1
|
Kong L, Barber T, Aldinger J, Bowman L, Leonard S, Zhao J, Ding M. ROS generation is involved in titanium dioxide nanoparticle-induced AP-1 activation through p38 MAPK and ERK pathways in JB6 cells. ENVIRONMENTAL TOXICOLOGY 2022; 37:237-244. [PMID: 34730869 PMCID: PMC9947743 DOI: 10.1002/tox.23393] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/09/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Titanium dioxide (TiO2 ) is generally regarded as a nontoxic and nongenotoxic white mineral, which is mainly applied in the manufacture of paper, paint, plastic, sunscreen lotion and other products. Recently, TiO2 nanoparticles (TiO2 NPs) have been demonstrated to cause chronic inflammation and lung tumor formation in rats, which may be associated with the particle size of TiO2 . Considering the important role of activator protein-1 (AP-1) in regulating multiple genes involved in the cell proliferation and inflammation and the induction of neoplastic transformation, we aimed to evaluate the potency of TiO2 NPs (≤ 20 nm) on the activation of AP-1 signaling pathway and the generation of reactive oxygen species (ROS) in a mouse epidermal cell line, JB6 cells. MTT, electron spin resonance (ESR), AP-1 luciferase activity assay in vitro and in vivo, and Western blotting assay were used to clarify this problem. Our results indicated that TiO2 NPs dose-dependently caused the hydroxyl radical (·OH) generation and sequentially increased the AP-1 activity in JB6 cells. Using AP-1-luciferase reporter transgenic mice models, an obvious increased AP-1 activity was detected in dermal tissue after exposure to TiO2 NPs for 24 h. Interestingly, TiO2 NPs increased the AP-1 activity via stimulating the expression of mitogen-activated protein kinases (MAPKs) family members, including extracellular signal-regulated protein kinases (ERKs), p38 kinase, and C-Jun N-terminal kinases (JNKs). Of note, the AP-1 activation induced by TiO2 NPs could be blocked by specific inhibitors (SB203580, PD98059, and SP 600125, respectively) that inhibit ERKs and p38 kinase but not JNKs. These findings indicate that ROS generation is involved in TiO2 NPs-induced AP-1 activation mediated by MAPKs signal pathway.
Collapse
Affiliation(s)
- Lu Kong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, China
- Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Tabatha Barber
- Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Joni Aldinger
- Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Linda Bowman
- Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Stephen Leonard
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Jinshun Zhao
- Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Min Ding
- Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| |
Collapse
|
2
|
Hudlikar RR, Sargsyan D, Wu R, Su S, Zheng M, Kong AN. Triterpenoid corosolic acid modulates global CpG methylation and transcriptome of tumor promotor TPA induced mouse epidermal JB6 P+ cells. Chem Biol Interact 2020; 321:109025. [PMID: 32135139 DOI: 10.1016/j.cbi.2020.109025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/04/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
Epigenetic regulation is one of the driving forces in the process of carcinogenesis. Corosolic acid (CA); triterpenoid abundantly found in Lagerstroemia speciosa L. is known to modulate various cellular process including cellular oxidative stress and signaling kinases in various diseases, including skin cancer. Genetic mutations in early stages of skin cancer are well-documented, the epigenetic alterations remain elusive. In the present study, we identified the transcriptomic gene expression changes with RNAseq and genome-wide DNA CpG methylation changes with DNA methylseq to profile the early stage transcriptomic and epigenomic changes using tumor promoter TPA-mediated mouse epidermal epithelial JB6 P+ cells. JB6 P+ cells were treated with TPA and Corosolic acid by 7.5uM optimized by MTS assay. Differentiated expressed genes (DEGs) and Differentially methylated genes (DMRs) were analyzed by R software. Ingenuity Pathway Analysis (IPA) was employed to understand the differential regulation of specific pathways. Novel TPA induced differentially overexpressed genes like tumor promoter Prl2c2, small prolin rich protein (Sprr2h) was reported which was downregulated by corosolic acid treatment. Several cancer related pathways were identified by Ingenuity Pathways Analysis (IPA) including p53, Erk, TGF beta signaling pathways. Moreover, differentially methylated regions (DMRs) in genes like Dusp22 (Dual specificity protein phosphatase 22), Rassf (tumor suppressor gene family, Ras association domain family) in JB6 P+ cells were uncovered which are altered by TPA and are reversed by CA treatment. Interestingly, genes like CDK1 (Cyclin-dependent kinases 1) and RASSF2 (Ras association domain family member 2) observed to be differentially methylated and expressed which was further modulated by corosolic acid treatment, validated by qPCR. Given study indicated gene expression changes to DNA CpG methylation epigenomic changes modulated various molecular pathways in TPA-induced JB6 cells and revealed that CA can potentially reverse these changes which deciphering novel molecular targets for future prevention of early stages of skin cancer studies in human.
Collapse
Affiliation(s)
- Rasika R Hudlikar
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Davit Sargsyan
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Renyi Wu
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Shan Su
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Meinizi Zheng
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ah-Ng Kong
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
3
|
Pore-forming toxins from sea anemones: from protein-membrane interaction to its implications for developing biomedical applications. ADVANCES IN BIOMEMBRANES AND LIPID SELF-ASSEMBLY 2020. [DOI: 10.1016/bs.abl.2020.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
Matsuhashi S, Manirujjaman M, Hamajima H, Ozaki I. Control Mechanisms of the Tumor Suppressor PDCD4: Expression and Functions. Int J Mol Sci 2019; 20:ijms20092304. [PMID: 31075975 PMCID: PMC6539695 DOI: 10.3390/ijms20092304] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023] Open
Abstract
PDCD4 is a novel tumor suppressor to show multi-functions inhibiting cell growth, tumor invasion, metastasis, and inducing apoptosis. PDCD4 protein binds to the translation initiation factor eIF4A, some transcription factors, and many other factors and modulates the function of the binding partners. PDCD4 downregulation stimulates and PDCD4 upregulation inhibits the TPA-induced transformation of cells. However, PDCD4 gene mutations have not been found in tumor cells but gene expression was post transcriptionally downregulated by micro environmental factors such as growth factors and interleukins. In this review, we focus on the suppression mechanisms of PDCD4 protein that is induced by the tumor promotors EGF and TPA, and in the inflammatory conditions. PDCD4-protein is phosphorylated at 2 serines in the SCFβTRCP ubiquitin ligase binding sequences via EGF and/or TPA induced signaling pathway, ubiquitinated, by the ubiquitin ligase and degraded in the proteasome system. The PDCD4 protein synthesis is inhibited by microRNAs including miR21.
Collapse
Affiliation(s)
- Sachiko Matsuhashi
- Department of Internal Medicine, Saga Medical School, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan.
| | - M Manirujjaman
- Department of Internal Medicine, Saga Medical School, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan.
| | - Hiroshi Hamajima
- Saga Food & Cosmetics Laboratory, Division of Food Manufacturing Industry Promotion, SAGA Regional Industry Support Center, 114 Yaemizo, Nabesima-Machi, Saga 849-0932, Japan.
| | - Iwata Ozaki
- Health Administration Center, Saga Medical School, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan.
| |
Collapse
|
5
|
Wang C, Wu R, Sargsyan D, Zheng M, Li S, Yin R, Su S, Raskin I, Kong AN. CpG methyl-seq and RNA-seq epigenomic and transcriptomic studies on the preventive effects of Moringa isothiocyanate in mouse epidermal JB6 cells induced by the tumor promoter TPA. J Nutr Biochem 2019; 68:69-78. [PMID: 31030169 DOI: 10.1016/j.jnutbio.2019.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/02/2019] [Accepted: 03/14/2019] [Indexed: 02/02/2023]
Abstract
Epigenetic mechanisms play an important role in the early stages of carcinogenesis. Moringa isothiocyanate (MIC-1) is a major bioactive component derived from Moringa oleifera that has considerable antioxidant and anti-inflammatory effects. However, how MIC-1 influences epigenomic alterations in TPA-mediated JB6 cell carcinogenic transformation has not been evaluated. In this study, DNA and RNA isolated from TPA-induced JB6 cells in the presence or absence of MIC-1 were subjected to DNA Methyl-seq and RNA-seq to identify differentially methylated regions (DMRs) and differentially expressed genes (DEGs), respectively. When JB6 cells were challenged with TPA alone, there was a significant alteration of DEGs and DMRs; importantly, MIC-1 treatment reversed the patterns of some of the DEGs and DMRs. Transcriptome and CpG methylome profiling was performed in Ingenuity® Pathway Analysis (IPA) software to analyze the altered signaling pathways. Several anti-inflammatory responses, antioxidative stress-related pathways, and anticancer-related pathways were identified to be affected by MIC-1. These pathways included NF-kB, IL-1, LPS/IL-1-mediated inhibition of RXR function, Nrf2-mediated oxidative stress response, p53, and PTEN signaling pathways. Examination of correlations between transcriptomic and CpG methylome profiles yielded a small subset of genes, including the cancer-related genes Tmpt, Tubb3, and Muc2; the GTPases Gchfr and Igtp; and the cell cycle-related gene Cdc7. Taken together, our results show the potential contributions of epigenomic changes in DNA CpG methylation to gene expression to molecular pathways active in TPA-induced JB6 cells and demonstrate that MIC-1 can reverse these changes, supporting the potential preventive/treatment effects of MIC-1 against skin carcinogenesis.
Collapse
Affiliation(s)
- Chao Wang
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Renyi Wu
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Davit Sargsyan
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Graduate Program of Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Meinizi Zheng
- Department of Statistics and Biostatistics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Shanyi Li
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ran Yin
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Shan Su
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ilya Raskin
- Department of Plant Biology & Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Ah-Ng Kong
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
6
|
Truong VL, Kong AN, Jeong WS. Red Ginseng Oil Inhibits TPA-Induced Transformation of Skin Epidermal JB6 Cells. J Med Food 2017; 21:380-389. [PMID: 29271701 DOI: 10.1089/jmf.2017.4082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Red ginseng oil (RGO) has been shown to possess anti-inflammatory and hepatoprotective activity. In this study, we evaluated the inhibitory effect of RGO on 12-O-tetradecanoylphorbol-13-acetate (TPA)-stimulated neoplastic transformation of JB6 P+ cells. RGO pretreatment abolished the transformation of JB6 P+ cells challenged by TPA. RGO suppressed the transactivation of activator protein-1 (AP-1) and nuclear factor kappa B (NF-κB) transcription factors as well as protein levels of cyclooxygenase-2, cyclin D1, cyclin E, and Bcl-2 in the TPA-treated cells. Additionally, TPA-induced phosphorylations of extracellular signal-regulated kinases, 90 kDa ribosomal S6 kinase 2, c-Jun N-terminal kinases, and glycogen synthase kinase 3β were downregulated in the presence of RGO. Furthermore, RGO induced the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant enzyme heme oxygenase-1 (HO-1) expression, and effectively blocked the overproduction of TPA-induced reactive oxygen species. These results suggest that RGO exerts a potent chemopreventive activity in skin cell model.
Collapse
Affiliation(s)
- Van-Long Truong
- 1 Department of Food and Life Sciences, College of BNIT, Inje University , Gimhae, Korea
| | - Ah Ng Kong
- 2 Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey, USA
| | - Woo-Sik Jeong
- 1 Department of Food and Life Sciences, College of BNIT, Inje University , Gimhae, Korea
| |
Collapse
|
7
|
Pandey MK, Gupta SC, Nabavizadeh A, Aggarwal BB. Regulation of cell signaling pathways by dietary agents for cancer prevention and treatment. Semin Cancer Biol 2017; 46:158-181. [PMID: 28823533 DOI: 10.1016/j.semcancer.2017.07.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/05/2017] [Accepted: 07/12/2017] [Indexed: 12/17/2022]
Abstract
Although it is widely accepted that better food habits do play important role in cancer prevention and treatment, how dietary agents mediate their effects remains poorly understood. More than thousand different polyphenols have been identified from dietary plants. In this review, we discuss the underlying mechanism by which dietary agents can modulate a variety of cell-signaling pathways linked to cancer, including transcription factors, nuclear factor κB (NF-κB), signal transducer and activator of transcription 3 (STAT3), activator protein-1 (AP-1), β-catenin/Wnt, peroxisome proliferator activator receptor- gamma (PPAR-γ), Sonic Hedgehog, and nuclear factor erythroid 2 (Nrf2); growth factors receptors (EGFR, VEGFR, IGF1-R); protein Kinases (Ras/Raf, mTOR, PI3K, Bcr-abl and AMPK); and pro-inflammatory mediators (TNF-α, interleukins, COX-2, 5-LOX). In addition, modulation of proteasome and epigenetic changes by the dietary agents also play a major role in their ability to control cancer. Both in vitro and animal based studies support the role of dietary agents in cancer. The efficacy of dietary agents by clinical trials has also been reported. Importantly, natural agents are already in clinical trials against different kinds of cancer. Overall both in vitro and in vivo studies performed with dietary agents strongly support their role in cancer prevention. Thus, the famous quote "Let food be thy medicine and medicine be thy food" made by Hippocrates 25 centuries ago still holds good.
Collapse
Affiliation(s)
- Manoj K Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA.
| | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ali Nabavizadeh
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | | |
Collapse
|
8
|
Xue P, Zeng F, Duan Q, Xiao J, Liu L, Yuan P, Fan L, Sun H, Malyarenko OS, Lu H, Xiu R, Liu S, Shao C, Zhang J, Yan W, Wang Z, Zheng J, Zhu F. BCKDK of BCAA Catabolism Cross-talking With the MAPK Pathway Promotes Tumorigenesis of Colorectal Cancer. EBioMedicine 2017; 20:50-60. [PMID: 28501528 PMCID: PMC5478211 DOI: 10.1016/j.ebiom.2017.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 05/01/2017] [Accepted: 05/01/2017] [Indexed: 01/13/2023] Open
Abstract
Branched-chain amino acids catabolism plays an important role in human cancers. Colorectal cancer is the third most commonly diagnosed cancer in males and the second in females, and the new global incidence is over 1.2 million cases. The branched-chain α-keto acid dehydrogenase kinase (BCKDK) is a rate-limiting enzyme in branched-chain amino acids catabolism, which plays an important role in many serious human diseases. Here we investigated that abnormal branched-chain amino acids catabolism in colorectal cancer is a result of the disease process, with no role in disease initiation; BCKDK is widely expressed in colorectal cancer patients, and those patients that express higher levels of BCKDK have shorter survival times than those with lower levels; BCKDK promotes cell transformation or colorectal cancer ex vivo or in vivo. Mechanistically, BCKDK promotes colorectal cancer by enhancing the MAPK signaling pathway through direct MEK phosphorylation, rather than by branched-chain amino acids catabolism. And the process above could be inhibited by a BCKDK inhibitor, phenyl butyrate.
Collapse
Affiliation(s)
- Peipei Xue
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Fanfan Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Qiuhong Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Juanjuan Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Lin Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Ping Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Linni Fan
- Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Huimin Sun
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Olesya S Malyarenko
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China; G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Laboratory of Enzyme Chemistry, Vladivostok, Russia
| | - Hui Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Ruijuan Xiu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Shaoqing Liu
- Department of State Key Laboratory of Cancer Biology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Chen Shao
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Jianmin Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Wei Yan
- Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| | - Zhe Wang
- Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| | - Jianyong Zheng
- Department of State Key Laboratory of Cancer Biology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| | - Feng Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
9
|
Kuzmich AS, Khomenko TM, Fedorov SN, Makarieva TN, Shubina LK, Komarova NI, Korchagina DV, Rybalova TV, Volcho KP, Salakhutdinov NF. Cytotoxic and cancer preventive activity of benzotrithioles and benzotrithiole oxides, synthetic analogues of varacins. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1759-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
The AP-1 transcription factor JunB is essential for multiple myeloma cell proliferation and drug resistance in the bone marrow microenvironment. Leukemia 2016; 31:1570-1581. [PMID: 27890927 DOI: 10.1038/leu.2016.358] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/08/2016] [Accepted: 11/11/2016] [Indexed: 12/13/2022]
Abstract
Despite therapeutic advances, multiple myeloma (MM) remains an incurable disease, predominantly because of the development of drug resistance. The activator protein-1 (AP-1) transcription factor family has been implicated in a multitude of physiologic processes and tumorigenesis; however, its role in MM is largely unknown. Here we demonstrate specific and rapid induction of the AP-1 family member JunB in MM cells when co-cultured with bone marrow stromal cells. Supporting a functional key role of JunB in MM pathogenesis, knockdown of JUNB significantly inhibited in vitro MM cell proliferation and survival. Consistently, induced silencing of JUNB markedly decreased tumor growth in a murine MM model of the microenvironment. Subsequent gene expression profiling revealed a role for genes associated with apoptosis, DNA replication and metabolism in driving the JunB-mediated phenotype in MM cells. Importantly, knockdown of JUNB restored the response to dexamethasone in dexamethasone-resistant MM cells. Moreover, 4-hydroxytamoxifen-induced activation of a JunB-ER fusion protein protected dexamethasone-sensitive MM cells against dexamethasone- and bortezomib-induced cytotoxicity. In summary, our results demonstrate for the first time a specific role for AP-1/JunB in MM cell proliferation, survival and drug resistance, thereby strongly supporting that this transcription factor is a promising new therapeutic target in MM.
Collapse
|
11
|
Poster Session. Toxicol Pathol 2016. [DOI: 10.1177/019262339302100613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Khor YM, Soga T, Parhar IS. Early-life stress changes expression of GnRH and kisspeptin genes and DNA methylation of GnRH3 promoter in the adult zebrafish brain. Gen Comp Endocrinol 2016; 227:84-93. [PMID: 26686318 DOI: 10.1016/j.ygcen.2015.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/25/2015] [Accepted: 12/04/2015] [Indexed: 01/05/2023]
Abstract
Early-life stress can cause long-term effects in the adulthood such as alterations in behaviour, brain functions and reproduction. DNA methylation is a mechanism of epigenetic change caused by early-life stress. Dexamethasone (DEX) was administered to zebrafish larvae to study its effect on reproductive dysfunction. The level of GnRH2, GnRH3, Kiss1 and Kiss2 mRNAs were measured between different doses of DEX treatment groups in adult zebrafish. Kiss1 and GnRH2 expression were increased in the 200mg/L DEX treated while Kiss2 and GnRH3 mRNA levels were up-regulated in the 2mg/L DEX-treated zebrafish. The up-regulation may be related to programming effect of DEX in the zebrafish larvae, causing overcompensation mechanism to increase the mRNA levels. Furthermore, DEX treatment caused negative impact on the development and maturation of the testes, in particular spermatogenesis. Therefore, immature gonadal development may cause positive feedback by increasing GnRH and Kiss. This indicates that DEX can alter the regulation of GnRH2, GnRH3, Kiss1 and Kiss2 in adult zebrafish, which affects maturation of gonads. Computer analysis of 1.5 kb region upstream of the 5' UTR of Kiss1, Kiss2, GnRH2 and GnRH3 promoter showed that there are putative binding sites of glucocorticoid response element and transcription factors involved in stress response. GnRH3 promoter analysed from pre-optic area, ventral telencephalon and ventral olfactory bulb showed higher methylation at CpG residues located on -1410, -1377 and -1355 between control and 2mg/L DEX-treated groups. Hence, early-life DEX treatment can alter methylation of GnRH3 gene promoter, which subsequently affects gene regulation and reproductive functions.
Collapse
Affiliation(s)
- Yee Min Khor
- Brain Research Institute, School of Medicine and Health Sciences, Monash University, Malaysia
| | - Tomoko Soga
- Brain Research Institute, School of Medicine and Health Sciences, Monash University, Malaysia.
| | - Ishwar S Parhar
- Brain Research Institute, School of Medicine and Health Sciences, Monash University, Malaysia
| |
Collapse
|
13
|
Singh A, Singh A, Bauer SJ, Wheeler DL, Havighurst TC, Kim K, Verma AK. Genetic deletion of TNFα inhibits ultraviolet radiation-induced development of cutaneous squamous cell carcinomas in PKCε transgenic mice via inhibition of cell survival signals. Carcinogenesis 2015; 37:72-80. [PMID: 26586792 DOI: 10.1093/carcin/bgv162] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/14/2015] [Indexed: 11/14/2022] Open
Abstract
Protein kinase C epsilon (PKCε), a Ca(2+)-independent phospholipid-dependent serine/threonine kinase, is among the six PKC isoforms (α, δ, ε, η, μ, ζ) expressed in both mouse and human skin. Epidermal PKCε level dictates the susceptibility of PKCε transgenic (TG) mice to the development of cutaneous squamous cell carcinomas (SCC) elicited either by repeated exposure to ultraviolet radiation (UVR) or by using the DMBA initiation-TPA (12-O-tetradecanoylphorbol-13-acetate) tumor promotion protocol (Wheeler,D.L. et al. (2004) Protein kinase C epsilon is an endogenous photosensitizer that enhances ultraviolet radiation-induced cutaneous damage and development of squamous cell carcinomas. Cancer Res., 64, 7756-7765). Histologically, SCC in TG mice, like human SCC, is poorly differentiated and metastatic. Our earlier studies to elucidate mechanisms of PKCε-mediated development of SCC, using either DMBA-TPA or UVR, indicated elevated release of cytokine TNFα. To determine whether TNFα is essential for the development of SCC in TG mice, we generated PKCε transgenic mice/TNFα-knockout (TG/TNFαKO) by crossbreeding TNFαKO with TG mice. We now present that deletion of TNFα in TG mice inhibited the development of SCC either by repeated UVR exposures or by the DMBA-TPA protocol. TG mice deficient in TNFα elicited both increase in SCC latency and decrease in SCC incidence. Inhibition of UVR-induced SCC development in TG/TNFαKO was accompanied by inhibition of (i) the expression levels of TNFα receptors TNFRI and TNFRII and cell proliferation marker ornithine decarboxylase and metastatic markers MMP7 and MMP9, (ii) the activation of transcription factors Stat3 and NF-kB and (iii) proliferation of hair follicle stem cells and epidermal hyperplasia. The results presented here provide the first genetic evidence that TNFα is linked to PKCε-mediated sensitivity to DMBA-TPA or UVR-induced development of cutaneous SCC.
Collapse
Affiliation(s)
| | | | | | | | - Thomas C Havighurst
- Department of Biostatistics and Medical Informatics, Paul P. Carbone Comprehensive Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA
| | - KyungMann Kim
- Department of Biostatistics and Medical Informatics, Paul P. Carbone Comprehensive Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA
| | | |
Collapse
|
14
|
Lei M, Lai X, Bai X, Qiu W, Yang T, Liao X, Chuong CM, Yang L, Lian X, Zhong JL. Prolonged overexpression of Wnt10b induces epidermal keratinocyte transformation through activating EGF pathway. Histochem Cell Biol 2015; 144:209-21. [PMID: 25995040 DOI: 10.1007/s00418-015-1330-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2015] [Indexed: 01/25/2023]
Abstract
Wnt10b is a signaling protein regulating skin development and homeostasis, and the expression of Wnt10b is restricted to epidermal keratinocytes in embryonic and postnatal skin. Recent studies indicate an elevated expression of Wnt10b in skin tumors. However, how Wnt10b regulates skin tumorigenesis remains largely unknown. Here we report that continuous expression of Wnt10b mediates transformation of epidermal keratinocytes through activating genes involved in EGF/MAPK signaling pathways. We first established a prolonged Wnt10b overexpression system in JB6P- cells to represent the elevated Wnt10b expression level in skin keratinocytes. Through expression assays and observations under phase-contrast microscopy, prolonged expression of Wnt10b activated Wnt/β-catenin pathway and induced morphological changes of cells showing longer protrusions and multilayer growth, indicating early-stage cell transformation. Wnt10b also increased cellular proliferation and migration according to BrdU incorporation and cell mobility assays. Furthermore, multi-doses of AdWnt10b treatment to JB6P- cells induced colony formation, stronger invasive ability in transwell system, and anchorage-independent growth in agar gel. In molecular level, AdWnt10b treatment induced increased transcriptional expressions of Egf, downstream Mapk pathway factors, and MMPs. Administration of Wnt antagonist DKK1 blocked the tumor promotion process induced by Wnt10b. Taken together, these findings clearly demonstrate that Wnt10b promotes epidermal keratinocyte transformation through induced Egf pathway.
Collapse
Affiliation(s)
- Mingxing Lei
- Department of Cell Biology, the Third Military Medical University, Chongqing, 400038, People's Republic of China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Aaptamines from the marine sponge Aaptos sp. display anticancer activities in human cancer cell lines and modulate AP-1-, NF-κB-, and p53-dependent transcriptional activity in mouse JB6 Cl41 cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:469309. [PMID: 25215281 PMCID: PMC4158141 DOI: 10.1155/2014/469309] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/02/2014] [Accepted: 07/11/2014] [Indexed: 12/19/2022]
Abstract
Aaptamine (8,9-dimethoxy-1H-benzo[de][1,6]naphthyridine) is a marine natural compound possessing antioxidative, antimicrobial, antifungal, and antiretroviral activity. Earlier, we have found that aaptamine and its derivatives demonstrate equal anticancer effects against the human germ cell cancer cell lines NT2 and NT2-R and cause some changes in the proteome of these cells. In order to explore further the mechanism of action of aaptamine and its derivatives, we studied the effects of aaptamine (1), demethyl(oxy)aaptamine (2), and isoaaptamine (3) on human cancer cell lines and on AP-1-, NF-κB-, and p53-dependent transcriptional activity in murine JB6 Cl41 cells. We showed that compounds 1–3 demonstrate anticancer activity in THP-1, HeLa, SNU-C4, SK-MEL-28, and MDA-MB-231 human cancer cell lines. Additionally, all compounds were found to prevent EGF-induced neoplastic transformation of murine JB6 Cl41 cells. Nuclear factors AP-1, NF-κB, and p53 are involved in the cellular response to high and nontoxic concentrations of aaptamine alkaloids 1–3. Furthermore, inhibition of EGF-induced JB6 cell transformation, which is exerted by the compounds 1–3 at low nontoxic concentrations of 0.7–2.1 μM, cannot be explained by activation of AP-1 and NF-κB.
Collapse
|
16
|
Magaye R, Zhou Q, Bowman L, Zou B, Mao G, Xu J, Castranova V, Zhao J, Ding M. Metallic nickel nanoparticles may exhibit higher carcinogenic potential than fine particles in JB6 cells. PLoS One 2014; 9:e92418. [PMID: 24691273 PMCID: PMC3972196 DOI: 10.1371/journal.pone.0092418] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/21/2014] [Indexed: 01/20/2023] Open
Abstract
While numerous studies have described the pathogenic and carcinogenic effects of nickel compounds, little has been done on the biological effects of metallic nickel. Moreover, the carcinogenetic potential of metallic nickel nanoparticles is unknown. Activator protein-1 (AP-1) and nuclear factor-κB (NF-κB) have been shown to play pivotal roles in tumor initiation, promotion, and progression. Mutation of the p53 tumor suppressor gene is considered to be one of the steps leading to the neoplastic state. The present study examines effects of metallic nickel fine and nanoparticles on tumor promoter or suppressor gene expressions as well as on cell transformation in JB6 cells. Our results demonstrate that metallic nickel nanoparticles caused higher activation of AP-1 and NF-κB, and a greater decrease of p53 transcription activity than fine particles. Western blot indicates that metallic nickel nanoparticles induced a higher level of protein expressions for R-Ras, c-myc, C-Jun, p65, and p50 in a time-dependent manner. In addition, both metallic nickel nano- and fine particles increased anchorage-independent colony formation in JB6 P+ cells in the soft agar assay. These results imply that metallic nickel fine and nanoparticles are both carcinogenetic in vitro in JB6 cells. Moreover, metallic nickel nanoparticles may exhibit higher carcinogenic potential, which suggests that precautionary measures should be taken in the use of nickel nanoparticles or its compounds in nanomedicine.
Collapse
Affiliation(s)
- Ruth Magaye
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| | - Qi Zhou
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| | - Linda Bowman
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Baobo Zou
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| | - Guochuan Mao
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| | - Jin Xu
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| | - Vincent Castranova
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Jinshun Zhao
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China; Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Min Ding
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| |
Collapse
|
17
|
The Extracts of Some Marine Invertebrates and Algae Collected off the Coast Waters of Vietnam Induce the Inhibitory Effects on the Activator Protein-1 Transcriptional Activity in JB6 Cl41 Cells. J CHEM-NY 2013. [DOI: 10.1155/2013/896709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It has previously been shown that inhibition of the transcriptional activity of the oncogenic nuclear factor AP-1 can result in cancer prevention. Marine invertebrates and alga are a rich source of natural compounds that possess various biological activities. The inhibitory effects of the extracts of Vietnamese marine organisms in relation to the AP-1 transcriptional activity were examined by the luciferase method using JB6 Cl41 cells stably expressing a luciferase reporter gene controlled by AP-1 DNA binding sequence. As was found, 71 species of marine sponges out of 148 species studied contain inhibitors of the AP-1 transcriptional activity. Therefore, marine organisms as a source of biologically active compounds have a great potential for isolation of the new cancer preventive compounds that inhibit the oncogenic AP-1 nuclear factor.
Collapse
|
18
|
Kang MI, Baker AR, Dextras CR, Cabarcas SM, Young MR, Colburn NH. Targeting of Noncanonical Wnt5a Signaling by AP-1 Blocker Dominant-Negative Jun When It Inhibits Skin Carcinogenesis. Genes Cancer 2012; 3:37-50. [PMID: 22893789 DOI: 10.1177/1947601912448820] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 04/25/2012] [Indexed: 11/17/2022] Open
Abstract
The transcription factor AP-1 (activator protein-1) regulates a number of genes that drive tumor promotion and progression. While basal levels of AP-1 activity are important for normal cell proliferation and cell survival, overactivated AP-1-dependent gene expression stimulates inflammation, angiogenesis, invasion, and other events that propel carcinogenesis. We seek to discover genes targeted by carcinogenesis inhibitors that do not also inhibit cell proliferation or survival. Transgenic TAM67 (dominant-negative c-Jun) inhibits mouse skin tumorigenesis and tumor progression without inhibiting cell proliferation or induced hyperproliferation. Expression profiling of wild-type and K14-TAM67 mouse epidermis has revealed a number of functionally significant genes that are induced by tumor promoters in wild-type mice but not in those expressing the AP-1 blocker. The current study now identifies Wnt5a signaling as a new target of TAM67 when it inhibits DMBA/TPA-induced carcinogenesis. Wnt5a is required to maintain the tumor phenotype in tumorigenic mouse JB6 cells and Ras-transformed human squamous carcinoma HaCaT-II4 cells, as Wnt5a knockdown suppresses anchorage-independent and tumor xenograft growth. The oncogenic Wnt5a-mediated pathway signals through activation of the protein kinase PKCα and oncogenic transcription factor STAT3 phosphorylation and not through the canonical Wnt/β-catenin pathway. Similar to Wnt5a knockdown, inhibitors of PKCα blocked STAT3 activation in both mouse JB6 and human HaCaT-II4 tumor cells. Moreover, expression of STAT3-regulated genes FAS, MMP3, IRF1, and cyclin D1 was suppressed with Wnt5a knockdown. Treatment of mouse Wnt5a knockdown cells with a PKCα-specific activator rescued phosphorylation of STAT3. Thus, Wnt5a signaling is required for maintaining the tumor phenotype in squamous carcinoma cells, Wnt5a targeting by the AP-1 blockade contributes to inhibition of skin carcinogenesis, and the signaling pathway traverses PKCα and STAT3 activation. Coordinate overactivation of Wnt5a expression and STAT3 signaling is observed in human skin and colon cancers as well as glioblastoma.
Collapse
Affiliation(s)
- Moon-Il Kang
- Laboratory of Cancer Prevention, National Cancer Institute, Frederick, MD, USA
| | | | | | | | | | | |
Collapse
|
19
|
Dyshlovoy SA, Fedorov SN, Kalinovsky AI, Shubina LK, Bokemeyer C, Stonik VA, Honecker F. Mycalamide A shows cytotoxic properties and prevents EGF-induced neoplastic transformation through inhibition of nuclear factors. Mar Drugs 2012; 10:1212-1224. [PMID: 22822368 PMCID: PMC3397435 DOI: 10.3390/md10061212] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 05/15/2012] [Accepted: 05/21/2012] [Indexed: 02/02/2023] Open
Abstract
Mycalamide A, a marine natural compound previously isolated from sponges, is known as a protein synthesis inhibitor with potent antitumor activity. However, the ability of this compound to prevent malignant transformation of cells has never been examined before. Here, for the first time, we report the isolation of mycalamide A from ascidian Polysincraton sp. as well as investigation of its cancer preventive properties. In murine JB6 Cl41 P+ cells, mycalamide A inhibited epidermal growth factor (EGF)-induced neoplastic transformation, and induced apoptosis at subnanomolar or nanomolar concentrations. The compound inhibited transcriptional activity of the oncogenic nuclear factors AP-1 and NF-κB, a potential mechanism of its cancer preventive properties. Induction of phosphorylation of the kinases MAPK p38, JNK, and ERK was also observed at high concentrations of mycalamide A. The drug shows promising potential for both cancer-prevention and cytotoxic therapy and should be further developed.
Collapse
Affiliation(s)
- Sergey A. Dyshlovoy
- Laboratory of Marine Natural Products Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch of the Russian Academy of Sciences, Prospect 100-let Vladivostoku 159, Vladivostok 690022, Russia; (S.N.F.); (A.I.K.); (L.K.S.); (V.A.S.)
- Department of Oncology, Haematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg 20246, Germany; (C.B.); (F.H.)
- Author to whom correspondence should be addressed; ; Tel.: +7-423-231-11-68; Fax: +7-423-231-40-50
| | - Sergey N. Fedorov
- Laboratory of Marine Natural Products Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch of the Russian Academy of Sciences, Prospect 100-let Vladivostoku 159, Vladivostok 690022, Russia; (S.N.F.); (A.I.K.); (L.K.S.); (V.A.S.)
| | - Anatoly I. Kalinovsky
- Laboratory of Marine Natural Products Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch of the Russian Academy of Sciences, Prospect 100-let Vladivostoku 159, Vladivostok 690022, Russia; (S.N.F.); (A.I.K.); (L.K.S.); (V.A.S.)
| | - Larisa K. Shubina
- Laboratory of Marine Natural Products Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch of the Russian Academy of Sciences, Prospect 100-let Vladivostoku 159, Vladivostok 690022, Russia; (S.N.F.); (A.I.K.); (L.K.S.); (V.A.S.)
| | - Carsten Bokemeyer
- Department of Oncology, Haematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg 20246, Germany; (C.B.); (F.H.)
| | - Valentin A. Stonik
- Laboratory of Marine Natural Products Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch of the Russian Academy of Sciences, Prospect 100-let Vladivostoku 159, Vladivostok 690022, Russia; (S.N.F.); (A.I.K.); (L.K.S.); (V.A.S.)
- School of Natural Sciences, Far Eastern Federal University, Sukhanova Street, 8, Vladivostok 690091, Russia
| | - Friedemann Honecker
- Department of Oncology, Haematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg 20246, Germany; (C.B.); (F.H.)
| |
Collapse
|
20
|
Kanno T, Nakamura K, Ikai H, Kikuchi K, Sasaki K, Niwano Y. Literature review of the role of hydroxyl radicals in chemically-induced mutagenicity and carcinogenicity for the risk assessment of a disinfection system utilizing photolysis of hydrogen peroxide. J Clin Biochem Nutr 2012; 51:9-14. [PMID: 22798706 PMCID: PMC3391867 DOI: 10.3164/jcbn.11-105] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 09/26/2011] [Indexed: 11/22/2022] Open
Abstract
We have developed a new disinfection system for oral hygiene, proving that hydroxyl radicals generated by the photolysis of 1 M hydrogen peroxide could effectively kill oral pathogenic microorganisms. Prior to any clinical testing, the safety of the system especially in terms of the risk of carcinogenicity is examined by reviewing the literature. Previous studies have investigated indirectly the kinds of reactive oxygen species involved in some sort of chemically-induced mutagenicity in vitro by using reactive oxygen species scavengers, suggesting the possible involvement of hydroxyl radicals. Similarly, possible involvement of hydroxyl radicals in some sort of chemically-induced carcinogenicity has been proposed. Notably, it is suggested that the hydroxyl radical can play a role in heavy metal-induced carcinogenicity that requires chronic exposure to the carcinogen. In these cases, hydroxyl radicals produced by Fenton-like reactions may be involved in the carcinogenicity. Meanwhile, potential advantages have been reported on the use of the hydroxyl radical, being included in host immune defense by polymorphonuclear leukocytes, and medical applications such as for cancer treatment and antibiotics. From these, we conclude that there would seem to be little to no risk in using the hydroxyl radical as a disinfectant for short-term treatment of the oral cavity.
Collapse
Affiliation(s)
- Taro Kanno
- Tohoku University Graduate School of Dentistry, Seiryo-machi 4-1, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | | | |
Collapse
|
21
|
López-Camarillo C, Ocampo EA, Casamichana ML, Pérez-Plasencia C, Álvarez-Sánchez E, Marchat LA. Protein kinases and transcription factors activation in response to UV-radiation of skin: implications for carcinogenesis. Int J Mol Sci 2011; 13:142-72. [PMID: 22312244 PMCID: PMC3269678 DOI: 10.3390/ijms13010142] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 12/14/2011] [Accepted: 12/16/2011] [Indexed: 12/18/2022] Open
Abstract
Solar ultraviolet (UV) radiation is an important environmental factor that leads to immune suppression, inflammation, photoaging, and skin carcinogenesis. Here, we reviewed the specific signal transduction pathways and transcription factors involved in the cellular response to UV-irradiation. Increasing experimental data supporting a role for p38, MAPK, JNK, ERK1/2, and ATM kinases in the response network to UV exposure is discussed. We also reviewed the participation of NF-κB, AP-1, and NRF2 transcription factors in the control of gene expression after UV-irradiation. In addition, we discussed the promising chemotherapeutic intervention of transcription factors signaling by natural compounds. Finally, we focused on the review of data emerging from the use of DNA microarray technology to determine changes in global gene expression in keratinocytes and melanocytes in response to UV treatment. Efforts to obtain a comprehensive portrait of the transcriptional events regulating photodamage of intact human epidermis after UV exposure reveals the existence of novel factors participating in UV-induced cell death. Progress in understanding the multitude of mechanisms induced by UV-irradiation could lead to the potential use of protein kinases and novel proteins as specific targets for the prevention and control of skin cancer.
Collapse
Affiliation(s)
- César López-Camarillo
- Genomics Sciences Program, Oncogenomics and Cancer Proteomics Laboratory, University Autonomous of Mexico City, Av. San Lorenzo 290, 03100, Mexico; E-Mails: (M.L.-C.); (E.Á.-S.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +55-5488-6661 ext. 15307
| | - Elena Aréchaga Ocampo
- Carcinogenesis Laboratory, National Institute of Cancerology, Av. Saint Fernando 22, 14080, México; E-Mail:
| | - Mavil López Casamichana
- Genomics Sciences Program, Oncogenomics and Cancer Proteomics Laboratory, University Autonomous of Mexico City, Av. San Lorenzo 290, 03100, Mexico; E-Mails: (M.L.-C.); (E.Á.-S.)
| | - Carlos Pérez-Plasencia
- Massive Sequencing Unit, National Institute of Cancerology, Av. Saint Fernando 22, 14080, México; E-Mail:
- Genomics Laboratory, FES-I, UBIMED, National Autonomous University of Mexico, Av. De los Barrios 1, 54090, México
| | - Elizbeth Álvarez-Sánchez
- Genomics Sciences Program, Oncogenomics and Cancer Proteomics Laboratory, University Autonomous of Mexico City, Av. San Lorenzo 290, 03100, Mexico; E-Mails: (M.L.-C.); (E.Á.-S.)
| | - Laurence A. Marchat
- Biotechnology Program, Institutional Program of Molecular Biomedicine, National School of Medicine and Homeopathy of the National Polytechnic Institute, Guillermo Massieu Helguera 239, 07320, Mexico; E-Mail:
| |
Collapse
|
22
|
Sung B, Prasad S, Yadav VR, Aggarwal BB. Cancer cell signaling pathways targeted by spice-derived nutraceuticals. Nutr Cancer 2011; 64:173-97. [PMID: 22149093 DOI: 10.1080/01635581.2012.630551] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Extensive research within the last half a century has revealed that cancer is caused by dysregulation of as many as 500 different gene products. Most natural products target multiple gene products and thus are ideally suited for prevention and treatment of various chronic diseases, including cancer. Dietary agents such as spices have been used extensively in the Eastern world for a variety of ailments for millennia, and five centuries ago they took a golden journey to the Western world. Various spice-derived nutraceuticals, including 1'-acetoxychavicol acetate, anethole, capsaicin, cardamonin, curcumin, dibenzoylmethane, diosgenin, eugenol, gambogic acid, gingerol, thymoquinone, ursolic acid, xanthohumol, and zerumbone derived from galangal, anise, red chili, black cardamom, turmeric, licorice, fenugreek, clove, kokum, ginger, black cumin, rosemary, hop, and pinecone ginger, respectively, are the focus of this review. The modulation of various transcription factors, growth factors, protein kinases, and inflammatory mediators by these spice-derived nutraceuticals are described. The anticancer potential through the modulation of various targets is also the subject of this review. Although they have always been used to improve taste and color and as a preservative, they are now also used for prevention and treatment of a wide variety of chronic inflammatory diseases, including cancer.
Collapse
Affiliation(s)
- Bokyung Sung
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
23
|
Popplewell WL, Ratnayake R, Wilson JA, Beutler JA, Colburn NH, Henrich CJ, McMahon JB, McKee TC. Grassypeptolides F and G, cyanobacterial peptides from Lyngbya majuscula. JOURNAL OF NATURAL PRODUCTS 2011; 74:1686-91. [PMID: 21806011 PMCID: PMC3162996 DOI: 10.1021/np2005083] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Grassypeptolides F (1) and G (2), bis-thiazoline-containing cyclic depsipeptides with a rare β-amino acid, extensive N-methylation, and a large number of d-amino acids, are reported from an extract of the Palauan cyanobacterium Lyngbya majuscula. Both 1 and 2 were found to have moderate inhibitory activity against the transcription factor AP-1 (IC₅₀ = 5.2 and 6.0 μM, respectively).
Collapse
Affiliation(s)
- Wendy L. Popplewell
- Molecular Targets Laboratory, Center for Cancer Research, NCI-Frederick, Frederick, Maryland 21702-1124
| | - Ranjala Ratnayake
- Molecular Targets Laboratory, Center for Cancer Research, NCI-Frederick, Frederick, Maryland 21702-1124
| | - Jennifer A. Wilson
- Molecular Targets Laboratory, Center for Cancer Research, NCI-Frederick, Frederick, Maryland 21702-1124
| | - John A. Beutler
- Molecular Targets Laboratory, Center for Cancer Research, NCI-Frederick, Frederick, Maryland 21702-1124
| | - Nancy H. Colburn
- Laboratory of Cancer Prevention, Center for Cancer Research, NCI-Frederick, Frederick, Maryland 21702-1124
| | - Curtis J. Henrich
- Molecular Targets Laboratory, Center for Cancer Research, NCI-Frederick, Frederick, Maryland 21702-1124
- SAIC-Frederick, Inc, NCI-Frederick, Frederick, Maryland 21702-1124
| | - James B. McMahon
- Molecular Targets Laboratory, Center for Cancer Research, NCI-Frederick, Frederick, Maryland 21702-1124
| | - Tawnya C. McKee
- Molecular Targets Laboratory, Center for Cancer Research, NCI-Frederick, Frederick, Maryland 21702-1124
| |
Collapse
|
24
|
|
25
|
Abstract
Extensive research in the past decade has revealed cancer to be a multigenic disease caused by perturbation of multiple cell signalling pathways and dysregulation of numerous gene products, all of which have been linked to inflammation. It is also becoming evident that various lifestyle factors, such as tobacco and alcohol use, diet, environmental pollution, radiation and infections, can cause chronic inflammation and lead to tumourigenesis. Chronic diseases caused by ongoing inflammation therefore require chronic, not acute, treatment. Nutraceuticals, compounds derived from fruits, vegetables, spices and cereals, can be used chronically. This study discusses the molecular targets of some nutraceuticals that happen to be markers of chronic inflammation and how they can prevent or treat cancer. These naturally-occurring agents in the diet have great potential as anti-cancer drugs, thus proving Hippocrates, who proclaimed 25 centuries ago, 'Let food be thy medicine and medicine be thy food'.
Collapse
Affiliation(s)
- Bokyung Sung
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
26
|
PMA up-regulates the transcription of Axl by AP-1 transcription factor binding to TRE sequences via the MAPK cascade in leukaemia cells. Biol Cell 2011; 103:21-33. [PMID: 20977427 DOI: 10.1042/bc20100094] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Axl is a receptor tyrosine kinase promoting anti-apoptosis, invasion and mitogenesis, and is highly expressed in different solid cancers. Axl basal transcriptional activity is driven by Sp1/Sp3, and overexpression of MZF-1 (myeloid zinc-finger 1) induces Axl transcription and gene expression. Furthermore, Axl expression is epigenetically controlled by CpG hypermethylation; however, little is known about inducible Axl gene expression and Axl regulation in haematopoetic malignancies. RESULTS In the present study, we studied Axl transcriptional regulation under PMA-stimulated conditions in leukaemia cells. Luciferase analysis with sequential 5'-deletion constructs revealed that the -660/-580 region of the Axl promoter is indispensable for induced promoter activity under PMA stimulation. This region includes AP-1 (activator protein 1)/CREB [CRE (cAMP-response-element)-binding protein] motifs, five times partially overlapping TGCGTG repeats and multiple GT repeats. Mutational, supershift and ChIP (chromatin immunoprecipitation) analysis determined that AP-1 family members bind to AP-1 motifs and to the 5 × TGCGTG overlapping repeats, thus transactivating Axl promoter activity. Furthermore, specific inhibitors of PKC (protein kinase C), ERK1/2 (extracellular-signal-regulated kinase 1/2) and p38 reduced Axl expression. Additionally, mithramycin treatment abolished constitutive and PMA-induced Axl expression. CONCLUSIONS Taken together the results of the present study suggest that PMA-induced Axl gene expression in leukaemia cells is mediated by AP-1 motifs and 5 × TGCGTG repeats within the promoter region -660/-580, and through the PKC/ERK1/2/AP-1 or PKC/p-38/AP-1 signalling axis.
Collapse
|
27
|
Abstract
Deregulation of the activator protein 1 (AP1) family gene regulators has been implicated in a wide range of diseases, including cancer. In this study we report that c-Jun was activated in human squamous cell carcinoma (SCC) and coexpression of c-Jun with oncogenic Ras was sufficient to transform primary human epidermal cells into malignancy in a regenerated human skin grafting model. In contrast, JunB was not induced in a majority of human SCC cells. Moreover, exogenous expression of JunB inhibited tumorigenesis driven by Ras or spontaneous human SCC cells. Conversely, the dominant-negative JunB mutant (DNJunB) promoted tumorigenesis, which is in contrast to the tumor-suppressor function of the corresponding c-Jun mutant. At the cellular level, JunB induced epidermal cell senescence and slowed cell growth in a cell-autonomous manner. Consistently, coexpression of JunB and Ras induced premature epidermal differentiation concomitant with upregulation of p16 and filaggrin and downregulation of cyclin D1 and cyclin-dependent kinase 4 (CDK4). These findings indicate that JunB and c-Jun differentially regulate cell growth and differentiation and induce opposite effects on epidermal neoplasia.JID JOURNAL CLUB ARTICLE: For questions, answers, and open discussion about this article, please go to http://www.nature.com/jid/journalclub.
Collapse
|
28
|
Spangler B, Vardimon L, Bosserhoff AK, Kuphal S. Post-transcriptional regulation controlled by E-cadherin is important for c-Jun activity in melanoma. Pigment Cell Melanoma Res 2010; 24:148-64. [PMID: 20977688 DOI: 10.1111/j.1755-148x.2010.00787.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A central event in the development of malignant melanoma is the loss of the tumor-suppressor protein E-cadherin. Here, we report that this loss is linked to the activation of the proto-oncogene c-Jun, a key player in tumorigenesis. In vivo, malignant melanomas show strong expression of the c-Jun protein in contrast to melanocytes. Interestingly, c-Jun mRNA levels did not differ in the melanoma cell lines when compared to melanocytes, suggesting that c-Jun could be regulated at the post-transcriptional level. To uncover the link between E-cadherin and c-Jun, we re-expressed E-cadherin in melanoma cells and detected decreased protein expression and activity of c-Jun. Furthermore, c-Jun accumulation is dependent on active E-cadherin-mediated cell-cell adhesion and regulated via the cytoskeleton. Additionally, we determined that, with respect to c-Jun regulation, there are two melanoma subgroups. One subgroup regulates c-Jun expression via the newly discovered E-cadherin-dependent signaling pathway, whereas the other subgroup uses the MAPKinases to regulate its expression. In summary, our data provide novel insights into the tumor-suppressor function of E-cadherin, which contributes to the suppression of c-Jun protein translation and transcriptional activity independent of MAPKinases.
Collapse
Affiliation(s)
- B Spangler
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | | | | | | |
Collapse
|
29
|
Yasuda M, Schmid T, Rübsamen D, Colburn NH, Irie K, Murakami A. Downregulation of programmed cell death 4 by inflammatory conditions contributes to the generation of the tumor promoting microenvironment. Mol Carcinog 2010; 49:837-48. [PMID: 20607724 PMCID: PMC3472367 DOI: 10.1002/mc.20660] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ample evidence has shown key roles of inflammation in tumor promotion and carcinogenesis, and tumor-associated macrophages are known to promote tumor growth and dissemination. Programmed cell death 4 (Pdcd4) is a novel tumor suppressor, and although various studies have revealed that the functions and expression mechanisms of Pdcd4 in tumor promotion, those in regard to inflammation remain unclear. In the present study, we examined whether inflammatory stimuli regulate Pdcd4 expression. 12-O-tetradecanoylphorbol 13-acetate (TPA) suppressed expression of pdcd4 mRNA in human monocytic cell lines (U937, THP-1). Similarly, the bacterial endotoxin lipopolysaccharide (LPS) downregulated pdcd4 level in mouse RAW264.7 and peritoneal macrophages. Furthermore, conditioned medium from LPS-stimulated RAW264.7 macrophages suppressed pdcd4 mRNA in RAW264.7 macrophages, and findings obtained with recombinant tumor necrosis factor-alpha (TNF-alpha) and TNF-alpha-specific siRNA suggested that TNF-alpha partly mediates LPS-triggered Pdcd4 downregulation via an autocrine mechanism. Specific inhibitors of phosphoinositide-3-kinase (PI3K) and c-jun N-terminus kinase (JNK) restored LPS-abolished pdcd4 mRNA. Consistently, in MCF7 mammary carcinoma cells, conditioned medium from TPA-differentiated/activated U937 cells suppressed pdcd4 mRNA. Additionally, knockdown of pdcd4 in RAW264.7 macrophages using siRNA significantly enhanced LPS-induced TNF-alpha protein production, and interferon-gamma, CC chemokine ligand (Ccl) 1, Ccl20, and interleukin-10 mRNA expression. These results suggest that Pdcd4 suppresses the induction of these inflammatory mediators. Taken together, loss of Pdcd4 in macrophages may be a critical step in establishing the inflammatory environment while that in tumor cells contributes to tumor progression.
Collapse
|
30
|
Rho O, Kim DJ, Kiguchi K, Digiovanni J. Growth factor signaling pathways as targets for prevention of epithelial carcinogenesis. Mol Carcinog 2010; 50:264-79. [PMID: 20648549 DOI: 10.1002/mc.20665] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 06/09/2010] [Accepted: 06/10/2010] [Indexed: 10/24/2022]
Abstract
Growth factor receptor (GFR) signaling controls epithelial cell growth by responding to various endogenous or exogenous stimuli and subsequently activating downstream signaling pathways including Stat3, PI3K/Akt/mTOR, MAPK, and c-Src. Environmental chemical toxicants and UVB irradiation cause enhanced and prolonged activation of GFR signaling and downstream pathways that contributes to epithelial cancer development including skin cancer. Recent studies, especially those with tissue-specific transgenic mouse models, have demonstrated that GFRs and their downstream signaling pathways contribute to all three stages of epithelial carcinogenesis by regulating a wide variety of biological functions including proliferation, apoptosis, angiogenesis, cell adhesion, and migration. Inhibiting these signaling pathways early in the carcinogenic process results in reduced cell proliferation and survival, leading to decreased tumor formation. Collectively, these studies suggest that GFR signaling and subsequent downstream signaling pathways are potential targets for the prevention of epithelial cancers including skin cancer.
Collapse
Affiliation(s)
- Okkyung Rho
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78723-3092, USA
| | | | | | | |
Collapse
|
31
|
Olson ER, Melton T, Dickinson SE, Dong Z, Alberts DS, Bowden GT. Quercetin potentiates UVB-Induced c-Fos expression: implications for its use as a chemopreventive agent. Cancer Prev Res (Phila) 2010; 3:876-84. [PMID: 20551291 PMCID: PMC2925138 DOI: 10.1158/1940-6207.capr-09-0220] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Quercetin (Qu) is currently being investigated as a chemopreventive agent for several cancers, including nonmelanoma skin cancer induced by UV light. We previously reported that Qu degradation has important consequences on signaling and cell biology. In the current study, we report that Qu induces c-Fos mRNA and protein expression through activation of p38 and cAMP-responsive element binding protein (CREB), and Qu potentiates UVB-induced c-Fos expression. Inclusion of ascorbic acid (AA) in cell culture medium stabilizes Qu and completely prevents both Qu- and UVB-induced p38 and CREB activation, leading to a blockade of c-fos gene expression through reduced CREB/cAMP-responsive element binding. AA stabilizes c-Fos mRNA, increasing steady-state levels even when c-fos gene expression is suppressed, but this has no effect on c-Fos protein levels in either mock- or UVB-irradiated cells. We report that Qu blocks mammalian target of rapamycin signaling and inhibits c-Fos protein expression directly through this mechanism because cotreatment with Qu and AA resulted in the complete suppression of UVB-induced c-Fos protein expression even in the presence of significantly increased mRNA levels. We further confirmed that this was not due to increased protein turnover because inhibition of proteasome activity with MG-132 did not raise c-Fos protein levels in Qu+AA-treated cells. Together, these data indicate that although Qu has been reported to have some beneficial properties as a chemopreventive agent, it is also capable of inducing c-fos expression, a cellular event important for the promotion phase of tumor development, if it is not stabilized.
Collapse
Affiliation(s)
- Erik R Olson
- Arizona Cancer Center, University of Arizona, Tucson, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Przybyszewski J, Wang W, Au A, Perry C, Guetzko M, Koehler K, Birt DF. Dietary energy restriction, in part through glucocorticoid hormones, mediates the impact of 12-O-tetradecanoylphorbol-13-acetate on jun D and fra-1 in Sencar mouse epidermis. Mol Carcinog 2010; 49:592-602. [PMID: 20232358 DOI: 10.1002/mc.20625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dietary energy restriction (DER, 40% calorie reduction from fat and carbohydrate) inhibited mouse skin carcinogenesis and decreased 12-O-tetradecanoyl-13-phorbol acetate (TPA)-induced activator protein-1 (AP-1):DNA binding previously. This study measured protein levels of c-jun, jun B, jun D, c-fos, fra-1, and fra-2 and examined their contribution to AP-1:DNA binding by electrophoretic mobility shift assay (EMSA) with supershift analysis in the epidermis of control and DER Sencar mice exposed to TPA. TPA significantly increased c-jun, jun B, c-fos, fra-1, and fra-2 and decreased jun D within 3-6 h after treatment. AP-1:DNA binding reached a maximum 2.5-fold induction over controls 4 h after TPA treatment and antibodies to jun B, jun D, and fra-2 in the EMSA binding reaction resulted in supershifts in both acetone- and TPA-treated mice 1-6 h after treatment. The effect of corticosterone (CCS) and DER on the AP-1 proteins and on the composition of the AP-1:DNA complex was measured in adrenalectomized (adx) mice. DER reduced the TPA impact on jun D and enhanced the induction of fra-1. In addition, CCS-supplemented groups had significantly lower jun D and higher fra-2 than adx groups and sham groups. While sham animals treated with either acetone or TPA contained jun B, jun D, and fra-2 proteins in the AP-1:DNA complex by supershift analysis, fra-2 was no longer seen in adx DER animals. In summary, our study supports potential roles for jun D, jun B, and fra-1 in the DER regulation of AP-1 function in the Sencar mouse skin carcinogenesis model.
Collapse
Affiliation(s)
- Joseph Przybyszewski
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Xu YM, Zhu F, Cho YY, Carper A, Peng C, Zheng D, Yao K, Lau ATY, Zykova TA, Kim HG, Bode AM, Dong Z. Extracellular signal-regulated kinase 8-mediated c-Jun phosphorylation increases tumorigenesis of human colon cancer. Cancer Res 2010; 70:3218-27. [PMID: 20395206 DOI: 10.1158/0008-5472.can-09-4306] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Extracellular signal-regulated kinase 8 (ERK8), a recently discovered member of the mitogen-activated protein kinase protein family, has been less studied than other family members, leaving its physiologic functions mostly unknown. The biological consequences of overexpression of ERK8 in JB6 Cl41 epidermal skin cells or knockdown of ERK8 in HCT15 colorectal cancer cells was studied. Kinase assays and transient transfection experiments were performed to study the signaling pathway between ERK8 and c-Jun. We found that ERK8 is relatively highly expressed in HCT15 human colorectal cancer cells and plays an important role in the promotion and progression of colorectal cancer. ERK8 promoted neoplastic transformation, and knockdown of ERK8 in HCT15 colorectal cancer cells reduced the tumorigenic properties of these cell lines. Furthermore, a direct interaction between ERK8 and c-Jun was shown. With epidermal growth factor treatment, overexpression of ERK8 in JB6 Cl41 cells caused an increased phosphorylation of c-Jun at Ser(63) and Ser(73), resulting in increased activator protein-1 transactivation. In contrast, knockdown of ERK8 in HCT15 colorectal cancer cells blocked c-Jun phosphorylation. The interaction between ERK8 and c-Jun seems to increase the tumorigenic properties of HCT15 colorectal cancer cells. Thus, ERK8-regulated signaling might serve as a potential therapeutic target in colorectal cancer.
Collapse
Affiliation(s)
- Yan-Ming Xu
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Camalier CE, Young MR, Bobe G, Perella CM, Colburn NH, Beck GR. Elevated phosphate activates N-ras and promotes cell transformation and skin tumorigenesis. Cancer Prev Res (Phila) 2010; 3:359-70. [PMID: 20145188 DOI: 10.1158/1940-6207.capr-09-0068] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent results suggest a paradigm shift from viewing inorganic phosphate as a passive requirement for basic cell functions to an active regulator of cell behavior. We have previously shown that elevated concentrations of phosphate increased cell proliferation and expression of protumorigenic genes such as Fra-1 and osteopontin in a preosteoblast cell line. Therefore, we hypothesized that elevated phosphate concentrations would promote cell transformation in vitro and tumorigenesis in vivo. Supplementation of medium with phosphate increased anchorage-independent transformation and proliferation of BALB/c mouse JB6 epidermal cells, activation of N-ras, ERK1/2, and activator protein-1, and increased gene expression of Fra-1, COX-2, and osteopontin in a dose-dependent manner. These in vitro results led to the hypothesis that varying the levels of dietary inorganic phosphate would alter tumorigenesis in the mouse model of skin carcinogenesis. Female FVB/N mice were treated with 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate and fed high- or low-phosphate diets (1.2% versus 0.2% of the diet) for 19 weeks. The high-phosphate diet increased skin papilloma number by approximately 50% without changing feed intake and body weights. High dietary phosphate increased serum concentrations of phosphate, parathyroid hormone, and osteopontin and decreased serum concentrations of calcium. Thus, we conclude that elevated phosphate promotes cell transformation and skin tumorigenesis partly by increasing the availability of phosphate for activation of N-ras and its downstream targets, which defines reducing dietary phosphate as a novel target for chemoprevention.
Collapse
Affiliation(s)
- Corinne E Camalier
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipids, Emory University School of Medicine, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
35
|
Fedorov S, Dyshlovoy S, Monastyrnaya M, Shubina L, Leychenko E, Kozlovskaya E, Jin JO, Kwak JY, Bode AM, Dong Z, Stonik V. The anticancer effects of actinoporin RTX-A from the sea anemone Heteractis crispa (=Radianthus macrodactylus). Toxicon 2009; 55:811-7. [PMID: 19944712 DOI: 10.1016/j.toxicon.2009.11.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 11/13/2009] [Accepted: 11/17/2009] [Indexed: 11/30/2022]
Abstract
Four isoforms of actinoporins were isolated in 2002-2004 from the tropical sea anemone Heteractis crispa (=Radianthus macrodactylus). Their potent hemolytic activities and effects on Ehrlich ascites carcinoma bearing mice were also studied. In this study, the individual actinoporin (RTX-A) demonstrated potential cancer-preventive activity at extremely low and non-cytotoxic concentrations. The substance suppressed the malignant transformation of mouse JB6 P(+) Cl41 cells stimulated by epidermal growth factor (EGF) in soft agar with the inhibition of number of the colonies C(50) (INCC(50))=0.034 nM. Actinoporin RTX-A also was shown to inhibit the phenotype expression of HeLa human cancer cells with an INCC(50)=0.03 nM. The cytotoxic effect of RTX-A against JB6 P(+) Cl41 cells and HeLa, THP-1, MDA-MB-231, and SNU-C4 human tumor cell lines was high (IC(50)=0.57, 2.26, 1.11, 30.0 and 4.66 nM), but significantly less than their capacity to suppress tumor cell colony formation or phenotype expression. RTX-A also induced apoptosis and inhibited basal AP-1, NF-kappaB, and p53-dependent transcriptional activity in JB6 Cl41 cells. These results confirmed that actinoporin RTX-A from H. crispa, at least partially, might exhibit cancer-preventive and anticancer cytotoxic properties through the induction of p53-independent apoptosis and inhibition of the oncogenic AP-1 and NF-kappaB nuclear factors activity.
Collapse
Affiliation(s)
- Sergey Fedorov
- Pacific Institute of Bioorganic Chemistry of the Far Eastern Branch of the Russian Academy of Sciences, pr. 100 let Vladivostoku, 159, Vladivostok 690022, Russia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ding M, Kisin ER, Zhao J, Bowman L, Lu Y, Jiang B, Leonard S, Vallyathan V, Castranova V, Murray AR, Fadeel B, Shvedova AA. Size-dependent effects of tungsten carbide-cobalt particles on oxygen radical production and activation of cell signaling pathways in murine epidermal cells. Toxicol Appl Pharmacol 2009; 241:260-8. [PMID: 19747498 DOI: 10.1016/j.taap.2009.09.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/03/2009] [Accepted: 09/03/2009] [Indexed: 01/14/2023]
Abstract
Hard metal or cemented carbide consists of a mixture of tungsten carbide (WC) (85%) and metallic cobalt (Co) (5-15%). WC-Co is considered to be potentially carcinogenic to humans. However, no comparison of the adverse effects of nano-sized WC-Co particles is available to date. In the present study, we compared the ability of nano- and fine-sized WC-Co particles to form free radicals and propensity to activate the transcription factors, AP-1 and NF-kappaB, along with stimulation of mitogen-activated protein kinase (MAPK) signaling pathways in a mouse epidermal cell line (JB6 P(+)). Our results demonstrated that nano-WC-Co generated a higher level of hydroxyl radicals, induced greater oxidative stress, as evidenced by a decrease of GSH levels, and caused faster JB6 P(+) cell growth/proliferation than observed after exposure of cells to fine WC-Co. In addition, nano-WC-Co activated AP-1 and NF-kappaB more efficiently in JB6(+/+) cells as compared to fine WC-Co. Experiments using AP-1-luciferase reporter transgenic mice confirmed the activation of AP-1 by nano-WC-Co. Nano- and fine-sized WC-Co particles also stimulated MAPKs, including ERKs, p38, and JNKs with significantly higher potency of nano-WC-Co. Finally, co-incubation of the JB6(+/+) cells with N-acetyl-cysteine decreased AP-1 activation and phosphorylation of ERKs, p38 kinase, and JNKs, thus suggesting that oxidative stress is involved in WC-Co-induced toxicity and AP-1 activation.
Collapse
Affiliation(s)
- M Ding
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hopper BD, Przybyszewski J, Chen HW, Hammer KD, Birt DF. Effect of ultraviolet B radiation on activator protein 1 constituent proteins and modulation by dietary energy restriction in SKH-1 mouse skin. Mol Carcinog 2009; 48:843-52. [PMID: 19263438 PMCID: PMC2736326 DOI: 10.1002/mc.20529] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The study examined the timing of modulation of activator protein 1(AP-1):DNA binding and production of AP-1 constituent proteins by ultraviolet B (UVB) radiation and effect of dietary energy restriction [DER, 40% calorie reduction from fat and carbohydrate compared to control ad libitum (AL) diet] in SKH-1 mouse epidermis. AP-1:DNA binding by electromobility shift assay (EMSA) was increased in a biphasic manner after treatment with a tumor-promoting suberythemal dose (750 mJ/cm(2)) of UVB light (311-313 nm) with peaks at 3 and 18 h postirradiation. DER overall reduced AP-1:DNA binding in mock-treated and UVB-treated skin at 3 and 18 h after UVB treatment. The timing of modulation of production of AP-1 constituent proteins by Western blot analysis was examined at 0 h (mock treatment), 3, 9, 18, and 24 h. We found that c-jun (9 h), jun-B (9 and 18 h), phosphorylated c-jun (3 h), and fra-1 (18 h) protein levels were increased after UVB treatment compared to mock controls. In a follow-up diet experiment, animals were placed on DER or AL diet for 10-12 wk and treated with UVB as before. DER was found to completely block the UVB-induced increase in phosphorylated c-jun protein levels and decrease in fra-2 protein levels at 18 h. In addition, DER enhanced UVB-induced increase in jun B levels and lowered basal levels of c-fos seen 18 h after UVB. These data suggest that DER may be able to assist in the prevention of UVB-induced skin carcinogenesis by modulating AP-1:DNA binding and AP-1 constituent protein levels.
Collapse
Affiliation(s)
- Brian D. Hopper
- Interdepartmental Toxicology Program, Iowa State University, Ames
- Dept of Food Science and Human Nutrition, Iowa State University, Ames
| | | | - Haw-Wen Chen
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Kimberly D.P. Hammer
- Interdepartmental Genetics Program, Iowa State University, Ames
- Dept of Food Science and Human Nutrition, Iowa State University, Ames
| | - Diane F. Birt
- Interdepartmental Toxicology Program, Iowa State University, Ames
- Interdepartmental Genetics Program, Iowa State University, Ames
- Dept of Food Science and Human Nutrition, Iowa State University, Ames
| |
Collapse
|
38
|
Zhang Y, Lang Q, Li J, Xie F, Wan B, Yu L. Identification and characterization of human LYPD6, a new member of the Ly-6 superfamily. Mol Biol Rep 2009; 37:2055-62. [PMID: 19653121 DOI: 10.1007/s11033-009-9663-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Accepted: 07/24/2009] [Indexed: 10/20/2022]
Abstract
The Ly-6 protein superfamily is usually identified as a group of proteins with a LU protein domain. LU domain is about 80 amino acids long and characterized by a conserved pattern of 10 cysteine residues. Here we report the cloning and characterization of a novel human LU domain containing gene, LYPD6, isolated from human testis cDNA library, and mapped to 2q23.1-23.2 by searching the UCSC genomic database. The LYPD6 cDNA sequence of 3,501 base pairs contains an open reading frame encoding 171 amino acids. Subcellular localization of LYPD6 demonstrated that the protein was localized in the cytoplasm when overexpressed in COS-7 cells. RT-PCR analysis showed that LYPD6 was widely expressed in human tissues and the expression levels in brain and heart were relatively high. Furthermore, the subsequent analysis based on reporter gene assays suggested that overexpression of LYPD6 in HEK 293T cells was able to suppress the transcriptional activities of AP1.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Amino Acid Sequence
- Animals
- Antigens, Ly/chemistry
- Antigens, Ly/genetics
- Antigens, Ly/metabolism
- Base Sequence
- Blotting, Western
- COS Cells
- Chlorocebus aethiops
- Chromosomes, Human/metabolism
- Cloning, Molecular
- Conserved Sequence
- Exons/genetics
- GPI-Linked Proteins
- Gene Expression Profiling
- Genome, Human/genetics
- Humans
- Introns/genetics
- Molecular Sequence Data
- Multigene Family
- Protein Structure, Tertiary
- Protein Transport
- Sequence Alignment
- Sequence Analysis, DNA
- Subcellular Fractions/metabolism
- Transcription Factor AP-1/metabolism
- Transcriptional Activation/genetics
Collapse
Affiliation(s)
- Yifeng Zhang
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Handan Road 220, 200433, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
39
|
Marine Two-Headed Sphingolipid-Like Compound Rhizochalin Inhibits EGF-Induced Transformation of JB6 P+ Cl41 Cells. Lipids 2009; 44:777-85. [DOI: 10.1007/s11745-009-3322-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 06/15/2009] [Indexed: 10/20/2022]
|
40
|
Yasuda M, Nishizawa T, Ohigashi H, Tanaka T, Hou DX, Colburn NH, Murakami A. Linoleic acid metabolite suppresses skin inflammation and tumor promotion in mice: possible roles of programmed cell death 4 induction. Carcinogenesis 2009; 30:1209-16. [PMID: 19414503 DOI: 10.1093/carcin/bgp106] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
(+/-)-13-Hydroxy-10-oxo-trans-11-octadecenoic acid (13-HOA) is one of the lipoxygenase metabolites of linoleic acid (LA) from corn germ. Recently, we reported that this metabolite suppressed the expression of lipopolysaccharide-induced proinflammatory genes in murine macrophages by disrupting mitogen-activated protein kinases and Akt pathways. In this study, we investigated the inhibitory effects of 13-HOA on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation in ears and skin, as well as tumor promotion in female ICR mice. Pretreatment with 13-HOA (1600 nmol) inhibited ear edema formation by 95% (P < 0.05) in an inflammation test and reduced tumor incidence and the number of tumors per mouse by 40 and 64% (P < 0.05 each), respectively, in a two-stage skin carcinogenesis model. Histological examinations revealed that it decreased epidermal thickness, the number of infiltrated leukocytes and cell proliferation index. Furthermore, 13-HOA (8-40 muM) suppressed TPA-induced anchorage-independent growth of JB6 mouse epidermal cells by 70-100%, whereas LA was virtually inactive. 13-HOA (40 muM) inhibited TPA-induced activator protein-1 transactivation but not extracellular signal-regulated kinase1/2 activation. Interestingly, 13-HOA (40 muM and 1600 nmol in JB6 cells and mouse skin, respectively) induced expression of programmed cell death 4 (Pdcd4), a novel tumor suppressor protein. To our knowledge, this is the first report of a food factor that is able to induce Pdcd4 expression. Collectively, our results indicate that 13-HOA may be a novel anti-inflammatory and antitumor chemopreventive agent with a unique mode of action.
Collapse
Affiliation(s)
- Michiko Yasuda
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Sulfiredoxin is an AP-1 target gene that is required for transformation and shows elevated expression in human skin malignancies. Proc Natl Acad Sci U S A 2008; 105:19738-43. [PMID: 19057013 DOI: 10.1073/pnas.0810676105] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Previous studies have shown that a dominant negative form of c-Jun (TAM67) suppresses mouse skin carcinogenesis both in vitro and in vivo. The current study identifies Sulfiredoxin (Srx) as a unique target of activator protein-1 (AP-1) activation and TAM67 inhibition. Manipulation of Srx levels by ShRNA or over-expression demonstrates that Srx is critical for redox homeostasis through reducing hyperoxidized peroxiredoxins. In JB6 cells, knockdown of Srx abolishes tumor promoter-induced transformation and enhances cell sensitivity to oxidative stress. Knockdown of Srx also impairs c-Jun phosphorylation, implicating a role for Srx in the feedback regulation of AP-1 activity. Screening of patient tissues by tissue microarray reveals elevated Srx expression in several types of human skin cancers. Our study indicates that Srx is a functionally significant target of AP-1 blockade that may have value in cancer prevention or treatment.
Collapse
|
42
|
Zhang D, Li J, Gao J, Huang C. c-Jun/AP-1 pathway-mediated cyclin D1 expression participates in low dose arsenite-induced transformation in mouse epidermal JB6 Cl41 cells. Toxicol Appl Pharmacol 2008; 235:18-24. [PMID: 19059425 DOI: 10.1016/j.taap.2008.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 11/03/2008] [Accepted: 11/10/2008] [Indexed: 01/31/2023]
Abstract
Arsenic is a well-documented human carcinogen associated with skin carcinogenesis. Our previous work reveals that arsenite exposure is able to induce cell transformation in mouse epidermal cell JB6 Cl41 through the activation of ERK, rather than JNK pathway. Our current studies further evaluate downstream pathway in low dose arsenite-induced cell transformation in JB6 Cl41 cells. Our results showed that treatment of cells with low dose arsenite induced activation of c-Jun/AP-1 pathway, and ectopic expression of dominant negative mutant of c-Jun (TAM67) blocked arsenite-induced transformation. Furthermore, our data indicated that cyclin D1 was an important downstream molecule involved in c-Jun/AP-1-mediated cell transformation upon low dose arsenite exposure, because inhibition of cyclin D1 expression by its specific siRNA in the JB6 Cl41 cells resulted in impairment of anchorage-independent growth of cells induced by low dose arsenite. Collectively, our results demonstrate that c-Jun/AP-1-mediated cyclin D1 expression is at least one of the key events implicated in cell transformation upon low dose arsenite exposure.
Collapse
Affiliation(s)
- Dongyun Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | | | | | | |
Collapse
|
43
|
Lee KW, Kang NJ, Rogozin EA, Oh SM, Heo YS, Pugliese A, Bode AM, Lee HJ, Dong Z. The resveratrol analogue 3,5,3',4',5'-pentahydroxy-trans-stilbene inhibits cell transformation via MEK. Int J Cancer 2008; 123:2487-96. [PMID: 18767048 DOI: 10.1002/ijc.23830] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Resveratrol, present in grapes and red wine, is reported to be a natural chemopreventive agent against cancer. However, the concentrations required to exert these effects may be difficult to achieve by drinking only 1 or 2 glasses of red wine a day. Therefore, developing more potent, nontoxic analogues of resveratrol may provide a feasible means of achieving an effective physiologic concentration. Here we report that the resveratrol analogue, 3,5,3',4',5'-pentahydroxy-trans-stilbene (RSVL2), inhibits 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced neoplastic transformation in JB6 P+ mouse epidermal cells. Further, we identified MEK/ERK signaling as the direct molecular target for the anticancer effects of RSVL2 and demonstrated that RSVL2 inhibited MEK1, but not Raf1 or ERK2 kinase activity. RSVL2 also dose-dependently suppressed MEK1 kinase activity induced by TPA and the inhibition of H-Ras-induced cell transformation was much stronger for RSVL2 than for PD098059 or resveratrol. Both in vitro and ex vivo pull-down assays indicated that RSVL2, but not resveratrol, directly bound with GST-MEK1, but did not compete with ATP for binding. Docking data indicated that the low inhibitory activity of resveratrol might be due to the lack of the hydroxyl group at the meta position of the B ring, thereby preventing resveratrol from forming a hydrogen bond with the backbone amide group of Ser212, which is the key interaction for stabilizing the inactive conformation of the activation loop.
Collapse
Affiliation(s)
- Ki Won Lee
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Fedorov SN, Shubina LK, Kicha AA, Ivanchina NV, Kwak JY, Jin JO, Bode AM, Dong Z, Stonik VA. Proapoptotic and Anticarcinogenic Activities of Leviusculoside G from the Starfish Henricia leviuscula and Probable Molecular Mechanism. Nat Prod Commun 2008. [DOI: 10.1177/1934578x0800301003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Proapoptotic and anticarcinogenic properties of leviusculoside G (LSG) isolated from the starfish Henricia leviuscula and a probable mechanism of these effects were investigated in human leukemia HL-60, THP-1, and mouse skin JB6 Cl41 cells, using a variety of assessments, including a cell viability (MTS) assay, flow cytometry, anchorage-independent soft agar assay, luciferase assay, and western-blotting. Application of LSG at nontoxic doses induced apoptosis in cancer cells and decreased cell transformation. This compound exerted its actions, at least in part, through the induction of p53-dependent apoptosis and inhibition of AP-1, NF-κB, and ERKs activities.
Collapse
Affiliation(s)
- Sergey N. Fedorov
- Pacific Institute of Bioorganic Chemistry, Vladivostok, 690022, Russian Federation
| | - Larisa K. Shubina
- Pacific Institute of Bioorganic Chemistry, Vladivostok, 690022, Russian Federation
| | - Alla A. Kicha
- Pacific Institute of Bioorganic Chemistry, Vladivostok, 690022, Russian Federation
| | - Natalia V. Ivanchina
- Pacific Institute of Bioorganic Chemistry, Vladivostok, 690022, Russian Federation
| | - Jong Y. Kwak
- Medical Research Center for Cancer Molecular Therapy, Dong-A University, Busan 602-714, Republic of Korea
| | - Jun O. Jin
- Medical Research Center for Cancer Molecular Therapy, Dong-A University, Busan 602-714, Republic of Korea
| | - Ann M. Bode
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Zigang Dong
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Valentin A. Stonik
- Pacific Institute of Bioorganic Chemistry, Vladivostok, 690022, Russian Federation
| |
Collapse
|
45
|
Duan D, Sigano DM, Kelley JA, Lai CC, Lewin NE, Kedei N, Peach ML, Lee J, Abeyweera TP, Rotenberg SA, Kim H, Kim YH, El Kazzouli S, Chung JU, Young HA, Young MR, Baker A, Colburn NH, Haimovitz-Friedman A, Truman JP, Parrish DA, Deschamps JR, Perry NA, Surawski RJ, Blumberg PM, Marquez VE. Conformationally constrained analogues of diacylglycerol. 29. Cells sort diacylglycerol-lactone chemical zip codes to produce diverse and selective biological activities. J Med Chem 2008; 51:5198-220. [PMID: 18698758 DOI: 10.1021/jm8001907] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Diacylglycerol-lactone (DAG-lactone) libraries generated by a solid-phase approach using IRORI technology produced a variety of unique biological activities. Subtle differences in chemical diversity in two areas of the molecule, the combination of which generates what we have termed "chemical zip codes", are able to transform a relatively small chemical space into a larger universe of biological activities, as membrane-containing organelles within the cell appear to be able to decode these "chemical zip codes". It is postulated that after binding to protein kinase C (PKC) isozymes or other nonkinase target proteins that contain diacylglycerol responsive, membrane interacting domains (C1 domains), the resulting complexes are directed to diverse intracellular sites where different sets of substrates are accessed. Multiple cellular bioassays show that DAG-lactones, which bind in vitro to PKCalpha to varying degrees, expand their biological repertoire into a larger domain, eliciting distinct cellular responses.
Collapse
Affiliation(s)
- Dehui Duan
- Laboratory of Medicinal Chemistry, National Cancer Institute at Frederick, National Institutes of Health, 376 Boyles Street, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Dey S, Bakthavatchalu V, Tseng MT, Wu P, Florence RL, Grulke EA, Yokel RA, Dhar SK, Yang HS, Chen Y, St Clair DK. Interactions between SIRT1 and AP-1 reveal a mechanistic insight into the growth promoting properties of alumina (Al2O3) nanoparticles in mouse skin epithelial cells. Carcinogenesis 2008; 29:1920-9. [PMID: 18676681 DOI: 10.1093/carcin/bgn175] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The physicochemical properties of nanomaterials differ from those of the bulk material of the same composition. However, little is known about the underlying effects of these particles in carcinogenesis. The purpose of this study was to determine the mechanisms involved in the carcinogenic properties of nanoparticles using aluminum oxide (Al(2)O(3)/alumina) nanoparticles as the prototype. Well-established mouse epithelial JB6 cells, sensitive to neoplastic transformation, were used as the experimental model. We demonstrate that alumina was internalized and maintained its physicochemical composition inside the cells. Alumina increased cell proliferation (53%), proliferating cell nuclear antigen (PCNA) levels, cell viability and growth in soft agar. The level of manganese superoxide dismutase, a key mitochondrial antioxidant enzyme, was elevated, suggesting a redox signaling event. In addition, the levels of reactive oxygen species and the activities of the redox sensitive transcription factor activator protein-1 (AP-1) and a longevity-related protein, sirtuin 1 (SIRT1), were increased. SIRT1 knockdown reduces DNA synthesis, cell viability, PCNA levels, AP-1 transcriptional activity and protein levels of its targets, JunD, c-Jun and BcL-xl, more than controls do. Immunoprecipitation studies revealed that SIRT1 interacts with the AP-1 components c-Jun and JunD but not with c-Fos. The results identify SIRT1 as an AP-1 modulator and suggest a novel mechanism by which alumina nanoparticles may function as a potential carcinogen.
Collapse
Affiliation(s)
- Swatee Dey
- Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Health Sciences Research Building 454, Lexington, KY 40536-0298, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Yang S, Misner B, Chiu R, Meyskens FL. Common and distinct mechanisms of different redox-active carcinogens involved in the transformation of mouse JB6P+ cells. Mol Carcinog 2008; 47:485-91. [PMID: 18092320 DOI: 10.1002/mc.20410] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We transformed JB6P+ cells with prolonged intermittent low-dose UVB radiation or prolonged exposure to low-dose H(2)O(2) or CdCl(2). Stable transformation was confirmed by an anchorage-independence assay. The JB6P+ transformants formed more colonies (approximately six folds) in soft agar as compared to their JB6P+ parent cells and were associated with increased intracellular reactive oxygen species (ROS) levels. Activating protein-1 (AP-1) is a family of transcription factors that are rapidly activated by elevated intracellular ROS levels, and their composition is important in the process of cellular transformation and/or tumor progression. To investigate if carcinogenesis induced by distinct carcinogens was via similar molecular mechanisms in these transformants, gel mobility shift and immunoblot analyses were utilized to determine the distinct AP-1 compositions. Compared to parent JB6P+ cells, the gain of JunB and Fra-1 in AP-1 DNA binding complexes was markedly increased in all transformed cells, which might contribute to a more proliferative phenotype, while loss of Fra-2 occurred in JB6P+/H(2)O(2) and JB6P+/Cd cells. Differential AP-1 components in the transformants suggested that their transformations might be mediated by distinct transcription signalings with distinct AP-1 dimer compositions. However, all three transformants exhibited increased activation of pathways involved in cell proliferation (ERK/Fra-1/AP-1 and JNK/c-jun/AP-1) and anti-apoptosis (Bcl-xl). The development of the JB6P+ transformants (JB6P+/UVB; JB6P+/H(2)O(2); JB6P+/Cd) provides a unique tool to study the mechanisms that contribute to different redox-active carcinogens in a single model.
Collapse
Affiliation(s)
- Sun Yang
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, California 92868, USA
| | | | | | | |
Collapse
|
48
|
Cooper SJ, Bowden GT. Ultraviolet B regulation of transcription factor families: roles of nuclear factor-kappa B (NF-kappaB) and activator protein-1 (AP-1) in UVB-induced skin carcinogenesis. Curr Cancer Drug Targets 2008; 7:325-34. [PMID: 17979627 DOI: 10.2174/156800907780809714] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Prolonged and repeated exposure of the skin to ultraviolet light (UV) leads not only to aging of the skin but also increases the incidence of non-melanoma skin cancer (NMSC). Damage of cells induced by ultraviolet B (UVB) light both at the DNA level and molecular level initiates the activation of transcription factor pathways, which in turn regulate the expression of a number of genes termed the "UV response genes". Two such transcription factor families that are activated in this way are those of the nuclear factor-kappaB (NF-kappaB) and activator protein-1 (AP-1) families. These two transcription factor families have been identified to be involved in the processes of cell proliferation, cell differentiation and cell survival and therefore play important roles in tumorigenesis. The study of these two transcription factor pathways and the cross-talk between them in response to UVB exposure may help with the development of new chemopreventive strategies for the prevention of UVB-induced skin carcinogenesis.
Collapse
Affiliation(s)
- S J Cooper
- Arizona Cancer Center, Tucson, Arizona 85724, USA
| | | |
Collapse
|
49
|
Rogozin EA, Lee KW, Kang NJ, Yu H, Nomura M, Miyamoto KI, Conney AH, Bode AM, Dong Z. Inhibitory effects of caffeine analogues on neoplastic transformation: structure-activity relationship. Carcinogenesis 2008; 29:1228-34. [PMID: 18195054 DOI: 10.1093/carcin/bgn016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Some xanthine analogues, including 1,3,7-trimethylxanthine (caffeine) and 1,3-dimethylxanthine (theophylline), have been shown to exert anticancer activities in both cell culture and animal models. The present study focused on the relationship of structure and activity of 50 different caffeine analogues in preventing epidermal growth factor (EGF)-induced malignant transformation of mouse epidermal JB6 promotion-sensitive (P+) Cl41 (JB6 P+) cells. Results indicated that the inhibition of cell transformation by the 1,3,7-trialkylxanthines depends on the number of carbons at the alkyl groups R1 and R3, but not R7. Notably, 1-ethyl-3-hexylxanthine (xanthine 70) was the most effective compound for inhibiting EGF-induced neoplastic transformation among the 50 xanthine analogues tested. The 50% inhibition of cell transformation (ICT(50)) value for xanthine 70 was 48- or 75-fold less than the ICT(50) value of caffeine or theophylline, respectively. Further study revealed that xanthine 70 (5-40 muM) dose dependently inhibited EGF-induced transactivation of activator protein 1 (AP-1), whereas theophylline or caffeine (up to 500 muM) had no effect on AP-1 activity. In addition, xanthine 70 (10 muM) inhibited 12-O-tetradecanoylphorbol-13-acetate- or H-Ras-induced neoplastic transformation in JB6 P+ cells by 78.2 or 62.0%, respectively. Collectively, these results indicated that the number of carbons at R1 and R3 is important for the antitumor-promoting activity of the trialkylxanthines and xanthine 70 might be a promising anticancer agent.
Collapse
Affiliation(s)
- Evgeny A Rogozin
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Piao YS, Du YC, Oshima H, Jin JC, Nomura M, Yoshimoto T, Oshima M. Platelet-type 12-lipoxygenase accelerates tumor promotion of mouse epidermal cells through enhancement of cloning efficiency. Carcinogenesis 2008; 29:440-7. [DOI: 10.1093/carcin/bgm274] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|