1
|
Themba NN, Dondofema F, Cuthbert RN, Munyai LF, Dalu T. Abundance and distribution of microplastics in benthic sediments and Cladocera taxa in a subtropical Austral reservoir. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:2256-2270. [PMID: 39016676 DOI: 10.1002/ieam.4977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 07/18/2024]
Abstract
Pollution of the natural environment by microplastics has become a global issue in ecosystems as it poses a potential long-term threat to biota. Microplastics can accrue in high abundances in sediments of aquatic ecosystems while also contaminating pelagic filter feeders, which could transfer pollutants up trophic webs. We assess the abundance and distribution of microplastics in benthic sediments and Cladocera taxa in a subtropical Austral reservoir using a combination of geospatial techniques, physicochemical analyses, diversity indices, and multivariate statistics between two seasons (i.e., hot-wet and cool-dry). We found particularly high densities of microplastics during the cool-dry season for both sediments (mean 224.1 vs. 189 particles kg-1 dry weight) and Cladocera taxa (0.3 particles per individual). Cladocera microplastic shapes were dominated by fibers with high densities of the transparent color scheme. Pearson correlation results indicated that sediment microplastic abundances were negatively correlated with chlorophyll-a concentration, temperature, and resistivity, whereas they were positively correlated with pH and salinity during the hot-wet season, with no variables significant in the cool-dry season. Cladocera microplastic abundances were positively correlated with conductivity and salinity during the cool-dry season, but no variables in the hot-wet season. These findings provide insights into the role of reservoirs as microplastic retention sites and the potential for uptake and transfer from lower trophic groups. These insights can be used to strengthen future monitoring and intervention strategies. Integr Environ Assess Manag 2024;20:2256-2270. © 2024 SETAC.
Collapse
Affiliation(s)
- Nombuso N Themba
- Aquatic Systems Research Group, School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit, South Africa
| | - Farai Dondofema
- Aquatic Systems Research Group, Department of Geography and Environmental Science, University of Venda, Thohoyandou, South Africa
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Linton F Munyai
- Aquatic Systems Research Group, School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit, South Africa
| | - Tatenda Dalu
- Aquatic Systems Research Group, School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit, South Africa
| |
Collapse
|
2
|
Jo J, Jeon MJ, Park SK, Shin SJ, Kim BI, Park JW. Anti-cariogenic effect of experimental resin cement containing ursolic acid using dental microcosm biofilm. J Dent 2024:105447. [PMID: 39489326 DOI: 10.1016/j.jdent.2024.105447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/19/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024] Open
Abstract
OBJECTIVE This study aimed to assess the anticariogenic effects of resin cement containing varying ursolic acid (UA) concentrations and to determine the optimal UA concentrations in the microcosm biofilm model. MATERIALS AND METHODS Experimental resin cements with UA concentrations of 0, 0.1, 0.5, 1.0, and 2.0 wt% were prepared. Class I cavities were prepared on 50 extracted human molars and restored with composite inlays and experimental resin cements. Tooth samples were subjected to artificial caries induction for 10 days in a microcosm biofilm model using human saliva as an inoculum, and then mineral changes were evaluated using quantitative light-induced fluorescence (ΔF and ΔQ) and micro-computed tomography (CT). The bacterial composition of the human saliva was analyzed by 16s RNA microbiome profiling. One-way analysis of variance with Tukey and Duncan post-hoc tests was employed for statistical analysis (p < 0.05). RESULTS As the UA concentration increased, resin cement decreased ΔF and ΔQ before and after caries induction but showed a significant difference only in ΔQ at UA concentration ≥ 1.0% (p < 0.05). The gray value analysis result of micro CT also showed a significant difference at UA concentration ≥ 1.0% (p < 0.05). In the human saliva analysis, bacterial composition remained within normal oral microbiota ranges. CONCLUSION Resin cements containing at least 1.0% of UA exhibited an anticariogenic effect on dental microcosm biofilms. CLINICAL RELEVANCE To reduce the failure of restorations, it is essential to prevent the occurrence of secondary caries. The application of UA in resin cement can be utilized to prevent the formation of secondary caries due to the anticariogenic effect of UA.
Collapse
Affiliation(s)
- Jonghyun Jo
- Department of Conservative Dentistry, Gangnam Severance hospital, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Mi-Jeong Jeon
- Department of Conservative Dentistry, Gangnam Severance hospital, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Sun Kyu Park
- Department of Conservative Dentistry, Gangnam Severance hospital, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Su-Jung Shin
- Department of Conservative Dentistry, Gangnam Severance hospital, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Baek-Il Kim
- Department of Preventive Dentistry & Public Oral Health, BK21 PLUS project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Jeong-Won Park
- Department of Conservative Dentistry, Gangnam Severance hospital, College of Dentistry, Yonsei University, Seoul, South Korea.
| |
Collapse
|
3
|
Vettorazzo S, Boscaini A, Cerasino L, Salmaso N. From small water bodies to lakes: Exploring the diversity of freshwater bacteria in an Alpine Biosphere Reserve. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176495. [PMID: 39341249 DOI: 10.1016/j.scitotenv.2024.176495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
Small water bodies, although supporting high biodiversity, are often understudied in the Alpine region. In this work, we characterized the planktic and benthic bacterial communities, as well as the water chemistry, of a wide physiographic range of 19 freshwater bodies within an Alpine Biosphere Reserve, including ponds, pasture ponds, peat bogs, shallow lakes, and lakes. We collected both water and surface sediment samples, followed by metabarcoding analysis based on the V3-V4 regions of the 16S rRNA gene. We investigated the changes in biodiversity and the distribution of unique and shared amplicon sequence variants (ASVs) between water (11,829 ASVs) and surface sediment (19,145 ASVs) habitats, as well as across different freshwater typologies. The majority of ASVs (78 %) were unique to a single sample, highlighting the variability and uniqueness of bacterial communities in such freshwater bodies. Most freshwater environments showed higher α-diversity in sediment samples (median, 1469 ASVs) compared to water (468 ASVs). We found that water and sediment habitats harboured unique bacterial communities with significant differences in their taxonomic compositions. Benthic bacteria were associated with several biogeochemical and degradative processes occurring in the sediments, with no notable differences among freshwater typologies and with phylogenetically and ecologically similar species. Conversely, planktic communities showed greater heterogeneity: small water bodies and peat bogs were characterized by higher relative abundances of Patescibacteria (up to 33 %), while lakes and shallow lakes were dominated by Actinobacteriota (up to 36 %). Cyanobacteria (426 ASVs) were generally distributed at low abundances in both water and sediment habitats. Overall, our results provided essential insights into the bacterial ecology of understudied environments such as ponds and pasture ponds and highlighted the importance of further exploring their rich pelagic and benthic bacterial biodiversity.
Collapse
Affiliation(s)
- Sara Vettorazzo
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| | - Adriano Boscaini
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Leonardo Cerasino
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Nico Salmaso
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| |
Collapse
|
4
|
Sandal L, Sæther BE, Freckleton RP, Noble DG, Schwarz J, Leivits A, Grøtan V. Species richness and evenness of European bird communities show differentiated responses to measures of productivity. J Anim Ecol 2024; 93:1212-1224. [PMID: 38979934 DOI: 10.1111/1365-2656.14136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/14/2024] [Indexed: 07/10/2024]
Abstract
Understanding patterns of species diversity is crucial for ecological research and conservation, and this understanding may be improved by studying patterns in the two components of species diversity, species richness and evenness of abundance of species. Variation in species richness and evenness has previously been linked to variation in total abundance of communities as well as productivity gradients. Exploring both components of species diversity is essential because these components could be unrelated or driven by different mechanisms. The aim of this study was to investigate the relationship between species richness and evenness in European bird communities along an extensive latitudinal gradient. We examined their relationships with latitude and Net Primary Productivity, which determines energy and matter availability for heterotrophs, as well as their responses to territory densities (i.e. the number of territories per area) and community biomass (i.e. the bird biomass per area). We applied a multivariate Poisson log-normal distribution to unique long-term, high-quality time-series data, allowing us to estimate species richness of the community as well as the variance of this distribution, which acts as an inverse measure of evenness. Evenness in the distribution of abundance of species in the community was independent of species richness. Species richness increased with increasing community biomass, as well as with increasing density. Since both measures of abundance were explained by NPP, species richness was partially explained by energy-diversity theory (i.e. the more energy, the more species sustained by the ecosystem). However, species richness did not increase linearly with NPP but rather showed a unimodal relationship. Evenness was not explained either by productivity nor by any of the aspects of community abundance. This study highlights the importance of considering both richness and evenness to gain a better understanding of variation in species diversity. We encourage the study of both components of species diversity in future studies, as well as use of simulation studies to verify observed patterns between richness and evenness.
Collapse
Affiliation(s)
- Lisa Sandal
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bernt-Erik Sæther
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Robert P Freckleton
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - David G Noble
- British Trust for Ornithology, Thetford, Norfolk, UK
| | | | - Agu Leivits
- Department of Nature Conservation, Environmental Board, Pärnu, Estonia
| | - Vidar Grøtan
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
5
|
Ghosh S, Matthews B. Temporal turnover in species' ranks can explain variation in Taylor's slope for ecological timeseries. Ecology 2024; 105:e4381. [PMID: 39046118 DOI: 10.1002/ecy.4381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/27/2024] [Accepted: 05/17/2024] [Indexed: 07/25/2024]
Abstract
The scaling exponent relating the mean and variance of the density of individual organisms in space (i.e., Taylor's slope: zspace) is well studied in ecology, but the analogous scaling exponent for temporal datasets (ztime) is underdeveloped. Previous theory suggests the narrow distribution of ztime (e.g., typically 1-2) could be due to interspecific competition. Here, using 1694 communities time series, we show that ztime can exceed 2, and reaffirm how this can affect our inference about the stabilizing effect of biodiversity. We also develop a new theory, based on temporal change in the ranks of species abundances, to help account for the observed ztime distribution. Specifically, we find that communities with minimal turnover in species' rank abundances are more likely to have higher ztime. Our analysis shows how species-level variability affects our inference about the stability of ecological communities.
Collapse
Affiliation(s)
- Shyamolina Ghosh
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Blake Matthews
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| |
Collapse
|
6
|
Yang Y, Li Q, Mu Y, Li H, Wang H, Ninomiya S, Jiang D. UAV-Assisted Dynamic Monitoring of Wheat Uniformity toward Yield and Biomass Estimation. PLANT PHENOMICS (WASHINGTON, D.C.) 2024; 6:0191. [PMID: 38895609 PMCID: PMC11184949 DOI: 10.34133/plantphenomics.0191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/29/2024] [Indexed: 06/21/2024]
Abstract
Crop uniformity is a comprehensive indicator used to describe crop growth and is important for assessing crop yield and biomass potential. However, there is still a lack of continuous monitoring of uniformity throughout the growing season to explain their effects on yield and biomass. Therefore, this paper proposed a wheat uniformity quantification method based on unmanned aerial vehicle imaging technology to monitor and analyze the dynamic changes in wheat uniformity. The leaf area index (LAI), soil plant analysis development (SPAD), and fractional vegetation cover were estimated from hyperspectral images, while plant height was estimated by a point cloud model from RGB images. Based on these 4 agronomic parameters, a total of 20 uniformity indices covering multiple growing stages were calculated. The changing trends in the uniformity indices were consistent with the results of visual interpretation. The uniformity indices strongly correlated with yield and biomass were selected to construct multiple linear regression models for estimating yield and biomass. The results showed that Pielou's index of LAI had the strongest correlation with yield and biomass, with correlation coefficients of -0.760 and -0.801, respectively. The accuracies of the yield (coefficient of determination [R 2] = 0.616, root mean square error [RMSE] = 1.189 Mg/ha) and biomass estimation model (R 2 = 0.798, RMSE = 1.952 Mg/ha) using uniformity indices were better than those of the models using the mean values of the 4 agronomic parameters. Therefore, the proposed uniformity monitoring method can be used to effectively evaluate the temporal and spatial variations in wheat uniformity and can provide new insights into the prediction of yield and biomass.
Collapse
Affiliation(s)
- Yandong Yang
- Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing 210095, China
| | - Qing Li
- College of Agriculture, National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Ecophysiology, Ministry of Agriculture,
Nanjing Agricultural University, Nanjing 210095, China
| | - Yue Mu
- Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing 210095, China
| | - Haitao Li
- Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing 210095, China
| | - Hengtong Wang
- College of Agriculture, National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Ecophysiology, Ministry of Agriculture,
Nanjing Agricultural University, Nanjing 210095, China
| | - Seishi Ninomiya
- Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing 210095, China
- Graduate School of Agricultural and Life Sciences,
The University of Tokyo, Nishi-Tokyo, Tokyo 188-0002, Japan
| | - Dong Jiang
- College of Agriculture, National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Ecophysiology, Ministry of Agriculture,
Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Setash CM, Behney AC, Gammonley JH, Koons DN. Riding the wetland wave: Can ducks locate macroinvertebrate resources across the breeding season? Ecol Evol 2024; 14:e11568. [PMID: 38932948 PMCID: PMC11199343 DOI: 10.1002/ece3.11568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Food availability varies considerably over space and time in wetland systems, and consumers must be able to track those changes during energetically-demanding points in the life cycle like breeding. Resource tracking has been studied frequently among herbivores, but receives less attention among consumers of macroinvertebrates. We evaluated the change in resource availability across habitat types and time and the simultaneous density of waterfowl consumers throughout their breeding season in a high-elevation, flood-irrigated system. We also assessed whether the macroinvertebrate resource density better predicted waterfowl density across habitats, compared to consistency (i.e., temporal evenness) of the invertebrate resource or taxonomic richness. Resource density varied marginally across wetland types but was highest in basin wetlands (i.e., ponds) and peaked early in the breeding season, whereas it remained relatively low and stable in other wetland habitats. Breeding duck density was positively related to resource density, more so than temporal resource stability, for all species. Resource density was negatively related to duckling density, however. These results have the potential to not only elucidate mechanisms of habitat selection among breeding ducks in flood-irrigated landscapes but also suggest there is not a consequential trade-off to selecting wetland sites based on energy density versus temporal resource stability and that good-quality wetland sites provide both.
Collapse
Affiliation(s)
- Casey M. Setash
- Colorado Parks and WildlifeFort CollinsColoradoUSA
- Department of Fish, Wildlife, and Conservation BiologyColorado State UniversityFort CollinsColoradoUSA
| | | | | | - David N. Koons
- Department of Fish, Wildlife, and Conservation BiologyColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
8
|
Wan JN, Wang SW, Leitch AR, Leitch IJ, Jian JB, Wu ZY, Xin HP, Rakotoarinivo M, Onjalalaina GE, Gituru RW, Dai C, Mwachala G, Bai MZ, Zhao CX, Wang HQ, Du SL, Wei N, Hu GW, Chen SC, Chen XY, Wan T, Wang QF. The rise of baobab trees in Madagascar. Nature 2024; 629:1091-1099. [PMID: 38750363 PMCID: PMC11136661 DOI: 10.1038/s41586-024-07447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 04/19/2024] [Indexed: 05/30/2024]
Abstract
The baobab trees (genus Adansonia) have attracted tremendous attention because of their striking shape and distinctive relationships with fauna1. These spectacular trees have also influenced human culture, inspiring innumerable arts, folklore and traditions. Here we sequenced genomes of all eight extant baobab species and argue that Madagascar should be considered the centre of origin for the extant lineages, a key issue in their evolutionary history2,3. Integrated genomic and ecological analyses revealed the reticulate evolution of baobabs, which eventually led to the species diversity seen today. Past population dynamics of Malagasy baobabs may have been influenced by both interspecific competition and the geological history of the island, especially changes in local sea levels. We propose that further attention should be paid to the conservation status of Malagasy baobabs, especially of Adansonia suarezensis and Adansonia grandidieri, and that intensive monitoring of populations of Adansonia za is required, given its propensity for negatively impacting the critically endangered Adansonia perrieri.
Collapse
Affiliation(s)
- Jun-Nan Wan
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China
| | - Sheng-Wei Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | | | - Jian-Bo Jian
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | | | - Hai-Ping Xin
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | | | | | - Robert Wahiti Gituru
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Can Dai
- School of Resources and Environmental Science, Hubei University, Wuhan, China
| | | | - Ming-Zhou Bai
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | | | | | - Sheng-Lan Du
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Neng Wei
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China
| | - Guang-Wan Hu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China
| | - Si-Chong Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China
| | - Xiao-Ya Chen
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China
- Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Tao Wan
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China.
| | - Qing-Feng Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
9
|
Martínez-Núñez C, Gossner MM, Maurer C, Neff F, Obrist MK, Moretti M, Bollmann K, Herzog F, Knop E, Luka H, Cahenzli F, Albrecht M. Land-use change in the past 40 years explains shifts in arthropod community traits. J Anim Ecol 2024; 93:540-553. [PMID: 38509643 DOI: 10.1111/1365-2656.14062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/07/2024] [Indexed: 03/22/2024]
Abstract
Understanding how anthropogenic activities induce changes in the functional traits of arthropod communities is critical to assessing their ecological consequences. However, we largely lack comprehensive assessments of the long-term impact of global-change drivers on the trait composition of arthropod communities across a large number of species and sites. This knowledge gap critically hampers our ability to predict human-driven impacts on communities and ecosystems. Here, we use a dataset of 1.73 million individuals from 877 species to study how four functionally important traits of carabid beetles and spiders (i.e. body size, duration of activity period, tolerance to drought, and dispersal capacity) have changed at the community level across ~40 years in different types of land use and as a consequence of land use changes (that is, urbanisation and loss of woody vegetation) at the landscape scale in Switzerland. The results show that the mean body size in carabid communities declined in all types of land use, with particularly stronger declines in croplands compared to forests. Furthermore, the length of the activity period and the tolerance to drought of spider communities decreased in most land use types. The average body size of carabid communities in landscapes with increased urbanisation in the last ~40 years tended to decrease. However, the length of the activity period, the tolerance to drought, and the dispersal capacity did not change significantly. Furthermore, urbanisation promoted increases in the average dispersal capacities of spider communities. Additionally, urbanisation favoured spider communities with larger body sizes and longer activity periods. The loss of woody areas at the landscape level was associated with trait shifts to carabid communities with larger body sizes, shorter activity periods, higher drought tolerances and strongly decreased dispersal capacities. Decreases in activity periods and dispersal capacities were also found in spider communities. Our study demonstrates that human-induced changes in land use alter key functional traits of carabid and spider communities in the long term. The detected trait shifts in arthropod communities likely have important consequences for their functional roles in ecosystems.
Collapse
Affiliation(s)
- Carlos Martínez-Núñez
- Agroecology and Environment, Zürich, Switzerland
- Department of Ecology and Evolution, Estación Biológica de Doñana EBD (CSIC), Seville, Spain
| | - Martin M Gossner
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zürich, Switzerland
| | - Corina Maurer
- Agroecology and Environment, Zürich, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zürich, Switzerland
| | - Felix Neff
- Agroecology and Environment, Zürich, Switzerland
| | - Martin K Obrist
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Marco Moretti
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Kurt Bollmann
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Felix Herzog
- Agroecology and Environment, Zürich, Switzerland
| | - Eva Knop
- Agroecology and Environment, Zürich, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| | - Henryk Luka
- Department of Crop Sciences, Research Institute of Organic Agriculture FiBL, Frick, Switzerland
| | - Fabian Cahenzli
- Department of Crop Sciences, Research Institute of Organic Agriculture FiBL, Frick, Switzerland
| | | |
Collapse
|
10
|
Deng N, Liu C, Tian Y, Song Q, Niu Y, Ma F. Assembly processes of rhizosphere and phyllosphere bacterial communities in constructed wetlands created via transformation of rice paddies. Front Microbiol 2024; 15:1337435. [PMID: 38444812 PMCID: PMC10913029 DOI: 10.3389/fmicb.2024.1337435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/16/2024] [Indexed: 03/07/2024] Open
Abstract
Constructed wetlands are an efficient and cost-effective method of restoring degraded wetlands, in which the microorganisms present make a significant contribution to the ecosystem. In this study, we comprehensively investigated the patterns of diversity and assembly processes of 7 types of constructed wetlands at the rhizosphere and phyllosphere levels. The results showed that the rhizosphere communities of the constructed wetlands exhibited a more balanced structure than that of paddy fields, and 5 types of constructed wetland demonstrated higher potential diversity than that of paddy fields. However, the opposite trend was observed for the phyllosphere communities. Analysis of mean nearest taxon difference indicated that both deterministic and stochastic processes affected the establishment of the rhizosphere and phyllosphere communities, and stochastic processes may have had a larger effect. An iCAMP model showed that dispersal limitation was the most important factor (67% relative contribution) in the rhizosphere community, while drift was the most important (47% relative contribution) in the phyllosphere community. Mantel tests suggested that sucrase, average height, top height, total biomass, belowground biomass, maximum water-holding capacity, and capillary porosity were significantly correlated with processes in the rhizosphere community, whereas factors such as the deterministic process, average height, top height, and SOC were significantly correlated with deterministic processes in the phyllosphere community. Our results can assist in the evaluation of artificial restorations, and can provide understanding of the ecological processes of microbial communities, as well as new insights into the manipulation of microorganisms in polluted wetland ecosystems.
Collapse
Affiliation(s)
- Nan Deng
- Hunan Academy of Forestry, Changsha, Hunan, China
- Hunan Cili Forest Ecosystem State Research Station, Cili, Changsha, Hunan, China
| | - Caixia Liu
- Hunan Academy of Forestry, Changsha, Hunan, China
- Hunan Cili Forest Ecosystem State Research Station, Cili, Changsha, Hunan, China
| | - Yuxin Tian
- Hunan Academy of Forestry, Changsha, Hunan, China
- Hunan Cili Forest Ecosystem State Research Station, Cili, Changsha, Hunan, China
- Dongting Lake National Positioning Observation and Research Station of Wetland Ecosystem of Hunan Province, Yueyang, China
- International Technological Cooperation Base for Ecosystem Management and Sustainable Utilization of Water Resources in Dongting Lake Basin, Changsha, China
| | - Qingan Song
- Hunan Academy of Forestry, Changsha, Hunan, China
- Hunan Cili Forest Ecosystem State Research Station, Cili, Changsha, Hunan, China
| | - Yandong Niu
- Hunan Academy of Forestry, Changsha, Hunan, China
- Hunan Cili Forest Ecosystem State Research Station, Cili, Changsha, Hunan, China
- Dongting Lake National Positioning Observation and Research Station of Wetland Ecosystem of Hunan Province, Yueyang, China
- International Technological Cooperation Base for Ecosystem Management and Sustainable Utilization of Water Resources in Dongting Lake Basin, Changsha, China
| | - Fengfeng Ma
- Hunan Academy of Forestry, Changsha, Hunan, China
- Hunan Cili Forest Ecosystem State Research Station, Cili, Changsha, Hunan, China
| |
Collapse
|
11
|
Mashamba R, Cuthbert RN, Dondofema F, Munyai LF, Wu N, Dalu T. Spatiotemporal variation in macroplastic abundances along a subtropical Austral river system. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:273. [PMID: 38363433 DOI: 10.1007/s10661-024-12409-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
Plastic pollution is a ubiquitous problem that poses a threat to society and the environment. The issue is especially pervasive in the aquatic environment, where large amounts of plastic debris accumulate from numerous anthropogenic pathways. Relatively little is known about the extent of macroplastics in African subtropical Austral rivers, where management strategies are lacking. This study quantifies and compares the variation in macroplastic abundances along the Mvudi River, South Africa, over four sites and four seasons. We observed a non-significant difference in macroplastic abundance and variation across sites and seasons, with pollution therefore widespread across these contexts. However, the diversity of plastic debris (i.e. γ-diversity value) decreased generally along sites, with most macroplastic items being collected during winter, and fewer macroplastic during autumn. We observed high abundances of macroplastic debris on the shoreline compared to the mainstream, with high proportional abundances of plastic bags and film (> 57.8%) macroplastic physical type across all sites and seasons. We also observed a high proportional abundance of the polymer polypropylene (> 25.3%) across seasons. The information derived from this study serves as the baseline for understanding seasonal variations in plastic debris and their driving factors on this and other subtropical Austral rivers.
Collapse
Affiliation(s)
- Ronald Mashamba
- Aquatic Systems Research Group, School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit, 1200, South Africa
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Farai Dondofema
- Department of Geography and Environmental Sciences, University of Venda, Thohoyandou, 0950, South Africa
| | - Linton F Munyai
- Aquatic Systems Research Group, School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit, 1200, South Africa
| | - Naicheng Wu
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, 315211, China
| | - Tatenda Dalu
- Aquatic Systems Research Group, School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit, 1200, South Africa.
| |
Collapse
|
12
|
Marcondes MA, Pessôa R, José da Silva Duarte A, Clissa PB, Sanabani SS. Temporal patterns of bacterial communities in the Billings Reservoir system. Sci Rep 2024; 14:2062. [PMID: 38267511 PMCID: PMC10808195 DOI: 10.1038/s41598-024-52432-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024] Open
Abstract
In this study, high-throughput sequencing of 16S rRNA amplicons and predictive PICRUSt functional profiles were used to perform a comprehensive analysis of the temporal bacterial distribution and metabolic functions of 19 bimonthly samples collected from July 2019 to January 2020 in the surface water of Billings Reservoir, São Paulo. The results revealed that most of the bacterial 16S rRNA gene sequences belonged to Cyanobacteria and Proteobacteria, which accounted for more than 58% of the total bacterial abundance. Species richness and evenness indices were highest in surface water from summer samples (January 2020), followed by winter (July 2019) and spring samples (September and November 2019). Results also showed that the highest concentrations of sulfate (SO4-2), phosphate (P), ammonia (NH3), and nitrate (NO3-) were detected in November 2019 and January 2020 compared with samples collected in July and September 2019 (P < 0.05). Principal component analysis suggests that physicochemical factors such as pH, DO, temperature, and NH3 are the most important environmental factors influencing spatial and temporal variations in the community structure of bacterioplankton. At the genus level, 18.3% and 9.9% of OTUs in the July and September 2019 samples, respectively, were assigned to Planktothrix, while 14.4% and 20% of OTUs in the November 2019 and January 2020 samples, respectively, were assigned to Microcystis. In addition, PICRUSt metabolic analysis revealed increasing enrichment of genes in surface water associated with multiple metabolic processes rather than a single regulatory mechanism. This is the first study to examine the temporal dynamics of bacterioplankton and its function in Billings Reservoir during the winter, spring, and summer seasons. The study provides comprehensive reference information on the effects of an artificial habitat on the bacterioplankton community that can be used to interpret the results of studies to evaluate and set appropriate treatment targets.
Collapse
Affiliation(s)
- Marta Angela Marcondes
- Post-Graduation Program in Translational Medicine, Department of Medicine, Federal University of São Paulo, São Paulo, 04021-001, Brazil
| | - Rodrigo Pessôa
- Post-Graduation Program in Translational Medicine, Department of Medicine, Federal University of São Paulo, São Paulo, 04021-001, Brazil
| | - Alberto José da Silva Duarte
- Laboratory of Dermatology and Immunodeficiency, Department of Dermatology LIM 56, Faculty of Medicine, University of São Paulo, São Paulo, 05403-000, Brazil
| | | | - Sabri Saeed Sanabani
- Laboratory of Medical Investigation 03 (LIM03), Clinics Hospital, Faculty of Medicine, University of São Paulo, São Paulo, 05403-000, Brazil.
- Laboratory of Dermatology and Immunodeficiency, LIM56/03, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Eneas de Carvalho Aguiar, 470 3º Andar, São Paulo, 05403 000, Brazil.
| |
Collapse
|
13
|
Davison J, Gerz M, Hiiesalu I, Moora M, Semchenko M, Zobel M. Niche types and community assembly. Ecol Lett 2024; 27:e14327. [PMID: 37819920 DOI: 10.1111/ele.14327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Studies of niche differentiation and biodiversity often focus on a few niche dimensions due to the methodological challenge of describing hyperdimensional niche space. However, this may limit our understanding of community assembly processes. We used the full spectrum of realized niche types to study arbuscular mycorrhizal fungal communities: distinguishing abiotic and biotic, and condition and resource, axes. Estimates of differentiation in relation to different niche types were only moderately correlated. However, coexisting taxon niches were consistently less differentiated than expected, based on a regional null model, indicating the importance of habitat filtering at that scale. Nonetheless, resource niches were relatively more differentiated than condition niches, which is consistent with the effect of a resource niche-based coexistence mechanism. Considering niche types, and in particular distinguishing resource and condition niches, provides a more complete understanding of community assembly, compared with studying individual niche axes or the full niche.
Collapse
Affiliation(s)
- John Davison
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Maret Gerz
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Inga Hiiesalu
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Mari Moora
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Marina Semchenko
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Martin Zobel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
14
|
Matas‐Granados L, Draper FC, Cayuela L, de Aledo JG, Arellano G, Saadi CB, Baker TR, Phillips OL, Honorio Coronado EN, Ruokolainen K, García‐Villacorta R, Roucoux KH, Guèze M, Sandoval EV, Fine PVA, Amasifuen Guerra CA, Gomez RZ, Stevenson Diaz PR, Monteagudo‐Mendoza A, Martinez RV, Socolar JB, Disney M, del Aguila Pasquel J, Llampazo GF, Arenas JV, Huaymacari JR, Grandez Rios JM, Macía MJ. Understanding different dominance patterns in western Amazonian forests. Ecol Lett 2024; 27:e14351. [PMID: 38111128 PMCID: PMC10952671 DOI: 10.1111/ele.14351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/20/2023]
Abstract
Dominance of neotropical tree communities by a few species is widely documented, but dominant trees show a variety of distributional patterns still poorly understood. Here, we used 503 forest inventory plots (93,719 individuals ≥2.5 cm diameter, 2609 species) to explore the relationships between local abundance, regional frequency and spatial aggregation of dominant species in four main habitat types in western Amazonia. Although the abundance-occupancy relationship is positive for the full dataset, we found that among dominant Amazonian tree species, there is a strong negative relationship between local abundance and regional frequency and/or spatial aggregation across habitat types. Our findings suggest an ecological trade-off whereby dominant species can be locally abundant (local dominants) or regionally widespread (widespread dominants), but rarely both (oligarchs). Given the importance of dominant species as drivers of diversity and ecosystem functioning, unravelling different dominance patterns is a research priority to direct conservation efforts in Amazonian forests.
Collapse
Affiliation(s)
- Laura Matas‐Granados
- Departamento de Biología, Área de BotánicaUniversidad Autónoma de MadridMadridSpain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC‐UAM)Universidad Autónoma de MadridMadridSpain
| | - Frederick C. Draper
- School of Geography and PlanningUniversity of LiverpoolLiverpoolUK
- School of GeographyUniversity of LeedsLeedsUK
| | - Luis Cayuela
- Departamento de Biología y Geología, Física y Química InorgánicaUniversidad Rey Juan Carlos, MóstolesMadridSpain
| | - Julia G. de Aledo
- Departamento de Biología, Área de BotánicaUniversidad Autónoma de MadridMadridSpain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC‐UAM)Universidad Autónoma de MadridMadridSpain
- Departamento de Biología y Geología, Física y Química InorgánicaUniversidad Rey Juan Carlos, MóstolesMadridSpain
| | - Gabriel Arellano
- Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
- Oikobit LLC, www.oikobit.comAlbuquerqueNew MexicoUSA
| | - Celina Ben Saadi
- Departamento de Biología, Área de BotánicaUniversidad Autónoma de MadridMadridSpain
| | | | | | | | | | - Roosevelt García‐Villacorta
- Programa Restauración de Ecosistemas (PRE)Centro de Innovación Científica Amazónica (CINCIA)Puerto MaldonadoTambopata, Madre de DiosPeru
- Peruvian Center for Biodiversity and Conservation (PCBC)IquitosLoretoPeru
| | - Katherine H. Roucoux
- School of Geography & Sustainable DevelopmentUniversity of St AndrewsSt AndrewsUK
| | | | | | - Paul V. A. Fine
- Department of Integrative BiologyUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Carlos A. Amasifuen Guerra
- Escuela de Ingeniería Forestal, Facultad de Ingeniería y Ciencias AgrariasUniversidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM)ChachapoyasPeru
| | | | | | | | | | | | - Mathias Disney
- Department of GeographyUniversity College LondonLondonUK
| | - Jhon del Aguila Pasquel
- Instituto de Investigaciones de la Amazonía PeruanaIquitosPeru
- Universidad Nacional de la Amazonia PeruanaIquitosPeru
| | | | - Jim Vega Arenas
- Facultad de Ciencias BiológicasUniversidad Nacional de la Amazonía PeruanaIquitosPeru
| | | | | | - Manuel J. Macía
- Departamento de Biología, Área de BotánicaUniversidad Autónoma de MadridMadridSpain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC‐UAM)Universidad Autónoma de MadridMadridSpain
| |
Collapse
|
15
|
Carvajal DE, Loayza AP, Squeo FA. Functional diversity and spatial association analyses at different spatial scales reveal no changes in community assembly processes along an aridity gradient in the Atacama Desert. Sci Rep 2023; 13:19905. [PMID: 37963983 PMCID: PMC10646005 DOI: 10.1038/s41598-023-47187-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
The structuring of plant assemblages along environmental gradients is typically explained by shifts from competition (limiting similarity) to environmental filtering as the environment becomes more stressful. However, facilitation, weaker-competitor exclusion, environmental heterogeneity, and the colonization-competition tradeoff can also structure plant assemblages along gradients. These assembly processes act on different plant traits and organs, and their prevalence varies with respect to the spatial scale. Using patterns of functional diversity, coupled with patterns of species association at two spatial scales, here we discern the assembly processes that structure shrub communities in four localities along an aridity gradient of the Atacama Desert. At each site, we calculated functional dispersion indexes for above- and below-ground traits, and patterns of species association at a patch and neighborhood scale. Our results revealed that at the patch scale in intermediate levels of aridity, the dominant assembly process was within-site environmental heterogeneity. At the neighborhood scale, communities are assembled mainly through random processes. Nonetheless, in some communities, the dominant assembly process was competition via limiting similarity or exclusion of the weaker competitor, and these did not change along the gradient. Together, these results reveal that environmental heterogeneity and competition are the main drivers of plant community assembly in a hyper-arid environment.
Collapse
Affiliation(s)
- Danny E Carvajal
- Departamento de Biología, Universidad de La Serena, Casilla 554, La Serena, Chile.
- Instituto de Ecología y Biodiversidad (IEB), Santiago, Chile.
| | - Andrea P Loayza
- Instituto de Ecología y Biodiversidad (IEB), Santiago, Chile
- Instituto Multidisciplinario de Investigación y Postgrado, Universidad de La Serena, 1720256, La Serena, Chile
| | - Francisco A Squeo
- Departamento de Biología, Universidad de La Serena, Casilla 554, La Serena, Chile
- Instituto de Ecología y Biodiversidad (IEB), Santiago, Chile
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Chile
| |
Collapse
|
16
|
Baum DA, Peng Z, Dolson E, Smith E, Plum AM, Gagrani P. The ecology-evolution continuum and the origin of life. J R Soc Interface 2023; 20:20230346. [PMID: 37907091 PMCID: PMC10618062 DOI: 10.1098/rsif.2023.0346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023] Open
Abstract
Prior research on evolutionary mechanisms during the origin of life has mainly assumed the existence of populations of discrete entities with information encoded in genetic polymers. Recent theoretical advances in autocatalytic chemical ecology establish a broader evolutionary framework that allows for adaptive complexification prior to the emergence of bounded individuals or genetic encoding. This framework establishes the formal equivalence of cells, ecosystems and certain localized chemical reaction systems as autocatalytic chemical ecosystems (ACEs): food-driven (open) systems that can grow due to the action of autocatalytic cycles (ACs). When ACEs are organized in meta-ecosystems, whether they be populations of cells or sets of chemically similar environmental patches, evolution, defined as change in AC frequency over time, can occur. In cases where ACs are enriched because they enhance ACE persistence or dispersal ability, evolution is adaptive and can build complexity. In particular, adaptive evolution can explain the emergence of self-bounded units (e.g. protocells) and genetic inheritance mechanisms. Recognizing the continuity between ecological and evolutionary change through the lens of autocatalytic chemical ecology suggests that the origin of life should be seen as a general and predictable outcome of driven chemical ecosystems rather than a phenomenon requiring specific, rare conditions.
Collapse
Affiliation(s)
- David A. Baum
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI 53705, USA
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | - Zhen Peng
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
- Department of Geoscience, University of Wisconsin, Madison, WI 53706, USA
| | - Emily Dolson
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
- Ecology, Evolution and Behavior, Michigan State University, East Lansing, MI 48824, USA
| | - Eric Smith
- Department of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
- Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Alex M. Plum
- Department of Physics, University of California, San Diego, CA 92093, USA
| | - Praful Gagrani
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
17
|
Martelli L, Fornasiero D, Scarton F, Spada A, Scolamacchia F, Manca G, Mulatti P. Study of the Interface between Wild Bird Populations and Poultry and Their Potential Role in the Spread of Avian Influenza. Microorganisms 2023; 11:2601. [PMID: 37894259 PMCID: PMC10609042 DOI: 10.3390/microorganisms11102601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Water birds play a crucial role in disseminating and amplifying avian influenza viruses (AIVs) in the environment. However, they may have limited interactions with domestic facilities, raising the hypothesis that other wild birds may play the bridging role in introducing AIVs into poultry. An ornithocoenosis study, based on census-transect and camera-trapping methods, was conducted in 2019 in ten poultry premises in northeast Italy to characterize the bird communities and envisage the species that might act as bridge hosts for AIVs. The data collected were explored through a series of multivariate analyses (correspondence analysis and non-metric multidimensional scaling), and biodiversity indices (observed and estimated richness, Shannon entropy and Pielou's evenness). The analyses revealed a high level of complexity in the ornithic population, with 147 censused species, and significant qualitative and quantitative differences in wild bird species composition, both in space and in time. Among these, only a few were observed in close proximity to the farm premises (i.e., Magpies, Blackbirds, Cattle Egrets, Pheasants, Eurasian Collared Doves, and Wood Pigeons), thus suggesting their potential role in spilling over AIVs to poultry; contrarily, waterfowls appeared to be scarcely inclined to close visits, especially during autumn and winter seasons. These findings stress the importance of ongoing research on the wild-domestic bird interface, advocating for a wider range of species to be considered in AIVs surveillance and prevention programs.
Collapse
Affiliation(s)
- Luca Martelli
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy; (L.M.); (F.S.); (G.M.)
| | - Diletta Fornasiero
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy; (L.M.); (F.S.); (G.M.)
| | | | - Arianna Spada
- SELC Soc. Coop., 30175 Venice, Italy; (F.S.); (A.S.)
| | - Francesca Scolamacchia
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy; (L.M.); (F.S.); (G.M.)
| | - Grazia Manca
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy; (L.M.); (F.S.); (G.M.)
| | - Paolo Mulatti
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy; (L.M.); (F.S.); (G.M.)
| |
Collapse
|
18
|
Brooks GC, Caruso NM, Chandler HC, Haas CA. Niche partitioning and the storage effect facilitate coexistence in an amphibian community. Ecol Evol 2023; 13:e10629. [PMID: 37869435 PMCID: PMC10585123 DOI: 10.1002/ece3.10629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023] Open
Abstract
Virtually all natural community assemblages are dominated by a handful of common species. Dominant species can exert negative impacts on biodiversity through competitive exclusion, and thus there is a strong incentive to understand imbalances in community composition, changes in dominance hierarchies through time, and mechanisms of coexistence. Pond-breeding amphibians that utilize ephemeral wetlands provide an excellent opportunity to evaluate theoretical predictions of community composition in stochastic environments. One of the most striking features of pond-breeding amphibians is the marked stochastic fluctuations in abundance across years. Given strong theoretical and empirical links between evenness and biomass, one would expect community evenness to change from year to year. Moreover, if different species exhibit different boom-and-bust reproductive cycles, then a storage effect may help to explain why one species does not outcompete all others. Here, we explore the interplay between biotic and abiotic conditions in shaping amphibian communities at two ephemeral wetlands on Eglin Air Force Base, Florida. We document consistent community composition over 6 years of monitoring, resulting from a lack of species turnover and similar responses of all community members to environmental conditions. The similar dynamics of species argues against a storage effect as the sole mechanism for coexistence and instead points to niche partitioning as a more important factor. In support of this conclusion, we show that the degree of synchrony in breeding migrations only correlates with environmental conditions within species, not between species. The lack of pattern seen between species implies that individuals are somewhat constrained in the timing of breeding migrations, perhaps owing in part to competition with other community members. We hope that our work reinvigorates interest in amphibian communities and highlights ephemeral wetlands as model systems to study community dynamics in stochastic environments.
Collapse
Affiliation(s)
- George C. Brooks
- Department of Fish and Wildlife ConservationVirginia TechBlacksburgVirginiaUSA
| | - Nicholas M. Caruso
- Department of Fish and Wildlife ConservationVirginia TechBlacksburgVirginiaUSA
| | - Houston C. Chandler
- Department of Fish and Wildlife ConservationVirginia TechBlacksburgVirginiaUSA
- The Orianne SocietyTigerGeorgiaUSA
| | - Carola A. Haas
- Department of Fish and Wildlife ConservationVirginia TechBlacksburgVirginiaUSA
| |
Collapse
|
19
|
Ward D, Kirkman K, Morris C. Long-term subtropical grassland plots take a long time to change: Replacement is more important than richness differences for beta diversity. Ecol Evol 2023; 13:ECE310195. [PMID: 37325718 PMCID: PMC10266706 DOI: 10.1002/ece3.10195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 04/07/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023] Open
Abstract
We studied β diversity of grasses in a subtropical grassland over 60 years in South Africa. We examined the effects of burning and mowing on 132 large plots. We sought to determine the effects of burning and mowing, and mowing frequency, on the replacement of species and the species richness. We conducted the study at Ukulinga, research farm of the University of KwaZulu-Natal, Pietermaritzburg, South Africa (29°24'E, 30°24'S) from 1950-2010. Plots were burned annually, biennially, triennially, and a control (unburned). Plots were mowed in spring, late summer, spring plus late summer, and a control (unmowed). We calculated β diversity, with a focus on replacement and richness differences. We also used distance-based redundancy analyses to examine the relative effects of replacement and richness differences on mowing and burning. We used beta regressions to test for the effect of soil depth and its interactions with mowing and burning. There was no significant change in grass beta diversity until 1995. Thereafter, there were changes in β diversity that demonstrated the primary effects of summer mowing frequency. There was no significant effect of richness differences but a strong effect of replacement post-1995. There was a significant interaction between mowing frequency and soil depth in one of the analyses. Changes in grassland composition took a long time to manifest themselves and were unapparent prior to 1988. However, there was a change in sampling strategy prior to 1988, from point hits to nearest plants, that may also have influenced the rates of changes in replacement and richness differences. Using β-diversity indices, we found that mowing was more important than burning that burning frequency was unimportant, and there was a significant interaction effect between mowing and soil depth in one of the analyses.
Collapse
Affiliation(s)
- David Ward
- Department of Biological SciencesKent State UniversityKentOhioUSA
| | - Kevin Kirkman
- School of Life SciencesUniversity of KwaZulu‐NatalScottsvilleSouth Africa
| | - Craig Morris
- School of Life SciencesUniversity of KwaZulu‐NatalScottsvilleSouth Africa
- Agricultural Research Council – Animal Productionc/o University of KwaZulu‐NatalPietermaritzburgSouth Africa
| |
Collapse
|
20
|
Sujeeun L, Thomas SC. Biochar mitigates allelopathic effects in temperate trees. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2832. [PMID: 36864680 DOI: 10.1002/eap.2832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/07/2022] [Accepted: 12/06/2022] [Indexed: 06/02/2023]
Abstract
Many invasive and some native tree species in North America exhibit strong allelopathic effects that may contribute to their local dominance. Pyrogenic carbon (PyC; including soot, charcoal, and black carbon) is produced by the incomplete combustion of organic matter and is widespread in forest soils. Many forms of PyC have sorptive properties that can reduce the bioavailability of allelochemicals. We investigated the potential for PyC produced by controlled pyrolysis of biomass ("biochar" [BC]) to reduce the allelopathic effects of black walnut (Juglans nigra) and Norway maple (Acer platanoides), a common native tree species and a widespread invasive species in North America, respectively. Seedling growth of two native tree species (Acer saccharinum [silver maple] and Betula papyrifera [paper birch]) in response to leaf-litter-incubated soils was examined; litter incubation treatments included leaves of black walnut, Norway maple, and a nonallelopathic species (Tilia americana [American basswood]) in a factorial design with varying dosages; responses to the known primary allelochemical of black walnut (juglone) were also examined. Juglone and leaf litter of both allelopathic species strongly suppressed seedling growth. BC treatments substantially mitigated these effects, consistent with the sorption of allelochemicals; in contrast no positive effects of BC were observed in leaf litter treatments involving controls or additions of nonallelopathic leaf litter. Treatments of leaf litter and juglone with BC increased the total biomass of silver maple by ~35% and in some cases more than doubled the biomass of paper birch. We conclude that BCs have the capacity to largely counteract allelopathic effects in temperate forest systems, suggesting the effects of natural PyC in determining forest community structure, and also the applied use of BC as a soil amendment to mitigate allelopathic effects of invasive tree species.
Collapse
Affiliation(s)
- Leeladarshini Sujeeun
- Institute of Forestry and Conservation, John H. Daniels Faculty of Architecture, Landscape, and Design, University of Toronto, Toronto, ON, Canada
| | - Sean C Thomas
- Institute of Forestry and Conservation, John H. Daniels Faculty of Architecture, Landscape, and Design, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Shetty K, Gulimane K. Application of microalgal diversity in assessing the water quality of freshwater ponds. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:595. [PMID: 37079113 DOI: 10.1007/s10661-023-11116-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/09/2023] [Indexed: 05/03/2023]
Abstract
The health of an ecosystem can be evaluated based on its ecological characteristics and intrinsic biological quality. Furthermore, as nutrients are easily accessible by the algal cells in an aquatic ecosystem, the biochemical composition of an algal cell also varies accordingly with the ecological condition of its habitat. This study was carried out to understand the impact of seasonal variation of physicochemical parameters on the microalgal diversity and composition of five freshwater ponds in Mangalore, India. The diversity indices, viz. Shannon's (0.88-3.42), Margalef's (0.16-3.6), and Simpson's dominance index (0.47-0.96), were analyzed using PAST. A prominent variation in both the abundance and diversity of species was observed during the study period. About 150 species of algae belonging to Cyanophyceae, Chlorophyceae, Bacillariophyceae, Euglenophyceae, Xanthophyceae, and Rhodophyceae were recorded. Of these groups, Chlorophyceae, specifically, desmids formed the dominant flora. Zygnematales were dominant during monsoon, while Chroococcales was the most dominant group during the post-monsoon season. Ecological conditions like temperature, pH, dissolved gases, and inorganic salts were found to impact the growth and abundance of microalgae. The ecological parameters showed a prominent effect on microalgal diversity. The results indicated that site SR was the least polluted and most diverse among the lentic habitats studied. It also had lesser noxious algal species which could be attributed to its nutrient composition.
Collapse
Affiliation(s)
- Karunya Shetty
- Department of Applied Botany, Mangalore University, Mangalagangothri, Mangalore, 574199, India.
| | - Krishnakumar Gulimane
- Department of Applied Botany, Mangalore University, Mangalagangothri, Mangalore, 574199, India
| |
Collapse
|
22
|
De Respinis S, Caminada A, Pianta E, Buetti-Dinh A, Riva Scettrini P, Petrini L, Tonolla M, Petrini O. Fungal communities on alpine cheese rinds in Southern Switzerland. BOTANICAL STUDIES 2023; 64:6. [PMID: 36905471 PMCID: PMC10008522 DOI: 10.1186/s40529-023-00371-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The biodiversity of the mycobiota of soft cheese rinds such as Brie or Camembert has been extensively studied, but scant information is available on the fungi colonizing the rinds of cheese produced in the Southern Switzerland Alps. This study aimed at exploring the fungal communities present on rinds of cheese matured in five cellars in Southern Switzerland and to evaluate their composition with regards to temperature, relative humidity, type of cheese, as well as microenvironmental and geographic factors. We used macro- and microscopical morphology, matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry, and sequencing to characterize the fungal communities of the cheeses, and compared them with metabarcoding targeting the ITS region. RESULTS Isolation by serial dilution yielded 201 isolates (39 yeasts and 162 filamentous fungi) belonging to 9 fungal species. Mucor and Penicillium were dominant, with Mucor racemosus, M. lanceolatus, P. biforme, and P. chrysogenum/rubens being the most frequent species. All but two yeast isolates were identified as Debaryomyces hansenii. Metabarcoding detected 80 fungal species. Culture work and metabarcoding produced comparable results in terms of similarity of the fungal cheese rind communities in the five cellars. CONCLUSIONS Our study has shown that the mycobiota on the rinds of the cheeses studied is a comparatively species-poor community influenced by temperature, relative humidity, type of cheese, and manufacturing steps, as well as microenvironmental and possibly geographic factors.
Collapse
Affiliation(s)
- Sophie De Respinis
- Institute of Microbiology , University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Via Mirasole 22A, 6500, Bellinzona, Switzerland
| | - AnnaPaola Caminada
- Institute of Microbiology , University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Via Mirasole 22A, 6500, Bellinzona, Switzerland
| | - Elisa Pianta
- Institute of Microbiology , University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Via Mirasole 22A, 6500, Bellinzona, Switzerland
| | - Antoine Buetti-Dinh
- Institute of Microbiology , University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Via Mirasole 22A, 6500, Bellinzona, Switzerland
| | - Patrizia Riva Scettrini
- Agriculture Advisory Service, Republic and Canton of Ticino, Viale Stefano Franscini 17, 6501, Bellinzona, Switzerland
| | | | - Mauro Tonolla
- Institute of Microbiology , University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Via Mirasole 22A, 6500, Bellinzona, Switzerland
| | - Orlando Petrini
- Institute of Microbiology , University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Via Mirasole 22A, 6500, Bellinzona, Switzerland.
- POLE Pharma Consulting, Via Al Perato 15C, 6932, Breganzona, Switzerland.
| |
Collapse
|
23
|
Cadotte MW. Quantifying and linking mechanism scenarios to invasive species impact. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2777. [PMID: 36377921 DOI: 10.1002/eap.2777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Plant species invasion represents one of the major drivers of biodiversity change globally, yet there is confusion about the nature of nonindigenous species (NIS) impact. This confusion stems from differing notions of what constitutes invasive species impact and the scales at which it should be assessed. At local scales, the mechanisms of the impact on local competitors can be classified into four scenarios: (1) minimal impact from NIS inhabiting unique niches; (2) neutral impact spread across the community and proportional to NIS abundance; (3) targeted impact on a small number of competitors with overlapping niches; and (4) pervasive impact that is disproportionate to NIS abundance and caused by modifications that filter out other species. I developed a statistical test to distinguish these four mechanism scenarios based on plant community rank-abundance curves and then created a scale-independent standardized impact score. Using an example long-term dataset with high native plant diversity and an abundance gradient of the invasive vine, Vincetoxicum rossicum, I show that the impact resulted in either targeted or pervasive extirpations. Regardless of whether the NIS impact is neutral, targeted, or pervasive, the net outcome will be the homogenization of ecosystems and reduced biodiversity at larger scales, perhaps reducing ecosystem resilience. The framework and statistical evaluation of impact presented in this paper provide researchers and managers with an objective approach to quantifying NIS impact and prioritizing species for further management actions.
Collapse
Affiliation(s)
- Marc William Cadotte
- Department of Biological Sciences, University of Toronto-Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Detecting changes induced by industrialization on bird communities: a before–after comparison using diversity/dominance curves. COMMUNITY ECOL 2023. [DOI: 10.1007/s42974-023-00135-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
25
|
Loudon AH, Terrell KA, Davis RW, Umile TP, Lipps GJ, Greathouse J, Chapman E, Roblee K, Kleopfer JD, Bales EK, Hyman OJ, Harris RN, Minbiole KPC. Metabolite compositions on skins of eastern hellbenders Cryptobranchus alleganiensis alleganiensis differ with location and captivity. DISEASES OF AQUATIC ORGANISMS 2023; 153:9-16. [PMID: 36727687 DOI: 10.3354/dao03715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Eastern hellbenders Cryptobranchus alleganiensis alleganiensis, large aquatic salamanders, are declining over most of their range. The amphibian-killing fungus Batrachochytrium dendrobatidis (Bd) has contributed to global amphibian declines and has been detected on eastern hellbenders, but infection intensities were lower than those of species that are more susceptible to Bd. The factors limiting Bd on hellbenders may include antifungal metabolites produced by their skin microbiota. We used a metabolite fingerprinting technique to noninvasively identify the presence, but not identity, of metabolites associated with eastern hellbenders. We surveyed the skin of wild eastern hellbenders to test whether the composition and richness (i.e. number of metabolites) of their metabolites are explained by Bd status or location. Furthermore, we surveyed for metabolites on captive eastern hellbenders to test whether metabolite compositions were different between captive and wild eastern hellbenders. Bd detection was not associated with either metabolite richness or composition. Both metabolite composition and richness differed significantly on hellbenders from different locations (i.e. states). For metabolite composition, there was a statistical interaction between location and Bd status. Metabolite richness was greater on captive eastern hellbenders compared to wild hellbenders, and metabolite compositions differed between wild and captive eastern hellbenders. The methods we employed to detect metabolite profiles effectively grouped individuals by location even though metabolite composition and richness have high levels of intraspecific variation. Understanding the drivers and functional consequences of assemblages of skin metabolites on amphibian health will be an important step toward understanding the mechanisms that result in disease vulnerability.
Collapse
Affiliation(s)
- Andrew H Loudon
- Biology Department, Vancouver Island University, Nanaimo, British Columbia V9R 5S5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Liu L, Wang H, Zhang H, Chen X, Zhang Y, Wu J, Zhao L, Wang D, Pu J, Ji P, Xie P. Toward a Deeper Understanding of Gut Microbiome in Depression: The Promise of Clinical Applicability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203707. [PMID: 36285702 PMCID: PMC9762301 DOI: 10.1002/advs.202203707] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/15/2022] [Indexed: 05/30/2023]
Abstract
The emergence of the coronavirus disease 2019 pandemic has dramatically increased the global prevalence of depression. Unfortunately, antidepressant drugs benefit only a small minority of patients. Thus, there is an urgent need to develop new interventions. Accumulating evidence supports a causal relationship between gut microbiota dysbiosis and depression. To advance microbiota-based diagnostics and therapeutics of depression, a comprehensive overview of microbial alterations in depression is presented to identify effector microbial biomarkers. This procedure generated 215 bacterial taxa from humans and 312 from animal models. Compared to controls, depression shows significant differences in β-diversity, but no changes in microbial richness and diversity. Additionally, species-specific microbial changes are identified like increased Eggerthella in humans and decreased Acetatifactor in rodent models. Moreover, a disrupted microbiome balance and functional changes, characterized by an enrichment of pro-inflammatory bacteria (e.g., Desulfovibrio and Escherichia/Shigella) and depletion of anti-inflammatory butyrate-producing bacteria (e.g., Bifidobacterium and Faecalibacterium) are consistently shared across species. Confounding effects of geographical region, depression type, and intestinal segments are also investigated. Ultimately, a total of 178 species and subspecies probiotics are identified to alleviate the depressive phenotypes. Current findings provide a foundation for developing microbiota-based diagnostics and therapeutics and advancing microbiota-oriented precision medicine for depression.
Collapse
Affiliation(s)
- Lanxiang Liu
- Department of NeurologyYongchuan Hospital of Chongqing Medical UniversityChongqing402160China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical UniversityChongqing401147China
| | - Hanping Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Xueyi Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Yangdong Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Ji Wu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Libo Zhao
- Department of NeurologyYongchuan Hospital of Chongqing Medical UniversityChongqing402160China
| | - Dongfang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Ping Ji
- College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical UniversityChongqing401147China
| | - Peng Xie
- Department of NeurologyYongchuan Hospital of Chongqing Medical UniversityChongqing402160China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical UniversityChongqing401147China
| |
Collapse
|
27
|
Blair J, Weiser MD, de Beurs K, Kaspari M, Siler C, Marshall KE. Embracing imperfection: Machine-assisted invertebrate classification in real-world datasets. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
The use of ecological analytical tools as an unconventional approach for untargeted metabolomics data analysis: the case of Cecropia obtusifolia and its adaptive responses to nitrate starvation. Funct Integr Genomics 2022; 22:1467-1493. [PMID: 36199002 DOI: 10.1007/s10142-022-00904-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/04/2022]
Abstract
Plant metabolomics studies haves revealed new bioactive compounds. However, like other omics disciplines, the generated data are not fully exploited, mainly because the commonly performed analyses focus on elucidating the presence/absence of distinctive metabolites (and/or their precursors) and not on providing a holistic view of metabolomic changes and their participation in organismal adaptation to biotic and abiotic stress conditions. Therefore, spectral libraries generated from Cecropia obtusifolia cell suspension cultures in a previous study were considered as a case study and were reanalyzed herein. These libraries were obtained from a time-course experiment under nitrate starvation conditions using both electrospray ionization modes. The applied methodology included the use of ecological analytical tools in a systematic four-step process, including a population analysis of metabolite α diversity, richness, and evenness (i); a chemometrics analysis to identify discriminant groups (ii); differential metabolic marker identification (iii); and enrichment analyses and annotation of active metabolic pathways enriched by differential metabolites (iv). Our species α diversity results referring to the diversity of metabolites represented by mass-to-charge ratio (m/z) values detected at a specific retention time (rt) (an uncommon way to analyze untargeted metabolomic data) suggest that the metabolome is dynamic and is modulated by abiotic stress. A total of 147 and 371 m/z_rt pairs was identified as differential markers responsive to nitrate starvation in ESI- and ESI+ modes, respectively. Subsequent enrichment analysis showed a high degree of completeness of biosynthetic pathways such as those of brassinosteroids, flavonoids, and phenylpropanoids.
Collapse
|
29
|
Ibarra‐Isassi J, Handa IT, Lessard J. Community‐wide trait adaptation, but not plasticity, explain ant community structure in extreme environments. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Javier Ibarra‐Isassi
- Department of Biology Concordia University Montréal QC Canada
- Québec Centre for Biodiversity Sciences, Stewart Biological Sciences Building, 1205 Dr. Penfield Avenue Montréal QC Canada
| | - Ira Tanya Handa
- Département des Sciences Biologiques Université du Québec à Montréal Montréal QC Canada
- Québec Centre for Biodiversity Sciences, Stewart Biological Sciences Building, 1205 Dr. Penfield Avenue Montréal QC Canada
| | - Jean‐Philippe Lessard
- Department of Biology Concordia University Montréal QC Canada
- Québec Centre for Biodiversity Sciences, Stewart Biological Sciences Building, 1205 Dr. Penfield Avenue Montréal QC Canada
| |
Collapse
|
30
|
Ren Z, Yang M, He H, Ma Y, Zhou Y, Liu B, Xue K. Transgenic Maize Has Insignificant Effects on the Diversity of Arthropods: A 3-Year Study. PLANTS 2022; 11:plants11172254. [PMID: 36079638 PMCID: PMC9460771 DOI: 10.3390/plants11172254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
In order to provide more evidence for the evaluation of the ecological risks of transgenic maize, arthropod population dynamics and biodiversity in fields planted with two kinds of transgenic maize (DBN9868, expressing the PAT and EPSPS genes, and DBN9936, expressing the Cry1Ab and EPSPS gene) were investigated by direct observation and trapping for three years. The recorded arthropod species belonged to 19 orders and 87 families, including Aphidoidea, Chrysomelidae, Coccinellidae, Chrysopidae and Araneae. The species richness, Shannon–Wiener diversity index, Pielou evenness index, dominance index and community similarity index of arthropod communities in maize fields were statistically analyzed, and the results showed that (1) the biodiversity difference of arthropod communities between transgenic maize and non-transgenic maize was smaller than that between different conventional cultivars; (2) the differences between ground-dwelling arthropod communities were less obvious than those between plant-inhabiting arthropod communities; and (3) Lepidoptera, the target pests of Bt maize, were not the dominant population in maize fields, and the dominant arthropod population in maize fields varied greatly between years and months. Combining those results, we concluded that the transgenic maize DBN9868 and DBN9936 had no significant effect on the arthropod communities in the field.
Collapse
Affiliation(s)
- Zhentao Ren
- Country Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Muzhi Yang
- Country Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Haopeng He
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yanjie Ma
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yijun Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Biao Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
- Correspondence: (B.L.); (K.X.)
| | - Kun Xue
- Country Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
- Correspondence: (B.L.); (K.X.)
| |
Collapse
|
31
|
Jaman MF, Alam MM, Shome AR, Saha A, Rabbe MF, Rana MAS, Sarker MAR, Rahman MM. Diversity and community structure of wild vertebrates in the Sandwip Island of Bangladesh. Trop Ecol 2022. [DOI: 10.1007/s42965-022-00262-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
32
|
Saha A, Alam MM, Jaman MF, Saha N, Rahman MM. Avian community structure in human dominated landscape in Daudkandi, Bangladesh. COMMUNITY ECOL 2022. [DOI: 10.1007/s42974-022-00105-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
Mantoani MC, Alhakami FT, Fearon H, Gioria M, Schmidt O, Osborne BA. Gunnera tinctoria invasions increase, not decrease, earthworm abundance and diversity. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02873-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractInvasive plants often modify soil biotic communities through changes in soil physicochemical characteristics or the amount and/or quality of litter inputs. We assessed the impacts of Gunnera tinctoria invasions on soil and the earthworm community, on Achill Island, Co. Mayo, Ireland. We compared replicated (n = 5) areas invaded by G. tinctoria with uninvaded semi-natural grasslands, as well as with areas subjected to mechanical removal or herbicide treatment. Modifications in physiochemical properties included lower soil temperatures and higher soil pH during the summer in invaded areas, yet little effect on C and N stocks, or soil moisture. Marked differences in litter were observed, however, with invaded areas having c. 20-fold higher (above-ground) litter input than uninvaded ones, as well as lower C:N ratio (17 vs. 29). This was associated with a significantly higher overall abundance and biomass of earthworms in invaded plots (375 individuals m–2, 115 g biomass m–2), compared to the uninvaded control (130 individuals m–2, 45 g biomass m–2), with removal treatments having intermediate values. Earthworm communities comprised 10 species, typical for Irish grasslands, dominated by the common endogeic species Allolobophora chlorotica, Aporrectodea caliginosa and Aporrectodea rosea. Both earthworm species richness and Shannon diversity were significantly higher in invaded areas, but only in spring samples. Based on this new information, plant invaders may increase the abundance and diversity of earthworms, mainly due to much larger litter inputs, increased soil pH and possibly lower soil temperatures in the summer.typical of Irish grasslands
Collapse
|
34
|
Richness, not evenness, varies across water availability gradients in grassy biomes on five continents. Oecologia 2022; 199:649-659. [PMID: 35833986 DOI: 10.1007/s00442-022-05208-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 06/10/2022] [Indexed: 10/17/2022]
Abstract
We sought to understand the role that water availability (expressed as an aridity index) plays in determining regional and global patterns of richness and evenness, and in turn how these water availability-diversity relationships may result in different richness-evenness relationships at regional and global scales. We examined relationships between water availability, richness and evenness for eight grassy biomes spanning broad water availability gradients on five continents. Our study found that relationships between richness and water availability switched from positive for drier (South Africa, Tibet and USA) vs. negative for wetter (India) biomes, though were not significant for the remaining biomes. In contrast, only the India biome showed a significant relationship between water availability and evenness, which was negative. Globally, the richness-water availability relationship was hump-shaped, however, not significant for evenness. At the regional scale, a positive richness-evenness relationship was found for grassy biomes in India and Inner Mongolia, China. In contrast, this relationship was weakly concave-up globally. These results suggest that different, independent factors are determining patterns of species richness and evenness in grassy biomes, resulting in differing richness-evenness relationships at regional and global scales. As a consequence, richness and evenness may respond very differently across spatial gradients to anthropogenic changes, such as climate change.
Collapse
|
35
|
Patterns and Driving Factors of Diversity in the Shrub Community in Central and Southern China. FORESTS 2022. [DOI: 10.3390/f13071090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Climate, topography, and human activities are known to influence plant diversity. In the present study, species-abundance distribution (SAD) patterns of the shrub community were fitted, and the mechanism of contribution of 22 driving factors was assessed. The results showed that the α-diversity index exhibited no significant differences between artificial disturbance and the natural community. The Zipf and Zipf–Mandelbrot models were found to exhibit a good SAD fitting of the communities, thereby exhibiting a different diversity structure. It was observed that the SAD followed more than one rule, and the Zipf–Mandelbrot model was better than other models. The gradient boosting model indicated that precipitation in the wettest month, annual precipitation, and slope direction showed the strongest impact on plant richness. The indicator species of the artificial disturbance and natural community were identified from a multiple regression tree. Furthermore, an increase in species diversity was observed with a rise in latitude, exhibiting a single-peaked curve with increased altitude. β-diversity analysis indicated that both habitat filtering and the neutral effect influenced the establishment of the natural community, while the establishment of the artificial disturbance community was only affected by habitat filtering. Our study provides a better understanding of the ecological process of the maintenance of shrub-community diversity.
Collapse
|
36
|
Battisti C, Di Giulio A, Fanelli G, Cerfolli F. Anthills: stressor or opportunity for plant assemblage diversity? Evidence from Mediterranean Dasypyretum grasslands. ETHOL ECOL EVOL 2022. [DOI: 10.1080/03949370.2021.1941269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Corrado Battisti
- Torre Flavia LTER (Long Term Ecological Research) Station, Città Metropolitana di Roma Capitale, Servizio Aree Protette, Parchi Regionali, Viale G. Ribotta 41, Rome 00144, Italy
| | - Andrea Di Giulio
- Dipartimento di Scienze, Università Roma Tre, Viale G. Marconi 446, Rome 00146, Italy
| | - Giuliano Fanelli
- Dipartimento di Biologia, Università di Roma Tor Vergata, Rome 00133, Italy
| | - Fulvio Cerfolli
- Department of Ecological and Biological Sciences (DEB), Ichthyogenic Experimental Marine Centre (CISMAR), Tuscia University, Borgo Le Saline, Tarquinia (Viterbo) 01016, Italy
| |
Collapse
|
37
|
Hořák D, Rivas‐Salvador J, Farkač J, Reif J. Traits and ecological space availability predict avian densities at the country scale of the Czech Republic. Ecol Evol 2022; 12:e9119. [PMID: 35866025 PMCID: PMC9289119 DOI: 10.1002/ece3.9119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/11/2022] Open
Abstract
Species' geographical distributions and abundances are a central focus of current ecological research. Although multiple studies have been conducted on their elucidation, some important information is still missing. One of them is the knowledge of ecological traits of species responsible for the population density variations across geographical (i.e., total physical area) and ecological spaces (i.e., suitable habitat area). This is crucial for understanding how ecological specialization shapes the geographical distribution of species, and provides key knowledge about the sensitivity of species to current environmental challenges. Here, we precisely describe habitat availability for individual species using fine-scale field data collected across the entire Czech Republic. In the next step, we used this information to test the relationships between bird traits and country-scale estimates of population densities assessed in both geographical and ecological spaces. We did not find any effect of habitat specialization on avian density in geographical space. But when we recalculated densities for ecological space available, we found a positive correlation with habitat specialization. Specialists occur at higher densities in suitable habitats. Moreover, birds with arboreal and hole-nesting strategies showed higher densities in both geographical and ecological spaces. However, we found no significant effects of morphological (body mass and structural body size) and reproductive (position along the slow-fast life-history continuum) traits on avian densities in either geographical or ecological space. Our findings suggest that ecological space availability is a strong determinant of avian abundance and highlight the importance of precise knowledge of species-specific habitat requirements. Revival of this classical but challenging ecological topic of habitat-specific densities is needed for both proper understanding of pure ecological issues and practical steps in the conservation of nature.
Collapse
Affiliation(s)
- David Hořák
- Department of Ecology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Javier Rivas‐Salvador
- Institute of Environmental Sciences, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Jan Farkač
- Department of Ecology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Jiří Reif
- Institute of Environmental Sciences, Faculty of ScienceCharles UniversityPragueCzech Republic
- Department of Zoology, Faculty of SciencePalacký UniversityOlomoucCzech Republic
- Czech Society for OrnithologyPragueCzech Republic
| |
Collapse
|
38
|
Small CM, Healey HM, Currey MC, Beck EA, Catchen J, Lin ASP, Cresko WA, Bassham S. Leafy and weedy seadragon genomes connect genic and repetitive DNA features to the extravagant biology of syngnathid fishes. Proc Natl Acad Sci U S A 2022; 119:e2119602119. [PMID: 35733255 PMCID: PMC9245644 DOI: 10.1073/pnas.2119602119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/13/2022] [Indexed: 12/18/2022] Open
Abstract
Seadragons are a remarkable lineage of teleost fishes in the family Syngnathidae, renowned for having evolved male pregnancy. Comprising three known species, seadragons are widely recognized and admired for their fantastical body forms and coloration, and their specific habitat requirements have made them flagship representatives for marine conservation and natural history interests. Until recently, a gap has been the lack of significant genomic resources for seadragons. We have produced gene-annotated, chromosome-scale genome models for the leafy and weedy seadragon to advance investigations of evolutionary innovation and elaboration of morphological traits in seadragons as well as their pipefish and seahorse relatives. We identified several interesting features specific to seadragon genomes, including divergent noncoding regions near a developmental gene important for integumentary outgrowth, a high genome-wide density of repetitive DNA, and recent expansions of transposable elements and a vesicular trafficking gene family. Surprisingly, comparative analyses leveraging the seadragon genomes and additional syngnathid and outgroup genomes revealed striking, syngnathid-specific losses in the family of fibroblast growth factors (FGFs), which likely involve reorganization of highly conserved gene regulatory networks in ways that have not previously been documented in natural populations. The resources presented here serve as important tools for future evolutionary studies of developmental processes in syngnathids and hold value for conservation of the extravagant seadragons and their relatives.
Collapse
Affiliation(s)
- Clayton M. Small
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
- Presidential Initiative in Data Science, University of Oregon, Eugene, OR 97403
| | - Hope M. Healey
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
| | - Mark C. Currey
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
| | - Emily A. Beck
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
- Presidential Initiative in Data Science, University of Oregon, Eugene, OR 97403
| | - Julian Catchen
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Angela S. P. Lin
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403
| | - William A. Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
- Presidential Initiative in Data Science, University of Oregon, Eugene, OR 97403
| | - Susan Bassham
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
| |
Collapse
|
39
|
Abstract
High-throughput sequencing for B cell receptor (BCR) repertoire provides useful insights for the adaptive immune system. With the continuous development of the BCR-seq technology, many efforts have been made to develop methods for analyzing the ever-increasing BCR repertoire data. In this review, we comprehensively outline different BCR repertoire library preparation protocols and summarize three major steps of BCR-seq data analysis, i. e., V(D)J sequence annotation, clonal phylogenetic inference, and BCR repertoire profiling and mining. Different from other reviews in this field, we emphasize background intuition and the statistical principle of each method to help biologists better understand it. Finally, we discuss data mining problems for BCR-seq data and with a highlight on recently emerging multiple-sample analysis.
Collapse
|
40
|
Davison J, Vasar M, Sepp SK, Oja J, Al-Quraishy S, Bueno CG, Cantero JJ, Chimbioputo Fabiano E, Decocq G, Fraser L, Hiiesalu I, Hozzein WN, Koorem K, Moora M, Mucina L, Onipchenko V, Öpik M, Pärtel M, Phosri C, Semchenko M, Vahter T, Tedersoo L, Zobel M. Dominance, diversity, and niche breadth in arbuscular mycorrhizal fungal communities. Ecology 2022; 103:e3761. [PMID: 35582944 DOI: 10.1002/ecy.3761] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/08/2022]
Abstract
Classical theory identifies resource competition as the major structuring force of biotic communities and predicts that: (i) levels of dominance and richness in communities are inversely related, (ii) narrow niches allow dense 'packing' in niche space and thus promote diversity, and (iii) dominants are generalists with wide niches, such that locally abundant taxa also exhibit wide distributions. Current empirical support, however, is mixed. We tested these expectations using published data on arbuscular mycorrhizal (AM) fungal community composition worldwide. We recorded the expected negative relationship between dominance and richness and, to a degree, the positive association between local and global dominance. However, contrary to expectation, dominance was pronounced in communities where more specialists were present; and, conversely, richness was higher in communites with more generalists. Thus, resource competition and niche packing appear of limited importance in AM fungal community assembly; rather patterns of dominance and diversity seem more consistent with habitat filtering and stochastic processes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- John Davison
- Institute of Ecology and Earth Sciences, University of Tartu, Estonia
| | - Martti Vasar
- Institute of Ecology and Earth Sciences, University of Tartu, Estonia
| | - Siim-Kaarel Sepp
- Institute of Ecology and Earth Sciences, University of Tartu, Estonia
| | - Jane Oja
- Institute of Ecology and Earth Sciences, University of Tartu, Estonia
| | - Saleh Al-Quraishy
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - C Guillermo Bueno
- Institute of Ecology and Earth Sciences, University of Tartu, Estonia
| | - Juan José Cantero
- Universidad Nacional de Córdoba, Instituto Multidisciplinario de Biología Vegetal, CONICET, Córdoba, Argentina.,Universidad Nacional de Río Cuarto, Departamento de Biología Agrícola, Facultad de Agronomía y Veterinaria, Córdoba, Argentina
| | | | - Guillaume Decocq
- Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, UMR CNRS 7058), Jules Verne University of Picardie, Amiens, France
| | - Lauchlan Fraser
- Department of Natural Resource Sciences, Thompson Rivers University, Kamloops, British Columbia, Canada
| | - Inga Hiiesalu
- Institute of Ecology and Earth Sciences, University of Tartu, Estonia
| | - Wael N Hozzein
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia.,Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Kadri Koorem
- Institute of Ecology and Earth Sciences, University of Tartu, Estonia
| | - Mari Moora
- Institute of Ecology and Earth Sciences, University of Tartu, Estonia
| | - Ladislav Mucina
- Iluka Chair in Vegetation Science and Biogeography, Harry Butler Institute, Murdoch University, Murdoch, Perth, Australia.,Department of Geography & Environmental Studies, Stellenbosch University, Stellenbosch, South Africa
| | - Vladimir Onipchenko
- Department of Ecology and Plant Geography, Faculty of Biology, Moscow Lomonosov State University, Moscow, Russia
| | - Maarja Öpik
- Institute of Ecology and Earth Sciences, University of Tartu, Estonia
| | - Meelis Pärtel
- Institute of Ecology and Earth Sciences, University of Tartu, Estonia
| | - Cherdchai Phosri
- Department of Biology, Nakhon Phanom University, Nakhon Phanom, Thailand
| | - Marina Semchenko
- Institute of Ecology and Earth Sciences, University of Tartu, Estonia.,School of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| | - Tanel Vahter
- Institute of Ecology and Earth Sciences, University of Tartu, Estonia
| | - Leho Tedersoo
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia.,Mycology and Microbiology Center, University of Tartu, Tartu, Estonia
| | - Martin Zobel
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia.,Department of Botany, University of Tartu, Tartu, Estonia
| |
Collapse
|
41
|
Li Y, Geng M, Yu J, Du Y, Xu M, Zhang W, Wang J, Su H, Wang R, Chen F. Eutrophication decrease compositional dissimilarity in freshwater plankton communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153434. [PMID: 35090915 DOI: 10.1016/j.scitotenv.2022.153434] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Human activities, such as land use change and eutrophication, threaten freshwater biodiversity and ecosystem function. In this study, we examined both the α- and β-diversity of plankton communities, that is, bacteria/prokaryotic algae, eukaryotic algae, and zooplankton/metazoans, using both classical microscopy and high-throughput sequencing methods across 40 lakes of the Yangtze River Basin. The spatial variations in plankton communities were explained by environmental variables such as trophic status index (TSI) and environmental heterogeneity according to non-metric multidimensional scaling analyses, mantel tests, and structural equation model. Our results showed that the compositional dissimilarities of bacteria, cyanobacteria, eukaryotic algae, and metazoans all decreased with the increasing TSI values, and were significantly positively related to environmental dissimilarity. Both the species richness and compositional dissimilarity of zooplankton had positive effects on zooplankton/phytoplankton biomass ratio. Zooplankton diversity was not directly affected by TSI and environmental dissimilarity; however, it was indirectly affected by the biotic interactions with cyanobacteria or eukaryotic algae. In addition, there were significant positive relationships between bacteria/cyanobacteria and eukaryotic algae dissimilarities. Our results indicated that increased trophic status and decreased environmental dissimilarity as consequences of eutrophication may weaken the trophic cascading effects of planktonic food chain via reducing the top-down effects of zooplankton on phytoplankton.
Collapse
Affiliation(s)
- Yun Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Mengdie Geng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jinlei Yu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yingxun Du
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Min Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Weizhen Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haojie Su
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Rong Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Feizhou Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
42
|
A functional ecology framework for understanding and predicting animal responses to plant invasion. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02813-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
43
|
Köpp Hollunder R, Garbin ML, Rubio Scarano F, Mariotte P. Regional and local determinants of drought resilience in tropical forests. Ecol Evol 2022; 12:e8943. [PMID: 35646321 PMCID: PMC9130645 DOI: 10.1002/ece3.8943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 11/11/2022] Open
Abstract
The increase in severity of droughts associated with greater mortality and reduced vegetation growth is one of the main threats to tropical forests. Drought resilience of tropical forests is affected by multiple biotic and abiotic factors varying at different scales. Identifying those factors can help understanding the resilience to ongoing and future climate change. Altitude leads to high climate variation and to different forest formations, principally moist or dry tropical forests with contrasted vegetation structure. Each tropical forest can show distinct responses to droughts. Locally, topography is also a key factor controlling biotic and abiotic factors related to drought resilience in each forest type. Here, we show that topography has key roles controlling biotic and abiotic factors in each forest type. The most important abiotic factors are soil nutrients, water availability, and microclimate. The most important biotic factors are leaf economic and hydraulic plant traits, and vegetation structure. Both dry tropical forests and ridges (steeper and drier habitats) are more sensitive to droughts than moist tropical forest and valleys (flatter and wetter habitats). The higher mortality in ridges suggests that conservative traits are not sufficient to protect plants from drought in drier steeper habitats. Our synthesis highlights that altitude and topography gradients are essential to understand mechanisms of tropical forest's resilience to future drought events. We described important factors related to drought resilience, however, many important knowledge gaps remain. Filling those gaps will help improve future practices and studies about mitigation capacity, conservation, and restoration of tropical ecosystems.
Collapse
Affiliation(s)
- Renan Köpp Hollunder
- Programa de Pós-graduação em Ecologia IB, CCS, Ilha do Fundão Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Mário Luís Garbin
- Departamento de Biologia Centro de Ciências Exatas, Naturais e da Saúde Alto Universitário Universidade Federal do Espírito Santo Alegre Brazil
| | - Fabio Rubio Scarano
- Programa de Pós-graduação em Ecologia IB, CCS, Ilha do Fundão Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | | |
Collapse
|
44
|
Effect of luxS encoding a synthase of quorum-sensing signal molecule AI-2 of Vibrio vulnificus on mouse gut microbiome. Appl Microbiol Biotechnol 2022; 106:3721-3734. [PMID: 35488933 DOI: 10.1007/s00253-022-11935-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 12/19/2022]
Abstract
Autoinducer-2 (AI-2), a quorum-sensing signal molecule from the human pathogen Vibrio vulnificus, was assessed for its effect on the gut microbiome of mice. For this, we employed 16S rRNA sequencing to compare the gut microbiome of mice infected with either wild-type V. vulnificus or with the isotype ΔluxS that has a deletion in luxS which encodes the biosynthetic function of AI-2. The relative ratio of wild-type Vibrio species in the jejunum and ileum of mice infected with the wild type was significantly higher than that in mice infected with ΔluxS, suggesting that AI-2 plays an important role in the colonization of V. vulnificus in the small intestine. The bacterial composition in the gut of mice infected with ΔluxS comprises a higher proportion of Firmicutes, composed mainly of Lactobacillus, compared to the mice infected with wild-type cells. In the large intestine, Vibrio species were barely detected regardless of genetic background. Three Lactobacillus spp. isolated from fecal samples from mice infected with ΔluxS manifested significant antibacterial activities against V. vulnificus. Culture supernatants from these three species were dissolved by HPLC, and a substance in fractions showing inhibitory activity against V. vulnificus was determined to be lactic acid. Our results suggest that luxS in V. vulnificus affects not only the ability of the species to colonize the host gut but also its susceptibility to the growth-inhibiting activity of commensal bacteria including Lactobacillus. KEY POINTS: • Gut microbiomes of ΔluxS-infected and WT Vibrio-infected mice differed greatly. • Difference was most prominent in the jejunum and ileum compared to the duodenum or large intestine. • In the small and large intestines of mice, the relative proportions of Vibrio and Lactobacillus species showed a negative relationship. • Effector molecules produced by Lactobacillus in mouse gut inhibit Vibrio growth.
Collapse
|
45
|
Cham H, Malek S, Milow P, Song C. Developing an ecological visualization system for biodiversity data. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2066195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Hui Cham
- Bioinformatics, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Sorayya Malek
- Bioinformatics, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Pozi Milow
- Environmental Management, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Cheen Song
- Bioinformatics, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
46
|
Yang X, Gómez-Aparicio L, Lortie CJ, Verdú M, Cavieres LA, Huang Z, Gao R, Liu R, Zhao Y, Cornelissen JHC. Net plant interactions are highly variable and weakly dependent on climate at the global scale. Ecol Lett 2022; 25:1580-1593. [PMID: 35460586 DOI: 10.1111/ele.14010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/02/2022] [Accepted: 03/28/2022] [Indexed: 11/27/2022]
Abstract
Although plant-plant interactions (i.e. competition and facilitation) have long been recognised as key drivers of plant community composition and dynamics, their global patterns and relationships with climate have remained unclear. Here, we assembled a global database of 10,502 pairs of empirical data from the literature to address the patterns of and climatic effects on the net outcome of plant interactions in natural communities. We found that plant interactions varied among plant performance indicators, interaction types and biomes, yet competition occurred more frequently than facilitation in plant communities worldwide. Unexpectedly, plant interactions showed weak latitudinal pattern and were weakly related to climate. Our study provides a global comprehensive overview of plant interactions, highlighting competition as a fundamental mechanism structuring plant communities worldwide. We suggest that further investigations should focus more on local factors (e.g. microclimate, soil and disturbance) than on macroclimate to identify key environmental determinants of interactions in plant communities.
Collapse
Affiliation(s)
- Xuejun Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | | | - Miguel Verdú
- Department of Plant Ecology, Centro de Investigaciones sobre Desertificación, CSIC-UVEG-GV), Valencia, Spain
| | - Lohengrin A Cavieres
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.,Instituto de Ecología y Biodiversidad - IEB, Santiago, Chile
| | - Zhenying Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Ruiru Gao
- The School of Life Sciences, Shanxi Normal University, Shanxi, Linfen, China
| | - Rong Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yonglan Zhao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
47
|
Ulrich W, Matthews TJ, Biurrun I, Campos JA, Czortek P, Dembicz I, Essl F, Filibeck G, Giusso Del Galdo GP, Güler B, Naqinezhad A, Török P, Dengler J. Environmental drivers and spatial scaling of species abundance distributions in Palaearctic grassland vegetation. Ecology 2022; 103:e3725. [PMID: 35416279 PMCID: PMC9540260 DOI: 10.1002/ecy.3725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022]
Abstract
Species abundance distributions (SADs) link species richness with species abundances and are an important tool in the quantitative analysis of ecological communities. Niche‐based and sample‐based SAD models predict different spatial scaling properties of SAD parameters. However, empirical research on SAD scaling properties is largely missing. Here we extracted percentage cover values of all occurring vascular plants as proxies of their abundance in 1725 10‐m2 plots from the GrassPlot database, covering 47 regional data sets of 19 different grasslands and other open vegetation types of the Palaearctic biogeographic realm. For each plot, we fitted the Weibull distribution, a model that is able to effectively mimic other distributions like the log‐series and lognormal, to the species–log abundance rank order distribution. We calculated the skewness and kurtosis of the empirical distributions and linked these moments, along with the shape and scale parameters of the Weibull distribution, to plot climatic and soil characteristics. The Weibull distribution provided excellent fits to grassland plant communities and identified four basic types of communities characterized by different degrees of dominance. Shape and scale parameter values of local communities on poorer soils were largely in accordance with log‐series distributions. Proportions of subdominant species tended to be lower than predicted by the standard lognormal SAD. Successive accumulation of plots of the same vegetation type yielded nonlinear spatial scaling of SAD moments and Weibull parameters. This scaling was largely independent of environmental correlates and geographic plot position. Our findings caution against simple generalizations about the mechanisms that generate SADs. We argue that in grasslands, lognormal‐type SADs tend to prevail within a wider range of environmental conditions, including more extreme habitats such as arid environments. In contrast, log‐series distributions are mainly restricted to comparatively species‐rich communities on humid and fertile soils.
Collapse
Affiliation(s)
- Werner Ulrich
- Department of Ecology and Biogeography, Nicolaus Copernicus University, Toruń, Poland
| | - Thomas J Matthews
- GEES (School of Geography, Earth and Environmental Sciences) and Birmingham Institute of Forest Research, Birmingham, UK.,CE3C - Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group and Universidade dos Açores - Depto de Ciências Agráriase Engenharia do Ambiente, PT-9700-042, Angra do Heroísmo, Açores, Portugal
| | - Idoia Biurrun
- Department of Plant Biology and Ecology, University of the Basque Country UPV/EHU, Bilbao, Spain
| | - Juan Antonio Campos
- Department of Plant Biology and Ecology, University of the Basque Country UPV/EHU, Bilbao, Spain
| | - Patryk Czortek
- Białowieża Geobotanical Station, Faculty of Biology, University of Warsaw, Sportowa St. 19, 17-230 Białowieża, Poland
| | - Iwona Dembicz
- Department of Ecology and Environmental Conservation, Institute of Environmental Biology, Faculty of Biology, University of Warsaw, Żwirki i Wigury St. 101, Warsaw, Poland
| | - Franz Essl
- Bioinvasions, Global Change, Macroecology Group, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna, Austria
| | - Goffredo Filibeck
- Department of Agriculture and Forest Science (DAFNE), University of Tuscia, Viterbo, Italy
| | | | - Behlül Güler
- Biology Education, Dokuz Eylul University, Buca, İzmir, Turkey
| | - Alireza Naqinezhad
- Department of Plant Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Mazandaran, Iran
| | - Péter Török
- MTA-DE Lendület Functional and Restoration Ecology Research Group, University of Debrecen, Egyetem sqr. 1, Debrecen, Hungary.,Polish Academy of Sciences, Botanical Garden - Center for Biological Diversity Conservation in Powsin, Prawdziwka St. 2, 02-973, Warszawa, Poland.,University of Debrecen, Department of Ecology, Egyetem sqr. 1, Debrecen, Hungary
| | - Jürgen Dengler
- Vegetation Ecology, Institute of Natural Resource Management (IUNR) , Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland.,Plant Ecology, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, Leipzig, Germany
| |
Collapse
|
48
|
Robledo-Ospina LE, Morehouse N, Escobar F, Rao D. Search image formation for spider prey in a mud dauber wasp. Behav Processes 2022; 197:104619. [DOI: 10.1016/j.beproc.2022.104619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 11/30/2022]
|
49
|
Sermeño-Correa C, Lopera-Toro A, Moreno-Mancilla O, Candamil-Baños J, Ramírez-Restrepo L, Taboada Verona C. Diversidad de escarabajos coprófagos (Coleoptera: Scarabaeidae) en tres zonas urbanizadas del Caribe colombiano. REVISTA PERUANA DE BIOLOGÍA 2022. [DOI: 10.15381/rpb.v29i1.20887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
En el presente trabajo se estudia la diversidad de escarabajos coprófagos en tres zonas urbanizadas del departamento de Sucre, Colombia, cada una con características ecológicas distintas. Los individuos fueron capturados con trampas de caída cebadas. Se analizaron el esfuerzo de muestreo, las curvas de rango-abundancia y los índices de diversidad alfa y beta. Se capturaron 710 individuos, agrupados en nueve géneros y 13 especies. El análisis de completitud arrojó valores por encima del 97%. El ensamble más diverso en cualquiera de los tres órdenes de “q” se encontró en la zona que alberga edificaciones, jardines y un parche de bosque de vegetación secundaria, seguido por una zona de pastizales, con pocas edificaciones; el ensamble de menor diversidad correspondió a la zona rodeada de edificaciones y con escasa cobertura vegetal. El índice de Sorensen-Dice arrojó una similitud total entre las tres zonas del 38%. Las curvas de rango-abundancia mostraron mayor equidad de especies en la zona más diversa. Los resultados indicaron que la composición del ensamble de escarabajos depende de las condiciones ambientales y el grado de urbanización. Así mismo, se evidenció que algunas especies pueden tener alta adaptabilidad y que algunas de ellas corren el riesgo potencial de presentar eventos de extinción local.
Collapse
|
50
|
Enright DJ, Frangioso KM, Isobe K, Rizzo DM, Glassman SI. Mega‐fire in Redwood Tanoak Forest Reduces Bacterial and Fungal Richness and Selects for Pyrophilous Taxa that are Phylogenetically Conserved. Mol Ecol 2022; 31:2475-2493. [DOI: 10.1111/mec.16399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/19/2022] [Accepted: 02/03/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Dylan J. Enright
- Department of Microbiology and Plant Pathology University of California 3401 Watkins Drive Riverside CA 92521 USA
| | - Kerri M. Frangioso
- Department of Plant Pathology University of California 1 Shields Ave Davis CA 95616 USA
| | - Kazuo Isobe
- Department of Applied Biological Chemistry Graduate School of Agricultural and Life Sciences The University of Tokyo 1‐1‐1 Yayoi, Bunkyo‐ku Tokyo 113‐8657
| | - David M. Rizzo
- Department of Plant Pathology University of California 1 Shields Ave Davis CA 95616 USA
| | - Sydney I. Glassman
- Department of Microbiology and Plant Pathology University of California 3401 Watkins Drive Riverside CA 92521 USA
| |
Collapse
|