1
|
Crespi BJ, Bushell A, Dinsdale N. Testosterone mediates life-history trade-offs in female mammals. Biol Rev Camb Philos Soc 2024. [PMID: 39542451 DOI: 10.1111/brv.13166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Hormones mediate life-history trade-offs. In female mammals, such trade-offs have been studied predominantly in the contexts of oestrogen, progesterone and prolactin. We evaluate the hypothesis that prenatal and postnatal testosterone levels structure and regulate trade-offs in females involving components of reproduction and survival. This hypothesis is predicated on the observation that testosterone confers competition-related and survival-related benefits, but also reproduction-related costs, to female mammals. The hypothesis is supported by field and laboratory data from diverse non-human animals, and data from healthy women. Most broadly, relatively low testosterone level in females has been associated with earlier, faster and higher offspring production, greater attractiveness to males, and reduced dominance or competitiveness, whereas higher testosterone level is associated with delayed and reduced reproduction but increased dominance, status, aggression, and resource accrual. The magnitude of testosterone-mediated trade-offs is expected to depend upon the strength of female-female competition, which represents some function of species-specific ecology, behaviour and mating system. Testosterone-associated trade-offs have, until now, been virtually ignored in studies of female life history, reproductive physiology, evolutionary endocrinology, and female-limited disease, probably due to researcher biases towards conceptualizing androgens as hormones with effects mainly restricted to males.
Collapse
Affiliation(s)
- Bernard J Crespi
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Aiden Bushell
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Natalie Dinsdale
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
2
|
Pando P, Langen TJ, Kentner AC. Neighborly Influence: Intrauterine position accounts for individual variability in a mouse model of maternal immune activation. Brain Behav Immun 2024; 121:72-73. [PMID: 39043343 PMCID: PMC11380580 DOI: 10.1016/j.bbi.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024] Open
Affiliation(s)
- Penelope Pando
- School of Arts & Sciences, Massachusetts College of Pharmacy and Health Sciences, 179 Longwood Ave, Boston, MA 02115, USA
| | - Tristen J Langen
- School of Arts & Sciences, Massachusetts College of Pharmacy and Health Sciences, 179 Longwood Ave, Boston, MA 02115, USA
| | - Amanda C Kentner
- School of Arts & Sciences, Massachusetts College of Pharmacy and Health Sciences, 179 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Yael A, Fishman R, Matas D, Doniger T, Vortman Y, Koren L. Fetal endocrine axes mRNA expression levels are related to sex and intrauterine position. Biol Sex Differ 2024; 15:61. [PMID: 39103957 DOI: 10.1186/s13293-024-00637-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/19/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND The hypothalamic-pituitary-adrenal (HPA) and -gonadal (HPG) axes are two major pathways that connect the neural and endocrine systems in vertebrates. Factors such as prenatal stress and maternal exposure to exogenous steroids have been shown to affect these pathways during fetal development. Another less studied factor is the transfer of hormones across fetuses in multifetal pregnancies. This form of transfer has been shown to influence the morphology, anatomy, physiology, and behavior of the offspring in litter-bearing mammals, an influence termed the intrauterine position (IUP) effect. In this study, we sought to delineate how the IUP effects HPA and HPG brain receptors, peptides, and enzymes (hereafter components) in utero and how these influences may differ between males and females. METHODS We utilized the unconventional model of culled free-ranging nutria (Myocastor coypus), with its large natural variation. We collected brain tissues from nutria fetuses and quantified the expression of key HPA and HPG components in three brain regions: prefrontal cortex, hypothalamus, and striatum. RESULTS We found an interaction between sex and IUP in the mineralocorticoid receptor (MR), gonadotropin-releasing hormone receptor (GNRHR), androgen receptor (AR), and estrogen receptor alpha (ESR1). IUP was significant in both gonadotropin-releasing hormone (GnRH) and its receptor GNRHR, but in different ways. In the hypothalamus, fetuses adjacent to same-sex neighbors had higher expression of GnRH than fetuses neighboring the opposite sex. Conversely, in the cortex, GNRHR exhibited the inverse pattern, and fetuses that were neighboring the opposite sex had higher expression levels than those neighboring the same sex. Regardless of IUP, in most components that showed significant sex differences, female fetuses had higher mRNA expression levels than male fetuses. We also found that HPA and HPG components were highly related in the early stages of gestation, and that there was an interaction between sex and developmental stage. In the early stages of pregnancy, female component expression levels were more correlated than males', but in the last trimester of pregnancy, male components were more related to each other than female's. CONCLUSIONS This study suggests that there are sexually different mechanisms to regulate the HPA and HPG axes during fetal development. Higher mRNA expression levels of endocrine axes components may be a mechanism to help females cope with prolonged androgen exposure over a long gestational period. Additionally, these findings suggest different coordination requirements of male and female endocrine axes during stages of fetal development.
Collapse
Affiliation(s)
- Ariel Yael
- The Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat Gan, Israel
| | - Ruth Fishman
- The Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat Gan, Israel
- Department of Brain Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Devorah Matas
- The Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat Gan, Israel
| | - Tirza Doniger
- The Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat Gan, Israel
| | - Yoni Vortman
- Department of Animal Sciences, Hula Research Center, Tel Hai Academic College, Upper Galilee, 1220800, Qiryat Shemona, Israel
| | - Lee Koren
- The Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat Gan, Israel.
| |
Collapse
|
4
|
Schaer R, Mueller FS, Notter T, Weber-Stadlbauer U, Meyer U. Intrauterine position effects in a mouse model of maternal immune activation. Brain Behav Immun 2024; 120:391-402. [PMID: 38897330 DOI: 10.1016/j.bbi.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/27/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024] Open
Abstract
Rodent models of maternal immune activation (MIA) are increasingly used as experimental tools in preclinical research of immune-mediated neurodevelopmental disorders and mental illnesses. Using a viral-like MIA model that is based on prenatal poly(I:C) exposure in mice, we have recently identified the existence of subgroups of MIA-exposed offspring that show dissociable behavioral, transcriptional, brain network and inflammatory profiles even under conditions of genetic homogeneity and identical MIA. Here, we tested the hypothesis that the intrauterine positions of fetuses, which are known to shape individual variability in litter-bearing mammals through variations in fetal hormone exposure, may contribute to the variable outcomes of MIA in mice. MIA was induced by maternal administration of poly(I:C) on gestation day 12 in C57BL/6N mice. Determining intrauterine positions using delivery by Cesarean section (C-section), we found that MIA-exposed offspring developing between female fetuses only (0M-MIA offspring) displayed significant deficits in sociability and sensorimotor gating at adult age, whereas MIA-exposed offspring developing between one or two males in utero (1/2M-MIA offspring) did not show the same deficits. These intrauterine position effects similarly emerged in male and female offspring. Furthermore, while MIA elevated fetal brain levels of pro- and anti-inflammatory cytokines independently of the precise intrauterine position and sex of adjacent fetuses during the acute phase, fetal brain levels of TNF-α remained elevated in 0M-MIA but not 1/2M-MIA offspring until the post-acute phase in late gestation. As expected, 1/2M offspring generally showed higher testosterone levels in the fetal brain during late gestation as compared to 0M offspring, confirming the transfer of testosterone from male fetuses to adjacent male or female fetuses. Taken together, our findings identify a novel source of within-litter variability contributing to heterogeneous outcomes of short- and long-term effects in a mouse model of MIA. In broader context, our findings highlight that individual differences in fetal exposure to hormonal and inflammatory signals may be a perinatal factor that shapes risk and resilience to MIA.
Collapse
Affiliation(s)
- Ron Schaer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Flavia S Mueller
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Tina Notter
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ulrike Weber-Stadlbauer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Urs Meyer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Fishman R, Kralj-Fišer S, Marglit S, Koren L, Vortman Y. Fathers and sons, mothers and daughters: Sex-specific genetic architecture for fetal testosterone in a wild mammal. Horm Behav 2024; 161:105525. [PMID: 38452612 DOI: 10.1016/j.yhbeh.2024.105525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/13/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Testosterone plays a critical role in mediating fitness-related traits in many species. Although it is highly responsive to environmental and social conditions, evidence from several species show a heritable component to its individual variation. Despite the known effects that in utero testosterone exposure have on adult fitness, the heritable component of individual testosterone variation in fetuses is mostly unexplored. Furthermore, testosterone has sex-differential effects on fetal development, i.e., a specific level may be beneficial for male fetuses but detrimental for females, producing sexual conflict. Such sexual conflict may be resolved by the evolution of a sex-specific genetic architecture of the trait. Here, we quantified fetal testosterone levels in a wild species, free-ranging nutrias (Myocastor coypus) using hair-testing and estimated testosterone heritability between parent and offspring from the same and opposite sex. We found that in utero accumulated hair testosterone levels were heritable between parents and offspring of the same sex. Moreover, there was a low additive genetic covariance between the sexes, and a low cross-sex genetic correlation, suggesting a potential for sex-specific trait evolution, expressed early on, in utero.
Collapse
Affiliation(s)
- Ruth Fishman
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 76100, Israel(1); The Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Simona Kralj-Fišer
- Scientific and Research Centre of the Slovenian Academy of Sciences and Arts, Jovan Hadži Institute of Biology, Evolutionary Zoology Laboratory, Ljubljana, Slovenia.
| | - Sivan Marglit
- Hula Research Center, Department of Animal Sciences, Tel-Hai College, Upper Galilee 1220800, Israel
| | - Lee Koren
- The Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Yoni Vortman
- Hula Research Center, Department of Animal Sciences, Tel-Hai College, Upper Galilee 1220800, Israel; MIGAL-Galilee Research Institute, 11016 Kiryat Shmona, Israel
| |
Collapse
|
6
|
Sheng JA, Handa RJ, Tobet SA. Evaluating different models of maternal stress on stress-responsive systems in prepubertal mice. Front Neurosci 2023; 17:1292642. [PMID: 38130695 PMCID: PMC10733493 DOI: 10.3389/fnins.2023.1292642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Maternal adversity during pregnancy influences neurodevelopment in human and model animal offspring. Adversity can result from stressors coming from many different directions ranging from environmental to nutritional and physiological to immune (e.g., infection). Most stressors result in fetal overexposure to glucocorticoids that have been directly linked to long- and short-term negative impacts on neurological health of offspring. Neuropsychiatric diseases postulated to have fetal origins are diverse and include such things cardiovascular disease, obesity, affective disorders, and metabolic and immune disorders. Methods The experiments in the current study compare 3 stressors: prenatal exposure to dexamethasone (DEX), maternal high fat diet (HFD), and maternal caloric restriction (CR). Offspring of mothers with these treatments were examined prepubertally to evaluate stress responsiveness and stress-related behaviors in in male and female mice. Results Prenatal exposure to synthetic glucocorticoid, DEX, resulted in decreased neonatal body weights, reduced social interaction behavior, and hypoactive stress response offspring exposed to maternal DEX. Maternal CR resulted in decreased body weights and social interaction behavior in males and females and increased anxiety-like behavior and acute stress response only in males. HFD resulted in altered body weight gain in both sex offspring with decreased anxiety-like behavior in a female-biased manner. Discussion The idea that glucocorticoid responses to different stressors might serve as a common stimulus across stress paradigms is insufficient, given that different modes of prenatal stress produced differential effects. Opposite nutritional stressors produced similar outcomes for anxiety-like behavior in both sexes, social-like behavior in females, and a hyperactive adrenal stress response in males. One common theme among the three models of maternal stress (DEX, CR, and HFD) was consistent data showing their role in activating the maternal and fetal immune response. By tuning in on the more immediate immunological aspect on the developing fetus (e.g., hormones, cytokines), additional studies may tease out more direct outcomes of maternal stress in rodents and increase their translational value to human studies.
Collapse
Affiliation(s)
- Julietta A. Sheng
- Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Robert J. Handa
- Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Stuart A. Tobet
- Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Psychiatry, Mass General Hospital, Harvard Medical School, Boston, MA, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
- Innovation Center on Sex Differences in Medicine, Mass General Hospital, Cambridge, MA, United States
| |
Collapse
|
7
|
Fishman R, Koren L, Ben-Shlomo R, Shanas U, Vortman Y. Paternity share predicts sons' fetal testosterone. Sci Rep 2023; 13:16737. [PMID: 37794058 PMCID: PMC10551022 DOI: 10.1038/s41598-023-42718-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023] Open
Abstract
Multiple paternity is common in many species. While its benefits for males are obvious, for females they are less clear. Female indirect benefits may include acquiring 'good genes' for offspring or increasing litter genetic diversity. The nutria (Myocastor coypus) is a successful invasive species. In its native habitat, it is polygynous, with larger and more aggressive males monopolizing paternity. Here, using culled nutria we genetically examined multiple paternity in-utero and found a high incidence of multiple paternity and maintenance of the number of fathers throughout gestation. Moreover, male fetuses sired by the prominent male have higher testosterone levels. Despite being retained, male fetuses of 'rare' fathers, siring commonly only one of the fetuses in the litter, have lower testosterone levels. Considering the reproductive skew of nutria males, if females are selected for sons with higher future reproductive success, low testosterone male fetuses are expected to be selected against. A possible ultimate explanation for maintaining multiple paternity could be that nutria females select for litter genetic diversity e.g., a bet-hedging strategy, even at the possible cost of reducing the reproductive success of some of their sons. Reproductive strategies that maintain genetic diversity may be especially beneficial for invasive species, as they often invade through a genetic bottleneck.
Collapse
Affiliation(s)
- Ruth Fishman
- Department of Brain Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel.
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat-Gan, Israel.
| | - Lee Koren
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat-Gan, Israel
| | - Rachel Ben-Shlomo
- Faculty of Natural Sciences, University of Haifa-Oranim, 3600600, Tivon, Israel
| | - Uri Shanas
- Faculty of Natural Sciences, University of Haifa-Oranim, 3600600, Tivon, Israel
| | - Yoni Vortman
- Hula Research Center, Department of Animal Sciences, Tel-Hai College, 1220800, Upper Galilee, Israel
- MIGAL-Galilee Research Institute, 11016, Kiryat Shmona, Israel
| |
Collapse
|
8
|
Stenhouse C, Bazer FW, Ashworth CJ. Sexual dimorphism in placental development and function: Comparative physiology with an emphasis on the pig. Mol Reprod Dev 2023; 90:684-696. [PMID: 35466463 DOI: 10.1002/mrd.23573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 11/10/2022]
Abstract
Across mammalian species, it has been demonstrated that sex influences birth weight, with males being heavier than females; a characteristic that can be observed from early gestation. Male piglets are more likely to be stillborn and have greater preweaning mortality than their female littermates, despite the additional maternal investment into male fetal growth. Given the conserved nature of the genome between the sexes, it is hypothesized that these developmental differences between males and females are most likely orchestrated by differential placental adaptation. This review summarizes the current understanding of fetal sex-specific differences in placental and endometrial structure and function, with an emphasis on pathways found to be differentially regulated in the pig including angiogenesis, apoptosis, and proliferation. Given the importance of piglet sex in agricultural enterprises, and the potential for skewed litter sex ratios, it is imperative to improve understanding of the relationship between fetal sex and molecular signaling in both the placenta and endometria across gestation.
Collapse
Affiliation(s)
- Claire Stenhouse
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
- Functional Genetics and Development Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Cheryl J Ashworth
- Functional Genetics and Development Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| |
Collapse
|
9
|
Ogawa Y, Terao M, Tsuji-Hosokawa A, Tsuchiya I, Hasegawa M, Takada S. SOX9 and SRY binding sites on mouse mXYSRa/Enh13 enhancer redundantly regulate Sox9 expression to varying degrees. Hum Mol Genet 2023; 32:55-64. [PMID: 35921234 DOI: 10.1093/hmg/ddac184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 01/25/2023] Open
Abstract
Sox9 plays an essential role in mammalian testis formation. It has been reported that gene expression in the testes is regulated by enhancers. Among them, mXYSRa/Enh13-which is located at far upstream of the transcription start site-plays a critical role, wherein its deletion causes complete male-to-female sex reversal in mice. It has been proposed that the binding sites (BSs) of SOX9 and SRY, the latter of which is the sex determining gene on the Y chromosome, are associated with mXYSRa/Enh13. They function as an enhancer, whereby the sequences are evolutionarily conserved and in vivo binding of SOX9 and SRY to mXYSRa/Enh13 has been demonstrated previously. However, their precise in vivo functions have not been examined to date. To this end, this study generated mice with substitutions on the SOX9 and SRY BSs to reveal their in vivo functions. Homozygous mutants of SOX9 and SRY BS were indistinguishable from XY males, whereas double mutants had small testes, suggesting that these functions are redundant and that there is another functional sequence on mXYSRa/Enh13, since mXYSRa/Enh13 deletion mice are XY females. In addition, the majority of hemizygous mice with substitutions in SOX9 BS and SRY BS were female and male, respectively, suggesting that SOX9 BS contributes more to SRY BS for mXYSRa/Enh13 to function. The additive effect of SOX9 and SRY via these BSs was verified using an in vitro assay. In conclusion, SOX9 BS and SRY BS function redundantly in vivo, and at least one more functional sequence should exist in mXYSRa/Enh13.
Collapse
Affiliation(s)
- Yuya Ogawa
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan.,Department of NCCHD, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Miho Terao
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Atsumi Tsuji-Hosokawa
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Iku Tsuchiya
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan.,Department of NCCHD, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Midori Hasegawa
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan.,Department of NCCHD, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan.,Department of NCCHD, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
10
|
Stenhouse C, Hurst E, Mellanby RJ, Ashworth CJ. Associations between maternal vitamin D status and porcine litter characteristics throughout gestation. J Anim Sci Biotechnol 2022; 13:106. [PMID: 36123748 PMCID: PMC9487113 DOI: 10.1186/s40104-022-00760-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Emerging evidence suggests an important role of vitamin D in the establishment and maintenance of pregnancy, and the regulation of foetal growth across mammalian species. However, the temporal changes in maternal vitamin D status throughout gestation in the pig and the relationship between maternal vitamin D status and litter characteristics of interest across gestation remain poorly understood and under-investigated. The abundance of 25(OH)D in maternal plasma was quantified by HPLC–MS/MS at gestational days (GD) 18, 30, 45, 60 and 90 (n = 5–11 gilts/GD). Maternal plasma 25(OH)D concentrations significantly increased between GD18 and GD30 (P < 0.05). The relationship between maternal vitamin D metabolite concentrations and litter characteristics of interest including gilt weight, ovulation rate, mean litter weight, number of live foetuses, percentage prenatal survival, and sex ratio of the litter was assessed. Maternal 25(OH)D (P = 0.059) concentrations tended to be positively associated with percentage prenatal survival on GD60. On GD90, maternal 25(OH)D (P < 0.05) concentrations were inversely associated with gilt weight. Maternal plasma 25(OH)D concentrations were inversely associated with the percentage of male foetuses in the litter on GD90 (P < 0.05). This study has provided novel insights into temporal changes in maternal vitamin D status throughout gestation and the relationship between maternal vitamin D status and the economically important litter characteristics of gilt weight, percentage prenatal survival and percentage of male foetuses in the litter. Improving the understanding of the role of vitamin D across important developmental timepoints in relation to foetal growth is essential to improve reproductive success in livestock species.
Collapse
Affiliation(s)
- Claire Stenhouse
- Functional Genetics and Development Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK. .,Current Affiliation, Department of Animal Science, Texas A&M University, College Station, Texas, 77843-2471, USA.
| | - Emma Hurst
- Clinical Sciences Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Richard J Mellanby
- Clinical Sciences Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Cheryl J Ashworth
- Functional Genetics and Development Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| |
Collapse
|
11
|
Y It Matters—Sex Differences in Fetal Lung Development. Biomolecules 2022; 12:biom12030437. [PMID: 35327629 PMCID: PMC8946560 DOI: 10.3390/biom12030437] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
Within this review, sex-specific differences in alveolar epithelial functions are discussed with special focus on preterm infants and the respiratory disorders associated with premature birth. First, a short overview about fetal lung development, the challenges the lung faces during perinatal lung transition to air breathing and respiratory distress in preterm infants is given. Next, clinical observations concerning sex-specific differences in pulmonary morbidity of human preterm infants are noted. The second part discusses potential sex-specific causes of pulmonary complications, including pulmonary steroid receptors and local lung steroid metabolism. With regard to pulmonary steroid metabolism, it is important to highlight which steroidogenic enzymes are expressed at which stage during fetal lung development. Thereafter, we review the knowledge concerning sex-specific aspects of lung growth and maturation. Special focus is given to alveolar epithelial Na+ transport as a driver of perinatal lung transition and the sex differences that were noted in this process.
Collapse
|
12
|
Correa LA, León C, Ramírez-Estrada J, Ly-Prieto Á, Abades S, Hayes LD, Soto-Gamboa M, Ebensperger LA. One for all and all for one: phenotype assortment and reproductive success in masculinized females. Behav Ecol 2021. [DOI: 10.1093/beheco/arab093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Abstract
Homophily by morphological and behavioral traits has been described in several species of vertebrates, but its functional consequences remain poorly studied. Homophily by plurally breeding females may improve direct fitness by enhancing reproductive success. Female mammals may exhibit phenotypical masculinization due to exposure to androgens during early development, a condition that is associated with maternal performance during subsequent breeding. Our goal was to assess whether female composition (in terms of masculinization) of plurally breeding groups influences female fitness in a natural population of degus (Octodon degus). We assessed if plurally breeding female degus assort themselves by anogenital distance (AGD), an accurate measure of masculinization level. We also quantified if homophily by AGD phenotype affects female reproductive success and the reproductive output of the group. Plurally breeding groups typically included similarly masculinized (i.e., long AGD) females or similarly feminized (short AGD) females, indicating a strong degree of homophily. Females weaned more offspring in plurally breeding groups with more masculinized females. Additionally, standardized variance in the number of offspring weaned decreased in plurally breeding groups with mostly masculinized females, indicating greater reproductive equality in these groups. We conclude that female degus organize into homophilic social groups of similar AGD, and that social groups of masculinized females exhibit a higher reproductive success.
Collapse
Affiliation(s)
- Loreto A Correa
- Escuela de Medicina Veterinaria, Facultad de Ciencias, Universidad Mayor, Camino la Pirámide, Huechuraba, Santiago, Chile
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla, Avenida Bernardo O’Higgins, Santiago, Chile
| | - Cecilia León
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla, Avenida Bernardo O’Higgins, Santiago, Chile
| | - Juan Ramírez-Estrada
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla, Avenida Bernardo O’Higgins, Santiago, Chile
| | - Álvaro Ly-Prieto
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla, Avenida Bernardo O’Higgins, Santiago, Chile
| | - Sebastián Abades
- GEMA Center for Genomics, Ecology & Environment, Faculty of Interdisciplinary Studies, Universidad Mayor, Camino La Pirámide, Huechuraba, Santiago, Chile
| | - Loren D Hayes
- Department of Biology, Geology and Environmental Sciences, University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Mauricio Soto-Gamboa
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Casilla, Isla Teja s/n, Valdivia, Chile
| | - Luis A Ebensperger
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla, Avenida Bernardo O’Higgins, Santiago, Chile
| |
Collapse
|
13
|
Dinsdale NL, Crespi BJ. Endometriosis and polycystic ovary syndrome are diametric disorders. Evol Appl 2021; 14:1693-1715. [PMID: 34295358 PMCID: PMC8288001 DOI: 10.1111/eva.13244] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/15/2022] Open
Abstract
Evolutionary and comparative approaches can yield novel insights into human adaptation and disease. Endometriosis and polycystic ovary syndrome (PCOS) each affect up to 10% of women and significantly reduce the health, fertility, and quality of life of those affected. PCOS and endometriosis have yet to be considered as related to one another, although both conditions involve alterations to prenatal testosterone levels and atypical functioning of the hypothalamic-pituitary-gonadal (HPG) axis. Here, we propose and evaluate the novel hypothesis that endometriosis and PCOS represent extreme and diametric (opposite) outcomes of variation in HPG axis development and activity, with endometriosis mediated in notable part by low prenatal and postnatal testosterone, while PCOS is mediated by high prenatal testosterone. This diametric disorder hypothesis predicts that, for characteristics shaped by the HPG axis, including hormonal profiles, reproductive physiology, life-history traits, and body morphology, women with PCOS and women with endometriosis will manifest opposite phenotypes. To evaluate these predictions, we review and synthesize existing evidence from developmental biology, endocrinology, physiology, life history, and epidemiology. The hypothesis of diametric phenotypes between endometriosis and PCOS is strongly supported across these diverse fields of research. Furthermore, the contrasts between endometriosis and PCOS in humans parallel differences among nonhuman animals in effects of low versus high prenatal testosterone on female reproductive traits. These findings suggest that PCOS and endometriosis represent maladaptive extremes of both female life-history variation and expression of sexually dimorphic female reproductive traits. The diametric disorder hypothesis for endometriosis and PCOS provides novel, unifying, proximate, and evolutionary explanations for endometriosis risk, synthesizes diverse lines of research concerning the two most common female reproductive disorders, and generates future avenues of research for improving the quality of life and health of women.
Collapse
Affiliation(s)
| | - Bernard J. Crespi
- Department of Biological SciencesSimon Fraser UniversityBurnabyBCCanada
| |
Collapse
|
14
|
Dinsdale N, Nepomnaschy P, Crespi B. The evolutionary biology of endometriosis. EVOLUTION MEDICINE AND PUBLIC HEALTH 2021; 9:174-191. [PMID: 33854783 PMCID: PMC8030264 DOI: 10.1093/emph/eoab008] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/04/2021] [Indexed: 12/14/2022]
Abstract
We provide the first analysis and synthesis of the evolutionary and mechanistic bases for risk of endometriosis in humans, structured around Niko Tinbergen's four questions about phenotypes: phylogenetic history, development, mechanism and adaptive significance. Endometriosis, which is characterized by the proliferation of endometrial tissue outside of the uterus, has its phylogenetic roots in the evolution of three causally linked traits: (1) highly invasive placentation, (2) spontaneous rather than implantation-driven endometrial decidualization and (3) frequent extensive estrogen-driven endometrial proliferation and inflammation, followed by heavy menstrual bleeding. Endometriosis is potentiated by these traits and appears to be driven, proximately, by relatively low levels of prenatal and postnatal testosterone. Testosterone affects the developing hypothalamic-pituitary-ovarian (HPO) axis, and at low levels, it can result in an altered trajectory of reproductive and physiological phenotypes that in extreme cases can mediate the symptoms of endometriosis. Polycystic ovary syndrome, by contrast, is known from previous work to be caused primarily by high prenatal and postnatal testosterone, and it demonstrates a set of phenotypes opposite to those found in endometriosis. The hypothesis that endometriosis risk is driven by low prenatal testosterone, and involves extreme expression of some reproductive phenotypes, is supported by a suite of evidence from genetics, development, endocrinology, morphology and life history. The hypothesis also provides insights into why these two diametric, fitness-reducing disorders are maintained at such high frequencies in human populations. Finally, the hypotheses described and evaluated here lead to numerous testable predictions and have direct implications for the treatment and study of endometriosis. Lay summary: Endometriosis is caused by endometrial tissue outside of the uterus. We explain why and how humans are vulnerable to this disease, and new perspectives on understanding and treating it. Endometriosis shows evidence of being caused in part by relatively low testosterone during fetal development, that 'programs' female reproductive development. By contrast, polycystic ovary syndrome is associated with relatively high testosterone in prenatal development. These two disorders can thus be seen as 'opposite' to one another in their major causes and correlates. Important new insights regarding diagnosis, study and treatment of endometriosis follow from these considerations.
Collapse
Affiliation(s)
- Natalie Dinsdale
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Pablo Nepomnaschy
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Bernard Crespi
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
15
|
Jiménez JA, Zylka MJ. Controlling litter effects to enhance rigor and reproducibility with rodent models of neurodevelopmental disorders. J Neurodev Disord 2021; 13:2. [PMID: 33397279 PMCID: PMC7780384 DOI: 10.1186/s11689-020-09353-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/17/2020] [Indexed: 11/22/2022] Open
Abstract
Research with rodents is crucial for expanding our understanding of genetic and environmental risk factors for neurodevelopmental disorders (NDD). However, there is growing concern about the number of animal studies that are difficult to replicate, potentially undermining the validity of results. These concerns have prompted funding agencies and academic journals to implement more rigorous standards in an effort to increase reproducibility in research. However, these standards fail to address a major source of variability in rodent research brought on by the “litter effect,” the fact that rodents from the same litter are phenotypically more similar to one other than rodents from different litters of the same strain. We show that the litter effect accounts for 30–60% of the variability associated with commonly studied phenotypes, including brain, placenta, and body weight. Moreover, we show how failure to control for litter-to-litter variation can mask a phenotype in Chd8V986*/+ mice that model haploinsufficiency of CHD8, a high-confidence autism gene. Thus, if not properly controlled, the litter effect has the potential to negatively influence rigor and reproducibility of NDD research. While efforts have been made to educate scientists on the importance of controlling for litter effects in previous publications, our analysis of the recent literature (2015–2020) shows that the vast majority of NDD studies focused on genetic risks, including mutant mouse studies, and environmental risks, such as air pollution and valproic acid exposure, do not correct for litter effects or report information on the number of litters used. We outline best practices to help scientists minimize the impact of litter-to-litter variability and to enhance rigor and reproducibility in future NDD studies using rodent models.
Collapse
Affiliation(s)
- Jessica A Jiménez
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mark J Zylka
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
16
|
Twin study of neonatal transient-evoked otoacoustic emissions. Hear Res 2020; 398:108108. [PMID: 33212398 DOI: 10.1016/j.heares.2020.108108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 01/13/2023]
Abstract
Our knowledge of which physiological mechanisms shape transient evoked otoacoustic emissions (TEOAEs) is incomplete, although thousands of TEOAEs are recorded each day as part of universal newborn hearing-screening (UNHS). TEOAE heritability may explain some of the large TEOAE variability observed in neonates, and give insights into the TEOAE generators and modulators, and why TEOAEs are generally larger in females and right ears. The aim was to estimate TEOAE heritability and describe ear and sex effects in a consecutive subset of all twins that passed UNHS at the same occasion at two hospitals during a six-year period (more than 30 000 neonates screened in total). TEOAEs were studied and TEOAE level correlations compared in twin sets of same-sex (SS, 302 individual twins, 151 twin pairs) and opposite-sex (OS, 152 individual twins, 76 twin pairs). A mathematical model was used to estimate and compare monozygotic (MZ) and dizygotic (DZ) intra-twin pair TEOAE level correlations, based on the data from the SS and OS twin sets. For both SS and OS twin pairs TEOAE levels were significantly higher in right ears and females, compared to left ears and males, as previously demonstrated in young adult twins and large groups of neonates. Neonatal females in OS twin pairs did not demonstrate masculinized TEOAEs, as has been demonstrated for OAEs in young adult females in OS twin pairs. The within-twin pair TEOAE level correlations were higher for SS twin pairs than for OS twin pairs, whereas the within-pair correlation coefficients could not be distinguished from zero when twins were randomly paired. These results reflect heredity as a key factor in TEOAE level variability. Additionally, the estimated MZ within-twin pair TEOAE level correlations were higher than those for DZ twin pairs. The heritability estimates reached up to 100% TEOAE heritability, which is numerically larger than previous estimates of about 75% in young adult twins.
Collapse
|
17
|
Perret M. Litter sex composition influences competitive performance during first reproduction in male mouse lemurs. Physiol Behav 2020; 228:113196. [PMID: 33017603 DOI: 10.1016/j.physbeh.2020.113196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 11/25/2022]
Abstract
In litter-bearing mammals, conditions experienced early in life can have long-lasting consequences on adult behavioral and physiological phenotypes, including reproductive fitness and survival. Using data from a large database, we focused our analysis on the consequences of litter composition on the reproductive performance of 131 mouse lemur males during their first breeding season. For male offspring, body mass at birth and at weaning only depended on the litter size (from one to 3), with the lowest values in triplets. Early growth had no relationship with the future reproductive success when males entered their first breeding season. When mouse lemurs were kept in groups with 2 or 3 competitors, males entered sexual competition for priority access to females in estrus, leading to a hierarchy with the dominant male ensuring the successful mating of the females. Genetic paternity tests showed that males born in same-sex litters (M, MM, MMM) were more competitive and fathered more offspring than males born in mixed-sex litters (MF, MMF, MFF), indicating the negative impact of a sister on male reproductive success. However, testosterone levels were unrelated to early growth or litter sex composition but were dependent on social interactions during sexual competition, with higher values in successful males. The effects of litter composition on the mating success of male mouse lemurs might mainly occur through social interactions between male offspring born in same-sex litters. Play fighting between juvenile males could play a major role in their acquisition of the skills required to succeed in sexual competition.
Collapse
Affiliation(s)
- Martine Perret
- UMR Mecadev 7179 CNRS-MNHN, Département Adaptations du Vivant, 1 avenue du petit château, 91800 Brunoy, France.
| |
Collapse
|
18
|
Premachandran H, Zhao M, Arruda-Carvalho M. Sex Differences in the Development of the Rodent Corticolimbic System. Front Neurosci 2020; 14:583477. [PMID: 33100964 PMCID: PMC7554619 DOI: 10.3389/fnins.2020.583477] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022] Open
Abstract
In recent years, a growing body of research has shown sex differences in the prevalence and symptomatology of psychopathologies, such as depression, anxiety, and fear-related disorders, all of which show high incidence rates in early life. This has highlighted the importance of including female subjects in animal studies, as well as delineating sex differences in neural processing across development. Of particular interest is the corticolimbic system, comprising the hippocampus, amygdala, and medial prefrontal cortex. In rodents, these corticolimbic regions undergo dynamic changes in early life, and disruption to their normative development is believed to underlie the age and sex-dependent effects of stress on affective processing. In this review, we consolidate research on sex differences in the hippocampus, amygdala, and medial prefrontal cortex across early development. First, we briefly introduce current principles on sexual differentiation of the rodent brain. We then showcase corticolimbic regional sex differences in volume, morphology, synaptic organization, cell proliferation, microglia, and GABAergic signaling, and explain how these differences are influenced by perinatal and pubertal gonadal hormones. In compiling this research, we outline evidence of what and when sex differences emerge in the developing corticolimbic system, and illustrate how temporal dynamics of its maturational trajectory may differ in male and female rodents. This will help provide insight into potential neural mechanisms underlying sex-specific critical windows for stress susceptibility and behavioral emergence.
Collapse
Affiliation(s)
| | - Mudi Zhao
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Maithe Arruda-Carvalho
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada.,Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada
| |
Collapse
|
19
|
Abstract
Synopsis
Females of some species are considered sex-role reversed, meaning that they face stronger competition for mates compared to males. While much attention has been paid to behavioral and morphological patterns associated with sex-role reversal, less is known about its physiological regulation. Here, we evaluate hypotheses relating to the neuroendocrine basis of sex-role reversal. We refute the most widely tested activational hypothesis for sex differences in androgen secretion; sex-role reversed females do not have higher levels of androgens in circulation than males. However, we find some evidence that the effects of androgens may be sex-specific; circulating androgen levels correlate with some competitive phenotypes in sex-role reversed females. We also review evidence that sex-role reversed females have higher tissue-specific sensitivity to androgens than males, at least in some species and tissues. Organizational effects may explain these relationships, considering that early exposure to sex steroids can shape later sensitivity to hormones, often in sex-specific ways. Moving forward, experimental and correlative studies on the ontogeny and expression of sex-role reversal will further clarify the mechanisms that generate sex-specific behaviors and sex roles.
Collapse
Affiliation(s)
- Sara E Lipshutz
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Kimberly A Rosvall
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- Center for the Integrated Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
20
|
Yoo M, Tanaka T, Konishi H, Tanabe A, Taniguchi K, Komura K, Hayashi M, Ohmichi M. The Protective Effect of Testosterone on the Ovarian Reserve During Cyclophosphamide Treatment. Onco Targets Ther 2020; 13:2987-2995. [PMID: 32308430 PMCID: PMC7152736 DOI: 10.2147/ott.s242703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/27/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction Cyclophosphamide, which is widely used to treat malignant disease, causes ovarian follicular atresia, which leads to premature ovarian insufficiency. The present study evaluated the protective effect of testosterone in preventing the decline in the ovarian reserve during cyclophosphamide treatment. Methods Using the COV434 human granulosa cell line, the protective effect of testosterone against cyclophosphamide was evaluated by immunocytochemistry, Western blotting and an MTS assay. The follicles in mouse ovaries and serum anti-Mullerian hormone were also assessed to evaluate the effects of testosterone. Results Testosterone suppressed the decrease in cell viability and apoptosis caused by cyclophosphamide treatment in vitro. In vivo, the number of atretic follicles in the mouse ovary was significantly lower in the testosterone plus cyclophosphamide group than in the cyclophosphamide alone group (p=0.03). The serum anti-Mullerian hormone was significantly higher in the testosterone plus cyclophosphamide group than in the cyclophosphamide alone group (16.2 [9.7–22.6]) vs 11.2 [8.9–12.1], p<0.01). The rate of cleaved Caspase-3 expression in the testosterone plus cyclophosphamide group was lower than that in the cyclophosphamide alone group (28.4% vs 48.6%, p=0.03). Conclusion These findings indicated that testosterone has the potential to prevent ovarian damage induced by cyclophosphamide by protecting granulosa cells from cyclophosphamide-induced apoptosis.
Collapse
Affiliation(s)
- Masae Yoo
- Department of Obstetrics and Gynecology
| | - Tomohito Tanaka
- Department of Obstetrics and Gynecology.,Translational Research Program, Osaka Medical College, Takatsuki, Japan
| | | | | | - Kohei Taniguchi
- Translational Research Program, Osaka Medical College, Takatsuki, Japan
| | - Kazumasa Komura
- Translational Research Program, Osaka Medical College, Takatsuki, Japan
| | | | | |
Collapse
|
21
|
Martini M, Corces VG, Rissman EF. Mini-review: Epigenetic mechanisms that promote transgenerational actions of endocrine disrupting chemicals: Applications to behavioral neuroendocrinology. Horm Behav 2020; 119:104677. [PMID: 31927019 PMCID: PMC9942829 DOI: 10.1016/j.yhbeh.2020.104677] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 12/26/2022]
Abstract
It is our hope this mini-review will stimulate discussion and new research. Here we briefly examine the literature on transgenerational actions of endocrine disrupting chemicals (EDCs) on brain and behavior and their underlying epigenetic mechanisms including: DNA methylation, histone modifications, and non-coding RNAs. We stress that epigenetic modifications need to be examined in a synergistic manner, as they act together in situ on chromatin to change transcription. Next we highlight recent work from one of our laboratories (VGC). The data provide new evidence that the sperm genome is poised for transcription. In developing sperm, gene enhancers and promoters are accessible for transcription and these activating motifs are also found in preimplantation embryos. Thus, DNA modifications associated with transcription factors during fertilization, in primordial germ cells (PGCs), and/or during germ cell maturation may be passed to offspring. We discuss the implications of this model to EDC exposures and speculate on whether natural variation in hormone levels during fertilization and PGC migration may impart transgenerational effects on brain and behavior. Lastly we discuss how this mechanism could apply to neural sexual differentiation.
Collapse
Affiliation(s)
- Mariangela Martini
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, United States of America
| | - Victor G Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - Emilie F Rissman
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, United States of America.
| |
Collapse
|
22
|
Wilson HA, Martin ER, Howes C, Wasson CS, Newman AE, Choleris E, MacLusky NJ. Low dose prenatal testosterone exposure decreases the corticosterone response to stress in adult male, but not female, mice. Brain Res 2020; 1729:146613. [DOI: 10.1016/j.brainres.2019.146613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/08/2019] [Accepted: 12/14/2019] [Indexed: 10/25/2022]
|
23
|
Tsai HW, Franklin M, Armoskus C, Taniguchi S, Moder C, Trang K, Santacruz M, Milla A. Androgenic regulation of sexually dimorphic expression of RNA binding motif protein 48 in the developing mouse cortex and hippocampus. Int J Dev Neurosci 2019; 78:33-44. [PMID: 31400491 PMCID: PMC6897302 DOI: 10.1016/j.ijdevneu.2019.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 11/28/2022] Open
Abstract
To further reveal the molecular mechanism underlying sexual differentiation of the mouse cerebral cortex and hippocampus, we reanalyzed our previous microarray study with Gene Ontology (GO) term enrichment and found that the GO term "RNA binding" was over-represented among the 89 sexually dimorphic candidate genes. Thus, we selected 16 autosomal genes annotated to the term RNA binding and profiled their mRNA expression in the developing male and female mouse cortex/hippocampus. During the first three weeks after birth, sex differences in mRNA levels of Khdrbs2, Nanos2, Rbm48, and Tdrd3 were observed in the mouse cortex/hippocampus. Of these genes, only the female-biased expression of Rbm48 in neonates was abolished by prenatal exposure to testosterone propionate (TP), while postnatal treatment of TP three weeks after birth increased Rbm48 and Tdrd3 mRNA levels in both sexes. Regardless of sex, the postnatal cortex/hippocampus also showed a marked increase in the content of androgen receptor (Ar) and estrogen receptor β (Esr2), but a decrease in estrogen receptor α (Esr1) and aromatase (Cyp19a1), which might confer the different responses of Rbm48 to prenatal and postnatal TP. Our results suggest that androgen-regulated, sexually dimorphic Rbm48 expression might present a novel molecular mechanism by which perinatal androgens control development of sexual dimorphism in cortical and hippocampal structure and function.
Collapse
Affiliation(s)
- Houng-Wei Tsai
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Michael Franklin
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Chris Armoskus
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Saori Taniguchi
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Courtney Moder
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Kathy Trang
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Marilisa Santacruz
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Allyson Milla
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| |
Collapse
|
24
|
Perret M. Litter sex composition affects first reproduction in female grey mouse lemurs (Microcebus murinus). Physiol Behav 2019; 208:112575. [DOI: 10.1016/j.physbeh.2019.112575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 01/25/2023]
|
25
|
Lents CA, Freking BA. Intrauterine position and adjacent fetal sex affects fetal and placental growth throughout gestation, but not embryonic viability, in pigs selected for component traits of litter size. Anim Reprod Sci 2019; 209:106139. [PMID: 31514939 DOI: 10.1016/j.anireprosci.2019.106139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 11/17/2022]
Abstract
Intrauterine position and sex of adjacent fetuses in litter bearing species have been implicated in physiological and behavioral differences of offspring. The effects of uterine position and sex status of flanking fetuses with crowded uterine conditions on fetal and placental growth rate was tested. Gilts were unilaterally hysterectomized-ovariectomized at 160 d of age and mated at approximately 280 d of age, with fetal harvest at 45, 65, 85, or 105 d of gestation. Uterine position relative to the cervix, fetal status (alive, dead, sex), fetal weight, and placental weight were recorded at harvest. Each fetus was coded as adjacent to 0, 1, or 2 opposite sex fetuses and analyzed using an ANOVA fitting contemporary group, line, and flanking fetal sex code as fixed effects with sire as a random effect. The fraction of live fetuses in each classification (0, 1, 2) was 26.4%, 50.1%, and 23.4%, respectively, indicating no effect on fetal survival. Fetal weight was affected by flanking sex status between 65 d (P < 0.05) and 105 d (P < 0.001), with means at 105 d of 800.0 ± 20.3, 748.5 ± 17.8, and 672.7 ± 25.2 g, respectively for flanking sex status codes 0, 1, 2. Placental weight was similarly affected (P < 0.01) by flanking sex code, but only at 105 d. It is concluded that fetal growth and placental development in pigs is influenced by sex status of adjacent fetuses. This could be a potential source of variation in behavioral and reproductive differences later in life.
Collapse
Affiliation(s)
- C A Lents
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933-0166, United States(1).
| | - B A Freking
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933-0166, United States(1)
| |
Collapse
|
26
|
Fishman R, Vortman Y, Shanas U, Koren L. Non-model species deliver a non-model result: Nutria female fetuses neighboring males in utero have lower testosterone. Horm Behav 2019; 111:105-109. [PMID: 30790563 DOI: 10.1016/j.yhbeh.2019.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/06/2019] [Accepted: 02/14/2019] [Indexed: 12/15/2022]
Abstract
Neighboring fetuses may impact their siblings in various respects, depending on their in utero location and sex. The effects of the intrauterine position (IUP) are widely studied in model organisms, especially laboratory bred murine strains that are characterized by short gestations and altricial offspring. In some species, the proximity to a male fetus and its higher circulating testosterone masculinizes neighboring female fetuses. In utero testosterone exposure might be manifested as higher testosterone concentrations, which contribute to a variation in morphology, reproductive potential and behavior. In this study, we examined the influence of neighboring an opposite sex fetus on testosterone levels in a feral animal model characterized by a long gestation and precocious offspring. Using necropsies of culled nutria (Myocastor coypus), we accurately determined the IUP and quantified testosterone immunoreactivity in fetal hair. We found that as expected, both male and female fetuses neighboring a male in utero had longer anogenital distance. However, females adjacent to males in utero showed lower testosterone levels than male fetuses, while testosterone levels of females without a male neighbor did not differ from those of males. This surprising result suggests an alternative mode by which local exogenous steroids may modify the local fetal environment. Our study emphasizes the importance of examining known phenomena in species with different life histories, other than the traditional murine models, to enhance our understanding of the evolutionary mechanisms that are driving sexual differentiation.
Collapse
Affiliation(s)
- Ruth Fishman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Yoni Vortman
- Hula Research Center, Department of Animal Sciences, Tel-Hai College, Upper Galilee 1220800, Israel
| | - Uri Shanas
- Faculty of Life Sciences, University of Haifa-Oranim, Tivon 3600600, Israel
| | - Lee Koren
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
27
|
Evidence that prenatal testosterone transfer from male twins reduces the fertility and socioeconomic success of their female co-twins. Proc Natl Acad Sci U S A 2019; 116:6749-6753. [PMID: 30886089 PMCID: PMC6452670 DOI: 10.1073/pnas.1812786116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
During sensitive periods in utero, gonadal steroids help organize biological sex differences in humans and other mammals. In litter-bearing species, chromosomal females passively exposed to prenatal testosterone from male littermates exhibit altered physical and behavioral traits as adults. The consequences of such effects are less well understood in humans, but recent near-doubling of twinning rates in many countries since 1980, secondary to advanced maternal age and increased reliance on in vitro fertilization, means that an increasing subset of females in many populations may be exposed to prenatal testosterone from their male co-twin. Here we use data on all births in Norway (n = 728,842, including 13,800 twins) between 1967 and 1978 to show that females exposed in utero to a male co-twin have a decreased probability of graduating from high school (15.2%), completing college (3.9%), and being married (11.7%), and have lower fertility (5.8%) and life-cycle earnings (8.6%). These relationships remain unchanged among the subsets of 583 and 239 females whose male co-twin died during the first postnatal year and first 28 days of life, respectively, supporting the interpretation that they are due primarily to prenatal exposure rather than to postnatal socialization effects of being raised with a male sibling. Our findings provide empirical evidence, using objectively measured nation-level data, that human females exposed prenatally to a male co-twin experience long-term changes in marriage, fertility, and human capital. These findings support the hypothesis of in utero testosterone transfer between twins, which is likely affecting a small but growing subset of females worldwide.
Collapse
|
28
|
Fishman R, Vortman Y, Shanas U, Koren L. Cortisol advantage of neighbouring the opposite sex in utero. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171636. [PMID: 30839724 PMCID: PMC6170571 DOI: 10.1098/rsos.171636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 08/09/2018] [Indexed: 05/14/2023]
Abstract
Population sex ratios naturally fluctuate around equality. It is argued that the production of an equal number of male and female offspring by individual parents should be favoured by selection, if all costs and benefits are equal. Theoretically, an even sex ratio should yield the highest probability for a fetus to be adjacent to a fetus of the opposite sex in utero. This may cause developmental costs or benefits that have been overlooked. We examined the physiological and developmental parameters associated with in utero sex ratios in the nutria (Myocastor coypus), an invasive wildlife species with a strong reproductive output. Using hair testing, we found that litters with even sex ratios had the highest average cortisol levels. Fetuses neighbouring the opposite sex exhibited longer trunks than those neighbouring the same sex, which might imply better lung development. Our results are the first, to our knowledge, to link intra-utero sex ratios and fetal cortisol and suggest that fetal cortisol might be a mechanism by which even sex ratios are maintained via developmental advantages.
Collapse
Affiliation(s)
- R. Fishman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Y. Vortman
- Hula Research Center, Department of Animal Sciences, Tel-Hai College, Upper Galilee 1220800, Israel
| | - U. Shanas
- Faculty of Life Sciences, University of Haifa—Oranim, Tivon 3600600, Israel
| | - L. Koren
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
29
|
Kato GA, Sakamoto SH, Eto T, Okubo Y, Shinohara A, Morita T, Koshimoto C. Individual differences in torpor expression in adult mice are related to relative birth mass. ACTA ACUST UNITED AC 2018; 221:jeb.171983. [PMID: 29678821 DOI: 10.1242/jeb.171983] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/16/2018] [Indexed: 01/31/2023]
Abstract
Daily torpor is a physiological adaptation in small mammals and birds, characterised by drastic reductions in metabolism and body temperature. Energy-constraining conditions, such as cold and starvation, are known to cause the expression of daily torpor. However, the reason for high degrees of inter- and intra-individual variation in torpor expression (TE) in similar situations is not clear. As littermates of altricial animals are exposed to an uneven allocation of maternal resources from conception to weaning, we tested whether early nutritional experiences have long-term effects on TE in adults. We used full-sibling littermates of laboratory mice that as adults were starved overnight to induce torpor. We measured body mass from birth until adulthood as an indicator of nutritional status, and calculated the relative body mass (RBM) as an indicator of the difference in nutritional status within a litter. After maturation, we subjected mice to five repeated torpor induction trials involving 24 h of fasting and 5 days of recovery. Half of the female mice displayed great individual variation in TE whereas male mice rarely exhibited daily torpor. In females, RBM at birth influenced TE, irrespective of body mass in adulthood; thus, female mice born with low RBMs displayed high TE in adulthood. In conclusion, we provide evidence that TE in mice differs among littermates, and that this variation is linked closely to heterogeneous nutritional experiences during the fetal period.
Collapse
Affiliation(s)
- Goro A Kato
- Division of Bio-resources, Department of Biotechnology, Frontier Science Research Center, University of Miyazaki, Kihara 5200, Kiyotake, Miyazaki, Miyazaki 889-1692, Japan.,Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, University of Kyushu, Maidashi 3-1-1, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Shinsuke H Sakamoto
- Department of Animal and Grassland Sciences, Faculty of Agriculture, Kibana Campus, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Takeshi Eto
- Center for Toki and Ecological Restoration, Niigata University, Niigata 952-0103, Japan
| | - Yoshinobu Okubo
- Japan Wildlife Research Center, 3-3-7 Kotobashi, Sumida-ku, Tokyo 130-8606, Japan
| | - Akio Shinohara
- Division of Bio-resources, Department of Biotechnology, Frontier Science Research Center, University of Miyazaki, Kihara 5200, Kiyotake, Miyazaki, Miyazaki 889-1692, Japan
| | - Tetsuo Morita
- Department of Animal and Grassland Sciences, Faculty of Agriculture, Kibana Campus, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Chihiro Koshimoto
- Division of Bio-resources, Department of Biotechnology, Frontier Science Research Center, University of Miyazaki, Kihara 5200, Kiyotake, Miyazaki, Miyazaki 889-1692, Japan
| |
Collapse
|
30
|
Female-biased sex ratios are associated with higher maternal testosterone levels in nutria (Myocastor coypus). Behav Ecol Sociobiol 2018. [DOI: 10.1007/s00265-018-2517-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
31
|
Brumley MR, Hoagland R, Truong M, Robinson SR. Responsiveness of rat fetuses to sibling motor activity: Communication in utero? Dev Psychobiol 2018; 60:265-277. [PMID: 29442370 PMCID: PMC10591451 DOI: 10.1002/dev.21615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/02/2018] [Indexed: 11/12/2022]
Abstract
Previous research has revealed that fetuses detect and respond to extrauterine stimuli such as maternal movement and speech, but little attention has been cast on how fetuses may directly influence and respond to each other in the womb. This study investigated whether motor activity of E20 rat fetuses influenced the behavior of siblings in utero. Three experiments showed that; (a) contiguous siblings expressed a higher frequency of synchronized movement than noncontiguous siblings; (b) fetuses that lay between two siblings immobilized with curare showed less movement relative to fetuses between saline or uninjected controls; and (c) fetuses between two siblings behaviorally activated by the opioid agonist U50,488 also showed less activity and specific behavioral changes compared to controls. Our findings suggest that rat fetuses are directly impacted by sibling motor activity, and thus that a rudimentary form of communication between siblings may influence the development of fetuses in utero.
Collapse
|
32
|
Taylor JA, Shioda K, Mitsunaga S, Yawata S, Angle BM, Nagel SC, vom Saal FS, Shioda T. Prenatal Exposure to Bisphenol A Disrupts Naturally Occurring Bimodal DNA Methylation at Proximal Promoter of fggy, an Obesity-Relevant Gene Encoding a Carbohydrate Kinase, in Gonadal White Adipose Tissues of CD-1 Mice. Endocrinology 2018; 159:779-794. [PMID: 29220483 PMCID: PMC5774244 DOI: 10.1210/en.2017-00711] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/01/2017] [Indexed: 12/13/2022]
Abstract
Exposure of mammalian fetuses to endocrine disruptors can increase the risk of adult-onset diseases. We previously showed that exposure of mouse fetuses to bisphenol A (BPA) caused adult-onset obesity. To examine roles of epigenetic changes in this delayed toxicity, we determined the effects of fetal mouse exposure to BPA on genome-wide DNA methylation and messenger RNA (mRNA) expression in gonadal white adipose tissues (WATs) by deep sequencing, bisulfite pyrosequencing, and real-time quantitative polymerase chain reaction. Pregnant CD-1 mice (F0) were dosed daily with 0, 5, or 500 μg/kg/d BPA during gestational days 9 to 18, and the weaned F1 animals were fed ad libitum with standard chow until they were euthanized at 19 weeks old. In the vehicle-exposed F1 animals, fggy promoter showed a clear bimodal pattern of very strong (55% to 95%) or very weak (5% to 30%) DNA methylation occurring at nearly equal incidence with no intermediate strength. Promoter hypermethylation completely suppressed mRNA expression. BPA exposure eliminated this naturally occurring dichotomy, shifting fggy promoter toward the hypomethylation state to release transcriptional suppression. The strength of Fggy mRNA expression significantly correlated with increased whole body weight and gonadal fat weight of males but not females. Bioinformatics studies showed that expression of Fggy mRNA is stronger in mouse WATs than in brown adipose tissues and enhanced in gonadal fat by diet-induced obesity. These observations suggest that prenatal exposure to BPA may disrupt the physiological bimodal nature of epigenetic regulation of fggy in mouse WATs, possibly contributing to the adult-onset obesity phenotype.
Collapse
Affiliation(s)
- Julia A. Taylor
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
| | - Keiko Shioda
- Massachusetts General Hospital Center for Cancer Research, Charlestown, Massachusetts 02114
| | - Shino Mitsunaga
- Massachusetts General Hospital Center for Cancer Research, Charlestown, Massachusetts 02114
| | - Shiomi Yawata
- Massachusetts General Hospital Center for Cancer Research, Charlestown, Massachusetts 02114
| | - Brittany M. Angle
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
| | - Susan C. Nagel
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, Missouri 65211
| | | | - Toshi Shioda
- Massachusetts General Hospital Center for Cancer Research, Charlestown, Massachusetts 02114
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
33
|
Huber SE, Lenz B, Kornhuber J, Müller CP. Prenatal androgen-receptor activity has organizational morphological effects in mice. PLoS One 2017; 12:e0188752. [PMID: 29176856 PMCID: PMC5703447 DOI: 10.1371/journal.pone.0188752] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/12/2017] [Indexed: 11/19/2022] Open
Abstract
Prenatal sex hormones exert organizational effects. It has been suggested that prenatal sex hormones affect adult morphological parameters, such as the finger length. Especially the second-to-fourth finger length (2D:4D) ratio has been implicated to be modified when exposed to higher androgen levels in utero. Here we show in a mouse model that experimental manipulation of the prenatal androgen level, by blocking the androgen receptor with flutamide or activating the androgen receptor with dihydrotestosterone (DHT), leads to changes in the length of the fingers of all paws in males and females. In addition to that, also total paw length and the 2D:4D ratio was affected. In males treated with DHT, the 2D:4D ratio was increased, while flutamide-treatment in females led to a reduced 2D:4D ratio. We also measured other parameters, such as head size, body length and tail length and demonstrate that body morphology is affected by prenatal androgen exposure with more prominent effects in females. Another factor that is thought to be influenced by early androgens is handedness. We tested mice for handedness, but did not find a significant effect of the prenatal treatment. These findings demonstrate that prenatal androgen activity is involved in the development of body morphology and might be a useful marker for prenatal androgen exposure.
Collapse
Affiliation(s)
- Sabine E. Huber
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Bernd Lenz
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christian P. Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
- * E-mail:
| |
Collapse
|
34
|
Wainstock T, Shoham-Vardi I, Sheiner E, Walfisch A. Fertility and anogenital distance in women. Reprod Toxicol 2017; 73:345-349. [PMID: 28743560 DOI: 10.1016/j.reprotox.2017.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Human and animal studies have found an association between prenatal androgen exposure and the anogenital distance (AGD). The aims of this study were to study the association between female AGD, reproductive health and background characteristics. METHODS This was a cross sectional study, in which AGD were measured in 300 pregnant women who were recruited early during the first stage of labor. Demographic and health characteristics were collected and studied in association with AGD measurements. RESULTS AGD presented with normal distribution (mean 40.3mm±10.7) and was positively associated with maternal age (beta=0.032, 95%CI 0.007-0.05, p=0.01) and negatively associated with infertility treatments (beta=-1.06, 95%CI -1.99 to -0.12, p=0.03). AGD was not associated with parity, ethnicity, height and other characteristics. CONCLUSIONS Adult females AGD is associated with age and fertility problems. Adult female AGD, used as a marker of early life exposure to EDCs, is possibly associated with reproductive characteristics.
Collapse
Affiliation(s)
- Tamar Wainstock
- Department of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, POB 653, Beer-Sheva, Israel.
| | - Ilana Shoham-Vardi
- Department of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, POB 653, Beer-Sheva, Israel.
| | - Eyal Sheiner
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Asnat Walfisch
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
35
|
Cowley DE, Atchley WR. QUANTITATIVE GENETIC MODELS FOR DEVELOPMENT, EPIGENETIC SELECTION, AND PHENOTYPIC EVOLUTION. Evolution 2017; 46:495-518. [DOI: 10.1111/j.1558-5646.1992.tb02054.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/1990] [Accepted: 08/28/1991] [Indexed: 11/27/2022]
Affiliation(s)
- David E. Cowley
- Department of Genetics North Carolina State University Raleigh NC 27695‐7614 USA
| | - William R. Atchley
- Department of Genetics North Carolina State University Raleigh NC 27695‐7614 USA
| |
Collapse
|
36
|
Abstract
Sex, the states of being female or male, potentially interacts with all xenobiotic exposures, both inadvertent and deliberate, and influences their toxicokinetics (TK), toxicodynamics, and outcomes. Sex differences occur in behavior, exposure, anatomy, physiology, biochemistry, and genetics, accounting for female-male differences in responses to environmental chemicals, diet, and pharmaceuticals, including adverse drug reactions (ADRs). Often viewed as an annoying confounder, researchers have studied only one sex, adjusted for sex, or ignored it. Occupational epidemiology, the basis for understanding many toxic effects in humans, usually excluded women. Likewise, Food and Drug Administration rules excluded women of childbearing age from drug studies for many years. Aside from sex-specific organs, sex differences and sex × age interactions occur for a wide range of disease states as well as hormone-influenced conditions and drug distribution. Women have more ADRs than men; the classic sex hormone paradigm (gonadectomy and replacement) reveals significant interaction of sex and TK including absorption, distribution, metabolisms, and elimination. Studies should be designed to detect sex differences, describe the mechanisms, and interpret these in a broad social, clinical, and evolutionary context with phenomena that do not differ. Sex matters, but how much of a difference is needed to matter remains challenging.
Collapse
Affiliation(s)
- Michael Gochfeld
- Environmental and Occupational Health Sciences Institute and Consortium for Risk Evaluation with Stakeholder Participation at Rutgers—Robert Wood Johnson Medical School. Piscataway, New Jersey
| |
Collapse
|
37
|
Sex differences in the brain–an interplay of sex steroid hormones and sex chromosomes. Clin Sci (Lond) 2016; 130:1481-97. [DOI: 10.1042/cs20160299] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/17/2016] [Indexed: 12/12/2022]
Abstract
Although considerable progress has been made in our understanding of brain function, many questions remain unanswered. The ultimate goal of studying the brain is to understand the connection between brain structure and function and behavioural outcomes. Since sex differences in brain morphology were first observed, subsequent studies suggest different functional organization of the male and female brains in humans. Sex and gender have been identified as being a significant factor in understanding human physiology, health and disease, and the biological differences between the sexes is not limited to the gonads and secondary sexual characteristics, but also affects the structure and, more crucially, the function of the brain and other organs. Significant variability in brain structures between individuals, in addition to between the sexes, is factor that complicates the study of sex differences in the brain. In this review, we explore the current understanding of sex differences in the brain, mostly focusing on preclinical animal studies.
Collapse
|
38
|
|
39
|
Brust V, Schindler PM, Lewejohann L. Lifetime development of behavioural phenotype in the house mouse (Mus musculus). Front Zool 2015; 12 Suppl 1:S17. [PMID: 26816516 PMCID: PMC4722345 DOI: 10.1186/1742-9994-12-s1-s17] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
With each trajectory taken during the ontogeny of an individual, the number of optional behavioural phenotypes that can be expressed across its life span is reduced. The initial range of phenotypic plasticity is largely determined by the genetic material/composition of the gametes whereas interacting with the given environment shapes individuals to adapt to/cope with specific demands. In mammalian species, the phenotype is shaped as the foetus grows, depending on the environment in the uterus, which in turn depends on the outer environment the mother experiences during pregnancy. After birth, a complex interaction between innate constitution and environmental conditions shapes individual lifetime trajectories, bringing about a wide range of diversity among individual subjects. In laboratory mice inbreeding has been systematically induced in order to reduce the genetic variability between experimental subjects. In addition, within most laboratories conducting behavioural phenotyping with mice, breeding and housing conditions are highly standardised. Despite such standardisation efforts a considerable amount of variability persists in the behaviour of mice. There is good evidence that phenotypic variation is not merely random but might involve individual specific behavioural patterns consistent over time. In order to understand the mechanisms and the possible adaptive value of the maintenance of individuality we review the emergence of behavioural phenotypes over the course of the life of (laboratory) mice. We present a literature review summarizing developmental stages of behavioural development of mice along with three illustrative case studies. We conclude that the accumulation of environmental differences and experiences lead to a “mouse individuality” that becomes increasingly stable over the lifetime.
Collapse
Affiliation(s)
- Vera Brust
- Behavioral Biology, University of Osnabrueck, Barbarastrasse 11, 49076 Osnabrueck, Germany
| | - Philipp M Schindler
- Behavioral Biology, University of Osnabrueck, Barbarastrasse 11, 49076 Osnabrueck, Germany
| | - Lars Lewejohann
- Behavioral Biology, University of Osnabrueck, Barbarastrasse 11, 49076 Osnabrueck, Germany
| |
Collapse
|
40
|
Chary MC, Cruz JP, Bardi M, Becker EA. Paternal retrievals increase testosterone levels in both male and female California mouse (Peromyscus californicus) offspring. Horm Behav 2015; 73:23-9. [PMID: 26065732 DOI: 10.1016/j.yhbeh.2015.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 05/06/2015] [Accepted: 05/11/2015] [Indexed: 12/21/2022]
Abstract
The importance of maternal care on offspring development has received considerable attention, although more recently, researchers have begun to focus on the significance of paternal contributions. In the monogamous and bi-parental California mouse, fathers provide high levels of care, and therefore serve as a model system for studying paternal effects on behavior and underlying neuroendocrine mechanisms. Paternal retrievals in this species influence long term changes in brain (expression of arginine vasopressin-AVP) and behavior (aggression and parenting) in adult male offspring. Further, paternal retrievals induce a transient increase in testosterone (T) in male offspring, which is thought to mediate the relationship between paternal retrievals and AVP expression. Although the father-son relationship has been well characterized, few studies have examined father-daughter interactions. In California mice, paternal retrievals increase aggression in female offspring. Although T has been implicated in the regulation of female aggression, it remains unclear whether T may underlie long-term changes in female offspring aggression in response to paternal retrievals. In the current study, we examined the influence of paternal retrievals on T in both male and female offspring. Retrievals were manipulated experimentally by displacement of the pup and trunk blood was collected from retrieved, non-retrieved, and non-manipulated (baseline) pups. We found that fathers expressed similar levels of retrievals towards sons and daughters, and that T levels were elevated in retrieved, as compared to non-retrieved offspring. Similar to what has been previously described in male offspring and replicated here, female offspring that were retrieved had higher T levels than non-retrieved females. Neither females nor males experienced a change in corticosterone levels in response to retrievals suggesting offspring do not mount a stress response to paternal care. Therefore, our data suggest that paternal retrievals may serve similar functions in shaping adult behavior in both male and female offspring via modulation of hormone levels.
Collapse
Affiliation(s)
- Mamatha C Chary
- Department of Psychology, Saint Joseph's University, 5600 City Avenue, Philadelphia, PA 19131, USA; Department of Psychology, Virginia Polytechnic Institute and State University, 890 Drillfield Drive, Blacksburg, VA 24060, USA.
| | - Jayson P Cruz
- Department of Psychology, Saint Joseph's University, 5600 City Avenue, Philadelphia, PA 19131, USA
| | - Massimo Bardi
- Department of Psychology, Randolph-Macon College, 204 Henry Street, Ashland, VA 23005, USA
| | - Elizabeth A Becker
- Department of Psychology, Saint Joseph's University, 5600 City Avenue, Philadelphia, PA 19131, USA
| |
Collapse
|
41
|
Age- and Sex-Dependent Changes in Androgen Receptor Expression in the Developing Mouse Cortex and Hippocampus. NEUROSCIENCE JOURNAL 2015; 2015:525369. [PMID: 26317111 PMCID: PMC4437260 DOI: 10.1155/2015/525369] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 01/02/2015] [Accepted: 01/02/2015] [Indexed: 02/06/2023]
Abstract
During the perinatal period, male mice are exposed to higher levels of testosterone (T) than females, which promotes sexual dimorphism in their brain structures and behaviors. In addition to acting via estrogen receptors after being locally converted into estradiol by aromatase, T also acts directly through androgen receptor (AR) in the brain. Therefore, we hypothesized that AR expression in the developing mouse cortex and hippocampus was sexually dimorphic. To test our hypothesis, we measured and determined AR mRNA and protein levels in mouse cortex/hippocampus collected on the day of birth (PN0) and 7 (PN7), 14 (PN14), and 21 (PN21) days after birth. We demonstrated that, as age advanced, AR mRNA levels increased in the cortex/hippocampus of both sexes but showed no sex difference. Two AR proteins, the full-length (110 kDa) and a smaller isoform (70 kDa), were detected in the developing mouse cortex/hippocampus with an age-dependent increase in protein levels of both AR isoforms at PN21 and a transient masculine increase in expression of the full-length AR protein on PN7. Thus, we conclude that the postnatal age and sex differences in AR protein expression in combination with the sex differences in circulating T may cause sexual differentiation of the mouse cortex/hippocampus.
Collapse
|
42
|
Matsuda KI. Epigenetic changes in the estrogen receptor α gene promoter: implications in sociosexual behaviors. Front Neurosci 2014; 8:344. [PMID: 25389384 PMCID: PMC4211403 DOI: 10.3389/fnins.2014.00344] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 10/09/2014] [Indexed: 11/23/2022] Open
Abstract
Estrogen action through estrogen receptor α (ERα) is involved in the control of sexual and social behaviors in adult mammals. Alteration of ERα gene activity mediated by epigenetic mechanisms, such as histone modifications and DNA methylation, in particular brain areas appears to be crucial for determining the extents of these behaviors between the sexes and among individuals within the same sex. This review provides a summary of the epigenetic changes in the ERα gene promoter that correlate with sociosexual behaviors.
Collapse
Affiliation(s)
- Ken Ichi Matsuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine Kyoto, Japan
| |
Collapse
|
43
|
Wall EH, Hewitt SC, Case LK, Lin CY, Korach KS, Teuscher C. The role of genetics in estrogen responses: a critical piece of an intricate puzzle. FASEB J 2014; 28:5042-54. [PMID: 25212221 DOI: 10.1096/fj.14-260307] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The estrogens are female sex hormones that are involved in a variety of physiological processes, including reproductive development and function, wound healing, and bone growth. They are mainly known for their roles in reproductive tissues--specifically, 17β-estradiol (E2), the primary estrogen, which is secreted by the ovaries and induces cellular proliferation and growth of the uterus and mammary glands. In addition to the role of estrogens in promoting tissue growth and development during normal physiological states, they have a well-established role in determining susceptibility to disease, particularly cancer, in reproductive tissues. The responsiveness of various tissues to estrogen is genetically controlled, with marked quantitative variation observed across multiple species, including humans. This variation presents both researchers and clinicians with a veritable physiological puzzle, the pieces of which--many of them unknown--are complex and difficult to fit together. Although genetics is known to play a major role in determining sensitivity to estrogens, there are other factors, including parent of origin and the maternal environment, that are intimately linked to heritable phenotypes but do not represent genotype, per se. The objectives of this review article were to summarize the current knowledge of the role of genotype, and uterine and neonatal environments, in phenotypic variation in the response to estrogens; to discuss recent findings and the potential mechanisms involved; and to highlight exciting research opportunities for the future.
Collapse
Affiliation(s)
- Emma H Wall
- Department of Medicine and Pathology, University of Vermont, Burlington Vermont, USA
| | - Sylvia C Hewitt
- Receptor Biology, National Institute of Environmental Health Science, U.S. National Institutes of Health, Research Triangle Park, North Carolina, USA; and
| | - Laure K Case
- Department of Medicine and Pathology, University of Vermont, Burlington Vermont, USA
| | - Chin-Yo Lin
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
| | - Kenneth S Korach
- Receptor Biology, National Institute of Environmental Health Science, U.S. National Institutes of Health, Research Triangle Park, North Carolina, USA; and
| | - Cory Teuscher
- Department of Medicine and Pathology, University of Vermont, Burlington Vermont, USA;
| |
Collapse
|
44
|
Identifying craniofacial features associated with prenatal exposure to androgens and testing their relationship with brain development. Brain Struct Funct 2014; 220:3233-44. [PMID: 25074752 DOI: 10.1007/s00429-014-0852-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/15/2014] [Indexed: 02/07/2023]
Abstract
We used magnetic resonance (MR) images obtained in same-sex and opposite-sex dizygotic twins (n = 119, 8 years of age) to study possible effects of prenatal androgens on craniofacial features. Using a principal component analysis of 19 craniofacial landmarks placed on the MR images, we identified a principal component capturing craniofacial features that distinguished females with a presumed differential exposure to prenatal androgens by virtue of having a male (vs. a female) co-twin (Cohen's d = 0.76). Subsequently, we tested the possibility that this craniofacial "signature" of prenatal exposure to androgens predicts brain size, a known sexually dimorphic trait. In an independent sample of female adolescents (singletons; n = 462), we found that the facial signature predicts up to 8% of variance in brain size. These findings are consistent with the organizational effects of androgens on brain development and suggest that the facial signature derived in this study could complement other indirect measures of prenatal exposure to androgens.
Collapse
|
45
|
Fouqueray TD, Blumstein DT, Monclús R, Martin JGA. Maternal effects on anogenital distance in a wild marmot population. PLoS One 2014; 9:e92718. [PMID: 24651864 PMCID: PMC3961422 DOI: 10.1371/journal.pone.0092718] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/25/2014] [Indexed: 11/18/2022] Open
Abstract
In mammals, prenatal exposure to sex steroid hormones may have profound effects on later behavior and fitness and have been reported under both laboratory and field conditions. Anogenital distance is a non-invasive measure of prenatal exposure to sex steroid hormones. While we know that intra-uterine position and litter sex ratio influence anogenital distance, there are other, heretofore unstudied, factors that could influence anogenital distance, including maternal effects. We capitalized on a long-term study of wild yellow-bellied marmots (Marmota flaviventris) to study the importance of maternal effects on explaining variation in anogenital distance and found significant effects. The strength of these effects varied annually. Taken together, our data highlights the strong variability due to environmental effects, and illustrates the importance of additive genetic and maternal genetic effects on neonatal anogenital distance. We suspect that, as others apply recently popularised quantitative genetic techniques to study free-living populations, such effects will be identified in other systems.
Collapse
Affiliation(s)
- Timothée D. Fouqueray
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, United States of America
- Département de Biologie, École Normale Supeérieure de Lyon, Lyon, France
| | - Daniel T. Blumstein
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, United States of America
- The Rocky Mountain Biological Laboratory, Crested Butte, Colorado, United States of America
| | - Raquel Monclús
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Julien G. A. Martin
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, United States of America
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
- * E-mail:
| |
Collapse
|
46
|
Monclús R, von Holst D, Blumstein DT, Rödel HG. Long-term effects of litter sex ratio on female reproduction in two iteroparous mammals. Funct Ecol 2014. [DOI: 10.1111/1365-2435.12231] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Raquel Monclús
- Department of Ecology & Evolutionary Biology; University of California; 621 Charles E. Young Dr. South Los Angeles California 90095 USA
- Laboratoire d'Ethologie Expérimentale et Comparée E.A. 4443 (LEEC); Université Paris 13; Sorbonne Paris Cité 99 Av. J.B. Clément F-93430 Villetaneuse France
| | - Dietrich von Holst
- Department of Animal Physiology; University of Bayreuth; Universitätsstrasse 30 D-95440 Bayreuth Germany
| | - Daniel T. Blumstein
- Department of Ecology & Evolutionary Biology; University of California; 621 Charles E. Young Dr. South Los Angeles California 90095 USA
- The Rocky Mountain Biological Laboratory; Box 519 Crested Butte Colorado 81224 USA
| | - Heiko G. Rödel
- Laboratoire d'Ethologie Expérimentale et Comparée E.A. 4443 (LEEC); Université Paris 13; Sorbonne Paris Cité 99 Av. J.B. Clément F-93430 Villetaneuse France
| |
Collapse
|
47
|
Abstract
Endogenous hormones have effects on tissue morphology, cell physiology, and behaviors at low doses. In fact, hormones are known to circulate in the part-per-trillion and part-per-billion concentrations, making them highly effective and potent signaling molecules. Many endocrine-disrupting chemicals (EDCs) mimic hormones, yet there is strong debate over whether these chemicals can also have effects at low doses. In the 1990s, scientists proposed the "low-dose hypothesis," which postulated that EDCs affect humans and animals at environmentally relevant doses. This chapter focuses on data that support and refute the low-dose hypothesis. A case study examining the highly controversial example of bisphenol A and its low-dose effects on the prostate is examined through the lens of endocrinology. Finally, the chapter concludes with a discussion of factors that can influence the ability of a study to detect and interpret low-dose effects appropriately.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Department of Public Health, Division of Environmental Health Sciences, University of Massachusetts - Amherst, Amherst, Massachusetts, USA.
| |
Collapse
|
48
|
Inactivation of the androgen receptor in bone-forming cells leads to trabecular bone loss in adult female mice. BONEKEY REPORTS 2013; 2:440. [PMID: 24422138 DOI: 10.1038/bonekey.2013.174] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 09/09/2013] [Indexed: 12/28/2022]
Abstract
Removal of the androgen receptor (AR) from bone-forming cells has been shown to reduce trabecular bone volume in male mice. In female mice, the role of AR in the regulation of bone homeostasis has been poorly understood. We generated a mouse strain in which the AR is completely inactivated only in mineralizing osteoblasts and osteocytes by breeding mice carrying osteocalcin promoter-regulated Cre-recombinase with mice possessing loxP recombination sites flanking exon 2 of the AR gene (AR(ΔOB/ΔOB) mice). In female AR(ΔOB/ΔOB) mice, the trabecular bone volume was reduced owing to a smaller number of trabeculae at 6 months of age compared with the control AR(fl/fl) animals. In male AR(ΔOB/ΔOB) mice, an increase in trabecular bone separation could already be detected at 3.5 months of age, and at 6 months, the trabecular bone volume was significantly reduced compared with that of male AR(fl/fl) mice. No AR-dependent changes were observed in the cortical bone of either sex. On the basis of micro-computed tomography and histomorphometry, we conclude that in male mice, the AR is involved in the regulation of osteoclast number by osteoblasts, whereas in female mice, the lack of the AR in the bone-forming cells leads to a decreased number of trabeculae upon aging.
Collapse
|
49
|
Szenczi P, Bánszegi O, Groó Z, Altbäcker V. Anogenital distance and condition as predictors of litter sex ratio in two mouse species: a study of the house mouse (Mus musculus) and mound-building mouse (Mus spicilegus). PLoS One 2013; 8:e74066. [PMID: 24069268 PMCID: PMC3777973 DOI: 10.1371/journal.pone.0074066] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 07/30/2013] [Indexed: 11/23/2022] Open
Abstract
The Trivers - Willard hypothesis (1973) suggests that the maternal condition may affect the female's litter size and sex ratio. Since then other factors had been found. Previous findings revealed in the case of some mammalian species, that females with larger anogenital distance have smaller litters, while the sex ratio is male-biased. That has only been demonstrated in laboratory animals, while the genetic diversity of a wild population could mask the phenomenon seen in laboratory colonies. We examined the connection between morphological traits (weight and anogenital distance) and the reproductive capacity of two wild mice species, the house mouse and the mound-building mice. We showed in both species that anogenital distance and body weight correlated positively in pre-pubertal females, but not in adults. Neither the house mouse nor the mound-building mouse mothers' weight had effect on their litter's size and sex ratio. Otherwise connection was found between the mothers' anogenital distance and their litters' sex ratio in both species. The results revealed that females with larger anogenital distance delivered male biased litter in both species. The bias occurred as while the number of female pups remained the same; mothers with large anogenital distance delivered more male pups compared to the mothers with small anogenital distance. We concluded that a female's prenatal life affects her reproductive success more than previously anticipated.
Collapse
Affiliation(s)
- Péter Szenczi
- Department of Ethology, Eötvös Loránd University, Göd, Hungary
| | - Oxána Bánszegi
- Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zita Groó
- Department of Ethology, Eötvös Loránd University, Göd, Hungary
| | | |
Collapse
|
50
|
Godsall B, Coulson T, Malo AF. From physiology to space use: energy reserves and androgenization explain home-range size variation in a woodland rodent. J Anim Ecol 2013; 83:126-35. [DOI: 10.1111/1365-2656.12116] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 06/22/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Ben Godsall
- Department of Life Sciences; Imperial College London; Silwood Park Campus Ascot SL5 7PY UK
| | - Tim Coulson
- Department of Zoology; University of Oxford; The Tinbergen Building, South Parks Road Oxford OX1 3PS UK
| | - Aurelio F. Malo
- Department of Life Sciences; Imperial College London; Silwood Park Campus Ascot SL5 7PY UK
- Department of Zoology; University of Oxford; The Tinbergen Building, South Parks Road Oxford OX1 3PS UK
| |
Collapse
|