1
|
Xiong Z, Zhu Q, Hang L. Novel therapeutic targets uncovered by genome-wide integrative analysis in bronchopulmonary dysplasia. J Matern Fetal Neonatal Med 2025; 38:2469837. [PMID: 39988826 DOI: 10.1080/14767058.2025.2469837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/08/2025] [Accepted: 02/08/2025] [Indexed: 02/25/2025]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is the most common chronic respiratory disease in extremely premature infants. This study aims to identify gene expression dysregulation and explore various molecular pathways implicated in BPD. METHODS This study integrated BPD genome-wide association study (GWAS), single-cell transcriptomics (scRNA-seq), and Mendelian randomization (MR) analysis to investigate the causal relationship between gene expression and BPD. RESULTS Cell annotation and ligand-receptor analysis highlighted myofibroblasts as the most interactive cell type. Key genes, including CDH4, ENC1, and PAM, were identified as protective factors against BPD, while GRB10 was associated with increased disease risk. Immune metabolism-related pathways showed elevated activity of PAM, GRB10, and ENC1 in epithelial-mesenchymal transition. The Drug-Gene Interaction Database (DGIdb) predicted three drugs-LM10, navoximod, and ziprasidone-that potentially interact with these key genes. CONCLUSION This integrative genome-wide analysis provides valuable insights into the genetic mechanisms underlying BPD. The findings facilitate the identification of novel therapeutic targets and pave the way for personalized treatment strategies for affected neonates.
Collapse
Affiliation(s)
- Zhenyu Xiong
- Department of Neonatology, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- Department of Neonatology, Jiangxi Hospital Affiliated to Children's Hospital of Chongqing Medical University, Nanchang, China
- Jiangxi Children's Medical Center, Nanchang, China
| | - Qingxiong Zhu
- Department of Neonatology, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- Department of Neonatology, Jiangxi Hospital Affiliated to Children's Hospital of Chongqing Medical University, Nanchang, China
- Jiangxi Children's Medical Center, Nanchang, China
| | - Lei Hang
- Business School, Shanghai Normal University Tianhua College, Shanghai, China
| |
Collapse
|
2
|
Liu T, Furlong MA, Snider JM, Tfaily MM, Itson C, Beitel SC, Gulotta JJ, Parsawar K, Keck K, Galligan J, Walker DI, Goodrich JM, Burgess JL. Differential metabolic profiles by Hispanic ethnicity among male Tucson firefighters. Metabolomics 2025; 21:37. [PMID: 40048004 PMCID: PMC11885328 DOI: 10.1007/s11306-024-02198-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 11/03/2024] [Indexed: 03/09/2025]
Abstract
INTRODUCTION Firefighters face regular exposure to known and probable human carcinogens, such as polycyclic aromatic hydrocarbons (PAHs), benzene, and formaldehyde, leading to an increased risk of various cancers compared to the general population. Hispanic and black firefighters are at increased risk of additional cancers not elevated in non-Hispanic white firefighters, yet biological pathways underlying these differences are unknown. OBJECTIVES The study objectives were to evaluate differences in the urinary metabolome between Hispanic and non-Hispanic firefighters, pre-and post-fireground exposure. METHODS To investigate the metabolic patterns, we employed a comprehensive metabolomics pipeline that leveraged liquid chromatography coupled with high-resolution mass spectrometry. We applied linear mixed effects regression to identify the differential metabolites at an FDR < 0.05 among 19 Hispanic and 81 non-Hispanic firefighters. We also performed overrepresentation analysis using Mummichog to identify enriched pathways at FDR < 0.05. RESULTS Out of 175 features in HILIC(-) mode and 1847 features in RP(+) mode, we found 26 and 276 differential urinary features, respectively, when comparing Hispanic and non-Hispanic firefighters. We noted pathway enrichment in tryptophan and galactose metabolism. However, post-exposure, we did not observe differences in the metabolomic response by ethnicity despite differing fireground exposures. CONCLUSION Dysregulation in the tryptophan and galactose pathway is an important contributor to cancer risks and may explain the increased cancer risk among Hispanic firefighters.
Collapse
Affiliation(s)
- Tuo Liu
- Department of Community, Environment, and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N Martin Ave, Tucson, AZ, 85724, USA
| | - Melissa A Furlong
- Department of Community, Environment, and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N Martin Ave, Tucson, AZ, 85724, USA.
| | - Justin M Snider
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, USA
| | - Malak M Tfaily
- Department of Environmental Science, University of Arizona, Tucson, USA
| | - Christian Itson
- Department of Environmental Science, University of Arizona, Tucson, USA
| | - Shawn C Beitel
- Department of Community, Environment, and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N Martin Ave, Tucson, AZ, 85724, USA
| | | | - Krishna Parsawar
- Cancer Center, University of Arizona, Tucson, USA
- Analytical and Biological Mass Spectrometry Core, University of Arizona, Tucson, USA
| | - Kristen Keck
- Cancer Center, University of Arizona, Tucson, USA
- Analytical and Biological Mass Spectrometry Core, University of Arizona, Tucson, USA
| | | | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Jefferey L Burgess
- Department of Community, Environment, and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N Martin Ave, Tucson, AZ, 85724, USA
| |
Collapse
|
3
|
Kwak-Kim J, Maier CC, Villano CM, Bowman CJ, Brennan FR, Stanislaus D, Hillegas A, Krayer J, Prell RA, Papenfuss TL, Cauvin A, Gamse J, Dahlman A, Enright B, Leshin L, Rao GK, Helms W, Fuller CL, Yang X, Chen C, Mitchell-Ryan S. Assessing the impact and risk of immunomodulatory compounds on pregnancy. J Reprod Immunol 2025; 169:104453. [PMID: 39999662 DOI: 10.1016/j.jri.2025.104453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/31/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
There have been remarkable advancements in understanding the complex and dynamic immune biological processes engaged during all stages of pregnancy. Exquisite control of immune processes is critical to successful outcome in all stages of pregnancy from ovulation to birth. There are many immunomodulatory therapeutics that may offer beneficial treatment options for a variety of diseases (e.g., inflammation/autoimmunity, cancer) to patients that are or desire to become pregnant. It is important to understand the potential for these immunomodulatory therapeutics to alter the critical immune processes in pregnancy to inform clinical risk relative to successful pregnancy. The Health and Environmental Sciences Institute-Developmental and Reproductive Toxicology/Immuno-safety Technical Committee (HESI DART/ITC) conducted a survey on approaches to assess adverse pregnancy outcomes with immunomodulators. HESI DART/ITC also organized a workshop for an extended discussion on immune mechanisms during pregnancy, the adequacy of current tools/methodologies to identify concerns for potential pregnancy hazards from immunomodulatory therapies, ways to identify and address scientific gaps, and global regulatory considerations across various immunomodulatory modalities and indications. In this manuscript we summarize learnings from these efforts to characterize risk within this patient population, promote more informed treatment decisions, and enable safer pharmacological interventions during pregnancy.
Collapse
Affiliation(s)
- Joanne Kwak-Kim
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, Reproductive Medicine and Immunology, Obstetrics and Gynecology, Clinical Sciences Department, Vernon Hills, IL, USA
| | | | - Caren M Villano
- Boehringer Ingelheim, Nonclinical Drug Safety, Ridgefield, CT, USA.
| | | | - Frank R Brennan
- Novartis Institute of BioMedical Research, Preclinical Safety (PCS), Basel, Switzerland
| | | | | | - John Krayer
- Johnson and Johnson, Non-clinical Safety, Springhouse, PA, USA
| | - Rodney A Prell
- Genentech, Inc., Department of Safety Assessment, South San Francisco, CA, USA
| | | | - Annick Cauvin
- UCB Biopharma SRL, Nonclinical Safety Evaluation, Brussels, Belgium
| | - Joshua Gamse
- Genmab, Non-Clinical Safety & Toxicology, Plainsboro, NJ, USA
| | - Anna Dahlman
- Genmab, Non-Clinical Safety & Toxicology, Copenhagen, Denmark
| | - Brian Enright
- AbbVie Inc., Preclinical Safety, North Chicago, IL, USA
| | - Lawrence Leshin
- United States Food and Drug Administration, CDER-OND-OII-DRTM, Silver Spring, MD, USA
| | - Gautham K Rao
- Genentech, Inc., Department of Safety Assessment, South San Francisco, CA, USA
| | | | | | - Xiuhua Yang
- The First Hospital of China Medical University, Department of Obstetrics and Gynecology, Shenyang, Liaoning, PR China
| | - Connie Chen
- The Health and Environmental Sciences Institute, Washington, DC, USA
| | | |
Collapse
|
4
|
Macias SL, Palmer O, Simonovich JA, Clark RA, Hudalla GA, Keselowsky BG. Immunometabolic Approaches Mitigating Foreign Body Response and Transcriptome Characterization of the Foreign Body Capsule. Adv Healthc Mater 2025; 14:e2400602. [PMID: 39148172 PMCID: PMC11828940 DOI: 10.1002/adhm.202400602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/08/2024] [Indexed: 08/17/2024]
Abstract
Directing immunometabolism presents new opportunities to modulate key cell types associated with the formation of foreign body response (FBR) capsule. Contrasting approaches directing immunometabolism are investigated to mitigate FBR: a broadly suppressive metabolic inhibitor (MI) cocktail comprised of 2-deoxyglucose (2-DG), metformin, and 6-diazo-5-oxo-l-norleucine (DON) with daily systemic dosing regimen, and local weekly injection of the more narrowly focused tryptophan catabolizing IDO-Gal3 fusion protein. Treatments significantly decrease FBR capsule formed around subcutaneously implanted cellulose disks. MI cocktail results in a substantially thinner FBR capsule (40% of control), while weekly local injection of IDO-Gal3 also results in a thinner FBR capsule (69% of control). RNA-sequencing capsule transcripts reveal MI cocktail promotes quiescence, with decreased antigen processing and presentation, T helper subset differentiation, and cytokine-cytokine receptor pathway. IDO-Gal3 promotes pro-regenerative, alternatively activated M2-like macrophages and T helper 2 cells, with increased expression of type 2 response-associated genes (Il4, Il13, Arg1, Mrc1, Chil3, Gata3). IDO-Gal3 decreases pro-inflammatory innate sensing pathways, and C-type lectin receptor, NOD-like receptor, RIG-I-like receptor, and Toll-like receptor signaling. This work helps define key gene targets and pathways concomitantly regulated in the FBR capsule during immunometabolic modulation compared to control FBR capsule.
Collapse
Affiliation(s)
- Sabrina L. Macias
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Olivia Palmer
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Jennifer A. Simonovich
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Ryan A. Clark
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Gregory A. Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Benjamin G. Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
5
|
Jin R, Neufeld L, McGaha TL. Linking macrophage metabolism to function in the tumor microenvironment. NATURE CANCER 2025; 6:239-252. [PMID: 39962208 DOI: 10.1038/s43018-025-00909-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/10/2024] [Indexed: 02/28/2025]
Abstract
Macrophages are present at high frequency in most solid tumor types, and their relative abundance negatively correlates with therapy responses and survival outcomes. Tissue-resident macrophages are highly tuned to integrate tissue niche signals, and multiple factors within the idiosyncratic tumor microenvironment (TME) drive macrophages to polarization states that favor immune suppression, tumor growth and metastasis. These diverse functional states are underpinned by extensive and complex rewiring of tumor-associated macrophage (TAM) metabolism. In this Review, we link distinct and specific macrophage functional states within the TME to major, phenotype-sustaining metabolic programs and discuss the metabolic impact of macrophage-modulating therapeutic interventions.
Collapse
Affiliation(s)
- Robbie Jin
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, the University of Toronto, Toronto, Ontario, Canada
| | - Luke Neufeld
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, the University of Toronto, Toronto, Ontario, Canada
| | - Tracy L McGaha
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Department of Immunology, Temerty Faculty of Medicine, the University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Wang Y, Leung E, Tomek P. N-formylkynurenine but not kynurenine enters a nucleophile-scavenging branch of the immune-regulatory kynurenine pathway. Bioorg Chem 2025; 156:108219. [PMID: 39891998 DOI: 10.1016/j.bioorg.2025.108219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/18/2025] [Accepted: 01/26/2025] [Indexed: 02/03/2025]
Abstract
Tryptophan catabolism along the kynurenine pathway (KP) mediates key physiological functions ranging from immune tolerance to lens UV protection, but the contributory roles and chemical fates of individual KP metabolites are incompletely understood. This particularly concerns the first KP metabolite, N-formylkynurenine (NFK), canonically viewed as a transient precursor to the downstream kynurenine (KYN). Here, we challenge that canon and show that hydrolytic enzymes act as a rheostat switching NFK's fate between the canonical KP and a novel non-enzymatic branch of tryptophan catabolism. In the physiological environment (37 °C, pH 7.4), NFK deaminated into electrophilic NFK-carboxyketoalkene (NFK-CKA), which rapidly (<2 min) formed adducts with nucleophiles such as cysteine and glutathione, the key intracellular antioxidants. Serum hydrolases suppressed NFK deamination as they hydrolysed NFK to KYN ∼3 times faster than NFK deaminates. Whilst KYN did not deaminate, its deaminated product (KYN-CKA) rapidly reacted with cysteine but not glutathione. The new NFK transformations of a yet to be discovered function highlight NFK's significance beyond hydrolysis to KYN and suggests the dominance of its chemical transformations over those of KYN. Enzyme compartmentalisation and abundance offer insights into the regulation of non-enzymatic KP metabolite transformations such as KYN involved in immune regulation, protein modification, lens aging or neuropathology.
Collapse
Affiliation(s)
- Yongxin Wang
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023 New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023 New Zealand
| | - Petr Tomek
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023 New Zealand.
| |
Collapse
|
7
|
Slaats E, Bramreiter B, Chua KJ, Quilang RC, Sallinger K, Eikmans M, Kroneis T. Maternal microchimeric cell trafficking and its biological consequences depend on the onset of inflammation at the feto-maternal interface. Semin Immunopathol 2025; 47:8. [PMID: 39820729 PMCID: PMC11742462 DOI: 10.1007/s00281-025-01037-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
Microchimerism is defined as the presence of a small population of genetically distinct cells within a host that is derived from another individual. Throughout pregnancy, maternal and fetal cells are known to traffic across the feto-maternal interface and result in maternal and fetal microchimerism, respectively. However, the routes of cell transfer, the molecular signaling as well as the timing in which trafficking takes place are still not completely understood. Recently, the presence of inflammation at the feto-maternal interface has been linked with maternal microchimeric cells modulating organ development in the fetus. Here, we review the current literature and suggest that inflammatory processes at the feto-maternal interface tissues are a physiological prerequisite for the establishment of microchimerism. We further propose a spatio-temporal corridor of microchimeric cell migration to potentially explain some biological effects of microchimerism. Additionally, we elaborate on the possible consequences of a shift in this spatio-temporal corridor, potentially responsible for the development of pathologies in the neonate.
Collapse
Affiliation(s)
- Emiel Slaats
- Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Bernadette Bramreiter
- Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Kristine J Chua
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, USA
- Department of Anthropology, University of Notre Dame, Notre Dame, CA, USA
| | - Rachel C Quilang
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Katja Sallinger
- Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Michael Eikmans
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas Kroneis
- Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
8
|
Wei Y, Tian H, Peng H, Wubulikasimu A, Wei M, Li H, He Q, Duan T, Huang Y, Wang K. Indole-3-lactic acid derived from tryptophan metabolism alleviates the sFlt-1-induced preeclampsia-like phenotype via the activation of aryl hydrocarbon receptor. Life Sci 2025; 361:123329. [PMID: 39710059 DOI: 10.1016/j.lfs.2024.123329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/10/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
AIMS Preeclampsia (PE) is an unusual multisystem condition that occurs during pregnancy and is characterized by maternal endothelial dysfunction and damage to various organs. The catabolism of L-tryptophan (Trp) is involved in various biological activities, including healthy pregnancy. Our previous work revealed that PE significantly elevated the concentration of indole-3-lactic acid (ILA), a Trp derivative, during the third trimester of pregnancy. However, the effects of ILA on the occurrence of PE and its influence on fetoplacental vascular functionality remain unknown. MATERIALS AND METHODS Twenty-five Trp metabolites were detected in maternal serum. The effects of ILA on the functions of human umbilical vein endothelial cells (HUVECs) were examined. Furthermore, a soluble fms-like tyrosine kinase-1 (sFlt-1) induced PE-like mouse model was established and treated with ILA. KEY FINDINGS We found that the ratio of ILA to Trp gradually increased as pregnancy progressed. PE did not significantly change the concentration of ILA during either the first or second trimester. Moreover, as an aryl hydrocarbon receptor (AhR) ligand, ILA promoted HUVEC proliferation, migration and tube formation through the PI3K/AKT signaling pathway after AhR activation. Importantly, ILA administration alleviated sFlt-1-induced PE-like symptoms in mice. Similarly, our in vitro study demonstrated that ILA significantly relieved sFlt-1-induced HUVEC dysfunction by increasing the VEGFA and PIGF levels. SIGNIFICANCE These data strongly suggest that PE-elevated ILA in the third trimester is a protective mechanism against vascular dysfunction. Therefore, we propose that ILA is a novel and promising therapeutic approach for the treatment of PE that promotes endothelial cell functions.
Collapse
Affiliation(s)
- Yingying Wei
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Haojun Tian
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Hao Peng
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Ayinisa Wubulikasimu
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Mengtian Wei
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Han Li
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Qizhi He
- Department of Pathology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Tao Duan
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yiying Huang
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Kai Wang
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
9
|
Pandit A, Shah SM, Shah RA, Qureshi S, Sethi RS, Bhat F, Malik A, Parray O, Yaqoob H, Saleem M. Regulatory T cells in bovine fertility: Current understanding and future prospects. Anim Reprod Sci 2025; 272:107655. [PMID: 39616725 DOI: 10.1016/j.anireprosci.2024.107655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/17/2024] [Accepted: 11/24/2024] [Indexed: 12/20/2024]
Abstract
Regulatory T cells (Tregs) have emerged as crucial players in maintaining maternal-fetal tolerance and promoting successful pregnancy outcomes. This review examines the importance of these cells in pregnancy, drawing on human and animal-based studies, with a focus on their role in bovine fertility. Tregs employ various mechanisms to mediate maternal-fetal tolerance, including regulation of effector T-cell responses, interactions with innate immune cells in the uterine microenvironment, and modulation of trophoblast function. In humans, Treg dynamics during normal pregnancy and alterations in pregnancy complications provide compelling evidence for their involvement in maintaining fetal-maternal harmony. Animal models, particularly mouse studies, have further elucidated the importance of Tregs in preventing fetal rejection and promoting successful pregnancy outcomes. The review also explores the characterization of bovine Tregs, highlighting their similarities and unique features compared to human and rodent counterparts. Recent studies have indicated the presence and potential significance of Tregs in the bovine uterine environment during early pregnancy. Translational applications of Treg research in livestock fertility are discussed, with a focus on immunomodulatory strategies for enhancing Treg function, such as antigen-specific tolerance induction, pharmacological targeting of Treg pathways, and cell-based therapies using autologous or allogeneic Tregs. The review concludes by emphasizing the potential impact of Treg-based strategies on the livestock industry and the broader implications for human reproductive health. Future research directions are outlined, underscoring the need for further investigations into the role of Tregs in bovine reproductive tissues and their relationship with fertility outcomes.
Collapse
Affiliation(s)
- Arif Pandit
- Center of Excellence in Animal Reproductive Biotechnology, Mountain Livestock Research Institute, Sher E Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India.
| | - Syed M Shah
- Center of Excellence in Animal Reproductive Biotechnology, Mountain Livestock Research Institute, Sher E Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Riaz A Shah
- Center of Excellence in Animal Reproductive Biotechnology, Mountain Livestock Research Institute, Sher E Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Sabia Qureshi
- Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Sciences, Sher E Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - R S Sethi
- College of Dairy Sciences, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Faheem Bhat
- Center of Excellence in Animal Reproductive Biotechnology, Mountain Livestock Research Institute, Sher E Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Abrar Malik
- Center of Excellence in Animal Reproductive Biotechnology, Mountain Livestock Research Institute, Sher E Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Oveas Parray
- Center of Excellence in Animal Reproductive Biotechnology, Mountain Livestock Research Institute, Sher E Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Hilal Yaqoob
- Center of Excellence in Animal Reproductive Biotechnology, Mountain Livestock Research Institute, Sher E Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Masood Saleem
- Directorate of Research, Sher E Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
10
|
Karube R, Koike M, Ikuta T, Shiizaki K. Abortion in AhR-knockout mice and fetomaternal immunity. Reprod Biol 2024; 24:100952. [PMID: 39299135 DOI: 10.1016/j.repbio.2024.100952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 08/20/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
AhR knockout mice are not completely infertile; however, they do experience decreased litter sizes after repeated pregnancies. This study revealed that the decrease in the number of live births is partly due to fetal deaths leading to miscarriages. Interestingly, fetal mortality was found to be linked only to maternal AhR gene defects and not the fetal genotype. Furthermore, we observed no significant changes in litter sizes in allogenic pregnancy, where AhR-KO female mice were crossed with ICR male mice. The results indicated that the absence of AhR in the dams affected the expression of immune tolerance-related genes in both the placenta and fetus. Specifically, FoxP3 and indoleamine 2,3-dioxygenase-1 (IDO1) mRNA levels were lower in the placentas of AhR-KO dams than in those of wild-type dams. Moreover, there were elevated levels of IL-1β and IFN-γ mRNA in the placentas of the AhR-KO dams, which indicated increased inflammation. However, the mRNA expression levels of IL-6 and IDO1 were low despite the elevated mRNA levels of IL-1β and IFN-γ, which may be because AhR is directly involved in IL-6 and IDO1 transcription. These findings imply that in AhR-KO mice, fetal death may be attributed to the disturbance of fetal-maternal immune tolerance as a result of increased inflammation and reduced IDO1 and FoxP3 mRNA levels.
Collapse
MESH Headings
- Animals
- Female
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Pregnancy
- Mice, Knockout
- Mice
- Placenta/metabolism
- Placenta/immunology
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Male
- Abortion, Spontaneous/genetics
- Abortion, Spontaneous/immunology
- Forkhead Transcription Factors/metabolism
- Forkhead Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Mice, Inbred ICR
Collapse
Affiliation(s)
- Rikako Karube
- Department of Life Sciences, Graduate School of Life Sciences, Toyo University, Asaka, Saitama, Japan
| | - Mebae Koike
- Department of Life Sciences, Graduate School of Life Sciences, Toyo University, Asaka, Saitama, Japan
| | - Togo Ikuta
- Department of Life Sciences, Graduate School of Life Sciences, Toyo University, Asaka, Saitama, Japan
| | - Kazuhiro Shiizaki
- Department of Life Sciences, Graduate School of Life Sciences, Toyo University, Asaka, Saitama, Japan.
| |
Collapse
|
11
|
van Zundert SKM, Broekhuizen M, Mirzaian M, van Rossem L, Danser AHJ, Willemsen SP, Griffioen PH, Koning AHJ, Mulders AGMGJ, van Schaik RHN, Steegers-Theunissen RPM. First-trimester maternal tryptophan metabolites, utero-placental (vascular)development and hypertensive disorders of pregnancy: The Rotterdam periconceptional cohort. Placenta 2024; 158:105-112. [PMID: 39426350 DOI: 10.1016/j.placenta.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/06/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Hypertensive disorders of pregnancy (HDP) are a significant cause of maternal and perinatal mortality and morbidity. Knowledge on the placenta-related pathophysiology of HDP is increasing. Since maternal tryptophan metabolites are involved in placentation, we investigated associations between first-trimester tryptophan metabolites and utero-placental (vascular) development, and the occurrence of HDP. METHODS 911 women were included from a prospective tertiary hospital cohort. Serum tryptophan metabolites were determined at 8.1 ± 1.4 weeks gestation. Placental volume (PV) and utero-placental vascular volume (uPVV) were determined at 7, 9 and 11 weeks gestation. HDP, including hypertension in early pregnancy, gestational hypertension, and preeclampsia, were retrieved from medical records. Associations with PV- and uPVV-trajectories were assessed using mixed models, and HDP risks were estimated by logistic regression models, adjusted for confounders. A mediation analysis was performed to evaluate whether blood pressure was a mediator in the associations with utero-placental (vascular) development. RESULTS A negative association between kynurenine and PV-trajectories was found (β = -0.129, 95%CI = -0.220 to -0.039), which was not mediated by blood pressure. No significant associations between other tryptophan metabolites and PV- and uPVV-trajectories were observed. Higher 5-hydroxytryptophan was associated with hypertension in early pregnancy (OR = 1.405, 95%CI = 1.210-1.681), and with an increased risk of preeclampsia in these women. No associations between tryptophan metabolites and other HDP were found. CONCLUSIONS Higher first-trimester kynurenine concentrations were associated with impaired utero-placental (vascular) development. Higher first-trimester 5-hydroxytryptophan concentrations were associated with early pregnancy hypertension, and an increased risk of preeclampsia, indicating its clinical potential as biomarker for future prediction, prevention and treatment of HDP.
Collapse
Affiliation(s)
- Sofie K M van Zundert
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre Rotterdam, the Netherlands; Department of Clinical Chemistry, Erasmus MC, University Medical Centre Rotterdam, the Netherlands
| | - Michelle Broekhuizen
- Division of Neonatology, Department of Neonatal and Pediatric Intensive Care, Erasmus MC, University Medical Centre Rotterdam, the Netherlands; Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, University Medical Centre Rotterdam, the Netherlands
| | - Mina Mirzaian
- Department of Clinical Chemistry, Erasmus MC, University Medical Centre Rotterdam, the Netherlands
| | - Lenie van Rossem
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre Rotterdam, the Netherlands
| | - A H Jan Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, University Medical Centre Rotterdam, the Netherlands
| | - Sten P Willemsen
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre Rotterdam, the Netherlands; Department of Biostatistics, Erasmus MC, University Medical Centre Rotterdam, the Netherlands
| | - Pieter H Griffioen
- Department of Clinical Chemistry, Erasmus MC, University Medical Centre Rotterdam, the Netherlands
| | - Anton H J Koning
- Department of Pathology, Erasmus MC, University Medical Centre Rotterdam, the Netherlands
| | - Annemarie G M G J Mulders
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre Rotterdam, the Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC, University Medical Centre Rotterdam, the Netherlands
| | | |
Collapse
|
12
|
Peng W, Merlo LMF, Grabler S, Montgomery JD, Mandik-Nayak L. IDO2 Drives Autoantibody Production and Joint Inflammation in a Preclinical Model of Arthritis by Repressing Runx1 Function in B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1595-1604. [PMID: 39400244 DOI: 10.4049/jimmunol.2400445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
The immunomodulatory enzyme IDO2 is an essential mediator of autoantibody production and joint inflammation in preclinical models of autoimmune arthritis. Although originally identified as a tryptophan-catabolizing enzyme, we recently discovered a previously unknown nonenzymatic pathway is essential for the proarthritic function of IDO2. We subsequently identified Runx1 (Runt-related transcription factor 1) as a potential component of the nonenzymatic pathway IDO2 uses to drive arthritis. In this study, we find that IDO2 directly binds Runx1 and inhibits its localization to the nucleus, implicating Runx1 as a downstream component of IDO2 function. To directly test whether Runx1 mediates the downstream pathway driving B cell activation in arthritis, we bred B cell conditional Runx1-deficient (CD19cre Runx1flox/flox) mice onto the KRN.g7 arthritis model in the presence or absence of IDO2. Runx1 loss did not affect arthritis in the presence of IDO2; however, deleting Runx1 reversed the antiarthritic effect of IDO2 loss in this model. Further studies demonstrated that the IDO2-Runx1 interaction could be blocked with a therapeutic anti-IDO2 mAb in vitro and that Runx1 was required for IDO2 Ig's therapeutic effect in vivo. Taken together, these data demonstrate that IDO2 mediates autoantibody production and joint inflammation by acting as a repressor of Runx1 function in B cells and implicate therapeutic targeting of IDO2-Runx1 binding as a strategy to inhibit autoimmune arthritis and other autoantibody-mediated diseases.
Collapse
Affiliation(s)
- Weidan Peng
- Lankenau Institute for Medical Research, Wynnewood, PA
| | | | | | | | | |
Collapse
|
13
|
Wang K, Zhang S, Wang Y, Wu X, Wen L, Meng T, Jin X, Li S, Hong Y, Ke J, Xu Y, Yuan H, Hu F. Taprenepag restores maternal-fetal interface homeostasis for the treatment of neurodevelopmental disorders. J Neuroinflammation 2024; 21:307. [PMID: 39609821 PMCID: PMC11603931 DOI: 10.1186/s12974-024-03300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/16/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND AND PURPOSE Neurodevelopmental disorders (NDDs) are characterized by abnormalities in brain development and neurobehaviors, including autism. The maternal-fetal interface (MFI) is a highly specialized tissue through which maternal factors affect fetal brain development. However, limited research exists on restoring and maintaining MFI homeostasis and its potential impact on NDDs. This study explores the role of placental indoleamine 2,3-dioxygenase (IDO-1) in MFI homeostasis and fetal brain development. EXPERIMENTAL APPROACH The maternal-fetal barrier was disrupted by sodium valproate (VPA) in pregnant mice, whose offspring show typical autism-like behaviors. Ultrastructural analysis and flow cytometric analysis were conducted to observe the morphological and immune system changes. Behavioral tests and immunofluorescence staining was used to investigate the ability and mechanism of taprenepag to alleviate the abnormal behaviors of VPA-exposed offspring and normalize the development of serotonergic neurons. KEY RESULTS In VPA-exposed pregnant mice, the downregulation of IDO-1 led to maternal immune overactivation and disruption of maternal-fetal barrier, resulting in excessive 5-HT synthesis in the placenta. This process disrupted the development of the serotonergic neuronal system in the offspring, resulting in impaired development of serotonergic neurons, thalamocortical axons, and NDDs in the progeny. However, a single injection of taprenepag at E13.5 ultimately upregulated placental IDO-1 through amplifying the positive feedback loop COX-2/PGE2/PTGER-2/IDO-1 and abolished these alterations. CONCLUSION Taprenepag improved autism-like behaviors in the offspring of VPA-exposed mice by addressing placental IDO-1 downregulation. This study highlights the potential of targeting IDO-1 to mitigate MFI disruption and NDD development.
Collapse
Affiliation(s)
- Kai Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, PR China
| | - Shufen Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Yunxia Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Xiaomei Wu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Lijuan Wen
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, PR China
| | - Tingting Meng
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, PR China
| | - Xiangyu Jin
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, PR China
| | - Sufen Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Yiling Hong
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Jia Ke
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Yichong Xu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Hong Yuan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, PR China
| | - Fuqiang Hu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China.
- Jinhua Institute of Zhejiang University, Jinhua, 321299, PR China.
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China.
| |
Collapse
|
14
|
Ding S, Yang R, Meng J, Guan X, Hong Y, Xu J, Qu L, Ji J, Yi W, Zou Q, Long Q. Prognostic and immune correlation of IDO1 promoter methylation in breast cancer. Sci Rep 2024; 14:27836. [PMID: 39537860 PMCID: PMC11561124 DOI: 10.1038/s41598-024-79149-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) plays an important role in the initiation and progression of breast cancer. DNA promoter methylation status has the potential to be used as a biomarker for predicting the response to immunotherapy. This study aimed to investigate the biological and clinical significance of IDO1 promoter methylation in breast cancer. We analyzed IDO1 promoter methylation and its relationship with survival, patient prognosis, immune cell infiltration, immune-related pathways, and the expression of key immunomodulators via bioinformatics methods in The Cancer Genome Atlas (TCGA) breast cancer cohort (779 samples). Furthermore, the IDO1 promoter methylation status and expression of the IDO1 gene in the basal subtype of breast cancer were investigated in vitro via a methylation-specific PCR (MSP) assay and quantitative polymerase chain reaction (qPCR). The IDO1 promoter was significantly hypomethylated in the basal subtype of breast cancer tissues compared with normal adjacent tissues, and this effect was correlated with high expression of IDO1, resulting in abundant immune cell infiltration, activation of immune-related pathways, and upregulation of key immunomodulators. The influence of IDO1 promoter hypomethylation on the prognosis of patients with breast cancer was also investigated. The promoter hypomethylation of IDO1 in the basal subtype of breast cancer and its correlation with high expression of IDO1 were also investigated in vitro. Our results showed that IDO1 promoter methylation is vital for regulating its expression, which leads to the development of a tumor microenvironment in breast cancer. IDO1 promoter methylation and expression are associated with prognosis, immune cell infiltration, immune-related pathways, and immunomodulator expression in breast cancer. Our findings provide evidence for the validation of IDO1 promoter methylation as a promising biomarker to predict responses to immune checkpoint inhibitors in patients with breast cancer.
Collapse
Affiliation(s)
- Shirong Ding
- Department of Oncology, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Ruozhu Yang
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
- Clinical Research Center for Breast Disease in Hunan Province, Changsha, 410011, China
| | - Jiahao Meng
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
- Clinical Research Center for Breast Disease in Hunan Province, Changsha, 410011, China
| | - Xinyu Guan
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
- Clinical Research Center for Breast Disease in Hunan Province, Changsha, 410011, China
| | - Yue Hong
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
- Clinical Research Center for Breast Disease in Hunan Province, Changsha, 410011, China
| | - Jiachi Xu
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
- Clinical Research Center for Breast Disease in Hunan Province, Changsha, 410011, China
| | - Limeng Qu
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
- Clinical Research Center for Breast Disease in Hunan Province, Changsha, 410011, China
| | - Jingfen Ji
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
- Clinical Research Center for Breast Disease in Hunan Province, Changsha, 410011, China
| | - Wenjun Yi
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
- Clinical Research Center for Breast Disease in Hunan Province, Changsha, 410011, China
| | - Qiongyan Zou
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China.
- Clinical Research Center for Breast Disease in Hunan Province, Changsha, 410011, China.
| | - Qian Long
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China.
- Clinical Research Center for Breast Disease in Hunan Province, Changsha, 410011, China.
| |
Collapse
|
15
|
Yamamoto Y, Goto N, Kambara K, Fujigaki S, Fujigaki H, Takemura M, Nabeshima T, Tomita A, Saito K. Usefulness of the 3-hydroxykynurenine/kynurenic acid ratio as a diagnostic biomarker for diffuse larger B-cell lymphoma. Ann Clin Biochem 2024:45632241297873. [PMID: 39439179 DOI: 10.1177/00045632241297873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
OBJECTIVES Reports have shown that the kynurenine pathway, one of the pathways by which tryptophan is metabolized, is activated in patients with diffuse large B-cell lymphoma (DLBCL). Activation of the kynurenine pathway triggers the production of various metabolites, such as kynurenine (Kyn), 3-hydroxykynurenine (3-HK), 3-hydroxyanthranilic acid (3-HAA), kynurenic acid (KA), and anthranilic acid (AA), which contribute to immune tolerance. The current study aimed to investigate the changes in metabolites of kynurenine pathway in DLBCL patients and evaluate their performance predicting DLBCL. METHODS Changes in metabolites of kynurenine pathway were examined using high-performance liquid chromatography in 35 DLBCL patients (age 61.2 ± 13.5 years) and 44 healthy controls (age 58.5 ± 12.5 years). RESULTS DLBCL patients had significantly higher levels of 3-HK, AA, and 3-HAA but lower levels of tryptophan (Trp) and KA compared to healthy controls. Given that the ratio of each metabolite represents the change in the Kyn pathway, the 3-HK/KA ratio was examined. Notably, DLBCL patients had a significantly higher 3-HK/KA ratio compared to healthy controls. In DLBCL, the area under the receiver operative characteristic (ROC) curve for 3-HK/KA (0.999) was higher than that for lactate dehydrogenase (0.885) and comparable to that for soluble interleukin-2 receptor (sIL-2R) (0.997). Based on ROC curve analysis, the 3-HK/KA ratio was found to be useful biomarker for the diagnosis of DLBCL. CONCLUSION Our results suggest that the 3-HK/KA ratio is a clinically useful biomarker of DLBCL. Moreover, its combination with existing markers, such as sIL-2R, can improve its effectiveness of diagnosing DLBCL.
Collapse
Affiliation(s)
- Yasuko Yamamoto
- Advanced Diagnostic System Development, Fujita Health University Graduate School of Health Sciences, Toyoake, Japan
| | - Naoe Goto
- Department of Hematology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kengo Kambara
- Medical Systems Research & Development Center, Medical Systems Business Division, FUJIFILM Corporation, Amagasaki, Japan
| | - Suwako Fujigaki
- Advanced Diagnostic System Development, Fujita Health University Graduate School of Health Sciences, Toyoake, Japan
| | - Hidetsugu Fujigaki
- Advanced Diagnostic System Development, Fujita Health University Graduate School of Health Sciences, Toyoake, Japan
| | - Masao Takemura
- Advanced Diagnostic System Development, Fujita Health University Graduate School of Health Sciences, Toyoake, Japan
| | - Toshitaka Nabeshima
- Laboratory of Health and Medical Science Innovation, Fujita Health University, Toyoake, Japan
- Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| | - Akihiro Tomita
- Department of Hematology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kuniaki Saito
- Advanced Diagnostic System Development, Fujita Health University Graduate School of Health Sciences, Toyoake, Japan
- Laboratory of Health and Medical Science Innovation, Fujita Health University, Toyoake, Japan
- Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| |
Collapse
|
16
|
Wang T, Liao X, Zhao X, Chen K, Chen Y, Wen H, Yin D, Wang Y, Lin B, Zhang S, Cui H. Rational design of 2-benzylsulfinyl-benzoxazoles as potent and selective indoleamine 2,3-dioxygenase 1 inhibitors to combat inflammation. Bioorg Chem 2024; 152:107740. [PMID: 39217780 DOI: 10.1016/j.bioorg.2024.107740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Mimicking the transition state of tryptophan (Trp) and O2 in the enzymatic reaction is an effective approach to design indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. In this study, we firstly assembled a small library of 2-substituted benzo-fused five membered heterocycles and found 2-sulfinyl-benzoxazoles with interesting IDO1 inhibitory activities. Next the inhibitory activity toward IDO1 was gradually improved. Several benzoxazoles showed potent IDO1 inhibitory activity with IC50 of 82-91 nM, and exhibited selectivity between IDO1 and tryptophan 2,3-dioxygenase (TDO2). Enzyme binding studies showed that benzoxazoles are reversible type II IDO1 inhibitors, and modeling studies suggested that the oxygen atom of the sulfoxide in benzoxazoles interacts with the iron atom of the heme group, which mimics the transition state of Fe-O-O-Trp complex. Especially, 10b can effectively inhibit the NO production in lipopolysaccharides (LPS) stimulated RAW264.7 cells, and it also shows good anti-inflammation effect on mice acute inflammation model of croton oil induced ear edema.
Collapse
Affiliation(s)
- Ting Wang
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Xiufeng Liao
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Xiaodi Zhao
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Kai Chen
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yangzhonghui Chen
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Hui Wen
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Dali Yin
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Yuchen Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Sen Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| | - Huaqing Cui
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| |
Collapse
|
17
|
Pocivavsek A, Schwarcz R, Erhardt S. Neuroactive Kynurenines as Pharmacological Targets: New Experimental Tools and Exciting Therapeutic Opportunities. Pharmacol Rev 2024; 76:978-1008. [PMID: 39304346 PMCID: PMC11549936 DOI: 10.1124/pharmrev.124.000239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
Both preclinical and clinical studies implicate functional impairments of several neuroactive metabolites of the kynurenine pathway (KP), the major degradative cascade of the essential amino acid tryptophan in mammals, in the pathophysiology of neurologic and psychiatric diseases. A number of KP enzymes, such as tryptophan 2,3-dioxygenase (TDO2), indoleamine 2,3-dioxygenases (IDO1 and IDO2), kynurenine aminotransferases (KATs), kynurenine 3-monooxygenase (KMO), 3-hydroxyanthranilic acid oxygenase (3-HAO), and quinolinic acid phosphoribosyltransferase (QPRT), control brain KP metabolism in health and disease and are therefore increasingly considered to be promising targets for the treatment of disorders of the nervous system. Understanding the distribution, cellular expression, and regulation of KP enzymes and KP metabolites in the brain is therefore critical for the conceptualization and implementation of successful therapeutic strategies. SIGNIFICANCE STATEMENT: Studies have implicated the kynurenine pathway of tryptophan in the pathophysiology of neurologic and psychiatric diseases. Key enzymes of the kynurenine pathway regulate brain metabolism in both health and disease, making them promising targets for treating these disorders. Therefore, understanding the distribution, cellular expression, and regulation of these enzymes and metabolites in the brain is critical for developing effective therapeutic strategies. This review endeavors to describe these processes in detail.
Collapse
Affiliation(s)
- Ana Pocivavsek
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina (A.P.); Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland (R.S.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.E.)
| | - Robert Schwarcz
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina (A.P.); Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland (R.S.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.E.)
| | - Sophie Erhardt
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina (A.P.); Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland (R.S.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.E.)
| |
Collapse
|
18
|
Nakashima M, Suga N, Fukumoto A, Yoshikawa S, Matsuda S. Caveolae with serotonin and NMDA receptors as promising targets for the treatment of Alzheimer's disease. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2024; 16:96-110. [PMID: 39583750 PMCID: PMC11579522 DOI: 10.62347/mtwv3745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/13/2024] [Indexed: 11/26/2024]
Abstract
Alzheimer's disease is the most general type of cognitive impairments. Until recently, strategies that prevent its clinical progression have remained more elusive. Consequently, research direction should be for finding effective neuroprotective agents. It has been suggested oxidative stress, mitochondrial injury, and inflammation level might lead to brain cell death in many neurological disorders. Therefore, several autophagy-targeted bioactive compounds may be promising candidate therapeutics for the prevention of brain cell damage. Interestingly, some risk genes to Alzheimer's disease are expressed within brain cells, which may be linked to cholesterol metabolism, lipid transport, endocytosis, exocytosis and/or caveolae formation, suggesting that caveolae may be a fruitful therapeutic target to improve cognitive impairments. This review would highlight the latest advances in therapeutic technologies to improve the treatment of Alzheimer's disease. In particular, a paradigm that serotonin and N-methyl-d-aspartate (NMDA) receptors agonist/antagonist within caveolae structure might possibly improve the cognitive impairment. Consequently, cellular membrane biophysics should improve our understanding of the pathology of the cognitive dysfunction associated with Alzheimer's disease. Here, this research direction for the purpose of therapy may open the potential to move a clinical care toward disease-modifying treatment strategies with certain benefits for patients.
Collapse
Affiliation(s)
- Moeka Nakashima
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Naoko Suga
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Akari Fukumoto
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Sayuri Yoshikawa
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
19
|
Chen X, Xu D, Yu J, Song XJ, Li X, Cui YL. Tryptophan Metabolism Disorder-Triggered Diseases, Mechanisms, and Therapeutic Strategies: A Scientometric Review. Nutrients 2024; 16:3380. [PMID: 39408347 PMCID: PMC11478743 DOI: 10.3390/nu16193380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Tryptophan is widely present in foods such as peanuts, milk, and bananas, playing a crucial role in maintaining metabolic homeostasis in health and disease. Tryptophan metabolism is involved in the development and progression of immune, nervous, and digestive system diseases. Although some excellent reviews on tryptophan metabolism exist, there has been no systematic scientometric study as of yet. METHODS This review provides and summarizes research hotspots and potential future directions by analyzing annual publications, topics, keywords, and highly cited papers sourced from Web of Science spanning 1964 to 2022. RESULTS This review provides a scientometric overview of tryptophan metabolism disorder-triggered diseases, mechanisms, and therapeutic strategies. CONCLUSIONS The gut microbiota regulates gut permeability, inflammation, and host immunity by directly converting tryptophan to indole and its derivatives. Gut microbial metabolites regulate tryptophan metabolism by activating specific receptors or enzymes. Additionally, the kynurenine (KYN) pathway, activated by indoleamine-2, 3-dioxygenase (IDO) and tryptophan 2, 3-dioxygenase, affects the migration and invasion of glioma cells and the development of COVID-19 and depression. The research and development of IDO inhibitors help to improve the effectiveness of immunotherapy. Tryptophan metabolites as potential markers are used for disease therapy, guiding clinical decision-making. Tryptophan metabolites serve as targets to provide a new promising strategy for neuroprotective/neurotoxic imbalance affecting brain structure and function. In summary, this review provides valuable guidance for the basic research and clinical application of tryptophan metabolism.
Collapse
Affiliation(s)
- Xue Chen
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Dong Xu
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jie Yu
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xu-Jiao Song
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xue Li
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuan-Lu Cui
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
20
|
Badawy AAB. The role of nonesterified fatty acids in cancer biology: Focus on tryptophan and related metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159531. [PMID: 38986804 DOI: 10.1016/j.bbalip.2024.159531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/26/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Plasma nonesterified fatty acids (NEFA) are elevated in cancer, because of decreased albumin levels and of fatty acid oxidation, and increased fatty acid synthesis and lipolysis. Albumin depletion and NEFA elevation maximally release albumin-bound tryptophan (Trp) and increase its flux down the kynurenine pathway, leading to increased production of proinflammatory kynurenine metabolites, which tumors use to undermine T-cell function and achieve immune escape. Activation of the aryl hydrocarbon receptor by kynurenic acid promotes extrahepatic Trp degradation by indoleamine 2,3-dioxygenase and leads to upregulation of poly (ADP-ribose) polymerase, activation of which and also of SIRT1 (silent mating type information regulation 2 homolog 1) could lead to depletion of NAD+ and ATP, resulting in cell death. NEFA also modulate heme synthesis and degradation, changes in which impact homocysteine metabolism and production of reduced glutathione and hydrogen sulphide. The significance of the interactions between heme and homocysteine metabolism in cancer biology has received little attention. Targeting Trp disposition in cancer to prevent the NEFA effects is suggested.
Collapse
Affiliation(s)
- Abdulla A-B Badawy
- Formerly School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, Wales, UK.
| |
Collapse
|
21
|
Ain QT. Recent development of nanomaterials-based PDT to improve immunogenic cell death. Photochem Photobiol Sci 2024; 23:1983-1998. [PMID: 39320675 DOI: 10.1007/s43630-024-00638-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024]
Abstract
Photodynamic therapy (PDT) is a clinically approved therapeutic modality for treating oncological and non-oncological disorders. PDT has proclaimed multiple benefits over further traditional cancer therapies including its minimal systemic toxicity and selective ability to eliminate irradiated tumors. In PDT, a photosensitizing substance localizes in tumor tissues and becomes active when exposed to a particular wavelength of laser light. This produces reactive oxygen species (ROS), which induce neoplastic cells to die and lead to the regression of tumors. The contributions of ROS to PDT-induced tumor destruction are described by three basic processes including direct or indirect cell death, vascular destruction, and immunogenic cell death. However, the efficiency of PDT is significantly limited by the inherent nature and tumor microenvironment. Combining immunotherapy with PDT has recently been shown to improve tumor immunogenicity while decreasing immunoregulatory repression, thereby gently modifying the anticancer immune response with long-term immunological memory effects. This review highlights the fundamental ideas, essential elements, and mechanisms of PDT as well as nanomaterial-based PDT to boost tumor immunogenicity. Moreover, the synergistic use of immunotherapy in combination with PDT to enhance immune responses against tumors is emphasized.
Collapse
Affiliation(s)
- Qura Tul Ain
- Department of Physics, The Women University Multan, Khawajabad, Multan, Pakistan.
| |
Collapse
|
22
|
Badawy AAB, Dawood S. Molecular Insights into the Interaction of Tryptophan Metabolites with the Human Aryl Hydrocarbon Receptor in Silico: Tryptophan as Antagonist and no Direct Involvement of Kynurenine. FRONT BIOSCI-LANDMRK 2024; 29:333. [PMID: 39344334 DOI: 10.31083/j.fbl2909333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND A direct link between the tryptophan (Trp) metabolite kynurenine (Kyn) and the aryl hydrocarbon receptor (AhR) is not supported by metabolic considerations and by studies demonstrating the failure of Kyn concentrations of up to 100 μM to activate the receptor in cell culture systems using the proxy system of cytochrome P-450-dependent metabolism. The Kyn metabolite kynurenic acid (KA) activates the AhR and may mediate the Kyn link. Recent studies demonstrated down regulation and antagonism of activation of the AhR by Trp. We have addressed the link between Kyn and the AhR by looking at their direct molecular interaction in silico. METHODS Molecular docking of Kyn, KA, Trp and a range of Trp metabolites to the crystal structure of the human AhR was performed under appropriate docking conditions. RESULTS Trp and 30 of its metabolites docked to the AhR to various degrees, whereas Kyn and 3-hydroxykynurenine did not. The strongest docking was observed with the Trp metabolite and photooxidation product 6-Formylindolo[3,2-b]carbazole (FICZ), cinnabarinic acid, 5-hydroxytryptophan, N-acetyl serotonin and indol-3-yllactic acid. Strong docking was also observed with other 5-hydroxyindoles. CONCLUSIONS We propose that the Kyn-AhR link is mediated by KA. The strong docking of Trp and its recently reported down regulation of the receptor suggest that Trp is an AhR antagonist and may thus play important roles in body homeostasis beyond known properties or simply being the precursor of biologically active metabolites. Differences in AhR activation reported in the literature are discussed.
Collapse
Affiliation(s)
- Abdulla A-B Badawy
- Formerly School of Health Sciences, Cardiff Metropolitan University, CF5 2YB Wales, UK
| | - Shazia Dawood
- Pharmacy and Allied Health Sciences, Iqra University, 7580 Karachi, Pakistan
| |
Collapse
|
23
|
Zakrocka I, Urbańska EM, Załuska W, Kronbichler A. Kynurenine Pathway after Kidney Transplantation: Friend or Foe? Int J Mol Sci 2024; 25:9940. [PMID: 39337426 PMCID: PMC11432217 DOI: 10.3390/ijms25189940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Kidney transplantation significantly improves the survival of patients with end-stage kidney disease (ESKD) compared to other forms of kidney replacement therapy. However, kidney transplant recipients' outcomes are not fully satisfactory due to increased risk of cardiovascular diseases, infections, and malignancies. Immune-related complications remain the biggest challenge in the management of kidney graft recipients. Despite the broad spectrum of immunosuppressive agents available and more detailed methods used to monitor their effectiveness, chronic allograft nephropathy remains the most common cause of kidney graft rejection. The kynurenine (KYN) pathway is the main route of tryptophan (Trp) degradation, resulting in the production of a plethora of substances with ambiguous properties. Conversion of Trp to KYN by the enzyme indoleamine 2,3-dioxygenase (IDO) is the rate-limiting step determining the formation of the next agents from the KYN pathway. IDO activity, as well as the production of subsequent metabolites of the pathway, is highly dependent on the balance between pro- and anti-inflammatory conditions. Moreover, KYN pathway products themselves possess immunomodulating properties, e.g., modify the activity of IDO and control other immune-related processes. KYN metabolites were widely studied in neurological disorders but recently gained the attention of researchers in the context of immune-mediated diseases. Evidence that this route of Trp degradation may represent a peripheral tolerogenic pathway with significant implications for transplantation further fueled this interest. Our review aimed to present recent knowledge about the role of the KYN pathway in the pathogenesis, diagnosis, monitoring, and treatment of kidney transplant recipients' complications.
Collapse
Affiliation(s)
- Izabela Zakrocka
- Department of Nephrology, Medical University of Lublin, 20-093 Lublin, Poland; (I.Z.); (W.Z.)
| | - Ewa M. Urbańska
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Wojciech Załuska
- Department of Nephrology, Medical University of Lublin, 20-093 Lublin, Poland; (I.Z.); (W.Z.)
| | - Andreas Kronbichler
- Department of Internal Medicine IV, Nephrology and Hypertension, Medical University Innsbruck, 6020 Innsbruck, Austria
- Department of Health, Medicine and Caring Sciences, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
24
|
Nakano T, Goto S, Chen CL. Mechanisms of Tolerance Induction in Liver Transplantation: Lessons Learned from Fetomaternal Tolerance, Autoimmunity and Tumor Immunity. Int J Mol Sci 2024; 25:9331. [PMID: 39273280 PMCID: PMC11395488 DOI: 10.3390/ijms25179331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Since the first published report of experimental kidney transplantation in dogs in 1902, there were many experimental and clinical trials of organ transplantation, with many sacrifices. After the establishment of the surgical technique and the discovery of immunosuppressive drugs, transplantation became the definitive treatment strategy for patients with terminal organ failure. However, this is not a common therapy method due to the difficulty of solving the fundamental issues behind organ transplantation, including the shortage of donor graft, potential risks of transplant surgery and economic capability. The pre- and post-transplant management of recipients is another critical issue that may affect transplant outcome. Most liver transplant recipients experience post-transplant complications, including infection, acute/chronic rejection, metabolic syndrome and the recurrence of hepatocellular carcinoma. Therefore, the early prediction and diagnosis of these complications may improve overall and disease-free survival. Furthermore, how to induce operational tolerance is the key to achieving the ultimate goal of transplantation. In this review, we focus on liver transplantation, which is known to achieve operational tolerance in some circumstances, and the mechanical similarities and differences between liver transplant immunology and fetomaternal tolerance, autoimmunity or tumor immunity are discussed.
Collapse
Affiliation(s)
- Toshiaki Nakano
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
- Liver Transplantation Center and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Shigeru Goto
- Liver Transplantation Center and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Nobeoka Medical Check Center, Fukuoka Institution of Occupational Health, Nobeoka 882-0872, Japan
- School of Pharmacy, Shujitsu University, Okayama 703-8516, Japan
| | - Chao-Long Chen
- Liver Transplantation Center and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| |
Collapse
|
25
|
Jiang K, Wang Q, Chen XL, Wang X, Gu X, Feng S, Wu J, Shang H, Ba X, Zhang Y, Tang K. Nanodelivery Optimization of IDO1 Inhibitors in Tumor Immunotherapy: Challenges and Strategies. Int J Nanomedicine 2024; 19:8847-8882. [PMID: 39220190 PMCID: PMC11366248 DOI: 10.2147/ijn.s458086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/13/2024] [Indexed: 09/04/2024] Open
Abstract
Tryptophan (Trp) metabolism plays a vital role in cancer immunity. Indoleamine 2.3-dioxygenase 1 (IDO1), is a crucial enzyme in the metabolic pathway by which Trp is degraded to kynurenine (Kyn). IDO1-mediated Trp metabolites can inhibit tumor immunity and facilitate immune evasion by cancer cells; thus, targeting IDO1 is a potential tumor immunotherapy strategy. Recently, numerous IDO1 inhibitors have been introduced into clinical trials as immunotherapeutic agents for cancer treatment. However, drawbacks such as low oral bioavailability, slow onset of action, and high toxicity are associated with these drugs. With the continuous development of nanotechnology, medicine is gradually entering an era of precision healthcare. Nanodrugs carried by inorganic, lipid, and polymer nanoparticles (NPs) have shown great potential for tumor therapy, providing new ways to overcome tumor diversity and improve therapeutic efficacy. Compared to traditional drugs, nanomedicines offer numerous significant advantages, including a prolonged half-life, low toxicity, targeted delivery, and responsive release. Moreover, based on the physicochemical properties of these nanomaterials (eg, photothermal, ultrasonic response, and chemocatalytic properties), various combination therapeutic strategies have been developed to synergize the effects of IDO1 inhibitors and enhance their anticancer efficacy. This review is an overview of the mechanism by which the Trp-IDO1-Kyn pathway acts in tumor immune escape. The classification of IDO1 inhibitors, their clinical applications, and barriers for translational development are discussed, the use of IDO1 inhibitor-based nanodrug delivery systems as combination therapy strategies is summarized, and the issues faced in their clinical application are elucidated. We expect that this review will provide guidance for the development of IDO1 inhibitor-based nanoparticle nanomedicines that can overcome the limitations of current treatments, improve the efficacy of cancer immunotherapy, and lead to new breakthroughs in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Kehua Jiang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Qing Wang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Xiao-Long Chen
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Xiaodong Wang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Xiaoya Gu
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Shuangshuang Feng
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Yanlong Zhang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| |
Collapse
|
26
|
Yu J, Yan Y, Li S, Xu Y, Parolia A, Rizvi S, Wang W, Zhai Y, Xiao R, Li X, Liao P, Zhou J, Okla K, Lin H, Lin X, Grove S, Wei S, Vatan L, Hu J, Szumilo J, Kotarski J, Freeman ZT, Skala S, Wicha M, Cho KR, Chinnaiyan AM, Schon S, Wen F, Kryczek I, Wang S, Chen L, Zou W. Progestogen-driven B7-H4 contributes to onco-fetal immune tolerance. Cell 2024; 187:4713-4732.e19. [PMID: 38968937 PMCID: PMC11344674 DOI: 10.1016/j.cell.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/09/2024] [Accepted: 06/09/2024] [Indexed: 07/07/2024]
Abstract
Immune tolerance mechanisms are shared in cancer and pregnancy. Through cross-analyzing single-cell RNA-sequencing data from multiple human cancer types and the maternal-fetal interface, we found B7-H4 (VTCN1) is an onco-fetal immune tolerance checkpoint. We showed that genetic deficiency of B7-H4 resulted in immune activation and fetal resorption in allogeneic pregnancy models. Analogously, B7-H4 contributed to MPA/DMBA-induced breast cancer progression, accompanied by CD8+ T cell exhaustion. Female hormone screening revealed that progesterone stimulated B7-H4 expression in placental and breast cancer cells. Mechanistically, progesterone receptor (PR) bound to a newly identified -58 kb enhancer, thereby mediating B7-H4 transcription via the PR-P300-BRD4 axis. PR antagonist or BRD4 degrader potentiated immunotherapy in a murine B7-H4+ breast cancer model. Thus, our work unravels a mechanistic and biological connection of a female sex hormone (progesterone) to onco-fetal immune tolerance via B7-H4 and suggests that the PR-P300-BRD4 axis is targetable for treating B7-H4+ cancer.
Collapse
Affiliation(s)
- Jiali Yu
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Yijian Yan
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Shasha Li
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Ying Xu
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Abhijit Parolia
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Syed Rizvi
- Department of Chemical Engineering, University of Michigan School of Engineering, Ann Arbor, MI, USA
| | - Weichao Wang
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Yiwen Zhai
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Rongxin Xiao
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Xiong Li
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Peng Liao
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Jiajia Zhou
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Karolina Okla
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA; Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Heng Lin
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Xun Lin
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Sara Grove
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Shuang Wei
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Linda Vatan
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Jiantao Hu
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Justyna Szumilo
- Department of Clinical Pathomorphology, Medical University of Lublin, Lublin, Poland
| | - Jan Kotarski
- Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Zachary T Freeman
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie Skala
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Max Wicha
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kathleen R Cho
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Samantha Schon
- Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Fei Wen
- Department of Chemical Engineering, University of Michigan School of Engineering, Ann Arbor, MI, USA
| | - Ilona Kryczek
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Shaomeng Wang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lieping Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Weiping Zou
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA; Graduate Program in Cancer Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
27
|
Alves LDF, Moore JB, Kell DB. The Biology and Biochemistry of Kynurenic Acid, a Potential Nutraceutical with Multiple Biological Effects. Int J Mol Sci 2024; 25:9082. [PMID: 39201768 PMCID: PMC11354673 DOI: 10.3390/ijms25169082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Kynurenic acid (KYNA) is an antioxidant degradation product of tryptophan that has been shown to have a variety of cytoprotective, neuroprotective and neuronal signalling properties. However, mammalian transporters and receptors display micromolar binding constants; these are consistent with its typically micromolar tissue concentrations but far above its serum/plasma concentration (normally tens of nanomolar), suggesting large gaps in our knowledge of its transport and mechanisms of action, in that the main influx transporters characterized to date are equilibrative, not concentrative. In addition, it is a substrate of a known anion efflux pump (ABCC4), whose in vivo activity is largely unknown. Exogeneous addition of L-tryptophan or L-kynurenine leads to the production of KYNA but also to that of many other co-metabolites (including some such as 3-hydroxy-L-kynurenine and quinolinic acid that may be toxic). With the exception of chestnut honey, KYNA exists at relatively low levels in natural foodstuffs. However, its bioavailability is reasonable, and as the terminal element of an irreversible reaction of most tryptophan degradation pathways, it might be added exogenously without disturbing upstream metabolism significantly. Many examples, which we review, show that it has valuable bioactivity. Given the above, we review its potential utility as a nutraceutical, finding it significantly worthy of further study and development.
Collapse
Affiliation(s)
- Luana de Fátima Alves
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - J. Bernadette Moore
- School of Food Science & Nutrition, University of Leeds, Leeds LS2 9JT, UK;
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| |
Collapse
|
28
|
Rajaiah R, Pandey K, Acharya A, Ambikan A, Kumar N, Guda R, Avedissian SN, Montaner LJ, Cohen SM, Neogi U, Byrareddy SN. Differential immunometabolic responses to Delta and Omicron SARS-CoV-2 variants in golden syrian hamsters. iScience 2024; 27:110501. [PMID: 39171289 PMCID: PMC11338146 DOI: 10.1016/j.isci.2024.110501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/07/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
Delta (B.1.617.2) and Omicron (B.1.1.529) variants of SARS-CoV-2 represents unique clinical characteristics. However, their role in altering immunometabolic regulations during acute infection remains convoluted. Here, we evaluated the differential immunopathogenesis of Delta vs. Omicron variants in Golden Syrian hamsters (GSH). The Delta variant resulted in higher virus titers in throat swabs and the lungs and exhibited higher lung damage with immune cell infiltration than the Omicron variant. The gene expression levels of immune mediators and metabolic enzymes, Arg-1 and IDO1 in the Delta-infected lungs were significantly higher compared to Omicron. Further, Delta/Omicron infection perturbed carbohydrates, amino acids, nucleotides, and TCA cycle metabolites and was differentially regulated compared to uninfected lungs. Collectively, our data provide a novel insight into immunometabolic/pathogenic outcomes for Delta vs. Omicron infection in the GSH displaying concordance with COVID-19 patients associated with inflammation and tissue injury during acute infection that offered possible new targets to develop potential therapeutics.
Collapse
Affiliation(s)
- Rajesh Rajaiah
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kabita Pandey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Anoop Ambikan
- The Systems Virology Lab, Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Narendra Kumar
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Reema Guda
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sean N. Avedissian
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Luis J. Montaner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Samuel M. Cohen
- Havlik Wall Professor of Oncology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ujjwal Neogi
- The Systems Virology Lab, Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- Havlik Wall Professor of Oncology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
29
|
Cizmecioglu A, Eryavuz Onmaz D, Senturk S, Askin D, Unlu A, Korkmaz H, Gungor G. Kynurenine Pathway Dysregulation and Pain Perception in Acute Pancreatitis: Has the Connection Unraveled? Neurosci Lett 2024; 837:137902. [PMID: 39029612 DOI: 10.1016/j.neulet.2024.137902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
AIM Tryptophan (TRP), an essential amino acid, undergoes catabolism through various pathways. Notably, the kynurenine pathway (KP), constituting one of these pathways, exhibits a unidirectional impact on immune response and energy metabolism. Nonetheless, its influence on pain sensation is characterized by biphasic dynamics. This study aims to scrutinize the influence of the KP pathway on pain sensation, particularly within the context of pancreatic inflammation. METHODS Our prospective case-control study involved individuals diagnosed with acute pancreatitis and a control group matched for gender and age. The patient cohort was subsequently subdivided into severe and non-severe subgroups. To assess metabolites within KP, two blood samples were collected from the patient cohort, one at the time of diagnosis and another during the recovery phase. Furthermore, for pain quantification, daily pain scores utilizing the Visual Analog Scale (VAS) were extracted from the patients' medical records. RESULTS The study incorporated 30 patients along with an equivalent number of controls. A noticeable distinction was evident between the patient and control groups, characterized by an increase in kynurenine levels and a decrease in the tryptophan/kynurenine ratio. Throughout the process of disease recovery, a uniform decrease was observed in all KP metabolites, excluding 3-Hydroxykynurenine. Elevated levels of Kynurenic acid (KYNA) were correlated with increased pain scores. Critically, no apparent distinctions in KP metabolites were discerned concerning pain severity in patients with comorbidities characterized by neural involvement. CONCLUSION Based on our results, the kynurenine pathway (KP) is activated in instances of acute pancreatitis. Elevated levels of KYNA were found to be associated with heightened pain scores. The operative stages within the KP responsible for pain modulation are impaired in cases characterized by neuropathy-induced pain sensation.
Collapse
Affiliation(s)
- Ahmet Cizmecioglu
- Department of Internal Medicine, Faculty of Medicine, Selcuk University, Konya, Turkiye.
| | - Duygu Eryavuz Onmaz
- Department of Biochemistry, Faculty of Medicine, Selcuk University, Konya, Turkiye.
| | - Suleyman Senturk
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Selcuk University, Konya, Turkiye.
| | - Dudu Askin
- Department of Internal Medicine, Alanya Sifa Private Medical Center, Antalya, Turkiye.
| | - Ali Unlu
- Department of Biochemistry, Faculty of Medicine, Selcuk University, Konya, Turkiye.
| | - Huseyin Korkmaz
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Selcuk University, Konya, Turkiye.
| | - Gokhan Gungor
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Selcuk University, Konya, Turkiye.
| |
Collapse
|
30
|
Joo JS, Lee D, Hong JY. Multi-Layered Mechanisms of Immunological Tolerance at the Maternal-Fetal Interface. Immune Netw 2024; 24:e30. [PMID: 39246621 PMCID: PMC11377946 DOI: 10.4110/in.2024.24.e30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 09/10/2024] Open
Abstract
Pregnancy represents an immunological paradox where the maternal immune system must tolerate the semi-allogeneic fetus expressing paternally-derived Ags. Accumulating evidence over decades has revealed that successful pregnancy requires the active development of robust immune tolerance mechanisms. This review outlines the multi-layered processes that establish fetomaternal tolerance, including the physical barrier of the placenta, restricted chemokine-mediated leukocyte trafficking, lack of sufficient alloantigen presentation, the presence of immunosuppressive regulatory T cells and tolerogenic decidual natural killer cells, expression of immune checkpoint molecules, specific glycosylation patterns conferring immune evasion, and unique metabolic/hormonal modulations. Interestingly, many of the strategies that enable fetal tolerance parallel those employed by cancer cells to promote angiogenesis, invasion, and immune escape. As such, further elucidating the mechanistic underpinnings of fetal-maternal tolerance may reciprocally provide insights into developing novel cancer immunotherapies as well as understanding the pathogenesis of gestational complications linked to dysregulated tolerance processes.
Collapse
Affiliation(s)
- Jin Soo Joo
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Dongeun Lee
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Jun Young Hong
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
31
|
Espelage L, Wagner N, Placke JM, Ugurel S, Tasdogan A. The Interplay between Metabolic Adaptations and Diet in Cancer Immunotherapy. Clin Cancer Res 2024; 30:3117-3127. [PMID: 38771898 DOI: 10.1158/1078-0432.ccr-22-3468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/07/2023] [Accepted: 04/15/2024] [Indexed: 05/23/2024]
Abstract
Over the past decade, cancer immunotherapy has significantly advanced through the introduction of immune checkpoint inhibitors and the augmentation of adoptive cell transfer to enhance the innate cancer defense mechanisms. Despite these remarkable achievements, some cancers exhibit resistance to immunotherapy, with limited patient responsiveness and development of therapy resistance. Metabolic adaptations in both immune cells and cancer cells have emerged as central contributors to immunotherapy resistance. In the last few years, new insights emphasized the critical role of cancer and immune cell metabolism in animal models and patients. During therapy, immune cells undergo important metabolic shifts crucial for their acquired effector function against cancer cells. However, cancer cell metabolic rewiring and nutrient competition within tumor microenvironment (TME) alters many immune functions, affecting their fitness, polarization, recruitment, and survival. These interactions have initiated the development of novel therapies targeting tumor cell metabolism and favoring antitumor immunity within the TME. Furthermore, there has been increasing interest in comprehending how diet impacts the response to immunotherapy, given the demonstrated immunomodulatory and antitumor activity of various nutrients. In conclusion, recent advances in preclinical and clinical studies have highlighted the capacity of immune-based cancer therapies. Therefore, further exploration into the metabolic requirements of immune cells within the TME holds significant promise for the development of innovative therapeutic approaches that can effectively combat cancer in patients.
Collapse
Affiliation(s)
- Lena Espelage
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Natalie Wagner
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Jan-Malte Placke
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Selma Ugurel
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany
| |
Collapse
|
32
|
Wang Z, Zhang J, Zuo C, Chen H, Wang L, Xie Y, Ma H, Min S, Wang X, Lian C. Identification and validation of tryptophan-related gene signatures to predict prognosis and immunotherapy response in lung adenocarcinoma reveals a critical role for PTTG1. Front Immunol 2024; 15:1386427. [PMID: 39144144 PMCID: PMC11321965 DOI: 10.3389/fimmu.2024.1386427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction Tryptophan metabolism is strongly associated with immunosuppression and may influence lung adenocarcinoma prognosis as well as tumor microenvironment alterations. Methods Sequencing datasets were obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database. Two different clusters were identified by consensus clustering, and prognostic models were established based on differentially expressed genes (DEGs) in the two clusters. We investigated differences in mutational landscapes, enrichment pathways, immune cell infiltration, and immunotherapy between high- and low-risk scoring groups. Single-cell sequencing data from Bischoff et al. were used to identify and quantify tryptophan metabolism, and model genes were comprehensively analyzed. Finally, PTTG1 was analyzed at the pan-cancer level by the pan-TCGA cohort. Results Risk score was defined as an independent prognostic factor for lung adenocarcinoma and was effective in predicting immunotherapy response in patients with lung adenocarcinoma. PTTG1 is one of the key genes, and knockdown of PTTG1 in vitro decreases lung adenocarcinoma cell proliferation and migration and promotes apoptosis and down-regulation of tryptophan metabolism regulators in lung adenocarcinoma cells. Discussion Our study revealed the pattern and molecular features of tryptophan metabolism in lung adenocarcinoma patients, established a model of tryptophan metabolism-associated lung adenocarcinoma prognosis, and explored the roles of PTTG1 in lung adenocarcinoma progression, EMT process, and tryptophan metabolism.
Collapse
Affiliation(s)
- Ziqiang Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Research Center of Clinical Laboratory Science, Bengbu Medical University, Bengbu, China
| | - Jing Zhang
- Department of Genetics, School of Life Sciences, Bengbu Medical University, Bengbu, China
| | - Chao Zuo
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Huili Chen
- Research Center of Clinical Laboratory Science, Bengbu Medical University, Bengbu, China
| | - Luyao Wang
- Department of Genetics, School of Life Sciences, Bengbu Medical University, Bengbu, China
| | - Yiluo Xie
- Department of Clinical Medicine, Bengbu Medical University, Bengbu, China
| | - Hongyu Ma
- Department of Clinical Medicine, Bengbu Medical University, Bengbu, China
| | - Shengping Min
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Xiaojing Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Chaoqun Lian
- Research Center of Clinical Laboratory Science, Bengbu Medical University, Bengbu, China
| |
Collapse
|
33
|
Müller-Durovic B, Jäger J, Engelmann C, Schuhmachers P, Altermatt S, Schlup Y, Duthaler U, Makowiec C, Unterstab G, Roffeis S, Xhafa E, Assmann N, Trulsson F, Steiner R, Edwards-Hicks J, West J, Turner L, Develioglu L, Ivanek R, Azzi T, Dehio P, Berger C, Kuzmin D, Saboz S, Mautner J, Löliger J, Geigges M, Palianina D, Khanna N, Dirnhofer S, Münz C, Bantug GR, Hess C. A metabolic dependency of EBV can be targeted to hinder B cell transformation. Science 2024; 385:eadk4898. [PMID: 38781354 DOI: 10.1126/science.adk4898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 05/03/2024] [Indexed: 05/25/2024]
Abstract
After infection of B cells, Epstein-Barr virus (EBV) engages host pathways that mediate cell proliferation and transformation, contributing to the propensity of the virus to drive immune dysregulation and lymphomagenesis. We found that the EBV protein EBNA2 initiates nicotinamide adenine dinucleotide (NAD) de novo biosynthesis by driving expression of the metabolic enzyme indoleamine 2,3-dioxygenase 1 (IDO1) in infected B cells. Virus-enforced NAD production sustained mitochondrial complex I activity, to match adenosine triphosphate (ATP) production with bioenergetic requirements of proliferation and transformation. In transplant patients, IDO1 expression in EBV-infected B cells, and a serum signature of increased IDO1 activity, preceded development of lymphoma. In humanized mice infected with EBV, IDO1 inhibition reduced both viremia and lymphomagenesis. Virus-orchestrated NAD biosynthesis is therefore a druggable metabolic vulnerability of EBV-driven B cell transformation, opening therapeutic possibilities for EBV-related diseases.
Collapse
Affiliation(s)
- Bojana Müller-Durovic
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Jessica Jäger
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Christine Engelmann
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Patrick Schuhmachers
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Sabine Altermatt
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Yannick Schlup
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Urs Duthaler
- Clinical Pharmacology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Celia Makowiec
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Gunhild Unterstab
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Sarah Roffeis
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Erta Xhafa
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Nadine Assmann
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
- Axolabs GmbH, Kulmbach, Germany
| | - Fredrik Trulsson
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Rebekah Steiner
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Joy Edwards-Hicks
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - James West
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Lorinda Turner
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Leyla Develioglu
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Robert Ivanek
- Bioinformatics Facility, Department of Biomedicine, University Basel and University Hospital of Basel, Basel, Switzerland
| | - Tarik Azzi
- Experimental Infectious Diseases and Cancer Research, University Children's Hospital of Zürich, Zürich, Switzerland
- Children's Research Center, University Children's Hospital of Zürich, Zürich, Switzerland
| | - Philippe Dehio
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Christoph Berger
- Experimental Infectious Diseases and Cancer Research, University Children's Hospital of Zürich, Zürich, Switzerland
| | - Dmitry Kuzmin
- Hornet Therapeutics Ltd, London, UK
- Department of Medical Oncology, Yale School of Medicine, New Haven, CT, USA
| | - Sophie Saboz
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Josef Mautner
- Department of Gene Vectors, Helmholtz Centre Munich, Munich, Germany
| | - Jordan Löliger
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Marco Geigges
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Darya Palianina
- Laboratory of Infection Biology, Department of Biomedicine, University Basel and University Hospital of Basel, Basel, Switzerland
| | - Nina Khanna
- Laboratory of Infection Biology, Department of Biomedicine, University Basel and University Hospital of Basel, Basel, Switzerland
| | - Stefan Dirnhofer
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Glenn R Bantug
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Christoph Hess
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
34
|
Sha Q, Escobar Galvis ML, Madaj ZB, Keaton SA, Smart L, Edgerly YM, Anis E, Leach R, Osborne LM, Achtyes E, Brundin L. Dysregulated placental expression of kynurenine pathway enzymes is associated with inflammation and depression in pregnancy. Brain Behav Immun 2024; 119:146-153. [PMID: 38555986 PMCID: PMC11210184 DOI: 10.1016/j.bbi.2024.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Perinatal depression (including antenatal-, postnatal-, and depression that spans both timepoints) is a prevalent disorder with high morbidity that affects both mother and child. Even though the full biological blueprints of perinatal depression remain incomplete, multiple studies indicate that, at least for antenatal depression, the disorder has an inflammatory component likely linked to a dysregulation of the enzymatic kynurenine pathway. The production of neuroactive metabolites in this pathway, including quinolinic acid (QUIN), is upregulated in the placenta due to the multiple immunological roles of the metabolites during pregnancy. Since neuroactive metabolites produced by the pathway also may affect mood by directly affecting glutamate neurotransmission, we sought to investigate whether the placental expression of kynurenine pathway enzymes controlling QUIN production was associated with both peripheral inflammation and depressive symptoms during pregnancy. METHODS 68 placentas obtained at birth were analyzed using qPCR to determine the expression of kynurenine pathway enzymes. Cytokines and metabolites were quantified in plasma using high-sensitivity electroluminescence and ultra-performance liquid chromatography, respectively. Maternal depressive symptoms were assessed using the Edinburgh Postnatal Depression Scale (EPDS) throughout pregnancy and the post-partum. Associations between these factors were assessed using robust linear regression with ranked enzymes. RESULTS Low placental quinolinate phosphoribosyl transferase (QPRT), the enzyme responsible for degrading QUIN, was associated with higher IL-6 and higher QUIN/kynurenic acid ratios at the 3rd trimester. Moreover, women with severe depressive symptoms in the 3rd trimester had significantly lower placental expression of both QPRT and 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase (ACMSD); impaired activity of these two enzymes leads to QUIN accumulation. CONCLUSION Overall, our data support that a compromised placental environment, featuring low expression of critical kynurenine pathway enzymes is associated with increased levels of plasma cytokines and the dysregulated kynurenine metabolite pattern observed in depressed women during pregnancy.
Collapse
Affiliation(s)
- Qiong Sha
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | | | - Zachary B Madaj
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Sarah A Keaton
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - LeAnn Smart
- Pine Rest Christian Mental Health Services, Grand Rapids, MI, USA
| | | | - Ehraz Anis
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Richard Leach
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, USA
| | - Lauren M Osborne
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Eric Achtyes
- Pine Rest Christian Mental Health Services, Grand Rapids, MI, USA; Department of Psychiatry, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Lena Brundin
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
35
|
Wakasugi K, Yokosawa T. The high-affinity tryptophan uptake transport system in human cells. Biochem Soc Trans 2024; 52:1149-1158. [PMID: 38813870 PMCID: PMC11346423 DOI: 10.1042/bst20230742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
The L-tryptophan (Trp) transport system is highly selective for Trp with affinity in the nanomolar range. This transport system is augmented in human interferon (IFN)-γ-treated and indoleamine 2,3-dioxygenase 1 (IDO1)-expressing cells. Up-regulated cellular uptake of Trp causes a reduction in extracellular Trp and initiates immune suppression. Recent studies demonstrate that both IDO1 and tryptophanyl-tRNA synthetase (TrpRS), whose expression levels are up-regulated by IFN-γ, play a pivotal role in high-affinity Trp uptake into human cells. Furthermore, overexpression of tryptophan 2,3-dioxygenase (TDO2) elicits a similar effect as IDO1 on TrpRS-mediated high-affinity Trp uptake. In this review, we summarize recent findings regarding this Trp uptake system and put forward a possible molecular mechanism based on Trp deficiency induced by IDO1 or TDO2 and tryptophanyl-AMP production by TrpRS.
Collapse
Affiliation(s)
- Keisuke Wakasugi
- Komaba Organization for Educational Excellence, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takumi Yokosawa
- Komaba Organization for Educational Excellence, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
36
|
van Zundert SKM, van Rossem L, Mirzaian M, Griffioen PH, Willemsen SP, van Schaik RHN, Steegers-Theunissen RPM. Periconceptional Non-medical Maternal Determinants Influence the Tryptophan Metabolism: The Rotterdam Periconceptional Cohort (Predict Study). Int J Tryptophan Res 2024; 17:11786469241257816. [PMID: 38873365 PMCID: PMC11171438 DOI: 10.1177/11786469241257816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 05/08/2024] [Indexed: 06/15/2024] Open
Abstract
Background The vital role of the maternal tryptophan (TRP) metabolism in maternal health and pregnancy is well established. However, non-medical maternal determinants influencing the TRP metabolism have been poorly investigated. We hypothesise that periconceptional maternal non-medical determinants alter the TRP metabolism, affecting both kynurenine (KP) and serotonin pathway (SP) metabolite concentrations. Therefore, we investigated the influence of non-medical maternal determinants on the TRP metabolism during the periconception period. Methods About 1916 pregnancies were included from the Rotterdam Periconceptional Cohort between November 2010 and December 2020. Data on periconceptional non-medical maternal determinants were collected through questionnaires. Serum samples were collected at 8.5 (SD = 1.6) weeks of gestation and TRP, kynurenine (KYN), 5-hydroxytryptophan (5-HTP), 5-HT (5-hydroxytryptamine) and 5-hydroxyindole acetic acid (5-HIAA) were determined using validated liquid chromatography (tandem) mass spectrometry. Mixed models were used to determine associations between periconceptional non-medical maternal determinants and these metabolites. Results In total 11 periconceptional non-medical maternal determinants were identified. Protein intake was positively associated with TRP (β = .12, 95% CI = 0.07-0.17), while age, energy intake and body mass index (BMI) (β = -.24, 95% CI = -0.37 to -0.10) were negatively associated with TRP. Age, BMI and total homocysteine were associated with higher KYN, whereas non-western geographical origin was associated with lower KYN (β = -.09, 95% CI = -0.16 to -0.03). Protein intake and total homocysteine (β = .07, 95% CI = 0.03-0.11) had a positive association with 5-HTP, while a negative association was found for energy intake. A non-western geographical origin and drug use were associated with higher 5-HT, and BMI with lower 5-HT (β = -6.32, 95% CI = -10.26 to -2.38). Age was positively associated with 5-HIAA (β = .92, 95% CI = 0.29-1.56), and BMI negatively. Conclusions Periconceptional non-medical maternal determinants, including age, geographical origin, drug use, energy and protein intake, BMI and total homocysteine, influence KP and SP metabolite concentrations.
Collapse
Affiliation(s)
- Sofie KM van Zundert
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
- Department of Clinical Chemistry, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Lenie van Rossem
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Mina Mirzaian
- Department of Clinical Chemistry, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Pieter H Griffioen
- Department of Clinical Chemistry, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Sten P Willemsen
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
- Department of Biostatistics, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Ron HN van Schaik
- Department of Clinical Chemistry, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | | |
Collapse
|
37
|
Maurice NJ, Erickson JR, DeJong CS, Mair F, Taber AK, Frutoso M, Islas LV, Vigil ALB, Lawler RL, McElrath MJ, Newell EW, Sullivan LB, Shree R, McCartney SA. Converging cytokine and metabolite networks shape asymmetric T cell fate at the term human maternal-fetal interface. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598377. [PMID: 38915597 PMCID: PMC11195144 DOI: 10.1101/2024.06.10.598377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Placentation presents immune conflict between mother and fetus, yet in normal pregnancy maternal immunity against infection is maintained without expense to fetal tolerance. This is believed to result from adaptations at the maternal-fetal interface (MFI) which affect T cell programming, but the identities (i.e., memory subsets and antigenic specificities) of T cells and the signals that mediate T cell fates and functions at the MFI remain poorly understood. We found intact recruitment programs as well as pro-inflammatory cytokine networks that can act on maternal T cells in an antigen-independent manner. These inflammatory signals elicit T cell expression of co-stimulatory receptors necessary for tissue retention, which can be engaged by local macrophages. Although pro-inflammatory molecules elicit T cell effector functions, we show that additional cytokine (TGF-β1) and metabolite (kynurenine) networks may converge to tune T cell function to those of sentinels. Together, we demonstrate an additional facet of fetal tolerance, wherein T cells are broadly recruited and restrained in an antigen-independent, cytokine/metabolite-dependent manner. These mechanisms provide insight into antigen-nonspecific T cell regulation, especially in tissue microenvironments where they are enriched.
Collapse
Affiliation(s)
- Nicholas J Maurice
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Jami R Erickson
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Caitlin S DeJong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Florian Mair
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Alexis K Taber
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Marie Frutoso
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Laura V Islas
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | | | - Richard L Lawler
- Immune Monitoring Core, Fred Hutchinson Cancer Center, Seattle, WA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Evan W Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Lucas B Sullivan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Raj Shree
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Washington, Seattle, WA
| | - Stephen A McCartney
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Washington, Seattle, WA
| |
Collapse
|
38
|
Zhang J, Liu Y, Zhi X, Xu L, Tao J, Cui D, Liu TF. Tryptophan catabolism via the kynurenine pathway regulates infection and inflammation: from mechanisms to biomarkers and therapies. Inflamm Res 2024; 73:979-996. [PMID: 38592457 DOI: 10.1007/s00011-024-01878-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND L-Tryptophan (L-Trp), an essential amino acid, is the only amino acid whose level is regulated specifically by immune signals. Most proportions of Trp are catabolized via the kynurenine (Kyn) pathway (KP) which has evolved to align the food availability and environmental stimulation with the host pathophysiology and behavior. Especially, the KP plays an indispensable role in balancing the immune activation and tolerance in response to pathogens. SCOPE OF REVIEW In this review, we elucidate the underlying immunological regulatory network of Trp and its KP-dependent catabolites in the pathophysiological conditions by participating in multiple signaling pathways. Furthermore, the KP-based regulatory roles, biomarkers, and therapeutic strategies in pathologically immune disorders are summarized covering from acute to chronic infection and inflammation. MAJOR CONCLUSIONS The immunosuppressive effects dominate the functions of KP induced-Trp depletion and KP-produced metabolites during infection and inflammation. However, the extending minor branches from the KP are not confined to the immune tolerance, instead they go forward to various functions according to the specific condition. Nevertheless, persistent efforts should be made before the clinical use of KP-based strategies to monitor and cure infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Jingpu Zhang
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Highway, Shanghai, 201508, People's Republic of China.
| | - Yanlei Liu
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Xiao Zhi
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Li Xu
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Highway, Shanghai, 201508, People's Republic of China
| | - Jie Tao
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Highway, Shanghai, 201508, People's Republic of China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Tie Fu Liu
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Highway, Shanghai, 201508, People's Republic of China.
| |
Collapse
|
39
|
Gootjes C, Zwaginga JJ, Roep BO, Nikolic T. Defining Human Regulatory T Cells beyond FOXP3: The Need to Combine Phenotype with Function. Cells 2024; 13:941. [PMID: 38891073 PMCID: PMC11172350 DOI: 10.3390/cells13110941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Regulatory T cells (Tregs) are essential to maintain immune homeostasis by promoting self-tolerance. Reduced Treg numbers or functionality can lead to a loss of tolerance, increasing the risk of developing autoimmune diseases. An overwhelming variety of human Tregs has been described, based on either specific phenotype, tissue compartment, or pathological condition, yet the bulk of the literature only addresses CD25-positive and CD127-negative cells, coined by naturally occurring Tregs (nTregs), most of which express the transcription factor Forkhead box protein 3 (FOXP3). While the discovery of FOXP3 was seminal to understanding the origin and biology of nTregs, there is evidence in humans that not all T cells expressing FOXP3 are regulatory, and that not all Tregs express FOXP3. Namely, the activation of human T cells induces the transient expression of FOXP3, irrespective of whether they are regulatory or inflammatory effectors, while some induced T cells that may be broadly defined as Tregs (e.g., Tr1 cells) typically lack demethylation and do not express FOXP3. Furthermore, it is unknown whether and how many nTregs exist without FOXP3 expression. Several other candidate regulatory molecules, such as GITR, Lag-3, GARP, GPA33, Helios, and Neuropilin, have been identified but subsequently discarded as Treg-specific markers. Multiparametric analyses have uncovered a plethora of Treg phenotypes, and neither single markers nor combinations thereof can define all and only Tregs. To date, only the functional capacity to inhibit immune responses defines a Treg and distinguishes Tregs from inflammatory T cells (Teffs) in humans. This review revisits current knowledge of the Treg universe with respect to their heterogeneity in phenotype and function. We propose that it is unavoidable to characterize human Tregs by their phenotype in combination with their function, since phenotype alone does not unambiguously define Tregs. There is an unmet need to align the expression of specific markers or combinations thereof with a particular suppressive function to coin functional Treg entities and categorize Treg diversity.
Collapse
Affiliation(s)
- Chelsea Gootjes
- Laboratory of Immunomodulation and Regenerative Cell Therapy, Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (J.J.Z.); (T.N.)
| | | | | | | |
Collapse
|
40
|
Li QH, Zhao QY, Yang WJ, Jiang AF, Ren CE, Meng YH. Beyond Immune Balance: The Pivotal Role of Decidual Regulatory T Cells in Unexplained Recurrent Spontaneous Abortion. J Inflamm Res 2024; 17:2697-2710. [PMID: 38707955 PMCID: PMC11070170 DOI: 10.2147/jir.s459263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
Recurrent spontaneous abortion (RSA) is defined as two or more consecutive pregnancy failures, which brings tremendous stress to women of childbearing age and seriously affects family well-being. However, the reason in about 50% of cases remains unknown and is defined as unexplained recurrent spontaneous abortion (URSA). The immunological perspective in URSA has attracted widespread attention in recent years. The embryo is regarded as a semi-allogeneic graft to the mother. A successful pregnancy requires transition to an immune environment conducive to embryo survival at the maternal-fetal interface. As an important member of regulatory immunity, regulatory T (Treg) cells play a key role in regulating immune tolerance at the maternal-fetal interface. This review will focus on the phenotypic plasticity and lineage stability of Treg cells to illustrate its relationship with URSA.
Collapse
Affiliation(s)
- Qing-Hui Li
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261021, People’s Republic of China
- Center of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Qiu-Yan Zhao
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261021, People’s Republic of China
| | - Wei-Jing Yang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261021, People’s Republic of China
| | - Ai-Fang Jiang
- Center of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Chun-E Ren
- Center of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Yu-Han Meng
- Center of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| |
Collapse
|
41
|
Chen ST, Ran F, Shi WW, Liu CK, Wang PC, Luo HN, Yang ZM. Tryptophan in the mouse diet is essential for embryo implantation and decidualization. Front Endocrinol (Lausanne) 2024; 15:1356914. [PMID: 38752181 PMCID: PMC11094255 DOI: 10.3389/fendo.2024.1356914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/02/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Nutritional deficiency occurs frequently during pregnancy and breastfeeding. Tryptophan (Trp), an essential amino acid which is critical for protein synthesis, serves as the precursor for serotonin, melatonin, and kynurenine (Kyn). The imbalance between serotonin and kynurenine pathways in Trp metabolism is closely related to inflammation and depression. This study assessed the effects of Trp deficiency on mouse early pregnancy. Methods Embryo implantation and decidualization were analyzed after female mice had been fed diets containing 0.2% Trp (for the control group), 0.062% Trp (for the low Trp group) and 0% Trp (for the Trp-free group) for two months. The uteri of the mice were collected on days 4, 5, and 8 of pregnancy for further analysis. Results On day 8 of pregnancy, the number of implantation sites were found to be similar between the control and the low Trp groups. However, no implantation sites were detected in the Trp-free group. On day 5 of pregnancy, plane polarity- and decidualization-related molecules showed abnormal expression pattern in the Trp-free group. On day 4 of pregnancy, there was no significant difference in uterine receptivity molecules between the low-Trp group and the control group, but uterine receptivity was abnormal in the Trp-free group. At implantation sites of the Trp-free group, IDO and AHR levels were markedly elevated. This potentially increased levels of Kyn, 2-hydroxy estradiol, and 4-hydroxy estradiol to affect decidualization. Conclusions Trp-free diet may impair decidualization via the IDO-KYN-AHR pathway.
Collapse
Affiliation(s)
- Si-Ting Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang, China
| | - Feng Ran
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang, China
| | - Wen-Wen Shi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Cheng-Kan Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Peng-Chao Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Hui-Na Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zeng-Ming Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
42
|
Liang H, Zhan J, Chen Y, Xing Z, He ZNT, Liu Y, Li X, Chen Y, Li Z, Kuang C, Yang D, Yang Q. Tryptophan deficiency induced by indoleamine 2,3-dioxygenase 1 results in glucose transporter 1-dependent promotion of aerobic glycolysis in pancreatic cancer. MedComm (Beijing) 2024; 5:e555. [PMID: 38706741 PMCID: PMC11066657 DOI: 10.1002/mco2.555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/18/2024] [Accepted: 04/06/2024] [Indexed: 05/07/2024] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1), the key enzyme in the catabolism of the essential amino acid tryptophan (Trp) through kynurenine pathway, induces immune tolerance and is considered as a critical immune checkpoint, but its impacts as a metabolism enzyme on glucose and lipid metabolism are overlooked. We aim to clarify the potential role of IDO1 in aerobic glycolysis in pancreatic cancer (PC). Analysis of database revealed the positive correlation in PC between the expressions of IDO1 and genes encoding important glycolytic enzyme hexokinase 2 (HK2), pyruvate kinase (PK), lactate dehydrogenase A (LDHA) and glucose transporter 1 (GLUT1). It was found that IDO1 could modulate glycolysis and glucose uptake in PC cells, Trp deficiency caused by IDO1 overexpression enhanced glucose uptake by stimulating GLUT1 translocation to the plasma membrane of PC cells. Besides, Trp deficiency caused by IDO1 overexpression suppressed the apoptosis of PC cells via promoting glycolysis, which reveals the presence of IDO1-glycolysis-apoptosis axis in PC. IDO1 inhibitors could inhibit glycolysis, promote apoptosis, and exhibit robust therapeutic efficacy when combined with GLUT1 inhibitor in PC mice. Our study reveals the function of IDO1 in the glucose metabolism of PC and provides new insights into the therapeutic strategy for PC.
Collapse
Affiliation(s)
- Heng Liang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesMOE Engineering Research Center of Gene TechnologyShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghaiChina
| | - Jiani Zhan
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesMOE Engineering Research Center of Gene TechnologyShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghaiChina
| | - Yunqiu Chen
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesMOE Engineering Research Center of Gene TechnologyShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghaiChina
| | - Zikang Xing
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesMOE Engineering Research Center of Gene TechnologyShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghaiChina
| | - Zhen Ning Tony He
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesMOE Engineering Research Center of Gene TechnologyShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghaiChina
| | - Yuying Liu
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesMOE Engineering Research Center of Gene TechnologyShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghaiChina
| | - Xuewen Li
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesMOE Engineering Research Center of Gene TechnologyShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghaiChina
| | - Yijia Chen
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesMOE Engineering Research Center of Gene TechnologyShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghaiChina
| | - Zhiyao Li
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesMOE Engineering Research Center of Gene TechnologyShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghaiChina
| | - Chunxiang Kuang
- Shanghai Key Lab of Chemical Assessment and SustainabilitySchool of Chemical Science and EngineeringTongji UniversityShanghaiChina
| | - Dan Yang
- Department of OrthopedicsShanghai Children's HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Qing Yang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesMOE Engineering Research Center of Gene TechnologyShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghaiChina
| |
Collapse
|
43
|
Sun X, Mao C, Xie Y, Zhong Q, Zhang R, Jiang D, Song Y. Therapeutic Potential of Hydrogen Sulfide in Reproductive System Disorders. Biomolecules 2024; 14:540. [PMID: 38785947 PMCID: PMC11117696 DOI: 10.3390/biom14050540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/28/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
Hydrogen sulfide (H2S), previously regarded as a toxic exhaust and atmospheric pollutant, has emerged as the third gaseous signaling molecule following nitric oxide (NO) and carbon monoxide (CO). Recent research has revealed significant biological effects of H2S in a variety of systems, such as the nervous, cardiovascular, and digestive systems. Additionally, H2S has been found to impact reproductive system function and may have therapeutic implications for reproductive disorders. This paper explores the relationship between H2S and male reproductive disorders, specifically erectile dysfunction, prostate cancer, male infertility, and testicular damage. Additionally, it examines the impact of H2S regulation on the pathophysiology of the female reproductive system, including improvements in preterm birth, endometriosis, pre-eclampsia, fetal growth restriction, unexplained recurrent spontaneous abortion, placental oxidative damage, embryo implantation, recovery of myometrium post-delivery, and ovulation. The study delves into the regulatory functions of H2S within the reproductive systems of both genders, including its impact on the NO/cGMP pathway, the activation of K+ channels, and the relaxation mechanism of the spongy smooth muscle through the ROCK pathway, aiming to broaden the scope of potential therapeutic strategies for treating reproductive system disorders in clinical settings.
Collapse
Affiliation(s)
- Xutao Sun
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, No. 24, Heping Street, Harbin 150040, China;
| | - Caiyun Mao
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, No. 24, Heping Street, Harbin 150040, China; (C.M.); (Q.Z.); (R.Z.)
| | - Ying Xie
- Department of Synopsis of the Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, No. 24, Heping Street, Harbin 150040, China;
| | - Qing Zhong
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, No. 24, Heping Street, Harbin 150040, China; (C.M.); (Q.Z.); (R.Z.)
| | - Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, No. 24, Heping Street, Harbin 150040, China; (C.M.); (Q.Z.); (R.Z.)
| | - Deyou Jiang
- Department of Synopsis of the Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, No. 24, Heping Street, Harbin 150040, China;
| | - Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, No. 24, Heping Street, Harbin 150040, China; (C.M.); (Q.Z.); (R.Z.)
| |
Collapse
|
44
|
Kudo Y, Sugimoto J. The Role of the Placental Enzyme Indoleamine 2,3-Dioxygenase in Normal and Abnormal Human Pregnancy. Int J Mol Sci 2024; 25:4577. [PMID: 38674162 PMCID: PMC11050494 DOI: 10.3390/ijms25084577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The biologically significant phenomenon that the fetus can survive immune attacks from the mother has been demonstrated in mammals. The survival mechanism depends on the fetus and placenta actively defending themselves against attacks by maternal T cells, achieved through the localized depletion of the amino acid L-tryptophan by an enzyme called indoleamine 2,3-dioxygenase. These findings were entirely unexpected and pose important questions regarding diseases related to human pregnancy and their prevention during human pregnancy. Specifically, the role of this mechanism, as discovered in mice, in humans remains unknown, as does the extent to which impaired activation of this process contributes to major clinical diseases in humans. We have, thus, elucidated several key aspects of this enzyme expressed in the human placenta both in normal and abnormal human pregnancy. The questions addressed in this brief review are as follows: (1) localization and characteristics of human placental indoleamine 2,3-dioxygenas; (2) overall tryptophan catabolism in human pregnancy and a comparison of indoleamine 2,3-dioxygenase expression levels between normal and pre-eclamptic pregnancy; (3) controlling trophoblast invasion by indoleamine 2,3-dioxygenase and its relation to the pathogenesis of placenta accrete spectrum.
Collapse
Affiliation(s)
- Yoshiki Kudo
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8551, Japan;
| | | |
Collapse
|
45
|
Coffey NJ, Simon MC. Metabolic alterations in hereditary and sporadic renal cell carcinoma. Nat Rev Nephrol 2024; 20:233-250. [PMID: 38253811 PMCID: PMC11165401 DOI: 10.1038/s41581-023-00800-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 01/24/2024]
Abstract
Kidney cancer is the seventh leading cause of cancer in the world, and its incidence is on the rise. Renal cell carcinoma (RCC) is the most common form and is a heterogeneous disease comprising three major subtypes that vary in their histology, clinical course and driver mutations. These subtypes include clear cell RCC, papillary RCC and chromophobe RCC. Molecular analyses of hereditary and sporadic forms of RCC have revealed that this complex and deadly disease is characterized by metabolic pathway alterations in cancer cells that lead to deregulated oxygen and nutrient sensing, as well as impaired tricarboxylic acid cycle activity. These metabolic changes facilitate tumour growth and survival. Specifically, studies of the metabolic features of RCC have led to the discovery of oncometabolites - fumarate and succinate - that can promote tumorigenesis, moonlighting functions of enzymes, and substrate auxotrophy owing to the disruption of pathways that enable the production of arginine and cholesterol. These metabolic alterations within RCC can be exploited to identify new therapeutic targets and interventions, in combination with novel approaches that minimize the systemic toxicity of metabolic inhibitors and reduce the risk of drug resistance owing to metabolic plasticity.
Collapse
Affiliation(s)
- Nathan J Coffey
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
46
|
Kobayashi K, Sasaki K. Astragalus root increases Treg and Th17 involvement in embryo implantation and pregnancy maintenance by decreasing CTLA-4 + Tregs. Drug Discov Ther 2024; 18:24-33. [PMID: 38382992 DOI: 10.5582/ddt.2023.01100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Maintenance of pregnancy is highly dependent on the maternal immune system. High levels of regulatory T cells (Tregs) accumulate in the maternal placenta to suppress immunoreactivity against fetal antigens. We assessed whether Astragalus root (AsR) and AsR-containing Kampo medicines modulate immunoreactivity and thereby increase mouse litter size. AsR-exposed murine splenocytes exhibited significantly increased IL-2 secretion. In AsR-exposed mice, total Tregs were significantly increased, whereas cytotoxic T lymphocyte antigen 4 (CTLA-4)-positive Tregs were decreased in AsR-exposed mice. Tregs express IL-2 receptor subunit alpha and are activated by IL-2. CTLA-4 interacts with B7 expressed in antigen-presenting cells (APCs) with high affinity, and CTLA-4/B7 signaling plays a critical role in inhibiting APC activity, thereby suppressing CD4+ T cell proliferation and activation. The decrease in CTLA-4+ Tregs in AsR-exposed mice is thought to induce an increase in CD4+ T cells, leading to increased IL-2 secretion from CD4+ T cells followed by Treg activation. Th17 cells prevent trophoblast apoptosis, resulting in trophoblast invasion into the decidua. AsR increases Th17 cells, thereby inducing dose-dependent increases in litter size. Although Keishikaogito (KO)- and Ogikenchuto (OK)-exposed mice exhibited increased IL-2 secretion and splenic Tregs, KO also increased CTLA-4+ Tregs. Therefore, KO promoted immunosuppression by increasing CTLA-4+ Tregs, which induced a decrease in Th17 and exerted little effect on litter size. Therefore, an increase in both Tregs and Th17 cells can be considered necessary for embryo implantation and pregnancy maintenance.
Collapse
Affiliation(s)
- Kyoko Kobayashi
- Division of Pharmacognosy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Miyagi , Japan
| | - Kenroh Sasaki
- Division of Pharmacognosy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Miyagi , Japan
| |
Collapse
|
47
|
Ebokaiwe AP, Olasehinde O, Chimezie IP, Odobi UR, Nvene C, Faith E. Zinc Ameliorates Cadmium-Induced Immunotoxicity by Modulating Splenic Immunosuppressive Indoleamine 2,3-Dioxygenase Activity, Hematological Indices, and CD4 + T Cells via Inhibition of Cadmium Uptake in Male Wistar Rats. Biol Trace Elem Res 2024; 202:1140-1149. [PMID: 37392360 DOI: 10.1007/s12011-023-03752-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/24/2023] [Indexed: 07/03/2023]
Abstract
Cadmium (Cd)-induced immunotoxicity has become a matter of public health concern owing to its prevalence in the environment consequently, great potential for human exposure. Zinc (Zn) has been known to possess antioxidant, anti-inflammatory, and immune-boosting properties. However, the ameliorating influence of Zn against Cd-induced immunotoxicity connecting the IDO pathway is lacking. Adult male Wistar rats were exposed to normal drinking water with no metal contaminants (group 1), group 2 received drinking water containing 200 μg/L of Cd, group 3 received drinking water containing 200 μg/L of Zn, and group 4 received Cd and Zn as above in drinking water for 42 days. Cd exposure alone significantly triggered the splenic oxidative-inflammatory stress, increased activities of immunosuppressive tryptophan 2,3-dioxygenase (TDO), indoleamine 2,3-dioxygenases (IDO) activities/protein expression, and decreased CD4+ T cell count, and a corresponding increase in the serum kynurenine concentration, as well as alterations in the hematological parameters and histologic structure when compared with the control (p < 0.05). Zn alone did not have any effect relative to the control group while co-exposure significantly (p < 0.05) assuaged the Cd-induced alterations in the studied parameters relative to the control. Cd-induced modifications in IDO 1 protein expression, IDO/TDO activities, oxidative-inflammatory stress, hematological parameters/CD4+ T cell, and histological structure in the spleen of rats within the time course of the investigation were prevented by Zn co-exposure via inhibition of Cd uptake.
Collapse
Affiliation(s)
- Azubuike Peter Ebokaiwe
- Toxicology and Immunotherapy Research Unit, Department of Biochemistry, Alex Ekwueme Federal University Ndufu Alike, PMB 1010, Abakaliki, Ebonyi State, Nigeria.
| | | | - Iyiagwor P Chimezie
- Toxicology and Immunotherapy Research Unit, Department of Biochemistry, Alex Ekwueme Federal University Ndufu Alike, PMB 1010, Abakaliki, Ebonyi State, Nigeria
| | - Ushang R Odobi
- Toxicology and Immunotherapy Research Unit, Department of Biochemistry, Alex Ekwueme Federal University Ndufu Alike, PMB 1010, Abakaliki, Ebonyi State, Nigeria
| | - Chiamaka Nvene
- Toxicology and Immunotherapy Research Unit, Department of Biochemistry, Alex Ekwueme Federal University Ndufu Alike, PMB 1010, Abakaliki, Ebonyi State, Nigeria
| | - Ekoh Faith
- Toxicology and Immunotherapy Research Unit, Department of Biochemistry, Alex Ekwueme Federal University Ndufu Alike, PMB 1010, Abakaliki, Ebonyi State, Nigeria
| |
Collapse
|
48
|
Gumusoglu S, Meincke CR, Kiel M, Betz A, Nuckols V, DuBose L, Steidele J, Sweezer E, Santillan D, Stroud AK, Pierce GL, Santillan MK. Low indoleamine 2, 3 dioxygenase (IDO) activity is associated with psycho-obstetric risk. Pregnancy Hypertens 2024; 35:12-18. [PMID: 38064980 PMCID: PMC11003651 DOI: 10.1016/j.preghy.2023.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/28/2023]
Abstract
OBJECTIVES Preeclampsia and depression in pregnancy are among the most prevalent obstetric disorders with no known cures. While depression and preeclampsia each increase risk for the other, shared mechansisms are unclear. One possibility is low levels of Indoleamine 2,3 dioxygenase (IDO), which links immune dysregulation and oxidative arterial damage resulting in poor vascular function in both preeclampsia and depression. We hypothesized low circulating IDO activity levels in pregnancy would correspond to poor vascular function and depression symptoms. STUDY DESIGN In this nested case-control study, clinical, demographic, and biologic data from a cohort of pregnant women recruited to longitudinal studies measuring noninvasive vascular function and circulating factors were analyzed. MAIN OUTCOME MEASURE IDO activity across all three trimesters of pregnancy was measured using a colorimetric assay. Carotid-femoral pulse wave velocity (cfPWV), a measure of arterial stiffness, was also assessed throughout gestation by non-invasive applanation tonometry. Depression symptoms were assessed in pregnancy via the validated patient health questionnaire 9 (PHQ9). RESULTS Participants with low second and third trimester IDO activity had significantly decreased cfPWV. This association remained statistically significant when controlled for confounders such as BMI and chronic hypertension in the third but not second trimester. While PHQ9 scores were not associated with cfPWV differences, IDO activity was lower in moderate and severely depressed relative to non-depressed pregnant individuals. CONCLUSION These results implicate IDO in arterial stiffness and depression symptoms, suggesting that decreased IDO may be a central target for improved psycho-obstetric health.
Collapse
Affiliation(s)
- Serena Gumusoglu
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, United States
| | - Casee R Meincke
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, United States
| | - Michaela Kiel
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, United States
| | - Alexandria Betz
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, United States
| | - Virginia Nuckols
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, United States
| | - Lyndsey DuBose
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, United States
| | - Jessica Steidele
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, United States; Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, United States
| | - Eileen Sweezer
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, United States
| | - Donna Santillan
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, United States
| | - Amy K Stroud
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, United States
| | - Gary L Pierce
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, United States
| | - Mark K Santillan
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
49
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 PMCID: PMC10931797 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Paz Moreno-Murciano
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
| | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Julia Lara Gutiérrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain;
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - José M. Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
50
|
Boulanger H, Bounan S, Mahdhi A, Drouin D, Ahriz-Saksi S, Guimiot F, Rouas-Freiss N. Immunologic aspects of preeclampsia. AJOG GLOBAL REPORTS 2024; 4:100321. [PMID: 38586611 PMCID: PMC10994979 DOI: 10.1016/j.xagr.2024.100321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024] Open
Abstract
Preeclampsia is a syndrome with multiple etiologies. The diagnosis can be made without proteinuria in the presence of dysfunction of at least 1 organ associated with hypertension. The common pathophysiological pathway includes endothelial cell activation, intravascular inflammation, and syncytiotrophoblast stress. There is evidence to support, among others, immunologic causes of preeclampsia. Unlike defense immunology, reproductive immunology is not based on immunologic recognition systems of self/non-self and missing-self but on immunotolerance and maternal-fetal cellular interactions. The main mechanisms of immune escape from fetal to maternal immunity at the maternal-fetal interface are a reduction in the expression of major histocompatibility complex molecules by trophoblast cells, the presence of complement regulators, increased production of indoleamine 2,3-dioxygenase, activation of regulatory T cells, and an increase in immune checkpoints. These immune protections are more similar to the immune responses observed in tumor biology than in allograft biology. The role of immune and nonimmune decidual cells is critical for the regulation of trophoblast invasion and vascular remodeling of the uterine spiral arteries. Regulatory T cells have been found to play an important role in suppressing the effectiveness of other T cells and contributing to local immunotolerance. Decidual natural killer cells have a cytokine profile that is favored by the presence of HLA-G and HLA-E and contributes to vascular remodeling. Studies on the evolution of mammals show that HLA-E, HLA-G, and HLA-C1/C2, which are expressed by trophoblasts and their cognate receptors on decidual natural killer cells, are necessary for the development of a hemochorial placenta with vascular remodeling. The activation or inhibition of decidual natural killer cells depends on the different possible combinations between killer cell immunoglobulin-like receptors, expressed by uterine natural killer cells, and the HLA-C1/C2 antigens, expressed by trophoblasts. Polarization of decidual macrophages in phenotype 2 and decidualization of stromal cells are also essential for high-quality vascular remodeling. Knowledge of the various immunologic mechanisms required for adequate vascular remodeling and their dysfunction in case of preeclampsia opens new avenues of research to identify novel biological markers or therapeutic targets to predict or prevent the onset of preeclampsia.
Collapse
Affiliation(s)
- Henri Boulanger
- Department of Nephrology and Dialysis, Clinique de l'Estrée, Stains, France (Drs Boulanger and Ahriz-Saksi)
| | - Stéphane Bounan
- Department of Obstetrics and Gynecology, Saint-Denis Hospital Center, Saint-Denis, France (Drs Bounan and Mahdhi)
| | - Amel Mahdhi
- Department of Obstetrics and Gynecology, Saint-Denis Hospital Center, Saint-Denis, France (Drs Bounan and Mahdhi)
| | - Dominique Drouin
- Department of Obstetrics and Gynecology, Clinique de l'Estrée, Stains, France (Dr Drouin)
| | - Salima Ahriz-Saksi
- Department of Nephrology and Dialysis, Clinique de l'Estrée, Stains, France (Drs Boulanger and Ahriz-Saksi)
| | - Fabien Guimiot
- Fetoplacental Unit, Robert-Debré Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France (Dr Guimiot)
| | - Nathalie Rouas-Freiss
- Fundamental Research Division, CEA, Institut de biologie François Jacob, Hemato-Immunology Research Unit, Inserm UMR-S 976, Institut de Recherche Saint-Louis, Paris University, Saint-Louis Hospital, Paris, France (Dr Rouas-Freiss)
| |
Collapse
|