1
|
Mizuta Y, Sakakibara D, Nagahara S, Kaneshiro I, Nagae TT, Kurihara D, Higashiyama T. Deep imaging reveals dynamics and signaling in one-to-one pollen tube guidance. EMBO Rep 2024; 25:2529-2549. [PMID: 38773320 PMCID: PMC11169409 DOI: 10.1038/s44319-024-00151-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 05/23/2024] Open
Abstract
In the pistil of flowering plants, each ovule usually associates with a single pollen tube for fertilization. This one-to-one pollen tube guidance, which contributes to polyspermy blocking and efficient seed production, is largely different from animal chemotaxis of many sperms to one egg. However, the functional mechanisms underlying the directional cues and polytubey blocks in the depths of the pistil remain unknown. Here, we develop a two-photon live imaging method to directly observe pollen tube guidance in the pistil of Arabidopsis thaliana, clarifying signaling and cellular behaviors in the one-to-one guidance. Ovules are suggested to emit multiple signals for pollen tubes, including an integument-dependent directional signal that reaches the inner surface of the septum and adhesion signals for emerged pollen tubes on the septum. Not only FERONIA in the septum but ovular gametophytic FERONIA and LORELEI, as well as FERONIA- and LORELEI-independent repulsion signal, are involved in polytubey blocks on the ovular funiculus. However, these funicular blocks are not strictly maintained in the first 45 min, explaining previous reports of polyspermy in flowering plants.
Collapse
Affiliation(s)
- Yoko Mizuta
- Institute for Advanced Research (IAR), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.
| | - Daigo Sakakibara
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Shiori Nagahara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Ikuma Kaneshiro
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
- Research Center for Computational Science, Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki, 444-8585, Japan
| | - Takuya T Nagae
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Daisuke Kurihara
- Institute for Advanced Research (IAR), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bukyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
2
|
Flores-Tornero M, Becker JD. 50 years of sperm cell isolations: from structural to omic studies. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad117. [PMID: 37025026 DOI: 10.1093/jxb/erad117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Indexed: 06/19/2023]
Abstract
The fusion of male and female gametes is a fundamental process in the perpetuation and diversification of species. During the last 50 years, significant efforts have been made to isolate and characterize sperm cells from flowering plants, and to identify how these cells interact with female gametes to achieve double fertilization. The first techniques and analytical approaches not only provided structural and biochemical characterizations of plant sperm cells but also paved the way for in vitro fertilization studies. Further technological advances then led to unique insights into sperm biology at transcriptomic, proteomic and epigenetic level. Starting with a historical overview of sperm cell isolation techniques, we provide examples of how these contributed to create our current knowledge of sperm cell biology, and point out remaining challenges.
Collapse
Affiliation(s)
- María Flores-Tornero
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157 Portugal
| | - Jörg D Becker
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157 Portugal
| |
Collapse
|
3
|
Maryenti T, Kato N, Ichikawa M, Okamoto T. In Vitro Fertilization System Using Wheat Gametes by Electric Fusion. Methods Mol Biol 2022; 2484:259-273. [PMID: 35461457 DOI: 10.1007/978-1-0716-2253-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In vitro fertilization (IVF) systems using isolated gametes have been used to dissect post-fertilization events in angiosperms, as female plant gametophytes are deeply embedded within the ovaries. In addition, hybrid and polyploid zygotes can be produced by using IVF systems. Complete IVF systems of maize and rice, two out of three major energy-providing crops, have been established in order to acquire detailed knowledge of mechanisms of fertilization and early embryogenesis. Following in the footsteps of previous success, a wheat IVF system was developed to introduce the advantages of this technology to wheat research. Fusion of gametes was performed via a modified electrofusion method, and the zygote formed a cell wall and two nucleoli. The zygotes divided into symmetric two-celled embryos, globular-like embryos and multicellular club-shaped embryos which are mostly consistent with those in the embryos in planta. IVF-produced club-shaped embryos developed into compact embryonic calli and subsequently regenerated into fertile plants. In this chapter, we provide a detailed description of wheat IVF system that might become an important technique for generating new genotypes of wheat and/or new hybrids as well as for investigating fertilization-induced events in wheat.
Collapse
Affiliation(s)
- Tety Maryenti
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Norio Kato
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Masako Ichikawa
- Agri-Bio Research Center, KANEKA Corp., Iwata, Shizuoka, Japan
| | - Takashi Okamoto
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan.
| |
Collapse
|
4
|
Nagahara S, Takeuchi H, Higashiyama T. Polyspermy Block in the Central Cell During Double Fertilization of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 11:588700. [PMID: 33510743 PMCID: PMC7835324 DOI: 10.3389/fpls.2020.588700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/10/2020] [Indexed: 06/01/2023]
Abstract
During double fertilization in angiosperms, two male gametes (sperm cells), are released from a pollen tube into the receptive region between two female gametes; the egg cell and the central cell of the ovule. The sperm cells fertilize the egg cell and the central cell in a one-to-one manner to yield a zygote and an endosperm, respectively. The one-to-one distribution of the sperm cells to the two female gametes is strictly regulated, possibly via communication among the four gametes. Polyspermy block is the mechanism by which fertilized female gametes prevent fertilization by a secondary sperm cell, and has been suggested to operate in the egg cell rather than the central cell. However, whether the central cell also has the ability to avoid polyspermy during double fertilization remains unclear. Here, we assessed the one-to-one fertilization mechanism of the central cell by laser irradiation of the female gametes and live cell imaging of the fertilization process in Arabidopsis thaliana. We successfully disrupted an egg cell within the ovules by irradiation using a femtosecond pulse laser. In the egg-disrupted ovules, the central cell predominantly showed single fertilization by one sperm cell, suggesting that neither the egg cell nor its fusion with one sperm cell is necessary for one-to-one fertilization (i.e., monospermy) of the central cell. In addition, using tetraspore mutants possessing multiple sperm cell pairs in one pollen, we demonstrated that normal double fertilization was observed even when excess sperm cells were released into the receptive region between the female gametes. In ovules accepting four sperm cells, the egg cell never fused with more than one sperm cell, whereas half of the central cells fused with more than one sperm cell (i.e., polyspermy) even 1 h later. Our results suggest that the central cell can block polyspermy during double fertilization, although the central cell is more permissive to polyspermy than the egg cell. The potential contribution of polyspermy block by the central cell is discussed in terms of how it is involved in the one-to-one distribution of the sperm cells to two distinct female gametes.
Collapse
Affiliation(s)
- Shiori Nagahara
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Hidenori Takeuchi
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Tetsuya Higashiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Abstract
In angiosperms, fertilization and embryogenesis occur in the embryo sac, which is deeply embedded in ovular tissue. In vitro fertilization (IVF) systems using isolated gametes have been utilized to dissect postfertilization events in angiosperms, such as egg activation, zygotic development, and early embryogenesis. In addition, using IVF systems, interspecific zygotes and polyploid zygotes have been artificially produced, and their developmental profiles/mechanisms have been analyzed. Taken together, the IVF system can be considered a powerful technique for investigating the fertilization-induced developmental sequences in zygotes and generating new cultivars with desirable characteristics. Here, we describe the procedures for the isolation of rice gametes, electrofusion of gametes, and the culture of the produced zygotes and embryo.
Collapse
Affiliation(s)
- Md Hassanur Rahman
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Erika Toda
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Takashi Okamoto
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan.
| |
Collapse
|
6
|
Toda E, Okamoto T. Polyspermy in angiosperms: Its contribution to polyploid formation and speciation. Mol Reprod Dev 2019; 87:374-379. [PMID: 31736192 DOI: 10.1002/mrd.23295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022]
Abstract
Polyploidization has played a major role in the long-term diversification and evolutionary success of angiosperms. Triploid formation among diploid plants, which is generally considered to be achieved by fertilization of an unreduced gamete with a reduced one, has been accepted as a means of polyploid production. In addition, it has been supposed that polyspermy also contributes to the triploid formation in maize, wheat, and some orchids; however, such a mechanism has been considered uncommon because reproducing the polyspermic situation and unambiguously investigating developmental profiles of polyspermic zygotes are difficult. To overcome these problems, rice polyspermic zygotes have been successfully produced by electrofusion of an egg cell with two sperm cells, and their developmental profiles have been monitored. The triploid zygotes progress through karyogamy and divide into two-celled embryos via a typical bipolar mitotic division; the two-celled embryos further develop into triploid plants, indicating that polyspermic plant zygotes, unlike those of animals, can develop normally. Furthermore, progenies consisting of triparental genetic materials have been successfully obtained in Arabidopsis through the pollination of two different kinds of male parents with a female parent. These different pieces of evidence for development and emergence of polyspermic zygotes in vitro and in planta suggest that polyspermy is a key event in polyploidization and species diversification.
Collapse
Affiliation(s)
- Erika Toda
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Takashi Okamoto
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| |
Collapse
|
7
|
Barranco-Guzmán AM, González-Gutiérrez AG, Rout NP, Verdín J, Rodríguez-Garay B. Cytosolic calcium localization and dynamics during early endosperm development in the genus Agave (Asparagales, Asparagaceae). PROTOPLASMA 2019; 256:1079-1092. [PMID: 30923921 DOI: 10.1007/s00709-019-01366-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
Calcium is a secondary messenger that regulates and coordinates the cellular responses to environmental cues. Despite calcium being a key player during fertilization in plants, little is known about its role during the development of the endosperm. For this reason, the distribution, abundance, and dynamics of cytosolic calcium during the first stages of endosperm development of Agave tequilana and Agave salmiana were analyzed. Cytosolic calcium and actin filaments detected in the embryo sacs of Agave tequilana and A. salmiana revealed that they play an important role during the division and nuclear migration of the endosperm. After fertilization, a relatively high concentration of cytosolic calcium was located in the primary nucleus of the endosperm, as well as around migrating nuclei during the development of the endosperm. Cytosolic calcium participates actively during the first mitosis of the endosperm mother cell and interacts with the actin filaments that generate the motor forces during the migration of the nuclei through the large cytoplasm of the central cell.
Collapse
Affiliation(s)
- Angel Martín Barranco-Guzmán
- Unidad de Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Camino Arenero 1227, El Bajío del Arenal, Zapopan, 45019, Jalisco, Mexico
| | - Alejandra G González-Gutiérrez
- Unidad de Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Camino Arenero 1227, El Bajío del Arenal, Zapopan, 45019, Jalisco, Mexico
| | - Nutan Prasad Rout
- Unidad de Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Camino Arenero 1227, El Bajío del Arenal, Zapopan, 45019, Jalisco, Mexico
| | - Jorge Verdín
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Camino Arenero 1227, El Bajío del Arenal, Zapopan, 45019, Jalisco, Mexico
| | - Benjamín Rodríguez-Garay
- Unidad de Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Camino Arenero 1227, El Bajío del Arenal, Zapopan, 45019, Jalisco, Mexico.
| |
Collapse
|
8
|
Abstract
SummaryIsolated gametes can be used to investigate fertilization mechanisms, and probe distant hybridization between different species. Pollen grains of wheat and Setaria viridis are tricellular, containing sperm cells at anthesis. Sperm from these plants were isolated by breaking open pollen grains in a osmotic solution. Wheat ovules were digested in an enzyme solution for 20 min, and then transferred to an isolation solution without enzymes to separate egg cells from ovules. The fusion of wheat egg cells with wheat and S. viridis sperm was conducted using an electro-fusion apparatus. Under suitable osmotic pressure (10% mannitol), calcium concentration of 0.001% (CaCl2·2H2O), and a 30-35 V alternating electric field for 15 s, egg cells and sperm adhered to each other and became arranged in a line. Electroporation of the plasma membrane of egg cells and sperm using a 300-500 V direct-current electric field (45 µs amplitude pulse) caused them to fuse.
Collapse
|
9
|
Maryenti T, Kato N, Ichikawa M, Okamoto T. Establishment of an In Vitro Fertilization System in Wheat (Triticum aestivum L.). PLANT & CELL PHYSIOLOGY 2019; 60:835-843. [PMID: 30605551 DOI: 10.1093/pcp/pcy250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/21/2018] [Indexed: 05/11/2023]
Abstract
In vitro fertilization (IVF) systems using isolated gametes have been utilized to dissect post-fertilization events in angiosperms, since the female gametophytes of plants are deeply embedded within ovaries. In addition, IVF systems have been used to produce hybrid and polyploid zygotes. Complete IVF systems have been established in maize and rice, two of three major crop species providing the majority of human energy intake. Among those crop species, gametes of wheat have not been used to establish a complete IVF system successfully. In this study, a wheat IVF system was developed to introduce the advantages of this technology to wheat research. Fusion of gametes was performed via a modified electrofusion method, and the fusion product, a zygote, formed a cell wall and two nucleoli. The first division of zygotes was observed 19-27 h after fusion, and the resulting two-celled embryo developed into 10-20-celled globular-like embryos and multicellular club-shaped embryos by 3 and 7-10 d after fusion, respectively. Such zygotic division profiles were mostly consistent with those in the embryo sac, suggesting that the division profile of IVF-produced early embryos reflects that of early embryos in planta. Although the IVF-produced club-shaped embryos did not develop into differentiated embryos but into compact embryonic calli, fertile plants could be regenerated from the embryonic calli, and the seeds harvested from those plants grew normally into seedlings. The IVF system described here might become an important technique for generating new genotypes of wheat and/or new hybrids as well as for investigating fertilization-induced events in wheat.
Collapse
Affiliation(s)
- Tety Maryenti
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji, Tokyo, Japan
| | - Norio Kato
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji, Tokyo, Japan
- Plant Breeding Innovation Laboratory, RIKEN Cluster for Science, Tsurumi, Yokohama, Japan
- Plant Innovation Center, Japan Tobacco Inc., Higashihara 700, Iwata, Shizuoka, Japan
| | - Masako Ichikawa
- Plant Innovation Center, Japan Tobacco Inc., Higashihara 700, Iwata, Shizuoka, Japan
| | - Takashi Okamoto
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji, Tokyo, Japan
- Plant Breeding Innovation Laboratory, RIKEN Cluster for Science, Tsurumi, Yokohama, Japan
| |
Collapse
|
10
|
Fatema U, Ali MF, Hu Z, Clark AJ, Kawashima T. Gamete Nuclear Migration in Animals and Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:517. [PMID: 31068960 PMCID: PMC6491811 DOI: 10.3389/fpls.2019.00517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/03/2019] [Indexed: 05/04/2023]
Abstract
The migration of male and female gamete nuclei to each other in the fertilized egg is a prerequisite for the blending of genetic materials and the initiation of the next generation. Interestingly, many differences have been found in the mechanism of gamete nuclear movement among animals and plants. Female to male gamete nuclear movement in animals and brown algae relies on microtubules. By contrast, in flowering plants, the male gamete nucleus is carried to the female gamete nucleus by the filamentous actin cytoskeleton. As techniques have developed from light, electron, fluorescence, immunofluorescence, and confocal microscopy to live-cell time-lapse imaging using fluorescently labeled proteins, details of these differences in gamete nuclear migration have emerged in a wide range of eukaryotes. Especially, gamete nuclear migration in flowering plants such as Arabidopsis thaliana, rice, maize, and tobacco has been further investigated, and showed high conservation of the mechanism, yet, with differences among these species. Here, with an emphasis on recent developments in flowering plants, we survey gamete nuclear migration in different eukaryotic groups and highlight the differences and similarities among species.
Collapse
Affiliation(s)
- Umma Fatema
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Mohammad F. Ali
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Zheng Hu
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Anthony J. Clark
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Tomokazu Kawashima
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
- *Correspondence: Tomokazu Kawashima,
| |
Collapse
|
11
|
Abstract
SummaryFertilization in higher plants induces many structural and physiological changes in the fertilized egg, and represents the transition from the haploid female gamete to the diploid zygote, the first cell of a sporophyte. Some changes are induced extremely rapidly following fusion with sperm cells and are the preclusions of egg activation. This review focuses on the early changes that occur in the egg after fusion with sperm cells, but before nuclear fusion. Reported changes include cell shrinkage, cell wall formation, polarity change, oscillation in Ca2+ concentration, and DNA synthesis. In addition, the current understanding of egg activation is summarized and the possible functional relevance of the changes is explored.
Collapse
|
12
|
Okamoto T, Ohnishi Y, Toda E. Development of polyspermic zygote and possible contribution of polyspermy to polyploid formation in angiosperms. JOURNAL OF PLANT RESEARCH 2017; 130:485-490. [PMID: 28275885 DOI: 10.1007/s10265-017-0913-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/11/2017] [Indexed: 06/06/2023]
Abstract
Fertilization is a general feature of eukaryotic uni- and multicellular organisms to restore a diploid genome from female and male gamete haploid genomes. In angiosperms, polyploidization is a common phenomenon, and polyploidy would have played a major role in the long-term diversification and evolutionary success of plants. As for the mechanism of formation of autotetraploid plants, the triploid-bridge pathway, crossing between triploid and diploid plants, is considered as a major pathway. For the emergence of triploid plants, fusion of an unreduced gamete with a reduced gamete is generally accepted. In addition, the possibility of polyspermy has been proposed for maize, wheat and some orchids, although it has been regarded as an uncommon mechanism of triploid formation. One of the reasons why polyspermy is regarded as uncommon is because it is difficult to reproduce the polyspermy situation in zygotes and to analyze the developmental profiles of polyspermic triploid zygotes. Recently, polyspermic rice zygotes were successfully produced by electric fusion of an egg cell with two sperm cells, and their developmental profiles were monitored. Two sperm nuclei and an egg nucleus fused into a zygotic nucleus in the polyspermic zygote, and the triploid zygote divided into a two-celled embryo via mitotic division with a typical bipolar microtubule spindle. The two-celled proembryos further developed and regenerated into triploid plants. These suggest that polyspermic plant zygotes have the potential to form triploid embryos, and that polyspermy in angiosperms might be a pathway for the formation of triploid plants.
Collapse
Affiliation(s)
- Takashi Okamoto
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo, 192-0397, Japan.
| | - Yukinosuke Ohnishi
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Erika Toda
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo, 192-0397, Japan
- Plant Breeding Innovation Laboratory, RIKEN Innovation Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| |
Collapse
|
13
|
Zhou LZ, Juranić M, Dresselhaus T. Germline Development and Fertilization Mechanisms in Maize. MOLECULAR PLANT 2017; 10:389-401. [PMID: 28267957 DOI: 10.1016/j.molp.2017.01.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 01/29/2017] [Accepted: 01/31/2017] [Indexed: 05/06/2023]
Abstract
Maize is the most important agricultural crop used for food, feed, and biofuel as well as a raw material for industrial products such as packaging material. To increase yield and to overcome hybridization barriers, studies of maize gamete development, the pollen tube journey, and fertilization mechanisms were initiated more than a century ago. In this review, we summarize and discuss our current understanding of the regulatory components for germline development including sporogenesis and gametogenesis, the progamic phase of pollen germination and pollen tube growth and guidance, as well as fertilization mechanisms consisting of pollen tube arrival and reception, sperm cell release, fusion with the female gametes, and egg cell activation. Mechanisms of asexual seed development are not considered here. While only a few molecular players involved in these processes have been described to date and the underlying mechanisms are far from being understood, maize now represents a spearhead of reproductive research for all grass species. Recent development of essentially improved transformation and gene-editing systems may boost research in this area in the near future.
Collapse
Affiliation(s)
- Liang-Zi Zhou
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Martina Juranić
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| |
Collapse
|
14
|
Peng X, Yan T, Sun M. The WASP-Arp2/3 complex signal cascade is involved in actin-dependent sperm nuclei migration during double fertilization in tobacco and maize. Sci Rep 2017; 7:43161. [PMID: 28225074 PMCID: PMC5320560 DOI: 10.1038/srep43161] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/20/2017] [Indexed: 12/14/2022] Open
Abstract
Sperm nuclear migration during fertilization in Arabidopsis and rice has recently been found to be actin-dependent, but the driving force behind this actin cytoskeleton-dependent motion is unclear. Here, we confirmed that the actin-dependent sperm nuclei migration during fertilization is a conserved mechanism in plants. Using in vitro fertilization systems, we showed that a functional actin is also essential in maize and tobacco for sperm nuclei migration after gamete membrane fusion. Cytoskeleton depolymerization inhibitor treatments supported the view that sperm nuclei migration is actin-dependent but microtubule-independent in both egg cell and central cell during double fertilization. We further revealed that the actin-based motor myosin is not the driving force for sperm nuclear migration in maize and tobacco. The WASP-Arp2/3 complex signal cascade is shown here to be involved in the regulation of sperm nuclear migration in maize and tobacco. It is interesting that sperm nuclei migration within somatic cell also need WASP-Arp2/3 complex signal cascade and actin, suggesting that the mechanism of sperm nuclear migration is not gamete specific.
Collapse
Affiliation(s)
- Xiongbo Peng
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Tingting Yan
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Mengxiang Sun
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
15
|
Yan G, Liu H, Wang H, Lu Z, Wang Y, Mullan D, Hamblin J, Liu C. Accelerated Generation of Selfed Pure Line Plants for Gene Identification and Crop Breeding. FRONTIERS IN PLANT SCIENCE 2017; 8:1786. [PMID: 29114254 PMCID: PMC5660708 DOI: 10.3389/fpls.2017.01786] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/02/2017] [Indexed: 05/18/2023]
Abstract
Production of pure lines is an important step in biological studies and breeding of many crop plants. The major types of pure lines for biological studies and breeding include doubled haploid (DH) lines, recombinant inbred lines (RILs), and near isogenic lines (NILs). DH lines can be produced through microspore and megaspore culture followed by chromosome doubling while RILs and NILs can be produced through introgressions or repeated selfing of hybrids. DH approach was developed as a quicker method than conventional method to produce pure lines. However, its drawbacks of genotype-dependency and only a single chance of recombination limited its wider application. A recently developed fast generation cycling system (FGCS) achieved similar times to those of DH for the production of selfed pure lines but is more versatile as it is much less genotype-dependent than DH technology and does not restrict recombination to a single event. The advantages and disadvantages of the technologies and their produced pure line populations for different purposes of biological research and breeding are discussed. The development of a concept of complete in vitro meiosis and mitosis system is also proposed. This could integrate with the recently developed technologies of single cell genomic sequencing and genome wide selection, leading to a complete laboratory based pre-breeding scheme.
Collapse
Affiliation(s)
- Guijun Yan
- Faculty of Science, UWA School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, University of Western Australia, Crawley, WA, Australia
- *Correspondence: Guijun Yan
| | - Hui Liu
- Faculty of Science, UWA School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, University of Western Australia, Crawley, WA, Australia
| | - Haibo Wang
- Hebei Centre of Plant Genetic Engineering, Institute of Genetics and Physiology, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Zhanyuan Lu
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Huhhot, China
| | - Yanxia Wang
- Hebei Province Wheat Engineering Technical Research Center, Shijiazhuang Academy of Agricultural Sciences, Shijiazhuang, China
| | - Daniel Mullan
- Faculty of Science, UWA School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, University of Western Australia, Crawley, WA, Australia
- InterGrain Pty. Ltd., Bibra Lake, WA, Australia
| | - John Hamblin
- Faculty of Science, UWA School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, University of Western Australia, Crawley, WA, Australia
- SuperSeeds Technologies Pty. Ltd., Perth, WA, Australia
| | - Chunji Liu
- Faculty of Science, UWA School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, University of Western Australia, Crawley, WA, Australia
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, St. Lucia, QLD, Australia
| |
Collapse
|
16
|
Toda E, Okamoto T. Formation of triploid plants via possible polyspermy. PLANT SIGNALING & BEHAVIOR 2016; 11:e1218107. [PMID: 27617495 PMCID: PMC5058460 DOI: 10.1080/15592324.2016.1218107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 05/28/2023]
Abstract
Polyploidization is a common phenomenon in angiosperms, and polyploidy has played a major role in the long-term diversification and evolutionary success of plants. Triploid plants are considered as the intermediate stage in the formation of stable autotetraploid plants, and this pathway of tetraploid formation is known as the triploid bridge. As for the mechanism of triploid formation among diploid populations, fusion of an unreduced gamete with a reduced gamete is generally accepted. In addition, the possibility of polyspermy has been proposed for maize, wheat and some orchids, although it has been regarded as an uncommon mechanism of polyploid formation. One of the reasons why polyspermy is regarded as uncommon is because it is difficult to reproduce the polyspermy situation in zygotes and to analyze the developmental profiles of polyspermic zygotes. In the study, we produced polyspermic rice zygotes by electric fusion of an egg cell with two sperm cells and monitored their developmental profiles. The two sperm nuclei and the egg nucleus fused into a zygotic nucleus in the polyspermic zygote, and the triploid zygote divided into a two-celled embryo via mitotic division with a typical bipolar microtubule spindle. The two-celled proembryos developed and regenerated into triploid plants. These results suggest that polyspermic plant zygotes have the potential to form triploid embryos, and that polyspermy in angiosperms might be a pathway for the formation of triploid plants.
Collapse
Affiliation(s)
- Erika Toda
- a Department of Biological Sciences , Tokyo Metropolitan University , Minami-osawa Hachioji, Tokyo , Japan
- b Plant Breeding Innovation Laboratory , RIKEN Innovation Center , Suehiro-cho, Tsurumi-ku, Yokohama , Japan
| | - Takashi Okamoto
- a Department of Biological Sciences , Tokyo Metropolitan University , Minami-osawa Hachioji, Tokyo , Japan
| |
Collapse
|
17
|
Zahid KR, Ali F, Shah F, Younas M, Shah T, Shahwar D, Hassan W, Ahmad Z, Qi C, Lu Y, Iqbal A, Wu W. Response and Tolerance Mechanism of Cotton Gossypium hirsutum L. to Elevated Temperature Stress: A Review. FRONTIERS IN PLANT SCIENCE 2016; 7:937. [PMID: 27446165 PMCID: PMC4927942 DOI: 10.3389/fpls.2016.00937] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/13/2016] [Indexed: 05/23/2023]
Abstract
Cotton is an important multipurpose crop which is highly sensitive to both biotic and abiotic stresses. Proper management of this cash crop requires systematic understanding of various environmental conditions that are vital to yield and quality. High temperature stress can severely affect the viability of pollens and anther indehiscence, which leads to significant yield losses. Cotton can respond to withstand adverse environmental condition in several phases among which the accumulation of chemicals is extremely vital. Calcium, kinases, reactive oxygen species, carbohydrate, transcription factors, gene expression regulation, and plant hormones signaling pathways are playing a handy role in activating the major genes responsible to encounter and defend elevated temperature stress. The production of heat shock proteins is up-regulated when crops are unleashed to high temperature stress. Molecular breeding can play a functional role to identify superior genes for all the important attributes as well as provide breeder ready markers for developing ideotypes. The development of high-temperature resistant transgenic cultivars of cotton can grant a stability benefit and can also ameliorate the production capacity in response to elevated temperature.
Collapse
Affiliation(s)
- Kashif Rafiq Zahid
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal UniversityWuhan, China
| | - Farhan Ali
- Cereal Crops Research InstitutePirsabak, Nowshera, Pakistan
| | - Farooq Shah
- Department of Agriculture, Abdul Wali Khan University MardanKhyber Pakhtunkhwa, Pakistan
| | - Muhammad Younas
- Department of Biotechnology, Mohi-ud-Din Islamic UniversityAzad Jammu and Kashmir, Pakistan
| | - Tariq Shah
- Department of Agricultural Economics and Management, Huazhong Agricultural UniversityWuhan, China
| | - Durri Shahwar
- Department of Plant Breeding and Genetics, University of SwabiKhyber Pakhtunkhwa, Pakistan
| | - Waseem Hassan
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of AgricultureMultan, Pakistan
| | - Zahoor Ahmad
- Key Lab of Crop Disease Monitoring and Safety Control, Huazhong Agricultural UniversityWuhan, China
| | - Chao Qi
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal UniversityWuhan, China
| | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural UniversityWenjian Sichuan, China
| | - Amjad Iqbal
- Department of Agriculture, Abdul Wali Khan University MardanKhyber Pakhtunkhwa, Pakistan
| | - Wei Wu
- College of Agronomy, Northwest A&F UniversityYangling, China
| |
Collapse
|
18
|
Lopez RA, Renzaglia KS. Arabinogalactan proteins and arabinan pectins abound in the specialized matrices surrounding female gametes of the fern Ceratopteris richardii. PLANTA 2016; 243:947-957. [PMID: 26739842 DOI: 10.1007/s00425-015-2448-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/15/2015] [Indexed: 06/05/2023]
Abstract
Both male and female gametes of archegoniates are highly specialized cells surrounded by an extraprotoplasmic matrix rich in AGPs, which are speculated to facilitate development and gamete fusion through Ca 2+) oscillations. An additional layer, the egg envelope, forms around the egg periphery, except at the fertilization pore, and contains arabinose-rich polymers that presumably impart flexibility for the rapidly growing zygote and embryo. The abundant AGPs and arabinan pectins associated with the eggs of C. richardii not only are integral to development, fertilization, and early embryogenesis, but also may be involved in desiccation tolerance important to the survival of the reproductive gametophyte. A defining feature of gametogenesis in archegoniates is the deposition of a special matrix outside of the plasmalemma of both egg and sperm cells that displaces the primary cell wall away from the protoplasm. It is within this matrix that gamete differentiation occurs. In leptosporangiate ferns, maturation of the egg cell involves the deposition of a second specialized wall, the so-called egg envelope that surrounds the cell except at the fertilization pore, a narrow site where gamete fusion takes place. We provide the first conclusive evidence of the macromolecular constituents in the unique structures surrounding fern egg cells before and after fertilization. To test the hypotheses that the egg extracellular matrix contains arabinogalactan proteins (AGPs) as does the sperm cell matrix, and that cell wall polysaccharides, especially pectins, are components of the egg envelope, we examined the expression patterns of AGPs and cell wall constituents during oogenesis in Ceratopteris richardii. Utilizing histochemical stains for callose, cellulose and AGPs coupled with immunogold localizations employing a suite of monoclonal antibodies to cell wall components (JIM13, JIM8, LM2, LM5, LM6, LM19, LM20 and anticallose), we demonstrate that AGPs, but not pectins, are abundant in the matrix around egg cells and degrading neck canal and ventral canal cells during archegonial development. A striking finding is that both AGPs and (1,5)-α-L-arabinan pectin epitopes are principle components of the egg envelope before and after fertilization, suggesting that they are important in both egg maturation and gamete fusion.
Collapse
Affiliation(s)
- Renee A Lopez
- Department of Plant Biology, MC: 6509, Southern Illinois University Carbondale, Carbondale, IL, 62901, USA.
| | - Karen S Renzaglia
- Department of Plant Biology, MC: 6509, Southern Illinois University Carbondale, Carbondale, IL, 62901, USA
| |
Collapse
|
19
|
Toda E, Ohnishi Y, Okamoto T. Electro-fusion of Gametes and Subsequent Culture of Zygotes in Rice. Bio Protoc 2016. [DOI: 10.21769/bioprotoc.2074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
20
|
Mori T, Kawai-Toyooka H, Igawa T, Nozaki H. Gamete Dialogs in Green Lineages. MOLECULAR PLANT 2015; 8:1442-54. [PMID: 26145252 DOI: 10.1016/j.molp.2015.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/15/2015] [Accepted: 06/28/2015] [Indexed: 05/20/2023]
Abstract
Gamete fusion is a core process of sexual reproduction and, in both plants and animals, different sex gametes fuse within species. Although most of the molecular factors involved in gamete interaction are still unknown in various sex-possessing eukaryotes, reports of such factors in algae and land plants have been increasing in the past decade. In particular, knowledge of gamete interaction in flowering plants and green algae has increased since the identification of the conserved gamete fusion factor generative cell specific 1/hapless 2 (GCS1/HAP2). GCS1 was first identified as a pollen generative cell-specific transmembrane protein in the lily (Lilium longiflorum), and was then shown to function not only in flowering plant gamete fusion but also in various eukaryotes, including unicellular protists and metazoans. In addition, although initially restricted to Chlamydomonas, knowledge of gamete attachment in flowering plants was also acquired. This review focuses on recent progress in the study of gamete interaction in volvocine green algae and flowering plants and discusses conserved mechanisms of gamete recognition, attachment, and fusion leading to zygote formation.
Collapse
Affiliation(s)
- Toshiyuki Mori
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Hiroko Kawai-Toyooka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoko Igawa
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
21
|
Chen J, Gutjahr C, Bleckmann A, Dresselhaus T. Calcium signaling during reproduction and biotrophic fungal interactions in plants. MOLECULAR PLANT 2015; 8:595-611. [PMID: 25660409 DOI: 10.1016/j.molp.2015.01.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/18/2015] [Accepted: 01/20/2015] [Indexed: 05/25/2023]
Abstract
Many recent studies have indicated that cellular communications during plant reproduction, fungal invasion, and defense involve identical or similar molecular players and mechanisms. Indeed, pollen tube invasion and sperm release shares many common features with infection of plant tissue by fungi and oomycetes, as a tip-growing intruder needs to communicate with the receptive cells to gain access into a cell and tissue. Depending on the compatibility between cells, interactions may result in defense, invasion, growth support, or cell death. Plant cells stimulated by both pollen tubes and fungal hyphae secrete, for example, small cysteine-rich proteins and receptor-like kinases are activated leading to intracellular signaling events such as the production of reactive oxygen species (ROS) and the generation of calcium (Ca(2+)) transients. The ubiquitous and versatile second messenger Ca(2+) thereafter plays a central and crucial role in modulating numerous downstream signaling processes. In stimulated cells, it elicits both fast and slow cellular responses depending on the shape, frequency, amplitude, and duration of the Ca(2+) transients. The various Ca(2+) signatures are transduced into cellular information via a battery of Ca(2+)-binding proteins. In this review, we focus on Ca(2+) signaling and discuss its occurrence during plant reproduction and interactions of plant cells with biotrophic filamentous microbes. The participation of Ca(2+) in ROS signaling pathways is also discussed.
Collapse
Affiliation(s)
- Junyi Chen
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Caroline Gutjahr
- Faculty of Biology Genetics, Biocenter Martinsried, University of Munich (LMU), Grosshaderner Strasse 2-4, D-82152 Martinsried, Germany
| | - Andrea Bleckmann
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| |
Collapse
|
22
|
Bellaloui N, Stetina SR, Turley RB. Cottonseed protein, oil, and mineral status in near-isogenic Gossypium hirsutum cotton lines expressing fuzzy/linted and fuzzless/linted seed phenotypes under field conditions. FRONTIERS IN PLANT SCIENCE 2015; 6:137. [PMID: 25852704 PMCID: PMC4365723 DOI: 10.3389/fpls.2015.00137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/20/2015] [Indexed: 05/14/2023]
Abstract
Cotton is an important crop in the world and is a major source of oil for human consumption and cotton meal for livestock. Cottonseed nutrition (seed composition: protein, oil, and minerals) determines the quality of seeds. Therefore, maintaining optimum levels of cottonseed nutrition is critical. Physiological and genetic mechanisms controlling the levels of these constituents in cottonseed are still largely unknown. Our previous research conducted under greenhouse conditions showed that seed and leaf nutrition differed between fuzzless and fuzzy seed isolines. Therefore, the objective of this research was to investigate the seed fuzz phenotype (trait) effects on seed protein, oil, N, C, S, and minerals in five sets of near-isogenic mutant cotton lines for seed fuzz in a 2-year experiment under field condition to evaluate the stability of the effect of the trait on seed nutrition. The isolines (genotypes) in each set differ for the seed fuzz trait (fuzzless/linted seed line, N lines, and fuzzy/linted seed line, F lines). Results showed that seed protein was higher in the fuzzy genotype in all sets, but seed oil was higher in fuzzless genotype in all sets. The concentrations of seed Ca and C were higher in all fuzzless genotypes, but N, S, B, Fe, and Zn were higher in most of the fuzzy genotypes. Generally, minerals were higher in leaves of F lines, suggesting the translocation of minerals from leaves to seeds was limited. The research demonstrated that fiber development could be involved in cottonseed composition. This may be due to the involvement of fiber development in carbon and nitrogen metabolism, and the mobility of nutrients from leaves (source) to seed (sink). This information is beneficial to breeders to consider fuzzless cottonseed for potential protein and oil use and select for higher oil or higher protein content, and to physiologists to further understand the mobility of minerals to increase the quality of cottonseed nutrition for food and feed.
Collapse
Affiliation(s)
- Nacer Bellaloui
- Crop Genetics Research Unit, Plant Physiology, United States Department of Agriculture, Agricultural Research ServiceStoneville, MS, USA
| | | | | |
Collapse
|
23
|
Pónya Z, Corsi I, Hoffmann R, Kovács M, Dobosy A, Kovács AZ, Cresti M, Barnabás B. When isolated at full receptivity, in vitro fertilized wheat (Triticum aestivum, L.) egg cells reveal [Ca2+]cyt oscillation of intracellular origin. Int J Mol Sci 2014; 15:23766-91. [PMID: 25535074 PMCID: PMC4284791 DOI: 10.3390/ijms151223766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/19/2014] [Accepted: 09/25/2014] [Indexed: 11/28/2022] Open
Abstract
During in vitro fertilization of wheat (Triticum aestivum, L.) in egg cells isolated at various developmental stages, changes in cytosolic free calcium ([Ca2+]cyt) were observed. The dynamics of [Ca2+]cyt elevation varied, reflecting the difference in the developmental stage of the eggs used. [Ca2+]cyt oscillation was exclusively observed in fertile, mature egg cells fused with the sperm cell. To determine how [Ca2+]cyt oscillation in mature egg cells is generated, egg cells were incubated in thapsigargin, which proved to be a specific inhibitor of the endoplasmic reticulum (ER) Ca2+-ATPase in wheat egg cells. In unfertilized egg cells, the addition of thapsigargin caused an abrupt transient increase in [Ca2+]cyt in the absence of extracellular Ca2+, suggesting that an influx pathway for Ca2+ is activated by thapsigargin. The [Ca2+]cyt oscillation seemed to require the filling of an intracellular calcium store for the onset of which, calcium influx through the plasma membrane appeared essential. This was demonstrated by omitting extracellular calcium from (or adding GdCl3 to) the fusion medium, which prevented [Ca2+]cyt oscillation in mature egg cells fused with the sperm. Combined, these data permit the hypothesis that the first sperm-induced transient increase in [Ca2+]cyt depletes an intracellular Ca2+ store, triggering an increase in plasma membrane Ca2+ permeability, and this enhanced Ca2+ influx results in [Ca2+]cyt oscillation.
Collapse
Affiliation(s)
- Zsolt Pónya
- Department of Plant Production and Plant Protection, Institute of Plant Science, Faculty of Agricultural and Environmental Sciences, Kaposvár University, Kaposvár H-7400, Hungary.
| | - Ilaria Corsi
- Dipartimento di Scienze Ambientali "G. Sarfatti", University of Siena, Siena 53100, Italy.
| | - Richárd Hoffmann
- Department of Plant Production and Plant Protection, Institute of Plant Science, Faculty of Agricultural and Environmental Sciences, Kaposvár University, Kaposvár H-7400, Hungary.
| | - Melinda Kovács
- Institute of Physiology, Biochemistry and Animal Health, Faculty of Agricultural and Environmental Sciences, Kaposvár University, Kaposvár H-7400, Hungary.
| | - Anikó Dobosy
- Department of Plant Production and Plant Protection, Institute of Plant Science, Faculty of Agricultural and Environmental Sciences, Kaposvár University, Kaposvár H-7400, Hungary.
| | - Attila Zoltán Kovács
- Department of Technology of Animal Breeding and Management, Faculty of Agricultural and Environmental Sciences Kaposvár University, Kaposvár H-7400, Hungary.
| | - Mauro Cresti
- Dipartimento di Scienze Ambientali "G. Sarfatti", University of Siena, Siena 53100, Italy.
| | - Beáta Barnabás
- Department of Plant Cell Biology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvàsàr H-2462, Hungary.
| |
Collapse
|
24
|
Hamamura Y, Nishimaki M, Takeuchi H, Geitmann A, Kurihara D, Higashiyama T. Live imaging of calcium spikes during double fertilization in Arabidopsis. Nat Commun 2014; 5:4722. [PMID: 25146889 PMCID: PMC4143913 DOI: 10.1038/ncomms5722] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 07/17/2014] [Indexed: 12/11/2022] Open
Abstract
Ca2+ waves and oscillation are key signalling elements during the fertilization process of animals, and are involved, for example, in egg activation. In the unique double fertilization process in flowering plants, both the egg cell and the neighbouring central cell fuse with a sperm cell each. Here we succeeded in imaging cytosolic Ca2+ in these two cells, and in the two synergid cells that accompany the gametes during semi-in vivo double fertilization. Following pollen tube discharge and plasmogamy, the egg and central cells displayed transient Ca2+ spikes, but not oscillations. Only the events in the egg cell correlated with the plasmogamy. In contrast, the synergid cells displayed Ca2+ oscillations on pollen tube arrival. The two synergid cells showed distinct Ca2+ dynamics depending on their respective roles in tube reception. These Ca2+ dynamics in the female gametophyte seem to represent highly specific signatures that coordinate successful double fertilization in the flowering plants. Intracellular calcium waves are key signalling elements during the fertilization process of animals, involved in egg activation. Here the authors image calcium oscillations during the fertilization process in flowering plants, revealing specific signatures involved in the success of this process.
Collapse
Affiliation(s)
- Yuki Hamamura
- 1] Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan [2] JST ERATO Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan [3]
| | - Moe Nishimaki
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Hidenori Takeuchi
- 1] Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan [2] JST ERATO Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Anja Geitmann
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 Rue Sherbrooke est, Montréal, Québec, Canada H1X 2B2
| | - Daisuke Kurihara
- 1] Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan [2] JST ERATO Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Tetsuya Higashiyama
- 1] Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan [2] JST ERATO Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan [3] Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
25
|
Male-female communication triggers calcium signatures during fertilization in Arabidopsis. Nat Commun 2014; 5:4645. [PMID: 25145880 PMCID: PMC4143946 DOI: 10.1038/ncomms5645] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 07/09/2014] [Indexed: 12/11/2022] Open
Abstract
Cell-cell communication and interaction is critical during fertilization and triggers free cytosolic calcium ([Ca2+]cyto) as a key signal for egg activation and a polyspermy block in animal oocytes. Fertilization in flowering plants is more complex, involving interaction of a pollen tube with egg adjoining synergid cells, culminating in release of two sperm cells and their fusion with the egg and central cell, respectively. Here, we report the occurrence and role of [Ca2+]cyto signals during the entire double fertilization process in Arabidopsis. [Ca2+]cyto oscillations are initiated in synergid cells after physical contact with the pollen tube apex. In egg and central cells, a short [Ca2+]cyto transient is associated with pollen tube burst and sperm cell arrival. A second extended [Ca2+]cyto transient solely in the egg cell is correlated with successful fertilization. Thus, each female cell type involved in double fertilization displays a characteristic [Ca2+]cyto signature differing by timing and behaviour from [Ca2+]cyto waves reported in mammals.
Collapse
|
26
|
Chen L, Cong Y, He H, Yu Y. Maize (Zea mays L.) transformation by Agrobacterium tumefaciens infection of pollinated ovules. J Biotechnol 2014; 171:8-16. [DOI: 10.1016/j.jbiotec.2013.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/24/2013] [Accepted: 11/26/2013] [Indexed: 12/11/2022]
|
27
|
Bellaloui N, Turley RB. Effects of fuzzless cottonseed phenotype on cottonseed nutrient composition in near isogenic cotton (Gossypium hirsutum L.) mutant lines under well-watered and water stress conditions. FRONTIERS IN PLANT SCIENCE 2013; 4:516. [PMID: 24416037 PMCID: PMC3874854 DOI: 10.3389/fpls.2013.00516] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 12/02/2013] [Indexed: 05/27/2023]
Abstract
There is no information available on the effect of fuzzless seed trait on cottonseed nutrient composition (minerals, N, S, protein, and oil) under drought stress. The objective of this research was to investigate the effect of the fuzzless seed trait on cottonseed nutrients using five sets of near-isogenic lines (NILs). Each set consists of two lines that share the same genetic background, but differ in seed fuzziness (fuzzy, F; fuzzless, N). The near isogenic lines will enable us to compare the effect of the trait without confounding the genotypic background effects. We hypothesized that since the fuzzless trait involved in fiber initiation development, and was reported to be involved in biochemical, molecular, and genetic processes, this trait may also alter cottonseed nutrient composition. Results showed that NIL sets accumulated different levels of minerals in seeds and leaves, and the fuzzless trait (N) in most of the lines altered seed and leaf mineral accumulations when compared with fuzzy lines (F) or the control line. For example, K, P, Mg, Cu, and Na concentrations in seeds were higher in MD N and STV N than in their equivalent MD F and STV F lines. Leaf concentrations of Ca, K, Mg, S, B, Cu, and Fe in MD N lines were higher than MD F line. Lower levels of nutrients in seeds and leaves were observed under water stress conditions, especially Ca, Mg, N, and B in seeds.Generally and with few exceptions, seed protein was higher in fuzzy lines than in fuzzless lines; however, seed oil was higher in fuzzless lines than in fuzzy lines. Our research demonstrated that fuzzless trait altered the composition and level of nutrients in seed and leaves in well watered and water stressed plants. Differences in protein and oil between fuzzy and fuzzless seeds may indicate alteration in nitrogen and carbon fixation and metabolism. The differential accumulation of seed nutrients in this germplasm could be used by cotton breeders to select for higher cottonseed quality.
Collapse
Affiliation(s)
- Nacer Bellaloui
- *Correspondence: Nacer Bellaloui, Crop Genetics Research Unit, Plant Physiology, United States Department of Agriculture-Agricultural Research Service, 141 ExperimentStation Road, Stoneville, MS 38776, USA e-mail:
| | | |
Collapse
|
28
|
De La Fuente GN, Frei UK, Lübberstedt T. Accelerating plant breeding. TRENDS IN PLANT SCIENCE 2013; 18:667-72. [PMID: 24080381 DOI: 10.1016/j.tplants.2013.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/29/2013] [Accepted: 09/05/2013] [Indexed: 05/18/2023]
Abstract
The growing demand for food with limited arable land available necessitates that the yield of major food crops continues to increase over time. Advances in marker technology, predictive statistics, and breeding methodology have allowed for continued increases in crop performance through genetic improvement. However, one major bottleneck is the generation time of plants, which is biologically limited and has not been improved since the introduction of doubled haploid technology. In this opinion article, we propose to implement in vitro nurseries, which could substantially shorten generation time through rapid cycles of meiosis and mitosis. This could prove a useful tool for speeding up future breeding programs with the aim of sustainable food production.
Collapse
Affiliation(s)
- Gerald N De La Fuente
- Department of Agronomy, Iowa State University, 100 Osborn Drive, Ames, IA 50011, USA.
| | | | | |
Collapse
|
29
|
Niedojadło K, Pięciński S, Smoliński DJ, Bednarska-Kozakiewicz E. Ribosomal RNA of Hyacinthus orientalis L. female gametophyte cells before and after fertilization. PLANTA 2012; 236:171-84. [PMID: 22398640 PMCID: PMC3382635 DOI: 10.1007/s00425-012-1618-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 02/16/2012] [Indexed: 05/25/2023]
Abstract
The nucleolar activity of Hyacinthus orientalis L. embryo sac cells was investigated. The distributions of nascent pre-rRNA (ITS1), 26S rRNA and of the 5S rRNA and U3 snoRNA were determined using fluorescence in situ hybridization (FISH). Our results indicated the different rRNA metabolism of the H. orientalis female gametophyte cells before and after fertilization. In the target cells for the male gamete, i.e., the egg cell and the central cell whose activity is silenced in the mature embryo sac (Pięciński et al. in Sex Plant Reprod 21:247-257, 2008; Niedojadło et al. in Planta doi: 10.1007/s00425-012-1599-9 , 2011), rRNA metabolism is directed at the accumulation of rRNPs in the cytoplasm and immature transcripts in the nucleolus. In both cells, fertilization initiates the maturation of the maternal pre-rRNA and the expression of zygotic rDNA. The resumption of rRNA transcription observed in the hyacinth zygote indicates that in plants, there is a different mechanism for the regulation of RNA Pol I activity than in animals. In synergids and antipodal cells, which have somatic functions, the nucleolar activity is correlated with the metabolic activity of these cells and changes in successive stages of embryo sac development.
Collapse
Affiliation(s)
- Katarzyna Niedojadło
- Department of Cell Biology, Institute of General and Molecular Biology, Nicolaus Copernicus University, Gagarina 9, 87-100, Toruń, Poland.
| | | | | | | |
Collapse
|
30
|
Ford CS, Wilkinson MJ. Confocal observations of late-acting self-incompatibility in Theobroma cacao L. ACTA ACUST UNITED AC 2012; 25:169-83. [PMID: 22644133 DOI: 10.1007/s00497-012-0188-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Accepted: 05/08/2012] [Indexed: 11/28/2022]
Abstract
Cocoa (Theobroma cacao) has an idiosyncratic form of late-acting self-incompatibility that operates through the non-fusion of incompatible gametes. Here, we used high-resolution confocal microscopy to define fine level changes to the embryo sac of the strongly self-incompatible cocoa genotype SCA 24 in the absence of pollination, and following compatible and incompatible pollination. All sperm nuclei had fused with the female nuclei by 48 h following compatible pollinations. However, following incompatible pollinations, we observed divergence in the behaviour of sperm nuclei following release into the embryo sac. Incomplete sperm nucleus migration occurred in approximately half of the embryo sacs, where the sperm nuclei had so far failed to reach the female gamete nuclei. Sperm nuclei reached but did not fuse with the female gamete nuclei in the residual cases. We argue that the cellular mechanisms governing sperm nucleus migration to the egg nucleus and those controlling subsequent nuclear fusion are likely to differ and should be considered independently. Accordingly, we recommend that future efforts to characterise the genetic basis of LSI in cocoa should take care to differentiate between these two events, both of which contribute to failed karyogamy. Implications of these results for continuing efforts to gain better understanding of the genetic control of LSI in cocoa are discussed.
Collapse
Affiliation(s)
- Caroline S Ford
- School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, PMB 1, Glen Osmond, Adelaide, SA 5064, Australia
| | | |
Collapse
|
31
|
Zienkiewicz K, Rejón JD, Suárez C, Castro AJ, de Dios Alché J, Rodríguez García MI. Whole-organ analysis of calcium behaviour in the developing pistil of olive (Olea europaea L.) as a tool for the determination of key events in sexual plant reproduction. BMC PLANT BIOLOGY 2011; 11:150. [PMID: 22050767 PMCID: PMC3228850 DOI: 10.1186/1471-2229-11-150] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 11/03/2011] [Indexed: 05/15/2023]
Abstract
BACKGROUND The pistil is a place where multiple interactions between cells of different types, origin, and function occur. Ca(2+) is one of the key signal molecules in plants and animals. Despite the numerous studies on Ca(2+) signalling during pollen-pistil interactions, which constitute one of the main topics of plant physiology, studies on Ca(2+) dynamics in the pistil during flower formation are scarce. The purpose of this study was to analyze the contents and in situ localization of Ca(2+) at the whole-organ level in the pistil of olive during the whole course of flower development. RESULTS The obtained results showed significant changes in Ca(2+) levels and distribution during olive pistil development. In the flower buds, the lowest levels of detectable Ca(2+) were observed. As flower development proceeded, the Ca(2+) amount in the pistil successively increased and reached the highest levels just after anther dehiscence. When the anthers and petals fell down a dramatic but not complete drop in calcium contents occurred in all pistil parts. In situ Ca(2+) localization showed a gradual accumulation on the stigma, and further expansion toward the style and the ovary after anther dehiscence. At the post-anthesis phase, the Ca(2+) signal on the stigmatic surface decreased, but in the ovary a specific accumulation of calcium was observed only in one of the four ovules. Ultrastructural localization confirmed the presence of Ca(2+) in the intracellular matrix and in the exudate secreted by stigmatic papillae. CONCLUSIONS This is the first report to analyze calcium in the olive pistil during its development. According to our results in situ calcium localization by Fluo-3 AM injection is an effective tool to follow the pistil maturity degree and the spatial organization of calcium-dependent events of sexual reproduction occurring in developing pistil of angiosperms. The progressive increase of the Ca(2+) pool during olive pistil development shown by us reflects the degree of pistil maturity. Ca(2+) distribution at flower anthesis reflects the spatio-functional relationship of calcium with pollen-stigma interaction, progamic phase, fertilization and stigma senescence.
Collapse
Affiliation(s)
- Krzysztof Zienkiewicz
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain
- Department of Cell Biology, Institute of General and Molecular Biology, Nicolaus Copernicus University, Gargarina 9, 87-100, Toruń, Poland
| | - Juan D Rejón
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Cynthia Suárez
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Antonio J Castro
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Juan de Dios Alché
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - María Isabel Rodríguez García
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| |
Collapse
|
32
|
Berger F. Imaging fertilization in flowering plants, not so abominable after all. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1651-8. [PMID: 20952626 DOI: 10.1093/jxb/erq305] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Although the discovery of double fertilization in flowering plants took place at the end of the nineteenth century little progress had been made in understanding the cellular and molecular mechanisms involved until the end of the twentieth century. After attempts to study fertilization with isolated male and female gametes, researchers turned to Arabidopsis thaliana as a model for genetic analysis and in vivo imaging. The development of confocal imaging and fluorescent proteins, coupled with new molecular insights into cell fate specification of plant gametes, allowed the development of robust markers for cells participating in double fertilization. These markers enabled the imaging of double fertilization in vivo in Arabidopsis. These studies have been coupled with the identification and molecular characterization of genes controlling fertilization in Arabidopsis. Live imaging has already provided new insights on sperm cell delivery, the equivalence of the fate of the sperm cells, gamete fusion, and re-initiation of the zygotic life. This review covers these topics and outlines many important aspects of double fertilization that remain unknown.
Collapse
Affiliation(s)
- Frédéric Berger
- Temasek LifeScience Laboratory, 1 Research Link, National University of Singapore, Singapore.
| |
Collapse
|
33
|
McCue AD, Cresti M, Feijó JA, Slotkin RK. Cytoplasmic connection of sperm cells to the pollen vegetative cell nucleus: potential roles of the male germ unit revisited. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1621-31. [PMID: 21357775 DOI: 10.1093/jxb/err032] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The male germ cells of angiosperm plants are neither free-living nor flagellated and therefore are dependent on the unique structure of the pollen grain for fertilization. During angiosperm male gametogenesis, an asymmetric mitotic division produces the generative cell, which is completely enclosed within the cytoplasm of the larger pollen grain vegetative cell. Mitotic division of the generative cell generates two sperm cells that remain connected by a common extracellular matrix with potential intercellular connections. In addition, one sperm cell has a cytoplasmic projection in contact with the vegetative cell nucleus. The shared extracellular matrix of the two sperm cells and the physical association of one sperm cell to the vegetative cell nucleus forms a linkage of all the genetic material in the pollen grain, termed the male germ unit. Found in species representing both the monocot and eudicot lineages, the cytoplasmic projection is formed by vesicle formation and microtubule elongation shortly after the formation of the generative cell and tethers the male germ unit until just prior to fertilization. The cytoplasmic projection plays a structural role in linking the male germ unit, but potentially plays other important roles. Recently, it has been speculated that the cytoplasmic projection and the male germ unit may facilitate communication between the somatic vegetative cell nucleus and the germinal sperm cells, via RNA and/or protein transport. This review focuses on the nature of the sperm cell cytoplasmic projection and the potential communicative function of the male germ unit.
Collapse
Affiliation(s)
- Andrea D McCue
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
34
|
Okamoto T. In vitro fertilization with rice gametes: production of zygotes and zygote and embryo culture. Methods Mol Biol 2011; 710:17-27. [PMID: 21207258 DOI: 10.1007/978-1-61737-988-8_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In vitro fertilization (IVF) systems using isolated male and female gametes have been utilized to dissect fertilization-induced events in angiosperms, such as egg activation, zygote development, and early embryogenesis, since the female gametophytes of plants are deeply embedded within ovaries. A rice IVF system was established to take advantage of the abundant resources stemming from rice research for investigations into the mechanisms of fertilization and early embryogenesis. Fusion of gametes can be performed using electrofusion and the fusion product, a zygote, forms a cell wall and an additional nucleolus. The zygote divides into an asymmetric two-celled embryo and develops into an early globular embryo, as in planta. The embryo further develops into irregularly shaped cell masses and fertile plants can be regenerated from the cell masses. This rice IVF system is a powerful tool for studying the molecular mechanisms involved in the early embryogenesis of angiosperms and for making new cultivars.
Collapse
Affiliation(s)
- Takashi Okamoto
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan.
| |
Collapse
|
35
|
Abstract
Most differentiation events in higher plants occur continuously in the postembryonic adult phase of the life cycle. Embryogenesis in plants, therefore, is concerned primarily with establishing the basic shoot-root body pattern of the plant and accumulating food reserves that will be used by the germinating seedling after a period of embryonic dormancy within the seed. Recent genetics studies in Arabidopsis have identified genes that provide new insight into how embryos form during plant development. These studies, and others using molecular approaches, are beginning to reveal the underlying processes that control plant embryogenesis.
Collapse
|
36
|
Snider JL, Oosterhuis DM, Skulman BW, Kawakami EM. Heat stress-induced limitations to reproductive success in Gossypium hirsutum. PHYSIOLOGIA PLANTARUM 2009; 137:125-38. [PMID: 19656331 DOI: 10.1111/j.1399-3054.2009.01266.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Using in vitro systems, numerous authors have cited the sensitivity of pollen tube growth to high temperature as a major cause of low yields for crops with valuable reproductive structures. We investigated the hypothesis that in vivo fertilization efficiency would be negatively affected by heat stress-induced changes in energy reserves and calcium-mediated oxidative status in the pistil. Gossypium hirsutum plants exposed to optimal (30/20 degrees C) or high day temperature (38/20 degrees C) conditions during flowering were analyzed for fertilization efficiency via UV microscopic observation of pollen tube-containing ovules and for soluble carbohydrates, adenosine triphosphate (ATP), calcium, antioxidant enzyme activity and NADPH oxidase (NOX; EC 1.6.3.1) activity in the pistil. Leaf measurements included gas exchange, chlorophyll content, quantum efficiency and ATP content of the subtending leaf on the day of anthesis. In the pistil fertilization efficiency, soluble carbohydrates, ATP content and NOX activity declined significantly, whereas water soluble calcium and glutathione reductase (EC 1.8.1.7) activity increased, and superoxide dismutase (EC 1.15.1.1) activity remained unchanged. In leaves, heat stress decreased photosynthesis, quantum efficiency and chlorophyll content, but increased stomatal conductance. We conclude that decreased source leaf activity either inhibits pollen development, tube growth through the style or guidance to the ovules as a result of an insufficient energy supply to the developing pistil. We further conclude that a calcium-augmented antioxidant response in heat-stressed pistils interferes with enzymatic superoxide production needed for normal pollen tube growth and fertilization of the ovule.
Collapse
Affiliation(s)
- John L Snider
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704, USA.
| | | | | | | |
Collapse
|
37
|
Peng XB, Sun MX, Yang HY. Comparative detection of calcium fluctuations in single female sex cells of tobacco to distinguish calcium signals triggered by in vitro fertilization. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2009; 51:782-91. [PMID: 19686375 DOI: 10.1111/j.1744-7909.2009.00857.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Double fertilization is a key process of sexual reproduction in higher plants. The role of calcium in the activation of female sex cells through fertilization has recently received a great deal of attention. The establishment of a Ca(2+)-imaging technique for living, single, female sex cells is a difficult but necessary prerequisite for evaluating the role of Ca(2+) in the transduction of external stimuli, including the fusion with the sperm cell, to internal cellular processes. The present study describes the use of Fluo-3 for reporting the Ca(2+) signal in isolated, single, female sex cells, egg cells and central cells, of tobacco plants. A suitable loading protocol was optimized by loading the cells at pH 5.6 with 2 microM Fluo-3 for 30 min at 30 degrees C. Under these conditions, several key factors related to in vitro fertilization were also investigated in order to test their possible effects on the [Ca(2+)](cyt) of the female sex cells. The results indicated that the bovine serum albumin-fusion system was superior to the polyethlene glycol-fusion system for detecting calcium fluctuations in female sex cells during fertilization. The central cell was fertilized with the sperm cell in bovine serum albumin; however, no evident calcium dynamic was detected, implying that a transient calcium rise might be a specific signal for egg cell fertilization.
Collapse
Affiliation(s)
- Xiong-Bo Peng
- Key Laboratory of Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | | | | |
Collapse
|
38
|
|
39
|
Berger F, Hamamura Y, Ingouff M, Higashiyama T. Double fertilization - caught in the act. TRENDS IN PLANT SCIENCE 2008; 13:437-43. [PMID: 18650119 DOI: 10.1016/j.tplants.2008.05.011] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 05/07/2008] [Accepted: 05/22/2008] [Indexed: 05/18/2023]
Abstract
In flowering plants, fertilization is unique because it involves two pairs of male and female gametes, a process known as double fertilization. Here, we provide an overview of the field and a detailed review of the outstanding recent advances, including in vivo imaging of double fertilization and the identification of a signaling pathway controlling the release of the male gametes and of a protein involved in gamete membrane fusion. These recent results are stepping stones for further research; our knowledge of double fertilization is expanding as newly discovered molecular pathways are explored and new mutants are characterized. Controlling plant fertilization is essential for seed production, and molecular understanding of double fertilization will provide the tools to improve crops and breeding programs.
Collapse
Affiliation(s)
- Frédéric Berger
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore.
| | | | | | | |
Collapse
|
40
|
Fan YF, Jiang L, Gong HQ, Liu CM. Sexual reproduction in higher plants I: fertilization and the initiation of zygotic program. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:860-867. [PMID: 18713396 DOI: 10.1111/j.1744-7909.2008.00705.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Sexual plant reproduction is a critical developmental step in the life cycle of higher plants, to allow maternal and paternal genes to be transmitted in a highly regulated manner to the next generation. During evolution, a whole set of signal transduction machinery is developed by plants to ensure an error-free recognition between male and female gametes and initiation of zygotic program. In the past few years, the molecular machineries underlying this biological process have been elucidated, particularly on the importance of synergid cells in pollen tube guidance, the Ca(++) spike as the immediate response of fertilization and the epigenetic regulation of parental gene expressions in early zygotic embryogenesis. This review outlines the most recent development in this area.
Collapse
Affiliation(s)
- Yong-Feng Fan
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | |
Collapse
|
41
|
Scott RJ, Armstrong SJ, Doughty J, Spielman M. Double fertilization in Arabidopsis thaliana involves a polyspermy block on the egg but not the central cell. MOLECULAR PLANT 2008; 1:611-9. [PMID: 19825566 DOI: 10.1093/mp/ssn016] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In animal reproduction, thousands of sperm may compete to fertilize a single egg, but polyspermy blocks prevent multiple fertilization that would otherwise lead to death of the embryo. In flowering plants, successful seed development requires that only two sperm are delivered to the embryo sac, where each must fertilize a female gamete (egg or central cell) to produce the embryo and endosperm. Therefore, polyspermy must be avoided, not only to prevent abnormalities in offspring, but to ensure double fertilization. It is not understood how each sperm fertilizes only one female gamete, nor has the existence of polyspermy barriers been directly tested in vivo. Here, we sought evidence for polyspermy blocks in angiosperms using the polyspermic tetraspore (tes) mutant of Arabidopsis, which allows in-vivo challenge of egg and central cell with multiple male gametes. We show that tes mutant pollen tubes can transmit more than one sperm pair to an embryo sac, and that sperm from more than one pair can participate in fertilization. We detected endosperms but not embryos with ploidies that could only result from multiple fertilization. Our results therefore demonstrate an in-vivo polyspermy block on the egg, but not the central cell of a flowering plant.
Collapse
Affiliation(s)
- Rod J Scott
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.
| | | | | | | |
Collapse
|
42
|
Abstract
Methods have been developed to isolate gametes of higher plants and to fertilize them in vitro. Zygotes, embryos, fertile plants and endosperm can now be obtained from in vitro fusion of pairs of sperm and egg cells and of pairs of sperm and central cells, respectively. This allows examination of the earliest developmental processes precisely timed after fertilization. The isolated egg and central cell, fertilized and cultured in vitro, are able to self-organize apart from each other and without mother tissue in the typically manner. Thus, this system is a powerful and unique model for studies of early zygotic embryogenesis and endosperm development. The underlying processes are now comparatively studied in detail by investigations of expression of genes and their corresponding proteins. The use of these techniques opens new avenues in fundamental and applied research in the areas of developmental and reproductive plant biology.
Collapse
Affiliation(s)
- Erhard Kranz
- Biozentrum Klein Flottbek und Botanischer Garten, Entwicklungsbiologie und Biotechnologie, Ohnhorststr. 18, Universität Hamburg, 22609 Hamburg, Germany
| | | | | |
Collapse
|
43
|
Liu Y, Tewari R, Ning J, Blagborough AM, Garbom S, Pei J, Grishin NV, Steele RE, Sinden RE, Snell WJ, Billker O. The conserved plant sterility gene HAP2 functions after attachment of fusogenic membranes in Chlamydomonas and Plasmodium gametes. Genes Dev 2008; 22:1051-68. [PMID: 18367645 DOI: 10.1101/gad.1656508] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cellular and molecular mechanisms that underlie species-specific membrane fusion between male and female gametes remain largely unknown. Here, by use of gene discovery methods in the green alga Chlamydomonas, gene disruption in the rodent malaria parasite Plasmodium berghei, and distinctive features of fertilization in both organisms, we report discovery of a mechanism that accounts for a conserved protein required for gamete fusion. A screen for fusion mutants in Chlamydomonas identified a homolog of HAP2, an Arabidopsis sterility gene. Moreover, HAP2 disruption in Plasmodium blocked fertilization and thereby mosquito transmission of malaria. HAP2 localizes at the fusion site of Chlamydomonas minus gametes, yet Chlamydomonas minus and Plasmodium hap2 male gametes retain the ability, using other, species-limited proteins, to form tight prefusion membrane attachments with their respective gamete partners. Membrane dye experiments show that HAP2 is essential for membrane merger. Thus, in two distantly related eukaryotes, species-limited proteins govern access to a conserved protein essential for membrane fusion.
Collapse
Affiliation(s)
- Yanjie Liu
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
|
46
|
In vitro fertilization: analysis of early post-fertilization development using cytological and molecular techniques. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s00497-007-0060-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
|
48
|
Uchiumi T, Uemura I, Okamoto T. Establishment of an in vitro fertilization system in rice (Oryza sativa L.). PLANTA 2007; 226:581-9. [PMID: 17361458 DOI: 10.1007/s00425-007-0506-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2006] [Accepted: 02/26/2007] [Indexed: 05/11/2023]
Abstract
In vitro fertilization (IVF) systems using isolated male and female gametes have been utilized to dissect fertilization-induced events in angiosperms, such as egg activation, zygote development and early embryogenesis, as the female gametophytes of plants are deeply embedded within ovaries. In this study, a rice IVF system was established to take advantage of the abundant resources stemming from rice research for investigations into the mechanisms of fertilization and early embryogenesis. Fusion of gametes was performed using a modified electrofusion method, and the fusion product, a zygote, formed cell wall and an additional nucleolus. The zygote divided into a two-celled embryo 15-24 h after fusion, and developed into a globular-like embryo consisting of an average of 15-16 cells by 48 h after fusion. Comparison of the developmental processes of zygotes produced by IVF with those of zygotes generated in planta suggested that zygotes produced by IVF develop and grow into early globular stage embryos in a highly similar manner to those in planta. Although the IVF-produced globular embryos did not develop into late globular-stage or differentiated embryos, but into irregularly shaped cell masses, fertile plants were regenerated from the cell masses and the seeds harvested from these plants germinated normally. The rice IVF system reported here will be a powerful tool for studying the molecular mechanisms involved in the early embryogenesis of angiosperms and for making new cultivars.
Collapse
Affiliation(s)
- Takao Uchiumi
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji, Tokyo 192-0397, Japan
| | | | | |
Collapse
|
49
|
Ingouff M, Hamamura Y, Gourgues M, Higashiyama T, Berger F. Distinct dynamics of HISTONE3 variants between the two fertilization products in plants. Curr Biol 2007; 17:1032-7. [PMID: 17555967 DOI: 10.1016/j.cub.2007.05.019] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 04/19/2007] [Accepted: 05/07/2007] [Indexed: 11/15/2022]
Abstract
Sexual reproduction involves epigenetic reprogramming comprising DNA methylation and histone modifications. In addition, dynamics of HISTONE3 (H3) variant H3.3 upon fertilization are conserved in animals, suggesting an essential role. In contrast to H3, H3.3 marks actively transcribed regions of the genome and can be deposited in a replication-independent manner. Although H3 variants are conserved in plants, their dynamics during fertilization have remained unexplored. We overcame technical limitations to live imaging of the fertilization process in Arabidopsis thaliana and studied dynamics of the male-gamete-specific H3.3 and the centromeric Histone Three Related 12 (HTR12). The double-fertilization process in plants produces the zygote and the embryo-nourishing endosperm. We show that the zygote is characterized by replication-independent removal of paternal H3.3 and homogeneous incorporation of parental chromatin complements. In the endosperm, the paternal H3.3 is passively diluted by replication while the paternal chromatin remains segregated apart from the maternal chromatin (gonomery). Hence epigenetic regulations distinguish the two products of fertilization in plants. H3.3-replication-independent dynamics and gonomery also mark the first zygotic divisions in animal species. We thus propose the convergent selection of parental epigenetic imbalance involving H3 variants in sexually reproducing organisms.
Collapse
Affiliation(s)
- Mathieu Ingouff
- Chromatin and Reproduction group, Temasek Life Sciences Laboratory, National University of Singapore, 1 Research link, 117604 Singapore, Republic of Singapore
| | | | | | | | | |
Collapse
|
50
|
Higashiyama T, Inatsugi R, Sakamoto S, Sasaki N, Mori T, Kuroiwa H, Nakada T, Nozaki H, Kuroiwa T, Nakano A. Species preferentiality of the pollen tube attractant derived from the synergid cell of Torenia fournieri. PLANT PHYSIOLOGY 2006; 142:481-91. [PMID: 16935992 PMCID: PMC1586061 DOI: 10.1104/pp.106.083832] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 08/14/2006] [Indexed: 05/03/2023]
Abstract
The synergid cell of Torenia fournieri attracts pollen tubes by a diffusible but yet unknown chemical attractant. Here we investigated the species difference of the attractant using five closely related species in two genera, namely T. fournieri, Torenia baillonii, Torenia concolor, Lindernia (Vandellia) crustacea, and Lindernia micrantha. These five species have an exserted embryo sac, and ablation experiments confirmed that their synergid cells attracted the pollen tube. When ovules of T. fournieri and one of the other species were cultivated together with pollen tubes of each species, pollen tubes were significantly more attracted to synergid cells of the corresponding species. The attraction was not affected by the close proximity of embryo sacs of different species. This suggests that the attractant is a species-preferential molecule that is likely synthesized in the synergid cell. The calcium ion, long considered a potential attractant, could not serve as the sole attractant in these species, because elevation of the calcium ion concentration did not affect the observed attraction. In vivo crossing experiments also showed that the attraction of the pollen tube to the embryo sac was impaired when pollen tubes of different species arrived around the embryo sac, suggesting that the species preferentiality of the attractant may serve as a reproductive barrier in the final step of directional control of the pollen tube.
Collapse
Affiliation(s)
- Tetsuya Higashiyama
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|