1
|
Kaplan HS, Horvath PM, Rahman MM, Dulac C. The neurobiology of parenting and infant-evoked aggression. Physiol Rev 2025; 105:315-381. [PMID: 39146250 DOI: 10.1152/physrev.00036.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/19/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
Parenting behavior comprises a variety of adult-infant and adult-adult interactions across multiple timescales. The state transition from nonparent to parent requires an extensive reorganization of individual priorities and physiology and is facilitated by combinatorial hormone action on specific cell types that are integrated throughout interconnected and brainwide neuronal circuits. In this review, we take a comprehensive approach to integrate historical and current literature on each of these topics across multiple species, with a focus on rodents. New and emerging molecular, circuit-based, and computational technologies have recently been used to address outstanding gaps in our current framework of knowledge on infant-directed behavior. This work is raising fundamental questions about the interplay between instinctive and learned components of parenting and the mutual regulation of affiliative versus agonistic infant-directed behaviors in health and disease. Whenever possible, we point to how these technologies have helped gain novel insights and opened new avenues of research into the neurobiology of parenting. We hope this review will serve as an introduction for those new to the field, a comprehensive resource for those already studying parenting, and a guidepost for designing future studies.
Collapse
Affiliation(s)
- Harris S Kaplan
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Patricia M Horvath
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Mohammed Mostafizur Rahman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| |
Collapse
|
2
|
Inada K. Neurobiological mechanisms underlying oxytocin-mediated parental behavior in rodents. Neurosci Res 2024; 207:1-12. [PMID: 38642676 DOI: 10.1016/j.neures.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 04/22/2024]
Abstract
Parental behavior is essential for mammalian offspring to survive. Because of this significance, elucidating the neurobiological mechanisms that facilitate parental behavior has received strong interest. Decades of studies utilizing pharmacology and molecular biology have revealed that in addition to its facilitatory effects on parturition and lactation, oxytocin (OT) promotes the expression of parental behavior in rodents. Recent studies have also described the modulation of sensory processing by OT and the interaction of the OT system with other brain regions associated with parental behavior. However, the precise neurobiological mechanisms underlying the facilitation of caregiving behaviors by OT remain unclear. In this Review, I summarize the findings from rats and mice with a view toward integrating past and recent progress. I then review recent advances in the understanding of the molecular, cellular, and circuit mechanisms of OT-mediated parental behavior. Based on these observations, I propose a hypothetical model that would explain the mechanisms underlying OT-mediated parental behavior. Finally, I conclude by discussing some major remaining questions and propose potential future research directions.
Collapse
Affiliation(s)
- Kengo Inada
- RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
3
|
Dudas A, Nakahara TS, Pellissier LP, Chamero P. Parenting behaviors in mice: Olfactory mechanisms and features in models of autism spectrum disorders. Neurosci Biobehav Rev 2024; 161:105686. [PMID: 38657845 DOI: 10.1016/j.neubiorev.2024.105686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/24/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Rodents, along with numerous other mammals, heavily depend on olfactory cues to navigate their social interactions. Processing of olfactory sensory inputs is mediated by conserved brain circuits that ultimately trigger social behaviors, such as social interactions and parental care. Although innate, parenting is influenced by internal states, social experience, genetics, and the environment, and any significant disruption of these factors can impact the social circuits. Here, we review the molecular mechanisms and social circuits from the olfactory epithelium to central processing that initiate parental behaviors and their dysregulations that may contribute to the social impairments in mouse models of autism spectrum disorders (ASD). We discuss recent advances of the crucial role of olfaction in parental care, its consequences for social interactions, and the reciprocal influence on social interaction impairments in mouse models of ASD.
Collapse
Affiliation(s)
- Ana Dudas
- Team biology of GPCR Signaling systems (BIOS), CNRS, INRAE, University of Tours, PRC, Nouzilly F-37380, France
| | - Thiago S Nakahara
- Team Neuroendocrine Integration of Reproduction and Behavior (INERC), CNRS, INRAE, University of Tours, PRC, Nouzilly F-37380, France
| | - Lucie P Pellissier
- Team biology of GPCR Signaling systems (BIOS), CNRS, INRAE, University of Tours, PRC, Nouzilly F-37380, France.
| | - Pablo Chamero
- Team Neuroendocrine Integration of Reproduction and Behavior (INERC), CNRS, INRAE, University of Tours, PRC, Nouzilly F-37380, France.
| |
Collapse
|
4
|
Varela-Martínez E, Luigi-Sierra MG, Guan D, López-Béjar M, Casas E, Olvera-Maneu S, Gardela J, Palomo MJ, Osuagwuh UI, Ohaneje UL, Mármol-Sánchez E, Amills M. The landscape of long noncoding RNA expression in the goat brain. J Dairy Sci 2024; 107:4075-4091. [PMID: 38278299 DOI: 10.3168/jds.2023-23966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/22/2023] [Indexed: 01/28/2024]
Abstract
The brain regulates multiple metabolic processes, such as food intake, energy expenditure, insulin secretion, hepatic glucose production, and glucose and fatty acid metabolism in adipose tissue, which are fundamental for the maintenance of energy and glucose homeostasis during lactation and pregnancy. In addition, brain expression has a fundamental impact on the development of maternal behavior. Although brain functions are partly regulated by long noncoding RNAs (lncRNAs), their expression profiles have not been characterized in depth in any ruminant species. We have sequenced the transcriptome of 12 brain tissues from 3 goats that were 1 mo pregnant and 4 nonpregnant goats to investigate their lncRNA expression patterns. Between 4,363 (adenohypophysis) and 4,604 (olfactory bulb) lncRNAs were expressed in brain tissues, leading us to establish a set of 794 already annotated lncRNAs and 5,098 novel lncRNA candidates. The detected lncRNAs shared features with those of other mammals, and tissue-specific lncRNAs were enriched in brain development-related terms. Differential expression analyses between goats that were 1 mo pregnant and nonpregnant goats showed that the lncRNA expression profiles of certain brain regions experience substantial changes associated with early pregnancy (238 lncRNAs are differentially expressed in the olfactory bulb), but others do not. Enrichment analysis showed that differentially expressed lncRNAs from the olfactory bulb are co-expressed with genes previously linked to behavioral changes related to pregnancy. These findings provide a first characterization of the landscape of lncRNA expression in the goat brain and provides valuable clues to understand the molecular events triggered by early pregnancy in the central nervous system.
Collapse
Affiliation(s)
- Endika Varela-Martínez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B. Sarriena, Leioa 48940, Spain; Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - María Gracia Luigi-Sierra
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Dailu Guan
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Manel López-Béjar
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Encarna Casas
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Sergi Olvera-Maneu
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain; Department of Veterinary Medicine, University of Nicosia School of Veterinary Medicine, 2414 Nicosia, Cyprus
| | - Jaume Gardela
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Maria Jesús Palomo
- Department of Animal Medicine and Surgery, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Uchebuchi Ike Osuagwuh
- Department of Animal Medicine and Surgery, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Uchechi Linda Ohaneje
- Department of Animal Medicine and Surgery, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Emilio Mármol-Sánchez
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Marcel Amills
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain; Department de Ciència Animal I dels Aliments, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.
| |
Collapse
|
5
|
Inada K, Miyamichi K. Association between parental behaviors and structural plasticity in the brain of male rodents. Neurosci Res 2023; 196:1-10. [PMID: 37343600 DOI: 10.1016/j.neures.2023.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
In recent decades, human fathers across the globe have shown a substantial increase in their engagement in paternal caregiving behaviors. Despite the growing interest, the precise neurobiological mechanisms underlying caregiving behaviors in males remain unclear. Neurobiological studies conducted on rodents have advanced our understanding of the molecular, cellular, and circuit-level mechanisms. Typically, sexually naïve males exhibit aggression toward offspring, while fathers display parental behaviors. This drastic behavioral plasticity may be associated with changes in connections among specific regions or cell types. Recent studies have begun to describe this structural plasticity by comparing neural connections before and after fatherhood. In this Perspective, we summarize the findings from four well-studied rodent species, namely prairie voles, California mice, laboratory rats, and laboratory mice, with a view toward integrating past and current progress. We then review recent advances in the understanding of structural plasticity for parental behaviors. Finally, we discuss remaining questions that require further exploration to gain a deeper understanding of the neural mechanisms underlying paternal behaviors in males, including their possible implications for the human brain.
Collapse
Affiliation(s)
- Kengo Inada
- RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | - Kazunari Miyamichi
- RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
6
|
Bouguiyoud N, Xie WB, Bronchti G, Frasnelli J, Al Aïn S. Enhanced maternal behaviors in a mouse model of congenital blindness. Dev Psychobiol 2023; 65:e22406. [PMID: 37607896 DOI: 10.1002/dev.22406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 05/04/2023] [Accepted: 06/07/2023] [Indexed: 08/24/2023]
Abstract
In mammals, mothering is one of the most important prosocial female behavior to promote survival, proper sensorimotor, and emotional development of the offspring. Different intrinsic and extrinsic factors can initiate and maintain these behaviors, such as hormonal, cerebral, and sensory changes. Infant cues also stimulate multisensory systems and orchestrate complex maternal responsiveness. To understand the maternal behavior driven by complex sensory interactions, it is necessary to comprehend the individual sensory systems by taking out other senses. An excellent model for investigating sensory regulation of maternal behavior is a murine model of congenital blindness, the ZRDBA mice, where both an anophthalmic and sighted mice are generated from the same litter. Therefore, this study aims to assess whether visual inputs are essential to driving maternal behaviors in mice. Maternal behaviors were assessed using three behavioral tests, including the pup retrieval test, the home cage maternal behavior test, and the maternal aggression test. Our results show that blind mothers (1) took less time to retrieve their offspring inside the nest, (2) spent more time nursing and licking their offspring in the second- and third-week postpartum, and (3) exhibited faster aggressive behaviors when exposed to an intruder male, compared to the sighted counterparts. This study provides evidence that congenitally blind mothers show more motivation to retrieve the pups, care, and protection towards their pups than sighted ones, likely due to a phenomenon of sensory compensation.
Collapse
Affiliation(s)
- Nouhaila Bouguiyoud
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
- CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | - Wen Bin Xie
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | - Gilles Bronchti
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | - Johannes Frasnelli
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
- CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | - Syrina Al Aïn
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
- CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| |
Collapse
|
7
|
Luigi-Sierra MG, Guan D, López-Béjar M, Casas E, Olvera-Maneu S, Gardela J, Palomo MJ, Osuagwuh UI, Ohaneje UL, Mármol-Sánchez E, Amills M. A protein-coding gene expression atlas from the brain of pregnant and non-pregnant goats. Front Genet 2023; 14:1114749. [PMID: 37519888 PMCID: PMC10382233 DOI: 10.3389/fgene.2023.1114749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Background: The brain is an extraordinarily complex organ with multiple anatomical structures involved in highly specialized functions related with behavior and physiological homeostasis. Our goal was to build an atlas of protein-coding gene expression in the goat brain by sequencing the transcriptomes of 12 brain regions in seven female Murciano-Granadina goats, from which three of them were 1-month pregnant. Results: Between 14,889 (cerebellar hemisphere) and 15,592 (pineal gland) protein-coding genes were expressed in goat brain regions, and most of them displayed ubiquitous or broad patterns of expression across tissues. Principal component analysis and hierarchical clustering based on the patterns of mRNA expression revealed that samples from certain brain regions tend to group according to their position in the anterior-posterior axis of the neural tube, i.e., hindbrain (pons and medulla oblongata), midbrain (rostral colliculus) and forebrain (frontal neocortex, olfactory bulb, hypothalamus, and hippocampus). Exceptions to this observation were cerebellum and glandular tissues (pineal gland and hypophysis), which showed highly divergent mRNA expression profiles. Differential expression analysis between pregnant and non-pregnant goats revealed moderate changes of mRNA expression in the frontal neocortex, hippocampus, adenohypophysis and pons, and very dramatic changes in the olfactory bulb. Many genes showing differential expression in this organ are related to olfactory function and behavior in humans. Conclusion: With the exception of cerebellum and glandular tissues, there is a relationship between the cellular origin of sampled regions along the anterior-posterior axis of the neural tube and their mRNA expression patterns in the goat adult brain. Gestation induces substantial changes in the mRNA expression of the olfactory bulb, a finding consistent with the key role of this anatomical structure on the development of maternal behavior.
Collapse
Affiliation(s)
| | - Dailu Guan
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Spain
| | - Manel López-Béjar
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Encarna Casas
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Sergi Olvera-Maneu
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jaume Gardela
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - María Jesús Palomo
- Department of Animal Medicine and Surgery, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Uchebuchi Ike Osuagwuh
- Department of Animal Medicine and Surgery, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Uchechi Linda Ohaneje
- Department of Animal Medicine and Surgery, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Emilio Mármol-Sánchez
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Spain
| | - Marcel Amills
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
8
|
Bienboire-Frosini C, Marcet-Rius M, Orihuela A, Domínguez-Oliva A, Mora-Medina P, Olmos-Hernández A, Casas-Alvarado A, Mota-Rojas D. Mother-Young Bonding: Neurobiological Aspects and Maternal Biochemical Signaling in Altricial Domesticated Mammals. Animals (Basel) 2023; 13:ani13030532. [PMID: 36766424 PMCID: PMC9913798 DOI: 10.3390/ani13030532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Mother-young bonding is a type of early learning where the female and their newborn recognize each other through a series of neurobiological mechanisms and neurotransmitters that establish a behavioral preference for filial individuals. This process is essential to promote their welfare by providing maternal care, particularly in altricial species, animals that require extended parental care due to their limited neurodevelopment at birth. Olfactory, auditory, tactile, and visual stimuli trigger the neural integration of multimodal sensory and conditioned affective associations in mammals. This review aims to discuss the neurobiological aspects of bonding processes in altricial mammals, with a focus on the brain structures and neurotransmitters involved and how these influence the signaling during the first days of the life of newborns.
Collapse
Affiliation(s)
- Cécile Bienboire-Frosini
- Department of Molecular Biology and Chemical Communication, Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France
| | - Míriam Marcet-Rius
- Animal Behaviour and Welfare Department, Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France
| | - Agustín Orihuela
- Facultad de Ciencias Agropecuarias, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
| | - Patricia Mora-Medina
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de Mexico (UNAM), Cuautitlán Izcalli 54740, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Tlalpan, Mexico City 14389, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
- Correspondence:
| |
Collapse
|
9
|
Mayer HS, Rosinger ZJ, Kruithof VB, Mishra S, BlackOwl AL, Stolzenberg DS. Effects of maternal experience on pup-induced activation of maternal neural circuits in virgin mice. Horm Behav 2022; 141:105129. [PMID: 35168026 PMCID: PMC10866554 DOI: 10.1016/j.yhbeh.2022.105129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/21/2021] [Accepted: 02/02/2022] [Indexed: 11/24/2022]
Abstract
Maternal experience can promote a long-lasting increase in maternal motivation. This maintenance of caregiving behaviors, rather than avoidant or agnostic responses towards young, is advantageous for the survival of subsequent offspring. We have previously reported that maternal motivation is associated with differential immediate early gene expression in central motivation circuits and aversion circuits. Here we ask how these circuits come to differentially respond to infant cues. We used Targeted Recombination in Active Populations (TRAP) to identify cells that respond to pups in maternally hesitant TRAP2;Ai14 virgin female mice. Following an initial 60 min exposure to foster pups, virgin TRAP2;Ai14 mice were injected with 4-hydroxytamoxifen to induce recombination in c-Fos expressing cells and subsequent permanent expression of a red fluorescent reporter. We then examined whether the same cells that encode pup cues are reactivated during maternal memory retrieval two weeks later using c-Fos immunohistochemistry. Whereas initial pup exposure induced c-Fos activation exclusively in the medial preoptic area (MPOA), following repeated experience, c-Fos expression was significantly higher than baseline in multiple regions of maternal and central aversion circuits (e.g., ventral bed nucleus of the stria terminalis, nucleus accumbens, basolateral amygdala, prefrontal cortex, medial amygdala, and ventromedial nucleus of the hypothalamus). Further, cells in many of these sites were significantly reactivated during maternal memory retrieval. These data suggest that cells across both maternal motivation and central aversion circuits are stably responsive to pups and thus may form the cellular representation of maternal memory.
Collapse
Affiliation(s)
- Heather S Mayer
- Department of Psychology, University of California, Davis, One Shields Ave., Davis, CA 95616, United States of America
| | - Zachary J Rosinger
- Department of Psychology, University of California, Davis, One Shields Ave., Davis, CA 95616, United States of America
| | - Vivian B Kruithof
- Department of Psychology, University of California, Davis, One Shields Ave., Davis, CA 95616, United States of America
| | - Shambhavi Mishra
- Department of Psychology, University of California, Davis, One Shields Ave., Davis, CA 95616, United States of America
| | - Anthony L BlackOwl
- Department of Psychology, University of California, Davis, One Shields Ave., Davis, CA 95616, United States of America
| | - Danielle S Stolzenberg
- Department of Psychology, University of California, Davis, One Shields Ave., Davis, CA 95616, United States of America.
| |
Collapse
|
10
|
Bailey S, Isogai Y. Parenting as a model for behavioural switches. Curr Opin Neurobiol 2022; 73:102543. [PMID: 35483309 DOI: 10.1016/j.conb.2022.102543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/28/2022] [Accepted: 03/17/2022] [Indexed: 11/03/2022]
Abstract
Adaptability to ethologically relevant cues is fundamental for social interactions. As such, reproductive success relies on the ability of an animal to transition between parental and nonparental states. Though driven by genetically pre-programmed circuits, these instinctive repertoires are reshaped by internal state and experience, making parenting a robust model for the study of behavioural flexibility. As a functional wiring diagram for parenting emerges in mice, we are well placed to identify neural substrates and posit associated mechanisms underlying caregiving transitions. In this review, we discuss the importance of comprehensively characterising behaviour, highlight the role of shared circuit elements for behavioural malleability and explore plastic mechanisms that might guide switches between parental and nonparental repertoires.
Collapse
Affiliation(s)
- Shanice Bailey
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, 26 Howland Street, London, W1T 4JG, United Kingdom
| | - Yoh Isogai
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, 26 Howland Street, London, W1T 4JG, United Kingdom.
| |
Collapse
|
11
|
Novel sampling strategy for alive animal volatolome extraction combined with GC-MS based untargeted metabolomics: Identifying mouse pup pheromones. Talanta 2021; 235:122786. [PMID: 34517644 DOI: 10.1016/j.talanta.2021.122786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/20/2022]
Abstract
In this study, we identify 11 mouse pup volatiles putatively involved in maternal care induction in adult females. For this purpose, we have adapted the dynamic headspace methodology to extract the volatolome of whole alive animals. Untargeted metabolomic methodology was used to compare the volatolome of neonatal (4-6 days) with elder pups until the age of weaning (21-23 days old). Pup volatolome was analyzed by gas chromatography (GC) coupled to single quadrupole mass spectrometry (MS) using automated thermal desorption for sample introduction. After data processing and multivariate statistical analysis, comparison with NIST spectral library allowed identifying compounds secreted preferentially by neonatal pups: di(propylen glycol) methyl ether, 4-nonenal, di(ethylene glycol) monobutyl ether, 2-phenoxyethanol, isomethyl ionone, tridecanal, 1,3-diethylbenzene, 1,2,4,5-tetramethylbenzene, 2-ethyl-p-xylene and tri(propylene glycol) methyl ether. Palmitic acid was enriched in the volatolome of fourth week youngsters compared to neonatal pups. The results demonstrated the great potential of the new sampling procedure combined with GC-MS based untargeted volatolomics to identify volatile pheromones in mammals.
Collapse
|
12
|
Golüke S, Bischof HJ, Caspers BA. Nestling odour modulates behavioural response in male, but not in female zebra finches. Sci Rep 2021; 11:712. [PMID: 33436859 PMCID: PMC7804447 DOI: 10.1038/s41598-020-80466-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 12/21/2020] [Indexed: 01/29/2023] Open
Abstract
Studies investigating parent offspring recognition in birds led to the conclusion that offspring recognition is absent at the early nestling stage. Especially male songbirds were often assumed to be unable to discriminate between own and foreign offspring. However, olfactory offspring recognition in birds has not been taken into account as yet, probably because particularly songbirds have for a long time been assumed anosmic. This study aimed to test whether offspring might be recognised via smell. We presented zebra finch (Taeniopygia guttata) parents either the odour of their own or that of foreign nestlings and investigated whether the odour presentation resulted in a change in the number of head saccades, i.e. the rapid horizontal turning of the head, with which birds scan their environment and which can be used as a proxy of arousal. Our experiment indicates that male zebra finches, in contrast to females, differentiate between their own and foreign offspring based on odour cues, as indicated by a significant differences in the change of head saccadic movements between males receiving the own chick odour and males receiving the odour of a foreign chick. Thus, it provides behavioural evidence for olfactory offspring recognition in male zebra finches and also the existence of appropriate phenotypic odour cues of the offspring. The question why females do not show any sign of behavioural response remains open, but it might be likely that females use other signatures for offspring recognition.
Collapse
Affiliation(s)
- Sarah Golüke
- grid.7491.b0000 0001 0944 9128Department of Behavioural Ecology, Bielefeld University, Bielefeld, Germany
| | - Hans-Joachim Bischof
- grid.7491.b0000 0001 0944 9128Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
| | - Barbara A. Caspers
- grid.7491.b0000 0001 0944 9128Department of Behavioural Ecology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
13
|
Navarro-Moreno C, Sanchez-Catalan MJ, Barneo-Muñoz M, Goterris-Cerisuelo R, Belles M, Lanuza E, Agustin-Pavon C, Martinez-Garcia F. Pregnancy Changes the Response of the Vomeronasal and Olfactory Systems to Pups in Mice. Front Cell Neurosci 2021; 14:593309. [PMID: 33390905 PMCID: PMC7775479 DOI: 10.3389/fncel.2020.593309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
Motherhood entails changes in behavior with increased motivation for pups, induced in part by pregnancy hormones acting upon the brain. This work explores whether this alters sensory processing of pup-derived chemosignals. To do so, we analyse the expression of immediate early genes (IEGs) in the vomeronasal organ (VNO; Egr1) and centers of the olfactory and vomeronasal brain pathways (cFos) in virgin and late-pregnant females exposed to pups, as compared to buttons (socially neutral control). In pup-exposed females, we quantified diverse behaviors including pup retrieval, sniffing, pup-directed attack, nest building and time in nest or on nest, as well as time off nest. Pups induce Egr1 expression in the VNO of females, irrespective of their physiological condition, thus suggesting the existence of VNO-detected pup chemosignals. A similar situation is found in the accessory olfactory bulb (AOB) and posteromedial part of the medial bed nucleus of the stria terminalis (BSTMPM). By contrast, in the medial amygdala and posteromedial cortical amygdala (PMCo), responses to pups-vs-buttons are different in virgin and late-pregnant females, thus suggesting altered sensory processing during late pregnancy. The olfactory system also shows changes in sensory processing with pregnancy. In the main olfactory bulbs, as well as the anterior and posterior piriform cortex, buttons activate cFos expression in virgins more than in pregnant females. By contrast, in the anterior and especially posterior piriform cortex, pregnant females show more activation by pups than buttons. Correlation between IEGs expression and behavior suggests the existence of two vomeronasal subsystems: one associated to pup care (with PMCo as its main center) and another related to pup-directed aggression observed in some pregnant females (with the BSTMPM as the main nucleus). Our data also suggest a coactivation of the olfactory and vomeronasal systems during interaction with pups in pregnant females.
Collapse
Affiliation(s)
- Cinta Navarro-Moreno
- Lab of Functional Neuroanatomy (NeuroFun-UJI-UV), Unitat Predepartamental de Medicina, Faculty of Health Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Maria Jose Sanchez-Catalan
- Lab of Functional Neuroanatomy (NeuroFun-UJI-UV), Unitat Predepartamental de Medicina, Faculty of Health Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Manuela Barneo-Muñoz
- Lab of Functional Neuroanatomy (NeuroFun-UJI-UV), Unitat Predepartamental de Medicina, Faculty of Health Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Rafael Goterris-Cerisuelo
- Lab of Functional Neuroanatomy (NeuroFun-UJI-UV), Unitat Predepartamental de Medicina, Faculty of Health Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Maria Belles
- Lab of Functional Neuroanatomy (NeuroFun-UJI-UV), Unitat Predepartamental de Medicina, Faculty of Health Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Enrique Lanuza
- Lab of Functional Neuroanatomy (NeuroFun-UJI-UV), Departament de Biologia Cellular, Funcional i Antropologia, Faculty of Biological Sciences, Universitat de València, Valencia, Spain
| | - Carmen Agustin-Pavon
- Lab of Functional Neuroanatomy (NeuroFun-UJI-UV), Departament de Biologia Cellular, Funcional i Antropologia, Faculty of Biological Sciences, Universitat de València, Valencia, Spain
| | - Fernando Martinez-Garcia
- Lab of Functional Neuroanatomy (NeuroFun-UJI-UV), Unitat Predepartamental de Medicina, Faculty of Health Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| |
Collapse
|
14
|
Dunlap AG, Besosa C, Pascual LM, Chong KK, Walum H, Kacsoh DB, Tankeu BB, Lu K, Liu RC. Becoming a better parent: Mice learn sounds that improve a stereotyped maternal behavior. Horm Behav 2020; 124:104779. [PMID: 32502487 PMCID: PMC7487030 DOI: 10.1016/j.yhbeh.2020.104779] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/22/2020] [Accepted: 05/18/2020] [Indexed: 11/30/2022]
Abstract
While mothering is often instinctive and stereotyped in species-specific ways, evolution can favor genetically "open" behavior programs that allow experience to shape infant care. Among experience-dependent maternal behavioral mechanisms, sensory learning about infants has been hard to separate from motivational changes arising from sensitization with infants. We developed a paradigm in which sensory learning of an infant-associated cue improves a stereotypical maternal behavior in female mice. Mice instinctively employed a spatial memory-based strategy when engaged repetitively in a pup search and retrieval task. However, by playing a sound from a T-maze arm to signal where a pup will be delivered for retrieval, mice learned within 7 days and retained for at least 2 weeks the ability to use this specific cue to guide a more efficient search strategy. The motivation to retrieve pups also increased with learning on average, but their correlation did not explain performance at the trial level. Bilaterally silencing auditory cortical activity significantly impaired the utilization of new strategy without changing the motivation to retrieve pups. Finally, motherhood as compared to infant-care experience alone accelerated how quickly the new sensory-based strategy was acquired, suggesting a role for the maternal hormonal state. By rigorously establishing that newly formed sensory associations can improve the performance of a natural maternal behavior, this work facilitates future studies into the neurochemical and circuit mechanisms that mediate novel sensory learning in the maternal context, as well as more learning-based mechanisms of parental behavior in rodents.
Collapse
Affiliation(s)
- Alexander G Dunlap
- Bioengineering Interdisciplinary Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA; Department of Biology, Emory University, Atlanta, GA, USA
| | | | - Leila M Pascual
- Neuroscience Graduate Program, Emory University, Atlanta, GA, USA
| | - Kelly K Chong
- Department of Biology, Emory University, Atlanta, GA, USA; Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Hasse Walum
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | | | - Brenda B Tankeu
- Department of Natural Sciences, Bowie State University, Bowie, MD, USA; Emory College Summer Undergraduate Research Experience Program, Atlanta, GA, USA
| | - Kai Lu
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Robert C Liu
- Department of Biology, Emory University, Atlanta, GA, USA; Silvio O. Conte Center for Oxytocin and Social Cognition and Center for Translational Social Neuroscience, Atlanta, GA, USA.
| |
Collapse
|
15
|
Abstract
Killing of unrelated young by sexually naïve male mammals is taxonomically widespread, but in many species, males subsequently show paternal care or at least do not harm their own young. This dramatic and important change is due to a shift in paternal state rather than to recognition of young, the mother or the location in which mating occurred. This transition from infanticidal to paternal behaviour is timed so that the inhibition of infanticide is synchronized with the birth of their own young. Ejaculation followed by cohabitation with the pregnant female causes this transition, but the precise stimuli from the female remain elusive. However, changes in social status also cause changes in infanticide. The switch from infanticide is accompanied by physiological change in the male that can be detected by both females and pups. Hormonal changes have been implicated in the switch but establishing causal links has been difficult. Recent neuroanatomical studies show that pup odours activate the vomeronasal organ and its efferent projections to induce infanticide. The emergence of paternal care depends on the inability of the vomeronasal organ to detect pup odours. In the absence of vomeronasal input, pup odours activate a conserved parental circuit and induce caregiving behaviour. An emerging picture is of complex, antagonistic circuits competing for behavioural expression, which allow for males to commit infanticide when they may benefit from such activity but ensure that they do not damage their fitness by killing their own young. However, we stress the need for more work on the neural mechanisms that mediate this process.
Collapse
Affiliation(s)
- Robert W. Elwood
- Queen’s University Belfast, School of Biological Sciences, Belfast, U.K
| | | |
Collapse
|
16
|
Stolzenberg DS, Mayer HS. Experience-dependent mechanisms in the regulation of parental care. Front Neuroendocrinol 2019; 54:100745. [PMID: 31009675 PMCID: PMC7347228 DOI: 10.1016/j.yfrne.2019.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/29/2019] [Accepted: 04/12/2019] [Indexed: 01/03/2023]
Abstract
Maternal behavior is a defining characteristic of mammals, which is regulated by a core, conserved neural circuit. However, mothering behavior is not always a default response to infant conspecifics. For example, initial fearful, fragmented or aggressive responses toward infants in laboratory rats and mice can give way to highly motivated and organized caregiving behaviors following appropriate hormone exposure or repeated experience with infants. Therefore hormonal and/or experiential factors must be involved in determining the extent to which infants access central approach and avoidance neural systems. In this review we describe evidence supporting the idea that infant conspecifics are capable of activating distinct neural pathways to elicit avoidant, aggressive and parental responses from adult rodents. Additionally, we discuss the hypothesis that alterations in transcriptional regulation within the medial preoptic area of the hypothalamus may be a key mechanism of neural plasticity involved in programming the differential sensitivity of these neural pathways.
Collapse
Affiliation(s)
- Danielle S Stolzenberg
- University of California, Davis, Department of Psychology, One Shields Ave., Davis, CA 95616, United States.
| | - Heather S Mayer
- University of California, Davis, Department of Psychology, One Shields Ave., Davis, CA 95616, United States
| |
Collapse
|
17
|
Mayer HS, Helton J, Torres LY, Cortina I, Brown WM, Stolzenberg DS. Histone deacetylase inhibitor treatment induces postpartum-like maternal behavior and immediate early gene expression in the maternal neural pathway in virgin mice. Horm Behav 2019; 108:94-104. [PMID: 29499221 PMCID: PMC6135716 DOI: 10.1016/j.yhbeh.2018.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/02/2018] [Accepted: 02/24/2018] [Indexed: 01/29/2023]
Abstract
The peripartum period is associated with the onset of behaviors that shelter, feed and protect young offspring from harm. The neural pathway that regulates caregiving behaviors has been mapped in female rats and is conserved in mice. However, rats rely on late gestational hormones to shift their perception of infant cues from aversive to attractive, whereas laboratory mice are "spontaneously" maternal, but their level of responding depends on experience. For example, pup-naïve virgin female mice readily care for pups in the home cage, but avoid pups in a novel environment. In contrast, pup-experienced virgin mice care for pups in both contexts. Thus, virgin mice rely on experience to shift their perception of infant cues from aversive to attractive in a novel context. We hypothesize that alterations in immediate early gene activation may underlie the experience-driven shift in which neural pathways (fear/avoidance versus maternal/approach) are activated by pups to modulate context-dependent changes in maternal responding. Here we report that the effects of sodium butyrate, a drug that allows for an amplification of experience-induced histone acetylation and gene expression in virgins, are comparable to the natural onset of caregiving behaviors in postpartum mice and induce postpartum-like patterns of immediate early gene expression across brain regions. These data suggest that pups can activate a fear/defensive circuit in mice and experience-driven improvements in caregiving behavior could be regulated in part through decreased activation of this pathway.
Collapse
Affiliation(s)
- Heather S Mayer
- University of California, Davis, Department of Psychology, One Shields Ave. Davis, CA 95616, USA
| | - Jamie Helton
- University of California, Davis, Department of Psychology, One Shields Ave. Davis, CA 95616, USA
| | - Lisette Y Torres
- University of California, Davis, Department of Psychology, One Shields Ave. Davis, CA 95616, USA
| | - Ignacio Cortina
- University of California, Davis, Department of Psychology, One Shields Ave. Davis, CA 95616, USA
| | - Whitney M Brown
- University of California, Davis, Department of Psychology, One Shields Ave. Davis, CA 95616, USA
| | - Danielle S Stolzenberg
- University of California, Davis, Department of Psychology, One Shields Ave. Davis, CA 95616, USA.
| |
Collapse
|
18
|
Smiley KO, Ladyman SR, Gustafson P, Grattan DR, Brown RSE. Neuroendocrinology and Adaptive Physiology of Maternal Care. Curr Top Behav Neurosci 2019; 43:161-210. [PMID: 31808002 DOI: 10.1007/7854_2019_122] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Parental care is critical for offspring survival in many species. In mammals, parental care is primarily provided through maternal care, due to obligate pregnancy and lactation constraints, although some species also show paternal and alloparental care. These behaviors are driven by specialized neural circuits that receive sensory, cortical, and hormonal input to generate a coordinated and timely change in behavior, and sustain that behavior through activation of reward pathways. Importantly, the hormonal changes associated with pregnancy and lactation also act to coordinate a broad range of physiological changes to support the mother and enable her to adapt to the demands of these states. This chapter will review the neural pathways that regulate maternal behavior, the hormonal changes that occur during pregnancy and lactation, and how these two facets merge together to promote both young-directed maternal responses (including nursing and grooming) and young-related responses (including maternal aggression and other physiological adaptions to support the development of and caring for young). We conclude by examining how experimental animal work has translated into knowledge of human parenting, particularly in regards to maternal mental health issues.
Collapse
Affiliation(s)
- Kristina O Smiley
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sharon R Ladyman
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Papillon Gustafson
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Rosemary S E Brown
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
19
|
Rajkumar R, Dawe GS. OBscure but not OBsolete: Perturbations of the frontal cortex in common between rodent olfactory bulbectomy model and major depression. J Chem Neuroanat 2018; 91:63-100. [DOI: 10.1016/j.jchemneu.2018.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/02/2018] [Accepted: 04/04/2018] [Indexed: 02/08/2023]
|
20
|
Medina J, Workman JL. Maternal experience and adult neurogenesis in mammals: Implications for maternal care, cognition, and mental health. J Neurosci Res 2018; 98:1293-1308. [DOI: 10.1002/jnr.24311] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 07/07/2018] [Accepted: 07/11/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Joanna Medina
- Department of Psychology and the Center for Neuroscience Research University at Albany, State University of New York New York
| | - Joanna L. Workman
- Department of Psychology and the Center for Neuroscience Research University at Albany, State University of New York New York
| |
Collapse
|
21
|
Sreng L, Temime-Roussel B, Wortham H, Mourre C. Chemical Identification of "Maternal Signature Odors" in Rat. Chem Senses 2017; 42:211-222. [PMID: 28007788 DOI: 10.1093/chemse/bjw124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Newborn altricial mammals need just after birth to locate their mother's nipples for suckling. In this precocious behavior, including for the human baby, maternal odor via the olfactory process plays a major role. Maternal odor emitted by lactating females or by amniotic fluid (AF) attracts pups, but the chemical identity of this attractant has not yet been elucidated. Here, using behavioral tests and gas chromatography coupled with mass spectrometry (GC-MS) techniques, we show that AF extracts from rat pregnant female, nipples, ventral skin, milk, and nest extracts of mother contained 3-6 active substances. AF extracts contained 3 active compounds: ethylbenzene, benzaldehyde, and benzyl alcohol, and their mixture in similar proportions to those found in AF extracts, in a ratio, respectively, of 1:1:12 (700 ng), attracts pups as putative maternal attractant substances (MAS). These 3 AF substances have already been identified in milk, nipples, ventral wash, and nest extracts of mother, but not in feces. Moreover, anethole flavor incorporated in pregnant rat and mother's diet is also detected in AF, nipples, milk, and nest extracts and the pups are attracted to anethole odor, but not in the case of the no-anethole pups. MAS, combined with diet flavors present in the AF bath, represent olfactory signals as "maternal signature odors" (MSO) that are learned by fetus and pups. These findings open the way to improved understanding of the neurobiology of early olfactory learning and of the importance of evolutionarily conserved survival behavior in many mammal species.
Collapse
Affiliation(s)
- Leam Sreng
- Aix-Marseille Univ, CNRS, IMBE UMR 7263 (Institut Méditerranéen de la Biodiversité et d'Ecologie marine et continentale), IRD, Avignon Université, Faculté Saint Charles, 3, place Victor Hugo, Case 36 F-13331 Marseille cedex 03, France
| | - Brice Temime-Roussel
- Aix-Marseille Univ, CNRS, LCE, Laboratoire de Chimie et Environnement, UMR 7376, Case 29, Faculté Saint Charles, 3, place Victor Hugo, F-13331 Marseille cedex 03, France and
| | - Henri Wortham
- Aix-Marseille Univ, CNRS, LCE, Laboratoire de Chimie et Environnement, UMR 7376, Case 29, Faculté Saint Charles, 3, place Victor Hugo, F-13331 Marseille cedex 03, France and
| | - Christiane Mourre
- Aix-Marseille Univ, CNRS, Laboratoire de Neurosciences Cognitives, UMR 7291, Faculté Saint Charles, 3, place Victor Hugo, Case 36, F-13331 Marseille cedex 03, France
| |
Collapse
|
22
|
Garfinkel BP, Arad S, Neuner SM, Netser S, Wagner S, Kaczorowski CC, Rosen CJ, Gal M, Soreq H, Orly J. HP1BP3 expression determines maternal behavior and offspring survival. GENES BRAIN AND BEHAVIOR 2017; 15:678-88. [PMID: 27470444 DOI: 10.1111/gbb.12312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/03/2016] [Accepted: 07/26/2016] [Indexed: 12/17/2022]
Abstract
Maternal care is an indispensable behavioral component necessary for survival and reproductive success in mammals, and postpartum maternal behavior is mediated by an incompletely understood complex interplay of signals including effects of epigenetic regulation. We approached this issue using our recently established mice with targeted deletion of heterochromatin protein 1 binding protein 3 (HP1BP3), which we found to be a novel epigenetic repressor with critical roles in postnatal growth. Here, we report a dramatic reduction in the survival of pups born to Hp1bp3(-/-) deficient mouse dams, which could be rescued by co-fostering with wild-type dams. Hp1bp3(-/-) females failed to retrieve both their own pups and foster pups in a pup retrieval test, and showed reduced anxiety-like behavior in the open-field and elevated-plus-maze tests. In contrast, Hp1bp3(-/-) females showed no deficits in behaviors often associated with impaired maternal care, including social behavior, depression, motor coordination and olfactory capability; and maintained unchanged anxiety-associated hallmarks such as cholinergic status and brain miRNA profiles. Collectively, our results suggest a novel role for HP1BP3 in regulating maternal and anxiety-related behavior in mice and call for exploring ways to manipulate this epigenetic process.
Collapse
Affiliation(s)
- B P Garfinkel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel. .,Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - S Arad
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Biomedical Sciences, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - S M Neuner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - S Netser
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - S Wagner
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - C C Kaczorowski
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - C J Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - M Gal
- Biomedical Sciences, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.,The IVF Unit - Obstetrics and Gynecology Department, Shaare Zedek Medical Center, Jerusalem, Israel
| | - H Soreq
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - J Orly
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
23
|
Belnoue L, Malvaut S, Ladevèze E, Abrous DN, Koehl M. Plasticity in the olfactory bulb of the maternal mouse is prevented by gestational stress. Sci Rep 2016; 6:37615. [PMID: 27886228 PMCID: PMC5122868 DOI: 10.1038/srep37615] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/01/2016] [Indexed: 01/04/2023] Open
Abstract
Maternal stress is associated with an altered mother-infant relationship that endangers offspring development, leading to emotional/behavioral problems. However, little research has investigated the stress-induced alterations of the maternal brain that could underlie such a disruption of mother-infant bonding. Olfactory cues play an extensive role in the coordination of mother-infant interactions, suggesting that motherhood may be associated to enhanced olfactory performances, and that this effect may be abolished by maternal stress. To test this hypothesis, we analyzed the impact of motherhood under normal conditions or after gestational stress on olfactory functions in C57BL/6 J mice. We report that gestational stress alters maternal behavior and prevents both mothers' ability to discriminate pup odors and motherhood-induced enhancement in odor memory. We investigated adult bulbar neurogenesis as a potential mechanism of the enhanced olfactory function in mothers and found that motherhood was associated with an increased complexity of the dendritic tree of newborn neurons. This motherhood-evoked remodeling was totally prevented by gestational stress. Altogether, our results may thus provide insight into the neural changes that could contribute to altered maternal behavior in stressed mothers.
Collapse
Affiliation(s)
- Laure Belnoue
- INSERM U1215, Magendie Neurocenter, Neurogenesis and Pathophysiology group, 146 rue Léo Saignat, Bordeaux-33077, France
- Université de Bordeaux, Bordeaux-33077, France
| | - Sarah Malvaut
- INSERM U1215, Magendie Neurocenter, Neurogenesis and Pathophysiology group, 146 rue Léo Saignat, Bordeaux-33077, France
- Université de Bordeaux, Bordeaux-33077, France
| | - Elodie Ladevèze
- INSERM U1215, Magendie Neurocenter, Neurogenesis and Pathophysiology group, 146 rue Léo Saignat, Bordeaux-33077, France
- Université de Bordeaux, Bordeaux-33077, France
| | - Djoher Nora Abrous
- INSERM U1215, Magendie Neurocenter, Neurogenesis and Pathophysiology group, 146 rue Léo Saignat, Bordeaux-33077, France
- Université de Bordeaux, Bordeaux-33077, France
| | - Muriel Koehl
- INSERM U1215, Magendie Neurocenter, Neurogenesis and Pathophysiology group, 146 rue Léo Saignat, Bordeaux-33077, France
- Université de Bordeaux, Bordeaux-33077, France
| |
Collapse
|
24
|
Stowers L, Liberles SD. State-dependent responses to sex pheromones in mouse. Curr Opin Neurobiol 2016; 38:74-9. [PMID: 27093585 DOI: 10.1016/j.conb.2016.04.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/04/2016] [Accepted: 04/02/2016] [Indexed: 10/21/2022]
Abstract
A single sensory cue can evoke different behaviors that vary by recipient. Responses may be influenced by sex, internal state, experience, genotype, and coincident environmental stimuli. Pheromones are powerful inducers of mouse behavior, yet pheromone responses are not always stereotyped. For example, male and female mice respond differently to sex pheromones while mothers and virgin females respond differently to pup cues. Here, we review the origins of variability in responses to reproductive pheromones. Recent advances have indicated how response variability may arise through modulation at different levels of pheromone-processing circuitry, from sensory neurons in the periphery to central neurons in the vomeronasal amygdala. Understanding mechanisms underlying conditional pheromone responses should reveal how neural circuits can be flexibly sculpted to alter behavior.
Collapse
Affiliation(s)
- Lisa Stowers
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 02037, United States.
| | - Stephen D Liberles
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
25
|
Ferris CF, Yee JR, Kenkel WM, Dumais KM, Moore K, Veenema AH, Kulkarni P, Perkybile AM, Carter CS. Distinct BOLD Activation Profiles Following Central and Peripheral Oxytocin Administration in Awake Rats. Front Behav Neurosci 2015; 9:245. [PMID: 26441574 PMCID: PMC4585275 DOI: 10.3389/fnbeh.2015.00245] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/24/2015] [Indexed: 11/13/2022] Open
Abstract
A growing body of literature has suggested that intranasal oxytocin (OT) or other systemic routes of administration can alter prosocial behavior, presumably by directly activating OT sensitive neural circuits in the brain. Yet there is no clear evidence that OT given peripherally can cross the blood-brain barrier at levels sufficient to engage the OT receptor. To address this issue we examined changes in blood oxygen level-dependent (BOLD) signal intensity in response to peripheral OT injections (0.1, 0.5, or 2.5 mg/kg) during functional magnetic resonance imaging (fMRI) in awake rats imaged at 7.0 T. These data were compared to OT (1 μg/5 μl) given directly to the brain via the lateral cerebroventricle. Using a 3D annotated MRI atlas of the rat brain segmented into 171 brain areas and computational analysis, we reconstructed the distributed integrated neural circuits identified with BOLD fMRI following central and peripheral OT. Both routes of administration caused significant changes in BOLD signal within the first 10 min of administration. As expected, central OT activated a majority of brain areas known to express a high density of OT receptors, e.g., lateral septum, subiculum, shell of the accumbens, bed nucleus of the stria terminalis. This profile of activation was not matched by peripheral OT. The change in BOLD signal to peripheral OT did not show any discernible dose-response. Interestingly, peripheral OT affected all subdivisions of the olfactory bulb, in addition to the cerebellum and several brainstem areas relevant to the autonomic nervous system, including the solitary tract nucleus. The results from this imaging study do not support a direct central action of peripheral OT on the brain. Instead, the patterns of brain activity suggest that peripheral OT may interact at the level of the olfactory bulb and through sensory afferents from the autonomic nervous system to influence brain activity.
Collapse
Affiliation(s)
- Craig F Ferris
- Center for Translational NeuroImaging, Northeastern University , Boston, MA , USA
| | - Jason R Yee
- Center for Translational NeuroImaging, Northeastern University , Boston, MA , USA ; Kinsey Institute, Indiana University , Bloomington, IN , USA
| | | | - Kelly Marie Dumais
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College , Chestnut Hill, MA , USA
| | - Kelsey Moore
- Center for Translational NeuroImaging, Northeastern University , Boston, MA , USA
| | - Alexa H Veenema
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College , Chestnut Hill, MA , USA
| | - Praveen Kulkarni
- Center for Translational NeuroImaging, Northeastern University , Boston, MA , USA
| | | | - C Sue Carter
- Kinsey Institute, Indiana University , Bloomington, IN , USA
| |
Collapse
|
26
|
Lonstein JS, Lévy F, Fleming AS. Common and divergent psychobiological mechanisms underlying maternal behaviors in non-human and human mammals. Horm Behav 2015; 73:156-85. [PMID: 26122301 PMCID: PMC4546863 DOI: 10.1016/j.yhbeh.2015.06.011] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 10/23/2022]
Abstract
Maternal interactions with young occupy most of the reproductive period for female mammals and are absolutely essential for offspring survival and development. The hormonal, sensory, reward-related, emotional, cognitive and neurobiological regulators of maternal caregiving behaviors have been well studied in numerous subprimate mammalian species, and some of the importance of this body of work is thought to be its relevance for understanding similar controls in humans. We here review many of the important biopsychological influences on maternal behaviors in the two best studied non-human animals, laboratory rats and sheep, and directly examine how the conceptual framework established by some of the major discoveries in these animal "models" do or do not hold for our understanding of human mothering. We also explore some of the limits for extrapolating from non-human animals to humans. We conclude that there are many similarities between non-human and human mothers in the biological and psychological factors influencing their early maternal behavior and that many of the differences are due to species-characteristic features related to the role of hormones, the relative importance of each sensory system, flexibility in what behaviors are exhibited, the presence or absence of language, and the complexity of cortical function influencing caregiving behaviors.
Collapse
Affiliation(s)
- Joseph S Lonstein
- Neuroscience Program, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824, USA; Department of Psychology, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824, USA.
| | - Frédéric Lévy
- Physiologie de la Reproduction et des Comportements, INRA-CNRS-Université de Tours IFCE, Nouzilly 37380, France.
| | - Alison S Fleming
- Fraser Mustard Institute for Human Development, University of Toronto, Toronto, Ontario, Canada; Department of Psychology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada.
| |
Collapse
|
27
|
Corona R, Lévy F. Chemical olfactory signals and parenthood in mammals. Horm Behav 2015; 68:77-90. [PMID: 25038290 DOI: 10.1016/j.yhbeh.2014.06.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/25/2014] [Accepted: 06/30/2014] [Indexed: 11/19/2022]
Abstract
This article is part of a Special Issue "Chemosignals and Reproduction". In mammalian species, odor cues emitted by the newborn are essential to establish maternal behavior at parturition and coordinate early mother-infant interactions. Offspring odors become potent attractive stimuli at parturition promoting the contact with the young to ensure that normal maternal care develops. In some species odors provide a basis for individual recognition of the offspring and highly specialized neural mechanisms for learning the infant signals have evolved. Both the main and the accessory olfactory systems are involved in the onset of maternal care, but only the former contributes to individual odor discrimination of the young. Electrophysiological and neurochemical changes occur in the main olfactory bulb leading to a coding of the olfactory signature of the familiar young. Olfactory neurogenesis could also contribute to motherhood and associated learning. Parturition and interactions with the young influence neurogenesis and some evidence indicates a functional link between olfactory neurogenesis and maternal behavior. Although a simple compound has been found which regulates anogenital licking in the rat, studies identifying the chemical nature of these odors are lacking. Neonatal body odors seem to be particularly salient to human mothers who are able to identify their infant's odors. Recent studies have revealed some neural processing of these cues confirming the importance of mother-young chemical communication in our own species.
Collapse
Affiliation(s)
- Rebeca Corona
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR 7247, F-37380 Nouzilly, France; Université François Rabelais, F-37041 Tours, France; Haras Nationaux, F-37380 Nouzilly, France
| | - Frédéric Lévy
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR 7247, F-37380 Nouzilly, France; Université François Rabelais, F-37041 Tours, France; Haras Nationaux, F-37380 Nouzilly, France.
| |
Collapse
|
28
|
Martín-Sánchez A, McLean L, Beynon RJ, Hurst JL, Ayala G, Lanuza E, Martínez-Garcia F. From sexual attraction to maternal aggression: when pheromones change their behavioural significance. Horm Behav 2015; 68:65-76. [PMID: 25161057 DOI: 10.1016/j.yhbeh.2014.08.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/31/2014] [Accepted: 08/17/2014] [Indexed: 11/26/2022]
Abstract
This article is part of a Special Issue "Chemosignals and Reproduction". This paper reviews the role of chemosignals in the socio-sexual interactions of female mice, and reports two experiments testing the role of pup-derived chemosignals and the male sexual pheromone darcin in inducing and promoting maternal aggression. Female mice are attracted to urine-borne male pheromones. Volatile and non-volatile urine fractions have been proposed to contain olfactory and vomeronasal pheromones. In particular, the male-specific major urinary protein (MUP) MUP20, darcin, has been shown to be rewarding and attractive to females. Non-urinary male chemosignals, such as the lacrimal protein ESP1, promote lordosis in female mice, but its attractive properties are still to be tested. There is evidence indicating that ESP1 and MUPs are detected by vomeronasal type 2 receptors (V2R). When a female mouse becomes pregnant, she undergoes dramatic changes in her physiology and behaviour. She builds a nest for her pups and takes care of them. Dams also defend the nest against conspecific intruders, attacking especially gonadally intact males. Maternal behaviour is dependent on a functional olfactory system, thus suggesting a role of chemosignals in the development of maternal behaviour. Our first experiment demonstrates, however, that pup chemosignals are not sufficient to induce maternal aggression in virgin females. In addition, it is known that vomeronasal stimuli are needed for maternal aggression. Since MUPs (and other molecules) are able to promote intermale aggression, in our second experiment we test if the attractive MUP darcin also promotes attacks on castrated male intruders by lactating dams. Our findings demonstrate that the same chemosignal, darcin, promotes attraction or aggression according to female reproductive state.
Collapse
Affiliation(s)
- Ana Martín-Sánchez
- Laboratori de Neuroanatomia Funcional Comparada, Departments of Functional Biology and of Cell Biology, Faculty of Biological Sciences, Univ. Valencia, C. Dr. Moliner, 50, 46100 Burjassot, Spain
| | - Lynn McLean
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Robert J Beynon
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Jane L Hurst
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Guillermo Ayala
- Department of Statistics and Operative Research, Faculty of Mathematics, Avda. Vicent Andrés Estellés, 1, 46100 Burjassot, Spain
| | - Enrique Lanuza
- Laboratori de Neuroanatomia Funcional Comparada, Departments of Functional Biology and of Cell Biology, Faculty of Biological Sciences, Univ. Valencia, C. Dr. Moliner, 50, 46100 Burjassot, Spain
| | - Fernando Martínez-Garcia
- Laboratori de Neuroanatomia Funcional Comparada, Departments of Functional Biology and of Cell Biology, Faculty of Biological Sciences, Univ. Valencia, C. Dr. Moliner, 50, 46100 Burjassot, Spain.
| |
Collapse
|
29
|
Benedetto L, Pereira M, Ferreira A, Torterolo P. Melanin-concentrating hormone in the medial preoptic area reduces active components of maternal behavior in rats. Peptides 2014; 58:20-5. [PMID: 24893251 DOI: 10.1016/j.peptides.2014.05.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 01/16/2023]
Abstract
Melanin-concentrating hormone (MCH) is an inhibitory neuropeptide mainly synthesized in neurons of the lateral hypothalamus and incerto-hypothalamic area of mammals that has been implicated in behavioral functions related to motivation. During lactation, this neuropeptide is also expressed in the medial preoptic area (mPOA), a key region of the maternal behavior circuitry. Notably, whereas MCH expression in the mPOA progressively increases during lactation, maternal behavior naturally declines, suggesting that elevated MCHergic activity in the mPOA inhibit maternal behavior in the late postpartum period. To explore this idea, we assessed the maternal behavior of early postpartum females following bilateral microinfusions of either MCH (50 and 100 ng/0.2 μl/side) or the same volume of vehicle into the mPOA. As expected, females receiving 100 ng MCH into the mPOA exhibited significant deficits in the active components of maternal behavior, including retrieving and nest building. In contrast, nursing, as well as other behaviors, including locomotor activity, exploration, and anxiety-like behavior, were not affected by intra-mPOA MCH infusion. The present results, together with previous findings showing elevated expression of this neuropeptide toward the end of the postpartum period, suggest that modulation of mPOA function by MCH may contribute to the weaning of maternal responsiveness characteristic of the late postpartum period.
Collapse
Affiliation(s)
- Luciana Benedetto
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mariana Pereira
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| | - Annabel Ferreira
- Sección de Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| | - Pablo Torterolo
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
30
|
The maternal brain: an organ with peripartal plasticity. Neural Plast 2014; 2014:574159. [PMID: 24883213 PMCID: PMC4026981 DOI: 10.1155/2014/574159] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/24/2014] [Indexed: 12/30/2022] Open
Abstract
The time of pregnancy, birth, and lactation, is characterized by numerous specific alterations in several systems of the maternal body. Peripartum-associated changes in physiology and behavior, as well as their underlying molecular mechanisms, have been the focus of research since decades, but are still far from being entirely understood. Also, there is growing evidence that pregnancy and lactation are associated with a variety of alterations in neural plasticity, including adult neurogenesis, functional and structural synaptic plasticity, and dendritic remodeling in different brain regions. All of the mentioned changes are not only believed to be a prerequisite for the proper fetal and neonatal development, but moreover to be crucial for the physiological and mental health of the mother. The underlying mechanisms apparently need to be under tight control, since in cases of dysregulation, a certain percentage of women develop disorders like preeclampsia or postpartum mood and anxiety disorders during the course of pregnancy and lactation.
This review describes common peripartum adaptations in physiology and behavior. Moreover, it concentrates on different forms of peripartum-associated plasticity including changes in neurogenesis and their possible underlying molecular mechanisms. Finally, consequences of malfunction in those systems are discussed.
Collapse
|
31
|
Hillerer KM, Neumann ID, Couillard-Despres S, Aigner L, Slattery DA. Lactation-induced reduction in hippocampal neurogenesis is reversed by repeated stress exposure. Hippocampus 2014; 24:673-83. [DOI: 10.1002/hipo.22258] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/28/2014] [Accepted: 01/31/2014] [Indexed: 01/07/2023]
Affiliation(s)
- Katharina M. Hillerer
- Department of Behavioural and Molecular Neurobiology; University of Regensburg; Regensburg Germany
- Department of Obstetrics and Gynaecology, Salzburger Landeskrankenhaus (SALK); Paracelsus Medical University; Salzburg Austria
| | - Inga D. Neumann
- Department of Behavioural and Molecular Neurobiology; University of Regensburg; Regensburg Germany
| | - Sebastien Couillard-Despres
- Institute of Experimental Neuroregeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University; Salzburg Austria
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University; Salzburg Austria
| | - David A. Slattery
- Department of Behavioural and Molecular Neurobiology; University of Regensburg; Regensburg Germany
| |
Collapse
|
32
|
Febo M, Ferris CF. Oxytocin and vasopressin modulation of the neural correlates of motivation and emotion: results from functional MRI studies in awake rats. Brain Res 2014; 1580:8-21. [PMID: 24486356 DOI: 10.1016/j.brainres.2014.01.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/13/2013] [Accepted: 01/15/2014] [Indexed: 02/08/2023]
Abstract
Oxytocin and vasopressin modulate a range of species typical behavioral functions that include social recognition, maternal-infant attachment, and modulation of memory, offensive aggression, defensive fear reactions, and reward seeking. We have employed novel functional magnetic resonance mapping techniques in awake rats to explore the roles of these neuropeptides in the maternal and non-maternal brain. Results from the functional neuroimaging studies that are summarized here have directly and indirectly confirmed and supported previous findings. Oxytocin is released within the lactating rat brain during suckling stimulation and activates specific subcortical networks in the maternal brain. Both vasopressin and oxytocin modulate brain regions involved unconditioned fear, processing of social stimuli and the expression of agonistic behaviors. Across studies there are relatively consistent brain networks associated with internal motivational drives and emotional states that are modulated by oxytocin and vasopressin. This article is part of a Special Issue entitled Oxytocin and Social Behav.
Collapse
Affiliation(s)
- Marcelo Febo
- Department of Psychiatry, University of Florida McKnight Brain Institute, Gainesville, FL 32611, USA.
| | - Craig F Ferris
- Center for Translational Neuroimaging, Northeastern University, Boston, MA 02115, USA; Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; Department of Psychology, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
33
|
Elicitation of aggression by food deprivation in olfactory bulbectomized male mice. ACTA ACUST UNITED AC 2013. [DOI: 10.3758/bf03335339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
|
35
|
Feierstein CE. Linking adult olfactory neurogenesis to social behavior. Front Neurosci 2012; 6:173. [PMID: 23226115 PMCID: PMC3510682 DOI: 10.3389/fnins.2012.00173] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 11/15/2012] [Indexed: 11/26/2022] Open
Abstract
In the adult brain, new neurons are added to two brain areas: the olfactory bulb (OB) and the hippocampus. Newly-generated neurons integrate into the preexisting circuits, bringing a set of unique properties, such as increased plasticity and responsiveness to stimuli. However, the functional implications of the constant addition of these neurons remain unclear, although they are believed to be important for learning and memory. The levels of neurogenesis are regulated by a variety of environmental factors, as well as during learning, suggesting that new neurons could be important for coping with changing environmental demands. Notably, neurogenesis has been shown to be physiologically regulated in relation to reproductive behavior: neurogenesis increases in female mice upon exposure to cues of the mating partners, during pregnancy and lactation, and in male mice upon exposure to their offspring. In this scenario, and because of the key contribution of olfaction to maternal behavior, we sought to investigate the contribution of adult-generated neurons in the olfactory system to maternal behavior and offspring recognition. To do so, we selectively disrupted neurogenesis in the olfactory pathway of female mice using focal irradiation. Disruption of adult neurogenesis in the OB did not affect maternal behavior, or the ability of female mice to discriminate familiar from unfamiliar pups. However, reduction of olfactory neurogenesis resulted in abnormal social interaction of female mice, specifically with male conspecifics. Because the olfactory system is crucial for sex recognition, we suggest that the abnormal interaction with males could result from the inability to detect or discriminate male-specific odors and could therefore have implications for the recognition of potential mating partners. Here, I review the results of our study and others, and discuss their implications for our understanding of the function of adult neurogenesis.
Collapse
|
36
|
Brooks LR, Le CDV, Chung WC, Tsai PS. Maternal behavior in transgenic mice with reduced fibroblast growth factor receptor function in gonadotropin-releasing hormone neurons. Behav Brain Funct 2012; 8:47. [PMID: 22950531 PMCID: PMC3503805 DOI: 10.1186/1744-9081-8-47] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 09/02/2012] [Indexed: 11/17/2022] Open
Abstract
Background Fibroblast growth factors (FGFs) and their receptors (FGFRs) are necessary for the proper development of gonadotropin-releasing hormone (GnRH) neurons, which are key activators of the hypothalamo-pituitary-gonadal axis. Transgenic mice that have the targeted expression of a dominant negative FGFR (dnFGFR) in GnRH neurons (dnFGFR mice) have a 30% decrease of GnRH neurons. Additionally, only 30–40% of the pups born to the transgenic dams survive to weaning age. These data raised the possibility that FGFR defects in GnRH neurons could adversely affect maternal behavior via novel mechanisms. Methods We first determined if defective maternal behavior in dnFGFR mothers may contribute to poor pup survival by measuring pup retrieval and a battery of maternal behaviors in primiparous control (n = 10–12) and dnFGFR (n = 13–14) mothers. Other endocrine correlates of maternal behaviors, including plasma estradiol levels and hypothalamic pro-oxyphysin and GnRH transcript levels were also determined using enzyme-linked immunoassay and quantitative reverse transcription polymerase chain reaction, respectively. Results Maternal behaviors (% time crouching with pups, time off pups but not feeding, time feeding, and total number of nesting bouts) were not significantly different in dnFGFR mice. However, dnFGFR dams were more likely to leave their pups scattered and took significantly longer to retrieve each pup compared to control dams. Further, dnFGFR mothers had significantly lower GnRH transcripts and circulating E2, but normal pro-oxyphysin transcript levels. Conclusions Overall, this study suggests a complex scenario in which a GnRH system compromised by reduced FGF signaling leads to not only suboptimal reproductive physiology, but also suboptimal maternal behavior.
Collapse
Affiliation(s)
- Leah R Brooks
- University of Colorado, Integrative Physiology and Center for Neuroscience, UCB 354, Clare Small Rm, 114, Boulder, CO 80309-0354, USA.
| | | | | | | |
Collapse
|
37
|
Geissler DB, Sabine Schmidt H, Ehret G. Limbic brain activation for maternal acoustic perception and responding is different in mothers and virgin female mice. ACTA ACUST UNITED AC 2012; 107:62-71. [PMID: 22728471 DOI: 10.1016/j.jphysparis.2012.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 05/11/2012] [Accepted: 05/11/2012] [Indexed: 10/28/2022]
Abstract
Mothers are primed to become maternal through hormonal changes during pregnancy and delivery of young, virgin females need experience with young for performing maternally. The activation of brain areas controlling maternal behavior can be studied by stimulus-induced expression of the immediate-early gene Fos and immunocytochemical labeling of the FOS protein in activated cells. With this technique we identified areas of the mouse limbic system stimulated by acoustically adequate or inadequate models of pup ultrasounds that, if perceived as adequate, direct the search for lost pups (phonotaxis). Behavioral observations and neural activation data suggest that adequate (50 kHz long tones) and inadequate ultrasound models (50 kHz short or 20 kHz long tones) are differently processed in limbic areas of mothers and virgin females with 1 or 5 days of pup-caring experience depending on the news value and the recognition of the stimuli: High numbers of FOS-positive cells in the medial preoptic area, lateral septum, and bed nucleus of the stria terminalis (mothers and virgins) relate to the salience (news value) of the perceived sounds; contextual stress may be reflected by high activation in parts of the amygdala and the ventromedial hypothalamus (virgins); high activation in the piriform cortex suggests associative learning of adequate sounds and in the entorhinal cortex remembering associations of adequate sounds with pups (virgins). Thus brain areas were differently activated in animals with maternal emotions, however different responses to pup cues depending on how they got primed to behave maternally and on how they evaluated the stimulation context.
Collapse
Affiliation(s)
- Diana B Geissler
- Institute of Neurobiology, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - H Sabine Schmidt
- Institute of Neurobiology, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Günter Ehret
- Institute of Neurobiology, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany.
| |
Collapse
|
38
|
Kopel H, Schechtman E, Groysman M, Mizrahi A. Enhanced synaptic integration of adult-born neurons in the olfactory bulb of lactating mothers. J Neurosci 2012; 32:7519-27. [PMID: 22649230 PMCID: PMC6703584 DOI: 10.1523/jneurosci.6354-11.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/20/2012] [Accepted: 04/04/2012] [Indexed: 12/15/2022] Open
Abstract
One of the most dramatic events during the life of adult mammals is the transition into motherhood. This transition is accompanied by specific maternal behaviors, displayed by the mother, that ensure the survival and the well-being of her offspring. The execution of these behaviors is most likely accompanied by plastic changes in specific neuronal circuits, but these are still poorly defined. In this work, we studied the mammalian olfactory bulb (OB), which has been shown to be an essential brain region for maternal behaviors in mice. In the OB, we focused on adult-born neurons, which are continuously incorporated into the circuit during adulthood, thus providing a potential substrate for heightened plasticity after parturition. We analyzed the dynamics and morphological characteristics of adult-born granule cells (abGCs), innervating the OB of primiparous lactating mothers, shortly after parturition as well as in naive females. In vivo time-lapse imaging of abGCs revealed that dendritic spines were significantly more stable in lactating mothers compared with naive virgins. In contrast, spine stability of resident GCs remained unchanged after parturition. In addition, while spine size distribution of abGCs was approximately similar between mothers and naive virgins, the spine density of abGCs was lower in lactating mothers and the density of their presynaptic components was higher. These structural features are indicative of enhanced integration of adult-born neurons into the bulbar circuitry of lactating mothers. This enhanced integration may serve as a cellular mechanism, supporting changes in olfactory coding of new mothers during their first days following parturition.
Collapse
Affiliation(s)
- Hagit Kopel
- Department of Neurobiology, Institute of Life Sciences, and
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Eitan Schechtman
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Maya Groysman
- Department of Neurobiology, Institute of Life Sciences, and
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Adi Mizrahi
- Department of Neurobiology, Institute of Life Sciences, and
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| |
Collapse
|
39
|
Kuroda KO, Tachikawa K, Yoshida S, Tsuneoka Y, Numan M. Neuromolecular basis of parental behavior in laboratory mice and rats: with special emphasis on technical issues of using mouse genetics. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1205-31. [PMID: 21338647 DOI: 10.1016/j.pnpbp.2011.02.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 02/14/2011] [Accepted: 02/14/2011] [Indexed: 01/07/2023]
Abstract
To support the well-being of the parent-infant relationship, the neuromolecular mechanisms of parental behaviors should be clarified. From neuroanatomical analyses in laboratory rats, the medial preoptic area (MPOA) has been shown to be of critical importance in parental retrieving behavior. More recently, various gene-targeted mouse strains have been found to be defective in different aspects of parental behaviors, contributing to the identification of molecules and signaling pathways required for the behavior. Therefore, the neuromolecular basis of "mother love" is now a fully approachable research field in modern molecular neuroscience. In this review, we will provide a summary of the required brain areas and gene for parental behavior in laboratory mice (Mus musculus) and rats (Rattus norvegicus). Basic protocols and technical considerations on studying the mechanism of parental behavior using genetically-engineered mouse strains will also be presented.
Collapse
Affiliation(s)
- Kumi O Kuroda
- Unit for Affiliative Social Behavior, RIKEN Brain Science Institute, Saitama 351-0198, Japan.
| | | | | | | | | |
Collapse
|
40
|
Abstract
Although chemosensory signals generated by mouse pups may trigger maternal behavior of females, the mechanism for detection of these signals has not been fully defined. As some odorant receptors are coupled to the type 3 adenylyl cyclase (AC3), we evaluated the role of AC3 for maternal behavior using AC3(-/-) female mice. Here, we report that maternal behavior is impaired in virgin and postpartum AC3(-/-) mice. Female AC3(-/-) mice failed the pup retrieval assay, did not construct well-defined nests, and did not exhibit maternal aggression. Furthermore, AC3(-/-) females could not detect odorants or pup urine in the odorant habituation test and were unable to detect pups by chemoreception. In contrast to wild-type mice, AC activity in main olfactory epithelium (MOE) preparations from AC3(-/-) female mice was not stimulated by odorants or pheromones. Moreover, odorants and pheromones did not evoke electro-olfactogram (EOG) responses in the MOE of AC3(-/-) female mice. We hypothesize that the detection of chemical signals that trigger maternal behavior in female mice depends upon AC3 in the MOE.
Collapse
|
41
|
Canavan SV, Mayes LC, Treloar HB. Changes in maternal gene expression in olfactory circuits in the immediate postpartum period. Front Psychiatry 2011; 2:40. [PMID: 21747772 PMCID: PMC3130163 DOI: 10.3389/fpsyt.2011.00040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 06/15/2011] [Indexed: 01/16/2023] Open
Abstract
Regulation of maternal behavior in the immediate postpartum period involves neural circuits in reward and homeostasis systems responding to cues from the newborn. Our aim was to assess one specific regulatory mechanism: the role that olfaction plays in the onset and modulation of parenting behavior. We focused on changes in gene expression in olfactory brain regions, examining nine genes found in previous knockout studies to be necessary for maternal behavior. Using a quantitative PCR (qPCR)-based approach, we assessed changes in gene expression in response to exposure to pups in 11 microdissected olfactory brain regions. Over the first postpartum days, all nine genes were detected in all 11 regions (at differing levels) and their expression changed in response to pup exposure. As a general trend, five genes (Dbh, Esr1, FosB, Foxb1, and Oxtr) were found to decrease their expression in most of the olfactory regions examined, while two genes (Mest and Prlr) were found to increase expression. Nos1 and Peg3 levels remained relatively stable except in the accessory olfactory bulb (AOB), where greater than fourfold increases in expression were observed. The largest magnitude expression changes in this study were found in the AOB, which mediates a variety of olfactory cues that elicit stereotypic behaviors such as mating and aggression as well as some non-pheromone odors. Previous analyses of null mice for the nine genes assessed here have rarely examined olfactory function. Our data suggest that there may be olfactory effects in these null mice which contribute to the observed maternal behavioral phenotypes. Collectively, these data support the hypothesis that olfactory processing is an important sensory regulator of maternal behavior.
Collapse
Affiliation(s)
- Sofija V Canavan
- Department of Neurosurgery, Yale University School of Medicine New Haven, CT, USA
| | | | | |
Collapse
|
42
|
Feierstein CE, Lazarini F, Wagner S, Gabellec MM, de Chaumont F, Olivo-Marin JC, Boussin FD, Lledo PM, Gheusi G. Disruption of Adult Neurogenesis in the Olfactory Bulb Affects Social Interaction but not Maternal Behavior. Front Behav Neurosci 2010; 4:176. [PMID: 21160552 PMCID: PMC3001759 DOI: 10.3389/fnbeh.2010.00176] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 10/27/2010] [Indexed: 01/16/2023] Open
Abstract
Adult-born neurons arrive to the olfactory bulb (OB) and integrate into the existing circuit throughout life. Despite the prevalence of this phenomenon, its functional impact is still poorly understood. Recent studies point to the importance of newly generated neurons to olfactory learning and memory. Adult neurogenesis is regulated by a variety of factors, notably by instances related to reproductive behavior, such as exposure to mating partners, pregnancy and lactation, and exposure to offspring. To study the contribution of olfactory neurogenesis to maternal behavior and social recognition, here we selectively disrupted OB neurogenesis using focal irradiation of the subventricular zone in adult female mice. We show that reduction of olfactory neurogenesis results in an abnormal social interaction pattern with male, but not female, conspecifics; we suggest that this effect could result from the inability to detect or discriminate male odors and could therefore have implications for the recognition of potential mating partners. Disruption of OB neurogenesis, however, neither impaired maternal-related behaviors, nor did it affect the ability of mothers to discriminate their own progeny from others.
Collapse
Affiliation(s)
- Claudia E. Feierstein
- Laboratory for Perception and Memory, Institut PasteurParis, France
- URA2182, Centre National de la Recherche ScientifiqueParis, France
| | - Françoise Lazarini
- Laboratory for Perception and Memory, Institut PasteurParis, France
- URA2182, Centre National de la Recherche ScientifiqueParis, France
| | - Sebastien Wagner
- Laboratory for Perception and Memory, Institut PasteurParis, France
- URA2182, Centre National de la Recherche ScientifiqueParis, France
| | - Marie-Madeleine Gabellec
- Laboratory for Perception and Memory, Institut PasteurParis, France
- URA2182, Centre National de la Recherche ScientifiqueParis, France
| | - Fabrice de Chaumont
- Laboratory for Quantitative Image Analysis, Institut PasteurParis, France
- URA2582, Centre National de la Recherche ScientifiqueParis, France
| | - Jean-Christophe Olivo-Marin
- Laboratory for Quantitative Image Analysis, Institut PasteurParis, France
- URA2582, Centre National de la Recherche ScientifiqueParis, France
| | - François D. Boussin
- CEA, DSV, iRCM, SCSR, Laboratoire de Radiopathologie, INSERM U967Fontenay-aux-Roses, France
| | - Pierre-Marie Lledo
- Laboratory for Perception and Memory, Institut PasteurParis, France
- URA2182, Centre National de la Recherche ScientifiqueParis, France
| | - Gilles Gheusi
- Laboratory for Perception and Memory, Institut PasteurParis, France
- URA2182, Centre National de la Recherche ScientifiqueParis, France
- Laboratoire d'Ethologie Expérimentale et Comparée, University of Paris 13Villetaneuse, France
| |
Collapse
|
43
|
Khankhanian P, Gourraud PA, Caillier SJ, Santaniello A, Hauser SL, Baranzini SE, Oksenberg JR. Genetic variation in the odorant receptors family 13 and the mhc loci influence mate selection in a multiple sclerosis dataset. BMC Genomics 2010; 11:626. [PMID: 21067613 PMCID: PMC3091764 DOI: 10.1186/1471-2164-11-626] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 11/10/2010] [Indexed: 12/17/2022] Open
Abstract
Background When selecting mates, many vertebrate species seek partners with major histocompatibility complex (MHC) genes different from their own, presumably in response to selective pressure against inbreeding and towards MHC diversity. Attempts at replication of these genetic results in human studies, however, have reached conflicting conclusions. Results Using a multi-analytical strategy, we report validated genome-wide relationships between genetic identity and human mate choice in 930 couples of European ancestry. We found significant similarity between spouses in the MHC at class I region in chromosome 6p21, and at the odorant receptor family 13 locus in chromosome 9. Conversely, there was significant dissimilarity in the MHC class II region, near the HLA-DQA1 and -DQB1 genes. We also found that genomic regions with significant similarity between spouses show excessive homozygosity in the general population (assessed in the HapMap CEU dataset). Conversely, loci that were significantly dissimilar among spouses were more likely to show excessive heterozygosity in the general population. Conclusions This study highlights complex patterns of genomic identity among partners in unrelated couples, consistent with a multi-faceted role for genetic factors in mate choice behavior in human populations.
Collapse
Affiliation(s)
- Pouya Khankhanian
- Department of Neurology, University of California, San Francisco, CA 94143-0435, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Influence of olfactory bulbectomy on maternal behavior and dopaminergic function in nucleus accumbens in mice. Behav Brain Res 2010; 215:141-5. [PMID: 20638419 DOI: 10.1016/j.bbr.2010.07.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 07/09/2010] [Accepted: 07/10/2010] [Indexed: 11/24/2022]
Abstract
Olfactory bulbectomy (OBX) induces behavioral, physiological, and neurochemical alterations resembling clinical depression and is widely used as an animal model of depression. It has been reported that depression is a critical cause of child abuse and neglect and that maternal behavior involves dopaminergic neurons of the mesolimbic pathway. In a previous study we found that OBX mice show maternal behavior deficits which are improved by administration of apomorphine, a non-selective dopamine agonist. Therefore, in this study, we investigated the effect of l-3,4-dihydroxyphenylalanine (l-DOPA) on maternal behavior deficits to examine the influence of pre-synaptic dopaminergic function in OBX mice. Furthermore, we measured tyrosine hydroxylase (TH) levels using microphotometry and quantified dopamine D1- and D2-like receptors using autoradiography in the nucleus accumbens (NAc). As a result, 25mg/kg l-DOPA with 12.5mg/kg benserazide improved disrupted maternal behavior in OBX mice and there are no changes in TH levels or number of D1- and D2-like receptors between sham and OBX mothers. The behavioral data support the hypothesis that changed dopaminergic function may contribute to maternal behavior deficits in OBX mice. However, our findings concerning dopaminergic function suggest that the deficits in OBX mice are not simply due to changes in TH levels or dopamine receptor number in the NAc.
Collapse
|
45
|
Sato A, Nakagawasai O, Tan-No K, Onogi H, Niijima F, Tadano T. Effect of non-selective dopaminergic receptor agonist on disrupted maternal behavior in olfactory bulbectomized mice. Behav Brain Res 2010; 210:251-6. [DOI: 10.1016/j.bbr.2010.02.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 02/16/2010] [Accepted: 02/20/2010] [Indexed: 11/29/2022]
|
46
|
MacDonald JL, Verster A, Berndt A, Roskams AJ. MBD2 and MeCP2 regulate distinct transitions in the stage-specific differentiation of olfactory receptor neurons. Mol Cell Neurosci 2010; 44:55-67. [DOI: 10.1016/j.mcn.2010.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 01/12/2010] [Accepted: 02/15/2010] [Indexed: 12/31/2022] Open
|
47
|
Keller M, Pawluski JL, Brock O, Douhard Q, Bakker J. The alpha-fetoprotein knock-out mouse model suggests that parental behavior is sexually differentiated under the influence of prenatal estradiol. Horm Behav 2010; 57:434-40. [PMID: 20109458 PMCID: PMC4298041 DOI: 10.1016/j.yhbeh.2010.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 01/20/2010] [Accepted: 01/21/2010] [Indexed: 11/28/2022]
Abstract
In rodent species, sexual differentiation of the brain for many reproductive processes depends largely on estradiol. This was recently confirmed again by using the alpha-fetoprotein knockout (AFP-KO) mouse model, which lacks the protective actions of alpha-fetoprotein against maternal estradiol and as a result represents a good model to determine the contribution of prenatal estradiol to the sexual differentiation of the brain and behavior. Female AFP-KO mice were defeminized and masculinized with regard to their neuroendocrine responses as well as sexual behavior. Since parental behavior is also strongly sexually differentiated in mice, we used the AFP-KO mouse model here to ask whether parental responses are differentiated prenatally under the influence of estradiol. It was found that AFP-KO females showed longer latencies to retrieve pups to the nest and also exhibited lower levels of crouching over the pups in the nest in comparison to WT females. In fact, they resembled males (WT and AFP-KO). Other measures of maternal behavior, for example the incidence of infanticide, tended to be higher in AFP-KO females than in WT females but this increase failed to reach statistical significance. The deficits observed in parental behavior of AFP-KO females could not be explained by any changes in olfactory function, novelty recognition or anxiety. Thus our results suggest that prenatal estradiol defeminizes the parental brain in mice.
Collapse
Affiliation(s)
- Matthieu Keller
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
| | | | | | | | | |
Collapse
|
48
|
MacDonald JL, Roskams AJ. Epigenetic regulation of nervous system development by DNA methylation and histone deacetylation. Prog Neurobiol 2009; 88:170-83. [PMID: 19554713 DOI: 10.1016/j.pneurobio.2009.04.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Alterations in the epigenetic modulation of gene expression have been implicated in several developmental disorders, cancer, and recently, in a variety of mental retardation and complex psychiatric disorders. A great deal of effort is now being focused on why the nervous system may be susceptible to shifts in activity of epigenetic modifiers. The answer may simply be that the mammalian nervous system must first produce the most complex degree of developmental patterning in biology and hardwire cells functionally in place postnatally, while still allowing for significant plasticity in order for the brain to respond to a rapidly changing environment. DNA methylation and histone deacetylation are two major epigenetic modifications that contribute to the stability of gene expression states. Perturbing DNA methylation, or disrupting the downstream response to DNA methylation - methyl-CpG-binding domain proteins (MBDs) and histone deacetylases (HDACs) - by genetic or pharmacological means, has revealed a critical requirement for epigenetic regulation in brain development, learning, and mature nervous system stability, and has identified the first distinct gene sets that are epigenetically regulated within the nervous system. Epigenetically modifying chromatin structure in response to different stimuli appears to be an ideal mechanism to generate continuous cellular diversity and coordinate shifts in gene expression at successive stages of brain development - all the way from deciding which kind of a neuron to generate, through to how many synapses a neuron can support. Here, we review the evidence supporting a role for DNA methylation and histone deacetylation in nervous system development and mature function, and present a basis from which to understand how the clinical use of HDAC inhibitors may impact nervous system function.
Collapse
Affiliation(s)
- Jessica L MacDonald
- Life Sciences Institute, Department of Zoology, University of British Columbia, BC, V6T 1Z3, Vancouver, Canada
| | | |
Collapse
|
49
|
Lee AW, Brown RE. Comparison of medial preoptic, amygdala, and nucleus accumbens lesions on parental behavior in California mice (Peromyscus californicus). Physiol Behav 2007; 92:617-28. [PMID: 17610916 DOI: 10.1016/j.physbeh.2007.05.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 05/31/2006] [Accepted: 05/07/2007] [Indexed: 11/21/2022]
Abstract
We have previously shown that medial preoptic area (MPOA) lesions disrupt parental behavior in both male and female California mice (P. californicus). In the present study, we compare the effects of lesions in the MPOA, with those in the basolateral amygdala (BA) and nucleus accumbens (NA) on male and female parental behaviors in the biparental California mouse. A male or multiparous female from each male-female pair was given an electrolytic or sham lesion in the MPOA, BA, or NA and tested for parental responsiveness. Since female P. californicus show postpartum estrus, they were likely pregnant during parental testing. MPOA lesions produced deficits in both male and female parental behaviors, and BA lesions disrupted male, and to a lesser extent, female parental behavior. NA lesions produced mild effects on pup-retrieval in males and no effect on parental behavior in females. However, NA lesions incompletely destroyed the NA shell, the region most relevant for maternal behavior in rats, and should be investigated further. These results support a role for the MPOA and BA in both male and female parental behaviors.
Collapse
Affiliation(s)
- Anna W Lee
- Psychology Department, Dalhousie University, Halifax, NS, Canada B3H 4J1.
| | | |
Collapse
|
50
|
Halpern M. The Efferent Connections of the Olfactory Bulb and Accessory Olfactory Bulb in the Snakes, Thamnophis sirtalis
and Thamnophis radix. J Morphol 2005. [DOI: 10.1002/jmor.1976.150.2.553] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|