1
|
Chen SP, Chu XM, Chi MX, Zhao J, Qiu RZ. Transcriptomic Characterization of Phototransduction Genes of the Asian Citrus Psyllid Diaphorina citri Kuwayama. INSECTS 2024; 15:966. [PMID: 39769568 PMCID: PMC11678440 DOI: 10.3390/insects15120966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
Opsin plays a regulatory role in phototaxis of Diaphorina citri, functioning as the initial station in the phototransduction cascade. Our study aimed to explore the D. citri phototransduction pathway to identify elicitors that may enhance D. citri phototaxis in the future. The RNAi technique was employed to inhibit LW-opsin gene expression, followed by RNA-Seq analysis to identify phototransduction genes. Finally, RT-qPCR was performed to validate whether genes in the phototransduction pathway were affected by the inhibition of LW-opsin expression. A total of 87 genes were identified within the transcriptome as involved in phototransduction based on KEGG functional annotation. Of these, 71 genes were identified as enriched in the phototransduction-fly pathway. These genes encode key proteins in this process, including Gqα, Gqβ, Gqγ, phospholipase C β (PLCβ), the cation channel transient receptor potential (TRP), and TRP-like (TRPL), among others. Moreover, the LOC103513214 (Gqβ) and LOC103518375 (ninaC) genes exhibited reduced expression when LW-opsin gene expression was suppressed. Our results provide a basis for further investigation of phototransduction in D. citri.
Collapse
Affiliation(s)
- Shao-Ping Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (S.-P.C.); (X.-M.C.); (M.-X.C.); (J.Z.)
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fujian Engineering Research Center for Green Pest Management, Fuzhou 350013, China
| | - Xue-Mei Chu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (S.-P.C.); (X.-M.C.); (M.-X.C.); (J.Z.)
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fujian Engineering Research Center for Green Pest Management, Fuzhou 350013, China
| | - Mei-Xiang Chi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (S.-P.C.); (X.-M.C.); (M.-X.C.); (J.Z.)
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fujian Engineering Research Center for Green Pest Management, Fuzhou 350013, China
| | - Jian Zhao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (S.-P.C.); (X.-M.C.); (M.-X.C.); (J.Z.)
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fujian Engineering Research Center for Green Pest Management, Fuzhou 350013, China
- Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Rong-Zhou Qiu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (S.-P.C.); (X.-M.C.); (M.-X.C.); (J.Z.)
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fujian Engineering Research Center for Green Pest Management, Fuzhou 350013, China
| |
Collapse
|
2
|
Ferng D, Sun W, Shieh BH. Differential activation of rhodopsin triggers distinct endocytic trafficking and recycling in vivo via differential phosphorylation. PLoS One 2024; 19:e0303882. [PMID: 38848405 PMCID: PMC11161057 DOI: 10.1371/journal.pone.0303882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/02/2024] [Indexed: 06/09/2024] Open
Abstract
Activated GPCRs are phosphorylated and internalized mostly via clathrin-mediated endocytosis (CME), which are then sorted for recycling or degradation. We investigated how differential activation of the same GPCR affects its endocytic trafficking in vivo using rhodopsin as a model in pupal photoreceptors of flies expressing mCherry-tagged rhodopsin 1 (Rh1-mC) or GFP-tagged arrestin 1 (Arr1-GFP). Upon blue light stimulation, activated Rh1 recruited Arr1-GFP to the rhabdomere, which became co-internalized and accumulated in cytoplasmic vesicles of photoreceptors. This internalization was eliminated in shits1 mutants affecting dynamin. Moreover, it was blocked by either rdgA or rdgB mutations affecting the PIP2 biosynthesis. Together, the blue light-initiated internalization of Rh1 and Arr1 belongs to CME. Green light stimulation also triggered the internalization and accumulation of activated Rh1-mC in the cytoplasm but with faster kinetics. Importantly, Arr1-GFP was also recruited to the rhabdomere but not co-internalized with Rh1-mC. This endocytosis was not affected in shits1 nor rdgA mutants, indicating it is not CME. We explored the fate of internalized Rh1-mC following CME and observed it remained in cytoplasmic vesicles following 30 min of dark adaptation. In contrast, in the non-CME Rh1-mC appeared readily recycled back to the rhabdomere within five min of dark treatment. This faster recycling may be regulated by rhodopsin phosphatase, RdgC. Together, we demonstrate two distinct endocytic and recycling mechanisms of Rh1 via two light stimulations. It appears that each stimulation triggers a distinct conformation leading to different phosphorylation patterns of Rh1 capable of recruiting Arr1 to rhabdomeres. However, a more stable interaction leads to the co-internalization of Arr1 that orchestrates CME. A stronger Arr1 association appears to impede the recycling of the phosphorylated Rh1 by preventing the recruitment of RdgC. We conclude that conformations of activated rhodopsin determine the downstream outputs upon phosphorylation that confers differential protein-protein interactions.
Collapse
Affiliation(s)
- Darwin Ferng
- Department of Pharmacology, Center for Molecular Neuroscience and Vision Research Center, Vanderbilt University, Nashville, TN, United States of America
| | - Wesley Sun
- Department of Pharmacology, Center for Molecular Neuroscience and Vision Research Center, Vanderbilt University, Nashville, TN, United States of America
| | - Bih-Hwa Shieh
- Department of Pharmacology, Center for Molecular Neuroscience and Vision Research Center, Vanderbilt University, Nashville, TN, United States of America
| |
Collapse
|
3
|
Selective binding and transport of protocadherin 15 isoforms by stereocilia unconventional myosins in a heterologous expression system. Sci Rep 2022; 12:13764. [PMID: 35962067 PMCID: PMC9374675 DOI: 10.1038/s41598-022-17757-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/30/2022] [Indexed: 11/09/2022] Open
Abstract
During hair cell development, the mechanoelectrical transduction (MET) apparatus is assembled at the stereocilia tips, where it coexists with the stereocilia actin regulatory machinery. While the myosin-based tipward transport of actin regulatory proteins is well studied, isoform complexity and built-in redundancies in the MET apparatus have limited our understanding of how MET components are transported. We used a heterologous expression system to elucidate the myosin selective transport of isoforms of protocadherin 15 (PCDH15), the protein that mechanically gates the MET apparatus. We show that MYO7A selectively transports the CD3 isoform while MYO3A and MYO3B transports the CD2 isoform. Furthermore, MYO15A showed an insignificant role in the transport of PCDH15, and none of the myosins tested transport PCDH15-CD1. Our data suggest an important role for MYO3A, MYO3B, and MYO7A in the MET apparatus formation and highlight the intricate nature of MET and actin regulation during development and functional maturation of the stereocilia bundle.
Collapse
|
4
|
Vitamin A Deficiency Alters the Phototransduction Machinery and Distinct Non-Vision-Specific Pathways in the Drosophila Eye Proteome. Biomolecules 2022; 12:biom12081083. [PMID: 36008977 PMCID: PMC9405971 DOI: 10.3390/biom12081083] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
The requirement of vitamin A for the synthesis of the visual chromophore and the light-sensing pigments has been studied in vertebrate and invertebrate model organisms. To identify the molecular mechanisms that orchestrate the ocular response to vitamin A deprivation, we took advantage of the fact that Drosophila melanogaster predominantly requires vitamin A for vision, but not for development or survival. We analyzed the impacts of vitamin A deficiency on the morphology, the lipidome, and the proteome of the Drosophila eye. We found that chronic vitamin A deprivation damaged the light-sensing compartments and caused a dramatic loss of visual pigments, but also decreased the molar abundance of most phototransduction proteins that amplify and transduce the visual signal. Unexpectedly, vitamin A deficiency also decreased the abundances of specific subunits of mitochondrial TCA cycle and respiratory chain components but increased the levels of cuticle- and lens-related proteins. In contrast, we found no apparent effects of vitamin A deficiency on the ocular lipidome. In summary, chronic vitamin A deficiency decreases the levels of most components of the visual signaling pathway, but also affects molecular pathways that are not vision-specific and whose mechanistic connection to vitamin A remains to be elucidated.
Collapse
|
5
|
Warma A, Lussier JG, Ndiaye K. Tribbles Pseudokinase 2 (TRIB2) Regulates Expression of Binding Partners in Bovine Granulosa Cells. Int J Mol Sci 2021; 22:ijms22041533. [PMID: 33546420 PMCID: PMC7913596 DOI: 10.3390/ijms22041533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/15/2022] Open
Abstract
Members of the Tribbles (TRIB) family of pseudokinases are critical components of intracellular signal transduction pathways in physiological and pathological processes. TRIBs, including TRIB2, have been previously shown as signaling mediators and scaffolding proteins regulating numerous cellular events such as proliferation, differentiation and cell death through protein stability and activity. However, the signaling network associated with TRIB2 and its binding partners in granulosa cells during ovarian follicular development is not fully defined. We previously reported that TRIB2 is differentially expressed in growing dominant follicles while downregulated in ovulatory follicles following the luteinizing hormone (LH) surge or human chorionic gonadotropin (hCG) injection. In the present study, we used the yeast two-hybrid screening system and in vitro coimmunoprecipitation assays to identify and confirm TRIB2 interactions in granulosa cells (GCs) of dominant ovarian follicles (DFs), which yielded individual candidate binding partners including calmodulin 1 (CALM1), inhibin subunit beta A (INHBA), inositol polyphosphate phosphatase-like 1 (INPPL1), 5'-nucleotidase ecto (NT5E), stearoyl-CoA desaturase (SCD), succinate dehydrogenase complex iron sulfur subunit B (SDHB) and Ras-associated protein 14 (RAB14). Further analyses showed that all TRIB2 binding partners are expressed in GCs of dominant follicles but are differentially regulated throughout the different stages of follicular development. CRISPR/Cas9-driven inhibition along with pQE-driven overexpression of TRIB2 showed that TRIB2 differently regulates expression of binding partners, which reveals the importance of TRIB2 in the control of gene expression linked to various biological processes such as proliferation, differentiation, cell migration, apoptosis, calcium signaling and metabolism. These data provide a larger view of potential TRIB2-regulated signal transduction pathways in GCs and provide strong evidence that TRIB2 may act as a regulator of target genes during ovarian follicular development.
Collapse
|
6
|
Chen W, Shen Z, Asteriti S, Chen Z, Ye F, Sun Z, Wan J, Montell C, Hardie RC, Liu W, Zhang M. Calmodulin binds to Drosophila TRP with an unexpected mode. Structure 2020; 29:330-344.e4. [PMID: 33326749 DOI: 10.1016/j.str.2020.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/16/2020] [Accepted: 11/20/2020] [Indexed: 02/04/2023]
Abstract
Drosophila TRP is a calcium-permeable cation channel essential for fly visual signal transduction. During phototransduction, Ca2+ mediates both positive and negative feedback regulation on TRP channel activity, possibly via binding to calmodulin (CaM). However, the molecular mechanism underlying Ca2+ modulated CaM/TRP interaction is poorly understood. Here, we discover an unexpected, Ca2+-dependent binding mode between CaM and TRP. The TRP tail contains two CaM binding sites (CBS1 and CBS2) separated by an ∼70-residue linker. CBS1 binds to the CaM N-lobe and CBS2 recognizes the CaM C-lobe. Structural studies reveal the lobe-specific binding of CaM to CBS1&2. Mutations introduced in both CBS1 and CBS2 eliminated CaM binding in full-length TRP, but surprisingly had no effect on the response to light under physiological conditions, suggesting alternative mechanisms governing Ca2+-mediated feedback on the channel activity. Finally, we discover that TRPC4, the closest mammalian paralog of Drosophila TRP, adopts a similar CaM binding mode.
Collapse
Affiliation(s)
- Weidi Chen
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Zeyu Shen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Sabrina Asteriti
- Department of Physiology, Development and Neuroscience, Cambridge University, Downing St, Cambridge CB2 3EG, UK; Department of Neurosciences, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - Zijing Chen
- Department of Molecular, Cellular and Developmental Biology, and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Fei Ye
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ziling Sun
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Jun Wan
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518055, China; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Craig Montell
- Department of Molecular, Cellular and Developmental Biology, and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Roger C Hardie
- Department of Physiology, Development and Neuroscience, Cambridge University, Downing St, Cambridge CB2 3EG, UK
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China.
| | - Mingjie Zhang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518055, China; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
7
|
Raghuraman BK, Hebbar S, Kumar M, Moon H, Henry I, Knust E, Shevchenko A. Absolute Quantification of Proteins in the Eye of Drosophila melanogaster. Proteomics 2020; 20:e1900049. [PMID: 32663363 DOI: 10.1002/pmic.201900049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/29/2020] [Indexed: 01/26/2023]
Abstract
Absolute (molar) quantification of proteins determines their molar ratios in complexes, networks, and metabolic pathways. MS Western workflow is employed to determine molar abundances of proteins potentially critical for morphogenesis and phototransduction (PT) in eyes of Drosophila melanogaster using a single chimeric 264 kDa protein standard that covers, in total, 197 peptides from 43 proteins. The majority of proteins are independently quantified with two to four proteotypic peptides with the coefficient of variation of less than 15%, better than 1000-fold dynamic range and sub-femtomole sensitivity. Here, the molar abundance of proteins of the PT machinery and of the rhabdomere, the photosensitive organelle, is determined in eyes of wild-type flies as well as in crumbs (crb) mutant eyes, which exhibit perturbed rhabdomere morphogenesis.
Collapse
Affiliation(s)
- Bharath Kumar Raghuraman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany
| | - Sarita Hebbar
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany
| | - Mukesh Kumar
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany
| | - HongKee Moon
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany.,Centre for Systems Biology Dresden, Pfotenhauerstr. 108, Dresden, 01307, Germany
| | - Ian Henry
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany.,Centre for Systems Biology Dresden, Pfotenhauerstr. 108, Dresden, 01307, Germany
| | - Elisabeth Knust
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany
| |
Collapse
|
8
|
Li C, Liu J, Lü P, Ma S, Zhu K, Gao L, Li B, Chen K. Identification, expression and function of myosin heavy chain family genes in Tribolium castaneum. Genomics 2019; 111:719-728. [DOI: 10.1016/j.ygeno.2018.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 02/07/2023]
|
9
|
Mazzotta GM, Bellanda M, Minervini G, Damulewicz M, Cusumano P, Aufiero S, Stefani M, Zambelli B, Mammi S, Costa R, Tosatto SCE. Calmodulin Enhances Cryptochrome Binding to INAD in Drosophila Photoreceptors. Front Mol Neurosci 2018; 11:280. [PMID: 30177872 PMCID: PMC6109769 DOI: 10.3389/fnmol.2018.00280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 07/24/2018] [Indexed: 12/13/2022] Open
Abstract
Light is the main environmental stimulus that synchronizes the endogenous timekeeping systems in most terrestrial organisms. Drosophila cryptochrome (dCRY) is a light-responsive flavoprotein that detects changes in light intensity and wavelength around dawn and dusk. We have previously shown that dCRY acts through Inactivation No Afterpotential D (INAD) in a light-dependent manner on the Signalplex, a multiprotein complex that includes visual-signaling molecules, suggesting a role for dCRY in fly vision. Here, we predict and demonstrate a novel Ca2+-dependent interaction between dCRY and calmodulin (CaM). Through yeast two hybrid, coimmunoprecipitation (Co-IP), nuclear magnetic resonance (NMR) and calorimetric analyses we were able to identify and characterize a CaM binding motif in the dCRY C-terminus. Similarly, we also detailed the CaM binding site of the scaffold protein INAD and demonstrated that CaM bridges dCRY and INAD to form a ternary complex in vivo. Our results suggest a process whereby a rapid dCRY light response stimulates an interaction with INAD, which can be further consolidated by a novel mechanism regulated by CaM.
Collapse
Affiliation(s)
| | - Massimo Bellanda
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | | | - Milena Damulewicz
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology and Earth Sciences, Jagiellonian University, Kraków, Poland
| | - Paola Cusumano
- Department of Biology, University of Padova, Padova, Italy
| | - Simona Aufiero
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Monica Stefani
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Barbara Zambelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Stefano Mammi
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Rodolfo Costa
- Department of Biology, University of Padova, Padova, Italy
| | - Silvio C E Tosatto
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,CNR Institute of Neuroscience, Padova, Italy
| |
Collapse
|
10
|
Abstract
The myosin holoenzyme is a multimeric protein complex consisting of heavy chains and light chains. Myosin light chains are calmodulin family members which are crucially involved in the mechanoenzymatic function of the myosin holoenzyme. This review examines the diversity of light chains within the myosin superfamily, discusses interactions between the light chain and the myosin heavy chain as well as regulatory and structural functions of the light chain as a subunit of the myosin holoenzyme. It covers aspects of the myosin light chain in the localization of the myosin holoenzyme, protein-protein interactions and light chain binding to non-myosin binding partners. Finally, this review challenges the dogma that myosin regulatory and essential light chain exclusively associate with conventional myosin heavy chains while unconventional myosin heavy chains usually associate with calmodulin.
Collapse
Affiliation(s)
- Sarah M Heissler
- a Laboratory of Molecular Physiology; National Heart, Lung, and Blood Institute; National Institutes of Health ; Bethesda , MD USA
| | - James R Sellers
- a Laboratory of Molecular Physiology; National Heart, Lung, and Blood Institute; National Institutes of Health ; Bethesda , MD USA
| |
Collapse
|
11
|
|
12
|
Chu B, Postma M, Hardie R. Fractional Ca(2+) currents through TRP and TRPL channels in Drosophila photoreceptors. Biophys J 2013; 104:1905-16. [PMID: 23663833 PMCID: PMC3647204 DOI: 10.1016/j.bpj.2013.03.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/05/2013] [Accepted: 03/25/2013] [Indexed: 01/29/2023] Open
Abstract
Light responses in Drosophila photoreceptors are mediated by two Ca(2+) permeable cation channels, transient receptor potential (TRP) and TRP-like (TRPL). Although Ca(2+) influx via these channels is critical for amplification, inactivation, and light adaptation, the fractional contribution of Ca(2+) to the currents (Pf) has not been measured. We describe a slow (τ ∼ 350 ms) tail current in voltage-clamped light responses and show that it is mediated by electrogenic Na(+)/Ca(2+) exchange. Assuming a 3Na:1Ca stoichiometry, we derive empirical estimates of Pf by comparing the charge integrals of the exchanger and light-induced currents. For TRPL channels, Pf was ∼17% as predicted by Goldman-Hodgkin-Katz (GHK) theory. Pf for TRP (29%) and wild-type flies (26%) was higher, but lower than the GHK prediction (45% and 42%). As predicted by GHK theory, Pf for both channels increased with extracellular [Ca(2+)], and was largely independent of voltage between -100 and -30 mV. A model incorporating intra- and extracellular geometry, ion permeation, diffusion, extrusion, and buffering suggested that the deviation from GHK predictions was largely accounted for by extracellular ionic depletion during the light-induced currents, and the time course of the Na(+)/Ca(2+) exchange current could be used to obtain estimates of cellular Ca(2+) buffering capacities.
Collapse
Affiliation(s)
- Brian Chu
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, UK
| | - Marten Postma
- Section of Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Roger C. Hardie
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, UK
| |
Collapse
|
13
|
Xiong B, Bayat V, Jaiswal M, Zhang K, Sandoval H, Charng WL, Li T, David G, Duraine L, Lin YQ, Neely GG, Yamamoto S, Bellen HJ. Crag is a GEF for Rab11 required for rhodopsin trafficking and maintenance of adult photoreceptor cells. PLoS Biol 2012; 10:e1001438. [PMID: 23226104 PMCID: PMC3514319 DOI: 10.1371/journal.pbio.1001438] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/22/2012] [Indexed: 11/29/2022] Open
Abstract
Rhodopsins (Rhs) are light sensors, and Rh1 is the major Rh in the Drosophila photoreceptor rhabdomere membrane. Upon photoactivation, a fraction of Rh1 is internalized and degraded, but it remains unclear how the rhabdomeric Rh1 pool is replenished and what molecular players are involved. Here, we show that Crag, a DENN protein, is a guanine nucleotide exchange factor for Rab11 that is required for the homeostasis of Rh1 upon light exposure. The absence of Crag causes a light-induced accumulation of cytoplasmic Rh1, and loss of Crag or Rab11 leads to a similar photoreceptor degeneration in adult flies. Furthermore, the defects associated with loss of Crag can be partially rescued with a constitutive active form of Rab11. We propose that upon light stimulation, Crag is required for trafficking of Rh from the trans-Golgi network to rhabdomere membranes via a Rab11-dependent vesicular transport.
Collapse
Affiliation(s)
- Bo Xiong
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Vafa Bayat
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - Manish Jaiswal
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ke Zhang
- Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hector Sandoval
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Wu-Lin Charng
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Tongchao Li
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Gabriela David
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lita Duraine
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yong-Qi Lin
- Neuroscience Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - G. Gregory Neely
- Neuroscience Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Shinya Yamamoto
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hugo J. Bellen
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Neurological Research Institute, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
14
|
Regulation of arrestin translocation by Ca2+ and myosin III in Drosophila photoreceptors. J Neurosci 2012; 32:9205-16. [PMID: 22764229 DOI: 10.1523/jneurosci.0924-12.2012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Upon illumination several phototransduction proteins translocate between cell body and photosensory compartments. In Drosophila photoreceptors arrestin (Arr2) translocates from cell body to the microvillar rhabdomere down a diffusion gradient created by binding of Arr2 to photo-isomerized metarhodopsin. Translocation is profoundly slowed in mutants of key phototransduction proteins including phospholipase C (PLC) and the Ca(2+)-permeable transient receptor potential channel (TRP), but how the phototransduction cascade accelerates Arr2 translocation is unknown. Using real-time fluorescent imaging of Arr2-green fluorescent protein translocation in dissociated ommatidia, we show that translocation is profoundly slowed in Ca(2+)-free solutions. Conversely, in a blind PLC mutant with ∼100-fold slower translocation, rapid translocation was rescued by the Ca(2+) ionophore, ionomycin. In mutants lacking NINAC (calmodulin [CaM] binding myosin III) in the cell body, translocation remained rapid even in Ca(2+)-free solutions. Immunolabeling revealed that Arr2 in the cell body colocalized with NINAC in the dark. In intact eyes, the impaired translocation found in trp mutants was rescued in ninaC;trp double mutants. Nevertheless, translocation following prolonged dark adaptation was significantly slower in ninaC mutants, than in wild type: a difference that was reflected in the slow decay of the electroretinogram. The results suggest that cytosolic NINAC is a Ca(2+)-dependent binding target for Arr2, which protects Arr2 from immobilization by a second potential sink that sequesters and releases arrestin on a much slower timescale. We propose that rapid Ca(2+)/CaM-dependent release of Arr2 from NINAC upon Ca(2+) influx accounts for the acceleration of translocation by phototransduction.
Collapse
|
15
|
Hu W, Wan D, Yu X, Cao J, Guo P, Li HS, Han J. Protein Gq modulates termination of phototransduction and prevents retinal degeneration. J Biol Chem 2012; 287:13911-8. [PMID: 22389492 DOI: 10.1074/jbc.m112.339895] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Appropriate termination of the phototransduction cascade is critical for photoreceptors to achieve high temporal resolution and to prevent excessive Ca(2+)-induced cell toxicity. Using a genetic screen to identify defective photoresponse mutants in Drosophila, we isolated and identified a novel Gα(q) mutant allele, which has defects in both activation and deactivation. We revealed that G(q) modulates the termination of the light response and that metarhodopsin/G(q) interaction affects subsequent arrestin-rhodopsin (Arr2-Rh1) binding, which mediates the deactivation of metarhodopsin. We further showed that the Gα(q) mutant undergoes light-dependent retinal degeneration, which is due to the slow accumulation of stable Arr2-Rh1 complexes. Our study revealed the roles of G(q) in mediating photoresponse termination and in preventing retinal degeneration. This pathway may represent a general rapid feedback regulation of G protein-coupled receptor signaling.
Collapse
Affiliation(s)
- Wen Hu
- Institute of Life Science, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Pak WL, Shino S, Leung HT. PDA (prolonged depolarizing afterpotential)-defective mutants: the story of nina's and ina's--pinta and santa maria, too. J Neurogenet 2012; 26:216-37. [PMID: 22283778 PMCID: PMC3433705 DOI: 10.3109/01677063.2011.642430] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Our objective is to present a comprehensive view of the PDA (prolonged depolarizing afterpotential)-defective Drosophila mutants, nina's and ina's, from the discussion of the PDA and the PDA-based mutant screening strategy to summaries of the knowledge gained through the studies of mutants generated using the strategy. The PDA is a component of the light-evoked photoreceptor potential that is generated when a substantial fraction of rhodopsin is photoconverted to its active form, metarhodopsin. The PDA-based mutant screening strategy was adopted to enhance the efficiency and efficacy of ERG (electroretinogram)-based screening for identifying phototransduction-defective mutants. Using this strategy, two classes of PDA-defective mutants were identified and isolated, nina and ina, each comprising multiple complementation groups. The nina mutants are characterized by allele-dependent reduction in the major rhodopsin, Rh1, whereas the ina mutants display defects in some aspects of functions related to the transduction channel, TRP (transient receptor potential). The signaling proteins that have been identified and elucidated through the studies of nina mutants include the Drosophila opsin protein (NINAE), the chaperone protein for nascent opsin (NINAA), and the multifunctional protein, NINAC, required in multiple steps of the Drosophila phototransduction cascade. Also identified by the nina mutants are some of the key enzymes involved in the biogenesis of the rhodopsin chromophore. As for the ina mutants, they led to the discovery of the scaffold protein, INAD, responsible for the nucleation of the supramolecular signaling complex. Also identified by the ina mutants is one of the key members of the signaling complex, INAC (ePKC), and two other proteins that are likely to be important, though their roles in the signaling cascade have not yet been fully elucidated. In most of these cases, the protein identified is the first member of its class to be so recognized.
Collapse
Affiliation(s)
- William L Pak
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA.
| | | | | |
Collapse
|
17
|
Friedrich M, Chen R, Daines B, Bao R, Caravas J, Rai PK, Zagmajster M, Peck SB. Phototransduction and clock gene expression in the troglobiont beetle Ptomaphagus hirtus of Mammoth cave. J Exp Biol 2011; 214:3532-41. [DOI: 10.1242/jeb.060368] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
SUMMARY
Obligatory cave species exhibit dramatic trait modifications such as eye reduction, loss of pigmentation and an increase in touch receptors. As molecular studies of cave adaptation have largely concentrated on vertebrate models, it is not yet possible to probe for genetic universalities underlying cave adaptation. We have therefore begun to study the strongly cave-adapted small carrion beetle Ptomaphagus hirtus. For over 100 years, this flightless signature inhabitant of Mammoth Cave, the world's largest known cave system, has been considered blind despite the presence of residual lens structures. By deep sequencing of the adult head transcriptome, we discovered the transcripts of all core members of the phototransduction protein machinery. Combined with the absence of transcripts of select structural photoreceptor and eye pigmentation genes, these data suggest a reduced but functional visual system in P. hirtus. This conclusion was corroborated by a negative phototactic response of P. hirtus in light/dark choice tests. We further detected the expression of the complete circadian clock gene network in P. hirtus, raising the possibility of a role of light sensation in the regulation of oscillating processes. We speculate that P. hirtus is representative of a large number of animal species with highly reduced but persisting visual capacities in the twilight zone of the subterranean realm. These can now be studied on a broad comparative scale given the efficiency of transcript discovery by next-generation sequencing.
Collapse
Affiliation(s)
- Markus Friedrich
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Structural and Computational Biology and Molecular Biophysics Graduate Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Bryce Daines
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Riyue Bao
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| | - Jason Caravas
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| | - Puneet K. Rai
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| | - Maja Zagmajster
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana, Slovenia
| | - Stewart B. Peck
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6
| |
Collapse
|
18
|
Abstract
This review recounts the early history of Drosophila phototransduction genetics, covering the period between approximately 1966 to 1979. Early in this period, the author felt that there was an urgent need for a new approach in phototransduction research. Through inputs from a number of colleagues, he was led to consider isolating Drosophila mutants that are defective in the electroretinogram. Thanks to the efforts of dedicated associates and technical staff, by the end of this period, he was able to accumulate a large number of such mutants. Particularly important in this effort was the use of the mutant assay protocol based on the "prolonged depolarizing afterpotential." This collection of mutants formed the basis of the subsequent intensive investigations of the Drosophila phototransduction cascade by many investigators.
Collapse
Affiliation(s)
- William L Pak
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2054, USA.
| |
Collapse
|
19
|
Tessier CR, Broadie K. The fragile X mental retardation protein developmentally regulates the strength and fidelity of calcium signaling in Drosophila mushroom body neurons. Neurobiol Dis 2011; 41:147-59. [PMID: 20843478 PMCID: PMC2982942 DOI: 10.1016/j.nbd.2010.09.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 08/17/2010] [Accepted: 09/03/2010] [Indexed: 11/20/2022] Open
Abstract
Fragile X syndrome (FXS) is a broad-spectrum neurological disorder characterized by hypersensitivity to sensory stimuli, hyperactivity and severe cognitive impairment. FXS is caused by loss of the fragile X mental retardation 1 (FMR1) gene, whose FMRP product regulates mRNA translation downstream of synaptic activity to modulate changes in synaptic architecture, function and plasticity. Null Drosophila FMR1 (dfmr1) mutants exhibit reduced learning and loss of protein synthesis-dependent memory consolidation, which is dependent on the brain mushroom body (MB) learning and memory center. We targeted a transgenic GFP-based calcium reporter to the MB in order to analyze calcium dynamics downstream of neuronal activation. In the dfmr1 null MB, there was significant augmentation of the calcium transients induced by membrane depolarization, as well as elevated release of calcium from intracellular organelle stores. The severity of these calcium signaling defects increased with developmental age, although early stages were characterized by highly variable, low fidelity calcium regulation. At the single neuron level, both calcium transient and calcium store release defects were exhibited by dfmr1 null MB neurons in primary culture. Null dfmr1 mutants exhibit reduced brain mRNA expression of calcium-binding proteins, including calcium buffers calmodulin and calbindin, predicting that the inability to appropriately sequester cytosolic calcium may be the common mechanistic defect causing calcium accumulation following both influx and store release. Changes in the magnitude and fidelity of calcium signals in the absence of dFMRP likely contribute to defects in neuronal structure/function, leading to the hallmark learning and memory dysfunction of FXS.
Collapse
Affiliation(s)
- Charles R Tessier
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
| | | |
Collapse
|
20
|
Dependence on a retinophilin/myosin complex for stability of PKC and INAD and termination of phototransduction. J Neurosci 2010; 30:11337-45. [PMID: 20739554 DOI: 10.1523/jneurosci.2709-10.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Normal termination of signaling is essential to reset signaling cascades, especially those such as phototransduction that are turned on and off with great rapidity. Genetic approaches in Drosophila led to the identification of several proteins required for termination, including protein kinase C (PKC), NINAC (neither inactivation nor afterpotential C) p174, which consists of fused protein kinase and myosin domains, and a PDZ (postsynaptic density-95/Discs Large/zona occludens-1) scaffold protein, INAD (inactivation no afterpotential D). Here, we describe a mutation affecting a poorly characterized but evolutionarily conserved protein, Retinophilin (Retin), which is expressed primarily in the phototransducing compartment of photoreceptor cells, the rhabdomeres. Retin and NINAC formed a complex and were mutually dependent on each other for expression. Loss of retin resulted in an age-dependent impairment in termination of phototransduction. Mutations that affect termination of the photoresponse typically lead to a reduction in levels of the major rhodopsin (Rh1) to attenuate signaling. Consistent with the slower termination in retin(1), the mutant photoreceptor cells exhibited increased endocytosis of Rh1 and a decline in Rh1 protein. The slower termination in retin(1) was a consequence of a cascade of defects, which began with the reduction in NINAC p174 levels. The diminished p174 concentration caused a decrease in INAD. Because PKC requires interaction with INAD for protein stability, this leads to reduction in PKC levels. The decline in PKC was age dependent and paralleled the onset of the termination phenotype in retin(1) mutant flies. We conclude that the slower termination of the photoresponse in retin(1) resulted from a requirement for the Retin/NINAC complex for stability of INAD and PKC.
Collapse
|
21
|
Quintero OA, Moore JE, Unrath WC, Manor U, Salles FT, Grati M, Kachar B, Yengo CM. Intermolecular autophosphorylation regulates myosin IIIa activity and localization in parallel actin bundles. J Biol Chem 2010; 285:35770-82. [PMID: 20826793 DOI: 10.1074/jbc.m110.144360] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Myosin IIIa (Myo3A) transports cargo to the distal end of actin protrusions and contains a kinase domain that is thought to autoregulate its activity. Because Myo3A tends to cluster at the tips of actin protrusions, we investigated whether intermolecular phosphorylation could regulate Myo3A biochemical activity, cellular localization, and cellular function. Inactivation of Myo3A 2IQ kinase domain with the point mutation K50R did not alter maximal ATPase activity, whereas phosphorylation of Myo3A 2IQ resulted in reduced maximal ATPase activity and actin affinity. The rate and degree of Myo3A 2IQ autophosphorylation was unchanged by the presence of actin but was found to be dependent upon Myo3A 2IQ concentration within the range of 0.1 to 1.2 μm, indicating intermolecular autophosphorylation. In cultured cells, we observed that the filopodial tip localization of Myo3A lacking the kinase domain decreased when co-expressed with kinase-active, full-length Myo3A. The cellular consequence of reduced Myo3A tip localization was decreased filopodial density along the cell periphery, identifying a novel cellular function for Myo3A in mediating the formation and stability of actin-based protrusions. Our results suggest that Myo3A motor activity is regulated through a mechanism involving concentration-dependent autophosphorylation. We suggest that this regulatory mechanism plays an essential role in mediating the transport and actin bundle formation/stability functions of Myo3A.
Collapse
Affiliation(s)
- Omar A Quintero
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Nikolic K, Loizu J, Degenaar P, Toumazou C. A stochastic model of the single photon response in Drosophila photoreceptors. Integr Biol (Camb) 2010; 2:354-70. [PMID: 20648395 DOI: 10.1039/c0ib00031k] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a quantitative model for the phototransduction cascade in Drosophila photoreceptors. The process consists of four stages: (1) light absorption by Rhodopsin, (2) signal amplification phase mediated by a G-protein coupled cascade, (3) closed/open state kinetics of the transient receptor potential (TRP) ion channels which regulate the ionic current in/out of the cell and (4) Ca regulated positive and negative feedbacks. The model successfully reproduces the experimental results for: single photon absorption "quantum bump" (QB), statistical features for QB (average shape, peak current average value and variance, the latency distribution, etc.), arrestin mutant behaviour, low extracellular Ca(2+) cases, etc. The TRP channel activity is modeled by a Monod-Wyman-Changeux (MWC) model for allosteric interaction, instead of using the usual ad hoc Hill equation. This approach allows for a plausible physical explanation of how Ca/calmodulin regulate the protein activity. The cooperative nature of the TRP channel activation leads to "dark current" suppression at the output allowing for reliable detection of a single photon. Stochastic simulations were produced by using the standard rate equations combined with the Poisson distribution for generating random events from the forward and reverse reaction rates. Noise is inherent to the system but appears to be crucial for producing such reliable responses in this complex, highly non-linear system. The approach presented here may serve as a useful example how to treat complex cellular mechanisms underlying sensory processes.
Collapse
Affiliation(s)
- Konstantin Nikolic
- Institute of Biomedical Engineering, Imperial College London, London, UK
| | | | | | | |
Collapse
|
23
|
Katti C, Dalal JS, Dosé AC, Burnside B, Battelle BA. Cloning and distribution of myosin 3B in the mouse retina: differential distribution in cone outer segments. Exp Eye Res 2009; 89:224-37. [PMID: 19332056 DOI: 10.1016/j.exer.2009.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 03/17/2009] [Accepted: 03/18/2009] [Indexed: 11/30/2022]
Abstract
Class III myosins are important for the function and survival of photoreceptors and ciliary hair cells. Although vertebrates possess two class III myosin genes, myo3A and myo3B, recent studies have focused on Myo3A because mutations in the human gene are implicated in progressive hearing loss. Myo3B may compensate for defects in Myo3A, yet little is known about its distribution and function. This study focuses on Myo3B expression in the mouse retina. We cloned two variants of myo3B from mouse retina and determined that they are expressed early in retinal development. In this study we show for the first time in a mammal that both Myo3B and Myo3A proteins are present in inner segments of all photoreceptors. Myo3B is also present in outer segments of S opsin-immunoreactive cones but not M opsin dominant cones. Myo3B is also detected in rare cells of the inner nuclear layer and some ganglion cells. Myo3B may have diverse roles in retinal neurons. In photoreceptor inner segments Myo3B is positioned appropriately to prevent photoreceptor loss of function caused by Myo3A defects.
Collapse
Affiliation(s)
- Christiana Katti
- Department of Neuroscience and Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| | | | | | | | | |
Collapse
|
24
|
Myosin IIIa boosts elongation of stereocilia by transporting espin 1 to the plus ends of actin filaments. Nat Cell Biol 2009; 11:443-50. [PMID: 19287378 PMCID: PMC2750890 DOI: 10.1038/ncb1851] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 01/19/2009] [Indexed: 11/22/2022]
|
25
|
Liu CH, Satoh AK, Postma M, Huang J, Ready DF, Hardie RC. Ca2+-dependent metarhodopsin inactivation mediated by calmodulin and NINAC myosin III. Neuron 2008; 59:778-89. [PMID: 18786361 DOI: 10.1016/j.neuron.2008.07.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/03/2008] [Accepted: 07/09/2008] [Indexed: 10/21/2022]
Abstract
Phototransduction in flies is the fastest known G protein-coupled signaling cascade, but how this performance is achieved remains unclear. Here, we investigate the mechanism and role of rhodopsin inactivation. We determined the lifetime of activated rhodopsin (metarhodopsin = M( *)) in whole-cell recordings from Drosophila photoreceptors by measuring the time window within which inactivating M( *) by photoreisomerization to rhodopsin could suppress responses to prior illumination. M( *) was inactivated rapidly (tau approximately 20 ms) under control conditions, but approximately 10-fold more slowly in Ca2+-free solutions. This pronounced Ca2+ dependence of M( *) inactivation was unaffected by mutations affecting phosphorylation of rhodopsin or arrestin but was abolished in mutants of calmodulin (CaM) or the CaM-binding myosin III, NINAC. This suggests a mechanism whereby Ca2+ influx acting via CaM and NINAC accelerates the binding of arrestin to M( *). Our results indicate that this strategy promotes quantum efficiency, temporal resolution, and fidelity of visual signaling.
Collapse
Affiliation(s)
- Che-Hsiung Liu
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge CB23DY, UK
| | | | | | | | | | | |
Collapse
|
26
|
Clark K, Middelbeek J, van Leeuwen FN. Interplay between TRP channels and the cytoskeleton in health and disease. Eur J Cell Biol 2008; 87:631-40. [PMID: 18342984 DOI: 10.1016/j.ejcb.2008.01.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 01/17/2008] [Accepted: 01/18/2008] [Indexed: 11/30/2022] Open
Abstract
Transient receptor potential (TRP) channels are a family of cation channels that play a key role in ion homeostasis and cell volume regulation. In addition, TRP channels are considered universal integrators of sensory information required for taste, vision, hearing, touch, temperature, and the detection of mechanical force. Seminal investigations exploring the molecular mechanisms of phototransduction in Drosophila have demonstrated that TRP channels operate within macromolecular complexes closely associated with the cytoskeleton. More recent evidence shows that mammalian TRP channels similarly connect to the cytoskeleton to affect cytoskeletal organization and cell adhesion via ion-transport-dependent and -independent mechanisms. In this review, we discuss new insights into the interplay between TRP channels and the cytoskeleton and provide recent examples of such interactions in different physiological systems.
Collapse
Affiliation(s)
- Kristopher Clark
- University of Dundee, MRC Protein Phosphorylation Unit, Dundee DD1 5EH, Scotland, UK
| | | | | |
Collapse
|
27
|
Takemori N, Komori N, Thompson JN, Yamamoto MT, Matsumoto H. Novel eye-specific calmodulin methylation characterized by protein mapping in Drosophila melanogaster. Proteomics 2007; 7:2651-8. [PMID: 17610210 DOI: 10.1002/pmic.200700343] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Post-translational methylation of the epsilon-amino group of lysine residues regulates a number of protein functions. Calmodulin, a key modulator of intracellular calcium signaling, is methylated on lysine 115 in many species. Although the amino acid sequence of calmodulin is highly conserved in eukaryotes, it has been shown that lysine 115 is not methylated in Drosophila calmodulin and no other methylation site has been reported. In this study, we characterized in vivo modification states of Drosophila calmodulin using proteomic methodology involving the protein mapping of microdissected Drosophila tissues on 2-D gels. We found that Drosophila calmodulin was highly expressed in methylated forms in the compound eye, whereas its methylation was hardly detected in other tissues. We identified that lysine 94 located in an EF-hand III is the methylation site in Drosophila calmodulin. The predominance of methylated calmodulin in the compound eye may imply the involvement of calmodulin in photoreceptor-specific functions through methylation.
Collapse
Affiliation(s)
- Nobuaki Takemori
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | | | | | | | | |
Collapse
|
28
|
Wang T, Montell C. Phototransduction and retinal degeneration in Drosophila. Pflugers Arch 2007; 454:821-47. [PMID: 17487503 DOI: 10.1007/s00424-007-0251-1] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 03/05/2007] [Indexed: 01/05/2023]
Abstract
Drosophila visual transduction is the fastest known G-protein-coupled signaling cascade and has therefore served as a genetically tractable animal model for characterizing rapid responses to sensory stimulation. Mutations in over 30 genes have been identified, which affect activation, adaptation, or termination of the photoresponse. Based on analyses of these genes, a model for phototransduction has emerged, which involves phosphoinoside signaling and culminates with opening of the TRP and TRPL cation channels. Many of the proteins that function in phototransduction are coupled to the PDZ containing scaffold protein INAD and form a supramolecular signaling complex, the signalplex. Arrestin, TRPL, and G alpha(q) undergo dynamic light-dependent trafficking, and these movements function in long-term adaptation. Other proteins play important roles either in the formation or maturation of rhodopsin, or in regeneration of phosphatidylinositol 4,5-bisphosphate (PIP2), which is required for the photoresponse. Mutation of nearly any gene that functions in the photoresponse results in retinal degeneration. The underlying bases of photoreceptor cell death are diverse and involve mechanisms such as excessive endocytosis of rhodopsin due to stable rhodopsin/arrestin complexes and abnormally low or high levels of Ca2+. Drosophila visual transduction appears to have particular relevance to the cascade in the intrinsically photosensitive retinal ganglion cells in mammals, as the photoresponse in these latter cells appears to operate through a remarkably similar mechanism.
Collapse
Affiliation(s)
- Tao Wang
- Department of Biological Chemistry, Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
29
|
Kempler K, Tóth J, Yamashita R, Mapel G, Robinson K, Cardasis H, Stevens S, Sellers JR, Battelle BA. Loop 2 of limulus myosin III is phosphorylated by protein kinase A and autophosphorylation. Biochemistry 2007; 46:4280-93. [PMID: 17367164 PMCID: PMC2580675 DOI: 10.1021/bi062112u] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Little is known about the functions of class III unconventional myosins although, with an N-terminal kinase domain, they are potentially both signaling and motor proteins. Limulus myosin III is particularly interesting because it is a phosphoprotein abundant in photoreceptors that becomes more heavily phosphorylated at night by protein kinase A. This enhanced nighttime phosphorylation occurs in response to signals from an endogenous circadian clock and correlates with dramatic changes in photoreceptor structure and function. We seek to understand the role of Limulus myosin III and its phosphorylation in photoreceptors. Here we determined the sites that become phosphorylated in Limulus myosin III and investigated its kinase, actin binding, and myosin ATPase activities. We show that Limulus myosin III exhibits kinase activity and that a major site for both protein kinase A and autophosphorylation is located within loop 2 of the myosin domain, an important actin binding region. We also identify the phosphorylation of an additional protein kinase A and autophosphorylation site near loop 2, and a predicted phosphorylation site within loop 2. We show that the kinase domain of Limulus myosin III shares some pharmacological properties with protein kinase A, and that it is a potential opsin kinase. Finally, we demonstrate that Limulus myosin III binds actin but lacks ATPase activity. We conclude that Limulus myosin III is an actin-binding and signaling protein and speculate that interactions between actin and Limulus myosin III are regulated by both second messenger mediated phosphorylation and autophosphorylation of its myosin domain within and near loop 2.
Collapse
Affiliation(s)
- Karen Kempler
- Whitney Laboratory for Marine Bioscience and the Department of Neuroscience, University of Florida, St. Augustine 32080
| | - Judit Tóth
- Department of Biochemistry, Eötvös Loránd University Pázmány P.s. 1/c. Budapest 1117, Hungary
- Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, MD 20892-1762
| | - Roxanne Yamashita
- Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, MD 20892-1762
| | - Gretchen Mapel
- Whitney Laboratory for Marine Bioscience and the Department of Neuroscience, University of Florida, St. Augustine 32080
| | - Kimberly Robinson
- Whitney Laboratory for Marine Bioscience and the Department of Neuroscience, University of Florida, St. Augustine 32080
| | - Helene Cardasis
- Proteomics Core of the ICBR, University of Florida, Gainesville 32010
- Department of Chemistry, University of Florida, Gainesville 32010
| | - Stanley Stevens
- Proteomics Core of the ICBR, University of Florida, Gainesville 32010
| | - James R. Sellers
- Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, MD 20892-1762
| | - Barbara-Anne Battelle
- Whitney Laboratory for Marine Bioscience and the Department of Neuroscience, University of Florida, St. Augustine 32080
- CORRESPONDING AUTHOR: Barbara-Anne Battelle, Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd. St. Augustine, FL 32080. Tel. 904-461-4022; Fax 904-461-008;
| |
Collapse
|
30
|
Dosé AC, Ananthanarayanan S, Moore JE, Burnside B, Yengo CM. Kinetic mechanism of human myosin IIIA. J Biol Chem 2006; 282:216-31. [PMID: 17074769 DOI: 10.1074/jbc.m605964200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myosin IIIA is specifically expressed in photoreceptors and cochlea and is important for the phototransduction and hearing processes. In addition, myosin IIIA contains a unique N-terminal kinase domain and C-terminal tail actin-binding motif. We examined the kinetic properties of baculovirus expressed human myosin IIIA containing the kinase, motor, and two IQ domains. The maximum actin-activated ATPase rate is relatively slow (k(cat) = 0.77 +/- 0.08 s(-1)), and high actin concentrations are required to fully activate the ATPase rate (K(ATPase) = 34 +/- 11 microm). However, actin co-sedimentation assays suggest that myosin III has a relatively high steady-state affinity for actin in the presence of ATP (K(actin) approximately 7 microm). The rate of ATP binding to the motor domain is quite slow both in the presence and absence of actin (K(1)k(+2) = 0.020 and 0.001 microm(-1).s(-1), respectively). The rate of actin-activated phosphate release is more than 100-fold faster (85 s(-1)) than the k(cat), whereas ADP release in the presence of actin follows a two-step mechanism (7.0 and 0.6 s(-1)). Thus, our data suggest a transition between two actomyosin-ADP states is the rate-limiting step in the actomyosin III ATPase cycle. Our data also suggest the myosin III motor spends a large fraction of its cycle in an actomyosin ADP state that has an intermediate affinity for actin (K(d) approximately 5 microm). The long lived actomyosin-ADP state may be important for the ability of myosin III to function as a cellular transporter and actin cross-linker in the actin bundles of sensory cells.
Collapse
Affiliation(s)
- Andréa C Dosé
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
31
|
Garger AV, Richard EA, Lisman JE. Testing the role of calmodulin in the excitation of Limulus photoreceptors. Neurosci Lett 2006; 406:6-10. [PMID: 16904826 DOI: 10.1016/j.neulet.2006.06.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 06/02/2006] [Accepted: 06/27/2006] [Indexed: 11/19/2022]
Abstract
The phototransduction cascade in Limulus ventral photoreceptors involves multiple second messengers, including Ca(2+) and cGMP. Light-induced Ca(2+) release from intracellular stores is an intermediate step, but the subsequent Ca(2+)-activated reaction remains to be determined. The possibility that Ca(2+)/calmodulin (Ca(2+)/CaM) might be involved is suggested by the high calmodulin content of the transducing lobe. To test whether CaM can excite the transduction cascade we injected a 25 microM Ca(2+)/CaM solution. This produced a rapid, brief depolarization similar to that produced by light, suggesting a role for CaM in the cascade. However, an important caveat is that Ca(2+) dissociating from the Ca(2+)/CaM complex might excite this process. Several control experiments argue against, but do not entirely eliminate this possibility. To test whether endogenous CaM has a function in excitation, trifluoperazine was pressure injected into the rhabdomeric region. The response to brief flashes was not affected, but the response to steady illumination was transiently attenuated by each injection. We conclude that calmodulin should be considered a candidate to couple intermediate and late stages of the transduction cascade.
Collapse
|
32
|
Rister J, Heisenberg M. Distinct functions of neuronal synaptobrevin in developing and mature fly photoreceptors. ACTA ACUST UNITED AC 2006; 66:1271-84. [PMID: 16967508 DOI: 10.1002/neu.20284] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neuronal synaptobrevin (n-Syb, alias VAMP2), a synaptic vesicle membrane protein with a central role in neurotransmission, is specifically cleaved by the light chain of tetanus neurotoxin (TNT) that is known to reliably block neuroexocytosis. Here, we study fly photoreceptors transmitting continuous, graded signals to first order interneurons in the lamina, and report consequences of targeted expression of TNT in these cells using the UAS/GAL4 driver/effector system. Expressing the toxin throughout photoreceptor development causes developmental, electrophysiological, and behavioral defects. These can be differentiated by confining toxin expression to shorter developmental periods. Applying a method for controlled temporal and spatial TNT expression, we found that in the early pupa it impaired the development of the retina; in the midpupa, during synapse formation TNT caused a severe hypoplasia of the lamina that persisted into adulthood and left the photoreceptor-interneuron synapses of the lamina without function. Finally, during adulthood TNT neither blocks synaptic transmission in photoreceptors nor depletes the cells of n-Syb. Our study suggests a novel, cell type-specific function of n-Syb in synaptogenesis and it distinguishes between two synapse types: TNT resistant and TNT sensitive ones. These results need to be taken into account if TNT is used for neural circuit analysis.
Collapse
Affiliation(s)
- Jens Rister
- Lehrstuhl für Genetik und Neurobiologie der Universität Würzburg, Biozentrum Am Hubland, D-97074 Würzburg, Germany
| | | |
Collapse
|
33
|
Abstract
Transient receptor potential (TRP) channels mediate responses in a large variety of signaling mechanisms. Most studies on mammalian TRP channels rely on heterologous expression, but their relevance to in vivo tissues is not entirely clear. In contrast, Drosophila TRP and TRP-like (TRPL) channels allow direct analyses of in vivo function. In Drosophila photoreceptors, activation of TRP and TRPL is mediated via the phosphoinositide cascade, with both Ca2+ and diacylglycerol (DAG) essential for generating the light response. In tissue culture cells, TRPL channels are constitutively active, and lipid second messengers greatly facilitate this activity. Inhibition of phospholipase C (PLC) completely blocks lipid activation of TRPL, suggesting that lipid activation is mediated via PLC. In vivo studies in mutant Drosophila also reveal an acute requirement for lipid-producing enzyme, which may regulate PLC activity. Thus, PLC and its downstream second messengers, Ca2+ and DAG, constitute critical mediators of TRP/TRPL gating in vivo.
Collapse
Affiliation(s)
- Baruch Minke
- Department of Physiology and the Kühne Minerva Center for Studies of Visual Transduction, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; ,
| | - Moshe Parnas
- Department of Physiology and the Kühne Minerva Center for Studies of Visual Transduction, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; ,
| |
Collapse
|
34
|
Miller AM, Ramirez T, Zuniga FI, Ochoa GH, Gray S, Kelly SD, Matsumoto B, Robles LJ. Rho GTPases regulate rhabdom morphology in octopus photoreceptors. Vis Neurosci 2005; 22:295-304. [PMID: 16079005 DOI: 10.1017/s0952523805223052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Accepted: 02/24/2005] [Indexed: 01/13/2023]
Abstract
In the cephalopod retina, light/dark adaptation is accompanied by a decrease/increase in rhabdom size and redistribution of rhodopsin and retinochrome. Rearrangements in the actin cytoskeleton probably govern changes in rhabdom size by regulating the degradation/formation of rhabdomere microvilli. Photopigment movements may be directed by microtubules present in the outer segment core cytoplasm. We believe that rhodopsin activation by light stimulates Rho and Rac signaling pathways, affecting these cytoskeletal systems and their possible functions in controlling rhabdom morphology and protein movements. In this study, we localized cytoskeletal and signaling proteins in octopus photoreceptors to determine their concurrence between the lighting conditions. We used toxin B from Clostridium difficile to inhibit the activity of Rho/Rac and observed its effect on the location of signaling proteins and actin and tubulin. In both lighting conditions, we found Rho in specific sets of juxtaposed rhabdomeres in embryonic and adult retinas. In the light, Rho and actin were localized along the length of the rhabdomere, but, in the dark, both proteins were absent from a space beneath the inner limiting membrane. Rac colocalized with tubulin in the outer segment core cytoplasm and, like Rho, the two proteins were also absent beneath the inner limiting membrane in the dark. The distribution of actin and Rho was affected by toxin B and, in dark-adapted retinas, actin and Rho distribution was similar to that observed in the light. Our results suggest that the Rho/Rac GTPases are candidates for the regulation of rhabdomere size and protein movements in light-dark-adapted octopus photoreceptors.
Collapse
Affiliation(s)
- Aria M Miller
- Department of Biology, California State University, Dominguez Hills, Carson, 90747, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The myosin family of actin filament-based molecular motors consists of at least 20 structurally and functionally distinct classes. The human genome contains nearly 40 myosin genes, encoding 12 of these classes. Myosins have been implicated in a variety of intracellular functions, including cell migration and adhesion; intracellular transport and localization of organelles and macromolecules; signal transduction; and tumor suppression. In this review, recent insights into the remarkable diversity in the mechanochemical and functional properties associated with this family of molecular motors are discussed.
Collapse
Affiliation(s)
- Mira Krendel
- Department of Molecular Biology, Yale University, New Haven, CN, USA.
| | | |
Collapse
|
36
|
Wang T, Xu H, Oberwinkler J, Gu Y, Hardie RC, Montell C. Light activation, adaptation, and cell survival functions of the Na+/Ca2+ exchanger CalX. Neuron 2005; 45:367-78. [PMID: 15694324 DOI: 10.1016/j.neuron.2004.12.046] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 11/30/2004] [Accepted: 12/22/2004] [Indexed: 10/25/2022]
Abstract
In sensory neurons, Ca(2+) entry is crucial for both activation and subsequent attenuation of signaling. Influx of Ca(2+) is counterbalanced by Ca(2+) extrusion, and Na(+)/Ca(2+) exchange is the primary mode for rapid Ca(2+) removal during and after sensory stimulation. However, the consequences on sensory signaling resulting from mutations in Na(+)/Ca(2+) exchangers have not been described. Here, we report that mutations in the Drosophila Na(+)/Ca(2+) exchanger calx have a profound effect on activity-dependent survival of photoreceptor cells. Loss of CalX activity resulted in a transient response to light, a dramatic decrease in signal amplification, and unusually rapid adaptation. Conversely, overexpression of CalX had reciprocal effects and greatly suppressed the retinal degeneration caused by constitutive activity of the TRP channel. These results illustrate the critical role of Ca(2+) for proper signaling and provide genetic evidence that Ca(2+) overload is responsible for a form of retinal degeneration resulting from defects in the TRP channel.
Collapse
Affiliation(s)
- Tao Wang
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
37
|
Cronin MA, Diao F, Tsunoda S. Light-dependent subcellular translocation of Gqα in Drosophila photoreceptors is facilitated by the photoreceptor-specific myosin III NINAC. J Cell Sci 2004; 117:4797-806. [PMID: 15340015 DOI: 10.1242/jcs.01371] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examine the light-dependent subcellular translocation of the visual Gqα protein between the signaling compartment, the rhabdomere and the cell body in Drosophila photoreceptors. We characterize the translocation of Gqα and provide the first evidence implicating the involvement of the photoreceptor-specific myosin III NINAC in Gqα transport. Translocation of Gqα from the rhabdomere to the cell body is rapid, taking less than 5 minutes. Higher light intensities increased the quantity of Gqα translocated out of the rhabdomeres from 20% to 75%, consistent with a mechanism for light adaptation. We demonstrate that translocation of Gqα requires rhodopsin, but none of the known downstream phototransduction components, suggesting that the signaling pathway triggering translocation occurs upstream of Gqα. Finally, we show that ninaC mutants display a significantly reduced rate of Gqα transport from the cell body to the rhabdomere, suggesting that NINAC might function as a light-dependent plus-end motor involved in the transport of Gqα.
Collapse
Affiliation(s)
- Michelle A Cronin
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA
| | | | | |
Collapse
|
38
|
Lee SJ, Montell C. Light-dependent translocation of visual arrestin regulated by the NINAC myosin III. Neuron 2004; 43:95-103. [PMID: 15233920 DOI: 10.1016/j.neuron.2004.06.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Revised: 04/03/2004] [Accepted: 06/02/2004] [Indexed: 11/16/2022]
Abstract
The rhodopsin regulatory protein, visual arrestin, undergoes light-dependent trafficking in mammalian and Drosophila photoreceptor cells, though the mechanisms underlying these movements are poorly understood. In Drosophila, the movement of the visual arrestin, Arr2, functions in long-term adaptation and is dependent on interaction with phosphoinositides (PIs). However, the basis for the requirement for PIs for light-dependent shuttling was unclear. Here, we demonstrated that the dynamic trafficking of Arr2 into the phototransducing compartment, the rhabdomere, required the eye-enriched myosin III, NINAC. We showed that defects in ninaC resulted in a long-term adaptation phenotype similar to that which occurred in arr2 mutants. The interaction between Arr2 and NINAC was PI dependent and NINAC bound directly to PIs. These data demonstrate that the light-dependent translocation of Arr2 into the rhabdomeres requires PI-mediated interactions between Arr2 and the NINAC myosin III.
Collapse
Affiliation(s)
- Seung-Jae Lee
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
39
|
Les Erickson F, Corsa AC, Dose AC, Burnside B. Localization of a class III myosin to filopodia tips in transfected HeLa cells requires an actin-binding site in its tail domain. Mol Biol Cell 2003; 14:4173-80. [PMID: 14517327 PMCID: PMC207009 DOI: 10.1091/mbc.e02-10-0656] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Bass Myo3A, a class III myosin, was expressed in HeLa cells as a GFP fusion in order to study its cellular localization. GFP-Myo3A localized to the cytoplasm and to the tips of F-actin bundles in filopodia, a localization that is consistent with the observed concentration toward the distal ends of F-actin bundles in photoreceptor cells. A mutation in the motor active site resulted in a loss of filopodia localization, suggesting that Myo3A motor activity is required for filopodial tip localization. Deletion analyses showed that the NH2-terminal kinase domain is not required but the CO2H-terminal 22 amino acids of the Myo3A tail are required for filopodial localization. Expression of this tail fragment alone produced fluorescence associated with F-actin throughout the cytoplasm and filopodia and a recombinant tail fragment bound to F-actin in vitro. An actin-binding motif was identified within this tail fragment, and a mutation within this motif abolished both filopodia localization by Myo3A and F-actin binding by the tail fragment alone. Calmodulin localized to filopodial tips when coexpressed with Myo3A but not in the absence of Myo3A, an observation consistent with the previous proposal that class III myosins bind calmodulin and thereby localize it in certain cell types.
Collapse
Affiliation(s)
- F Les Erickson
- Department of Biological Sciences, Salisbury University, Salisbury, Maryland 21801, USA
| | | | | | | |
Collapse
|
40
|
Oberwinkler J. Calcium homeostasis in fly photoreceptor cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 514:539-83. [PMID: 12596943 DOI: 10.1007/978-1-4615-0121-3_32] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
In fly photoreceptor cells, two processes dominate the Ca2+ homeostasis: light-induced Ca2+ influx through members of the TRP family of ion channels, and Ca2+ extrusion by Na+/Ca2+ exchange. Ca2+ release from intracellular stores is quantitatively insignificant. Both, the light-activated channels and the Ca2+-extruding exchangers are located in or close to the rhabdomeric microvilli, small protrusions of the plasma membrane. The microvilli also contain the molecular machinery necessary for generating quantum bumps, short electrical responses caused by the absorption of a single photon. Due to this anatomical arrangement, the light-induced Ca2+ influx results in two separate Ca2+ signals that have different functions: a global, homogeneous increase of the Ca2+ concentration in the cell body, and rapid but large amplitude Ca2+ transients in the microvilli. The global rise of the Ca2+ concentration mediates light adaptation, via regulatory actions on the phototransduction cascade, the voltage-gated K+ channels and small pigment granules controlling the light intensity. The local Ca2+ transients in the microvilli are responsible for shaping the quantum bumps into fast, all-or-nothing events. They achieve this by facilitating strongly the phototransduction cascade at early stages ofthe light response and subsequently inhibiting it. Many molecular targets of these feedback mechanisms have been identified and characterized due to the availability of numerous Drosophila mutant showing defects in the phototransduction.
Collapse
|
41
|
Komaba S, Inoue A, Maruta S, Hosoya H, Ikebe M. Determination of human myosin III as a motor protein having a protein kinase activity. J Biol Chem 2003; 278:21352-60. [PMID: 12672820 DOI: 10.1074/jbc.m300757200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The class III myosin is the most divergent member of the myosin superfamily, having a domain with homology to a protein kinase. However, the function of class III myosin at a molecular level is not known at all, and it has been questioned whether it is actually an actin-based motor molecule. Here, we showed that human myosin III has an ATPase activity that is significantly activated by actin (20-fold) with Kactin of 112 microm and Vmax of 0.34 s-1, indicating the mechanoenzymatic activity of myosin III. Furthermore, we found that human myosin III has actin translocating activity (0.11 +/- 0.05 microm/s) using an in vitro actin gliding assay, and it moves toward the plus end of actin filaments. Myosin III containing calmodulin as the light chain subunit showed a protein kinase activity and underwent autophosphorylation. The autophosphorylation was the intramolecular process, and the sites were at the C-terminal end of the motor domain. Autophosphorylation significantly activated the kinase activity, although it did not affect the ATPase activity. The present study is the first report that clearly demonstrates that the class III myosin is an actin-based motor protein having a protein kinase activity.
Collapse
Affiliation(s)
- Shigeru Komaba
- Department of Physiology, University of Massachusetts Medical School, Worcester, MA 01655-0127, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
The transient receptor potential (TRP) superfamily is subdivided into four main classes of cation channels, TRPC, TRPV, TRPM and TRPN, each of which includes members in worms, flies, mice and humans. While the biophysical features of many of the mammalian channels have been described, relatively little is known concerning the biological roles of these channels. Forward genetic screens in Drosophila melanogaster and Caenorhabditis elegans have led to the identification of the founding members of each of these four subfamilies. Moreover, phenotypic analyses of invertebrate mutants have contributed greatly to our understanding of the roles of TRP proteins. A recurring theme is that many of these proteins function in sensory signaling processes ranging from vision to olfaction, osmosensation, light touch, social feeding, and temperature- and mechanically-induced nociception. In addition, at least one invertebrate TRP protein is required for cell division. As many of these functions may be conserved among the mammalian TRPs, the invertebrate TRPs offer valuable genetic handles for characterizing the functions of these cation channels in vivo.
Collapse
Affiliation(s)
- Craig Montell
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
43
|
Dosé AC, Hillman DW, Wong C, Sohlberg L, Lin-Jones J, Burnside B. Myo3A, one of two class III myosin genes expressed in vertebrate retina, is localized to the calycal processes of rod and cone photoreceptors and is expressed in the sacculus. Mol Biol Cell 2003; 14:1058-73. [PMID: 12631723 PMCID: PMC151579 DOI: 10.1091/mbc.e02-06-0317] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The striped bass has two retina-expressed class III myosin genes, each composed of a kinase, motor, and tail domain. We report the cloning, sequence analysis, and expression patterns of the long (Myo3A) and short (Myo3B) class III myosins, as well as cellular localization and biochemical characterization of the long isoform, Myo3A. Myo3A (209 kDa) is expressed in the retina, brain, testis, and sacculus, and Myo3B (155 kDa) is expressed in the retina, intestine, and testis. The tails of these two isoforms contain two highly conserved domains, 3THDI and 3THDII. Whereas Myo3B has three IQ motifs, Myo3A has nine IQ motifs, four in its neck and five in its tail domain. Myo3A localizes to actin filament bundles of photoreceptors and is concentrated in the calycal processes. An anti-Myo3A antibody decorates the actin cytoskeleton of rod inner/outer segments, and this labeling is reduced by the presence of ATP. The ATP-sensitive actin association is a feature characteristic of myosin motors. The numerous IQ motifs may play a structural or signaling role in the Myo3A, and its localization to calycal processes indicates that this myosin mediates a local function at this site in vertebrate photoreceptors.
Collapse
|
44
|
Walsh T, Walsh V, Vreugde S, Hertzano R, Shahin H, Haika S, Lee MK, Kanaan M, King MC, Avraham KB. From flies' eyes to our ears: mutations in a human class III myosin cause progressive nonsyndromic hearing loss DFNB30. Proc Natl Acad Sci U S A 2002; 99:7518-23. [PMID: 12032315 PMCID: PMC124268 DOI: 10.1073/pnas.102091699] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Normal vision in Drosophila requires NINAC, a class III myosin. Class III myosins are hybrid motor-signaling molecules, with an N-terminal kinase domain, highly conserved head and neck domains, and a class III-specific tail domain. In Drosophila rhabdomeres, NINAC interacts with actin filaments and with a PDZ scaffolding protein to organize the phototransduction machinery into a signaling complex. Recessive null mutations in Drosophila NINAC delay termination of the photoreceptor response and lead to progressive retinal degeneration. Here, we show that normal hearing in humans requires myosin IIIA, the human homolog of NINAC. In an extended Israeli family, nonsyndromic progressive hearing loss is caused by three different recessive, loss-of-function mutations in myosin IIIA. Of 18 affected relatives in Family N, 7 are homozygous and 11 are compound heterozygous for pairs of mutant alleles. Expression of mammalian myosin IIIA is highly restricted, with the strongest expression in retina and cochlea. The involvement of homologous class III myosins in both Drosophila vision and human hearing is an evolutionary link between these sensory systems.
Collapse
Affiliation(s)
- Tom Walsh
- Department of Medicine, University of Washington, Seattle, WA 98195-7720, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
TRP channel proteins constitute a large and diverse family of proteins that are expressed in many tissues and cell types. This family was designated TRP because of a spontaneously occurring Drosophila mutant lacking TRP that responded to a continuous light with a transient receptor potential (hence TRP). In addition to responses to light, TRPs mediate responses to nerve growth factor, pheromones, olfaction, mechanical, chemical, temperature, pH, osmolarity, vasorelaxation of blood vessels, and metabolic stress. Furthermore, mutations in several members of TRP-related channel proteins are responsible for several diseases, such as several tumors and neurodegenerative disorders. TRP-related channel proteins are found in a variety of organisms, tissues, and cell types, including nonexcitable, smooth muscle, and neuronal cells. The large functional diversity of TRPs is also reflected in their diverse permeability to ions, although, in general, they are classified as nonselective cationic channels. The molecular domains that are conserved in all members of the TRP family constitute parts of the transmembrane domains and in most members also the ankyrin-like repeats at the NH2 terminal of the protein and a "TRP domain" at the COOH terminal, which is a highly conserved 25-amino acid stretch with still unknown function. All of the above features suggest that members of the TRP family are "special assignment" channels, which are recruited to diverse signaling pathways. The channels' roles and characteristics such as gating mechanism, regulation, and permeability are determined by evolution according to the specific functional requirements.
Collapse
Affiliation(s)
- Baruch Minke
- Department of Physiology and the Kühne Minerva Center for Studies of Visual Transduction, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| | | |
Collapse
|
46
|
Lee SJ, Montell C. Regulation of the rhodopsin protein phosphatase, RDGC, through interaction with calmodulin. Neuron 2001; 32:1097-106. [PMID: 11754840 DOI: 10.1016/s0896-6273(01)00538-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hundreds of G protein-coupled receptors (GPCRs) and at least six GPCR kinases have been identified, but the only GPCR phosphatase that has been definitively demonstrated is the rhodopsin phosphatase encoded by the rdgC locus of Drosophila. Mutations in rdgC result in defects in termination of the light response and cause severe retinal degeneration. In the current work, we demonstrate that RDGC binds to calmodulin, and a mutation in an IQ motif that eliminates the calmodulin/RDGC interaction prevents dephosphorylation of rhodopsin in vivo and disrupts termination of the photoresponse. Our data indicate that RDGC is a novel calmodulin-dependent protein phosphatase and raise the possibility that regulation of other GPCRs through dephosphorylation may be controlled by calmodulin-dependent protein phosphatases related to RDGC.
Collapse
Affiliation(s)
- S J Lee
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
47
|
Abstract
Drosophila photoreceptors use a phospholipase C-mediated signaling for phototransduction. This pathway begins by light activation of a G-protein-coupled photopigment and ends by activation of the TRP and TRPL channels. The Drosophila TRP protein is essential for the high Ca2+ permeability and constitutes the major component of the light-induced current, thereby affecting both excitation and adaptation of the photoreceptor cell. TRP is the prototype of a large and diverse multigene family whose members are sharing a structure, which is conserved through evolution from the worm Caenorhabditis elegans to humans. TRP-related channel proteins are found in a variety of cells and tissues and show a large functional diversity although the gating mechanism of Drosophila TRP and of other TRP-related channels is still unknown.
Collapse
Affiliation(s)
- B Minke
- Department of Physiology, Kühne Minerva Center for Studies of Visual Transduction, Hadassah Medical School, Hebrew University, Jerusalem, Israel
| |
Collapse
|
48
|
Wicher D, Walther C, Wicher C. Non-synaptic ion channels in insects--basic properties of currents and their modulation in neurons and skeletal muscles. Prog Neurobiol 2001; 64:431-525. [PMID: 11301158 DOI: 10.1016/s0301-0082(00)00066-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Insects are favoured objects for studying information processing in restricted neuronal networks, e.g. motor pattern generation or sensory perception. The analysis of the underlying processes requires knowledge of the electrical properties of the cells involved. These properties are determined by the expression pattern of ionic channels and by the regulation of their function, e.g. by neuromodulators. We here review the presently available knowledge on insect non-synaptic ion channels and ionic currents in neurons and skeletal muscles. The first part of this article covers genetic and structural informations, the localization of channels, their electrophysiological and pharmacological properties, and known effects of second messengers and modulators such as neuropeptides or biogenic amines. In a second part we describe in detail modulation of ionic currents in three particularly well investigated preparations, i.e. Drosophila photoreceptor, cockroach DUM (dorsal unpaired median) neuron and locust jumping muscle. Ion channel structures are almost exclusively known for the fruitfly Drosophila, and most of the information on their function has also been obtained in this animal, mainly based on mutational analysis and investigation of heterologously expressed channels. Now the entire genome of Drosophila has been sequenced, it seems almost completely known which types of channel genes--and how many of them--exist in this animal. There is much knowledge of the various types of channels formed by 6-transmembrane--spanning segments (6TM channels) including those where four 6TM domains are joined within one large protein (e.g. classical Na+ channel). In comparison, two TM channels and 4TM (or tandem) channels so far have hardly been explored. There are, however, various well characterized ionic conductances, e.g. for Ca2+, Cl- or K+, in other insect preparations for which the channels are not yet known. In some of the larger insects, i.e. bee, cockroach, locust and moth, rather detailed information has been established on the role of ionic currents in certain physiological or behavioural contexts. On the whole, however, knowledge of non-synaptic ion channels in such insects is still fragmentary. Modulation of ion currents usually involves activation of more or less elaborate signal transduction cascades. The three detailed examples for modulation presented in the second part indicate, amongst other things, that one type of modulator usually leads to concerted changes of several ion currents and that the effects of different modulators in one type of cell may overlap. Modulators participate in the adaptive changes of the various cells responsible for different physiological or behavioural states. Further study of their effects on the single cell level should help to understand how small sets of cells cooperate in order to produce the appropriate output.
Collapse
Affiliation(s)
- D Wicher
- Sächsische Akademie der Wissenschaften zu Leipzig, Arbeitsgruppe Neurohormonale Wirkungsmechanismen, Erbertstr. 1, 07743, Jena, Germany.
| | | | | |
Collapse
|
49
|
Battelle BA, Dabdoub A, Malone MA, Andrews AW, Cacciatore C, Calman BG, Smith WC, Payne R. Immunocytochemical localization of opsin, visual arrestin, myosin III, and calmodulin in Limulus lateral eye retinular cells and ventral photoreceptors. J Comp Neurol 2001; 435:211-25. [PMID: 11391642 DOI: 10.1002/cne.1203] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The photoreceptors of the horseshoe crab Limulus polyphemus are classical preparations for studies of the photoresponse and its modulation by circadian clocks. An extensive literature details their physiology and ultrastructure, but relatively little is known about their biochemical organization largely because of a lack of antibodies specific for Limulus photoreceptor proteins. We developed antibodies directed against Limulus opsin, visual arrestin, and myosin III, and we have used them to examine the distributions of these proteins in the Limulus visual system. We also used a commercial antibody to examine the distribution of calmodulin in Limulus photoreceptors. Fixed frozen sections of lateral eye were examined with conventional fluorescence microscopy; ventral photoreceptors were studied with confocal microscopy. Opsin, visual arrestin, myosin III, and calmodulin are all concentrated at the photosensitive rhabdomeral membrane, which is consistent with their participation in the photoresponse. Opsin and visual arrestin, but not myosin III or calmodulin, are also concentrated in extra-rhabdomeral vesicles thought to contain internalized rhabdomeral membrane. In addition, visual arrestin and myosin III were found widely distributed in the cytosol of photoreceptors, suggesting that they have functions in addition to their roles in phototransduction. Our results both clarify and raise new questions about the functions of opsin, visual arrestin, myosin III, and calmodulin in photoreceptors and set the stage for future studies of the impact of light and clock signals on the structure and function of photoreceptors.
Collapse
Affiliation(s)
- B A Battelle
- Whitney Laboratory and Department of Neuroscience, University of Florida, St. Augustine, Florida 32080, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Molecular motors that hydrolyze ATP and use the derived energy to generate force are involved in a variety of diverse cellular functions. Genetic, biochemical, and cellular localization data have implicated motors in a variety of functions such as vesicle and organelle transport, cytoskeleton dynamics, morphogenesis, polarized growth, cell movements, spindle formation, chromosome movement, nuclear fusion, and signal transduction. In non-plant systems three families of molecular motors (kinesins, dyneins, and myosins) have been well characterized. These motors use microtubules (in the case of kinesines and dyneins) or actin filaments (in the case of myosins) as tracks to transport cargo materials intracellularly. During the last decade tremendous progress has been made in understanding the structure and function of various motors in animals. These studies are yielding interesting insights into the functions of molecular motors and the origin of different families of motors. Furthermore, the paradigm that motors bind cargo and move along cytoskeletal tracks does not explain the functions of some of the motors. Relatively little is known about the molecular motors and their roles in plants. In recent years, by using biochemical, cell biological, molecular, and genetic approaches a few molecular motors have been isolated and characterized from plants. These studies indicate that some of the motors in plants have novel features and regulatory mechanisms. The role of molecular motors in plant cell division, cell expansion, cytoplasmic streaming, cell-to-cell communication, membrane trafficking, and morphogenesis is beginning to be understood. Analyses of the Arabidopsis genome sequence database (51% of genome) with conserved motor domains of kinesin and myosin families indicates the presence of a large number (about 40) of molecular motors and the functions of many of these motors remain to be discovered. It is likely that many more motors with novel regulatory mechanisms that perform plant-specific functions are yet to be discovered. Although the identification of motors in plants, especially in Arabidopsis, is progressing at a rapid pace because of the ongoing plant genome sequencing projects, only a few plant motors have been characterized in any detail. Elucidation of function and regulation of this multitude of motors in a given species is going to be a challenging and exciting area of research in plant cell biology. Structural features of some plant motors suggest calcium, through calmodulin, is likely to play a key role in regulating the function of both microtubule- and actin-based motors in plants.
Collapse
Affiliation(s)
- A S Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins 80523, USA
| |
Collapse
|