1
|
John J, Das S, Kunnath A, Mudgal J, Nandakumar K. Effects of quercetin and derivatives on NAMPT/Sirtuin-1 metabolic pathway in neuronal cells: an approach to mitigate chemotherapy-induced cognitive impairment. Metab Brain Dis 2025; 40:151. [PMID: 40085284 PMCID: PMC11909064 DOI: 10.1007/s11011-025-01567-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/02/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND The cognitive alterations observed in individuals undergoing cancer treatments have garnered more attention recently. Chemotherapy can reduce nicotinamide adenine dinucleotide (NAD+) levels by inhibiting nicotinamide phosphoribosyl transferase (NAMPT). This reduction can make cancer cells more susceptible to oxidative damage and death and may also affect non-cancerous cells, particularly the brain cells. During chemotherapy-induced suppression, the downregulation of the NAMPT-mediated NAD+/Sirtuin 1 (SIRT1) pathway may cause dyscognition. Objective: This study aimed to assess the role of quercetin and analogues in chemobrain and the associated mechanisms. Methods: The potential of quercetin and its derivatives interaction with NAMPT and SIRT1 proteins was performed using computational studies followed by their in vitro evaluation in SH-SY5Y cells. Molecular docking and simulation studies of human SIRT1 and NAMPT proteins with quercetin and its derivatives were performed. Differentiated SH-SY5Y cell lines were treated with quercetin and selected derivatives against Methotrexate and 5-Fluorouracil (MF) toxicity, by subjecting to cytotoxicity assay, flow cytometry, and RT-PCR analysis. Results: Quercetin, Rutin, and Isoquercetin showed interactions necessary in the activation process of both proteins. Cytotoxicity and flow cytometric studies demonstrated that the phytochemicals shield the differentiated SH-SY5Y cells from MF toxicity. As determined by RT-PCR investigations, NAMPT and SIRT1 gene mRNA expression was higher in test drug-treated cells at quercetin (0.12, 0.6 µM), rutin, and isoquercetin (16, 80 µM) and lower in MF-treated cells. Conclusion: The treatment of phytochemicals alleviated CICI by targeting NAMPT and SIRT1 proteins, which could lead to the identification of effective treatment strategies for the chemobrain.
Collapse
Affiliation(s)
- Jeena John
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Anu Kunnath
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
- School of Pharmaceutical Sciences, Manipal University Jaipur, Jaipur, 303007, Rajasthan, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
- Centre for Animal Research, Ethics and Training, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
2
|
Wang S, Liu Z, Wang J, Cheng L, Hu J, Tang J. Platelet-rich plasma (PRP) in nerve repair. Regen Ther 2024; 27:244-250. [PMID: 38586873 PMCID: PMC10997806 DOI: 10.1016/j.reth.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
Platelet-rich plasma (PRP) has the capability of assisting in the recovery of damaged tissues by releasing a variety of biologically active factors to initiate a hemostatic cascade reaction and promote the synthesis of new connective tissue and revascularization. It is now widely used for tissue engineering repair. In addition, PRP has demonstrated nerve repair and pain relief, and has been studied and applied to the facial nerve, median nerve, sciatic nerve, and central nerve. These suggest that PRP injection therapy has a positive effect on nerve repair. This indicates that PRP has high clinical value and potential application in nerve repair. It is worthwhile for scientists and medical workers to further explore and study PRP to expand its application in nerve repair, and to provide a more reliable scientific basis for the opening of a new approach to nerve repair.
Collapse
Affiliation(s)
- Siyu Wang
- Graduate School, Wuhan Sports University, Wuhan, 430079, Hubei, China
| | - Zhengping Liu
- Graduate School, Wuhan Sports University, Wuhan, 430079, Hubei, China
| | - Jianing Wang
- Graduate School, Wuhan Sports University, Wuhan, 430079, Hubei, China
| | - Lulu Cheng
- Graduate School, Wuhan Sports University, Wuhan, 430079, Hubei, China
- College of Acupuncture-Moxibustion and Tuina, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jinfeng Hu
- Department of Orthopedics, Wuhan University Renmin Hospital, NO. 239 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Jin Tang
- Graduate School, Wuhan Sports University, Wuhan, 430079, Hubei, China
- Department of Minimally Invasive Spinal Surgery, The Affiliated Hospital of Wuhan Sports University, NO 279 Luoyu Road, Hongshan District, Wuhan, 430079, Hubei, China
| |
Collapse
|
3
|
Kalyanaraman B, Cheng G, Hardy M. The role of short-chain fatty acids in cancer prevention and cancer treatment. Arch Biochem Biophys 2024; 761:110172. [PMID: 39369836 PMCID: PMC11784870 DOI: 10.1016/j.abb.2024.110172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Short-chain fatty acids (SCFAs) are microbial metabolites in the gut that may play a role in cancer prevention and treatment. They affect the metabolism of both normal and cancer cells, regulating various cellular energetic processes. SCFAs also inhibit histone deacetylases, which are targets for cancer therapy. The three main SCFAs are acetate, propionate, and butyrate, which are transported into cells through specific transporters. SCFAs may enhance the efficacy of chemotherapeutic agents and modulate immune cell metabolism, potentially reprogramming the tumor microenvironment. Although SCFAs and SCFA-generating microbes enhance therapeutic efficacy of several forms of cancer therapy, published data also support the opposing viewpoint that SCFAs mitigate the efficacy of some cancer therapies. Therefore, the relationship between SCFAs and cancer is more complex, and this review discusses some of these aspects. Clearly, further research is needed to understand the role of SCFAs, their mechanisms, and applications in cancer prevention and treatment.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States.
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States
| | - Micael Hardy
- Aix-Marseille Univ, CNRS, ICR, UMR 7273, Marseille, 13013, France
| |
Collapse
|
4
|
Kalyanaraman B, Cheng G, Hardy M. Gut microbiome, short-chain fatty acids, alpha-synuclein, neuroinflammation, and ROS/RNS: Relevance to Parkinson's disease and therapeutic implications. Redox Biol 2024; 71:103092. [PMID: 38377788 PMCID: PMC10891329 DOI: 10.1016/j.redox.2024.103092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024] Open
Abstract
In this review, we explore how short-chain fatty acids (SCFAs) produced by the gut microbiome affect Parkinson's disease (PD) through their modulatory interactions with alpha-synuclein, neuroinflammation, and oxidative stress mediated by reactive oxygen and nitrogen species (ROS/RNS). In particular, SCFAs-such as acetate, propionate, and butyrate-are involved in gut-brain communication and can modulate alpha-synuclein aggregation, a hallmark of PD. The gut microbiome of patients with PD has lower levels of SCFAs than healthy individuals. Probiotics may be a potential strategy to restore SCFAs and alleviate PD symptoms, but the underlying mechanisms are not fully understood. Also in this review, we discuss how alpha-synuclein, present in the guts and brains of patients with PD, may induce neuroinflammation and oxidative stress via ROS/RNS. Alpha-synuclein is considered an early biomarker for PD and may link the gut-brain axis to the disease pathogenesis. Therefore, elucidating the role of SCFAs in the gut microbiome and their impact on alpha-synuclein-induced neuroinflammation in microglia and on ROS/RNS is crucial in PD pathogenesis and treatment.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States.
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States
| | - Micael Hardy
- Aix-Marseille Univ, CNRS, ICR, UMR 7273, Marseille, 13013, France
| |
Collapse
|
5
|
Jeong S, Kim IK, Moon H, Kim H, Song BW, Choi JW, Kim SW, Lee S, Chae DS, Lim S. A 70% Ethanol Neorhodomela munita Extract Attenuates RANKL-Induced Osteoclast Activation and H 2O 2-Induced Osteoblast Apoptosis In Vitro. Molecules 2024; 29:1741. [PMID: 38675559 PMCID: PMC11052068 DOI: 10.3390/molecules29081741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The rapid aging of the population worldwide presents a significant social and economic challenge, particularly due to osteoporotic fractures, primarily resulting from an imbalance between osteoclast-mediated bone resorption and osteoblast-mediated bone formation. While conventional therapies offer benefits, they also present limitations and a range of adverse effects. This study explores the protective impact of Neorhodomela munita ethanol extract (EN) on osteoporosis by modulating critical pathways in osteoclastogenesis and apoptosis. Raw264.7 cells and Saos-2 cells were used for in vitro osteoclast and osteoblast models, respectively. By utilizing various in vitro methods to detect osteoclast differentiation/activation and osteoblast death, it was demonstrated that the EN's potential to inhibit RANKL induced osteoclast formation and activation by targeting the MAPKs-NFATc1/c-Fos pathway and reducing H2O2-induced cell death through the downregulation of apoptotic signals. This study highlights the potential benefits of EN for osteoporosis and suggests that EN is a promising natural alternative to traditional treatments.
Collapse
Affiliation(s)
- Seongtae Jeong
- The Interdisciplinary Graduate Program in Integrative Biotechnology, Yonsei University, Seoul 03722, Republic of Korea;
| | - Il-Kwon Kim
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, International St. Mary’s Hospital, Incheon 22711, Republic of Korea;
| | - Hanbyeol Moon
- Department of Integrated Omics for Biomedical Sciences, Graduate School, Yonsei University, Seoul 03722, Republic of Korea;
| | - Hojin Kim
- Department for Medical Science, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea;
| | - Byeong-Wook Song
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea; (B.-W.S.); (S.W.K.); (S.L.)
| | - Jung-Won Choi
- Medical Science Research Institute, College of Medicine, Catholic Kwandong University, Incheon Metropolitan City 22711, Republic of Korea;
| | - Sang Woo Kim
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea; (B.-W.S.); (S.W.K.); (S.L.)
| | - Seahyoung Lee
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea; (B.-W.S.); (S.W.K.); (S.L.)
| | - Dong-Sik Chae
- Department of Orthopedic Surgery, International St. Mary’s Hospital, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea
| | - Soyeon Lim
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea; (B.-W.S.); (S.W.K.); (S.L.)
| |
Collapse
|
6
|
Sovilj D, Kelemen CD, Dvorakova S, Zobalova R, Raabova H, Kriska J, Hermanova Z, Knotek T, Anderova M, Klener P, Filimonenko V, Neuzil J, Andera L. Cell-specific modulation of mitochondrial respiration and metabolism by the pro-apoptotic Bcl-2 family members Bax and Bak. Apoptosis 2024; 29:424-438. [PMID: 38001340 DOI: 10.1007/s10495-023-01917-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2023] [Indexed: 11/26/2023]
Abstract
Proteins from the Bcl-2 family play an essential role in the regulation of apoptosis. However, they also possess cell death-unrelated activities that are less well understood. This prompted us to study apoptosis-unrelated activities of the Bax and Bak, pro-apoptotic members of the Bcl-2 family. We prepared Bax/Bak-deficient human cancer cells of different origin and found that while respiration in the glioblastoma U87 Bax/Bak-deficient cells was greatly enhanced, respiration of Bax/Bak-deficient B lymphoma HBL-2 cells was slightly suppressed. Bax/Bak-deficient U87 cells also proliferated faster in culture, formed tumours more rapidly in mice, and showed modulation of metabolism with a considerably increased NAD+/NADH ratio. Follow-up analyses documented increased/decreased expression of mitochondria-encoded subunits of respiratory complexes and stabilization/destabilization of the mitochondrial transcription elongation factor TEFM in Bax/Bak-deficient U87 and HBL-2 cells, respectively. TEFM downregulation using shRNAs attenuated mitochondrial respiration in Bax/Bak-deficient U87 as well as in parental HBL-2 cells. We propose that (post)translational regulation of TEFM levels in Bax/Bak-deficient cells modulates levels of subunits of mitochondrial respiratory complexes that, in turn, contribute to respiration and the accompanying changes in metabolism and proliferation in these cells.
Collapse
Affiliation(s)
- Dana Sovilj
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, Prague, Czech Republic
| | - Cristina Daniela Kelemen
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Sarka Dvorakova
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, Prague, Czech Republic
| | - Renata Zobalova
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, Prague, Czech Republic
| | - Helena Raabova
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kriska
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Hermanova
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Knotek
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Miroslava Anderova
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Klener
- First Faculty of Medicine, Institute of Pathological Physiology, Charles University, Prague, Czech Republic
| | - Vlada Filimonenko
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
- First Faculty of Medicine, Charles University, Prague, Czech Republic
- School of Pharmacy and Medical Science, Griffith University, Southport, QLD, Australia
| | - Ladislav Andera
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, Prague, Czech Republic.
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
7
|
Zhou H, Sun X, Dai Y, Wang X, Dai Z, Li X. 14-3-3-η interacts with BCL-2 to protect human endothelial progenitor cells from ox-LDL-triggered damage. Cell Biol Int 2024; 48:290-299. [PMID: 38100125 DOI: 10.1002/cbin.12105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/31/2023] [Accepted: 11/18/2023] [Indexed: 02/15/2024]
Abstract
Oxidized low-density lipoprotein (ox-LDL) causes dysfunction of endothelial progenitor cells (EPCs), and we recently reported that 14-3-3-η can attenuate the damage triggered by ox-LDL in EPCs. However, the molecular mechanisms by which 14-3-3-η protects EPCs from the damage caused by ox-LDL are not fully understood. In this study, we observed that the expression of 14-3-3-η and BCL-2 were downregulated in ox-LDL-treated EPCs. Overexpression of 14-3-3-η in ox-LDL-treated EPC significantly increased BCL-2 level, while knockdown of BCL-2 reduced 14-3-3-η expression and mitigated the protective effect of 14-3-3-η on EPCs. In addition, we discovered that 14-3-3-η colocalizes and interacts with BCL-2 in EPCs. Taken together, these data suggest that 14-3-3-η protects EPCs from ox-LDL-induced damage by its interaction with BCL-2.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaopei Sun
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yi Dai
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaotong Wang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhihong Dai
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiuli Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Tzankova D, Kuteva H, Mateev E, Stefanova D, Dzhemadan A, Yordanov Y, Mateeva A, Tzankova V, Kondeva-Burdina M, Zlatkov A, Georgieva M. Synthesis, DFT Study, and In Vitro Evaluation of Antioxidant Properties and Cytotoxic and Cytoprotective Effects of New Hydrazones on SH-SY5Y Neuroblastoma Cell Lines. Pharmaceuticals (Basel) 2023; 16:1198. [PMID: 37765006 PMCID: PMC10537553 DOI: 10.3390/ph16091198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
A series of ten new hydrazide-hydrazone derivatives bearing a pyrrole ring were synthesized and structurally elucidated through appropriate spectral characteristics. The target hydrazones were assessed for radical scavenging activity through 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) tests, with ethyl 5-(4-bromophenyl)-1-(2-(2-(4-hydroxy-3,5-dimethoxybenzylidene)hydrazine-yl)-2-oxoethyl)-2-methyl-1H-pyrrole-3-carboxylate (7d) and ethyl 5-(4-bromophenyl)-1-(3-(2-(4-hydroxy-3,5-dimethoxybenzylidene) hydra zine-yl)-3-oxopropyl)-2-methyl-1H-pyrrole-3-carboxylate (8d) highlighted as the best radical scavengers from the series. Additional density functional theory (DFT) studies have indicated that the best radical scavenging ligands in the newly synthesized molecules are stable, do not decompose into elements, are less polarizable, and with a hard nature. The energy of the highest occupied molecular orbital (HOMO) revealed that both compounds possess good electron donation capacities. Overall, 7d and 8d can readily scavenge free radicals in biological systems via the donation of hydrogen atoms and single electron transfer. The performed in vitro assessment of the compound's protective activity on the H2O2-induced oxidative stress model on human neuroblastoma cell line SH-SY5Y determined 7d as the most perspective representative with the lowest cellular toxicity and the highest protection.
Collapse
Affiliation(s)
- Diana Tzankova
- Department “Pharmaceutical Chemistry”, Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (D.T.); (E.M.); (A.M.); (A.Z.)
| | - Hristina Kuteva
- Laboratory “Drug metabolism and Drug Toxicity”, Department “Pharmacology, Pharmacotherapy and Toxicology”, Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (H.K.); (D.S.); (Y.Y.); (V.T.); (M.K.-B.)
| | - Emilio Mateev
- Department “Pharmaceutical Chemistry”, Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (D.T.); (E.M.); (A.M.); (A.Z.)
| | - Denitsa Stefanova
- Laboratory “Drug metabolism and Drug Toxicity”, Department “Pharmacology, Pharmacotherapy and Toxicology”, Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (H.K.); (D.S.); (Y.Y.); (V.T.); (M.K.-B.)
| | - Alime Dzhemadan
- Laboratory “Drug metabolism and Drug Toxicity”, Department “Pharmacology, Pharmacotherapy and Toxicology”, Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (H.K.); (D.S.); (Y.Y.); (V.T.); (M.K.-B.)
| | - Yordan Yordanov
- Laboratory “Drug metabolism and Drug Toxicity”, Department “Pharmacology, Pharmacotherapy and Toxicology”, Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (H.K.); (D.S.); (Y.Y.); (V.T.); (M.K.-B.)
| | - Alexandrina Mateeva
- Department “Pharmaceutical Chemistry”, Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (D.T.); (E.M.); (A.M.); (A.Z.)
| | - Virginia Tzankova
- Laboratory “Drug metabolism and Drug Toxicity”, Department “Pharmacology, Pharmacotherapy and Toxicology”, Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (H.K.); (D.S.); (Y.Y.); (V.T.); (M.K.-B.)
| | - Magdalena Kondeva-Burdina
- Laboratory “Drug metabolism and Drug Toxicity”, Department “Pharmacology, Pharmacotherapy and Toxicology”, Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (H.K.); (D.S.); (Y.Y.); (V.T.); (M.K.-B.)
| | - Alexander Zlatkov
- Department “Pharmaceutical Chemistry”, Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (D.T.); (E.M.); (A.M.); (A.Z.)
| | - Maya Georgieva
- Department “Pharmaceutical Chemistry”, Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (D.T.); (E.M.); (A.M.); (A.Z.)
| |
Collapse
|
9
|
Darvish L, Bahreyni Toossi MT, Azimian H, Shakeri M, Dolat E, Ahmadizad Firouzjaei A, Rezaie S, Amraee A, Aghaee-Bakhtiari SH. The role of microRNA-induced apoptosis in diverse radioresistant cancers. Cell Signal 2023; 104:110580. [PMID: 36581218 DOI: 10.1016/j.cellsig.2022.110580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Resistance to cancer radiotherapy is one of the biggest concerns for success in treating and preventing recurrent disease. Malignant tumors may develop when they block genetic mutations associated with apoptosis or abnormal expression of apoptosis; Tumor treatment may induce the expression of apoptosis-related genes to promote tumor cell apoptosis. MicroRNAs have been shown to contribute to forecasting prognosis, distinguishing between cancer subtypes, and affecting treatment outcomes in cancer. Constraining these miRNAs may be an attractive treatment strategy to help overcome radiation resistance. The delivery of these future treatments is still challenging due to the excess downstream targets that each miRNA can control. Understanding the role of miRNAs brings us one step closer to attaining patient treatment and improving patient outcomes. This review summarized the current information on the role of microRNA-induced apoptosis in determining the radiosensitivity of various cancers.
Collapse
Affiliation(s)
- Leili Darvish
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hosein Azimian
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Shakeri
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Dolat
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Ahmadizad Firouzjaei
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Rezaie
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azadeh Amraee
- Department of Medical Physics, Faculty of Medicine, School of Medicine, Lorestan University of Medical Sciences, khorramabad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Bioinformatics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Badiei A, Beltran WA, Aguirre GD. Altered transsulfuration pathway enzymes and redox homeostasis in inherited retinal degenerative diseases. Exp Eye Res 2022; 215:108902. [PMID: 34954206 PMCID: PMC8923955 DOI: 10.1016/j.exer.2021.108902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/04/2021] [Accepted: 12/15/2021] [Indexed: 02/03/2023]
Abstract
Retinal degenerative diseases result from apoptotic photoreceptor cell death. As endogenously produced gaseous molecules such as hydrogen sulfide (H2S) and nitric oxide (NO) play a key role in apoptosis, we compared the expression levels of genes and proteins involved in the production of these molecules in the retina of normal dogs and three canine models (rcd1, crd2, and xlpra2) of human inherited retinal degeneration (IRD). Using qRT-PCR, Western blot, and immunohistochemistry (IHC), we showed that mRNA and protein levels of cystathionine β-synthase (CBS), an enzyme that produces H2S in neurons, are increased in retinal degeneration, but those of cystathionine γ-lyase (CSE), an enzyme involved in the production of glutathione (GSH), an antioxidant, are not. Such findings suggest that increased levels of H2S that are not counterbalanced by increased antioxidant potential may contribute to disease in affected retinas. We also studied the expression of neuronal and inducible nitric oxide synthase (nNOS and iNOS), the enzymes responsible for NO production. Western blot and IHC results revealed increased levels of nNOS and iNOS, resulting in increased NO levels in mutant retinas. Finally, photoreceptors are rich in polyunsaturated fatty acids (PUFAs) that can make these cells vulnerable to oxidative damage through reactive oxygen species (ROS). Our results showed increased levels of acrolein and hydroxynonenal (4HNE), two main toxic products of PUFAs, surrounding the membranes of photoreceptors in affected canines. Increased levels of these toxic products, together with increased NO and ROS, likely render these cells susceptible to an intrinsic apoptotic pathway involving mitochondrial membranes. To assess this possibility, we measured the levels of BCL2, an anti-apoptotic protein in the mitochondrial membrane. Western blot results showed decreased levels of BCL2 protein in affected retinas. Overall, the results of this study identify alterations in the expression of enzymes directly involved in maintaining the normal redox status of the retina during retinal degeneration, thereby supporting future studies to investigate the role of H2S and NO in retinal degeneration and apoptosis.
Collapse
Affiliation(s)
- Alireza Badiei
- Department of Veterinary Medicine, College of Natural Science and Mathematics, University of Alaska Fairbanks, AK, USA; Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - William A Beltran
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gustavo D Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Sengupta P, Roychoudhury S, Nath M, Dutta S. Oxidative Stress and Idiopathic Male Infertility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1358:181-204. [DOI: 10.1007/978-3-030-89340-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Sabater B. On the Edge of Dispensability, the Chloroplast ndh Genes. Int J Mol Sci 2021; 22:12505. [PMID: 34830386 PMCID: PMC8621559 DOI: 10.3390/ijms222212505] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/23/2022] Open
Abstract
The polypeptides encoded by the chloroplast ndh genes and some nuclear genes form the thylakoid NADH dehydrogenase (Ndh) complex, homologous to the mitochondrial complex I. Except for Charophyceae (algae related to higher plants) and a few Prasinophyceae, all eukaryotic algae lack ndh genes. Among vascular plants, the ndh genes are absent in epiphytic and in some species scattered among different genera, families, and orders. The recent identification of many plants lacking plastid ndh genes allows comparison on phylogenetic trees and functional investigations of the ndh genes. The ndh genes protect Angiosperms under various terrestrial stresses, maintaining efficient photosynthesis. On the edge of dispensability, ndh genes provide a test for the natural selection of photosynthesis-related genes in evolution. Variable evolutionary environments place Angiosperms without ndh genes at risk of extinction and, probably, most extant ones may have lost ndh genes recently. Therefore, they are evolutionary endpoints in phylogenetic trees. The low number of sequenced plastid DNA and the long lifespan of some Gymnosperms lacking ndh genes challenge models about the role of ndh genes protecting against stress and promoting leaf senescence. Additional DNA sequencing in Gymnosperms and investigations into the molecular mechanisms of their response to stress will provide a unified model of the evolutionary and functional consequences of the lack of ndh genes.
Collapse
Affiliation(s)
- Bartolomé Sabater
- Department of Life Sciences, University of Alcalá, Alcalá de Henares, 28805 Madrid, Spain
| |
Collapse
|
13
|
Dysregulated Autophagy Leads to Oxidative Stress and Aberrant Expression of ABC Transporters in Women with Early Miscarriage. Antioxidants (Basel) 2021; 10:antiox10111742. [PMID: 34829614 PMCID: PMC8614945 DOI: 10.3390/antiox10111742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/19/2022] Open
Abstract
Early miscarriage (EMC) is a devastating obstetrical complication. ATP-binding cassette (ABC) transporters mediate cholesterol transfer across the placenta and enhance cell survival by effluxing substrates from target cells in the presence of stressors. Recent evidence reports an intricate interplay between autophagy and ABC transporters. We hypothesized that dysregulated autophagy and oxidative stress (OS) in the placenta leads to abnormal expression of membrane transporters contributing to poor pregnancy survival in EMC. We determined mRNA and protein expression of autophagy genes (Beclin-1/Bcl-2/LC3I/LC3II/p62) and ABC transporters (ABCA1/ABCG1/ABCG2) in placentae from EMC patients (n = 20), term controls (n = 19), first trimester (n = 6), and term controls (n = 5) controls. Oxidative/antioxidant status and biomarkers of oxidative damage were evaluated in maternal serum and placentae from EMC and healthy controls. In EMC, placental expression of LC3II/LC3I as well as of the key autophagy regulatory proteins Beclin-1 and Bcl-2 were reduced, whereas p62 was increased. Both in the serum and placentae of EMC patients, total OS was elevated reflected by increased oxidative damage markers (8-OHdG/malondialdehyde/carbonyl formation) accompanied by diminished levels of total antioxidant status, catalase, and total glutathione. Furthermore, we found reduced ABCG1 and increased ABCG2 expression. These findings suggest that a decreased autophagy status triggers Bcl-2-dependent OS leading to macromolecule damage in EMC placentae. The decreased expression of ABCG1 contributes to reduced cholesterol export to the growing fetus. Increasing ABCG2 expression could represent a protective feedback mechanism under inhibited autophagy conditions. In conclusion, dysregulated autophagy combined with increased oxidative toxicity and aberrant expression of placental ABC transporters affects materno-fetal health in EMC.
Collapse
|
14
|
Begum R, Howlader S, Mamun-Or-Rashid ANM, Rafiquzzaman SM, Ashraf GM, Albadrani GM, Sayed AA, Peluso I, Abdel-Daim MM, Uddin MS. Antioxidant and Signal-Modulating Effects of Brown Seaweed-Derived Compounds against Oxidative Stress-Associated Pathology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9974890. [PMID: 34336128 PMCID: PMC8289617 DOI: 10.1155/2021/9974890] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 11/25/2022]
Abstract
The biological and therapeutic properties of seaweeds have already been well known. Several studies showed that among the various natural marine sources of antioxidants, seaweeds have become a potential source of antioxidants because of their bioactive compounds. Most of the metabolic diseases are caused by oxidative stress. It is very well known that antioxidants have a pivotal role in the treatment of those diseases. Recent researches have revealed the potential activity of seaweeds as complementary medicine, which have therapeutic properties for health and disease management. Among the seaweeds, brown seaweeds (Phaeophyta) and their derived bioactive substances showed excellent antioxidant properties than other seaweeds. This review focuses on brown seaweeds and their derived major bioactive compounds such as sulfated polysaccharide, polyphenol, carotenoid, and sterol antioxidant effects and molecular mechanisms in the case of the oxidative stress-originated disease. Antioxidants have a potential role in the modification of stress-induced signaling pathways along with the activation of the oxidative defensive pathways. This review would help to provide the basis for further studies to researchers on the potential antioxidant role in the field of medical health care and future drug development.
Collapse
Affiliation(s)
- Rahima Begum
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, 26426, Republic of Korea
| | - Saurav Howlader
- Department of Pharmacology and Pharmaco Genomics Research Centre (PGRC), Inje University College of Medicine, Busan, Republic of Korea
| | - A. N. M. Mamun-Or-Rashid
- Anti-Aging Medical Research Center and Glycative Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
| | - S. M. Rafiquzzaman
- Department of Fisheries Biology & Aquatic Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur 1706, Bangladesh
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ilaria Peluso
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), 00142 Rome, Italy
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| |
Collapse
|
15
|
Muench NA, Patel S, Maes ME, Donahue RJ, Ikeda A, Nickells RW. The Influence of Mitochondrial Dynamics and Function on Retinal Ganglion Cell Susceptibility in Optic Nerve Disease. Cells 2021; 10:cells10071593. [PMID: 34201955 PMCID: PMC8306483 DOI: 10.3390/cells10071593] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/30/2022] Open
Abstract
The important roles of mitochondrial function and dysfunction in the process of neurodegeneration are widely acknowledged. Retinal ganglion cells (RGCs) appear to be a highly vulnerable neuronal cell type in the central nervous system with respect to mitochondrial dysfunction but the actual reasons for this are still incompletely understood. These cells have a unique circumstance where unmyelinated axons must bend nearly 90° to exit the eye and then cross a translaminar pressure gradient before becoming myelinated in the optic nerve. This region, the optic nerve head, contains some of the highest density of mitochondria present in these cells. Glaucoma represents a perfect storm of events occurring at this location, with a combination of changes in the translaminar pressure gradient and reassignment of the metabolic support functions of supporting glia, which appears to apply increased metabolic stress to the RGC axons leading to a failure of axonal transport mechanisms. However, RGCs themselves are also extremely sensitive to genetic mutations, particularly in genes affecting mitochondrial dynamics and mitochondrial clearance. These mutations, which systemically affect the mitochondria in every cell, often lead to an optic neuropathy as the sole pathologic defect in affected patients. This review summarizes knowledge of mitochondrial structure and function, the known energy demands of neurons in general, and places these in the context of normal and pathological characteristics of mitochondria attributed to RGCs.
Collapse
Affiliation(s)
- Nicole A. Muench
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (N.A.M.); (S.P.); (R.J.D.)
| | - Sonia Patel
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (N.A.M.); (S.P.); (R.J.D.)
| | - Margaret E. Maes
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria;
| | - Ryan J. Donahue
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (N.A.M.); (S.P.); (R.J.D.)
- Boston Children’s Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA;
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Robert W. Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (N.A.M.); (S.P.); (R.J.D.)
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
- Correspondence:
| |
Collapse
|
16
|
Contribution of Yeast Studies to the Understanding of BCL-2 Family Intracellular Trafficking. Int J Mol Sci 2021; 22:ijms22084086. [PMID: 33920941 PMCID: PMC8071328 DOI: 10.3390/ijms22084086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
BCL-2 family members are major regulators of apoptotic cell death in mammals. They form an intricate regulatory network that ultimately regulates the release of apoptogenic factors from mitochondria to the cytosol. The ectopic expression of mammalian BCL-2 family members in the yeast Saccharomyces cerevisiae, which lacks BCL-2 homologs, has been long established as a useful addition to the available models to study their function and regulation. In yeast, individual proteins can be studied independently from the whole interaction network, thus providing insight into the molecular mechanisms underlying their function in a living context. Furthermore, one can take advantage of the powerful tools available in yeast to probe intracellular trafficking processes such as mitochondrial sorting and interactions/exchanges between mitochondria and other compartments, such as the endoplasmic reticulum that are largely conserved between yeast and mammals. Yeast molecular genetics thus allows the investigation of the role of these processes on the dynamic equilibrium of BCL-2 family members between mitochondria and extramitochondrial compartments. Here we propose a model of dynamic regulation of BCL-2 family member localization, based on available evidence from ectopic expression in yeast.
Collapse
|
17
|
Zhang Y, Li S, Wu J, Peng Y, Bai J, Ning B, Wang X, Fang Y, Han D, Ren S, Li S, Chen R, Li K, Du H, Gao Z. The orphan nuclear receptor Nur77 plays a vital role in BPA-induced PC12 cell apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112026. [PMID: 33582411 DOI: 10.1016/j.ecoenv.2021.112026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is a typical environmental endocrine disruptor that can migrate into organisms through skin contact, breathing, diet and various other approaches. The reproductive toxicity and neurotoxicity of BPA has been confirmed by several toxicological studies. However, the neurotoxicity of BPA is still controversial. In the present study, we used PC12 cells as a model to investigate the mechanism of BPA-induced neuronal apoptosis. BPA exposure reduced cell viability, altered cell morphology and aggravated intracellular Lactate dehydrogenase (LDH) release, intracellular Ca2+ concentration, Reactive oxygen species (ROS) levels, apoptosis and the reduction in the mitochondrial transmembrane potential (ΔΨm). Moreover, the results of the Western blot (WB) and Real-time quantitative polymerase chain reaction (RT-qPCR) assays indicated that the expression levels of Nur77 in the BPA group were down-regulated and accompanied by the downregulation of the NF-κb/Bcl-2 proteins and the upregulation of cleaved-caspase 3, which is a marker of apoptosis. However, these changes were significantly reversed with the upregulation of the Nur77 protein by introducing plasmids carrying the nur77 gene. These results indicated that BPA-induced apoptosis was closely related to Nur77-mediated inhibition of the NF-κb/Bcl-2 pathway.
Collapse
Affiliation(s)
- Yingchun Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China; Nankai University School of Medicine, Nan Kai University, 94 Weijin Road, Tianjin 300071, PR China
| | - Shuang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China; Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Tianjin 300072, PR China.
| | - Jin Wu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Yuan Peng
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Jialei Bai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Baoan Ning
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Xinxing Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Yanjun Fang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Dianpeng Han
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Shuyue Ren
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Sen Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Ruipeng Chen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Hongwei Du
- Nankai University School of Medicine, Nan Kai University, 94 Weijin Road, Tianjin 300071, PR China
| | - Zhixian Gao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China.
| |
Collapse
|
18
|
Bielskutė S, Plavec J, Podbevšek P. Oxidative lesions modulate G-quadruplex stability and structure in the human BCL2 promoter. Nucleic Acids Res 2021; 49:2346-2356. [PMID: 33638996 PMCID: PMC7913773 DOI: 10.1093/nar/gkab057] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/08/2021] [Accepted: 01/22/2021] [Indexed: 01/08/2023] Open
Abstract
Misregulation of BCL2 expression has been observed with many diseases and is associated with cellular exposure to reactive oxygen species. A region upstream of the P1 promoter in the human BCL2 gene plays a major role in regulating transcription. This G/C-rich region is highly polymorphic and capable of forming G-quadruplex structures. Herein we report that an oxidative event simulated with an 8-oxo-7,8-dihydroguanine (oxoG) substitution within a long G-tract results in a reduction of structural polymorphism. Surprisingly, oxoG within a 25-nt construct boosts thermal stability of the resulting G-quadruplex. This is achieved by distinct hydrogen bonding properties of oxoG, which facilitate formation of an antiparallel basket-type G-quadruplex with a three G-quartet core and a G·oxoG·C base triad. While oxoG has previously been considered detrimental for G-quadruplex formation, its stabilizing effect within a promoter described in this study suggests a potential novel regulatory role of oxidative stress in general and specifically in BCL2 gene transcription.
Collapse
Affiliation(s)
- Stasė Bielskutė
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.,EN-FIST Center of Excellence, Trg OF 13, SI-1000 Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Peter Podbevšek
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
19
|
Nerve Growth Factor (NGF) modulates in vitro induced myofibroblasts by highlighting a differential protein signature. Sci Rep 2021; 11:1672. [PMID: 33462282 PMCID: PMC7814037 DOI: 10.1038/s41598-021-81040-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
We previously described the profibrogenic effect of NGF on conjunctival Fibroblasts (FBs) and its ability to trigger apoptosis in TGFβ1-induced myofibroblasts (myoFBs). Herein, cell apoptosis/signalling, cytokines' signature in conditioned media and inflammatory as well as angiogenic pathway were investigated. Experimental myoFBs were exposed to NGF (0.1-100 ng/mL), at defined time-point for confocal and biomolecular analysis. Cells were analysed for apoptotic and cell signalling activation in cell extracts and for some inflammatory and proinflammatory/angiogenic factors' activations. NGF triggered cJun overexpression and phospho-p65-NFkB nuclear translocation. A decreased Bcl2:Bax ratio and a significant expression of smad7 were confirmed in early AnnexinV-positive myoFBs. A specific protein signature characterised the conditioned media: a dose dependent decrease occurred for IL8, IL6 while a selective increase was observed for VEGF and cyr61 (protein/mRNA). TIMP1 levels were unaffected. Herein, NGF modulation of smad7, the specific IL8 and IL6 as well as VEGF and cyr61 modulation deserve more attention as opening to alternative approaches to counteract fibrosis.
Collapse
|
20
|
Deng H, Zusman BE, Nwachuku EL, Yue JK, Chang YF, Conley YP, Okonkwo DO, Puccio AM. B-Cell Lymphoma 2 (Bcl-2) Gene Is Associated with Intracranial Hypertension after Severe Traumatic Brain Injury. J Neurotrauma 2021; 38:291-299. [PMID: 32515262 PMCID: PMC8182479 DOI: 10.1089/neu.2020.7028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Severe traumatic brain injury (TBI) activates the apoptotic cascade in neurons and glia as part of secondary cellular injury. B-cell lymphoma 2 (Bcl-2) gene encodes a pro-survival protein to suppress programmed cell death, and variation in this gene has potential to affect intracranial pressure (ICP). Participants were recruited from a single clinical center using a prospective observational study design. Inclusion criteria were: age 16-80 years; Glasgow Coma Scale (GCS) score 4-8; and at least 24 h of ICP monitoring treated between 2000-2014. Outcomes were mean ICP, spikes >20 and >25 mm Hg, edema, and surgical intervention. Odds ratios (OR), mean increases/decreases (B), and 95% confidence intervals (CIs) were reported. In 264 patients, average age was 39.2 years old and 78% of patients were male. Mean ICPs were 11.4 ± 0.4 mm Hg for patients with homozygous wild-type (AA), 12.8 ± 0.6 mm Hg for heterozygous (AG), and 14.3 ± 1.2 mm Hg for homozygous variant (GG; p = 0.023). Rs17759659 GG genotype was associated with more ICP spikes >20 mm Hg (p = 0.017) and >25 mm Hg (p = 0.048). Multi-variate analysis showed that GG relative to AA genotype had higher ICP (B = 2.7 mm Hg, 95% CI [0.5,4.9], p = 0.015), edema (OR = 2.5 [1.0, 6.0], p = 0.049) and need for decompression (OR = 3.7 [1.5-9.3], p = 0.004). In this prospective severe TBI cohort, Bcl-2 rs17759659 was associated with increased risk of intracranial hypertension, cerebral edema, and need for surgical intervention. The variant allele may impact programmed cell death of injured neurons, resulting in elevated ICP and post-traumatic secondary insults. Further risk stratification and targeted genotype-based therapies could improve outcomes after severe TBI.
Collapse
Affiliation(s)
- Hansen Deng
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Benjamin E. Zusman
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Enyinna L. Nwachuku
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - John K. Yue
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Yue-Fang Chang
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Department of Biostatistics and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Yvette P. Conley
- School of Nursing and Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David O. Okonkwo
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Neurotrauma Clinical Trials Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Ava M. Puccio
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Neurotrauma Clinical Trials Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
21
|
Duan L, Dong S, Huang K, Cong Y, Luo S, Zhang JZH. Computational analysis of binding free energies, hotspots and the binding mechanism of Bcl-xL/Bcl-2 binding to Bad/Bax. Phys Chem Chem Phys 2021; 23:2025-2037. [DOI: 10.1039/d0cp04693k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hierarchical clustering tree of residues providing contributions to system binding based on the binding free energy of specific residues for (A) Bcl-xL systems (B) Bcl-2 systems.
Collapse
Affiliation(s)
- Lili Duan
- School of Physics and Electronics
- Shandong Normal University
- Jinan 250014
- China
| | - Shuheng Dong
- School of Physics and Electronics
- Shandong Normal University
- Jinan 250014
- China
| | - Kaifang Huang
- School of Physics and Electronics
- Shandong Normal University
- Jinan 250014
- China
| | - Yalong Cong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| | - Song Luo
- School of Physics and Electronics
- Shandong Normal University
- Jinan 250014
- China
| | - John Z. H. Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| |
Collapse
|
22
|
Khodamoradi K, Khosravizadeh Z, Amini-Khoei H, Hosseini SR, Dehpour AR, Hassanzadeh G. The effects of maternal separation stress experienced by parents on male reproductive potential in the next generation. Heliyon 2020; 6:e04807. [PMID: 33024852 PMCID: PMC7527646 DOI: 10.1016/j.heliyon.2020.e04807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 05/31/2020] [Accepted: 08/25/2020] [Indexed: 11/17/2022] Open
Abstract
There is little information available about the effects of early-life parental stress on the reproductive potential of the next generation. The aim of this study is to examine the reproductive potential of male mice whose parents experienced maternal separation stress. In the present study, male first-generation offspring from parents were undergone of maternal separation (MS) were examined. Sperm characteristics, histological changes in testis, reactive oxygen species (ROS) production, expression of apoptotic and inflammatory genes and proteins were assessed. Findings showed that MS experienced by parents significantly decreased the morphology and viability of spermatozoa. Furthermore, significant changes in testicular tissue histology were observed. Increased production of ROS, decreased glutathione peroxidase (GPX) and adenosine triphosphate (ATP) concentrations, and affected the expression of genes and cytokines involved in inflammation. Finally, the mean percentage of caspase-1 and NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) positive cells was significantly higher in first-generation group. MS experienced by parents may negatively affect the reproduction of first generation offspring.
Collapse
Affiliation(s)
- Kajal Khodamoradi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Zahra Khosravizadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Reza Hosseini
- Departent of Urology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Role of ABT888, a Novel Poly(ADP-Ribose) Polymerase (PARP) Inhibitor in Countering Autophagy and Apoptotic Processes Associated to Spinal Cord Injury. Mol Neurobiol 2020; 57:4394-4407. [PMID: 32729104 DOI: 10.1007/s12035-020-02033-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/22/2020] [Indexed: 02/04/2023]
Abstract
Accidents are the cause of some 50 deaths per 100,000 population each year; some 3% of these are from traumatic spinal cord injury (SCI), a damage that causes temporary or permanent motor deficits, often leading to permanent neurological alterations. The activation of poly(ADP-ribose) polymerase (PARP) as DNA damage response, together with autophagy and apoptosis processes contributes to the secondary injury processes seen after SCI. Thus, in the present study, a mouse compression model of SCI was used to determine whether the treatment with ABT888, as PARP-1/2 inhibitor, could restore the neuronal damage induced by SCI. Mice were orally administered with ABT888 (at a dose of 25 mg/kg) 1 h and 6 h after SCI induction. Histological analysis, myeloperoxidase (MPO) activity, and Basso Mouse scale (BMS) were performed. The expression of autophagy-related proteins and apoptosis-inducing factors was quantified in the cytosolic fraction from spinal cord tissue collected after 24 h after SCI. TUNEL assay was performed in SCI-tissues 24 h after damage. ABT888 treatment significantly reduced histological damage and neutrophilic infiltration, improving motor skills. PARP-1/2 inhibition by ABT888 slowed cell death, decreasing autophagy-activation proteins. These results showed that ABT888, inhibiting PARP-1/2 activity, through a reduction in the apoptosis-autophagy machinery, plays a protective role after SCI, suggesting a new insight into the potential application of ABT888 as novel candidate in SCI therapies.
Collapse
|
24
|
Deng H, Yue JK, Zusman BE, Nwachuku EL, Abou-Al-Shaar H, Upadhyayula PS, Okonkwo DO, Puccio AM. B-Cell Lymphoma 2 (Bcl-2) and Regulation of Apoptosis after Traumatic Brain Injury: A Clinical Perspective. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E300. [PMID: 32570722 PMCID: PMC7353854 DOI: 10.3390/medicina56060300] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
Abstract
Background and Objectives: The injury burden after head trauma is exacerbated by secondary sequelae, which leads to further neuronal loss. B-cell lymphoma 2 (Bcl-2) is an anti-apoptotic protein and a key modulator of the programmed cell death (PCD) pathways. The current study evaluates the clinical evidence on Bcl-2 and neurological recovery in patients after traumatic brain injury (TBI). Materials and Methods: All studies in English were queried from the National Library of Medicine PubMed database using the following search terms: (B-cell lymphoma 2/Bcl-2/Bcl2) AND (brain injury/head injury/head trauma/traumatic brain injury) AND (human/patient/subject). There were 10 investigations conducted on Bcl-2 and apoptosis in TBI patients, of which 5 analyzed the pericontutional brain tissue obtained from surgical decompression, 4 studied Bcl-2 expression as a biomarker in the cerebrospinal fluid (CSF), and 1 was a prospective randomized trial. Results: Immunohistochemistry (IHC) in 94 adults with severe TBI showed upregulation of Bcl-2 in the pericontusional tissue. Bcl-2 was detected in 36-75% of TBI patients, while it was generally absent in the non-TBI controls, with Bcl-2 expression increased 2.9- to 17-fold in TBI patients. Terminal deoxynucleotidyl transferase-mediated biotinylated dUTP nick-end labeling (TUNEL) positivity for cell death was detected in 33-73% of TBI patients. CSF analysis in 113 TBI subjects (90 adults, 23 pediatric patients) showed upregulation of Bcl-2 that peaked on post-injury day 3 and subsequently declined after day 5. Increased Bcl-2 in the peritraumatic tissue, rising CSF Bcl-2 levels, and the variant allele of rs17759659 are associated with improved mortality and better outcomes on the Glasgow Outcome Score (GOS). Conclusions: Bcl-2 is upregulated in the pericontusional brain and CSF in the acute period after TBI. Bcl-2 has a neuroprotective role as a pro-survival protein in experimental models, and increased expression in patients can contribute to improvement in clinical outcomes. Its utility as a biomarker and therapeutic target to block neuronal apoptosis after TBI warrants further evaluation.
Collapse
Affiliation(s)
- Hansen Deng
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (B.E.Z.); (E.L.N.); (H.A.-A.-S.); (D.O.O.); (A.M.P.)
- Neurotrauma Clinical Trials Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - John K. Yue
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94110, USA;
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA
| | - Benjamin E. Zusman
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (B.E.Z.); (E.L.N.); (H.A.-A.-S.); (D.O.O.); (A.M.P.)
| | - Enyinna L. Nwachuku
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (B.E.Z.); (E.L.N.); (H.A.-A.-S.); (D.O.O.); (A.M.P.)
- Neurotrauma Clinical Trials Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Hussam Abou-Al-Shaar
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (B.E.Z.); (E.L.N.); (H.A.-A.-S.); (D.O.O.); (A.M.P.)
| | - Pavan S. Upadhyayula
- Department of Neurological Surgery, University of California Diego, San Diego, CA 92093, USA;
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - David O. Okonkwo
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (B.E.Z.); (E.L.N.); (H.A.-A.-S.); (D.O.O.); (A.M.P.)
- Neurotrauma Clinical Trials Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Ava M. Puccio
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (B.E.Z.); (E.L.N.); (H.A.-A.-S.); (D.O.O.); (A.M.P.)
- Neurotrauma Clinical Trials Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
25
|
Zhao L, Fu K, Li X, Zhang R, Wang W, Xu F, Ji X, Chen Y, Li C. Aldehyde dehydrogenase 2 protects cardiomyocytes against lipotoxicity via the AKT/glycogen synthase kinase 3 beta pathways. Biochem Biophys Res Commun 2020; 525:360-365. [PMID: 32089266 DOI: 10.1016/j.bbrc.2020.02.096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 01/25/2023]
Abstract
Aldehyde dehydrogenase 2, a mitochondrial matrix enzyme, plays a crucial role in protecting the heart against stress, such as ischemia reperfusion and alcohol injury. The present study aimed to investigate the effect of aldehyde dehydrogenase 2 on lipotoxic cardiomyopathy and to explore the possible mechanisms in vitro. Primary cardiomyocytes in the lipotoxic group were treated with oxidatively modified low-density lipoprotein (50 mg/L) for 24 h. Overexpression of aldehyde dehydrogenase 2 was achieved using the aldehyde dehydrogenase 2 activator, Alda-1 (20 μM). We found that cardiomyocyte apoptosis was attenuated by aldehyde dehydrogenase 2 overexpression. In addition, aldehyde dehydrogenase 2 overexpression inhibited the expression of BCL2 associated X, apoptosis regulator (BAX) and caspase 3, while it enhanced protein kinase B (AKT) and glycogen synthase kinase 3 beta (GSK-3β) phosphorylation. The results suggested that aldehyde dehydrogenase 2 is cardioprotective against lipotoxic cardiomyopathy, probably by reducing apoptosis through the AKT/glycogen synthase kinase 3 beta (GSK-3β) pathway. Our findings partially revealed the molecular mechanism of aldehyde dehydrogenase 2's cardioprotective effect against lipotoxic injury, and suggest a new therapeutic strategy to treat lipotoxic cardiomyopathy.
Collapse
Affiliation(s)
- Lang Zhao
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Kang Fu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xiaoxing Li
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong, China; Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Rui Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong, China; Department of Emergency and Chest Pain Center, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Wenjun Wang
- Department of Emergency and Chest Pain Center, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Feng Xu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong, China; Department of Emergency and Chest Pain Center, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xiaoping Ji
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yuguo Chen
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong, China; Department of Emergency and Chest Pain Center, Qilu Hospital, Shandong University, Jinan, Shandong, China.
| | - Chuanbao Li
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong, China; Department of Emergency and Chest Pain Center, Qilu Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
26
|
Baskaran S, Finelli R, Agarwal A, Henkel R. Reactive oxygen species in male reproduction: A boon or a bane? Andrologia 2020; 53:e13577. [PMID: 32271474 DOI: 10.1111/and.13577] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) are free radicals derived from oxygen during normal cellular metabolism. ROS play a crucial role in the physiological processes and signalling pathways associated with male fertility. At physiological concentrations, ROS act as molecular mediators of signal transduction pathways involved in the regulation of the hypothalamic-pituitary-gonadal axis, spermatogenesis and steroidogenesis. They also trigger the morphological changes required for sperm maturation, such as DNA compaction and flagellar modification. Furthermore, ROS modulate crucial processes involved in the attainment of sperm fertilising ability such as capacitation, hyperactivation, acrosome reaction and sperm-oocyte fusion. Conversely, oxidative stress prevails when the concentration of ROS overwhelms the body's antioxidant defence. Various endogenous and exogenous factors enhance the synthesis of ROS resulting in the disruption of structural and functional integrity of spermatozoa through the induction of apoptotic pathway and oxidation of molecules, such as lipids, proteins and DNA. Therefore, maintenance of a balanced redox state is critical for normal male reproductive functions. This article discusses the dual role of ROS in male reproduction, highlighting the physiological role as well as their pathological implications on male fertility.
Collapse
Affiliation(s)
- Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Renata Finelli
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.,Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
27
|
Pathologic properties of SOD3 variant R213G in the cardiovascular system through the altered neutrophils function. PLoS One 2020; 15:e0227449. [PMID: 32004354 PMCID: PMC6994104 DOI: 10.1371/journal.pone.0227449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 12/18/2019] [Indexed: 01/04/2023] Open
Abstract
The SOD3 variant, SOD3R213G, results from substitution of arginine to glycine at amino acid 213 (R213G) in its heparin binding domain (HBD) and is a common genetic variant, reported to be associated with ischemic heart disease. However, little is understood about the role of SOD3R213G in innate immune function, and how it leads to dysfunction of the cardiovascular system. We observed pathologic changes in SOD3R213G transgenic (Tg) mice, including cystic medial degeneration of the aorta, heart inflammation, and increased circulating and organ infiltrating neutrophils. Interestingly, SOD3R213G altered the profile of SOD3 interacting proteins in neutrophils in response to G-CSF. Unexpectedly, we found that G-CSF mediated tyrosine phosphatase, SH-PTP1 was down-regulated in the neutrophils of SOD3R213G overexpressing mice. These effects were recovered by reconstitution with Wt SOD3 expressing bone marrow cells. Overall, our study reveals that SOD3R213G plays a crucial role in the function of the cardiovascular system by controlling innate immune response and signaling. These results suggest that reconstitution with SOD3 expressing bone marrow cells may be a therapeutic strategy to treat SOD3R213G mediated diseases.
Collapse
|
28
|
Glab JA, Cao Z, Puthalakath H. Bcl-2 family proteins, beyond the veil. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 351:1-22. [PMID: 32247577 DOI: 10.1016/bs.ircmb.2019.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Apoptosis is an important part of both health and disease and is often regulated by the BCL-2 family of proteins. These proteins are either pro- or anti-apoptotic, existing in a delicate balance during homeostasis. They are best known for their role in regulating the activation of caspases and the execution of a cell in response to a variety of stimuli. However, it is often forgotten that these BCL-2 family proteins also have important roles to play in cell maintenance that are not associated with apoptosis. These include roles in regulating processes such as cell cycle progression, mitochondrial function, autophagy, intracellular calcium concentration, glucose and lipid metabolism, and the unfolded protein response. In addition to these established alternate functions, further discoveries are being made that have potential therapeutic benefits in diseases such as cancer. BOK, a BCL-2 family protein thought comparable to multidomain pro-apoptotic proteins BAX and BAK, has recently been identified as a key player in metabolism of and resistance to the commonly used chemotherapeutic 5-FU. As a result of such findings, which could see the potential use of BOK as a biomarker for 5-FU sensitivity or mimetic molecules as a resensitization strategy, new targets and mechanisms of pathology may arise from further investigation into the realm of alternate functions of BCL-2 family proteins.
Collapse
Affiliation(s)
- Jason Andrew Glab
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, VIC, Australia
| | - Zhipeng Cao
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, VIC, Australia
| | - Hamsa Puthalakath
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, VIC, Australia.
| |
Collapse
|
29
|
Ramazani M, Jaktaji RP, Shirazi FH, Tavakoli-Ardakani M, Salimi A, Pourahmad J. Analysis of apoptosis related genes in nurses exposed to anti-neoplastic drugs. BMC Pharmacol Toxicol 2019; 20:74. [PMID: 31791417 PMCID: PMC6889625 DOI: 10.1186/s40360-019-0372-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/08/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anti-neoplastic agents are widely used in the treatment of cancer and some non-neoplastic diseases. These drugs have been proved to be carcinogens, teratogens, and mutagens. Concern exists regarding the possible dangers of the staff handling anti-cancer drugs. The long-term exposure of nurses to anti-neoplastic drugs is still a controversial issue. The purpose of this study was to monitor cellular toxicity parameters and gene expression in nurses who work in chemotherapy wards and compare them to nurses who work in other wards. METHODS To analyze the apoptosis-related genes overexpression and cytotoxicity effects, peripheral blood lymphocytes obtained from oncology nurses and the control group. THE RESULTS Significant alterations in four analyzed apoptosis-related genes were observed in oncology nurses. In most individual samples being excavated, Bcl-2 overexpression is superior to that of Bax. Prominent P53 and Hif-1α up-regulation were observed in oncology nurses. Moreover, all cytotoxicity parameters (cell viability, ROS formation, MMP collapse, Lysosomal membrane damage, Lipid peroxidation, Caspase 3 activity and Apoptosis phenotype) in exposed oncology nurses were significantly (p < 0.001) higher than those of unexposed control nurses. Up-regulation of three analyzed apoptosis-related genes were observed in nurses occupationally exposed to anti-cancer drugs. CONCLUSION Our data show that oxidative stress and mitochondrial toxicity induced by anti-neoplastic drugs lead to overexpression of apoptosis-related genes in oncology nurses.
Collapse
Affiliation(s)
- Maral Ramazani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Farshad H Shirazi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maria Tavakoli-Ardakani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Yaghoobi F, Karimi shervedani R, Torabi M, Kefayat A, Ghahremani F, Farzadniya A. Therapeutic effect of deferrioxamine conjugated to PEGylated gold nanoparticles and complexed with Mn(II) beside the CT scan and MRI diagnostic studies. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Mattes K, Vellenga E, Schepers H. Differential redox-regulation and mitochondrial dynamics in normal and leukemic hematopoietic stem cells: A potential window for leukemia therapy. Crit Rev Oncol Hematol 2019; 144:102814. [PMID: 31593878 DOI: 10.1016/j.critrevonc.2019.102814] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/12/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023] Open
Abstract
The prognosis for many patients with acute myeloid leukemia (AML) is poor, mainly due to disease relapse driven by leukemia stem cells (LSCs). Recent studies have highlighted the unique metabolic properties of LSCs, which might represent opportunities for LSC-selective targeting. LSCs characteristically have low levels of reactive oxygen species (ROS), which apparently result from a combination of low mitochondrial activity and high activity of ROS-removing pathways such as autophagy. Due to this low activity, LSCs are highly dependent on mitochondrial regulatory mechanisms. These include the anti-apoptotic protein BCL-2, which also has crucial roles in regulating the mitochondrial membrane potential, and proteins involved in mitophagy. Here we review the different pathways that impact mitochondrial activity and redox-regulation, and highlight their relevance for the functionality of both HSCs and LSCs. Additionally, novel AML therapy strategies that are based on interference with those pathways, including the promising BCL-2 inhibitor Venetoclax, are summarized.
Collapse
Affiliation(s)
- Katharina Mattes
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Edo Vellenga
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Hein Schepers
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
32
|
Turan G, Turan M. The Evaluation of TUNEL, PCNA and SOX2 Expressions in Lens Epithelial Cells of Cataract Patients with Pseudoexfoliation Syndrome. Curr Eye Res 2019; 45:12-16. [DOI: 10.1080/02713683.2019.1657463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Gulay Turan
- Faculty of Medicine, Department of Pathology, Balikesir University, Balikesir, Turkey
| | - Meydan Turan
- Department of Ophthalmology, Balikesir Ataturk City Hospital, Balikesir, Turkey
| |
Collapse
|
33
|
Proapoptotic effects of 2,5‑hexanedione on pheochromocytoma cells via oxidative injury. Mol Med Rep 2019; 20:3249-3255. [PMID: 31432125 PMCID: PMC6755188 DOI: 10.3892/mmr.2019.10546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 07/07/2019] [Indexed: 01/10/2023] Open
Abstract
N‑hexanes are prominent environmental pollutants that are able to cause neurotoxicity in vivo and in vitro. Central and peripheral neuropathies induced by n‑hexane exposure are a major health concern. 2,5‑Hexanedione (2,5‑HD) is the most significant neurotoxic metabolite of n‑hexane; however, little is known regarding the underlying mechanism of its neurotoxicity. Thus, the aim of the present study was to investigate the damaging effects of 2,5‑HD on pheochromocytoma PC12 cells, and to explore the underlying mechanism. Cell viability was tested using a Cell Counting Kit‑8 method, and the leakage of lactate dehydrogenase (LDH) from cells was measured using an LDH assay kit. Glutathione peroxidase (GSHPx) and superoxide dismutase (SOD) activities, and the level of malondialdehyde (MDA) were determined using corresponding assay kits. Apoptotic cells were detected using an annexin V‑fluorescein isothiocyanate/propidium iodide (PI) apoptosis kit, and were subsequently observed by fluorescence microscopy. The relative expression levels of cleaved‑caspase‑3, Bcl‑associated‑X protein (Bax) and Bcl‑2 were identified by western blotting. The results revealed that 2,5‑HD was able to decrease the viability of PC12 cells and promoted the leakage of LDH in a concentrationdependent manner. Further analysis demonstrated that 2,5‑HD decreased the activity of the antioxidative enzymes, SOD and GSHPx, and led to an increase in the levels of MDA in the supernatant of cultured PC12 cells. The annexin V/PI staining results revealed that the numbers of apoptotic cells were increased following treatment with 2,5‑HD. In addition, 2,5‑HD (5 and 10 mmol/l) led to significant increases in the expression levels of caspase‑3 and Bax, with the concomitant downregulation of Bcl‑2. The antioxidant N‑acetylcysteine was identified to antagonize 2,5‑HD‑stimulated cleaved‑caspase‑3 and Bax upregulation, and Bcl‑2 downregulation. Collectively, the results of the present study suggested that 2,5‑HD exerts proapoptotic effects on PC12 cells via oxidative injury. These findings may be applied in the development of novel therapeutic strategies to treat neurological disorders associated with nhexane exposure.
Collapse
|
34
|
Nauseef WM. The phagocyte NOX2 NADPH oxidase in microbial killing and cell signaling. Curr Opin Immunol 2019; 60:130-140. [PMID: 31302569 DOI: 10.1016/j.coi.2019.05.006] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/01/2019] [Accepted: 05/11/2019] [Indexed: 12/17/2022]
Abstract
The phagocyte NADPH oxidase possesses a transmembrane electron transferase comprised of gp91phox (aka NOX2) and p22phox and two multicomponent cytosolic complexes, which in stimulated phagocytes translocate to assemble a functional enzyme complex at plasma or phagosomal membranes. The NOX2-centered NADPH oxidase shuttles electrons from cytoplasmic NADPH to molecular oxygen in phagosomes or the extracellular space to produce oxidants that support optimal antimicrobial activity by phagocytes. Additionally, NOX2-generated oxidants have been implicated in both autocrine and paracrine signaling in a variety of biological contexts. However, when interpreting experimental results, investigators must recognize the complexity inherent in the biochemistry of oxidant-mediated attack of microbial targets and the technical limitations of the probes currently used to detect intracellular oxidants.
Collapse
Affiliation(s)
- William M Nauseef
- Inflammation Program, Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 501 EMRB, 431 Newton Road, Iowa City, IA 52242-1101, United States.
| |
Collapse
|
35
|
Saravanakumar K, Hu X, Shanmugam S, Chelliah R, Sekar P, Oh DH, Vijayakumar S, Kathiresan K, Wang MH. Enhanced cancer therapy with pH-dependent and aptamer functionalized doxorubicin loaded polymeric (poly D, L-lactic-co-glycolic acid) nanoparticles. Arch Biochem Biophys 2019; 671:143-151. [PMID: 31283911 DOI: 10.1016/j.abb.2019.07.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022]
Abstract
Aptamer based drug delivery systems are gaining the importance in anticancer therapy due to their targeted drug delivery efficiency without harming the normal cells. The present work formulated the pH-dependent aptamer functionalized polymer-based drug delivery system against human lung cancer. The prepared aptamer functionalized doxorubicin (DOX) loaded poly (D, L-lactic-co-glycolic acid) (PLGA), poly (N-vinylpyrrolidone) (PVP) nanoparticles (APT-DOX-PLGA-PVP NPs) were spherical in shape with an average size of 87.168 nm. The crystallography and presence of the PLGA (poly (D, L-lactic-co-glycolic acid)) and DOX (doxorubicin) in APT-DOX-PLGA-PVP NPs were indicated by the X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), and 1H and 13C nuclear magnetic resonance spectrometer (NMR). The pH-dependent aptamer AS1411 based drug release triggered the cancer cell death was evidenced by cytotoxicity assay, flow cytometry, and fluorescent microscopic imaging. In addition, the cellular uptake of the DOX was determined and the apoptosis-related signaling pathway in the A549 cells was studied by Western blot analysis. Further, the in vivo study revealed that mice treated with APT-DOX-PLGA-PVP NPs were significantly recovered from cancer as evident by mice weight and tumor size followed by the histopathological study. It was reported that the APT-DOX-PLGA-PVP NPs induced the apoptosis through the activation of the apoptosis-related proteins. Hence, the present study revealed that the APT-DOX-PLGA-PVP NPs improved the therapeutic efficiency through the nucleolin receptor endocytosis targeted drug release.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Xiaowen Hu
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Sabarathinam Shanmugam
- Bioprocess Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology College of Biotechnology and Bioscience, Kangwon National University, Chuncheon, Republic of Korea
| | - Ponarulselvam Sekar
- Bioprocess Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology College of Biotechnology and Bioscience, Kangwon National University, Chuncheon, Republic of Korea
| | - Sekar Vijayakumar
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Kandasamy Kathiresan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India
| | - Myeong-Hyeon Wang
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| |
Collapse
|
36
|
Yang SJ, Han AR, Kim EA, Yang JW, Ahn JY, Na JM, Cho SW. KHG21834 attenuates glutamate-induced mitochondrial damage, apoptosis, and NLRP3 inflammasome activation in SH-SY5Y human neuroblastoma cells. Eur J Pharmacol 2019; 856:172412. [PMID: 31129157 DOI: 10.1016/j.ejphar.2019.172412] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 12/23/2022]
Abstract
New compounds were screened to develop effective drugs against glutamate-induced toxicity. The present study assessed the effects of the novel thiazole derivative KHG21834 against glutamate-induced toxicity in human neuroblastoma SH-SY5Y cell cultures. Treatment of SH-SY5Y cells with KHG21834 significantly protected cells against glutamate-induced toxicity in a dose-dependent manner, with an optimum concentration of 50 μM. KHG21834 protected SH-SY5Y cells against glutamate toxicity by suppressing glutamate-induced oxidative stress by 50%. KHG21834 also attenuated glutamate-induced mitochondrial membrane potential, ATP level reductions, and intracellular Ca2+ influx. Furthermore, KHG21834 efficiently reduced glutamate-induced ER stress and NLRP3 inflammasome activation (59% and 65% of glutamate group, respectively). In addition, KHG21834 effectively attenuated glutamate-induced levels of Bax, Bcl-2, cleaved caspase-3, p-p38, p-JNK proteins, and TUNEL positive cells. To our knowledge, this is the first study showing that KHG21834 can effectively protect SH-SY5Y cells against glutamate toxicity, suggesting that this compound may be a valuable therapeutic agent for the treatment of glutamate toxicity.
Collapse
Affiliation(s)
- Seung-Ju Yang
- Department of Biomedical Laboratory Science, Konyang University, Daejeon, 35365, South Korea
| | - A Reum Han
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Eun-A Kim
- Department of Biomedical Laboratory Science, Konyang University, Daejeon, 35365, South Korea
| | - Ji Woong Yang
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Jee-Yin Ahn
- Department of Molecular Cell Biology, Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Jung-Min Na
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 05505, South Korea.
| |
Collapse
|
37
|
Zhang K, Tu M, Gao W, Cai X, Song F, Chen Z, Zhang Q, Wang J, Jin C, Shi J, Yang X, Zhu Y, Gu W, Hu B, Zheng Y, Zhang H, Tian M. Hollow Prussian Blue Nanozymes Drive Neuroprotection against Ischemic Stroke via Attenuating Oxidative Stress, Counteracting Inflammation, and Suppressing Cell Apoptosis. NANO LETTERS 2019; 19:2812-2823. [PMID: 30908916 DOI: 10.1021/acs.nanolett.8b04729] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Ischemic stroke is a devastating disease and one of the leading causes of mortality worldwide. Overproduction of reactive oxygen and nitrogen species (RONS) following ischemic insult is known as a key factor in exacerbating brain damage. Thus, RONS scavengers that can block excessive production of RONS have great therapeutic potential. Herein, we propose an efficient treatment strategy in which an artificial nanozyme with multienzyme activity drives neuroprotection against ischemic stroke primarily by scavenging RONS. Specifically, through a facile, Bi3+-assisted, template-free synthetic strategy, we developed hollow Prussian blue nanozymes (HPBZs) with multienzyme activity to scavenge RONS in a rat model of ischemic stroke. The comprehensive characteristics of HPBZs against RONS were explored. Apart from attenuating oxidative stress, HPBZs also suppressed apoptosis and counteracted inflammation both in vitro and in vivo, thereby contributing to increased brain tolerance of ischemic injury with minimal side effects. This study provides a proof of concept for a novel class of neuroprotective nanoagents that might be beneficial for treatment of ischemic stroke and other RONS-related disorders.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital , Zhejiang University School of Medicine , Hangzhou , Zhejiang 310009 , P. R. China
| | - Mengjiao Tu
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital , Zhejiang University School of Medicine , Hangzhou , Zhejiang 310009 , P. R. China
| | - Wei Gao
- Shanghai Institute of Ultrasound in Medicine, Sixth People's Hospital , Shanghai Jiao Tong University Affiliated , Shanghai 200233 , P. R. China
| | - Xiaojun Cai
- Shanghai Institute of Ultrasound in Medicine, Sixth People's Hospital , Shanghai Jiao Tong University Affiliated , Shanghai 200233 , P. R. China
| | - Fahuan Song
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital , Zhejiang University School of Medicine , Hangzhou , Zhejiang 310009 , P. R. China
| | - Zheng Chen
- Department of Neurosurgery, Xinhua Hospital , Shanghai Jiao Tong University , Shanghai 200082 , P. R. China
| | - Qian Zhang
- Department of Oncology, Tenth People's Hospital , Tongji University , Shanghai 200072 , P. R. China
| | - Jing Wang
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital , Zhejiang University School of Medicine , Hangzhou , Zhejiang 310009 , P. R. China
| | - Chentao Jin
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital , Zhejiang University School of Medicine , Hangzhou , Zhejiang 310009 , P. R. China
| | - Jingjing Shi
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital , Zhejiang University School of Medicine , Hangzhou , Zhejiang 310009 , P. R. China
| | - Xiang Yang
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital , Zhejiang University School of Medicine , Hangzhou , Zhejiang 310009 , P. R. China
| | - Yuankai Zhu
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital , Zhejiang University School of Medicine , Hangzhou , Zhejiang 310009 , P. R. China
| | - Weizhong Gu
- Department of Pathology, Children's Hospital , Zhejiang University School of Medicine , Hangzhou , Zhejiang 310051 , P. R. China
| | - Bing Hu
- Shanghai Institute of Ultrasound in Medicine, Sixth People's Hospital , Shanghai Jiao Tong University Affiliated , Shanghai 200233 , P. R. China
| | - Yuanyi Zheng
- Shanghai Institute of Ultrasound in Medicine, Sixth People's Hospital , Shanghai Jiao Tong University Affiliated , Shanghai 200233 , P. R. China
| | - Hong Zhang
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital , Zhejiang University School of Medicine , Hangzhou , Zhejiang 310009 , P. R. China
- Shanxi Medical University , Taiyuan , Shanxi 030001 , P. R. China
| | - Mei Tian
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital , Zhejiang University School of Medicine , Hangzhou , Zhejiang 310009 , P. R. China
| |
Collapse
|
38
|
Zhou DR, Eid R, Miller KA, Boucher E, Mandato CA, Greenwood MT. Intracellular second messengers mediate stress inducible hormesis and Programmed Cell Death: A review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:773-792. [PMID: 30716408 DOI: 10.1016/j.bbamcr.2019.01.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022]
|
39
|
Zhou DR, Eid R, Boucher E, Miller KA, Mandato CA, Greenwood MT. Stress is an agonist for the induction of programmed cell death: A review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:699-712. [DOI: 10.1016/j.bbamcr.2018.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/17/2018] [Accepted: 12/01/2018] [Indexed: 02/07/2023]
|
40
|
Spiliopoulos S, Festas G, Reppas L, Brountzos E. Intra-arterial administration of cell-based biological agents for ischemic stroke therapy. Expert Opin Biol Ther 2019; 19:249-259. [PMID: 30615496 DOI: 10.1080/14712598.2019.1566454] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/05/2019] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Ischemic stroke is becoming a primary cause of disability and death worldwide. To date, therapeutic options remain limited focusing on mechanical thrombolysis or administration of thrombolytic agents. However, these therapies do not promote neuroprotection and neuro-restoration of the ischemic area of the brain. AREAS COVERED This review highlights the option of minimal invasive, intra-arterial, administration of biological agents for stroke therapy. The authors provide an update of all available studies, discuss issues that influence outcomes and describe future perspectives which aim to improve clinical outcomes. New therapeutic options based on cellular and molecular interactions following an ischemic brain event, will be highlighted. EXPERT OPINION Intra-arterial administration of biological agents during trans-catheter thrombolysis or thrombectomy could limit neuronal cell death and facilitate regeneration or neurogenesis following ischemic brain injury. Despite the initial progress, further meticulous studies are needed in order to establish the clinical use of stem cell-induced neuroprotection and neuroregeneration.
Collapse
Affiliation(s)
- Stavros Spiliopoulos
- a 2nd Department of Radiology, Division of Interventional Radiology, School of Medicine , National and Kapodistrian University of Athens, Attikon University Hospital , Athens , Greece
| | - Georgios Festas
- a 2nd Department of Radiology, Division of Interventional Radiology, School of Medicine , National and Kapodistrian University of Athens, Attikon University Hospital , Athens , Greece
| | - Lazaros Reppas
- a 2nd Department of Radiology, Division of Interventional Radiology, School of Medicine , National and Kapodistrian University of Athens, Attikon University Hospital , Athens , Greece
| | - Elias Brountzos
- a 2nd Department of Radiology, Division of Interventional Radiology, School of Medicine , National and Kapodistrian University of Athens, Attikon University Hospital , Athens , Greece
| |
Collapse
|
41
|
Wiegand MJ, Kubacki GW, Gilbert JL. Electrochemical potential zone of viability on CoCrMo surfaces is affected by cell type: Macrophages under cathodic bias are more resistant to killing. J Biomed Mater Res A 2018; 107:526-534. [DOI: 10.1002/jbm.a.36567] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/20/2018] [Accepted: 09/28/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Michael J. Wiegand
- Department of Biomedical and Chemical Engineering; Syracuse University; Syracuse New York
- Syracuse Biomaterials Institute, Syracuse University; Syracuse New York
| | - Gregory W. Kubacki
- Department of Biomedical and Chemical Engineering; Syracuse University; Syracuse New York
- Syracuse Biomaterials Institute, Syracuse University; Syracuse New York
| | - Jeremy L. Gilbert
- Department of Biomedical and Chemical Engineering; Syracuse University; Syracuse New York
- Syracuse Biomaterials Institute, Syracuse University; Syracuse New York
- Department of Bioengineering; Clemson University; Clemson South Carolina
- Clemson University-Medical University of South Carolina Program in Bioengineering; Charleston South Carolina
| |
Collapse
|
42
|
Naletova I, Satriano C, Curci A, Margiotta N, Natile G, Arena G, La Mendola D, Nicoletti VG, Rizzarelli E. Cytotoxic phenanthroline derivatives alter metallostasis and redox homeostasis in neuroblastoma cells. Oncotarget 2018; 9:36289-36316. [PMID: 30555630 PMCID: PMC6284747 DOI: 10.18632/oncotarget.26346] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/01/2018] [Indexed: 02/06/2023] Open
Abstract
Copper homeostasis is generally investigated focusing on a single component of the metallostasis network. Here we address several of the factors controlling the metallostasis for neuroblastoma cells (SH-SY5Y) upon treatment with 2,9-dimethyl-1,10-phenanthroline-5,6-dione (phendione) and 2,9-dimethyl-1,10-phenanthroline (cuproindione). These compounds bind and transport copper inside cells, exert their cytotoxic activity through the induction of oxidative stress, causing apoptosis and alteration of the cellular redox and copper homeostasis network. The intracellular pathway ensured by copper transporters (Ctr1, ATP7A), chaperones (CCS, ATOX, COX 17, Sco1, Sco2), small molecules (GSH) and transcription factors (p53) is scrutinised.
Collapse
Affiliation(s)
- Irina Naletova
- Department of Chemical Sciences, University of Catania, Catania, Italy
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
| | - Cristina Satriano
- Department of Chemical Sciences, University of Catania, Catania, Italy
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
| | - Alessandra Curci
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
- Department of Chemistry, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Nicola Margiotta
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
- Department of Chemistry, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Giovanni Natile
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
- Department of Chemistry, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Giuseppe Arena
- Department of Chemical Sciences, University of Catania, Catania, Italy
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
| | - Diego La Mendola
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Vincenzo Giuseppe Nicoletti
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Enrico Rizzarelli
- Department of Chemical Sciences, University of Catania, Catania, Italy
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
| |
Collapse
|
43
|
Pohl SÖG, Agostino M, Dharmarajan A, Pervaiz S. Cross Talk Between Cellular Redox State and the Antiapoptotic Protein Bcl-2. Antioxid Redox Signal 2018; 29:1215-1236. [PMID: 29304561 DOI: 10.1089/ars.2017.7414] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE B cell lymphoma-2 (Bcl-2) was discovered over three decades ago and is the prototype antiapoptotic member of the Bcl-2 family that comprises proteins with contrasting effects on cell fate. First identified as a consequence of chromosomal translocation (t 14:18) in human lymphoma, subsequent studies have revealed mutations and/or gene copy number alterations as well as post-translational modifications of Bcl-2 in a variety of human cancers. The canonical function of Bcl-2 is linked to its ability to inhibit mitochondrial membrane permeabilization, thereby regulating apoptosome assembly and activation by blocking the cytosolic translocation of death amplification factors. Of note, the identification of specific domains within the Bcl-2 family of proteins (Bcl-2 homology domains; BH domains) has not only provided a mechanistic insight into the various interactions between the member proteins but has also been the impetus behind the design and development of small molecule inhibitors and BH3 mimetics for clinical use. Recent Advances: Aside from its role in maintaining mitochondrial integrity, recent evidence provides testimony to a novel facet in the biology of Bcl-2 that involves an intricate cross talk with cellular redox state. Bcl-2 overexpression modulates mitochondrial redox metabolism to create a "pro-oxidant" milieu, conducive for cell survival. However, under states of oxidative stress, overexpression of Bcl-2 functions as a redox sink to prevent excessive buildup of reactive oxygen species, thereby inhibiting execution signals. Emerging evidence indicates various redox-dependent transcriptional changes and post-translational modifications with different functional outcomes. CRITICAL ISSUES Understanding the complex interplay between Bcl-2 and the cellular redox milieu from the standpoint of cell fate signaling remains vital for a better understanding of pathological states associated with altered redox metabolism and/or aberrant Bcl-2 expression. FUTURE DIRECTIONS Based on its canonical functions, Bcl-2 has emerged as a potential druggable target. Small molecule inhibitors of Bcl-2 and/or other family members with similar function, as well as BH3 mimetics, are showing promise in the clinic. The emerging evidence for the noncanonical activity linked to cellular redox metabolism provides a novel avenue for the design and development of diagnostic and therapeutic strategies against cancers refractory to conventional chemotherapy by the overexpression of this prosurvival protein.
Collapse
Affiliation(s)
- Sebastian Öther-Gee Pohl
- 1 Stem Cell and Cancer Biology Laboratory, Curtin Health and Innovation Research Institute, Curtin University , Bentley, Western Australia .,2 School of Biomedical Sciences, Curtin University , Perth, Western Australia
| | - Mark Agostino
- 1 Stem Cell and Cancer Biology Laboratory, Curtin Health and Innovation Research Institute, Curtin University , Bentley, Western Australia .,2 School of Biomedical Sciences, Curtin University , Perth, Western Australia .,3 Curtin Institute for Computation, Curtin University , Perth, Western Australia
| | - Arun Dharmarajan
- 1 Stem Cell and Cancer Biology Laboratory, Curtin Health and Innovation Research Institute, Curtin University , Bentley, Western Australia .,2 School of Biomedical Sciences, Curtin University , Perth, Western Australia
| | - Shazib Pervaiz
- 2 School of Biomedical Sciences, Curtin University , Perth, Western Australia .,4 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,5 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore, Singapore .,6 National University Cancer Institute, National University Health System , Singapore, Singapore
| |
Collapse
|
44
|
Falayi OO, Oyagbemi AA, Omobowale TO, Ayodele EA, Adedapo AD, Yakubu MA, Adedapo AA. Nephroprotective properties of the methanol stem extract of Abrus precatorius on gentamicin-induced renal damage in rats. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2018; 16:/j/jcim.ahead-of-print/jcim-2017-0176/jcim-2017-0176.xml. [PMID: 30367803 DOI: 10.1515/jcim-2017-0176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 09/13/2018] [Indexed: 11/15/2022]
Abstract
Background The use of plants for the treatment and prevention of diseases in man and his animals has led to a renewed scientific interest in the use of medicinal plants for therapeutic purposes. The nephroprotective properties of methanol stem bark extract of Abrus precatorius against gentamicin-induced renal damage in rats was evaluated in this study. Methods Thirty male Wistar rats were divided into five equal groups. Group A was the negative control group while B was the positive control group which received gentamicin 100 mg/kg intra-peritoneally for 6 days. Group C were pretreated with 100 mg/kg extract for the 3 days and then concurrently with gentamicin 100 mg/kg for 3 days and group D were pretreated with 200 mg/kg extract for 3 days and then concurrently with gentamicin 100 mg/kg for 3 days. Group E received gentamicin intraperitoneally for 6 days followed by administration of 200 mg/kg of the extract for 3 days. Blood samples, kidneys and kidney homogenates were collected for haematological, biochemical, histopathological and immunohistochemical analysis. Results The results showed that no significant haematological changes were noted. The groups treated with extract exhibited significant increase in body weight gain. While group B significantly exhibited focal areas of inflammation, fatty degeneration, congestion of vessels, tubular necrosis and glomerular atrophy, the lesions were mild with the treated groups. Treated groups exhibited a dose dependent significant decrease in serum creatinine, urea, XO, NO and Myeloperoxidase, AOPP, Protein carbonyl, H2O2 generated and MDA levels when compared with group B. There were significant dose dependent improvements in SOD, GST, GSH, Protein thiol, and non-protein thiol levels in the treated groups when compared with group B. In immunohistochemistry, Group B exhibited over expression of CRP and NF-κB levels, and marked reduction in expression of Bcl-2 while the reverse was seen in the groups treated with methanol extracts of Abrus precatorius. Conclusion The methanol extract of Abrus precatorius plays a vital role against gentamicin induced renal damage by reducing levels of renal markers of oxidative stress, inflammation and apoptosis, enhancing enzymatic and non enzymatic renal antioxidant system, alongside an increase in Bcl-2 and a decrease in NF-κB and CRP expressions.
Collapse
Affiliation(s)
- Olufunke Olubunmi Falayi
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | | | | - Momoh Audu Yakubu
- Department of Environmental and Interdisciplinary Sciences, College of Science, Technology and Engineering, Texas Southern University, 3100 Cleburne Avenue, Houston, TX 77004, USA
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
45
|
Abstract
Retinal ganglion cells (RGCs) undergo programmed cell death (apoptosis) after axonal injury. This cell death is mediated by several mechanisms, including deprivation of neurotrophic factors, alterations in gene expression, and production of reactive oxygen species. However, death of RGCs is delayed after axonal injury, and a significant number survive even after several days. This suggests that RGC death is not an immediate result of axonal injury, and that other pro-survival factors may play a role. While we and other researchers have focused on the mechanisms of cell death after axonal injury, it may be that determining the regulation of cell survival mechanisms may lead to innovative methods for neuroprotection. The final common pathway of glaucomatous optic neuropathy is RGC death, probably via damage to their axons occurring at or near the lamina cribrosa. Axonal injury leads directly (1) or indirectly (2) to the death of retinal ganglion cells. We and others have demonstrated that axotomy is associated with RGC apoptosis (3-7) as well as specific changes in expression of certain genes at the mRNA and protein level (8, 9). Reactive oxygen species may also be part of the pathway for RGC death (10, 11). We therefore hypothesize that axotomy leads to molecular events that are potentially destructive to RGCs, but also induces changes that are potentially protective against cellular injury. If this is the case, then RGC death from axonal injury would result not only from initiation of apoptosis, but also from failure of intrinsic neuroprotective mechanisms. It should therefore be theoretically possible to modulate these two classes of responses, and thus improve RGC cell survival after axotomy.
Collapse
Affiliation(s)
- L A Levin
- Department of Ophthalmology and Visual Sciences, University of Wisconsin Medical School, Madison, USA.
| |
Collapse
|
46
|
Li S, Guo Q, Wang YM, Li ZY, Kang JD, Yin XJ, Zheng X. Glycine treatment enhances developmental potential of porcine oocytes and early embryos by inhibiting apoptosis. J Anim Sci 2018; 96:2427-2437. [PMID: 29762687 PMCID: PMC6095358 DOI: 10.1093/jas/sky154] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Glycine, a component of glutathione (GSH), plays an important role in protection from reactive oxygen species (ROS) and inhibition of apoptosis. The aim of this study was to determine the effect of glycine on in vitro maturation (IVM) of porcine oocytes and their developmental competence after parthenogenetic activation (PA). We examined nuclear maturation, ROS levels, apoptosis, mitochondrial membrane potential (ΔΨm), and ATP concentration, as well as the expression of several genes related to oocyte maturation and development. Our studies found that treatment with glycine in IVM culture medium increased nuclear maturation rate, but varying the concentrations of glycine (0.6, 6, or 12 mM) had no significant effect. Furthermore, 6 mM glycine supported greater blastocyst formation rates and lesser apoptosis after PA than the other concentrations (P < 0.05). All the glycine treatment groups had decreased levels of ROS in both matured oocytes and at the 2-cell stage (P < 0.05). At the 2-cell stage, the 6 mM glycine group had ROS levels that were lesser than the other 2 glycine treatment groups (0.6 and 12 mM). From this, we deemed 6 mM to be the optimal condition, and we then investigated the effects of 6 mM glycine on gene expression. The expression of both FGFR2 and Hsf1 were greater than the control group in mature oocytes. The glycine treatment group had greater levels of expression of an antiapoptotic gene (Bcl2) in mature oocytes and cumulus cells and lesser levels of expression of a proapoptotic gene (Bax) in PA blastocysts (P < 0.05). In addition, mitochondrial ΔΨm and ATP concentration were increased in 6 mM glycine group compared with the control group. In conclusion, our results suggest that glycine plays an important role in oocyte maturation and later development by reducing ROS levels and increasing mitochondrial function to reduce apoptosis.
Collapse
Affiliation(s)
- Suo Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Qing Guo
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Yu-Meng Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zi-Yue Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jin-Dan Kang
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Xi-Jun Yin
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
47
|
Wedding JL, Lai B, Vogt S, Harris HH. Investigation into the intracellular fates, speciation and mode of action of selenium-containing neuroprotective agents using XAS and XFM. Biochim Biophys Acta Gen Subj 2018; 1862:2393-2404. [PMID: 29631056 DOI: 10.1016/j.bbagen.2018.03.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND A variety of selenium compounds have been observed to provide protection against oxidative stress, presumably by mimicking the mechanism of action of the glutathione peroxidases. However, the selenium chemistry that underpins the action of these compounds has not been unequivocally established. METHODS The synchrotron based techniques, X-ray absorption spectroscopy and X-ray fluorescence microscopy were used to examine the cellular speciation and distribution of selenium in SH-SY5Y cells pretreated with one of two diphenyl diselenides, or ebselen, followed by peroxide insult. RESULTS Bis(2-aminophenyl)diselenide was shown to protect against oxidative stress conditions which mimic ischemic strokes, while its nitro analogue, bis(2-nitrophenyl)diselenide did not. This protective activity was tentatively assigned to the reductive cleavage of bis(2-aminophenyl)diselenide inside human neurocarcinoma cells, SH-SY5Y, while bis(2-nitrophenyl)diselenide remained largely unchanged. The distinct chemistries of the related compounds were traced by the changes in selenium speciation in bulk pellets of treated SH-SY5Y cells detected by X-ray absorption spectroscopy. Further, bis(2-aminophenyl)diselenide, like the known stroke mitigation agent ebselen, was observed by X-ray fluorescence imaging to penetrate into the nucleus of SH-SY5Y cells while bis(2-nitrophenyl)diselenide was observed to be excluded from the nuclear region. CONCLUSIONS The differences in activity were thus attributed to the varied speciation and cellular localisation of the compounds, or their metabolites, as detected by X-ray absorption spectroscopy and X-ray fluorescence microscopy. SIGNIFICANCE The work is significant as it links, for the first time, the protective action of selenium compounds against redox stress with particular chemical speciation using a direct measurement approach.
Collapse
Affiliation(s)
- Jason L Wedding
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia
| | - Barry Lai
- Advanced Photon Source, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Stefan Vogt
- Advanced Photon Source, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Hugh H Harris
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia.
| |
Collapse
|
48
|
Aslani F, Sebastian T, Keidel M, Fröhlich S, Elsässer HP, Schuppe HC, Klug J, Mahavadi P, Fijak M, Bergmann M, Meinhardt A, Bhushan S. Resistance to apoptosis and autophagy leads to enhanced survival in Sertoli cells. Mol Hum Reprod 2018; 23:370-380. [PMID: 28379541 DOI: 10.1093/molehr/gax022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 03/31/2017] [Indexed: 12/13/2022] Open
Abstract
STUDY QUESTION What is the underlying mechanism of Sertoli cell (SC) resistance to cell death? SUMMARY ANSWER High expression of prosurvival B-cell lymphoma-2 (BCL2) proteins and inhibition of apoptosis and autophagy prolongs SC survival upon exposure to stress stimuli. WHAT IS KNOWN ALREADY In human and in experimental models of orchitis, tolerogenic SC survive stress conditions, while germ cells undergo massive apoptosis. In general, non-dividing highly differentiated cells tend to resist stress conditions for a longer time by favoring activation of prosurvival mechanisms and inhibition of cell death pathways. STUDY DESIGN, SIZE, DURATION In this cross sectional study, conditions stimulating apoptosis and autophagy were used to induce cell death in primary rat SC. Primary rat peritubular cells (PTC) and immortalized rat 93RS2 SC were used as controls. Each cell isolation was counted as one experiment (n = 1), and each experiment was repeated three to six times. PARTICIPANTS/MATERIALS, SETTING, METHODS Testis biopsy samples from infertile or subfertile patients and testis samples from rats with experimental autoimmune orchitis were used for immunohistological analysis. Primary SC were isolated from 19-day-old male Wistar rats. To maintain cell purity, cells were cultured in serum-free medium for apoptosis experiments and in medium supplemented with 1% serum for autophagy analyses. To induce apoptosis, cells were stimulated with staurosporine, borrelidin, cisplatin and etoposide for 4 or 24 h. Caspase three activation was examined by immunoblotting and enzymatic activity assay. Mitochondrial membrane potential was measured using tetramethylrhodamine methyl ester followed by flow cytometric analysis. Cytochrome c release was monitored by immunofluorescence. Cell viability was determined using the methylthiazole tetrazolium assay. To monitor autophagy flux, cells were deprived of nutrients using Hank's balanced salt solution for 1, 2 and 3 h. Formation of autophagosomes was analyzed by using immunoblotting, immunofluorescence labeling and ultrastructural analyses. Relative mRNA levels of genes involved in the regulation of apoptosis and autophagy were evaluated. Extracellular high mobility group box protein one was measured as a marker of necrosis using ELISA. MAIN RESULTS AND THE ROLE OF CHANCE SC survive the inflammatory conditions in vivo in human testis and in experimental autoimmune orchitis. Treatment with apoptosis inducing chemotherapeutics did not cause caspase three activation in isolated rat SC. Moreover, mitochondrial membrane potential and mitochondrial localization of cytochrome c were not changed by treatment with staurosporine, suggesting a premitochondrial blockade of apoptosis in SC. Expression levels of prosurvival BCL2 family members were significantly higher in SC compared to PTC at both mRNA and protein levels. Furthermore, after nutrient starvation, autophagy signaling was initiated in SC as observed by decreased levels of phosphorylated UNC- 51-like kinase -1 (ULK1). However, levels of light chain 3 II (LC3 II) and sequestosome1 (SQSTM1) remained unchanged, indicating blockade of the autophagy flux. Lysosomal activity was intact in SC as shown by accumulation of LC3 II following administration of lysosomal protease inhibitors, indicating that inhibition of autophagy flux occurs at a preceding stage. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION In this study, we have used primary SC from prepubertal rats. Caution should be taken when translating our results to adult animals, where crosstalk with other testicular cells and hormonal factors may also play a role in regulating survival of SC. WIDER IMPLICATIONS OF THE FINDINGS Our results suggest that inhibition of autophagy and apoptosis following exposure to extrinsic stress stimuli promotes SC survival, and is a possible mechanism to explain the robustness of SC in response to stress. Cell death resistance in SC is crucial for the recovery of spermatogenesis after chemotherapy treatment in cancer patients. Additionally, understanding the molecular mechanisms of SC survival unravels valuable target proteins, such as BCL2, that may be manipulated therapeutically to control cell viability depending on the context of the disease. STUDY FUNDING AND COMPETING INTEREST(S) This study was funded by the Deutsche Forschungsgemeinschaft (DFG) Grant BH93/1-1, and by the International Research Training Group between Justus Liebig University of Giessen and Monash University, Melbourne (GRK 1871/1) funded by the DFG and Monash University. The support of the Medical Faculty of Justus-Liebig University of Giessen is gratefully acknowledged. The authors declare no conflict of interest.
Collapse
Affiliation(s)
- Ferial Aslani
- Department of Anatomy and Cell Biology, Justus-Liebig University, Aulweg 123, Giessen 35392, Germany
| | - Tim Sebastian
- Department of Anatomy and Cell Biology, Justus-Liebig University, Aulweg 123, Giessen 35392, Germany
| | - Miguel Keidel
- Department of Anatomy and Cell Biology, Justus-Liebig University, Aulweg 123, Giessen 35392, Germany
| | - Suada Fröhlich
- Department of Anatomy and Cell Biology, Justus-Liebig University, Aulweg 123, Giessen 35392, Germany
| | - Hans-Peter Elsässer
- Department of Cell Biology and Cytopathology, Philipps University of Marburg, Germany
| | - Hans-Christian Schuppe
- Department of Urology, Pediatric Urology and Andrology, Justus-Liebig University, Giessen, Germany
| | - Jörg Klug
- Department of Anatomy and Cell Biology, Justus-Liebig University, Aulweg 123, Giessen 35392, Germany
| | - Poornima Mahavadi
- Department of Internal Medicine, Justus-Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Monika Fijak
- Department of Anatomy and Cell Biology, Justus-Liebig University, Aulweg 123, Giessen 35392, Germany
| | - Martin Bergmann
- Institute of Veterinary Anatomy, Histology, and Embryology, Justus-Liebig-University, Giessen, Germany
| | - Andreas Meinhardt
- Department of Anatomy and Cell Biology, Justus-Liebig University, Aulweg 123, Giessen 35392, Germany
| | - Sudhanshu Bhushan
- Department of Anatomy and Cell Biology, Justus-Liebig University, Aulweg 123, Giessen 35392, Germany
| |
Collapse
|
49
|
Rodríguez-González J, Wilkins-Rodríguez AA, Gutiérrez-Kobeh L. Role of glutathione, ROS, and Bcl-xL in the inhibition of apoptosis of monocyte-derived dendritic cells by Leishmania mexicana promastigotes. Parasitol Res 2018; 117:1225-1235. [PMID: 29476339 DOI: 10.1007/s00436-018-5804-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/08/2018] [Indexed: 12/31/2022]
Abstract
Dendritic cells (DCs) are one of the principal host cells of the obligate intracellular parasite Leishmania that can survive and reproduce within cells due to the ability to regulate different cellular events, including apoptosis. Inhibition of host cell apoptosis is a strategy employed by multiple pathogens to ensure their survival in the infected cell. We have previously reported that Leishmania mexicana promastigotes and amastigotes inhibit camptothecin-induced apoptosis of monocyte-derived dendritic cells (moDCs) through the downregulation of p38 and JNK phosphorylation. The upregulation of glutathione (GSH), the most important regulator of reactive oxygen species (ROS) concentration, has proven to protect cells from apoptosis through the inhibition of JNK1. Another mechanism employed by cells for the protection of apoptosis is the expression of anti-apoptotic proteins of the Bcl-2 family. The aim of this study was to determine if GSH, ROS, and Bcl-xL participate in the inhibition of camptothecin-induced apoptosis of moDC by L. mexicana promastigotes. GSH quantification assays showed that camptothecin and BSO (an inhibitor of glutathione synthesis) strongly decreased intracellular GSH concentration in moDC, while infection with L. mexicana promastigotes had no effect in the level of GSH. On the other hand, infection with L. mexicana promastigotes of BSO- and camptothecin-treated moDC diminished the concentration of ROS and induced the expression of the anti-apoptotic protein Bcl-xL. Our findings suggest that inhibition of camptothecin-induced apoptosis of moDC by L. mexicana promastigotes is preferentially regulated by the expression of anti-apoptotic proteins of the Bcl-2 family rather than by the redox status of the cell.
Collapse
Affiliation(s)
- Jorge Rodríguez-González
- Unidad Periférica de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México-Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Col. Belisario Domínguez, Sección XVI, Delegación Tlalpan, C.P, 14080, Ciudad de México, México.,Posgrado en Ciencias Biológicas, Facultad de Medicina, Unidad de Posgrado, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Arturo A Wilkins-Rodríguez
- Unidad Periférica de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México-Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Col. Belisario Domínguez, Sección XVI, Delegación Tlalpan, C.P, 14080, Ciudad de México, México
| | - Laila Gutiérrez-Kobeh
- Unidad Periférica de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México-Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Col. Belisario Domínguez, Sección XVI, Delegación Tlalpan, C.P, 14080, Ciudad de México, México.
| |
Collapse
|
50
|
Mahdavi M, Asghari S, Rahnamay M, Dehghan G, Feizi MAH, Balalaie S. Cytotoxicity, oxidative stress, and apoptosis in K562 leukemia cells induced by an active compound from pyrano-pyridine derivatives. Hum Exp Toxicol 2018; 37:1105-1116. [DOI: 10.1177/0960327118756719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent studies have reported the potential of pyrano-pyridine compounds in inhibiting cell growth and apoptosis induction in cancer cells. Here, we investigated the effect of new pyrano-pyridine derivatives on proliferation, oxidative damages, and apoptosis in K562 leukemia cells. Among different tested compounds, we found 8-(4-chlorobenzylidene)-2-amino-4-(4-chlorophenyl)-5, 6, 7, 8-tetrahydro-6-phenethyl-4H-pyrano-[3,2-c]pyridine-3-carbonitrile (4-CP.P) as the most effective compound with IC50 value of 20 μM. Gel electrophoresis, fluorescence microscopy, and flow cytometry analyses indicated the apoptosis induction ability of 4-CP.P in K562 cells. Further analyses revealed that 4-CP.P induces significant increase in cellular reactive oxygen species production, lipid peroxidation, protein oxidation, and total thiol depletion. Interestingly, while 4-CP.P significantly increased the activity of superoxide dismutase, it reduced the catalase activity in a time-dependent manner. These data propose that 4-CP.P treatment causes free radicals accumulation that ultimately leads to oxidative stress condition and apoptosis induction. Therefore, we report the 4-CP.P as a novel, potent compound as a chemotherapeutic agent in cancer treatment.
Collapse
Affiliation(s)
- M Mahdavi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - S Asghari
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - M Rahnamay
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - G Dehghan
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - MAH Feizi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - S Balalaie
- Department of Chemistry, Faculty of Science, K. N. Toosi University of Tech, Tehran, Iran
| |
Collapse
|