, due to a series of reasons, most of these findings require further validation.
Collapse
Affiliation(s)
- Weijie Yan
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Naiqiao Hou
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junhua Zheng
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhai
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
19
|
Song M, Liang J, Wang L, Li W, Jiang S, Xu S, Tang L, Du Q, Liu G, Meng H, Zhai D, Shi S, Yang Y, Zhang L, Zhang B. IL-17A functions and the therapeutic use of IL-17A and IL-17RA targeted antibodies for cancer treatment. Int Immunopharmacol 2023; 123:110757. [PMID: 37579542 DOI: 10.1016/j.intimp.2023.110757] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/16/2023]
Abstract
Interleukin 17A (IL-17A) is a major member of the IL-17 cytokine family and is produced mainly by T helper 17 (Th17) cells. Other cells such as CD8+ T cells, γδ T cells, natural killer T cells and innate lymphoid-like cells can also produce IL-17A. In healthy individuals, IL-17A has a host-protective capacity, but excessive elevation of IL-17A is associated with the development of autoimmune diseases and cancer. Monoclonal antibodies (mAbs) targeting IL-17A (e.g., ixekizumab and secukinumab) or IL-17A receptor (IL-17RA) (e.g., brodalumab) would be investigated as potential treatments for these diseases. Currently, the application of IL-17A-targeted drugs in autoimmune diseases will provide new ideas for the treatment of tumors, and its combined application with immune checkpoint inhibitors has become a research hotspot. This article reviews the mechanism of action of IL-17A and the application of anti-IL-17A antibodies, focusing on the research progress on the mechanism of action and therapeutic blockade of IL-17A in various tumors such as colorectal cancer (CRC), lung cancer, gastric cancer and breast cancer. Moreover, we also include the results of therapeutic blockade in the field of cancer as well as recent advances in the regulation of IL-17A signaling.
Collapse
Affiliation(s)
- Meiying Song
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Jie Liang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Luoyang Wang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Wei Li
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Suli Jiang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Shuo Xu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Lei Tang
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Qiaochu Du
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Guixian Liu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Haining Meng
- School of Emergency Medicine, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Dongchang Zhai
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Shangheng Shi
- Department of Liver Transplantation, School of Clinical Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Yanyan Yang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Li Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Bei Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China.
| |
Collapse
|
20
|
Mayo KH. Heterologous Interactions with Galectins and Chemokines and Their Functional Consequences. Int J Mol Sci 2023; 24:14083. [PMID: 37762385 PMCID: PMC10531749 DOI: 10.3390/ijms241814083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Extra- and intra-cellular activity occurs under the direction of numerous inter-molecular interactions, and in any tissue or cell, molecules are densely packed, thus promoting those molecular interactions. Galectins and chemokines, the focus of this review, are small, protein effector molecules that mediate various cellular functions-in particular, cell adhesion and migration-as well as cell signaling/activation. In the past, researchers have reported that combinations of these (and other) effector molecules act separately, yet sometimes in concert, but nevertheless physically apart and via their individual cell receptors. This view that each effector molecule functions independently of the other limits our thinking about functional versatility and cooperation, and, in turn, ignores the prospect of physiologically important inter-molecular interactions, especially when both molecules are present or co-expressed in the same cellular environment. This review is focused on such protein-protein interactions with chemokines and galectins, the homo- and hetero-oligomeric structures that they can form, and the functional consequences of those paired interactions.
Collapse
Affiliation(s)
- Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, Minneapolis, MN 55455, USA
| |
Collapse
|
21
|
Qu Y, Fu Y, Liu Y, Liu C, Xu B, Zhang Q, Jiang P. The role of TRPV1 in RA pathogenesis: worthy of attention. Front Immunol 2023; 14:1232013. [PMID: 37744324 PMCID: PMC10514908 DOI: 10.3389/fimmu.2023.1232013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Transient receptor potential cation channel subfamily V member 1 (TRPV1) is a Ca2+permeable, non-selective cation channel that is found primarily in sensory nerve fibres. Previous studies focused on pain transmission. However, recent studies have found that the TRPV1 channel, in addition to being associated with pain, also plays a role in immune regulation and their dysregulation frequently affects the development of rheumatoid arthritis (RA). A thorough understanding of the mechanism will facilitate the design of new TRPV1-targeted drugs and improve the clinical efficacy of RA. Here, we provide an updated and comprehensive overview of how the TRPV1 channel intrinsically regulates neuronal and immune cells, and how alterations in the TRPV1 channel in synoviocytes or chondrocytes extrinsically affect angiogenesis and bone destruction. Rapid progress has been made in research targeting TRPV1 for the treatment of inflammatory arthritis, but there is still much-uncharted territory regarding the therapeutic role of RA. We present a strategy for targeting the TRPV1 channel in RA therapy, summarising the difficulties and promising advances in current research, with the aim of better understanding the role of the TRPV1 channel in RA pathology, which could accelerate the development of TRPV1-targeted modulators for the design and development of more effective RA therapies.
Collapse
Affiliation(s)
- Yuan Qu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Fu
- Institute of Chinese Orthopedics and Traumatology, Shandong Wendeng Osteopathic Hospital, Weihai, China
| | - Yuan Liu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing Xu
- Department of Rheumatology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Zhang
- Science and Technology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ping Jiang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
22
|
Uwazie CC, Pirlot BM, Faircloth TU, Patel M, Parr RN, Zastre HM, Hematti P, Moll G, Rajan D, Chinnadurai R. Effects of Atrazine exposure on human bone marrow-derived mesenchymal stromal cells assessed by combinatorial assay matrix. Front Immunol 2023; 14:1214098. [PMID: 37588595 PMCID: PMC10426140 DOI: 10.3389/fimmu.2023.1214098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/03/2023] [Indexed: 08/18/2023] Open
Abstract
Introduction Mesenchymal Stromal/Stem cells (MSCs) are an essential component of the regenerative and immunoregulatory stem cell compartment of the human body and thus of major importance in human physiology. The MSCs elicit their beneficial properties through a multitude of complementary mechanisms, which makes it challenging to assess their phenotype and function in environmental toxicity screening. We here employed the novel combinatorial assays matrix approach/technology to profile the MSC response to the herbicide Atrazine, which is a common environmental xenobiotic, that is in widespread agricultural use in the US and other countries, but banned in the EU. Our here presented approach is representative for screening the impact of environmental xenobiotics and toxins on MSCs as an essential representative component of human physiology and well-being. Methods We here employed the combinatorial assay matrix approach, including a panel of well standardized assays, such as flow cytometry, multiplex secretome analysis, and metabolic assays, to define the phenotype and functionality of human-donor-derived primary MSCs exposed to the representative xenobiotic Atrazine. This assay matrix approach is now also endorsed for characterization of cell therapies by leading regulatory agencies, such as FDA and EMA. Results Our results show that the exposure to Atrazine modulates the metabolic activity, size, and granularity of MSCs in a dose and time dependent manner. Intriguingly, Atrazine exposure leads to a broad modulation of the MSCs secretome (both upregulation and downmodulation of certain factors) with the identification of Interleukin-8 as the topmost upregulated representative secretory molecule. Interestingly, Atrazine attenuates IFNγ-induced upregulation of MHC-class-II, but not MHC-class-I, and early phosphorylation signals on MSCs. Furthermore, Atrazine exposure attenuates IFNγ responsive secretome of MSCs. Mechanistic knockdown analysis identified that the Atrazine-induced effector molecule Interleukin-8 affects only certain but not all the related angiogenic secretome of MSCs. Discussion The here described Combinatorial Assay Matrix Technology identified that Atrazine affects both the innate/resting and cytokine-induced/stimulated assay matrix functionality of human MSCs, as identified through the modulation of selective, but not all effector molecules, thus vouching for the great usefulness of this approach to study the impact of xenobiotics on this important human cellular subset involved in the regenerative healing responses in humans.
Collapse
Affiliation(s)
- Crystal C. Uwazie
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Bonnie M. Pirlot
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Tyler U. Faircloth
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Mihir Patel
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Rhett N. Parr
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Halie M. Zastre
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Peiman Hematti
- Department of Medicine, University of Wisconsin Madison, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Guido Moll
- BIH Center for Regenerative Therapies (BCRT) and Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Devi Rajan
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Raghavan Chinnadurai
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| |
Collapse
|
23
|
Roškar L, Kokol M, Pavlič R, Roškar I, Smrkolj Š, Rižner TL. Decreased Gene Expression of Antiangiogenic Factors in Endometrial Cancer: qPCR Analysis and Machine Learning Modelling. Cancers (Basel) 2023; 15:3661. [PMID: 37509322 PMCID: PMC10378066 DOI: 10.3390/cancers15143661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Endometrial cancer (EC) is an increasing health concern, with its growth driven by an angiogenic switch that occurs early in cancer development. Our study used publicly available datasets to examine the expression of angiogenesis-related genes and proteins in EC tissues, and compared them with adjacent control tissues. We identified nine genes with significant differential expression and selected six additional antiangiogenic genes from prior research for validation on EC tissue in a cohort of 36 EC patients. Using machine learning, we built a prognostic model for EC, combining our data with The Cancer Genome Atlas (TCGA). Our results revealed a significant up-regulation of IL8 and LEP and down-regulation of eleven other genes in EC tissues. These genes showed differential expression in the early stages and lower grades of EC, and in patients without deep myometrial or lymphovascular invasion. Gene co-expressions were stronger in EC tissues, particularly those with lymphovascular invasion. We also found more extensive angiogenesis-related gene involvement in postmenopausal women. In conclusion, our findings suggest that angiogenesis in EC is predominantly driven by decreased antiangiogenic factor expression, particularly in EC with less favourable prognostic features. Our machine learning model effectively stratified EC based on gene expression, distinguishing between low and high-grade cases.
Collapse
Affiliation(s)
- Luka Roškar
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Division of Gynaecology and Obstetrics, General Hospital Murska Sobota, 9000 Murska Sobota, Slovenia
| | - Marko Kokol
- Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia
- Semantika Research, Semantika d.o.o., 2000 Maribor, Slovenia
| | - Renata Pavlič
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Irena Roškar
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Špela Smrkolj
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Division of Gynaecology and Obstetrics, University Medical Centre, 1000 Ljubljana, Slovenia
| | - Tea Lanišnik Rižner
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
24
|
Sun R, Han R, McCornack C, Khan S, Tabor GT, Chen Y, Hou J, Jiang H, Schoch KM, Mao DD, Cleary R, Yang A, Liu Q, Luo J, Petti A, Miller TM, Ulrich JD, Holtzman DM, Kim AH. TREM2 inhibition triggers antitumor cell activity of myeloid cells in glioblastoma. SCIENCE ADVANCES 2023; 9:eade3559. [PMID: 37172094 PMCID: PMC10181199 DOI: 10.1126/sciadv.ade3559] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/07/2023] [Indexed: 05/14/2023]
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) plays important roles in brain microglial function in neurodegenerative diseases, but the role of TREM2 in the GBM TME has not been examined. Here, we found that TREM2 is highly expressed in myeloid subsets, including macrophages and microglia in human and mouse GBM tumors and that high TREM2 expression correlates with poor prognosis in patients with GBM. TREM2 loss of function in human macrophages and mouse myeloid cells increased interferon-γ-induced immunoactivation, proinflammatory polarization, and tumoricidal capacity. In orthotopic mouse GBM models, mice with chronic and acute Trem2 loss of function exhibited decreased tumor growth and increased survival. Trem2 inhibition reprogrammed myeloid phenotypes and increased programmed cell death protein 1 (PD-1)+CD8+ T cells in the TME. Last, Trem2 deficiency enhanced the effectiveness of anti-PD-1 treatment, which may represent a therapeutic strategy for patients with GBM.
Collapse
Affiliation(s)
- Rui Sun
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Rowland Han
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Colin McCornack
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Saad Khan
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - G. Travis Tabor
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yun Chen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jinchao Hou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Haowu Jiang
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathleen M. Schoch
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
| | - Diane D. Mao
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Ryan Cleary
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Alicia Yang
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Qin Liu
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jingqin Luo
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Allegra Petti
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy M. Miller
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
| | - Jason D. Ulrich
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
| | - David M. Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO, USA
| | - Albert H. Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
25
|
Poh AR, Ernst M. Functional roles of SRC signaling in pancreatic cancer: Recent insights provide novel therapeutic opportunities. Oncogene 2023:10.1038/s41388-023-02701-x. [PMID: 37120696 DOI: 10.1038/s41388-023-02701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignant disease with a 5-year survival rate of <10%. Aberrant activation or elevated expression of the tyrosine kinase c-SRC (SRC) is frequently observed in PDAC and is associated with a poor prognosis. Preclinical studies have revealed a multifaceted role for SRC activation in PDAC, including promoting chronic inflammation, tumor cell proliferation and survival, cancer cell stemness, desmoplasia, hypoxia, angiogenesis, invasion, metastasis, and drug resistance. Strategies to inhibit SRC signaling include suppressing its catalytic activity, inhibiting protein stability, or by interfering with signaling components of the SRC signaling pathway including suppressing protein interactions of SRC. In this review, we discuss the molecular and immunological mechanisms by which aberrant SRC activity promotes PDAC tumorigenesis. We also provide a comprehensive update of SRC inhibitors in the clinic, and discuss the clinical challenges associated with targeting SRC in pancreatic cancer.
Collapse
Affiliation(s)
- Ashleigh R Poh
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Melbourne, VIC, 3084, Australia.
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Melbourne, VIC, 3084, Australia.
| |
Collapse
|
26
|
Mao Y, Protzman NM, John N, Kuehn A, Long D, Sivalenka R, Junka RA, Shah AU, Gosiewska A, Hariri RJ, Brigido SA. An in vitro comparison of human corneal epithelial cell activity and inflammatory response on differently designed ocular amniotic membranes and a clinical case study. J Biomed Mater Res B Appl Biomater 2023; 111:684-700. [PMID: 36370413 PMCID: PMC10099462 DOI: 10.1002/jbm.b.35186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022]
Abstract
Amniotic membrane (AM) is a naturally derived biomaterial with biological and mechanical properties important to Ophthalmology. The epithelial side of the AM promotes epithelialization, while the stromal side regulates inflammation. However, not all AMs are equal. AMs undergo different processing with resultant changes in cellular content and structure. This study evaluates the effects of sidedness and processing on human corneal epithelial cell (HCEC) activity, the effect of processing on HCEC inflammatory response, and then a case study is presented. Three differently processed, commercially available ocular AMs were selected: (1) Biovance®3L Ocular, a decellularized, dehydrated human AM (DDHAM), (2) AMBIO2®, a dehydrated human AM (DHAM), and (3) AmnioGraft®, a cryopreserved human AM (CHAM). HCECs were seeded onto the AMs and incubated for 1, 4 and 7 days. Cell adhesion and viability were evaluated using alamarBlue assay. HCEC migration was evaluated using a scratch wound assay. An inflammatory response was induced by TNF-α treatment. The effect of AM on the expression of pro-inflammatory genes in HCECs was compared using quantitative polymerase chain reaction (qPCR). Staining confirmed complete decellularization and the absence of nuclei in DDHAM. HCEC activity was best supported on the stromal side of DDHAM. Under inflammatory stimulation, DDHAM promoted a higher initial inflammatory response with a declining trend across time. Clinically, DDHAM was used to successfully treat anterior basement membrane dystrophy. Compared with DHAM and CHAM, DDHAM had significant positive effects on the cellular activities of HCECs in vitro, which may suggest greater ocular cell compatibility in vivo.
Collapse
Affiliation(s)
- Yong Mao
- Department of Chemistry and Chemical Biology, Rutgers University Laboratory for Biomaterials Research, Piscataway, New Jersey, USA
| | - Nicole M Protzman
- Department of Research, Healthcare Analytics, LLC, Easton, Pennsylvania, USA
| | - Nikita John
- Department of Chemistry and Chemical Biology, Rutgers University Laboratory for Biomaterials Research, Piscataway, New Jersey, USA
| | - Adam Kuehn
- Celularity Inc., Florham Park, New Jersey, USA
| | | | | | | | - Anish U Shah
- Ophthalmic Surgeon, Norwich Ophthalmology Group, Norwich, Connecticut, USA
| | | | | | | |
Collapse
|
27
|
Chiu FY, Kvadas RM, Mheidly Z, Shahbandi A, Jackson JG. Could senescence phenotypes strike the balance to promote tumor dormancy? Cancer Metastasis Rev 2023; 42:143-160. [PMID: 36735097 DOI: 10.1007/s10555-023-10089-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
After treatment and surgery, patient tumors can initially respond followed by a rapid relapse, or respond well and seemingly be cured, but then recur years or decades later. The state of surviving cancer cells during the long, undetected period is termed dormancy. By definition, the dormant tumor cells do not proliferate to create a mass that is detectable or symptomatic, but also never die. An intrinsic state and microenvironment that are inhospitable to the tumor would bias toward cell death and complete eradication, while conditions that favor the tumor would enable growth and relapse. In neither case would clinical dormancy be observed. Normal cells and tumor cells can enter a state of cellular senescence after stress such as that caused by cancer therapy. Senescence is characterized by a stable cell cycle arrest mediated by chromatin modifications that cause gene expression changes and a secretory phenotype involving many cytokines and chemokines. Senescent cell phenotypes have been shown to be both tumor promoting and tumor suppressive. The balance of these opposing forces presents an attractive model to explain tumor dormancy: phenotypes of stable arrest and immune suppression could promote survival, while reversible epigenetic programs combined with cytokines and growth factors that promote angiogenesis, survival, and proliferation could initiate the emergence from dormancy. In this review, we examine the phenotypes that have been characterized in different normal and cancer cells made senescent by various stresses and how these might explain the characteristics of tumor dormancy.
Collapse
Affiliation(s)
- Fang-Yen Chiu
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Raegan M Kvadas
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Zeinab Mheidly
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Ashkan Shahbandi
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - James G Jackson
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA.
| |
Collapse
|
28
|
Cambier S, Gouwy M, Proost P. The chemokines CXCL8 and CXCL12: molecular and functional properties, role in disease and efforts towards pharmacological intervention. Cell Mol Immunol 2023; 20:217-251. [PMID: 36725964 PMCID: PMC9890491 DOI: 10.1038/s41423-023-00974-6] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/12/2022] [Indexed: 02/03/2023] Open
Abstract
Chemokines are an indispensable component of our immune system through the regulation of directional migration and activation of leukocytes. CXCL8 is the most potent human neutrophil-attracting chemokine and plays crucial roles in the response to infection and tissue injury. CXCL8 activity inherently depends on interaction with the human CXC chemokine receptors CXCR1 and CXCR2, the atypical chemokine receptor ACKR1, and glycosaminoglycans. Furthermore, (hetero)dimerization and tight regulation of transcription and translation, as well as post-translational modifications further fine-tune the spatial and temporal activity of CXCL8 in the context of inflammatory diseases and cancer. The CXCL8 interaction with receptors and glycosaminoglycans is therefore a promising target for therapy, as illustrated by multiple ongoing clinical trials. CXCL8-mediated neutrophil mobilization to blood is directly opposed by CXCL12, which retains leukocytes in bone marrow. CXCL12 is primarily a homeostatic chemokine that induces migration and activation of hematopoietic progenitor cells, endothelial cells, and several leukocytes through interaction with CXCR4, ACKR1, and ACKR3. Thereby, it is an essential player in the regulation of embryogenesis, hematopoiesis, and angiogenesis. However, CXCL12 can also exert inflammatory functions, as illustrated by its pivotal role in a growing list of pathologies and its synergy with CXCL8 and other chemokines to induce leukocyte chemotaxis. Here, we review the plethora of information on the CXCL8 structure, interaction with receptors and glycosaminoglycans, different levels of activity regulation, role in homeostasis and disease, and therapeutic prospects. Finally, we discuss recent research on CXCL12 biochemistry and biology and its role in pathology and pharmacology.
Collapse
Affiliation(s)
- Seppe Cambier
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.
| |
Collapse
|
29
|
Nishimoto-Kakiuchi A, Sato I, Nakano K, Ohmori H, Kayukawa Y, Tanimura H, Yamamoto S, Sakamoto Y, Nakamura G, Maeda A, Asanuma K, Kato A, Sankai T, Konno R, Yamada-Okabe H. A long-acting anti-IL-8 antibody improves inflammation and fibrosis in endometriosis. Sci Transl Med 2023; 15:eabq5858. [PMID: 36812343 DOI: 10.1126/scitranslmed.abq5858] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Current pharmacological treatments for endometriosis are limited to hormonal agents that can relieve pain but cannot cure the disease. Therefore, the development of a disease-modifying drug for endometriosis is an unmet medical need. By studying human endometriotic samples, we found that the progression of endometriosis was associated with the development of inflammation and fibrosis. In addition, IL-8 expression was highly up-regulated in endometriotic tissues and closely correlated with disease progression. We created a long-acting recycling antibody against IL-8 (AMY109) and evaluated its clinical potency. Because rodents do not produce IL-8 and do not experience menstruation, we analyzed the lesions in cynomolgus monkeys that spontaneously developed endometriosis and in a surgically induced endometriosis monkey model. Both spontaneously developed and surgically induced endometriotic lesions demonstrated pathophysiology that was highly similar to that of human endometriosis. Once-a-month subcutaneous injection of AMY109 to monkeys with surgically induced endometriosis reduced the volume of nodular lesions, lowered the Revised American Society for Reproductive Medicine score as modified for monkeys, and ameliorated fibrosis and adhesions. In addition, experiments using cells derived from human endometriosis revealed that AMY109 inhibited the recruitment of neutrophils to endometriotic lesions and the production of monocyte chemoattractant protein-1 from neutrophils. Thus, AMY109 may represent a disease-modifying therapy for patients with endometriosis.
Collapse
Affiliation(s)
- Ayako Nishimoto-Kakiuchi
- Translational Research Division, Chugai Pharmaceutical Co. Ltd., 2-1-1 Nihonbashi-Muromachi Chuo-ku, Tokyo 103-8324, Japan
| | - Izumi Sato
- Kamakura Research Laboratories, Chugai Pharmaceutical Co. Ltd., 200 Kajiwara, Kamakura-shi, Kanagawa 247-8530, Japan
| | - Kiyotaka Nakano
- Translational Research Division, Chugai Pharmaceutical Co. Ltd., 2-1-1 Nihonbashi-Muromachi Chuo-ku, Tokyo 103-8324, Japan
| | - Hiroshi Ohmori
- Translational Research Division, Chugai Pharmaceutical Co. Ltd., 2-1-1 Nihonbashi-Muromachi Chuo-ku, Tokyo 103-8324, Japan
| | - Yoko Kayukawa
- Kamakura Research Laboratories, Chugai Pharmaceutical Co. Ltd., 200 Kajiwara, Kamakura-shi, Kanagawa 247-8530, Japan
| | - Hiromi Tanimura
- Kamakura Research Laboratories, Chugai Pharmaceutical Co. Ltd., 200 Kajiwara, Kamakura-shi, Kanagawa 247-8530, Japan
| | - Sachiya Yamamoto
- Chugai Research Institute for Medical Science Inc., 200 Kajiwara, Kamakura-shi, Kanagawa 247-8530, Japan
| | - Yuichiro Sakamoto
- Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co. Ltd., 1-135 Komakado, Gotemba-shi, Shizuoka 412-8513, Japan
| | - Genki Nakamura
- Project and Lifecycle Management Unit, Chugai Pharmaceutical Co. Ltd., 2-1-1 Nihonbashi-Muromachi Chuo-ku, Tokyo 103-8324, Japan
| | - Atsuhiko Maeda
- Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co. Ltd., 1-135 Komakado, Gotemba-shi, Shizuoka 412-8513, Japan
| | - Kentaro Asanuma
- Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co. Ltd., 1-135 Komakado, Gotemba-shi, Shizuoka 412-8513, Japan
| | - Atsuhiko Kato
- Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co. Ltd., 1-135 Komakado, Gotemba-shi, Shizuoka 412-8513, Japan
| | - Tadashi Sankai
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba-shi, Ibaraki 305-0843, Japan
| | - Ryo Konno
- Department of Obstetrics and Gynecology, Jichi Medical University Saitama Medical Center, 1-847 Amanumacho, Omiya-ku, Saitama-shi, Saitama 330-8503, Japan
| | - Hisafumi Yamada-Okabe
- Translational Research Division, Chugai Pharmaceutical Co. Ltd., 2-1-1 Nihonbashi-Muromachi Chuo-ku, Tokyo 103-8324, Japan.,Kamakura Research Laboratories, Chugai Pharmaceutical Co. Ltd., 200 Kajiwara, Kamakura-shi, Kanagawa 247-8530, Japan.,Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co. Ltd., 1-135 Komakado, Gotemba-shi, Shizuoka 412-8513, Japan
| |
Collapse
|
30
|
Yousaf H, Khan MIU, Ali I, Munir MU, Lee KY. Emerging role of macrophages in non-infectious diseases: An update. Biomed Pharmacother 2023; 161:114426. [PMID: 36822022 DOI: 10.1016/j.biopha.2023.114426] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
In the past three decades, a huge body of evidence through various research studies conducted on animal models, has demonstrated that the macrophages are centralized of all the leukocytes involved in diseases and, particularly, their role in non-infectious diseases has been studied extensively for which they have also been referred to as the "double-edged swords". The most versatile of all immunocytes, macrophages play a key role in health and diseases. Various experimental models have demonstrated the conventional paradigms such as the M1/M2 dichotomy, which is not as obvious and presents a complex characterization of the macrophages in the disease immunology. In human diseases, this M1-M2 continuum shows a complex web of mechanisms, which are majorly divided into the pro-inflammatory roles (derived mainly by the cytokines: IL-1, IL-6, IL-12, IL-23, and tumor necrosis factor) and anti-inflammatory roles (CCl-17, CCl-22, CCL-2, transforming growth factor (TGF), and interleukin-10), which are involved in the wound healing and pathogen-suppression. The conventional division of these macrophages as M1 and M2 is derived from the opposing functions of these macrophages; where M1 is involved in the tissue damage and pro-inflammatory roles and M2 promotes cell proliferation and the resolution of inflammation. Both these pathways down-regulate each other in diseases through a plethora of enzymatic and cytokine mediators.
Collapse
Affiliation(s)
- Hassan Yousaf
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore, Lahore, Pakistan
| | - Malik Ihsan Ullah Khan
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore, Lahore, Pakistan.
| | - Iftikhar Ali
- Department of Life Sciences, University of Management and Technology, Lahore, Pakistan
| | - Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University Sakaka, Aljouf 72388, Saudi Arabia
| | - Ka Yiu Lee
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Ostersund, Sweden.
| |
Collapse
|
31
|
Menclová K, Svoboda P, Hadač J, Juhás Š, Juhásová J, Pejchal J, Mandys V, Eminger K, Ryska M. Nanofiber Wound Dressing Materials-A Comparative Study of Wound Healing on a Porcine Model. Mil Med 2023; 188:e133-e139. [PMID: 33959775 DOI: 10.1093/milmed/usab155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/09/2021] [Accepted: 04/13/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Nanofiber wound dressings remain the domain of in vitro studies. The purpose of our study was to verify the benefits of chitosan (CTS) and polylactide (PLA)-based nanofiber wound dressings on a porcine model of a naturally contaminated standardized wound and compare them with the conventional dressings, i.e., gauze and Inadine. MATERIAL AND METHODS The study group included 32 pigs randomized into four homogeneous groups according to the wound dressing type. Standardized wounds were created on their backs, and wound dressings were regularly changed. We evaluated difficulty of handling individual dressing materials and macroscopic appearance of the wounds. Wound swabs were taken for bacteriological examination. Blood samples were obtained to determine blood count values and serum levels of acute phase proteins (serum amyloid A, C-reactive protein, and haptoglobin). The crucial point of the study was histological analysis. Microscopic evaluation was focused on the defect depth and tissue reactions, including formation of the fibrin exudate with neutrophil granulocytes, the layer of granulation and cellular connective tissue, and the reepithelialization. Statistical analysis was performed by using SPSS software. The analysis was based on the Kruskal-Wallis H test and Mann-Whitney U test followed by Bonferroni correction. Significance was set at P < .05. RESULTS Macroscopic examination did not show any difference in wound healing among the groups. However, evaluation of histological findings demonstrated that PLA-based nanofiber dressing accelerated the proliferative (P = .025) and reepithelialization (P < .001) healing phases, while chitosan-based nanofiber dressing potentiated and accelerated the inflammatory phase (P = .006). No statistically significant changes were observed in the blood count or acute inflammatory phase proteins during the trial. Different dynamics were noted in serum amyloid A values in the group treated with PLA-based nanofiber dressing (P = .006). CONCLUSION Based on the microscopic examination, we have documented a positive effect of nanofiber wound dressings on acceleration of individual phases of the healing process. Nanofiber wound dressings have a potential to become in future part of the common wound care practice.
Collapse
Affiliation(s)
- Katerina Menclová
- Department of Surgery, 2nd Faculty of Medicine, Military University Hospital Prague and Charles University, Prague 169 02, Czechia
| | - Petr Svoboda
- Department of Surgery, 2nd Faculty of Medicine, Military University Hospital Prague and Charles University, Prague 169 02, Czechia
| | - Jan Hadač
- Department of Surgery, 2nd Faculty of Medicine, Military University Hospital Prague and Charles University, Prague 169 02, Czechia
| | - Štefan Juhás
- Institute of Animal Physiology and Genetics of the Academy of Sciences CR, Lib ěchov 277 21, Czechia
| | - Jana Juhásová
- Institute of Animal Physiology and Genetics of the Academy of Sciences CR, Lib ěchov 277 21, Czechia
| | - Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Králové 500 02, Czechia
| | - Václav Mandys
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Královské Vinohrady, Prague 100 34, Czechia
| | - Karel Eminger
- Department of Scientific Information and Clinical Studies, Central Military University Hospital Prague, Prague 169 02, Czechia
| | - Miroslav Ryska
- Department of Surgery, 2nd Faculty of Medicine, Military University Hospital Prague and Charles University, Prague 169 02, Czechia
| |
Collapse
|
32
|
Yang S, Zhao M, Jia S. Macrophage: Key player in the pathogenesis of autoimmune diseases. Front Immunol 2023; 14:1080310. [PMID: 36865559 PMCID: PMC9974150 DOI: 10.3389/fimmu.2023.1080310] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/09/2023] [Indexed: 02/16/2023] Open
Abstract
The macrophage is an essential part of the innate immune system and also serves as the bridge between innate immunity and adaptive immune response. As the initiator and executor of the adaptive immune response, macrophage plays an important role in various physiological processes such as immune tolerance, fibrosis, inflammatory response, angiogenesis and phagocytosis of apoptotic cells. Consequently, macrophage dysfunction is a vital cause of the occurrence and development of autoimmune diseases. In this review, we mainly discuss the functions of macrophages in autoimmune diseases, especially in systemic lupus erythematosus (SLE), rheumatic arthritis (RA), systemic sclerosis (SSc) and type 1 diabetes (T1D), providing references for the treatment and prevention of autoimmune diseases.
Collapse
Affiliation(s)
- Shuang Yang
- Dapartment of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhao
- Dapartment of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.,Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Sujie Jia
- Department of Pharmacy, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| |
Collapse
|
33
|
Gremese E, Tolusso B, Bruno D, Perniola S, Ferraccioli G, Alivernini S. The forgotten key players in rheumatoid arthritis: IL-8 and IL-17 - Unmet needs and therapeutic perspectives. Front Med (Lausanne) 2023; 10:956127. [PMID: 37035302 PMCID: PMC10073515 DOI: 10.3389/fmed.2023.956127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 02/21/2023] [Indexed: 04/11/2023] Open
Abstract
Despite the relevant advances in our understanding of the pathogenetic mechanisms regulating inflammation in rheumatoid arthritis (RA) and the development of effective therapeutics, to date, there is still a proportion of patients with RA who do not respond to treatment and end up progressing toward the development of joint damage, extra-articular complications, and disability. This is mainly due to the inter-individual heterogeneity of the molecular and cellular taxonomy of the synovial membrane, which represents the target tissue of RA inflammation. Tumor necrosis factor alpha (TNFα) and interleukin-6 (IL-6) are crucial key players in RA pathogenesis fueling the inflammatory cascade, as supported by experimental evidence derived from in vivo animal models and the effectiveness of biologic-Disease Modifying Anti-Rheumatic Drugs (b-DMARDs) in patients with RA. However, additional inflammatory soluble mediators such as IL-8 and IL-17 exert their pathogenetic actions promoting the detrimental activation of immune and stromal cells in RA synovial membrane, tendons, and extra-articular sites, as well as blood vessels and lungs, causing extra-articular complications, which might be excluded by the action of anti-TNFα and anti-IL6R targeted therapies. In this narrative review, we will discuss the role of IL-8 and IL-17 in promoting inflammation in multiple biological compartments (i.e., synovial membrane, blood vessels, and lung, respectively) in animal models of arthritis and patients with RA and how their selective targeting could improve the management of treatment resistance in patients.
Collapse
Affiliation(s)
- Elisa Gremese
- Division of Clinical Immunology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Immunology Core Facility, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- School of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
- *Correspondence: Elisa Gremese, Gianfranco Ferraccioli
| | - Barbara Tolusso
- Division of Clinical Immunology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Immunology Core Facility, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Dario Bruno
- Division of Clinical Immunology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Department of Medicine, University of Verona, Verona, Italy
| | - Simone Perniola
- Division of Clinical Immunology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Gianfranco Ferraccioli
- School of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
- *Correspondence: Elisa Gremese, Gianfranco Ferraccioli
| | - Stefano Alivernini
- Immunology Core Facility, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- School of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| |
Collapse
|
34
|
Numasaki M, Ito K, Takagi K, Nagashima K, Notsuda H, Ogino H, Ando R, Tomioka Y, Suzuki T, Okada Y, Nishioka Y, Unno M. Diverse and divergent functions of IL-32β and IL-32γ isoforms in the regulation of malignant pleural mesothelioma cell growth and the production of VEGF-A and CXCL8. Cell Immunol 2023; 383:104652. [PMID: 36516653 DOI: 10.1016/j.cellimm.2022.104652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
In this study, we sought to elucidate the roles of the interleukin (IL)-32β and IL-32γ in mesothelioma cell growth, and vascular endothelial growth factor (VEGF)-A and C-X-C motif chemokine ligand 8 (CXCL8) expression. IL-32 elicited a growth-promoting effect against one of the six mesotheliomas lines and exerted diverse regulatory functions in VEGF-A and CXCL8 secretion from mesotheliomas stimulated with or without IL-17A. Retroviral-mediated transduction of mesothelioma lines with IL-32γ resulted in enhanced IL-32β expression, which facilitated or suppressed the in vitro growth, and VEGF-A and CXCL8 expression. Overexpressed IL-32β-augmented growth and VEGF-A and CXCL8 production were mainly mediated through the phosphatidylinositol-3 kinase (PI3K) signaling pathway. On the other hand, overexpressed IL-32β-deceased growth was mediated through mitogen-activated protein kinase (MAPK) pathway. NCI-H2373IL-32γ tumors grew faster than NCI-H2373Neo tumors in a xenograft model, which was associated with increased vascularity. These findings indicate that IL-32 are involved in the regulation of growth and angiogenic factor production in mesotheliomas.
Collapse
Affiliation(s)
- Muneo Numasaki
- Laboratory of Clinical Science and Biomedicine, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan; Department of Geriatrics and Gerontology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan; Department of Nursing, Faculty of Medical Science and Welfare, Tohoku Bunka Gakuen University, Sendai, Miyagi, Japan; Laboratory of Clinical Science and Biomedicine, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
| | - Koyu Ito
- Department of Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Kiyoshi Takagi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kengo Nagashima
- Biostatistics Unit, Clinical and Translational Research Center, Keio University Hospital, Tokyo, Tokyo, Japan
| | - Hirotsugu Notsuda
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Hirokazu Ogino
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Tokushima, Japan
| | - Rika Ando
- Department of Nursing, Faculty of Medical Science and Welfare, Tohoku Bunka Gakuen University, Sendai, Miyagi, Japan
| | - Yoshihisa Tomioka
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yoshinori Okada
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Tokushima, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
35
|
Xu T, Zhang H, Zhu Z. Telocytes and endometriosis. Arch Gynecol Obstet 2023; 307:39-49. [PMID: 35668319 DOI: 10.1007/s00404-022-06634-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/14/2022] [Indexed: 02/02/2023]
Abstract
Endometriosis involving the presence and growth of glands and stroma outside the uterine cavity is a common, inflammatory, benign gynecologic disease. Nevertheless, no single theory can exactly account for the pathogenesis of endometriosis. Telocytes, a kind of novel mesenchymal cells, have been suggested to be crucial in promoting angiogenesis and increasing the activity of endometrial interstitial cells and inflammatory cells. Given above roles, telocytes may be considered as the possible pathogenesis of endometriosis. We reviewed the current literature on telocytes. The following aspects were considered: (A) the telocytes' typical characteristics, function, and morphological changes in endometriosis; (B) the potential role of telocytes in endometriosis by impacting the inflammation, invasion, and angiogenesis; (C) telocytes as the potential treatment options for endometriosis.
Collapse
Affiliation(s)
- Ting Xu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, No.128, Shenyang Road, Shanghai, 200090, China
| | - Hongqi Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Zhiling Zhu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, No.128, Shenyang Road, Shanghai, 200090, China.
| |
Collapse
|
36
|
Etchevers L, Stassi A, Belotti E, Diaz P, Durante L, Notaro U, Chiaraviglio J, Rey F, Salvetti N, Ortega H, Amweg A. Exogenous ACTH stimulus during the preovulatory period alters patterns of leukocyte recruitment in the ovary of dairy cows. Theriogenology 2023; 195:176-186. [DOI: 10.1016/j.theriogenology.2022.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/02/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
|
37
|
Yamashiro T, Kushibiki T, Mayumi Y, Tsuchiya M, Ishihara M, Azuma R. Negative-Pressure Wound Therapy: What We Know and What We Need to Know. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1436:131-152. [PMID: 36922487 DOI: 10.1007/5584_2023_773] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Negative-pressure wound therapy (NPWT) promotes wound healing by applying negative pressure to the wound surface. A quarter of a century after its introduction, NPWT has been used in various clinical conditions, although molecular biological evidence is insufficient due to delay in basic research. Here, we have summarized the history of NPWT, its mechanism of action, what is currently known about it, and what is expected to be known in the future. Particularly, attention has shifted from the four main mechanisms of NPWT to the accompanying secondary effects, such as effects on various cells, bacteria, and surgical wounds. This chapter will help the reader to understand the current status and shortcomings of NPWT-related research, which could aid in the development of basic research and, eventually, clinical use with stronger scientific evidence.
Collapse
Affiliation(s)
- Toshifumi Yamashiro
- Department of Plastic and Reconstructive Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Toshihiro Kushibiki
- Department of Medical Engineering, National Defense Medical College, Tokorozawa, Saitama, Japan.
| | - Yoshine Mayumi
- Department of Medical Engineering, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Masato Tsuchiya
- Department of Plastic and Reconstructive Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Miya Ishihara
- Department of Medical Engineering, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Ryuichi Azuma
- Department of Plastic and Reconstructive Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
38
|
Balarastaghi S, Rezaee R, Hayes AW, Yarmohammadi F, Karimi G. Mechanisms of Arsenic Exposure-Induced Hypertension and Atherosclerosis: an Updated Overview. Biol Trace Elem Res 2023; 201:98-113. [PMID: 35167029 DOI: 10.1007/s12011-022-03153-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/08/2022] [Indexed: 01/11/2023]
Abstract
Arsenic is an abundant element in the earth's crust. In the environment and within the human body, this toxic element can be found in both organic and inorganic forms. Chronic exposure to arsenic can predispose humans to cardiovascular diseases including hypertension, stroke, atherosclerosis, and blackfoot disease. Oxidative damage induced by reactive oxygen species is a major player in arsenic-induced toxicity, and it can affect genes expression, inflammatory responses, and/or nitric oxide homeostasis. Exposure to arsenic in drinking water can lead to vascular endothelial dysfunction which is reflected by an imbalance between vascular relaxation and contraction. Arsenic has been shown to inactivate endothelial nitric oxide synthase leading to a reduction of the generation and bioavailability of nitric oxide. Ultimately, these effects increase the risk of vascular diseases such as hypertension and atherosclerosis. The present article reviews how arsenic exposure contributes to hypertension and atherosclerosis development.
Collapse
Affiliation(s)
- Soudabeh Balarastaghi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Fatemeh Yarmohammadi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
39
|
Ho TJ, Tsai PH, Hsieh CH, Lin JH, Lin YW, Wu JR, Chen HP. Role of Herbal Extracts of Catechu from Uncaria gambir in the Treatment of Chronic Diabetic Wounds. Pharmaceuticals (Basel) 2022; 16:ph16010066. [PMID: 36678562 PMCID: PMC9863412 DOI: 10.3390/ph16010066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Catechu is a dried decoction from twigs with the leaves of Uncaria gambir. Its antioxidant, anti-inflammatory, and antimicrobial activities have been previously reported because of its high catechin and epicatechin content (>21%). It is also one of the components used in traditional Chinese herbal medicine, “Jinchuang Ointment,” which has excellent efficacy in treating chronic diabetic wounds. An in vivo zebrafish embryo platform and an in vitro cell-based tube formation assay were used to measure the angiogenic activity of catechu extracts. Interestingly, for the first time, catechu extracts stimulated angiogenic activity on both platforms. The expression of the IL-8 gene was induced in HMEC1 cells after treatment with catechu extracts for 1 h only. In contrast, the upregulation of FGFR2, FGFR3, NF-κB, STAT3, and vimentin persisted for 24 h. A summary of the possible mechanisms underlying the angiogenic activity of catechu extracts in HMEC1 cells is shown. Unexpectedly, catechu extracts inhibited the migration of HaCaT cells. These results can account for the intense blood flow flux in porcine excisional wound sites in our previous studies, which provides insights into the therapeutic activity of catechu extract in chronic diabetic wounds.
Collapse
Affiliation(s)
- Tsung-Jung Ho
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Pei-Hsuan Tsai
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Chia-Ho Hsieh
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Jung-Hsing Lin
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Yu-Wei Lin
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Jia-Ru Wu
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan
- Correspondence: (J.-R.W.); (H.-P.C.); Tel.: +886-3-8561825 (ext. 17409) (J.-R.W.); +886-3-8565301 (ext. 2433) (H.-P.C.)
| | - Hao-Ping Chen
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Correspondence: (J.-R.W.); (H.-P.C.); Tel.: +886-3-8561825 (ext. 17409) (J.-R.W.); +886-3-8565301 (ext. 2433) (H.-P.C.)
| |
Collapse
|
40
|
Are There Differences in Inflammatory and Fibrotic Pathways between IPAF, CTD-ILDs, and IIPs? A Single-Center Pilot Study. Int J Mol Sci 2022; 23:ijms232315205. [PMID: 36499525 PMCID: PMC9738037 DOI: 10.3390/ijms232315205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
In this pilot study, we aim to determine differences in pathogenetic pathways between interstitial pneumonia with autoimmune features (IPAF), connective-tissue-disease-associated interstitial lung diseases (CTD-ILDs), and idiopathic interstitial pneumonias (IIPs). Forty participants were recruited: 9 with IPAF, 15 with CTD-ILDs, and 16 with IIPs. Concentration of transforming growth factor beta (TGF-β1), surfactant proteins A and D (SP-A, SP-D), interleukin 8 (IL-8), and chemokine 1 (CXCL1) were assessed with ELISA assay in bronchoalveolar lavage (BAL) fluid. We revealed that IL-8 and TGF-β1 concentrations were significantly lower in the IPAF group than in the CTD-ILD group (p = 0.008 and p = 0.019, respectively), but similar to the concentrations in the IIP group. There were significant correlations of IL-8 (rs = 0.46; p = 0.003) and CXCL1 (rs = 0.52; p = 0.001) and BAL total cell count (TCC). A multivariate regression model revealed that IL-8 (β = 0.32; p = 0.037) and CXCL1 (β = 0.45; p = 0.004) are significant predictors of BAL TCC. We revealed that IL-8 and TGF-β1 BAL concentrations vary in patients with different ILDs and found that IL-8 is a predictor of BAL TCC in IPAF. However, this needs to be confirmed in a multicenter cooperative study (ClinicalTrials.gov Identifier: NCT03870828).
Collapse
|
41
|
Roškar L, Pušić M, Roškar I, Kokol M, Pirš B, Smrkolj Š, Rižner TL. Models including preoperative plasma levels of angiogenic factors, leptin and IL-8 as potential biomarkers of endometrial cancer. Front Oncol 2022; 12:972131. [PMID: 36505829 PMCID: PMC9730274 DOI: 10.3389/fonc.2022.972131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/26/2022] [Indexed: 11/27/2022] Open
Abstract
Background The diversity of endometrial cancer (EC) dictates the need for precise early diagnosis and pre-operative stratification to select treatment options appropriately. Non-invasive biomarkers invaluably assist clinicians in managing patients in daily clinical practice. Currently, there are no validated diagnostic or prognostic biomarkers for EC that could accurately predict the presence and extent of the disease. Methods Our study analyzed 202 patients, of whom 91 were diagnosed with EC and 111 were control patients with the benign gynecological disease. Using Luminex xMAP™ multiplexing technology, we measured the pre-operative plasma concentrations of six previously selected angiogenic factors - leptin, IL-8, sTie-2, follistatin, neuropilin-1, and G-CSF. Besides basic statistical methods, we used a machine-learning algorithm to create a robust diagnostic model based on the plasma concentration of tested angiogenic factors. Results The plasma levels of leptin were significantly higher in EC patients than in control patients. Leptin was higher in type 1 EC patients versus control patients, and IL-8 was higher in type 2 EC versus control patients, particularly in poorly differentiated endometrioid EC grade 3. IL-8 plasma levels were significantly higher in EC patients with lymphovascular or myometrial invasion. Among univariate models, the model based on leptin reached the best results on both training and test datasets. A combination of age, IL-8, leptin and G-CSF was determined as the most important feature for the multivariate model, with ROC AUC 0.94 on training and 0.81 on the test dataset. The model utilizing a combination of all six AFs, BMI and age reached a ROC AUC of 0.89 on both the training and test dataset, strongly indicating the capability for predicting the risk of EC even on unseen data. Conclusion According to our results, measuring plasma concentrations of angiogenic factors could, provided they are confirmed in a multicentre validation study, represent an important supplementary diagnostic tool for early detection and prognostic characterization of EC, which could guide the decision-making regarding the extent of treatment.
Collapse
Affiliation(s)
- Luka Roškar
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia,Division of Gynaecology and Obstetrics, General Hospital Murska Sobota, Murska Sobota, Slovenia
| | - Maja Pušić
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Irena Roškar
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Marko Kokol
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia,Semantika Research, Semantika d.o.o., Maribor, Slovenia
| | - Boštjan Pirš
- Division of Gynaecology and Obstetrics, University Medical Centre, Ljubljana, Slovenia
| | - Špela Smrkolj
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia,Division of Gynaecology and Obstetrics, University Medical Centre, Ljubljana, Slovenia,*Correspondence: Špela Smrkolj, ; Tea Lanišnik Rižner,
| | - Tea Lanišnik Rižner
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia,*Correspondence: Špela Smrkolj, ; Tea Lanišnik Rižner,
| |
Collapse
|
42
|
Pharmacogenetics Role of Genetic Variants in Immune-Related Factors: A Systematic Review Focusing on mCRC. Pharmaceutics 2022; 14:pharmaceutics14112468. [PMID: 36432658 PMCID: PMC9693433 DOI: 10.3390/pharmaceutics14112468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
Pharmacogenetics plays a key role in personalized cancer treatment. Currently, the clinically available pharmacogenetic markers for metastatic colorectal cancer (mCRC) are in genes related to drug metabolism, such as DPYD for fluoropyrimidines and UGT1A1 for irinotecan. Recently, the impact of host variability in inflammatory and immune-response genes on treatment response has gained considerable attention, opening innovative perspectives for optimizing tailored mCRC therapy. A literature review was performed on the predictive role of immune-related germline genetic biomarkers on pharmacological outcomes in patients with mCRC. Particularly, that for efficacy and toxicity was reported and the potential role for clinical management of patients was discussed. Most of the available data regard therapy effectiveness, while the impact on toxicity remains limited. Several studies focused on the effects of polymorphisms in genes related to antibody-dependent cellular cytotoxicity (FCGR2A, FCGR3A) and yielded promising but inconclusive results on cetuximab efficacy. The remaining published data are sparse and mainly hypothesis-generating but suggest potentially interesting topics for future pharmacogenetic studies, including innovative gene-drug interactions in a clinical context. Besides the tumor immune escape pathway, genetic markers belonging to cytokines/interleukins (IL-8 and its receptors) and angiogenic mediators (IGF1) seem to be the best investigated and hopefully most promising to be translated into clinical practice after validation.
Collapse
|
43
|
Wong JHC, Ma JYW, Jobling AI, Brandli A, Greferath U, Fletcher EL, Vessey KA. Exploring the pathogenesis of age-related macular degeneration: A review of the interplay between retinal pigment epithelium dysfunction and the innate immune system. Front Neurosci 2022; 16:1009599. [PMID: 36408381 PMCID: PMC9670140 DOI: 10.3389/fnins.2022.1009599] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/12/2022] [Indexed: 07/30/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss in the older population. Classical hallmarks of early and intermediate AMD are accumulation of drusen, a waste deposit formed under the retina, and pigmentary abnormalities in the retinal pigment epithelium (RPE). When the disease progresses into late AMD, vision is affected due to death of the RPE and the light-sensitive photoreceptors. The RPE is essential to the health of the retina as it forms the outer blood retinal barrier, which establishes ocular immune regulation, and provides support for the photoreceptors. Due to its unique anatomical position, the RPE can communicate with the retinal environment and the systemic immune environment. In AMD, RPE dysfunction and the accumulation of drusen drive the infiltration of retinal and systemic innate immune cells into the outer retina. While recruited endogenous or systemic mononuclear phagocytes (MPs) contribute to the removal of noxious debris, the accumulation of MPs can also result in chronic inflammation and contribute to AMD progression. In addition, direct communication and indirect molecular signaling between MPs and the RPE may promote RPE cell death, choroidal neovascularization and fibrotic scarring that occur in late AMD. In this review, we explore how the RPE and innate immune cells maintain retinal homeostasis, and detail how RPE dysfunction and aberrant immune cell recruitment contribute to AMD pathogenesis. Evidence from AMD patients will be discussed in conjunction with data from preclinical models, to shed light on future therapeutic targets for the treatment of AMD.
Collapse
|
44
|
Olenick AA, Pearson RC, Shaker N, Blankenship MM, Tinius RA, Winchester LJ, Oregon E, Maples JM. African American Females Are Less Metabolically Flexible Compared with Caucasian American Females following a Single High-Fat Meal: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12913. [PMID: 36232212 PMCID: PMC9566281 DOI: 10.3390/ijerph191912913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The relationship between metabolic flexibility (MF) and components of metabolic disease has not been well-studied among African American (AA) females and may play a role in the higher incidence of chronic disease among them compared with Caucasian American (CA) females. This pilot study aimed to compare the metabolic response of AA and CA females after a high-fat meal. Eleven AA (25.6 (5.6) y, 27.2 (6.0) kg/m2, 27.5 (9.7) % body fat) and twelve CA (26.5 (1.5) y, 25.7 (5.3) kg/m2, 25.0 (7.4) % body fat) women free of cardiovascular and metabolic disease and underwent a high-fat meal challenge (55.9% fat). Lipid oxidation, insulin, glucose, and interleukin (IL)-8 were measured fasted, 2 and 4 h postprandial. AA females had a significantly lower increase in lipid oxidation from baseline to 2 h postprandial (p = 0.022), and trended lower at 4 h postprandial (p = 0.081) compared with CA females, indicating worse MF. No group differences in insulin, glucose or HOMA-IR were detected. IL-8 was significantly higher in AA females compared with CA females at 2 and 4 h postprandial (p = 0.016 and p = 0.015, respectively). These findings provide evidence of metabolic and inflammatory disparities among AA females compared with CA females that could serve as a predictor of chronic disease in individuals with a disproportionately higher risk of development.
Collapse
Affiliation(s)
- Alyssa A. Olenick
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Regis C. Pearson
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nuha Shaker
- Department of Pathology and Lab Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Maire M. Blankenship
- School of Nursing and Allied Health, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Rachel A. Tinius
- School of Kinesiology, Recreation, and Sport, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Lee J. Winchester
- Department of Kinesiology, College of Education, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Evie Oregon
- School of Kinesiology, Recreation, and Sport, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Jill M. Maples
- Department of Obstetrics and Gynecology, University of Tennessee Graduate School of Medicine, Knoxville, TN 37920, USA
| |
Collapse
|
45
|
Zhang Y, Jiang W, Kong L, Fu J, Zhang Q, Liu H. PLGA@IL-8 nanoparticles-loaded acellular dermal matrix as a delivery system for exogenous MSCs in diabetic wound healing. Int J Biol Macromol 2022; 224:688-698. [DOI: 10.1016/j.ijbiomac.2022.10.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/05/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
|
46
|
Freitas-Ribeiro S, Diogo GS, Oliveira C, Martins A, Silva TH, Jarnalo M, Horta R, Reis RL, Pirraco RP. Growth Factor-Free Vascularization of Marine-Origin Collagen Sponges Using Cryopreserved Stromal Vascular Fractions from Human Adipose Tissue. Mar Drugs 2022; 20:md20100623. [PMID: 36286447 PMCID: PMC9604698 DOI: 10.3390/md20100623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
The successful integration of transplanted three-dimensional tissue engineering (TE) constructs depends greatly on their rapid vascularization. Therefore, it is essential to address this vascularization issue in the initial design of constructs for perfused tissues. Two of the most important variables in this regard are scaffold composition and cell sourcing. Collagens with marine origins overcome some issues associated with mammal-derived collagen while maintaining their advantages in terms of biocompatibility. Concurrently, the freshly isolated stromal vascular fraction (SVF) of adipose tissue has been proposed as an advantageous cell fraction for vascularization purposes due to its highly angiogenic properties, allowing extrinsic angiogenic growth factor-free vascularization strategies for TE applications. In this study, we aimed at understanding whether marine collagen 3D matrices could support cryopreserved human SVF in maintaining intrinsic angiogenic properties observed for fresh SVF. For this, cryopreserved human SVF was seeded on blue shark collagen sponges and cultured up to 7 days in a basal medium. The secretome profile of several angiogenesis-related factors was studied throughout culture times and correlated with the expression pattern of CD31 and CD146, which showed the formation of a prevascular network. Upon in ovo implantation, increased vessel recruitment was observed in prevascularized sponges when compared with sponges without SVF cells. Immunohistochemistry for CD31 demonstrated the improved integration of prevascularized sponges within chick chorioalantoic membrane (CAM) tissues, while in situ hybridization showed human cells lining blood vessels. These results demonstrate the potential of using cryopreserved SVF combined with marine collagen as a streamlined approach to improve the vascularization of TE constructs.
Collapse
Affiliation(s)
- Sara Freitas-Ribeiro
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Gabriela S. Diogo
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Catarina Oliveira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Albino Martins
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Mariana Jarnalo
- Department of Plastic and Reconstructive Surgery, and Burn Unity, Centro Hospitalar de São João, 4200-319 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Ricardo Horta
- Department of Plastic and Reconstructive Surgery, and Burn Unity, Centro Hospitalar de São João, 4200-319 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Rogério P. Pirraco
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
- Correspondence:
| |
Collapse
|
47
|
Nourisa J, Zeller-Plumhoff B, Willumeit-Römer R. The osteogenetic activities of mesenchymal stem cells in response to Mg2+ ions and inflammatory cytokines: a numerical approach using fuzzy logic controllers. PLoS Comput Biol 2022; 18:e1010482. [PMID: 36108031 PMCID: PMC9514629 DOI: 10.1371/journal.pcbi.1010482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/27/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022] Open
Abstract
Magnesium (Mg2+) ions are frequently reported to regulate osteogenic activities of mesenchymal stem cells (MSCs). In this study, we propose a numerical model to study the regulatory importance of Mg2+ ions on MSCs osteoblastic differentiation in the presence of an inflammatory response. A fuzzy logic controller was formulated to receive the concentrations of Mg2+ ions and the inflammatory cytokines of TNF-α, IL-10, IL-1β, and IL-8 as cellular inputs and predict the cells’ early and late differentiation rates. Five sets of empirical data obtained from published cell culture experiments were used to calibrate the model. The model successfully reproduced the empirical data regarding the concentration- and phase-dependent effect of Mg2+ ions on the differentiation process. In agreement with the experiments, the model showed the stimulatory role of Mg2+ ions on the early differentiation phase, once administered at low concentration, and their inhibitory role on the late differentiation phase. The numerical approach used in this study suggested 6–8 mM as the most effective concentration of Mg2+ ions in promoting the early differentiation process. Also, the proposed model sheds light on the fundamental differences in the behavioral properties of cells cultured in different experiments, e.g. differentiation rate and the sensitivity of the cultured cells to stimulatory signals such as Mg2+ ions. Thus, it can be used to interpret and compare different empirical findings. Moreover, the model successfully reproduced the nonlinearities in the concentration-dependent role of the inflammatory cytokines in early and late differentiation rates. Overall, the proposed model can be employed in studying the osteogenic properties of Mg-based implants in the presence of an inflammatory response. Magnesium (Mg) is an attractive material for bone implants as it fully degrades after implantation, saving pain and cost of the second surgery for implant removal. To advance its application in the orthopedic industry, it is paramount to fully understand the biological impact of the degradation products, in particular Mg2+ ions. Here, we propose a computer model to study the effects of Mg2+ ions on bone regeneration. The model focuses on stem cells and includes both the direct stimulation effects of Mg2+ ions on cells and the indirect stimulus through the inflammatory system. The proposed model successfully reproduced the experimental data of five different studies. The model additionally highlighted differences amongst different experiments in terms of the cellular response to Mg2+ ions. The proposed system therefore provides an important addition to the field of Mg implant research.
Collapse
Affiliation(s)
- Jalil Nourisa
- Helmholtz Zentrum Hereon, Institute of Metallic Biomaterials, Geesthacht, Germany
- * E-mail:
| | | | | |
Collapse
|
48
|
Targeting CXCR1 and CXCR2 receptors in cardiovascular diseases. Pharmacol Ther 2022; 237:108257. [PMID: 35908611 DOI: 10.1016/j.pharmthera.2022.108257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022]
|
49
|
Urbantat RM, Jelgersma C, Vajkoczy P, Brandenburg S, Acker G. Combining TMZ and SB225002 induces changes of CXCR2 and VEGFR signalling in primary human endothelial cells in vitro. Oncol Rep 2022; 48:158. [PMID: 35856448 PMCID: PMC9350968 DOI: 10.3892/or.2022.8373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/27/2022] [Indexed: 11/20/2022] Open
Abstract
Standard of care therapy for glioblastoma (GBM) consisting of surgical removal, temozolomide (TMZ) and radiotherapy fails to cure the disease and median survival is limited to 15 months. Therapeutic approaches targeting vascular endothelial growth factor (VEGF)-mediated angiogenesis, one of the major drivers of tumour growth, have not prolonged patient survival as reported in clinical studies. Apart from VEGFR signalling, proangiogenic C-X-C motif chemokine receptor 2 (CXCR2) is of special interest as its ligands C-X-C motif chemokine ligand 2 (CXCL2) and interleukin-8 (IL8) are upregulated and associated with reduced survival in GBM patients. As CXCR2 is also expressed by endothelial cells, the aim of the present study was to elucidate the effect of combination therapy on gene and protein expression of primary human endothelial cells (HUVECs). To mimic the GBM specific CXCL2/IL8 oversupply environment [referred to as stimulation (STIM)], HUVECs were treated with a cocktail of CXCL2/IL8 and/or TMZ and/or CXCR2-antagonist SB225002 (SB). In brief, six treatment conditions were utilized: i) Control, ii) STIM (CXCL2/IL8), iii) TMZ + SB, iv) STIM + TMZ, v) STIM + SB, vi) STIM + TMZ + SB followed by either RNA-isolation and RT-qPCR for BAX, BCL2, vascular endothelial growth receptor (VEGFR)1/2, VEGF, CXCR1/2, CXCL2 and IL8 or immunofluorescence staining for VEGFR2 and CXCR2. SB and TMZ led to morphological changes of HUVECs and downregulated antiapoptotic BCL2 in vitro. In addition, gene expression of the alternative proangiogenic CXCL2/IL8/CXCR2 signalling pathway was significantly altered by the combination therapy, while the VEGF/VEGFR1/2 axis was only mildly affected. Furthermore, VEGFR2 and CXCR2 gene and protein expression regulation differed. VEGFR2 was not altered at the gene expression level, while combination therapy with TMZ and SB led to a 74% upregulation of VEGFR2 at the protein level. By contrast, CXCR2 was upregulated 5-fold by the combination therapy at the gene expression level and downregulated by 72.5% at the protein expression level. The present study provided first insights into the molecular changes of two major proangiogenic pathways in primary endothelial cells during treatment with TMZ and SB. Different gene and protein expression levels of the proangiogenic receptors CXCR2 and VEGFR2 in vitro must be taken into consideration in future studies.
Collapse
Affiliation(s)
- Ruth M Urbantat
- Department of Neurosurgery, Charité‑Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‑Universität zu Berlin, D‑10117 Berlin, Germany
| | - Claudius Jelgersma
- Department of Neurosurgery, Charité‑Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‑Universität zu Berlin, D‑10117 Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité‑Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‑Universität zu Berlin, D‑10117 Berlin, Germany
| | - Susan Brandenburg
- Department of Neurosurgery, Charité‑Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‑Universität zu Berlin, D‑10117 Berlin, Germany
| | - Gueliz Acker
- Department of Neurosurgery, Charité‑Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‑Universität zu Berlin, D‑10117 Berlin, Germany
| |
Collapse
|
50
|
Jakub JW, Weaver AL, Meves A. Association of tumor molecular factors with in-transit metastasis in primary cutaneous melanoma. Int J Dermatol 2022; 61:1117-1123. [PMID: 35246838 PMCID: PMC9391269 DOI: 10.1111/ijd.16141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/19/2021] [Accepted: 02/06/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND In-transit metastases (ITM) are a form of locoregional relapse representing intralymphatic metastatic spread and occur in approximately 4-9% of patients with melanoma >1 mm Breslow thickness. Our objective was to evaluate a combination of clinicopathologic risk factors and gene expression biomarkers predictive of ITM risk. METHODS We used PCR to quantify gene expression in diagnostic biopsy tissue across a prospectively designed archival cohort of 854 consecutive thin and intermediate thickness primary cutaneous melanomas. The outcome of interest was ITM >90 days after a melanoma diagnosis. Cox proportional hazard models were fit to estimate each clinicopathologic and molecular characteristic's association with the risk of ITM. RESULTS The 5-year cumulative incidence of ITM was 3.2%. Clinical factors univariately associated with an increased risk of ITM were older age, greater Breslow thickness, greater mitotic rate, lower extremity location, ulceration, and a positive SLN biopsy. Of 108 genes tested, five were significantly upregulated and five significantly downregulated when evaluated in Cox models adjusted for age, Breslow thickness, mitotic rate, and lower extremity location. Among the upregulated genes, the strongest association was observed for interleukin-8 (IL8). CONCLUSION A subset of gene expression biomarkers was identified as independently associated with the risk of ITM after adjusting for key covariates. Once sufficiently validated, our results may lead the way to regional therapy trials for a small, selected group of high-risk patients.
Collapse
Affiliation(s)
- James W. Jakub
- Department of Surgery, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Amy L. Weaver
- Department of Quantitative Health Sciences, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Alexander Meves
- Department of Dermatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|