1
|
Mavridis T, Mavridi A, Karampela E, Galanos A, Gkiokas G, Iacovidou N, Xanthos T. Sovateltide (ILR-1620) Improves Motor Function and Reduces Hyperalgesia in a Rat Model of Spinal Cord Injury. Neurocrit Care 2024; 41:455-468. [PMID: 38443708 DOI: 10.1007/s12028-024-01950-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/26/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Spinal cord injury (SCI) presents a major global health challenge, with rising incidence rates and substantial disability. Although progress has been made in understanding SCI's pathophysiology and early management, there is still a lack of effective treatments to mitigate long-term consequences. This study investigates the potential of sovateltide, a selective endothelin B receptor agonist, in improving clinical outcomes in an acute SCI rat model. METHODS Thirty male Sprague-Dawley rats underwent sham surgery (group A) or SCI and treated with vehicle (group B) or sovateltide (group C). Clinical tests, including Basso, Beattie, and Bresnahan scoring, inclined plane, and allodynia testing with von Frey hair, were performed at various time points. Statistical analyses assessed treatment effects. RESULTS Sovateltide administration significantly improved motor function, reducing neurological deficits and enhancing locomotor recovery compared with vehicle-treated rats, starting from day 7 post injury. Additionally, the allodynic threshold improved, suggesting antinociceptive properties. Notably, the sovateltide group demonstrated sustained recovery, and even reached preinjury performance levels, whereas the vehicle group plateaued. CONCLUSIONS This study suggests that sovateltide may offer neuroprotective effects, enhancing neurogenesis and angiogenesis. Furthermore, it may possess anti-inflammatory and antinociceptive properties. Future clinical trials are needed to validate these findings, but sovateltide shows promise as a potential therapeutic strategy to improve functional outcomes in SCI. Sovateltide, an endothelin B receptor agonist, exhibits neuroprotective properties, enhancing motor recovery and ameliorating hyperalgesia in a rat SCI model. These findings could pave the way for innovative pharmacological interventions for SCI in clinical settings.
Collapse
Affiliation(s)
- Theodoros Mavridis
- First Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
- Department of Neurology, Tallaght University Hospital (TUH)/The Adelaide and Meath Hospital, Dublin, Incorporating the National Children's Hospital (AMNCH), Dublin, Ireland.
| | - Artemis Mavridi
- First Department of Pediatrics, Medical School, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Antonis Galanos
- Laboratory for Research of the Musculoskeletal System, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - George Gkiokas
- Second Department of Surgery, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nicoletta Iacovidou
- Department of Neonatology, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Xanthos
- School of Health and Caring Sciences, University of West Attica, Athens, Greece
| |
Collapse
|
2
|
The endothelin system as target for therapeutic interventions in cardiovascular and renal disease. Clin Chim Acta 2020; 506:92-106. [DOI: 10.1016/j.cca.2020.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022]
|
3
|
Endothelin neurotransmitter signalling controls zebrafish social behaviour. Sci Rep 2019; 9:3040. [PMID: 30816294 PMCID: PMC6395658 DOI: 10.1038/s41598-019-39907-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/30/2019] [Indexed: 12/31/2022] Open
Abstract
The formation of social groups is an adaptive behaviour that can provide protection from predators, improve foraging and facilitate social learning. However, the costs of proximity can include competition for resources, aggression and kleptoparasitism meaning that the decision whether to interact represents a trade-off. Here we show that zebrafish harbouring a mutation in endothelin receptor aa (ednraa) form less cohesive shoals than wild-types. ednraa−/− mutants exhibit heightened aggression and decreased whole-body cortisol levels suggesting that they are dominant. These behavioural changes correlate with a reduction of parvocellular arginine vasopressin (AVP)-positive neurons in the preoptic area, an increase in the size of magnocellular AVP neurons and a higher concentration of 5-HT and dopamine in the brain. Manipulation of AVP or 5-HT signalling can rescue the shoaling phenotype of ednraa−/− providing an insight into how the brain controls social interactions.
Collapse
|
4
|
Abstract
Endothelins were discovered more than thirty years ago as potent vasoactive compounds. Beyond their well-documented cardiovascular properties, however, the contributions of the endothelin pathway have been demonstrated in several neuroinflammatory processes and the peptides have been reported as clinically relevant biomarkers in neurodegenerative diseases. Several studies report that endothelin-1 significantly contributes to the progression of neuroinflammatory processes, particularly during infections in the central nervous system (CNS), and is associated with a loss of endothelial integrity at the blood brain barrier level. Because of the paucity of clinical trials with endothelin-1 antagonists in several infectious and non-infectious neuroinflammatory diseases, it remains an open question whether the 21 amino acid peptide is a mediator/modulator rather than a biomarker of the progression of neurodegeneration. This review focuses on the potential roles of endothelins in the pathology of neuroinflammatory processes, including infectious diseases of viral, bacterial or parasitic origin in which the synthesis of endothelins or its pharmacology have been investigated from the cell to the bedside in several cases, as well as in non-infectious inflammatory processes such as neurodegenerative disorders like Alzheimers Disease or central nervous system vasculitis.
Collapse
|
5
|
Lim K, van den Buuse M, Head GA. Effect of Endothelin-1 on Baroreflexes and the Cardiovascular Action of Clonidine in Conscious Rabbits. Front Physiol 2016; 7:321. [PMID: 27516742 PMCID: PMC4963462 DOI: 10.3389/fphys.2016.00321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/13/2016] [Indexed: 12/20/2022] Open
Abstract
We studied the influence of pretreatment with endothelin–1 on cardiac baroreflexes and on the effect of clonidine on blood pressure and heart rate. In order to avoid the complication of the direct vasoconstrictor effects of endothelin-1, initial dose-response studies in animals treated with a ganglion blocker were performed. Intravenous administration of 50, 200, and 1200 ng/kg of endothelin-1 produced biphasic changes in blood pressure, consisting of an immediate depressor response, followed by a long lasting and dose-dependent pressor effect (peak response 3 ± 1, 9 ± 3, and 33 ± 5 mmHg, respectively). Thus, the 50 ng/kg dose of endothelin-1 was used in subsequent studies. Conscious rabbits were pretreated on separate days with endothelin-1, either intravenously (50 ng/kg) or intracisternally (10 and 50 ng/kg), or with vehicle. The animals then received an intravenous dose (20 μg/kg) or an intracisternal dose (1 μg/kg) of clonidine and the effects on blood pressure and heart rate were measured. In vehicle-treated rabbits, the intravenous administration of clonidine induced a significant decrease in blood pressure and heart rate (15 min after injection: −15.7 ± 4.7 mmHg and −33 ± 4 b/min, respectively). Similarly, the intracisternal injection of clonidine lowered blood pressure (−16.0 ± 2.5 mmHg), but produced a less pronounced bradycardia (−18 ± 4 b/min). Endothelin pretreatment, either 50 ng/kg centrally or peripherally, had no significant effect on the hypotension or bradycardia produced either by central or peripheral injection of clonidine. At this dose, endothelin by itself did not produce significant changes in blood pressure or heart rate. There was a reduction of the gain of the baroreceptor-heart rate reflex with intracisternal endothelin-1. These results suggest that central 2–adrenoceptor mechanisms involved in clonidine-induced hypotension and bradycardia do not appear to be influenced by activation of endothelin receptors.
Collapse
Affiliation(s)
- Kyungjoon Lim
- Neuropharmacology Laboratory, Baker IDI Heart and Diabetes Research Institute Melbourne, VIC, Australia
| | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe UniversityMelbourne, VIC, Australia; Department of Pharmacology, University of MelbourneMelbourne, VIC, Australia
| | - Geoffrey A Head
- Neuropharmacology Laboratory, Baker IDI Heart and Diabetes Research InstituteMelbourne, VIC, Australia; Department of Pharmacology, Monash UniversityClayton, VIC, Australia
| |
Collapse
|
6
|
Ahmad AS, Satriotomo I, Fazal J, Nadeau SE, Doré S. Considerations for the Optimization of Induced White Matter Injury Preclinical Models. Front Neurol 2015; 6:172. [PMID: 26322013 PMCID: PMC4532913 DOI: 10.3389/fneur.2015.00172] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/20/2015] [Indexed: 11/13/2022] Open
Abstract
White matter (WM) injury in relation to acute neurologic conditions, especially stroke, has remained obscure until recently. Current advances in imaging technologies in the field of stroke have confirmed that WM injury plays an important role in the prognosis of stroke and suggest that WM protection is essential for functional recovery and post-stroke rehabilitation. However, due to the lack of a reproducible animal model of WM injury, the pathophysiology and mechanisms of this injury are not well studied. Moreover, producing selective WM injury in animals, especially in rodents, has proven to be challenging. Problems associated with inducing selective WM ischemic injury in the rodent derive from differences in the architecture of the brain, most particularly, the ratio of WM to gray matter in rodents compared to humans, the agents used to induce the injury, and the location of the injury. Aging, gender differences, and comorbidities further add to this complexity. This review provides a brief account of the techniques commonly used to induce general WM injury in animal models (stroke and non-stroke related) and highlights relevance, optimization issues, and translational potentials associated with this particular form of injury.
Collapse
Affiliation(s)
- Abdullah Shafique Ahmad
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida , Gainesville, FL , USA
| | - Irawan Satriotomo
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida , Gainesville, FL , USA
| | - Jawad Fazal
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida , Gainesville, FL , USA
| | - Stephen E Nadeau
- Research Service, Brain Rehabilitation Research Center, Malcom Randall Veterans Affairs Medical Center , Gainesville, FL , USA ; Department of Neurology, University of Florida , Gainesville, FL , USA
| | - Sylvain Doré
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida , Gainesville, FL , USA ; Research Service, Brain Rehabilitation Research Center, Malcom Randall Veterans Affairs Medical Center , Gainesville, FL , USA ; Department of Neurology, University of Florida , Gainesville, FL , USA ; Department of Neuroscience, University of Florida , Gainesville, FL , USA ; Department of Neurology, University of Florida , Gainesville, FL , USA ; Department of Pharmaceutics, University of Florida , Gainesville, FL , USA ; Department of Psychology, University of Florida , Gainesville, FL , USA ; Department of Psychiatry, University of Florida , Gainesville, FL , USA
| |
Collapse
|
7
|
Yeung PKK, Shen J, Chung SSM, Chung SK. Targeted over-expression of endothelin-1 in astrocytes leads to more severe brain damage and vasospasm after subarachnoid hemorrhage. BMC Neurosci 2013; 14:131. [PMID: 24156724 PMCID: PMC3815232 DOI: 10.1186/1471-2202-14-131] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 10/15/2013] [Indexed: 01/15/2023] Open
Abstract
Background Endothelin-1 (ET-1) is a potent vasoconstrictor, and astrocytic ET-1 is reported to play a role in the pathogenesis of cerebral ischemic injury and cytotoxic edema. However, it is still unknown whether astrocytic ET-1 also contributes to vasogenic edema and vasospasm during subarachnoid hemorrhage (SAH). In the present study, transgenic mice with astrocytic endothelin-1 over-expression (GET-1 mice) were used to investigate the pathophysiological role of ET-1 in SAH pathogenesis. Results The GET-1 mice experienced a higher mortality rate and significantly more severe neurological deficits, blood–brain barrier breakdown and vasogenic edema compared to the non-transgenic (Ntg) mice following SAH. Oral administration of vasopressin V1a receptor antagonist, SR 49059, significantly reduced the cerebral water content in the GET-1 mice. Furthermore, the GET-1 mice showed significantly more pronounced middle cerebral arterial (MCA) constriction after SAH. Immunocytochemical analysis showed that the calcium-activated potassium channels and the phospho-eNOS were significantly downregulated, whereas PKC-α expression was significantly upregulated in the MCA of the GET-1 mice when compared to Ntg mice after SAH. Administration of ABT-627 (ETA receptor antagonist) significantly down-regulated PKC-α expression in the MCA of the GET-1 mice following SAH. Conclusions The present study suggests that astrocytic ET-1 involves in SAH-induced cerebral injury, edema and vasospasm, through ETA receptor and PKC-mediated potassium channel dysfunction. Administration of ABT-627 (ETA receptor antagonist) and SR 49059 (vasopressin V1a receptor antagonist) resulted in amelioration of edema and vasospasm in mice following SAH. These data provide a strong rationale to investigate SR 49059 and ABT-627 as therapeutic drugs for the treatment of SAH patients.
Collapse
Affiliation(s)
| | | | | | - Sookja K Chung
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
8
|
Kuwaki T, Koshiya N, Terui N, Kumada M. Endothelin-1 modulates cardiorespiratory control by the central nervous system. Neurochem Int 2012; 18:519-24. [PMID: 20504736 DOI: 10.1016/0197-0186(91)90150-c] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/1990] [Accepted: 08/23/1990] [Indexed: 10/27/2022]
Abstract
In urethane-anesthetized, vagotomized and immobilized rats under artificial ventilation, an intracisternal injection of 0.1 pmol of endothelin-1 resulted in immediate increases, lasting for 3-15 min, in arterial pressure, heart rate and renal sympathetic nerve activity. Phrenic nerve activity and the rate of its burst activity (burst rate) also increased initially but subsequently decreased for 5-20 min. At doses of 1 or 10 pmol, the initial increases (phase I) were followed by a period of decreases in all variables, that lasted for 20-80 min, below the pre-injection level (phase II). Phrenic nerve activity often disappeared completely. All the variables usually returned to, or often exceeded, pre-injection levels (phase III). However, arterial pressure sometimes remained below control for at least 2 h. Topical application of endothelin-1 to the ventral surface of the medulla produced the same pattern of changes as with intracisternal injection. This particular response pattern was not generated by local administration to any other brain sites examined. In conclusion, intracisternally administered endothelin-1 modulates cardiorespiratory control by the central nervous system. The effect on the central respiratory control was especially powerful. The ventral surface of the medulla appears to play a crucial role in this modulation.
Collapse
Affiliation(s)
- T Kuwaki
- Department of Physiology, Faculty of Medicine, The University of Tokyo, Tokyo 113, Japan
| | | | | | | |
Collapse
|
9
|
Cholinoceptor activation subserving the effects of interferon gamma on the contractility of rat ileum. Mediators Inflamm 2012; 3:453-8. [PMID: 18475595 PMCID: PMC2365587 DOI: 10.1155/s0962935194000645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Recombinant rat interferon γ stimulated the contractility of
isolated rat ileum at doses of 4–12 units/ml. Muscarinic
cholinoceptors were involved, as treatment of the tissue with
atropine prevented the contractile response of the ileum.
Furthermore, interferon γ increased the affinity of carbachol for
the cholinoceptors and did not change its maximum effect. Neurogenic
pathways were also involved since pretreatment of ileum with
hexamethonium, hemicholinium or tetrodotoxin impaired the
contractile effect of interferon γ. In contrast to the action of
exogenous carbachol, the effects of interferon γ are indirect. They
appear to involve a G protein regulating phosphoinositide turnover
and cytoskeletal structures since they could not be induced in ileum
strips that were pretreated with pertussis toxin, phospholipase C
inhibitors (2-nitro-carboxyphenyl, NN-diphenyl carbamate and
neomycin), cytochalasine B or colchicine.
Collapse
|
10
|
Filosa JA, Naskar K, Perfume G, Iddings JA, Biancardi VC, Vatta MS, Stern JE. Endothelin-mediated calcium responses in supraoptic nucleus astrocytes influence magnocellular neurosecretory firing activity. J Neuroendocrinol 2012; 24:378-92. [PMID: 22007724 DOI: 10.1111/j.1365-2826.2011.02243.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In addition to their peripheral vasoactive effects, accumulating evidence supports an important role for endothelins (ETs) in the regulation of the hypothalamic magnocellular neurosecretory system, which produces and releases the neurohormones vasopressin (VP) and oxytocin (OT). Still, the precise cellular substrates, loci and mechanisms underlying the actions of ETs on the magnocellular system are poorly understood. In the present study, we combined patch-clamp electrophysiology, confocal Ca(2+) imaging and immunohistochemistry to study the actions of ETs on supraoptic nucleus (SON) magnocellular neurosecretory neurones and astrocytes. Our studies show that ET-1 evoked rises in [Ca(2+) ](i) levels in SON astrocytes (but not neurones), an effect largely mediated by the activation of ET(B) receptors and mobilisation of thapsigargin-sensitive Ca(2+) stores. The presence of ET(B) receptors in SON astrocytes was also verified immunohistochemically. ET(B) receptor activation either increased (75%) or decreased (25%) SON firing activity, both in VP and putative OT neurones, and these effects were prevented when slices were preincubated in glutamate receptor blockers or nitric oxide synthase blockers, respectively. Moreover, ET(B) -mediated effects in SON neurones were also prevented by a gliotoxin compound, and when changes in [Ca(2+) ](i) were prevented with bath-applied BAPTA-AM or thapsigargin. Conversely, intracellular Ca(2+) chelation in the recorded SON neurones failed to block ET(B) -mediated effects. In summary, our results indicate that ET(B) receptor activation in SON astrocytes induces the mobilisation of [Ca(2+) ](i) , likely resulting in the activation of glutamate and nitric oxide signalling pathways, evoking in turn excitatory and inhibitory SON neuronal responses, respectively. Taken together, our study supports an important role for astrocytes in mediating the actions of ETs on the magnocellular neurosecretory system.
Collapse
Affiliation(s)
- J A Filosa
- Department of Physiology, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Kohan DE, Rossi NF, Inscho EW, Pollock DM. Regulation of blood pressure and salt homeostasis by endothelin. Physiol Rev 2011; 91:1-77. [PMID: 21248162 DOI: 10.1152/physrev.00060.2009] [Citation(s) in RCA: 308] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Endothelin (ET) peptides and their receptors are intimately involved in the physiological control of systemic blood pressure and body Na homeostasis, exerting these effects through alterations in a host of circulating and local factors. Hormonal systems affected by ET include natriuretic peptides, aldosterone, catecholamines, and angiotensin. ET also directly regulates cardiac output, central and peripheral nervous system activity, renal Na and water excretion, systemic vascular resistance, and venous capacitance. ET regulation of these systems is often complex, sometimes involving opposing actions depending on which receptor isoform is activated, which cells are affected, and what other prevailing factors exist. A detailed understanding of this system is important; disordered regulation of the ET system is strongly associated with hypertension and dysregulated extracellular fluid volume homeostasis. In addition, ET receptor antagonists are being increasingly used for the treatment of a variety of diseases; while demonstrating benefit, these agents also have adverse effects on fluid retention that may substantially limit their clinical utility. This review provides a detailed analysis of how the ET system is involved in the control of blood pressure and Na homeostasis, focusing primarily on physiological regulation with some discussion of the role of the ET system in hypertension.
Collapse
Affiliation(s)
- Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA.
| | | | | | | |
Collapse
|
12
|
Opposing actions of endothelin-1 on glutamatergic transmission onto vasopressin and oxytocin neurons in the supraoptic nucleus. J Neurosci 2011; 30:16855-63. [PMID: 21159956 DOI: 10.1523/jneurosci.5079-10.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Endothelin (ET-1) given centrally has many reported actions on hormonal and autonomic outputs from the CNS. However, it is unclear whether these effects are due to local ischemia via its vasoconstrictor properties or to a direct neuromodulatory action. ET-1 stimulates the release of oxytocin (OT) and vasopressin (VP) from supraoptic magnocellular (MNCs) neurons in vivo; therefore, we asked whether ET-1 modulates the excitatory inputs onto MNCs that are critical in sculpting the activity of these neurons. To investigate whether ET-1 modulates excitatory synaptic transmission, we obtained whole-cell recordings and analyzed quantal glutamate release onto MNCs in the supraoptic nucleus (SON). Neurons identified as VP-containing neurosecretory cells displayed a decrease in quantal frequency in response to ET-1 (10-100 pm). This decrease was mediated by ET(A) receptor activation and production of a retrograde messenger that targets presynaptic cannabinoid-1 receptors. In contrast, neurons identified as OT-containing MNCs displayed a transient increase in quantal glutamate release in response to ET-1 application via ET(B) receptor activation. Application of TTX to block action potential-dependent glutamate release inhibited the excitatory action of ET-1 in OT neurons. There were no changes in quantal amplitude in either MNC type, suggesting that the effects of ET-1 were via presynaptic mechanisms. A gliotransmitter does not appear to be involved as ET-1 failed to elevate astrocytic calcium in the SON. Our results demonstrate that ET-1 differentially modulates glutamate release onto VP- versus OT-containing MNCs, thus implicating it in the selective regulation of neuroendocrine output from the SON.
Collapse
|
13
|
Alves da Silva JA, Oliveira KC, Camillo MAP. Gyroxin increases blood-brain barrier permeability to Evans blue dye in mice. Toxicon 2010; 57:162-7. [PMID: 20637222 DOI: 10.1016/j.toxicon.2010.06.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 06/28/2010] [Accepted: 06/30/2010] [Indexed: 01/01/2023]
Abstract
Gyroxin is a serine protease enzyme component of the South American rattlesnake (Crotalus durissus terrificus) venom. This toxin displays several activities, including the induction of blood coagulation (fibrinogenolytic activity), vasodilation and neurotoxicity, resulting in an effect called barrel rotation. The mechanisms involved in this neurotoxic activity are not well known. Because gyroxin is a member of a potentially therapeutic family of enzymes, including thrombin, ancrod, batroxobin, trypsin and kallicrein, the identification of the mechanism of gyroxin's action is extremely important. In this study, gyroxin was isolated from crude venom by affinity and molecular exclusion chromatography. Analysis of the isolated gyroxin via sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed a single protein band with a molecular weight of approximately 28 kDa, confirming the identity of the molecule. Furthermore, intravenous administration of purified gyroxin (0.25 μg/g of body weight) to mice resulted in symptoms compatible with barrel rotation syndrome, confirming the neurotoxic activity of the toxin. Mice treated with gyroxin showed an increase in the concentration of albumin-Evans blue in brain extracts, indicating an increase in the blood-brain barrier (BBB) permeability. This gyroxin-induced increase in BBB permeability was time-dependent, reaching a peak within 15 min after exposure, similar to the time span in which the neurotoxic syndrome (barrel rotation) occurs. This work provides the first evidence of gyroxin's capacity to temporarily alter the permeability of the BBB.
Collapse
Affiliation(s)
- J A Alves da Silva
- Centro de Biotecnologia, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN, Cidade Universitária, Av. Prof Lineu Prestes 2242, CEP 05508-000, São Paulo-SP, Brazil.
| | | | | |
Collapse
|
14
|
Endothelin-1 as a neuropeptide: neurotransmitter or neurovascular effects? J Cell Commun Signal 2009; 4:51-62. [PMID: 19847673 PMCID: PMC2821480 DOI: 10.1007/s12079-009-0073-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 09/22/2009] [Indexed: 11/25/2022] Open
Abstract
Endothelin-1 (ET-1) is an endothelium-derived peptide that also possesses potent mitogenic activity. There is also a suggestion the ET-1 is a neuropeptide, based mainly on its histological identification in both the central and peripheral nervous system in a number of species, including man. A neuropeptide role for ET-1 is supported by studies showing a variety of effects caused following its administration into different regions of the brain and by application to peripheral nerves. In addition there are studies proposing that ET-1 is implicated in a number of neural circuits where its transmitter affects range from a role in pain and temperature control to its action on the hypothalamo-neurosecretory system. While the effect of ET-1 on nerve tissue is beyond doubt, its action on nerve blood flow is often ignored. Here, we review data generated in a number of species and using a variety of experimental models. Studies range from those showing the distribution of ET-1 and its receptors in nerve tissue to those describing numerous neurally-mediated effects of ET-1.
Collapse
|
15
|
Abstract
Endothelin-1 (ET-1) is a 21 amino acid peptide, first isolated in 1988 from porcine aortic endothelial cells in tissue culture (Figure 1). The peptide was shown to be the most potent known vasoconstrictor of porcine coronary arteries. A powerful endothelium-derived vasoconstrictor had been predicted for some time, but it was when Yanagisawa and his colleagues elucidated the structure, and provided information about the molecular biology and mode of action of the peptide that an unprecedented interest was stimulated in the endothelins.
Collapse
|
16
|
|
17
|
|
18
|
Rossi NF, Maliszewska-Scislo M, Chen H. Central endothelin: effects on vasopressin and the arterial baroreflex in doxorubicin heart failure rats. Can J Physiol Pharmacol 2008; 86:343-52. [PMID: 18516097 DOI: 10.1139/y08-027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelin 1 (ET-1) is increased in heart failure, both in plasma and within the central nervous system. Centrally, ET-1 induces sympathetic hyperactivity and arginine vasopressin (AVP) secretion. Both sympathetic activity and AVP secretion are regulated by the arterial baroreflex, which is typically impaired in heart failure. We hypothesized that central blockade of ETA receptors (ETAR) alters the baroreflex response of heart rate, renal sympathetic nerve activity (RSNA), and plasma AVP levels in a cardiomyopathic model of heart failure. Female Sprague-Dawley rats received weekly intraperitoneal injections of doxorubicin 2.5 mg x kg(-1) (doxorubicin heart failure, doxo-HF) or saline vehicle (control). After 8 weeks, they were instrumented, conditioned to the study environment, and then studied in the awake, non-restrained state. Baseline mean arterial pressure (MAP), RSNA, and plasma osmolality were similar in both groups, but heart rate (p<0.02), left ventricular pressure (p<0.001), and plasma AVP (p<0.01) were higher in the doxo-HF group. ET-1 dose dependently increased MAP, but the rise was significantly attenuated in doxo-HF rats at all doses. Baseline baroreflex control of heart rate and RSNA was similar in both groups. ETAR blockade with 4 nmol BQ123 i.c.v. significantly decreased both the upper plateau (p<0.05) and the range (p<0.05) of the baroreflex response of both heart rate and RSNA in doxo-HF but not in control rats. Despite higher basal plasma levels of AVP, ET-1 evoked a rise in plasma AVP of 13.6+/-3.2 pg x mL(-1) in doxo-HF compared with 0.4+/-0.4 pg x mL(-1) in control rats (p<0.001). To account for the blunted pressor response to ET-1 in the doxo-HF rats, gain of AVP release was calculated as DeltaAVP/DeltaMAP and was also found to be significantly greater in the doxo-HF rats (p<0.001). BQ123 prevented the rise in AVP and restored the gain in doxo-HF rats to that seen in controls. Thus, central ETAR contribute to the sympathoexcitation and AVP responses observed in heart failure due to doxorubicin cardiomyopathy.
Collapse
Affiliation(s)
- Noreen F Rossi
- Department of Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
19
|
Corticotropin-releasing hormone receptor 1 coexists with endothelin-1 and modulates its mRNA expression and release in rat paraventricular nucleus during hypoxia. Neuroscience 2008; 152:1006-14. [DOI: 10.1016/j.neuroscience.2007.11.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 11/16/2007] [Accepted: 11/19/2007] [Indexed: 12/21/2022]
|
20
|
Dafopoulos K, Boli A, Kallitsaris A, Malamitsi-Puchner A, Kollios G, Messinis IE. Endothelin-3 and PRL levels in the maternal and fetal circulation at delivery. J Endocrinol Invest 2007; 30:41-5. [PMID: 17318021 DOI: 10.1007/bf03347394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The aim of the present cross-sectional study was to test the hypothesis that endothelin-3 (ET-3) is involved in PRL secretion via systemic hormonal interaction during labor. MATERIALS AND METHODS Fifty healthy pregnant women with singleton pregnancies were included in the present study. At delivery, blood samples were drawn from umbilical vein and artery. At the same time, a blood sample was obtained from a peripheral vein of the mother. In all blood samples, plasma ET-3 and serum PRL concentrations were determined. The main outcome measures were the differences between maternal peripheral blood, umbilical artery and vein in terms of ET-3 and PRL levels, and the associations between ET-3 and PRL levels. RESULTS ET-3 values (mean+/-SEM) in umbilical artery did not differ significantly from those in umbilical vein (4.94+/-0.27 vs 5.05+/-0.32 pg/ml) but were in both vessels significantly higher than in maternal vein (1.14+/-0.56 pg/ml, p<0.001). Serum PRL values showed similar patterns. There was a significant positive correlation of the ET-3 levels between umbilical artery and vein (r=0.906, p<0.001), but not between maternal peripheral venous blood and the umbilical vessels. Similar correlations were found for PRL values. However, no significant correlations were found between ET-3 and PRL levels in all vessels studied. CONCLUSIONS The present study demonstrates for the first time that ET-3 levels are higher in fetal than in maternal circulation at term. The lack of correlation between ET-3 and PRL levels suggests that ET-3 does not play an important endocrine role in the control of maternal and fetal PRL secretion during labor.
Collapse
Affiliation(s)
- K Dafopoulos
- Department of Obstetrics and Gynecology, University of Thessalia, 22 Papakiriazi street, 41222 Larissa, Greece
| | | | | | | | | | | |
Collapse
|
21
|
Rossi NF, Beierwaltes WH. Nitric oxide modulation of ETB receptor-induced vasopressin release by rat and mouse hypothalamo-neurohypophyseal explants. Am J Physiol Regul Integr Comp Physiol 2006; 290:R1208-15. [PMID: 16357097 DOI: 10.1152/ajpregu.00701.2005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelin (ET) peptides stimulate vasopressin (AVP) secretion via ETB receptors at hypothalamic loci. Nitric oxide modulates the actions of ET in the cardiovascular system and also influences neurotransmission and specifically suppresses firing of magnocellular neurons. The purpose of these studies was to ascertain whether nitric oxide, generated in response to ETB receptor stimulation, buffers the stimulatory effect of ET and suppresses AVP release. Studies were performed using a pharmacological approach in hypothalamo-neurohypophyseal explants from rats, and an alternative strategy using explants from mice with an inactivating mutation of neuronal NOS (nNOS−/−) and their wild-type parent strain. Whole explants in standard culture or only the hypothalamus of compartmentalized explants was exposed to the ETB selective agonist, IRL 1620 (10−13 to 10−8 M). Rat and wild-type mouse explants displayed similar responses, although absolute basal release rates were higher from murine explants. Maximal AVP release at 0.1 nM IRL 1620 was 311 ± 63 (rat) and 422 ± 112% basal·explant−1·h−1 (mouse). Sodium nitroprusside (SNP; 0.1 mM) suppressed maximal AVP release to basal values. Nω-nitro-l-arginine methyl ester (l-NAME, 0.1 μM), which did not itself stimulate AVP secretion, more than doubled the response to 1 pM IRL 1620, from 136 ± 28 to 295 ± 49% basal·explant−1·h−1 ( P < 0.05) by rat explants. Explants from wild-type mice responded similarly. Explants from nNOS−/− mice had higher basal AVP secretory rate in response to 1 pM IRL 1620: 271 ± 48 compared with 150 ± 24% basal·explant−1·h−1 ( P < 0.05) from wild-type murine explants. In the nNOS−/−, SNP suppressed stimulated release, and l-NAME exerted no additional stimulatory effect: 243 ± 38% basal·explant−1·h−1. Thus nitric oxide inhibits the AVP secretory response induced by ETB receptor activation within the hypothalamo-neurohypophyseal system and is generated primarily by the nNOS isoform. The modulation of AVP secretion by ET and also nitric oxide can take place independently from their effects on cerebral blood flow, systemic hemodynamics, or the arterial baroreflex.
Collapse
Affiliation(s)
- Noreen F Rossi
- Dept. of Medicine, Wayne State Univ. School of Medicine and John D. Dingell VA Medical Center, 4160 John R #908, Detroit, MI 48201, USA.
| | | |
Collapse
|
22
|
Qin Q, Inatome R, Hotta A, Kojima M, Yamamura H, Hirai H, Yoshizawa T, Tanaka H, Fukami K, Yanagi S. A novel GTPase, CRAG, mediates promyelocytic leukemia protein-associated nuclear body formation and degradation of expanded polyglutamine protein. J Cell Biol 2006; 172:497-504. [PMID: 16461359 PMCID: PMC2063670 DOI: 10.1083/jcb.200505079] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Accepted: 01/12/2006] [Indexed: 11/22/2022] Open
Abstract
Polyglutamine diseases are inherited neurodegenerative diseases caused by the expanded polyglutamine proteins (polyQs). We have identified a novel guanosine triphosphatase (GTPase) named CRAG that contains a nuclear localization signal (NLS) sequence and forms nuclear inclusions in response to stress. After ultraviolet irradiation, CRAG interacted with and induced an enlarged ring-like structure of promyelocytic leukemia protein (PML) body in a GTPase-dependent manner. Reactive oxygen species (ROS) generated by polyQ accumulation triggered the association of CRAG with polyQ and the nuclear translocation of the CRAG-polyQ complex. Furthermore, CRAG promoted the degradation of polyQ at PML/CRAG bodies through the ubiquitin-proteasome pathway. CRAG knockdown by small interfering RNA in neuronal cells consistently blocked the nuclear translocation of polyQ and enhanced polyQ-mediated cell death. We propose that CRAG is a modulator of PML function and dynamics in ROS signaling and is protectively involved in the pathogenesis of polyglutamine diseases.
Collapse
Affiliation(s)
- Qingyu Qin
- Laboratory of Molecular Biochemistry and 6Laboratory of Genome and Biosignal, School of Life Science, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kästner S, Oertel MF, Scharbrodt W, Krause M, Böker DK, Deinsberger W. Endothelin-1 in plasma, cisternal CSF and microdialysate following aneurysmal SAH. Acta Neurochir (Wien) 2005; 147:1271-9; discussion 1279. [PMID: 16193351 DOI: 10.1007/s00701-005-0633-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Accepted: 08/02/2005] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Endothelin-1 (ET-1) is postulated to play an important role in the development of cerebral vasospasm (CVS) following SAH. This study was conducted to investigate the time course of ET-release in three different sources: CSF, plasma and microdialysate. METHODS In a prospective study ET-1-concentrations were measured in plasma, cisternal CSF and microdialysate in 20 patients with aneurysmal SAH for at least 8 days after hemorrhage. RESULTS ET-1 concentration in microdialysate was almost four times higher compared to CSF and plasma. (p<0.001) Only in CSF ET-1-release showed a significant increase over time with highest values on day 5 post ictus (p = 0.03). This was parallel to the increase of transcranial Doppler velocities. ET-1 in plasma and microdialysate did not change over time. CONCLUSION ET-1 may have a different biological function in different biological tissues. Only ET-1 in CSF seemed to be associated with CVS.
Collapse
Affiliation(s)
- S Kästner
- Department of Neurosurgery, University Hospital Giessen, Giessen, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Curgunlu A, Vural P, Canbaz M, Erten N, Karan MA, Tascioglu C. Plasma nitrate/nitrite and endothelin-1 in patients with liver cirrhosis. J Clin Lab Anal 2005; 19:177-81. [PMID: 16170811 PMCID: PMC6807778 DOI: 10.1002/jcla.20074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The aims of this study were to examine the plasma nitrate/nitrite (NOx; two end products of nitric oxide metabolism) and endothelin-1 (ET-1) concentrations in patients with liver cirrhosis, and to investigate whether there is a relationship between these two vasoactive parameters and the course of disease. Twenty-eight patients with liver cirrhosis (11 HBV-related, four HCV-related, four alcohol-related, and nine with idiopathic etiology) and 25 healthy subjects (controls) were included in the study. The venous plasma concentrations of NOx and ET-1 were significantly higher (P<0.01 and P<0.001) in the patients with cirrhosis than in the controls. A significant increase in ET-1 was observed in the Child B subgroup vs. Child A (P<0.05), and in the Child C subgroup vs. either subgroup A or B (P<0.05). There were no statistical differences between study subgroups (Child A-C) in the mean of NOx values. Plasma NOx and ET-1 were significantly increased in patients with ascites compared to those without ascites (P<0.05 and P<0.01). Increased nitric oxide synthesis may be a compensation mechanism against endothelial injury. The highest ET-1 levels in Child C and moderately increased ET-1 levels in Child B, and the lower increase of ET-1 levels in Child A patients suggest that plasma ET-1 increases with the progression of the disease. The fact that NOx and ET-1 levels were higher in patients with decompensated cirrhosis (patients with ascites) than in those with compensated cirrhosis (patients without ascites), and the presence of a strong correlation between ET-1, NOx, and the degree of varices, supports the suggestion that there is a relationship between NOx, ET-1, and portal hypertension. Our study demonstrates that increased ET and nitric oxide metabolism is associated with the hemodynamic alterations induced by portal hypertension.
Collapse
Affiliation(s)
- Asli Curgunlu
- Department of Internal Medicine, Cerrahpasa Medical Faculty, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
25
|
Tsang MCS, Lo ACY, Chan TSK, Chung SSM, Chung SK. Expression of a neuropeptide, endothelin-1 in pons and medulla of prenatal and perinatal mouse brains. Int J Neurosci 2005; 115:1485-501. [PMID: 16223696 DOI: 10.1080/00207450590957746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Endothelin-1 (ET-1), a potent vasoconstrictor, is widely distributed in the central nervous system. This article demonstrates the spatio-temporal expression of mouse preproendothelin-1 (mPPET-1) gene in pre- and perinatal mouse brain by in situ hybridization using a probe specific for mPPET-1. mPPET-1 mRNA expression was first observed in medulla at embryonic age 11.5 (E11.5) and the level became increasingly stronger toward later stages of development. At E18.5 and postnatal day 0.5 (D0.5), mPPET-1 mRNA was found in discrete nucleus group in ventrolateral medulla. mPPET-1 mRNA was also detected in thalamic reticular nucleus at E16.5, E18.5, and D0.5. These results showed that mPPET-1 mRNA is present in neurons of central cardiorespiratory region and drastically increased during the transition from episodic fetal breathing to continuous postnatal respiration (E18.5 to D0.5), implicating the important role of ET-1 in central cardiorespiratory control regulating the onset of respiration during this critical period.
Collapse
|
26
|
Magerkurth C, Riedel A, Braune S. Permanent increase in endothelin serum levels in vasovagal syncope. Clin Auton Res 2005; 15:299-301. [PMID: 16032385 DOI: 10.1007/s10286-005-0291-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Accepted: 04/24/2005] [Indexed: 10/25/2022]
Abstract
Of 40 normal volunteers tilted on two separate occasions, seven subjects had vasovagal syncope only during one upright tilt, but showed increased endothelin plasma levels in the supine position and during head-up tilt on both occasions, independent of vasovagal syncope, compared to control subjects.
Collapse
|
27
|
Kessler IM, Pacheco YG, Lozzi SP, de Araújo AS, Onishi FJ, de Mello PA. Endothelin-1 levels in plasma and cerebrospinal fluid of patients with cerebral vasospasm after aneurysmal subarachnoid hemorrhage. ACTA ACUST UNITED AC 2005; 64 Suppl 1:S1:2-5; discussion S1:5. [PMID: 15967223 DOI: 10.1016/j.surneu.2005.04.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2005] [Accepted: 04/11/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Plasma and cerebrospinal fluid (CSF) concentrations of endothelin-1 (ET-1) were measured in patients with subarachnoid hemorrhage (SAH) after aneurysmal rupture and compared with levels of ET-1 in volunteers. We analyze the relationship between levels of ET-1 in both CSF and plasma with the risk of developing cerebral vasospasm (CVS). METHODS Cerebrospinal fluid and blood samples were collected from 30 selected patients after SAH and from 10 healthy volunteers who were used as control. All samples were stored at -70 degrees C and the levels of ET-1 in CSF and blood were measured by using enzyme-linked immunosorbent assay and Western blot. All patients were submitted to angiography to confirm vasospasm. RESULTS From the 30 patients admitted at different days of SAH, 18 (60%) developed clinical CVS and 10 (33%) presented angiographic CVS. The levels of ET-1 in the CSF were significantly higher (P = .0001) in patients (1.618 +/- 1.05 fmol/mL) than in controls (0.365 +/- 0.328 fmol/mL). There was statistical difference (P < .05) in CSF levels of ET-1 between each group of the Hunt-Hess scale and controls. The mean plasma concentration of ET-1 was similar (P > .05) in the control group (1.531 +/- 0.753 fmol/mL) and in patients with SAH (1.920 +/- 1.15 fmol/mL). CONCLUSIONS These findings indicate that a significant rise in ET-1 levels in the CSF, but not in the plasma, occurs in patients who develop CVS after SAH. Our observation suggests that ET-1 might be involved in the pathogenesis of SAH-associated CVS.
Collapse
Affiliation(s)
- Iruena Moraes Kessler
- Neurosurgical Service, Medical School, University of Brasilia, 71680-070 Brasília-DF, Brazil
| | | | | | | | | | | |
Collapse
|
28
|
Hanai S, Masuo Y, Shirai H, Oishi K, Saida K, Ishida N. Differential circadian expression of endothelin-1 mRNA in the rat suprachiasmatic nucleus and peripheral tissues. Neurosci Lett 2005; 377:65-8. [PMID: 15722189 DOI: 10.1016/j.neulet.2004.11.082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Revised: 11/19/2004] [Accepted: 11/23/2004] [Indexed: 11/29/2022]
Abstract
The vasoconstrictor endothelin-1 (ET-1) is implicated in normal neuronal functions. Here we show the circadian expression of ET-1 mRNA in the rat suprachiasmatic nucleus (SCN) that is considered to be the location of the central circadian pacemaker, as well as in peripheral tissues including the brain, heart, and lungs. The expression of ET-1 in the SCN oscillated with a peak at Zeitgeber time (ZT) 4 under light-dark conditions. A significant number of cells in the SCN was stained with ET-1 probe during circadian time (CT) 6, but there was no significant staining at CT18 by mRNA in situ hybridization. The circadian rhythm of ET-1 mRNA in the whole brain also oscillated, but peaked at ZT20. Endothelin-1 expression in the lungs and heart peaked at ZT12 and ZT20, respectively. The results are the first description of the circadian expression of ET-1 mRNA. The diversity of rhythmic expressions among the SCN, whole brain, lungs and heart suggests that ET-1 has different functions in these tissues.
Collapse
Affiliation(s)
- Shuji Hanai
- Clock Cell Biology Research Group, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Naidoo V, Naidoo S, Raidoo DM. Immunolocalisation of endothelin-1 in human brain. J Chem Neuroanat 2004; 27:193-200. [PMID: 15183204 DOI: 10.1016/j.jchemneu.2004.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2003] [Revised: 11/25/2003] [Accepted: 03/05/2004] [Indexed: 10/26/2022]
Abstract
The potent vasoconstrictor endothelin-1 (ET-1) may function as a neuropeptide and be a contributing factor in some neurological disorders, e.g. Alzheimer's dementia. The presence of ET-1 has been studied more extensively in the rat and porcine nervous systems than in the human brain. Also, the recent description of the extensive ET-1 mRNA localisation in human neural tissue supports expression in regions of human brain not previously investigated. Using specific anti-ET-1 polyclonal antiserum, we immunolocalised ET-1 in 24 regions of human brain autopsy tissues, and correlated this with ET-1 mRNA distribution. ET-1 immunoreactivity was observed within some cells of all the 24 areas examined. Neuronal staining for ET-1 was demonstrated within the diencephalon, brainstem, basal nuclei, cerebral cortex, cerebellar hemisphere, amygdala and hippocampus. In addition, ET-1 immunolabelling was visualised in the pituitary gland as well as in the choroid plexus. The primary sensory cortex and pineal gland also contained immunoreactive ET-1, although ET-1 mRNA had never been detected in these regions previously. The localisation of ET-1 and its subsequent correlation with ET-1 mRNA in most of the regions investigated suggest a more extensive distribution of the ET system in the human brain than was previously identified.
Collapse
Affiliation(s)
- V Naidoo
- Department of Pharmacology, Nelson R Mandela School of Medicine, University of Natal, South Africa
| | | | | |
Collapse
|
30
|
Naidoo V, Naidoo S, Mahabeer R, Raidoo DM. Cellular distribution of the endothelin system in the human brain. J Chem Neuroanat 2004; 27:87-98. [PMID: 15121213 DOI: 10.1016/j.jchemneu.2003.12.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Revised: 10/28/2003] [Accepted: 12/21/2003] [Indexed: 01/15/2023]
Abstract
The vasoconstrictor endothelin-1 (ET-1) may also act as a neuropeptide. ET-1 is formed by the catalytic action of endothelin-converting enzyme-1 (ECE-1) on big ET-1 and its cellular actions are mediated via ET(A) and ET(B) receptors. Although localisation of these components in rodent brain has been extensively investigated, no single study has mapped their distribution in human brain. Here we describe the localisation of ET-1 mRNA, ET-1, ECE-1, ET(A) and ET(B) receptors within 24 human brain regions. In situ RT-PCR has previously detected ET-1 mRNA in 22 areas (excluding the post-central gyrus and pineal gland), and ET-1 immunoreactivity was visualised in cells of all regions. Using specific antibodies we have immunolocalised ECE-1 and ET(B) receptors in cells of 24 areas, and ET(A) receptors in nine regions (choroidal epithelial cells, neurones in the diencephalon, hippocampus, amygdaloid, dentate nucleus, Purkinje cells of the cerebellum, flocculo-nodular lobe and vermis). ET-1 mRNA, ET-1, ECE-1 and ET(B) receptors were observed in cortical pyramidal cells, neurones (brainstem, basal nuclei, thalamus, insula and claustrum, limbic region), cells in the anterior pituitary gland; nerve cell processes in the pars nervosa; pinealocytes and choroidal epithelial cells. Only ET-1 mRNA, ET-1, ECE-1, and ET(B) receptors were visualised in cerebral capillary endothelial cells. The presence of ET-1 mRNA, ECE-1 and ET-1 in 22 brain regions confirms ET expression and processing in human brain. The localisation of ET-1 and ET(B) receptors suggests receptor-mediated action akin to a neurotransmitter role for ET-1.
Collapse
Affiliation(s)
- V Naidoo
- Department of Pharmacology, Nelson R Mandela School of Medicine, University of Natal, Natal, South Africa
| | | | | | | |
Collapse
|
31
|
Rossi NF. Regulation of vasopressin secretion by ETA and ETB receptors in compartmentalized rat hypothalamo-neurohypophysial explants. Am J Physiol Endocrinol Metab 2004; 286:E535-41. [PMID: 14665445 DOI: 10.1152/ajpendo.00344.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The endothelins (ET) have been implicated in vasopressin (AVP) release in vivo and in vitro. The effects of ET in this system are complex, and the net AVP secretory response likely depends on a unique combination of ET isoform, ET receptor subtype, and neural locus. The purpose of these studies was to examine the role of ET receptor subtypes at hypothalamic vs. neurohypophysial sites on somatodendritic and neurohypophysial AVP secretion. Experiments were done in cultured explants of the hypothalamo-neurohypophysial system of Long Evans rats. Either the whole explant (standard) or only the hypothalamus or posterior pituitary (compartmentalized) was exposed to log dose increases (0.01-10 nM) of the agonists ET-1 (ET(A) selective), ET-3 (nonselective), or IRL-1620 (ET(B) selective) with or without selective ET(A) (BQ-123, 2-200 nM) or ET(B) (IRL-1038, 6-600 nM) receptor antagonism. In standard explants, ET-1 and ET-3 dose-dependently increased, whereas IRL-1620 decreased net AVP release. Hypothalamic ET(B) receptor activation increased both somatodendritic and neurohypophysial AVP release. At least one intervening synapse was involved, as tetrodotoxin blocked the response. Activation of ET(A) receptors at the hypothalamic level inhibited, whereas ET(A) receptor activation at the posterior pituitary stimulated, neurohypophysial AVP secretion. Antagonism of hypothalamic ET(A) receptors potentiated the stimulatory effect of ET-1 and ET-3 on neurohypophysial secretion, an effect not observed with ET(B) receptor-induced somatodendritic release of AVP. Thus the response of whole explants reflects the net result of both stimulatory and inhibitory inputs. The integration of these excitatory and inhibitory inputs endows the vasopressinergic system with greater plasticity in its response to physiological and pathophysiological states.
Collapse
Affiliation(s)
- Noreen F Rossi
- Deptartments of Medicine and Physiology, Wayne State University School of Medicine, 4160 John R #908, Detroit, MI 48201, USA.
| |
Collapse
|
32
|
Antunes-Rodrigues J, de Castro M, Elias LLK, Valença MM, McCann SM. Neuroendocrine control of body fluid metabolism. Physiol Rev 2004; 84:169-208. [PMID: 14715914 DOI: 10.1152/physrev.00017.2003] [Citation(s) in RCA: 311] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mammals control the volume and osmolality of their body fluids from stimuli that arise from both the intracellular and extracellular fluid compartments. These stimuli are sensed by two kinds of receptors: osmoreceptor-Na+ receptors and volume or pressure receptors. This information is conveyed to specific areas of the central nervous system responsible for an integrated response, which depends on the integrity of the anteroventral region of the third ventricle, e.g., organum vasculosum of the lamina terminalis, median preoptic nucleus, and subfornical organ. The hypothalamo-neurohypophysial system plays a fundamental role in the maintenance of body fluid homeostasis by secreting vasopressin and oxytocin in response to osmotic and nonosmotic stimuli. Since the discovery of the atrial natriuretic peptide (ANP), a large number of publications have demonstrated that this peptide provides a potent defense mechanism against volume overload in mammals, including humans. ANP is mostly localized in the heart, but ANP and its receptor are also found in hypothalamic and brain stem areas involved in body fluid volume and blood pressure regulation. Blood volume expansion acts not only directly on the heart, by stretch of atrial myocytes to increase the release of ANP, but also on the brain ANPergic neurons through afferent inputs from baroreceptors. Angiotensin II also plays an important role in the regulation of body fluids, being a potent inducer of thirst and, in general, antagonizes the actions of ANP. This review emphasizes the role played by brain ANP and its interaction with neurohypophysial hormones in the control of body fluid homeostasis.
Collapse
Affiliation(s)
- José Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
33
|
Takahashi K, Udono-Fujimori R, Totsune K, Murakami O, Shibahara S. Suppression of cytokine-induced expression of adrenomedullin and endothelin-1 by dexamethasone in T98G human glioblastoma cells. Peptides 2003; 24:1053-62. [PMID: 14499284 DOI: 10.1016/s0196-9781(03)00181-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is accumulating evidence showing that glial cells and gliomas secrete some neuropeptides and vasoactive peptides, such as adrenomedullin and endothelin-1. We have previously shown that expression of these two peptides is induced by inflammatory cytokines in T98G human glioblastoma cells. Glucocorticoids are frequently used for the treatment of inflammatory diseases and glioblastomas. We therefore studied effects of dexamethasone on expression of adrenomedullin and endothelin-1 in T98G human glioblastoma cells. Dexamethasone dose-dependently increased adrenomedullin mRNA levels and immunoreactive-adrenomedullin levels in the medium in T98G cells, whereas it decreased immunoreactive-endothelin levels in the medium. A combination of three cytokines, interferon-gamma (100 U/ml), tumor necrosis factor-alpha (20 ng/ml) and interleukin-1beta (10 ng/ml) induced expression of adrenomedullin and endothelin-1 in T98G cells. Dexamethasone (10(-8) mol/l) suppressed increases in expression of both adrenomedullin and endothelin-1 induced by these three cytokines. Thus, dexamethasone alone increased adrenomedullin expression whereas it suppressed the cytokine-induced expression of adrenomedullin in T98G cells. These findings raised the possibility that effects of dexamethasone on brain inflammation and glioblastomas may be partly mediated or modulated by its effects on expression of adrenomedullin and endothelin-1.
Collapse
Affiliation(s)
- Kazuhiro Takahashi
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Aoba-ku, Sendai, Miyagi 980-8575, Japan.
| | | | | | | | | |
Collapse
|
34
|
Peters CM, Rogers SD, Pomonis JD, Egnaczyk GF, Keyser CP, Schmidt JA, Ghilardi JR, Maggio JE, Mantyh PW, Egnazyck GF. Endothelin receptor expression in the normal and injured spinal cord: potential involvement in injury-induced ischemia and gliosis. Exp Neurol 2003; 180:1-13. [PMID: 12668144 DOI: 10.1016/s0014-4886(02)00023-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The endothelins (ETs) are a family of peptides that exert their biological effects via two distinct receptors, the endothelin A receptor (ET(A)R) and the endothelin B receptor (ET(B)R). To more clearly define the potential actions of ETs following spinal cord injury, we used immunohistochemistry and confocal microscopy to examine the protein expression of ET(A)R and ET(B)R in the normal and injured rat spinal cord. In the normal spinal cord, ET(A)R immunoreactivity (IR) is expressed by vascular smooth muscle cells and a subpopulation of primary afferent nerve fibers. ET(B)R-IR is expressed primarily by radial glia, a small population of gray and white matter astrocytes, ependymal cells, vascular endothelial cells, and to a lesser extent in smooth muscle cells. Fourteen days following compression injury to the spinal cord, there was a significant upregulation in both the immunoexpression and number of astrocytes expressing the ET(B)R in both gray and white matter and a near disappearance of ET(B)R-IR in ependymal cells and ET(A)R-IR in primary afferent fibers. Conversely, the vascular expression of ET(A)R and ET(B)R did not appear to change. As spinal cord injury has been shown to induce an immediate increase in plasma ET levels and a sustained increase in tissue ET levels, ETs would be expected to induce an initial marked vasoconstriction via activation of vascular ET(A)R/ET(B)R and then days later a glial hypertrophy via activation of the ET(B)R expressed by astrocytes. Strategies aimed at blocking vascular ET(A)R/ET(B)R and astrocyte ET(B)Rs following spinal cord injury may reduce the resulting ischemia and astrogliosis and in doing so increase neuronal survival, regeneration, and function.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Female
- Gliosis/etiology
- Gliosis/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Neuroglia/metabolism
- Neuroglia/pathology
- Rats
- Rats, Sprague-Dawley
- Receptor, Endothelin A
- Receptor, Endothelin B
- Receptors, Endothelin/biosynthesis
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Spinal Cord Injuries/complications
- Spinal Cord Injuries/metabolism
- Spinal Cord Injuries/pathology
- Spinal Cord Ischemia/etiology
- Spinal Cord Ischemia/pathology
Collapse
Affiliation(s)
- Christopher M Peters
- Department of Preventive Science, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Rogers SD, Peters CM, Pomonis JD, Hagiwara H, Ghilardi JR, Mantyh PW. Endothelin B receptors are expressed by astrocytes and regulate astrocyte hypertrophy in the normal and injured CNS. Glia 2003; 41:180-90. [PMID: 12509808 DOI: 10.1002/glia.10173] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The ability of mammalian central nervous system (CNS) neurons to survive and/or regenerate following injury is influenced by surrounding glial cells. To identify the factors that control glial cell function following CNS injury, we have focused on the endothelin B receptor (ET(B)R), which we show is expressed by the majority of astrocytes that are immunoreactive for glial acid fibrillary protein (GFAP) in both the normal and crushed rabbit optic nerve. Optic nerve crush induces a marked increase in ET(B)R and GFAP immunoreactivity (IR) without inducing a significant increase in the number of GFAP-IR astrocytes, suggesting that the crush-induced astrogliosis is due primarily to astrocyte hypertrophy. To define the role that endothelins play in driving this astrogliosis, artificial cerebrospinal fluid (CSF), ET-1 (an ET(A)R and ET(B)R agonist), or Bosentan (a mixed ET(A)R and ET(B)R antagonist) were infused via osmotic minipumps into noninjured and crushed optic nerves for 14 days. Infusion of ET-1 induced a hypertrophy of ET(B)R/GFAP-IR astrocytes in the normal optic nerve, with no additional hypertrophy in the crushed nerve, whereas infusion of Bosentan induced a significant decrease in the hypertrophy of ET(B)R/GFAP-IR astrocytes in the crushed but not in the normal optic nerve. These data suggest that pharmacological blockade of astrocyte ET(B)R receptors following CNS injury modulates glial scar formation and may provide a more permissive substrate for neuronal survival and regeneration.
Collapse
Affiliation(s)
- Scott D Rogers
- Molecular Neurobiology Laboratory, Veterans Affairs Medical Center, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
36
|
Loo LS, Ng YK, Zhu YZ, Lee HS, Wong PTH. Cortical expression of endothelin receptor subtypes A and B following middle cerebral artery occlusion in rats. Neuroscience 2002; 112:993-1000. [PMID: 12088756 DOI: 10.1016/s0306-4522(02)00043-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work aimed to define the spatial expression of endothelin A (ET(A)) and B (ET(B)) receptors in the cerebral cortex after permanent middle cerebral artery occlusion (MCAO) and to identify the phenotype of cells expressing ET(A) and ET(B) receptors. Cortical expression of ET(A) and ET(B) receptors was determined at the mRNA level by semi-quantitative reverse transcription-polymerase chain reaction and at the protein level by immunofluorescence staining, 12, 24 and 72 h after MCAO. Cells expressing endothelin receptors were phenotyped by double labelling with antibodies, anti-protein gene product (PGP9.5) and anti-ED1, towards neurons and activated microglia/macrophages, respectively. Both ET(A) and ET(B) receptor mRNA expressions increased significantly in the ipsilateral cortex in a time-dependent manner after MCAO. Robust expression of ET(A) receptors was noted in most neurons of the ischemic core and in several neurons in laminae 3 and 4 of the peri-infarct region 24 and 72 h after MCAO. ET(B) receptor immunoreactivity was observed in activated microglia/macrophages, beginning 24 h after MCAO. These results provide the first evidence that the action of endothelin during ischemia may be mediated by neuronal ET(A) receptors and activated microglia/macrophage ET(B) receptors. This differential localization of ET(A) and ET(B) receptors suggests that endothelin is involved in some complex neuron-glial interactions in addition to its vascular modulatory activity during ischemia.
Collapse
Affiliation(s)
- L-S Loo
- Department of Pharmacology, Faculty of Medicine, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
| | | | | | | | | |
Collapse
|
37
|
Braune S, Riedel A, Schulte-Mönting J, Raczek J. Influence of a radiofrequency electromagnetic field on cardiovascular and hormonal parameters of the autonomic nervous system in healthy individuals. Radiat Res 2002; 158:352-6. [PMID: 12175313 DOI: 10.1667/0033-7587(2002)158[0352:ioaref]2.0.co;2] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The potential health risks of radiofrequency electromagnetic fields (EMFs) emitted by mobile phones are of considerable public interest. The present study investigated the hypothesis, based on the results of our previous study, that exposure to EMFs can increase sympathetic vasoconstrictor activity. Forty healthy young males and females underwent a single-blind, placebo-controlled protocol once on each of two different days. Each investigation included successive periods of placebo and EMF exposure, given in a randomized order. The exposure was implemented by a GSM-like signal (900 MHz, pulsed with 217 Hz, 2 W) using a mobile phone mounted on the right-hand side of the head in a typical telephoning position. Each period of placebo exposure and of EMF exposure consisted of 20 min of supine rest, 10 min of 70 degrees upright tilt on a tilt table, and another 20 min of supine rest. Blood pressure, heart rate and cutaneous capillary perfusion were measured continuously. In addition, serum levels of norepinephrine, epinephrine, cortisol and endothelin were analyzed in venous blood samples taken every 10 min. Similar to the previous study, systolic and diastolic blood pressure each showed slow, continuous, statistically significant increases of about 5 mmHg during the course of the protocol. All other parameters either decreased in parallel or remained constant. However, analysis of variance showed that the changes in blood pressure and in all other parameters were independent of the EMF exposure. These findings do not support the assumption of a nonthermal influence of EMFs emitted by mobile phones on the cardiovascular autonomic nervous system in healthy humans.
Collapse
Affiliation(s)
- S Braune
- Department of Neurology, University of Freiburg, Germany.
| | | | | | | |
Collapse
|
38
|
Rossi NF, Chen H, Musch TI. Endothelin 1-induced pressor response and vasopressin release in rats with heart failure. J Cardiovasc Pharmacol 2002; 40:80-9. [PMID: 12072580 DOI: 10.1097/00005344-200207000-00010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Heart failure (HF) is characterized by activation of both neurohumoral and sympathetic nervous systems. Specifically, HF is associated with increases in vasopressin (VP) and endothelin (ET) and in arterial baroreflex dysfunction. Hypothesis was that central ET-1 potentiates VP secretion in HF due to impaired pressor response and diminished arterial baroreflex inhibition. Male Sprague-Dawley rats were studied 42 to 54 days after sham or coronary ligation (HF) and 7 days after sinoaortic denervation (SAD). Conscious rats received intracerebroventricular artificial cerebrospinal fluid (CSF), 10 pmol of ET-1, 40 nmol BQ123, or both. Basal mean arterial pressure (MAP) did not differ, but heart rate and left ventricular end-diastolic pressure were significantly higher in HF and HF/SAD. Baseline VP was higher in both HF and HF/SAD: 5.9 +/- 0.4 pg/ml and 5.6 +/- 0.7 pg/ml versus sham 2.8 +/- 0.2 and sham-SAD 1.6 +/- 0.2 (p < 0.001). ET-1 increased MAP in sham rats by 16.0 +/- 1.4 mm Hg, but only by 7.4 +/- 2.2 mm Hg in HF (p < 0.05 versus sham) and 5.8 +/- 2.4 mm Hg in HF/SAD (p < 0.01 versus sham SAD). Tachycardic response was attenuated in HF/SAD compared with HF alone. After ET-1, VP increased by 3.3 +/- 2.7 pg/ml in sham and 13.3 +/- 2.6 pg/ml in HF (p < 0.05), but only by 2.3 +/- 0.7 pg/ml in HF/SAD (p < 0.01 versus HF). BQ123 blocked all responses to exogenous ET-1 but had no effect on baseline values. Thus, ET-evoked a lower pressor response in HF due to an impaired ability to increase heart rate and cardiac output. ET-1-induced VP release in HF was higher than in controls as a result of lower pressor response or impaired arterial baroreflex. In contrast to rats with normal left ventricular function, sinoaortic denervation in HF failed to potentiate either pressor response or VP secretion. These findings suggest that acute, though modest, increases in afterload may increase left atrial pressure more in HF/SAD such that cardiopulmonary reflexes may be activated or natriuretic peptides may be released that further restrain both pressor and VP responses.
Collapse
Affiliation(s)
- Noreen F Rossi
- Department of Medicine, Wayne State University School of Medicine, and John D. Dingell VA Medical Center, Detroit, Michigan, USA.
| | | | | |
Collapse
|
39
|
Mukherjee AB, Loesch A. Co-localisation of nitric oxide synthase and endothelin in the rat supraoptic nucleus. THE HISTOCHEMICAL JOURNAL 2002; 34:181-7. [PMID: 12495225 DOI: 10.1023/a:1020950700078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The co-localisation of neuronal nitric oxide synthase and endothelin-1 was studied in the rat supraoptic nucleus at the electron microscopy level. Double pre-embedding immunocytochemistry was performed using ExtrAvidin-horseradish peroxidase and immunogold-silver techniques. Immunoreactivities to neuronal nitric oxide synthase and endothelin-1 were co-localised in sub-populations of endocrine neurones (cell bodies) and dendrites. Double-labelled axon terminals making asymmetrical synapses on unlabelled dendrites were also observed. The findings are discussed in terms of the possible role and significance of nitric oxide and endothlin-1 in the hypothalamo-neurohypophysial system.
Collapse
Affiliation(s)
- Andrew B Mukherjee
- Department of Anatomy and Developmental Biology and Centre for Neuroscience, University College London, Gower Street, London WCIE 6BT, UK
| | | |
Collapse
|
40
|
Naidoo V, Mahabeer R, Raidoo DM. Cellular distribution of endothelin-1 mRNA in human brain by in situ RT-PCR. Metab Brain Dis 2001; 16:207-18. [PMID: 11769333 DOI: 10.1023/a:1012597128870] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Endothelins (ETs) are a family of potent vasoconstrictor and comitogenic polypeptides consisting of 21-amino acids. Using in situ hybridization, ET-1 mRNA has previously been localized to neuronal cell bodies in fourteen human brain regions. However, because in situ hybridization has a limited detection sensitivity of 20 mRNA copies per cell, ET-1 mRNA may be present in previously undetected areas. Hence, our objective was to localize ET-1 mRNA in specific human brain regions and astrocytic tumours using the more sensitive in situ reverse transcriptase polymerase chain reaction (in situ RT-PCR). Human brain autopsy tissue and surgical cerebral tumour tissue were treated with proteinase K and DNase, followed by RT-PCR using primers specific for ET-1 mRNA and digoxygenin-labelled dUTP in the PCR mixture. The DIG-dUTP was localized with an immunodetection system. We demonstrate ET-1 mRNA labelling in twenty two of the twenty four brain regions studied including those regions in which ET-1 mRNA has been observed by in situ hybridization. In addition, the localization of ET-1 mRNA observed in astrocytomas suggests a role for ET-1 in tumour pathogenesis. In situ RT-PCR has proven to be highly sensitive in its ability to detect low mRNA expression at the cellular level. Our results confirm a role for ET-1 in the human nervous system.
Collapse
Affiliation(s)
- V Naidoo
- Department of Pharmacology, Nelson R Mandela School of Medicine, University of Natal, Durban, Congella, South Africa
| | | | | |
Collapse
|
41
|
Burbach JP, Luckman SM, Murphy D, Gainer H. Gene regulation in the magnocellular hypothalamo-neurohypophysial system. Physiol Rev 2001; 81:1197-267. [PMID: 11427695 DOI: 10.1152/physrev.2001.81.3.1197] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The hypothalamo-neurohypophysial system (HNS) is the major peptidergic neurosecretory system through which the brain controls peripheral physiology. The hormones vasopressin and oxytocin released from the HNS at the neurohypophysis serve homeostatic functions of water balance and reproduction. From a physiological viewpoint, the core question on the HNS has always been, "How is the rate of hormone production controlled?" Despite a clear description of the physiology, anatomy, cell biology, and biochemistry of the HNS gained over the last 100 years, this question has remained largely unanswered. However, recently, significant progress has been made through studies of gene identity and gene expression in the magnocellular neurons (MCNs) that constitute the HNS. These are keys to mechanisms and events that exist in the HNS. This review is an inventory of what we know about genes expressed in the HNS, about the regulation of their expression in response to physiological stimuli, and about their function. Genes relevant to the central question include receptors and signal transduction components that receive and process the message that the organism is in demand of a neurohypophysial hormone. The key players in gene regulatory events, the transcription factors, deserve special attention. They do not only control rates of hormone production at the level of the gene, but also determine the molecular make-up of the cell essential for appropriate development and physiological functioning. Finally, the HNS neurons are equipped with a machinery to produce and secrete hormones in a regulated manner. With the availability of several gene transfer approaches applicable to the HNS, it is anticipated that new insights will be obtained on how the HNS is able to respond to the physiological demands for its hormones.
Collapse
Affiliation(s)
- J P Burbach
- Rudolf Magnus Institute for Neurosciences, Section of Molecular Neuroscience, Department of Medical Pharmacology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
42
|
Abstract
The endothelin system consists of two G-protein-coupled receptors, three peptide ligands, and two activating peptidases. Its pharmacological complexity is reflected by the diverse expression pattern of endothelin system components, which have a variety of physiological and pathophysiological roles. In the vessels, the endothelin system has a basal vasoconstricting role and participates in the development of diseases such as hypertension, atherosclerosis, and vasospasm after subarachnoid hemorrhage. In the heart, the endothelin system affects inotropy and chronotropy, and it mediates cardiac hypertrophy and remodeling in congestive heart failure. In the lungs, the endothelin system regulates the tone of airways and blood vessels, and it is involved in the development of pulmonary hypertension. In the kidney, it controls water and sodium excretion and acid-base balance, and it participates in acute and chronic renal failure. In the brain, the endothelin system modulates cardiorespiratory centers and the release of hormones. More advanced functional analysis of the endothelin system awaits not only additional pharmacological studies using highly specific endothelin antagonists but also the generation of genetically altered rodent models with conditional loss-of-function and gain-of-function manipulations.
Collapse
Affiliation(s)
- R M Kedzierski
- Department of Molecular Genetics University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9050, USA.
| | | |
Collapse
|
43
|
Camillo MA, Arruda Paes PC, Troncone LR, Rogero JR. Gyroxin fails to modify in vitro release of labelled dopamine and acetylcholine from rat and mouse striatal tissue. Toxicon 2001; 39:843-53. [PMID: 11137545 DOI: 10.1016/s0041-0101(00)00222-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Gyroxin fails to modify in vitro release of labelled dopamine and acetylcholine from rat and mouse striatal tissue. Gyroxin is a thrombin-like peptide with amidasic, esterasic and fibrinogenolitic activities, found in the venom of snakes like Lachesis muta muta and Crotalus durissus terrificus. Intravenous injections of small doses of gyroxin induce a typical barrel rotation behaviour that has been thought to be a neurotoxic effect. The aim of this study was to determine whether gyroxin-induced barrel rotation behaviour involves changes in neurotransmitter release. Gyroxin was isolated from crude venoms by gel filtration and affinity chromatography. Its properties were determined by assaying esterasic, amidasic and fibrinogenolitic enzymatic activities and tested for barrel rotation behaviour. Neurotransmitter release tests employed rat and mouse superfused brain striatal chopped tissue preloaded with [(3)H]-dopamine, [(3)H]-acetylcholine or in a double labelling procedure. They were stimulated by 20mM K(+) in control conditions or in the presence of several concentrations of toxins. Crotoxin and crotamine were used as positive controls. Gyroxins failed at modifying both basal and stimulated neurotransmitter releases, suggesting a lack of direct neurotoxic effect. We therefore suggest that gyroxin may not be a neurotoxin but rather, induces this behavioural syndrome by other means possibly related to haemodynamic disturbance. The possible role of vasopressin is discussed.
Collapse
Affiliation(s)
- M A Camillo
- Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN-SP, Travessa R, no. 400, Cidade Universitária, São Paulo, SP 05508-900, Brazil.
| | | | | | | |
Collapse
|
44
|
Abstract
Vasoactive autocoids with directly opposing actions on the renal vasculature, glomerular function, and in salt and water homeostasis have been demonstrated in the kidney. In the renal cortex, endothelin (ET)-1 and angiotensin-II cause vasoconstriction, decreasing renal blood flow, and glomerular filtration rate, whereas bradykinin and atrial natriuretic peptide cause vasodilation and increase glomerular capillary permeability. ET-1 causes vasoconstriction of the afferent and efferent arteries and outer medullary descending vasa recta, thereby decreasing vasa recta and papillary blood flow, while bradykinin has the opposite effect. ET-1 stimulates cell proliferation, increasing the expression of several genes, including collagenase, prostaglandin endoperoxidase synthase, and platelet-derived growth factor. ET-1 promotes natriuresis via the ET-B receptor, causing down-regulation of the epithelial Na(+) channel in the renal tubule. Thus, ETs affect three major aspects of renal physiology: vascular and mesangial tone, Na(+) and water excretion, and cell proliferation and matrix formation.
Collapse
Affiliation(s)
- S Naicker
- Department of Medicine, Nelson R. Mandela School of Medicine, University of Natal, Durban, South Africa
| | | |
Collapse
|
45
|
Singh HJ, Rahman A, Larmie ET, Nila A. Endothelin-l in feto-placental tissues from normotensive pregnant women and women with pre-eclampsia. Acta Obstet Gynecol Scand 2001; 80:99-103. [PMID: 11167202 DOI: 10.1034/j.1600-0412.2001.080002099.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIMS The pathogenesis of pre-eclampsia is still unclear. Placental hypoperfusion, which precedes the maternal manifestations of pre-eclampsia, could be due to some vasoconstrictor factor/s like endothelin-1. The aim of the study therefore was to estimate the levels of endothelin-1 in feto-placental tissue homogenates from normotensive pregnant women and women with pre-eclampsia. METHOD AND MATERIAL Fresh, vaginally delivered placentae from ten normotensive pregnant women and nine women with pre-eclampsia were carefully dissected and 4 gm each of amnion, chorion laeve, placental plate chorion, fetal placenta (fetal surface of the placenta) and maternal placenta (surface of the placenta attached to the uterine wall) were obtained. These tissues were then thoroughly washed in a 0.5 M phosphate buffer, pH 7.5, at room temperature and then individually homogenized for one minute in 4 ml of the same buffer. After centrifugation the supernatant was removed. The pellet was re-suspended in buffer, re-homogenized and then centrifuged. The supernatant was removed and the procedure was repeated once again and the three supernatants of each tissue were pooled. Endothelin-1 was estimated by RIA. All results are presented as mean+/-SEM. Statistical analysis was performed using students 't' test for unpaired samples and a 'p' value of <0.05 was considered significant. RESULTS In tissues from normotensive pregnant women, no significant differences were evident in endothelin-1 concentrations in the chorion laeve, fetal placenta and maternal placenta but were significantly higher than those in the amnion and placental plate chorion (p<0.01). In tissues from pre-eclamptic women, no significant differences were evident between endothelin-1 concentrations in the chorion laeve, placental plate chorion and fetal placenta. Mean endothelin-1 concentration in the amnion and maternal placenta were significantly lower than those in chorion laeve, placental plate chorion and fetal placenta (p<0.01). Endothelin-1 concentrations were significantly higher in the amnion, chorion laeve, placental plate chorion and fetal placenta from women with pre-eclampsia when compared to tissues from normotensive pregnant women (p<0.01). CONCLUSIONS Endothelin-1 levels were significantly higher in the placental tissues from women with pre-eclampsia. Endothelin-1, being a powerful vasoconstrictor, could cause significant vasoconstriction in the placental vasculature, and alterations in endothelin-1 levels in placental vasculature may therefore have a role in the pathogenesis of pre-eclampsia.
Collapse
Affiliation(s)
- H J Singh
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan
| | | | | | | |
Collapse
|
46
|
Rossi NF, Chen H. PVN lesions prevent the endothelin 1-induced increase in arterial pressure and vasopressin. Am J Physiol Endocrinol Metab 2001; 280:E349-56. [PMID: 11158940 DOI: 10.1152/ajpendo.2001.280.2.e349] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelin (ET) acts within the central nervous system to increase arterial pressure and arginine vasopressin (AVP) secretion. This study assessed the role of the paraventricular nuclei (PVN) in these actions. Intracerebroventricular ET-1 (10 pmol) or the ET(A) antagonist BQ-123 (40 nmol) was administered in conscious intact or sinoaortic-denervated (SAD) Long-Evans rats with sham or bilateral electrolytic lesions of the magnocellular region of the PVN. Baseline values did not differ among groups, and artificial cerebrospinal fluid (CSF) induced no significant changes. In sham-lesioned rats, ET-1 increased mean arterial pressure (MAP) 15.9 +/- 1.3 mmHg in intact and 22.3 +/- 2.7 mmHg in SAD (P < 0.001 ET-1 vs. CSF) rats. PVN lesions abolished the rise in MAP: -0.1 +/- 2.8 mmHg in intact and 0.0 +/- 2.9 mmHg in SAD. AVP increased in only in the sham-lesioned SAD group 8.6 +/- 3.5 pg/ml (P < 0.001 ET-1 vs. CSF). BQ-123 blocked the responses. Thus the integrity of the PVN is required for intracerebroventricularly administered ET-1 to exert pressor and AVP secretory effects.
Collapse
Affiliation(s)
- N F Rossi
- Department of Medicine, Wayne State University School of Medicine and John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan 48201, USA.
| | | |
Collapse
|
47
|
|
48
|
Abstract
Levels of endothelin-1 (ET-1), a potent endogenous vasoconstrictor, are elevated in plasma and cerebrospinal fluid (CSF) following cerebral ischemia and reperfusion injury. The present study sought insight into the potential differential vasoactive effects on the cerebral vasculature and resultant neural damage of ET-1 during normoxic vs. ischemic conditions and upon reperfusion. Under normoxic conditions, intrastriatal stereotaxic injection of exogenous ET-1 (40 pmol) induced a significant (P<0.05) reduction (</=29+/-12%) in the regional (striatal) cerebral blood flow measured by Laser Doppler flowmetry (CBF(LDF)) for up to 40 min in halothane-anesthetized male Long-Evans rats. Intrastriatal injection of ET-1 10 min after the onset of hypoxia (12% O(2), balance N(2)) tended to blunt, but not significantly, the striatal CBF(LDF) responses to the 35 min period of hypoxia. ET-1 given during reoxygenation significantly (P<0.05) reduced striatal CBF(LDF), which was similar to the effect of ET-1 during normoxia. ET-1-induced infarction when administered prior to hypoxia, but not during or post-hypoxia, was significantly (P<0.05) exacerbated compared to infarction of ET-1 without hypoxia. These results suggest that exogenous ET-1 administered into the brain parenchyma can induce an infarction associated with modulation of CBF(LDF) during the normoxic or reoxygenation period, but not during the hypoxic period and that the increased release of ET-1 in any pathological phase of cerebral ischemia contributes to irreversible neural damage with associated hemodynamic disturbances.
Collapse
Affiliation(s)
- L Park
- Department of Physiology and Saskatchewan Stroke Research Center, University of Saskatchewan, 107 Wiggins Road, Saskatoon, S7N 5E5, Saskatchewan, Canada.
| | | |
Collapse
|
49
|
Freeman ME, Kanyicska B, Lerant A, Nagy G. Prolactin: structure, function, and regulation of secretion. Physiol Rev 2000; 80:1523-631. [PMID: 11015620 DOI: 10.1152/physrev.2000.80.4.1523] [Citation(s) in RCA: 1542] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Prolactin is a protein hormone of the anterior pituitary gland that was originally named for its ability to promote lactation in response to the suckling stimulus of hungry young mammals. We now know that prolactin is not as simple as originally described. Indeed, chemically, prolactin appears in a multiplicity of posttranslational forms ranging from size variants to chemical modifications such as phosphorylation or glycosylation. It is not only synthesized in the pituitary gland, as originally described, but also within the central nervous system, the immune system, the uterus and its associated tissues of conception, and even the mammary gland itself. Moreover, its biological actions are not limited solely to reproduction because it has been shown to control a variety of behaviors and even play a role in homeostasis. Prolactin-releasing stimuli not only include the nursing stimulus, but light, audition, olfaction, and stress can serve a stimulatory role. Finally, although it is well known that dopamine of hypothalamic origin provides inhibitory control over the secretion of prolactin, other factors within the brain, pituitary gland, and peripheral organs have been shown to inhibit or stimulate prolactin secretion as well. It is the purpose of this review to provide a comprehensive survey of our current understanding of prolactin's function and its regulation and to expose some of the controversies still existing.
Collapse
Affiliation(s)
- M E Freeman
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4340, USA.
| | | | | | | |
Collapse
|
50
|
Kurihara Y, Kurihara H, Morita H, Cao WH, Ling GY, Kumada M, Kimura S, Nagai R, Yazaki Y, Kuwaki T. Role of endothelin-1 in stress response in the central nervous system. Am J Physiol Regul Integr Comp Physiol 2000; 279:R515-21. [PMID: 10938240 DOI: 10.1152/ajpregu.2000.279.2.r515] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelin (ET)-1 is a 21-amino acid peptide that induces a variety of biological activities, including vasoconstriction and cell proliferation, and its likely involvement in cardiovascular and other diseases has recently led to broad clinical trials of ET receptor antagonists. ET-1 is widely distributed in the central nervous system (CNS), where it is thought to regulate hormone and neurotransmitter release. Here we show that CNS responses to emotional and physical stressors are differentially affected in heterozygous ET-1-knockout mice, which exhibited diminished aggressive and autonomic responses toward intruders (emotional stressors) but responded to restraint-induced (physical) stress more intensely than wild-type mice. This suggests differing roles of ET-1 in the central pathways mediating responses to different types of stress. Hypothalamic levels of ET-1 and the catecholamine metabolite 3-methoxy-4-hydroxyphenylglycol (MHPG) were both increased in wild-type mice subjected to intruder stress, whereas MHPG levels were not significantly affected in ET-1-knockout mice. Furthermore, immunohistochemical analysis showed that ET-1 and tyrosine hydroxylase, an enzyme in the catecholamine synthesis pathway, were colocalized within certain neurons of the hypothalamus and amygdala. Our findings suggest that ET-1 modulates central coordination of stress responses in close association with catecholamine metabolism.
Collapse
Affiliation(s)
- Y Kurihara
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|