1
|
Solodilova M, Drozdova E, Azarova I, Klyosova E, Bykanova M, Bushueva O, Polonikova A, Churnosov M, Polonikov A. The discovery of GGT1 as a novel gene for ischemic stroke conferring protection against disease risk in non-smokers and non-abusers of alcohol. J Stroke Cerebrovasc Dis 2024; 33:107685. [PMID: 38522756 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/09/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024] Open
Abstract
OBJECTIVES Increased plasma gamma-glutamyl transferase (GGT1) has been identified as a robust and independent risk factor for ischemic stroke (IS), but the molecular mechanisms of the enzyme-disease association are unclear. The present study investigated whether polymorphisms in the GGT1 gene contribute to IS susceptibility. MATERIALS AND METHODS DNA samples obtained from 1288 unrelated individuals (600 IS patients and 688 controls) were genotyped for common single nucleotide polymorphisms of GGT1 using the MassArray-4 platform. RESULTS The rs5751909 polymorphism was significantly associated with decreased risk of ischemic stroke regardless sex and age (Pperm ≤ 0.01, dominant genetic model). The haplotype rs4820599A-rs5760489A-rs5751909A showed strong protection against ischemic stroke (OR 0.53, 95 %CI 0.36 - 0.77, Pperm ≤ 0.0001). The protective effect of SNP rs5751909 in the stroke phenotype was successfully replicated in the UK Biobank, SiGN, and ISGC cohorts (P ≤ 0.01). GGT1 polymorphisms showed joint (epistatic) effects on the risk of ischemic stroke, with some known IS-associated GWAS loci (e.g., rs4322086 and rs12646447) investigated in our population. In addition, SNP rs5751909 was found to be strongly associated with a decreased risk of ischemic stroke in non-smokers (OR 0.54 95 %CI 0.39-0.75, Pperm = 0.0002) and non-alcohol abusers (OR 0.43 95 %CI 0.30-0.61, Pperm = 2.0 × 10-6), whereas no protective effects of this SNP against disease risk were observed in smokers and alcohol abusers (Pperm < 0.05). CONCLUSIONS We propose mechanisms underlying the observed associations between GGT1 polymorphisms and ischemic stroke risk. This pilot study is the first to demonstrate that GGT1 is a novel susceptibility gene for ischemic stroke and provides additional evidence of the genetic contribution to impaired redox homeostasis underlying disease pathogenesis.
Collapse
Affiliation(s)
- Maria Solodilova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russian Federation
| | - Elena Drozdova
- Department of General Hygiene, 3 Karl Marx Street, Kursk 305041, Russian Federation
| | - Iuliia Azarova
- Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russian Federation; Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russian Federation
| | - Elena Klyosova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russian Federation; Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russian Federation
| | - Marina Bykanova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russian Federation; Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russian Federation
| | - Olga Bushueva
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russian Federation; Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russian Federation
| | - Anna Polonikova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russian Federation
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State University, 85 Pobedy Street, Belgorod 308015, Russian Federation
| | - Alexey Polonikov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russian Federation; Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russian Federation.
| |
Collapse
|
2
|
Quantitative Targeted Absolute Proteomics for Better Characterization of an In Vitro Human Blood-Brain Barrier Model Derived from Hematopoietic Stem Cells. Cells 2022; 11:cells11243963. [PMID: 36552728 PMCID: PMC9776576 DOI: 10.3390/cells11243963] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
We previously developed an in vitro model of the human blood-brain barrier (BBB) based on the use of endothelial cells derived from CD34+-hematopoietic stem cells and cultured with brain pericytes. The purpose of the present study was to provide information on the protein expression levels of the transporters, receptors, tight junction/adherence junction molecules, and transporter-associated molecules of human brain-like endothelial cells (hBLECs). The absolute protein expression levels were determined by liquid chromatography-mass spectrometry-based quantitative targeted absolute proteomics and compared with those from human brain microvessels (hBMVs). The protein levels of CD144, CD147, MRP4, Annexin A6 and caveolin-1 showed more than 3-fold abundance in hBLECs, those of MCT1, Connexin 43, TfR1, and claudin-5 showed less than 3-fold differences, and the protein levels of other drug efflux transporters and nutrient transporters were less represented in hBLECs than in hBMVs. It is noteworthy that BCRP was more expressed than MDR1 in hBLECs, as this was the case for hBMVs. These results suggest that transports mediated by MCT1, TfR1, and claudin-5-related tight junction function reflect the in vivo BBB situation. The present study provided a better characterization of hBLECs and clarified the equivalence of the transport characteristics between in vitro BBB models and in vivo BBB models using LC-MS/MS-based protein quantification.
Collapse
|
3
|
Afsar T, Razak S, Almajwal A. Reversal of cisplatin triggered neurotoxicity by Acacia hydaspica ethyl acetate fraction via regulating brain acetylcholinesterase activity, DNA damage, and pro-inflammatory cytokines in the rodent model. BMC Complement Med Ther 2022; 22:179. [PMID: 35790919 PMCID: PMC9254489 DOI: 10.1186/s12906-022-03657-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/24/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Cisplatin (CisPT) is a chemotherapeutic that outcome in adverse effects including neurotoxicity. We examined the efficacy of hydaspica ethyl acetate extract (AHE) against CisPT-prompted neurotoxicity.
Methods
Group I: Distilled water; Group II: CisPT (12 mg/kg b.w. i.p) on the 13th day of treatment. Group III: received AHE (400 mg/kg b.w) orally for 16 days. Group IV and V received 200 and 400 mg/kg b.w AHE orally for 16 days while CisPT injection on day 13, respectively. Group VI: received Silymarin (100 mg/kg b.w) orally for 16 days and CP (12 mg/kg b.w., i.p.) on day 13. TNF-α, IL6, brain acetylcholinesterase activity (AChE), oxidative trauma markers, genotoxicity, antioxidant enzymes, and morphological alterations in cerebral hemispheres were inspected.
Results
AHE administration before CisPT considerably reduced both tissue TNF-α and IL 6 expressions compared to CisPT treated group in a dose-dependent manner. AHE treatment (400 mg/kg b.w) significantly ameliorated brain AChE activity. Brain tissue MDA, H2O2, and NO content were markedly (p < 0.001) elevated after CisPT inoculation while a noticeable (p < 0.001) diminution was observed in AHE treatment groups. AHE treatment significantly (p < 0.001) improved brain antioxidant defense in a dose-dependent manner. Furthermore, AHE efficiently recused CisPT to induce DNA damage in brain tissue as revealed by ladder assay and DNA fragmentation patterns. Histopathological findings revealed severe neurodegenerations in CisPT treated group, however, AHE treatment noticeably precluded morphological alterations and neuron damages induced by CisPT.
Conclusion
A. hydaspica AHE extract may be provided as a prospective adjuvant that precludes CisPT-induced neurotoxicity due to its radical scavenging and antioxidant potential.
Collapse
|
4
|
Menaceur C, Gosselet F, Fenart L, Saint-Pol J. The Blood-Brain Barrier, an Evolving Concept Based on Technological Advances and Cell-Cell Communications. Cells 2021; 11:cells11010133. [PMID: 35011695 PMCID: PMC8750298 DOI: 10.3390/cells11010133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
The construction of the blood–brain barrier (BBB), which is a natural barrier for maintaining brain homeostasis, is the result of a meticulous organisation in space and time of cell–cell communication processes between the endothelial cells that carry the BBB phenotype, the brain pericytes, the glial cells (mainly the astrocytes), and the neurons. The importance of these communications for the establishment, maturation and maintenance of this unique phenotype had already been suggested in the pioneering work to identify and demonstrate the BBB. As for the history of the BBB, the evolution of analytical techniques has allowed knowledge to evolve on the cell–cell communication pathways involved, as well as on the role played by the cells constituting the neurovascular unit in the maintenance of the BBB phenotype, and more particularly the brain pericytes. This review summarises the key points of the history of the BBB, from its origin to the current knowledge of its physiology, as well as the cell–cell communication pathways identified so far during its development, maintenance, and pathophysiological alteration.
Collapse
|
5
|
Afsar T, Razak S, Aldisi D, Shabbir M, Almajwal A, Al Kheraif AA, Arshad M. Acacia hydaspica R. Parker ethyl-acetate extract abrogates cisplatin-induced nephrotoxicity by targeting ROS and inflammatory cytokines. Sci Rep 2021; 11:17248. [PMID: 34446789 PMCID: PMC8390681 DOI: 10.1038/s41598-021-96509-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
Cisplatin (CisPT) is a chemotherapeutic drug that outcomes in adverse effects. In this study, we examined the effect of A. hydaspica ethyl acetate extract (AHE) in an animal model of cisplatin-induced acute kidney injury (AKI). 36 male Sprague Dawley rats were used in the AKI rat model, and CisPT (7.5 mg/kg BW, i.p) single dose was given. In the pretreatment module, AHE (400 mg/kgBW/day, p.o) was given for 7 days before and after CisPT injection. While in the post-treatment group AHE was administered for 7 days after a single CisPT shot. The standard group received silymarin (100 mg/kg BW, p.o) for 7 days before and after CisPT injection. In HCT 116 tumor xenografts (n = 32) two groups of mice were pretreated with 400 mg/kg AHE orally for 7 days and two groups were treated with distilled water. On day 7 of pretreatment one distilled water and one AHE pretreated group were injected i.p with 15 mg/kg bw dose followed by another dose of CisPT 2 wk later. AHE groups were additionally treated with 400 mg/kg AHE for 3 days/week for 2 weeks. CisPT significantly deteriorated renal function parameters, i.e., PH, specific gravity, total protein, albumin, urea, creatinine, uric acid, globulin and blood urea nitrogen. CisPT treatment increased oxidative stress markers, while lower renal antioxidant enzymes. AHE pretreatment ameliorates significantly (p < 0.0001) CisPT-induced alterations in serum and urine markers for kidney function. Furthermore, AHE pretreatment more efficiently (p < 0.001) decreases oxidative stress markers, attenuate NF-κB, and IL-6 protein and mRNA expression by augmenting antioxidant enzyme levels compared to post-treatment. The histological observations verified the protective effect of AHE. In tumor xenograft mice, AHE treatment significantly reduced CisPT induced oxidative stress while it did not interfere with the anticancer efficacy of cisplatin as shown by significance (p < 0.001) decrease in tumor size after treatment. A. hydaspica AHE might provide a prospective adjuvant that precludes CisPT-induced nephrotoxicity without compromising its antitumor potential.
Collapse
Affiliation(s)
- Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Dara Aldisi
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Maria Shabbir
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Abdulaziz Abdullah Al Kheraif
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed Arshad
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
6
|
Understanding the Heterogeneity of Human Pericyte Subsets in Blood-Brain Barrier Homeostasis and Neurological Diseases. Cells 2021; 10:cells10040890. [PMID: 33919664 PMCID: PMC8069782 DOI: 10.3390/cells10040890] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 01/01/2023] Open
Abstract
Pericytes are increasingly recognized as being important in the control of blood–brain barrier permeability and vascular flow. Research on this important cell type has been hindered by widespread confusion regarding the phenotypic identity and nomenclature of pericytes and other perivascular cell types. In addition, pericyte heterogeneity and mouse–human species differences have contributed to confusion. Herein we summarize our present knowledge on the identification of pericytes and pericyte subsets in humans, primarily focusing on recent findings in humans and nonhuman primates. Precise identification and definition of pericytes and pericyte subsets in humans may help us to better understand pericyte biology and develop new therapeutic approaches specifically targeting disease-associated pericyte subsets.
Collapse
|
7
|
Zaragozá R. Transport of Amino Acids Across the Blood-Brain Barrier. Front Physiol 2020; 11:973. [PMID: 33071801 PMCID: PMC7538855 DOI: 10.3389/fphys.2020.00973] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/16/2020] [Indexed: 01/17/2023] Open
Abstract
The blood-brain-barrier (BBB), present in brain capillaries, constitutes an essential barrier mechanism for normal functioning and development of the brain. The presence of tight junctions between adjacent endothelial cells restricts permeability and movement of molecules between extracellular fluid and plasma. The protein complexes that control cell-cell attachment also polarize cellular membrane, so that it can be divided into luminal (blood-facing) and abluminal (brain) sides, and each solute that enters/leaves the brain must cross both membranes. Several amino acid (AA) transport systems with different distributions on both sides of the BBB have been described. In a broad sense, there are at least five different systems of facilitative transporters and all of them are found in the luminal membrane. Some of these transporters are very specific for a small group of substrates and are located exclusively on the luminal side of the BBB. However, the two major facilitative carriers, system L and system y+, are located in both membranes, although asymmetrically. The position of these Na+-independent transporters ensures AA availability in the brain and also its bidirectional transport across the endothelial cells. On the other hand, there are several Na+-dependent transport systems that transport AAs against its concentration gradient together with the movement of Na+ ions. The majority of these active transporters are present exclusively at the abluminal membrane and are responsible for AA efflux from the brain into the endothelial cells. Since they are Na+-coupled, the sodium pump Na+/K+-ATPase is also highly expressed on this abluminal side of the BBB. Once inside the cell, the facilitative transporters located in the luminal membranes mediate export from the endothelial cell to the blood. In summary, the polarized distribution of these transport systems between the luminal and abluminal membranes, and the fact that more than one transporter may carry the same substrate, ensures supply and excretion of AAs in and out of the brain, thereby controlling its homeostasis and proper function.
Collapse
Affiliation(s)
- Rosa Zaragozá
- Department of Human Anatomy and Embriology, School of Medicine, IIS INCLIVA, University of Valencia, Valencia, Spain
| |
Collapse
|
8
|
Doxorubicin-induced alterations in kidney functioning, oxidative stress, DNA damage, and renal tissue morphology; Improvement by Acacia hydaspica tannin-rich ethyl acetate fraction. Saudi J Biol Sci 2020; 27:2251-2260. [PMID: 32884406 PMCID: PMC7451730 DOI: 10.1016/j.sjbs.2020.07.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Doxorubicin (DOX) is an anthracycline drug used for cancer treatment. However, its treatment is contiguous with toxic effects. We examined the nephroprotective potential of A. hydaspica polyphenol-rich ethyl acetate extract (AHE) against DOX persuaded nephrotoxicity. 36 male Sprague Dawley rats were randomly assorted into 6 groups. Control group received saline; DOX group: 3 mg/kg b.w. dosage of DOX intraperitoneally for 6 weeks (single dose/week). In co-treatment groups, 200 and 400 mg/kg b.w AHE was given orally for 6 weeks in concomitant with DOX (3 mg/kg b.w, i.p. injection per week) respectively. Standard group received silymarin 400 mg/kg b.w daily + DOX (single dose/week). Biochemical kidney function tests, oxidative stress markers, genotoxicity, antioxidant enzyme status, and histopathological changes were examined. DOX caused significant body weight loss and decrease kidney weight. DOX-induced marked deterioration in renal function indicators in both urine and serum, i.e., PH, specific gravity, total protein, albumin, urea, creatinine, uric acid, globulin, blood urea nitrogen, etc. Also, DOX treatment increases renal tissue oxidative stress markers, while lower antioxidant enzymes in tissue along with degenerative alterations in the renal tissue compared to control rats. AHE co-treatment ameliorates DOX-prompted changes in serum and urine chemistry. Likewise, AHE treatment decreases sensitive markers of oxidative stress and prevented DNA damages by enhancing antioxidant enzyme levels. DOX induction in rats also caused DNA fragmentation which was restored by AHE co-treatment. Moreover, the histological observations evidenced that AHE effectively rescued the kidney tissue from DOX interceded oxidative damage. Our results suggest that co-treatment of AHE markedly improve DOX-induced deleterious effects in a dose-dependent manner. The potency of AHE co-treatment at 400 mg/kg dose is similar to silymarin. These outcomes revealed that A. hydaspica AHE extract might serve as a potential adjuvant that avoids DOX-induced nephrotoxicity.
Collapse
Key Words
- AHE, Acacia hydaspica ethyl acetate extract
- CAT, catalase
- DOX, doxorubicin
- Doxorubicin
- GPx, glutathione peroxidase
- GR, glutathione reductase
- GST, glutathione S transferase
- Genotoxicity
- H2O2, hydrogen peroxide
- Histopathology
- Kidney function
- MDA, malondialdehyde
- NO, nitric oxide
- Nephrotoxicity
- Oxidative stress markers
- POD, peroxidase
- QR, quinone reductase
- RBCs, red blood cells
- SOD, superoxide dismutase
- WBCs, white blood cells
- γ-GT, Gamma Glutamyl Transferase
Collapse
|
9
|
Afsar T, Razak S, Almajwal A, Shabbir M, Khan MR. Evaluating the protective potency of Acacia hydaspica R. Parker on histological and biochemical changes induced by Cisplatin in the cardiac tissue of rats. Altern Ther Health Med 2019; 19:182. [PMID: 31337380 PMCID: PMC6651963 DOI: 10.1186/s12906-019-2575-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/24/2019] [Indexed: 12/30/2022]
Abstract
Background Increase oxidative trauma is the main cause behind Cisplatin (CP) induced cardiotoxicity which restricts its clinical application as anti-neoplastic prescription. Acacia hydaspica is a natural shrub with diverse bioactivities. Acacia hydaspica ethyl acetate extract (AHE) ameliorated drug-induced cardiotoxicity in animals with anti-oxidative mechanisms. Current study aimed to evaluate the protective potential of A. hydaspica against cisplatin-induced myocardial injury. Methods Rats were indiscriminately distributed into six groups (n = 6). Group 1: control; Groups 2: Injected with CP (7.5 mg/kg bw, i.p, single dose) on day 16; Group 3: Treated for 21 days with AHE (400 mg/kg b.w, oral); Group 4: Received CP injection on day 16 and treated with AHE for 5 days post injection; Group 5: Received AHE (400 mg/kg b.w/day, p.o.) for 21 days and CP (7.5 mg/kg b.w., i.p.) on day 16; Group 6: Treated with silymarin (100 mg/kg b.w., p.o.) after 1 day interval for 21 days and CP injection (7.5 mg/kg b.w., i.p.) on day 16. On 22nd day, the animals were sacrificed and their heart tissues were removed. Cisplatin induced cardiac toxicity and the influence of AHE were evaluated by examination of serum cardiac function markers, cardiac tissue antioxidant enzymes, oxidative stress markers and histology. Results CP inoculation considerably altered cardiac function biomarkers in serum and diminished the antioxidant enzymes levels, while increased oxidative stress biomarkers in cardiac tissues AHE treatment attenuated CP-induced deteriorations in creatine kinase (CK), Creatine kinase isoenzymes MB (CK-MB), cardiac Troponin I (cTNI) and lactate dehydrogenase (LDH) levels and ameliorated cardiac oxidative stress markers as evidenced by decreasing lipid peroxidation, H2O2 and NO content along with augmentation in phase I and phase II antioxidant enzymes. Additionally, CP inoculation also induced morphological alterations which were ameliorated by AHE. In pretreatment group more significant protection was observed compared to post-treatment group indicating preventive potential of AHE. The protective potency of AHE was comparable to silymarin. Conclusion Results demonstrate that AHE attenuated CP induce cardiotoxicity. The polyphenolic metabolites and antioxidant properties of AHE might be responsible for its protective influence.
Collapse
|
10
|
Afsar T, Razak S, Almajwal A. Effect of Acacia hydaspica R. Parker extract on lipid peroxidation, antioxidant status, liver function test and histopathology in doxorubicin treated rats. Lipids Health Dis 2019; 18:126. [PMID: 31142345 PMCID: PMC6542101 DOI: 10.1186/s12944-019-1051-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/15/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Doxorubicin (DOX) is an anthracycline agent mostly prescribed for various cancers. However, its treatment is contiguous with toxic effects. Acacia hydaspica prevented drug-induced hepatic-toxicity in animals with anti-oxidative mechanisms. We intended to study the efficacy of A. hydaspica ethyl acetate extract (AHE) for inhibiting DOX- induced liver damage. METHODS Normal control group received saline; Drug control group received 3 mg/kg b.w. dose of DOX for 6 weeks (single dose/week, intraperitoneal injection) to study the effect of chronic DOX treatment. In co-treatment groups, 200 and 400 mg/kg b.w AHE was given orally for 6 weeks in concomitant with DOX (3 mg/kg b.w, i.p. injection per week). The standard drug group received silyamrin 100 mg/kg b.w (2 doses/week: 12 doses/6 weeks) in conjunction with DOX (single dose/week). Lipid profile, liver function tests (LFTs), antioxidant enzymes, oxidative stress enzymes and morphological alterations were studied to evaluate the hepatoprotective potential of AHE. RESULTS DOX treatment inhibits body weight gain and upturn liver index. DOX considerably upset serum cholesterol, triglycerides and LDL concentration. On the contrary, it reduced serum HDL amount. DOX induced marked depreciation in serum LFTs, diminish hepatic antioxidant enzymes; however, raised tissue oxidative stress markers accompanied by morphological damages. Co-treatment with AHE dose dependently adjusted DOX-prompted fluctuations in lipid profile, AST, ALP, ALT, total bilirubin, and direct bilirubin concentrations and hepatic weight. Likewise, AHE usage enhanced total protein and hepatic tissue antioxidant enzyme quantities whereas declined oxidative stress markers in hepatic tissue. Correspondingly histopathological examinations aid the biochemical results. The influence of AHE 400 mg/kg b.w dose is analogous to silymarin. CONCLUSION Acacia hydaspica possibly serve as adjuvant therapy that hampers DOX inveigled liver damage due to the underlying antioxidant mechanism of secondary metabolites.
Collapse
Affiliation(s)
- Tayyaba Afsar
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Suhail Razak
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
11
|
Afsar T, Razak S, Almajwal A, Khan MR. Acacia hydaspica R. Parker ameliorates cisplatin induced oxidative stress, DNA damage and morphological alterations in rat pulmonary tissue. Altern Ther Health Med 2018; 18:49. [PMID: 29394892 PMCID: PMC5797377 DOI: 10.1186/s12906-018-2113-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 01/25/2018] [Indexed: 12/20/2022]
Abstract
Background Cisplatin (CP) drug is platinum compounds used for the treatment of various human malignancies. However, adverse outcomes related to CP restrict its usage. Acacia hydaspica is a natural shrub with various pharmacological properties. The current investigation aimed to assess the protective potential of A. hydaspica polyphenol rich ethyl acetate extract (AHE) against cisplatin (CP) induced pulmonary toxicity. Methods Rats were divided into six groups. Group 1 served as control (saline); Group 2 (drug control) recieved single dose of CP (7.5 mg/kg i.p.) on 1st day; Group 3 (extract control) (400 mg/kg bw, p.o.) received AHE for one week; Group 4 (Post-treated) and Group 5 (pretreated) received AHE (400 mg/kg bw/day, p.o) for 7 days after and before CP (7.5 mg/kg b.w., i.p.) respectively; Group 6 (Standard control) received silymarin (100 mg/kg b.w/7 days) before CP. At the end of dosing rats were sacrificed and pulmonary tissue samples were processed for the evaluation of antioxidant enzymes, oxidative stress markers, genotoxicity and histopathological alterations. Results CP caused body weights loss and increase pulmonary tissue weight. The CP significantly increases oxidative stress markers and decreases tissue antioxidant enzyme levels. Furthermore, CP induced deleterious changes in the microanatomy of pulmonary tissue by rupturing the alveolar septa, thickening of alveolar walls, and injuring the cells with subsequent collapse of blood vessels. AHE pretreatment returned MDA, NO, H2O2 production and improved tissue antioxidant enzyme levels to near normalcy. The histological observations evidenced that AHE effectively rescues the lungs from CP-mediated oxidative damage. CP induction in rats also caused DNA fragmentation which was restored by AHE treatment. Our results suggest that pretreatment more significantly improve CP induced deleterious effects compared with post treatment indicating protective effect. Potency of AHE pretreatment is similar to silymarin. Conclusion These findings demonstrated that A. hydaspica AHE extract might serve as potential adjuvant that prevents CP persuaded pulmonary toxicity due to its intrinsic antioxidant potential and polyphenolic constituents.
Collapse
|
12
|
Afsar T, Razak S, Batoo KM, Khan MR. Acacia hydaspica R. Parker prevents doxorubicin-induced cardiac injury by attenuation of oxidative stress and structural Cardiomyocyte alterations in rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:554. [PMID: 29284479 PMCID: PMC5747129 DOI: 10.1186/s12906-017-2061-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 12/15/2017] [Indexed: 01/28/2023]
Abstract
BACKGROUND The use of doxorubicin (DOX) an anthracycline antineoplastic agent is withdrawn due to its cardio-toxic side effects. Oxidative stress has been recognized as the primary cause of DOX induced cardiotoxicity. We have investigated whether polyphenol rich ethyl acetate extract of Acacia hydaspica (AHE) can attenuate doxorubicin-induced cardiotoxicity via inhibition of oxidative stress. METHODS AHE was administered orally to rats once daily for 6 weeks at doses of 200 and 400 mg/kg b.w. DOX (3 mg/kg b.w. i.p., single dose/week) was administered for 6 weeks (chronic model). The parameters studied to evaluate cardioprotective potential were the serum cardiac function biomarkers (CK, CKMB, AST and LDH), hematological parameters, cardiac tissue antioxidant enzymatic status and oxidative stress markers, and histopathological analysis to validate biochemical findings. RESULTS Chronic 6 week treatment of DOX significantly deteriorated cardiac function biomarkers and decreased the activities of antioxidant enzymes, whereas significant increase in oxidative stress biomarkers was noticed in comparison to control group. AHE dose dependently protected DOX-induced leakage of cardiac enzymes in serum and ameliorated DOX-induced oxidative stress; as evidenced by decreasing lipid peroxidation, H2O2 and NO content with increase in phase I and phase II antioxidant enzymes. Doxorubicin treatment produced severe morphological lesions, leucopenia, decrease in red blood cell counts and hemoglobin concentrations. AHE co-treatment protected the heart and blood elements from the toxic effects of doxorubicin as indicated by the recovery of hematological parameters to normal values and prevention of myocardial injuries in a dose dependent way. The protective potency of AHE (400 mg/kg b.w) was equivalent to silymarin. CONCLUSION Results revealed that AHE showed protective effects against DOX induce cardiotoxicity. The protective effect might attribute to its polyphenolic constituents and antioxidant properties. AHE might be helpful in combination therapies as safer and efficient.
Collapse
|
13
|
Afsar T, Razak S, Khan MR, Almajwal A. Acacia hydaspica ethyl acetate extract protects against cisplatin-induced DNA damage, oxidative stress and testicular injuries in adult male rats. BMC Cancer 2017; 17:883. [PMID: 29268699 PMCID: PMC5740854 DOI: 10.1186/s12885-017-3898-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 12/08/2017] [Indexed: 11/10/2022] Open
Abstract
Background Cisplatin (CP), an effective anticancer agent, carries the risk of impairing testicular function leading to infertility. The present study aimed at evaluating the protective effect of A. hydaspica ethyl acetate extract (AHE) against CP-induced oxidative stress and testicular injuries in rats. Methods Rats were divided into six groups (n = 6). Group I (control), group II (CP single dose on day 16). Group III received AHE for 21 days. Group IV (CP + AHE; post- treatment group). Group V (AHE + CP; pre-treatment group) and group VI (CP + Sily). Results CP treatment reduced serum testosterone (T), LH and FSH, decreased the activity level of antioxidant enzymes while increased the concentration of oxidative stress markers, i.e. thiobarbituric acid reactive substances (TBARS), H2O2 and nitric oxide (NO) along with corresponding DNA damages. Furthermore, CP induced adverse morphological changes in testis of rats including reduced epithelial height and tubular diameter, increased luminal diameter with impaired spermatogenesis. Pre and post-treatment with AHE reduced the side effects of CP in testis tissues through improvement in the reproductive hormonal secretions, enzymatic activities, histological and DNA damage parameters. Pretreatment seems to be more effective and equivalent to silymarin group in reversing the CP deleterious effects as compared to post-treatment. Conclusion The results demonstrated that A. hydaspica treatment in CP-induced testicular toxicity augments the antioxidants defense mechanism, reverted the level of fertility hormones, suppressed the histomorphological alterations and DNA damages and thus provides the evidence that it may have a therapeutic role in free radical mediated diseases.
Collapse
Affiliation(s)
- Tayyaba Afsar
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Suhail Razak
- Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan. .,Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, KSA, Saudi Arabia.
| | | | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, KSA, Saudi Arabia
| |
Collapse
|
14
|
Afsar T, Razak S, almajwal A, Rashid khan M. Modulatory influence of Acacia hydaspica R. Parker ethyl acetate extract against cisplatin inveigled hepatic injury and dyslipidemia in rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:307. [PMID: 28606074 PMCID: PMC5469132 DOI: 10.1186/s12906-017-1824-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/06/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND Cisplatin (CP) is recommended as a first-line chemotherapeutic agent for solid tumors, however its usage outcomes in severe adverse effects. Acacia hydaspica possesses various phytochemicals and pharmacological activities. The current study aimed to investigate the protective effect of A. hydaspica ethyl acetate extract (AHE) against CP induced aberrations in lipid profile and hepatotoxicity. METHODS Rats were randomly separated into six groups (n = 6). Group 1 (control) received distilled water orally for 21 days. Groups 2 (CP control) received a single dose of CP (7.5 mg/kg bw, i.p) on day 16, group 3 (Plant control) received AHE (400 mg/kg b.w, oral) for 21 days, group 4 (post treated group); CP received on day 16 and AHE (400 mg/kg b.w/day, p.o.) was administered after CP till day 21, Group 5 (pretreated group) received AHE (400 mg/kg b.w/day, p.o.) for 21 days and CP (7.5 mg/kg b.w., i.p.) on day 16, group 6 (Silymarin + CP) received 100 mg/kg b.w., p.o. (11 doses/21 days) and CP (7.5 mg/kg b.w., i.p.) on day 16. Lipid profile, liver functional tests, oxidative stress markers, antioxidant enzymes status and histopathological changes were examined. RESULTS The present study revealed that CP caused body weights loss and increase liver index. CP significantly increased serum total lipid, triglycerides and LDL-cholesterol levels. Conversely, it significantly decreased serum HDL-cholesterol level. CP induced marked deteriorations in serum liver function biomarkers, reduced antioxidant enzymes in tissue, while elevated tissue oxidative stress markers along with morphological injuries compared to control rats. Treatment with AHE ameliorated CP induced alterations in lipid profile, serum ALT, AST, ALP and total bilirubin levels and liver weight. Furthermore AHE treatment improved the total protein and antioxidant enzymes levels while decreased the level of MDA, H2O2, and NO. The altered parameters were returned to the control level with AHE pretreatment. Histopathological analysis also supported the biochemical findings. Pretreatment seems to be more effective compared to post treatment indicating protective effect. CONCLUSION These results reveal that treatment of AHE may be useful in the prevention of CP induced hepatotoxicity due to its antioxidant potential and polyphenolic constituents.
Collapse
Affiliation(s)
- Tayyaba Afsar
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Suhail Razak
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ali almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Muhammad Rashid khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
15
|
Hawkins RA, Viña JR. How Glutamate Is Managed by the Blood-Brain Barrier. BIOLOGY 2016; 5:biology5040037. [PMID: 27740595 PMCID: PMC5192417 DOI: 10.3390/biology5040037] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/22/2016] [Indexed: 12/11/2022]
Abstract
A facilitative transport system exists on the blood–brain barrier (BBB) that has been tacitly assumed to be a path for glutamate entry to the brain. However, glutamate is a non-essential amino acid whose brain content is much greater than plasma, and studies in vivo show that glutamate does not enter the brain in appreciable quantities except in those small regions with fenestrated capillaries (circumventricular organs). The situation became understandable when luminal (blood facing) and abluminal (brain facing) membranes were isolated and studied separately. Facilitative transport of glutamate and glutamine exists only on the luminal membranes, whereas Na+-dependent transport systems for glutamate, glutamine, and some other amino acids are present only on the abluminal membrane. The Na+-dependent cotransporters of the abluminal membrane are in a position to actively transport amino acids from the extracellular fluid (ECF) into the endothelial cells of the BBB. These powerful secondary active transporters couple with the energy of the Na+-gradient to move glutamate and glutamine into endothelial cells, whereupon glutamate can exit to the blood on the luminal facilitative glutamate transporter. Glutamine may also exit the brain via separate facilitative transport system that exists on the luminal membranes, or glutamine can be hydrolyzed to glutamate within the BBB, thereby releasing ammonia that is freely diffusible. The γ-glutamyl cycle participates indirectly by producing oxoproline (pyroglutamate), which stimulates almost all secondary active transporters yet discovered in the abluminal membranes of the BBB.
Collapse
Affiliation(s)
- Richard A. Hawkins
- Department of Physiology and Biophysics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60088, USA
- Correspondence: ; Tel.: +1-847-578-3218; Fax: +1-847-775-6510
| | - Juan R. Viña
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Odontology, Medical Research Institute-INCLIVA, University of Valencia, Valencia 46010, Spain;
| |
Collapse
|
16
|
Hemmati M, Najafi F, Shirkoohi R, Moghimi HR, Zarebkohan A, Kazemi B. Synthesis of a novel PEGDGA-coated hPAMAM complex as an efficient and biocompatible gene delivery vector: an in vitro and in vivo study. Drug Deliv 2016; 23:2956-2969. [DOI: 10.3109/10717544.2015.1132796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mohammad Hemmati
- Biomedical Engineering and Medical Physics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,
| | - Farhood Najafi
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran,
| | - Reza Shirkoohi
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran,
| | - Hamid Reza Moghimi
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran,
| | - Amir Zarebkohan
- Biomedical Engineering and Medical Physics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,
| | - Bahram Kazemi
- Department of Biotechnology, Faculty of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran, and
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Abstract
Blood vessels are critical to deliver oxygen and nutrients to all of the tissues and organs throughout the body. The blood vessels that vascularize the central nervous system (CNS) possess unique properties, termed the blood-brain barrier, which allow these vessels to tightly regulate the movement of ions, molecules, and cells between the blood and the brain. This precise control of CNS homeostasis allows for proper neuronal function and also protects the neural tissue from toxins and pathogens, and alterations of these barrier properties are an important component of pathology and progression of different neurological diseases. The physiological barrier is coordinated by a series of physical, transport, and metabolic properties possessed by the endothelial cells (ECs) that form the walls of the blood vessels, and these properties are regulated by interactions with different vascular, immune, and neural cells. Understanding how these different cell populations interact to regulate the barrier properties is essential for understanding how the brain functions during health and disease.
Collapse
Affiliation(s)
- Richard Daneman
- Departments of Neuroscience and Pharmacology, University of California, San Diego, San Diego, California 92093
| | - Alexandre Prat
- Department of Neuroscience, Université de Montréal, Montréal, Quebec H2X 0A9, Canada
| |
Collapse
|
18
|
Audus KL, Borchardt RT. Characterization of an in vitro blood-brain barrier model system for studying drug transport and metabolism. Pharm Res 2013; 3:81-7. [PMID: 24271465 DOI: 10.1023/a:1016337202335] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Bovine brain micro vessel endothelial cells have been isolated and grown in culture to monolayers. These endothelial cell monolayers have been characterized morphologically with electron microscopy, histochemically for brain endothelium enzyme markers, alkaline phosphatase and γ-glutamyl trans-peptidase, and by immunofluorescence to detect Factor VIII antigen, an exclusive endothelial antigen. Results of these studies indicate that the cells forming the monolayers are of endothelial origin and possess many features of the in vivo brain endothelium responsible for formation of the blood-brain barrier. This in vitro blood-brain barrier model system was used in experiments to determine the permeability of the cultured monolayer to sucrose, leucine, and propranolol. Leucine rapidly moved across the monolayers of this in vitro system and tended to plateau after approximately 10 min. In contrast, the rates of sucrose and propranolol movement were linear during a 1-hr observation period, with the rate of propranolol movement across the monolayer greater than that of sucrose. The ability to detect differences in the permeability of the monolayers to leucine, propranolol, and sucrose with radioactive tracers suggests that this in vitro model system will be an important tool for the investigation of the role of the blood-brain barrier in the delivery of centrally acting drugs and nutrients.
Collapse
Affiliation(s)
- K L Audus
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas, 66045
| | | |
Collapse
|
19
|
Daneman R. The blood-brain barrier in health and disease. Ann Neurol 2012; 72:648-72. [DOI: 10.1002/ana.23648] [Citation(s) in RCA: 482] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 05/02/2012] [Accepted: 05/04/2012] [Indexed: 12/12/2022]
|
20
|
Pimentel D, Haeussler DJ, Matsui R, Burgoyne JR, Cohen RA, Bachschmid MM. Regulation of cell physiology and pathology by protein S-glutathionylation: lessons learned from the cardiovascular system. Antioxid Redox Signal 2012; 16:524-42. [PMID: 22010840 PMCID: PMC3270052 DOI: 10.1089/ars.2011.4336] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE Reactive oxygen and nitrogen species contributing to homeostatic regulation and the pathogenesis of various cardiovascular diseases, including atherosclerosis, hypertension, endothelial dysfunction, and cardiac hypertrophy, is well established. The ability of oxidant species to mediate such effects is in part dependent on their ability to induce specific modifications on particular amino acids, which alter protein function leading to changes in cell signaling and function. The thiol containing amino acids, methionine and cysteine, are the only oxidized amino acids that undergo reduction by cellular enzymes and are, therefore, prime candidates in regulating physiological signaling. Various reports illustrate the significance of reversible oxidative modifications on cysteine thiols and their importance in modulating cardiovascular function and physiology. RECENT ADVANCES The use of mass spectrometry, novel labeling techniques, and live cell imaging illustrate the emerging importance of reversible thiol modifications in cellular redox signaling and have advanced our analytical abilities. CRITICAL ISSUES Distinguishing redox signaling from oxidative stress remains unclear. S-nitrosylation as a precursor of S-glutathionylation is controversial and needs further clarification. Subcellular distribution of glutathione (GSH) may play an important role in local regulation, and targeted tools need to be developed. Furthermore, cellular redundancies of thiol metabolism complicate analysis and interpretation. FUTURE DIRECTIONS The development of novel pharmacological analogs that specifically target subcellular compartments of GSH to promote or prevent local protein S-glutathionylation as well as the establishment of conditional gene ablation and transgenic animal models are needed.
Collapse
Affiliation(s)
- David Pimentel
- Myocardial Biology Unit, Whitaker Cardiovascular Institute, Boston University School of Medicine, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
21
|
Omidi Y, Barar J. Impacts of blood-brain barrier in drug delivery and targeting of brain tumors. BIOIMPACTS : BI 2012; 2:5-22. [PMID: 23678437 DOI: 10.5681/bi.2012.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 11/26/2011] [Accepted: 12/20/2011] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Entry of blood circulating agents into the brain is highly selectively con-trolled by specific transport machineries at the blood brain barrier (BBB), whose excellent barrier restrictiveness make brain drug delivery and targeting very challenging. METHODS Essential information on BBB cellular microenvironment were reviewed and discussed towards impacts of BBB on brain drug delivery and targeting. RESULTS Brain capillary endothelial cells (BCECs) form unique biological structure and architecture in association with astrocytes and pericytes, in which microenvironment the BCECs express restrictive tight junctional complexes that block the paracellular inward/outward traverse of biomolecules/compounds. These cells selectively/specifically control the transportation process through carrier and/or receptor mediated transport machineries that can also be exploited for the delivery of pharmaceuticals into the brain. Intelligent molecular therapies should be designed using such transport machineries for the efficient delivery of designated drugs into the brain. For better clinical outcomes, these smart pharmaceuticals should be engineered as seamless nanosystems to provide simultaneous imaging and therapy (multimodal theranostics). CONCLUSION The exceptional functional presence of BBB selectively controls inward and outward transportation mechanisms, thus advanced smart multifunctional nanomedicines are needed for the effective brain drug delivery and targeting. Fully understanding the biofunctions of BBB appears to be a central step for engineering of intelligent seamless therapeutics consisting of homing device for targeting, imaging moiety for detecting, and stimuli responsive device for on-demand liberation of therapeutic agent.
Collapse
Affiliation(s)
- Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran ; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
22
|
Abstract
Glutamate concentrations in plasma are 50-100 micromol/L; in whole brain, they are 10,000-12,000 micromol/L but only 0.5-2 micromol/L in extracellular fluids (ECFs). The low ECF concentrations, which are essential for optimal brain function, are maintained by neurons, astrocytes, and the blood-brain barrier (BBB). Cerebral capillary endothelial cells form the BBB that surrounds the entire central nervous system. Tight junctions connect endothelial cells and separate the BBB into luminal and abluminal domains. Molecules entering or leaving the brain thus must pass 2 membranes, and each membrane has distinct properties. Facilitative carriers exist only in luminal membranes, and Na(+)-dependent glutamate cotransporters (excitatory amino acid transporters; EAATs) exist exclusively in abluminal membranes. The EAATs are secondary transporters that couple the Na(+) gradient between the ECF and the endothelial cell to move glutamate against the existing electrochemical gradient. Thus, the EAATs in the abluminal membrane shift glutamate from the ECF to the endothelial cell where glutamate is free to diffuse into blood on facilitative carriers. This organization does not allow net glutamate entry to the brain; rather, it promotes the removal of glutamate and the maintenance of low glutamate concentrations in the ECF. This explains studies that show that the BBB is impermeable to glutamate, even at high concentrations, except in a few small areas that have fenestrated capillaries (circumventricular organs). Recently, the question of whether the BBB becomes permeable in diabetes has arisen. This issue was tested in rats with diet-induced obesity and insulin resistance or with streptozotocin-induced diabetes. Neither condition produced any detectable effect on BBB glutamate transport.
Collapse
Affiliation(s)
- Richard A Hawkins
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064-3095, USA.
| |
Collapse
|
23
|
McGovern V, Bauer HC, McClain CJ, Jackson B, Henmig B. Tumor Necrosis Factor-Mediated Effects on Gamma-Glutamyl Transpeptidase Activity in Cloned Cerebral Endothelial Cells. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/10623329409088468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Schteingart HF, Cigorraga S, Leon M, Moya S, Pellizzari E, Chemes H, Rivarola MA. Hormonal Regulation of Rat Testicular γ-Glutamyl-Transpeptidase “In Vivo” and “In Vitro”/Die hormonelle Regulation von testikulärer γ-Glutamyl-Transpeptidase bei Ratten “in vivo” und “in vitro”. Andrologia 2009. [DOI: 10.1111/j.1439-0272.1988.tb00701.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
25
|
Zozulya AL, Reinke E, Baiu DC, Karman J, Sandor M, Fabry Z. Dendritic cell transmigration through brain microvessel endothelium is regulated by MIP-1alpha chemokine and matrix metalloproteinases. THE JOURNAL OF IMMUNOLOGY 2007; 178:520-9. [PMID: 17182592 PMCID: PMC1950722 DOI: 10.4049/jimmunol.178.1.520] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dendritic cells (DCs) accumulate in the CNS during inflammatory diseases, but the exact mechanism regulating their traffic into the CNS remains to be defined. We now report that MIP-1alpha increases the transmigration of bone marrow-derived, GFP-labeled DCs across brain microvessel endothelial cell monolayers. Furthermore, occludin, an important element of endothelial tight junctions, is reorganized when DCs migrate across brain capillary endothelial cell monolayers without causing significant changes in the barrier integrity as measured by transendothelial electrical resistance. We show that DCs produce matrix metalloproteinases (MMP) -2 and -9 and GM6001, an MMP inhibitor, decreases both baseline and MIP-1alpha-induced DC transmigration. These observations suggest that DC transmigration across brain endothelial cell monolayers is partly MMP dependent. The migrated DCs express higher levels of CD40, CD80, and CD86 costimulatory molecules and induce T cell proliferation, indicating that the transmigration of DCs across brain endothelial cell monolayers contributes to the maintenance of DC Ag-presenting function. The MMP dependence of DC migration across brain endothelial cell monolayers raises the possibility that MMP blockers may decrease the initiation of T cell recruitment and neuroinflammation in the CNS.
Collapse
Affiliation(s)
- Alla L. Zozulya
- Department of Pathology, University of Wisconsin-Madison, Madison, WI 53706
| | - Emily Reinke
- Department of Pathology, University of Wisconsin-Madison, Madison, WI 53706
- Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Dana C. Baiu
- Department of Pathology, University of Wisconsin-Madison, Madison, WI 53706
| | - Jozsef Karman
- Cellular and Molecular Pathology Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Matyas Sandor
- Department of Pathology, University of Wisconsin-Madison, Madison, WI 53706
| | - Zsuzsanna Fabry
- Department of Pathology, University of Wisconsin-Madison, Madison, WI 53706
- Address correspondence and reprint requests to Dr. Zsuzsanna Fabry, Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1300 University Avenue, 6130 MSC, Madison, WI 53706. E-mail address:
| |
Collapse
|
26
|
van der Werf P, Meister A. The metabolic formation and utilization of 5-oxo-L-proline (L-pyroglutamate, L-pyrrolidone carboxylate). ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 43:519-56. [PMID: 1106127 DOI: 10.1002/9780470122884.ch7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Hawkins RA, Simpson IA, Mokashi A, Viña JR. Pyroglutamate stimulates Na+ -dependent glutamate transport across the blood-brain barrier. FEBS Lett 2006; 580:4382-6. [PMID: 16844120 DOI: 10.1016/j.febslet.2006.06.097] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 06/29/2006] [Accepted: 06/30/2006] [Indexed: 10/24/2022]
Abstract
Regulation of Na(+)-dependent glutamate transport was studied in isolated luminal and abluminal plasma membranes derived from the bovine blood-brain barrier. Abluminal membranes have Na(+)-dependent glutamate transporters while luminal membranes have facilitative transporters. This organization allows glutamate to be actively removed from brain. gamma-Glutamyl transpeptidase, the first enzyme of the gamma-glutamyl cycle (GGC), is on the luminal membrane. Pyroglutamate (oxoproline), an intracellular product of GGC, stimulated Na(+)-dependent transport of glutamate by 46%, whereas facilitative glutamate uptake in luminal membranes was inhibited. This relationship between GGC and glutamate transporters may be part of a regulatory mechanism that accelerates glutamate removal from brain.
Collapse
Affiliation(s)
- Richard A Hawkins
- Department of Physiology and Biophysics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064-3095, USA.
| | | | | | | |
Collapse
|
28
|
Dasgupta A, Das S, Sarkar PK. Thyroid hormone stimulates γ-glutamyl transpeptidase in the developing rat cerebra and in astroglial cultures. J Neurosci Res 2005; 82:851-7. [PMID: 16302185 DOI: 10.1002/jnr.20657] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hypothyroidism in the developing rat brain is associated with enhanced oxidative stress, one of the earliest manifestations of which is a decline in the level of glutathione (GSH). To investigate the role of thyroid hormone (TH) on GSH homeostasis, the effect of TH on gamma-glutamyl transpeptidase (gammaGT), the key enzyme involved in the catalysis of GSH, was studied. Hypothyroidism declined the specific activity of cerebral gammaGT at all postnatal ages examined (postnatal day 1-20) with a maximum inhibition of 42% at postnatal day 10. Intraperitoneal injection of TH to 15-day-old rat pups increased the specific activity of gammaGT by 25-30% within 4-6 hr. Treatment of primary cultures of astrocytes by TH also enhanced the specific activity of gammaGT by 30-40% within 4-6 hr. The induction of gammaGT by TH was blocked by actinomycin D or cycloheximide. gammaGT is an ectoenzyme that is normally involved in the catabolism of GSH released by astrocytes. In the presence of the gammaGT-inhibitor, acivicin, GSH released in the culture medium of astrocytes increased linearly for at least 6 hr and TH had no effect on this accumulation pattern. In the absence of acivicin, GSH content of the medium from TH-treated cells was significantly lower than that of untreated controls due to activation of gammaGT by TH and a faster processing of GSH. Because the products of gammaGT reaction are putative precursors for neuronal GSH, the activation of gammaGT by TH may be conducive to GSH synthesis in neurons and their protection from oxidative stress.
Collapse
Affiliation(s)
- Asmita Dasgupta
- Division of Neurobiology, Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | | | | |
Collapse
|
29
|
Weidenfeller C, Schrot S, Zozulya A, Galla HJ. Murine brain capillary endothelial cells exhibit improved barrier properties under the influence of hydrocortisone. Brain Res 2005; 1053:162-74. [PMID: 16040011 DOI: 10.1016/j.brainres.2005.06.049] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 06/14/2005] [Accepted: 06/16/2005] [Indexed: 10/25/2022]
Abstract
Hydrocortisone is known to induce barrier properties in porcine primary cultures of microvascular endothelial cells. Here we present similar effects of hydrocortisone on a serum-free in vitro model based on primary cultured mouse brain endothelial cells. These cells in culture express typical blood-brain barrier properties and the transendothelial electrical resistance is enhanced after the addition of hydrocortisone to the medium in physiological concentrations. The improvement of the barrier is accompanied by changes at the cell borders indicated by immunofluorescence staining of tight junction proteins. Transmission electron microscopy imaging indicates morphological changes at the cell-cell contact zones which correlates to the observed changes in the transendothelial electrical resistance after HC supplementation. Phalloidin staining of F-actin shows a rearrangement to "fiber-like" structures in the longitudinal direction of the cell. These findings together with additional electrical impedance analysis of the monolayer suggest that several changes including cell-cell contact alteration, cell-substrate attachment and cytoskeletal rearrangements cause enhanced barrier properties in this murine endothelial culture. The present data are consistent with earlier findings in a porcine serum-free in vitro model. Thus, evidence is given that the barrier enforcement induced by glucocorticoids is not a species-specific effect and that the barrier improvement is correlated with a change of the cell morphology rather than changes in tight junction protein expression.
Collapse
Affiliation(s)
- Christian Weidenfeller
- Institute for Biochemistry, University of Muenster, Wilhelm-Klemm Str. 2, 48149 Muenster, Germany
| | | | | | | |
Collapse
|
30
|
Abstract
In recent years, there have been several important advancements in the development of neuropeptide therapeutics. Nevertheless, the targeting of peptide drugs to the CNS remains a formidable obstacle. Delivery of peptide drugs is limited by their poor bioavailability to the brain due to low metabolic stability, high clearance by the liver, and the presence of the blood brain barrier (BBB). Multiple strategies have been devised in an attempt to improve peptide drug delivery to the brain, with variable results. In this review, we discuss several of the strategies that have been used to improve both bioavailability and BBB transport, with an emphasis on antibody based vector delivery, useful for large peptides/small proteins, and glycosylation, useful for small peptides. Further development of these delivery methods may finally enable peptide drugs to be useful for the treatment of neurological disease states.
Collapse
Affiliation(s)
- Richard D Egleton
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, Arizona 85724, USA.
| | | |
Collapse
|
31
|
Egleton RD, Davis TP. Development of neuropeptide drugs that cross the blood-brain barrier. Neurotherapeutics 2005. [DOI: 10.1007/bf03206641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
32
|
Shimizu H, Kiyohara Y, Kato I, Kitazono T, Tanizaki Y, Kubo M, Ueno H, Ibayashi S, Fujishima M, Iida M. Relationship between plasma glutathione levels and cardiovascular disease in a defined population: the Hisayama study. Stroke 2004; 35:2072-7. [PMID: 15256685 DOI: 10.1161/01.str.0000138022.86509.2d] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Glutathione (GSH) appears to have marked antioxidant activities and therefore may prevent cardiovascular disease (CVD). However, there are very few reports on this subject. In a community-based case-control study, we tested the hypothesis that low levels of plasma GSH are closely associated with CVD and its clinical types. METHODS The association between fasting plasma total GSH (tGSH) levels and CVD were assessed using conditional logistic regression analysis among 134 CVD cases and 435 age- and sex-matched healthy control subjects. RESULTS Mean tGSH concentrations were lower in all CVD cases than in the control subjects (3.06 versus 3.71 micromol/L; P=0.0001). Among the CVD types, both the cerebral infarction cases (2.98 versus 3.59 micromol/L; P=0.001) and cerebral hemorrhage cases (2.51 versus 3.43 micromol/L; P=0.0027) had significantly lower tGSH levels than the corresponding control groups had. The same tendency was observed for cases of subarachnoid hemorrhage (3.45 versus 3.83 micromol/L; P=0.36) and myocardial infarction (3.65 versus 3.77 micromol/L; P=0.69), but these differences were not statistically significant. After adjustment for other confounding factors, the risk of CVD was significantly lower in the third (adjusted odds ratio, 041; 95% CI, 0.21 to 0.77) and the fourth quartiles (adjusted odds ratio, 0.25; 95% CI, 0.12 to 0.51) than in the first. This association was most prominent in patients with lacunar infarction or cerebral hemorrhage. CONCLUSIONS These findings suggest that reduced plasma tGSH levels are a risk factor for CVD, especially for cerebral small vessel disease.
Collapse
Affiliation(s)
- Haruki Shimizu
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka City, 812-8582 Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Pajari M. Properties of γ-glutamyltransferase in developing rat brain. Int J Dev Neurosci 2003; 2:197-202. [DOI: 10.1016/0736-5748(84)90013-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/1983] [Indexed: 01/22/2023] Open
Affiliation(s)
- M. Pajari
- Department of Biomedical Sciences; University of Tampere; Box 607 SF-33101 Tampere 10 Finland
| |
Collapse
|
34
|
Yamakawa H, Jezova M, Ando H, Saavedra JM. Normalization of endothelial and inducible nitric oxide synthase expression in brain microvessels of spontaneously hypertensive rats by angiotensin II AT1 receptor inhibition. J Cereb Blood Flow Metab 2003; 23:371-80. [PMID: 12621312 DOI: 10.1097/01.wcb.0000047369.05600.03] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Inhibition of angiotensin II AT1 receptors protects against stroke, reducing the cerebral blood flow decrease in the periphery of the ischemic lesion. To clarify the mechanism, spontaneously hypertensive rats (SHR) and normotensive control Wistar Kyoto (WKY) rats were pretreated with the AT1 receptor antagonist candesartan (0.3 mg. kg.(-1) d(-1)) for 28 days, a treatment identical to that which protected SHR from brain ischemia, and the authors studied middle cerebral artery (MCA) and common carotid morphology, endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) messenger RNA (mRNA), and protein expression in cerebral microvessels, principal arteries of the Willis polygon, and common carotid artery. The MCA and common carotid artery of SHR exhibited inward eutrophic remodeling, with decreased lumen diameter and increased media thickness when compared with WKY rats. In addition, there was decreased eNOS and increased iNOS protein and mRNA in common carotid artery, circle of Willis, and brain microvessels of SHR when compared with WKY rats. Both remodeling and alterations in eNOS and iNOS expression in SHR were completely reversed by long-term AT1 receptor inhibition. The hemodynamic, morphologic, and biochemical alterations in hypertension associated with increased vulnerability to brain ischemia are fully reversed by AT1 receptor blockade, indicating that AT1 receptor activation is crucial for the maintenance of the pathologic alterations in cerebrovascular circulation during hypertension, and that their blockade may be of therapeutic advantage.
Collapse
Affiliation(s)
- Haruki Yamakawa
- Section on Pharmacology, Division of Intramural Health Programs, National Institute of Mental Health/NIH/DHHS, 10 Center Drive, Building 10, Room 2D-57 Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
35
|
Copin JC, Gasche Y. [Morphology and physiology of the blood-brain barrier]. ANNALES FRANCAISES D'ANESTHESIE ET DE REANIMATION 2003; 22:202-14. [PMID: 12747988 DOI: 10.1016/s0750-7658(03)00040-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The blood-brain barrier (BBB) is a complex biological system that consists of endothelial cells, pericytes and astrocytes, which are involved in the induction and maintenance of its physiological and ultrastructural characteristics. The BBB plays a primordial role in isolating the cerebral parenchyma as well as in controlling brain homeostasis by its selective permeability to nutriments and other molecules flowing through the cerebral microcapillaries. A better knowledge of this system is crucial in order to improve the efficiency of brain penetration by drugs, and in order to prevent BBB opening, leading to brain edema, in physiopathological situations such as brain ischemia, trauma or inflammatory processes.
Collapse
Affiliation(s)
- J C Copin
- Divisions des soins intensifs de chirurgie et de médecine, division d'investigations anesthésiologiques, hôpitaux universitaires de Genève, 1211 Genève, Suisse.
| | | |
Collapse
|
36
|
Witt KA, Gillespie TJ, Huber JD, Egleton RD, Davis TP. Peptide drug modifications to enhance bioavailability and blood-brain barrier permeability. Peptides 2001; 22:2329-43. [PMID: 11786210 DOI: 10.1016/s0196-9781(01)00537-x] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptides have the potential to be potent pharmaceutical agents for the treatment of many central nervous system derived maladies. Unfortunately peptides are generally water-soluble compounds that will not enter the central nervous system, via passive diffusion, due to the existence of the blood-brain barrier. Peptides can also undergo metabolic deactivation by peptidases, thus further reducing their therapeutic benefits. In targeting peptides to the central nervous system consideration must be focused both on increasing bioavailability and enhancing brain uptake. To date multiple strategies have been examined with this focus. However, each strategy comes with its own complications and considerations. In this review we assess the strengths and weaknesses of many of the methods currently being examined to enhance peptide entry into the central nervous system.
Collapse
Affiliation(s)
- K A Witt
- Department of Pharmacology, The University of Arizona, College of Medicine, LSN 542, 1501 N. Campbell Avenue, Tucson, Arizona 85724, USA
| | | | | | | | | |
Collapse
|
37
|
Abstract
The tripeptide glutathione is the thiol compound present in the highest concentration in cells of all organs. Glutathione has many physiological functions including its involvement in the defense against reactive oxygen species. The cells of the human brain consume about 20% of the oxygen utilized by the body but constitute only 2% of the body weight. Consequently, reactive oxygen species which are continuously generated during oxidative metabolism will be generated in high rates within the brain. Therefore, the detoxification of reactive oxygen species is an essential task within the brain and the involvement of the antioxidant glutathione in such processes is very important. The main focus of this review article will be recent results on glutathione metabolism of different brain cell types in culture. The glutathione content of brain cells depends strongly on the availability of precursors for glutathione. Different types of brain cells prefer different extracellular glutathione precursors. Glutathione is involved in the disposal of peroxides by brain cells and in the protection against reactive oxygen species. In coculture astroglial cells protect other neural cell types against the toxicity of various compounds. One mechanism for this interaction is the supply by astroglial cells of glutathione precursors to neighboring cells. Recent results confirm the prominent role of astrocytes in glutathione metabolism and the defense against reactive oxygen species in brain. These results also suggest an involvement of a compromised astroglial glutathione system in the oxidative stress reported for neurological disorders.
Collapse
Affiliation(s)
- R Dringen
- Physiologisch-chemisches Institut der Universität, Hoppe-Seyler-Str. 4, D-72076 Tübingen, Germany.
| |
Collapse
|
38
|
Kageyama T, Nakamura M, Matsuo A, Yamasaki Y, Takakura Y, Hashida M, Kanai Y, Naito M, Tsuruo T, Minato N, Shimohama S. The 4F2hc/LAT1 complex transports L-DOPA across the blood-brain barrier. Brain Res 2000; 879:115-21. [PMID: 11011012 DOI: 10.1016/s0006-8993(00)02758-x] [Citation(s) in RCA: 206] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
L-DOPA is transported across the blood-brain barrier (BBB) by an amino acid transporter, system L. Recently, it has been demonstrated that system L consists of two subunits, 4F2hc and either LAT1 or LAT2. 4F2hc/LAT1 and 4F2hc/LAT2 show different transport characteristics, while their distribution in the brain has not been determined. To clarify whether 4F2hc/LAT1 participates in L-DOPA transport across the BBB, we first examined the expression of 4F2hc/LAT1 in the mouse brain capillary endothelial cell line, MBEC4, as an in vitro BBB model. Northern hybridization and immunoblotting revealed that both 4F2hc and LAT1 are expressed and form a heterodimer in MBEC4 cells. To confirm whether 4F2hc/LAT1 acts as system L to transport L-DOPA, we characterized L-DOPA uptake into the cells. The uptake process was time-dependent, temperature-sensitive, and Na(+)-independent. Neutral amino acids with bulky side chains and a bicyclic amino acid, 2-aminobicyclo-[2, 2,1]-heptane-2-carboxylic acid (BCH), inhibited L-DOPA uptake into MBEC4 cells to a great extent, while an acidic amino acid, basic amino acids, and glycine had no effect. Other neutral amino acids, such as alanine, asparagine, glutamine, serine, and threonine inhibited L-DOPA uptake by 40-70% at most. These characteristics are more compatible with those of 4F2hc/LAT1, rather than those of 4F2hc/LAT2. Finally, immunohistochemistry with anti-LAT1 antibody demonstrated that LAT1 is predominantly expressed in the microvessels of the central nervous system. This is the first report showing that the 4F2hc/LAT1 complex participates in L-DOPA transport across the BBB.
Collapse
Affiliation(s)
- T Kageyama
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, 606-8507, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Cambier D, Rutin J, Alliot F, Pessac B. Expression of gamma-glutamyl transpeptidase in mouse perivascular astrocytes and in a protoplasmic-like astroglial cell clone. Brain Res 2000; 852:191-7. [PMID: 10661512 DOI: 10.1016/s0006-8993(99)02175-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gamma-glutamyl transpeptidase (GGT) is known to be present in the central nervous system (CNS) but its cellular localization is still subject to controversy. In this report, we have investigated, with a specific antiserum, the immunolabelling pattern of GGT in the adult mouse CNS at the light and electron microscopic (EM) levels. At the optical level, GGT immunoreactivity ensheathes the majority of vessels in the grey matter. Immunoelectron microscopy shows that labelling is essentially due to the presence of GGT in the astrocytic endfeet which surround vessels. In addition, some pericytes and periendothelial cells are also clearly labelled. We then investigated GGT activity in astroglial cell clones which may represent the in vitro counterpart of the main astroglial cell types. The striking result is that a protoplasmic-like astroglial cell clone shows a noticeable GGT activity, while, in contrast, no activity was detected in the fibrous and the Golgi-Bergmann-like astroglial clones. Taken together, these data indicate that, in the mouse CNS, GGT is essentially present in protoplasmic astrocytes.
Collapse
Affiliation(s)
- D Cambier
- INSERM U 505, Métabolisme et Différenciation Intestinale, Paris, France
| | | | | | | |
Collapse
|
40
|
Hemmings SJ, Storey KB. Brain gamma-glutamyltranspeptidase: characteristics, development and thyroid hormone dependency of the enzyme in isolated microvessels and neuronal/glial cell plasma membranes. Mol Cell Biochem 1999; 202:119-30. [PMID: 10706002 DOI: 10.1023/a:1007069431615] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The characteristics, cellular locus and regulation of the enzyme gamma-glutamyltranspeptidase (gammaGT) in brain were examined. In rat brain homogenates, the activity of the enzyme exhibited tissue differences--kidney>>>brain==testis>>liver>>skeletal muscle=ventricular muscle and regional differences--brain stem>hippocampus=cerebellum>cerebral cortex, with no significant species/strain differences in the select group of mammals studied. Methods were developed for the isolation from brain of microvessels (MV) and plasma membranes from neuronal/glial cells (N/G PM) utilizing morphological indicators and marker analyses. GammaGT activity was >12 higher in MV than N/G PM; however the enzyme displayed: stability, heat-activation and inhibition with maleate to the same extent in both fractions. A comparative study indicated that in the N/G PM fraction, gammaGT activity was low in all animals studied; gammaGT activity in MV however, was barely detectable in amphibians and reptiles, very low in birds and very high in mammal -mirroring the phylogenetic development of a functional blood-brain barrier. In the rat, gammaGT in both MV and N/G PM displayed a pronounced postnatal increase in activity but the extent and the patterns were different--in all cases, that of the MV greatly exceeded that of the N/G PM and in the MV, the enzyme activity the exhibited the same pattern as the postnatal development of the blood-brain barrier. The induction of congenital hypothyroidism by propylthiouracil (PTU) had no effect on gammaGT in N/G PM but effected a one third reduction in the activity of gammaGT in MV. The normalization by thyroid hormone replacement indicated that MVgammaGT is under thyroid hormone control. The induction of hypothyroidism by PTU in the adult, however, was without effect on enzyme activity in either fraction. The implications of the thyroid hormone dependency of MVgammaGT in the neonatal period and the relationship of gammaGT to the function of the blood brain-barrier is discussed.
Collapse
Affiliation(s)
- S J Hemmings
- Department of Physiology College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
41
|
Stins MF, Nemani PV, Wass C, Kim KS. Escherichia coli binding to and invasion of brain microvascular endothelial cells derived from humans and rats of different ages. Infect Immun 1999; 67:5522-5. [PMID: 10496943 PMCID: PMC96918 DOI: 10.1128/iai.67.10.5522-5525.1999] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli meningitis commonly occurs in the neonatal period, but the basis of this age dependency is unclear. We have previously identified two types of E. coli-brain microvascular endothelial cell (BMEC) interactions contributing to E. coli traversal of the blood-brain barrier (i.e., binding and invasion). The present study examined whether the age dependency of E. coli meningitis stemmed from differences in the capacities of neonatal and adult BMECs to interact with E. coli. BMECs were isolated from rats of different ages (10 days, 20 days and 3 months) as well as from humans of different ages (fetuses, 4- to 7-year-old children, and a 35-year-old adult, and 60- to 85-year-old geriatrics). The bindings of E. coli to young and old rat BMECs were similar. Also, the abilities of E. coli to invade BMECs were similar for BMECs derived from young and old rats and from human fetuses, children, adults, and geriatrics. These findings suggest that the predominance of E. coli meningitis in neonates is not likely due to greater binding and invasion capacities of newborn compared to adult BMECs.
Collapse
Affiliation(s)
- M F Stins
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, California 90027, USA
| | | | | | | |
Collapse
|
42
|
Kuchler-Bopp S, Delaunoy JP, Artault JC, Zaepfel M, Dietrich JB. Astrocytes induce several blood-brain barrier properties in non-neural endothelial cells. Neuroreport 1999; 10:1347-53. [PMID: 10363951 DOI: 10.1097/00001756-199904260-00035] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The passage of immunocompetent cells across the blood-brain barrier (BBB) is regulated at the level of the cerebral capillaries which have specific morphological and biochemical properties. We have developed and characterized an in vitro model of the BBB using immortalized human endothelial cells (ECV 304) induced by rat astrocytes. In this model, endothelial cells are attached together by continuous intercellular junctions with numerous tight junctions, develop a permeability barrier having a significant transcellular electrical resistance, possess high activities of gamma-glutamyl transpeptidase (gamma-GTP) and express the brain-type glucose transporter 1 (GLUT-1). These parameters are also characteristic of brain capillary endothelial cells. Under the culture conditions used, the ECV 304 cells express the intercellular adhesion molecule-1 (ICAM-1) on the external plasma membrane at concentrations which could permit lymphocyte adhesion to be studied.
Collapse
Affiliation(s)
- S Kuchler-Bopp
- Laboratoire de Neurobiologie Moléculaire des Interactions Cellulaires, UPR 416 du CNRS, Strasbourg, France
| | | | | | | | | |
Collapse
|
43
|
Jäger M, Weber P, Wolf S. Immunohistochemical localization of 5-oxo-L-prolinase, an enzyme of the gamma-glutamyl cycle, in porcine brain microvessels. FEBS Lett 1999; 445:215-7. [PMID: 10069404 DOI: 10.1016/s0014-5793(99)00050-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The immunohistochemical analysis of the distribution of 5-oxo-L-prolinase in porcine brain at the light microscopic level was performed with an antibody raised against the enzyme purified from pig kidney. The present study reveals the specific expression of 5-oxo-L-prolinase in brain capillaries with an average diameter of 4.1+/-0.9 microm, while larger blood vessels remain unstained. Porcine kidney and skeletal muscle show no endothelial-specific staining with the antibody. In some cases, the asymmetrical staining pattern in cross and longitudinal sections of brain microvessels indicate endothelial- but also pericyte-specific expression.
Collapse
Affiliation(s)
- M Jäger
- Max-Planck-Institut für Immunbiologie, Freiburg, Germany
| | | | | |
Collapse
|
44
|
Ogawa M, Shiozawa M, Hiraoka Y, Takeuchi Y, Aiso S. Immunohistochemical study of localization of gamma-glutamyl transpeptidase in the rat brain. Tissue Cell 1998; 30:597-601. [PMID: 10036785 DOI: 10.1016/s0040-8166(98)80078-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Gamma-glutamyl transpeptidase (gamma-GTP) is a membrane-bound enzyme which is known to play a crucial role in active transport of amino acids across membrane barriers. We prepared a monoclonal antibody recognizing specifically rat gamma-GTP and investigated localization of the enzyme in the rat brain by immunohistochemistry with this antibody. The antigen was localized on the ependyma, epithelia of the choroid plexus and microvessels. More precise localization of gamma-GTP was examined with immuno-electron microscopy. The antigen was recognized on the microvilli and cilia of the ependymal cells, microvilli of the choroid epithelial cells and luminal membranes of the vascular endothelial cells.
Collapse
Affiliation(s)
- M Ogawa
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
45
|
Ibiwoye MO, Broome JC, Rossi ML, Eldridge P, Charters P, Hommel M. Monoclonal antibodies against vascular endothelial antigens expressed in normal human brain. J Comp Pathol 1998; 119:429-42. [PMID: 9839204 DOI: 10.1016/s0021-9975(98)80037-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A panel of monoclonal antibodies reactive with human-brain vessels was raised by immunizing BALB/c mice with homogenate of whole human brain, obtained from temporal lobectomies. Hybridoma supernates were screened by immunohistochemical methods on frozen sections of human brain, liver and spleen and 16 clones were isolated. The pattern of immunoreactivity varied with respect to the type of brain blood vessels predominantly labelled and to tissue specificity. Some antibodies cross-reacted with cow or squirrel monkey forebrain microvessels with an intensity equal to that shown by human brain. The immunoreactivity patterns reflected antigenic heterogeneity among different subsets of vascular endothelial cells in human brain.
Collapse
Affiliation(s)
- M O Ibiwoye
- Molecular Biology and Immunology Division, Liverpool School of Tropical Medicine, UK
| | | | | | | | | | | |
Collapse
|
46
|
Breimer DD. [Transport of drugs across the blood-brain barrier]. VERHANDELINGEN - KONINKLIJKE ACADEMIE VOOR GENEESKUNDE VAN BELGIE 1998; 60:47-60; discussion 60-1. [PMID: 9646722 DOI: 10.1007/978-1-4757-0286-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The blood-brain barrier prevents an indifferent medicine existing in the blood to enter also in the brain. This barrier has got an anatomical base: it is first consisting in a cerebrovascular layer of endothelial capillary vessels of the peripheral tissue. It is moreover covered by outgrowths of the flial cells, which are called astrocytes. There are, for that reason, important limits to a size of molecules which can reach the cerebral tissue through a paracellular way (through what is called in English "tight-junctions"). Most medicines must use the transcellular way. Lipophily is necessary to follow that way. Year after year, it appeared, thanks to a comparative study of the substances, that there exists--grosso modo--a positive correlation between the lipophilic level and the permeation-level of a substance in the cerebral tissue. There are, however, several exceptions: it is so that hydrophilic substances, possessing an important nourishing function (such as glucosis, amino-acids) seem to penetrate much more easily than we could expect when we consider their physicochemical characteristics. This is the result of the fact that there exist specifical transport-mechanisms for these substances at the level of the endothelial cell-membranes, allowing the penetration of such substances. There exist, on the contrary, lipophilic components that penetrate the cerebral tissue much less strongly than we should expect. This happens because there also exist pumping-mechanisms at the level of the hemato-encephalic barrier. The concerning substance, which was recently discovered is the "glycoprotein P", which is also responsible for the "multi-drug-resistance" and for the resistance of tumors to cytostatics. This phenomenon relies on a very efficient pumping of substances which have penetrated cells in which this protein expressed itself in the membranous structure. In order to obtain a better understanding of the function of the hemato-encephalic barrier, comprising the transport of medicines, it is most important to have reliable experimental models. It is to that aim that, during former years, the technique of cultivating endothelial cerebrovascular cells was developed. These cells are isolated from brains of calves or rats and, subsequently, cultivated on a laboratory medium; about a week later, they have grown a single and confluent layer. This layer represents a kint of "hemato-encephalic barrier" in vitro, which allows us to study the transfer of substances through the layer and thus also the details concerning the transport mechanisms, as well as the factors influencing the permeability of the cells-layer (for instance the inflammatory stimuli). Concerning the "in vivo" research, the technique of intracerebral microdialysis in lab-animals proved to be very promising. In order to effect this microdialysis, a semipermeable microcannula is introduced in the brain tissue, across which an iso-osmotic liquid is being injected continuously. The substances staying in the interstitial liquid of the cerebral tissue will diffuse under the influence of a concentration gradient, into the dialysing liquid and they will also be ready to be analysed. Thanks to this technique, it is possible to follow, in the same animal, the evolution of the concentration in the brain of a substance which has, for instance been injected in a peripheral region. In this way, we obtain, indirectly and in vivo, informations about the functioning-process of the "hemato-encephalic barrier". We can, moreover, effect measures on a specific spot, for instance in tumoral brain tissue: this allows us to study the influence of specific transport-mechanisms. These rather recent techniques, as well in vitro as in vivo, will allow us, in consequence, to increase, during the next years, our understanding of the way the hemato-encephalic barrier functions as to the transfer of medicines towards the central nervous system. This understanding may lead us to new strategies allowing
Collapse
Affiliation(s)
- D D Breimer
- Leiden/Amsterdam Center for Drug Research, Sectie Farmacologie, R.U.L., Leiden, Nederland
| |
Collapse
|
47
|
Nishizaki T, Matsuoka T. Low glucose enhances Na+/glucose transport in bovine brain artery endothelial cells. Stroke 1998; 29:844-9. [PMID: 9550521 DOI: 10.1161/01.str.29.4.844] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Brain arteries are structurally characterized by the tight junctions of the endothelium and by no vasa vasorum that feed arteries themselves. This raises the question of how brain arteries are provided with glucose. A possible explanation is that glucose uptake into arteries may be mediated by both GLUT1, a facilitative glucose transporter, and a Na+/glucose cotransporter (SGLT)-like glucose transporter. The functional role for the SGLT-like glucose transporter, however, is unknown. In the present study we investigated SGLT-like glucose transporter-operated glucose uptake into brain arterial endothelial cells by recording glucose-evoked Na+ currents and monitoring uptake of [3H]-2-deoxy-D-glucose ([3H]-2-DOG). METHODS Endothelial cells were cultured from bovine cerebral cortical arteries. Whole-cell patches were made to cells, and glucose-evoked currents were recorded. Cells were incubated with [3H]-2-DOG, and the uptake was determined by a liquid scintillation counter. RESULTS Glucose and alpha-methyl-D-glucoside (alphaMeDG), a specific compound for the SGLTs, evoked Na+ currents in a whole-cell voltage-clamp configuration, and the currents were enhanced in cells with over 30 minutes' preincubation in glucose-free media. Glucose-induced currents were inhibited by alphaMeDG, by the selective SGLT inhibitor phlorizin, by dinitrophenol (DNP), an inhibitor of energy metabolism, or by deletion of Na+ from extracellular solution, which indicates that glucose uptake into endothelial cells was mediated by a Na+- and energy-dependent glucose transporter. Notably, the currents were desensitized, reduced in a glucose concentration-dependent manner, and markedly inhibited by either a second application of glucose or the addition of glucose to the patch electrode filling solution; they were potentiated, however, by treatment with cytochalasin B, a GLUT1 to GLUT5 inhibitor. Consistent with the results of patch-clamp recordings, uptake of [3H]-2-DOG into endothelial cells was enhanced by glucose-free insult, and the enhancement was mediated by an SGLT-like glucose transporter. CONCLUSIONS The results presented demonstrate that an SGLT-like glucose transporter takes part in glucose uptake into brain artery endothelial cells and that the uptake is regulated by intracellular glucose concentrations; glucose-free insult and the ensuing low cytosolic glucose enhance activity of the SGLT-like glucose transporter. The SGLT-like glucose transporter in the brain arterial endothelium thus may be important in the maintenance of an adequate glucose concentration in the arterial wall under conditions of stress, such as hypoglycemia.
Collapse
Affiliation(s)
- T Nishizaki
- Department of Physiology, Kobe University School of Medicine, Japan
| | | |
Collapse
|
48
|
Harry GJ, Billingsley M, Bruinink A, Campbell IL, Classen W, Dorman DC, Galli C, Ray D, Smith RA, Tilson HA. In vitro techniques for the assessment of neurotoxicity. ENVIRONMENTAL HEALTH PERSPECTIVES 1998; 106 Suppl 1:131-58. [PMID: 9539010 PMCID: PMC1533280 DOI: 10.1289/ehp.98106s1131] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Risk assessment is a process often divided into the following steps: a) hazard identification, b) dose-response assessment, c) exposure assessment, and d) risk characterization. Regulatory toxicity studies usually are aimed at providing data for the first two steps. Human case reports, environmental research, and in vitro studies may also be used to identify or to further characterize a toxic hazard. In this report the strengths and limitations of in vitro techniques are discussed in light of their usefulness to identify neurotoxic hazards, as well as for the subsequent dose-response assessment. Because of the complexity of the nervous system, multiple functions of individual cells, and our limited knowledge of biochemical processes involved in neurotoxicity, it is not known how well any in vitro system would recapitulate the in vivo system. Thus, it would be difficult to design an in vitro test battery to replace in vivo test systems. In vitro systems are well suited to the study of biological processes in a more isolated context and have been most successfully used to elucidate mechanisms of toxicity, identify target cells of neurotoxicity, and delineate the development and intricate cellular changes induced by neurotoxicants. Both biochemical and morphological end points can be used, but many of the end points used can be altered by pharmacological actions as well as toxicity. Therefore, for many of these end points it is difficult or impossible to set a criterion that allows one to differentiate between a pharmacological and a neurotoxic effect. For the process of risk assessment such a discrimination is central. Therefore, end points used to determine potential neurotoxicity of a compound have to be carefully selected and evaluated with respect to their potential to discriminate between an adverse neurotoxic effect and a pharmacologic effect. It is obvious that for in vitro neurotoxicity studies the primary end points that can be used are those affected through specific mechanisms of neurotoxicity. For example, in vitro systems may be useful for certain structurally defined compounds and mechanisms of toxicity, such as organophosphorus compounds and delayed neuropathy, for which target cells and the biochemical processes involved in the neurotoxicity are well known. For other compounds and the different types of neurotoxicity, a mechanism of toxicity needs to be identified first. Once identified, by either in vivo or in vitro methods, a system can be developed to detect and to evaluate predictive ability for the type of in vivo neurotoxicity produced. Therefore, in vitro tests have their greatest potential in providing information on basic mechanistic processes in order to refine specific experimental questions to be addressed in the whole animal.
Collapse
Affiliation(s)
- G J Harry
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Mizuguchi H, Utoguchi N, Mayumi T. Preparation of glial extracellular matrix: a novel method to analyze glial-endothelial cell interaction. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 1997; 1:339-43. [PMID: 9384813 DOI: 10.1016/s1385-299x(97)00008-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Studies on the interactions of endothelial cells and glial cells are of increasing importance for the understanding of the formation of the blood-brain barrier (BBB) and for the reconstruction of BBB properties in cultured brain capillary endothelial cells in vitro. Many methods have been used to examine cell-cell interactions, including conditioned medium, co-culture, feeder layers, and many others. Here we describe how to prepare the extracellular matrix (ECM) secreted from cultured cells. Cells are known to produce and interact with their extracellular components in an organized matrix and to regulate the function of other cells through the ECM. The ECM plays a central role in the differentiation and function of the cells, and controls the proliferation and motility of these cells. The responses of cells to ECM molecules need to be clarified. As the ECM is situated between cerebral capillaries and astrocytes in the central nervous system, the ECM secreted by glial cells may also play an important role in the formation and maintenance of the BBB. In our previous studies, the ECM produced by glial cells elevated gamma-glutamyl transpeptidase activity, which is an accepted marker enzyme for differentiated brain capillary endothelial cells, in cultured bovine brain capillary and aortic endothelial cells. Using the method described here, the cell-cell interaction via the ECM molecules can be examined.
Collapse
Affiliation(s)
- H Mizuguchi
- Faculty of Pharmaceutical Science, Osaka University, Japan
| | | | | |
Collapse
|
50
|
Dringen R, Kranich O, Hamprecht B. The gamma-glutamyl transpeptidase inhibitor acivicin preserves glutathione released by astroglial cells in culture. Neurochem Res 1997; 22:727-33. [PMID: 9178957 DOI: 10.1023/a:1027310328310] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The release of glutathione from astroglial cells was investigated using astroglia-rich primary cultures prepared from the brains of newborn rats. These cells release glutathione after onset of an incubation in a glucose-containing minimal medium. The amount of extracellular glutathione increased with the time of incubation, although the accumulation slowed down gradually. An elevated rate of increase of the glutathione concentration in the incubation medium was found if the astroglial ectoenzyme gamma-glutamyl transpeptidase was inhibited by acivicin. The activity of gamma-glutamyl transpeptidase in astroglia-rich primary cultures, which was found to be 1.9 +/- 0.3 nmol/(min x mg protein), was markedly reduced if the cells had been incubated in the presence of acivicin. After 2 h of incubation with acivicin half-maximal and maximal inhibition of gamma-glutamyl transpeptidase activity was found at concentrations of about 5 microM and 50 microM, respectively. In the presence of acivicin at a concentration above 10 microM the glutathione content found released from astroglial cells apparently increased almost proportional to time for up to 10 h. Under these conditions the average rate of release was 2.1 +/- 0.3 nmol/(h x mg protein) yielding after a 10 h incubation an extracellular glutathione content three times that of the medium of cells incubated without inhibitor. Half-maximal and maximal effects on the level of extracellular glutathione were found at 4 microM and 50 microM acivicin, respectively. After a 10 h incubation with acivicin the intracellular content of glutathione was reduced to 75% of the level of untreated astroglial cultures. These results suggest that glutathione released from astroglial cells can serve as substrate for the ectoenzyme gamma-glutamyl transpeptidase of these cells.
Collapse
Affiliation(s)
- R Dringen
- Physiologisch-chemisches Institut der Universität, Tübingen,
| | | | | |
Collapse
|