1
|
Tong D, Tang Y, Zhong P. The emerging roles of histone demethylases in cancers. Cancer Metastasis Rev 2024; 43:795-821. [PMID: 38227150 DOI: 10.1007/s10555-023-10160-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
Modulation of histone methylation status is regarded as an important mechanism of epigenetic regulation and has substantial clinical potential for the therapy of diseases, including cancer and other disorders. The present study aimed to provide a comprehensive introduction to the enzymology of histone demethylases, as well as their cancerous roles, molecular mechanisms, therapeutic possibilities, and challenges for targeting them, in order to advance drug design for clinical therapy and highlight new insight into the mechanisms of these enzymes in cancer. A series of clinical trials have been performed to explore potential roles of histone demethylases in several cancer types. Numerous targeted inhibitors associated with immunotherapy, chemotherapy, radiotherapy, and targeted therapy have been used to exert anticancer functions. Future studies should evaluate the dynamic transformation of histone demethylases leading to carcinogenesis and explore individual therapy.
Collapse
Affiliation(s)
- Dali Tong
- Department of Urological Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China.
| | - Ying Tang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China.
| | - Peng Zhong
- Department of Pathology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China.
| |
Collapse
|
2
|
Worley J, Noh H, You D, Turunen MM, Ding H, Paull E, Griffin AT, Grunn A, Zhang M, Guillan K, Bush EC, Brosius SJ, Hibshoosh H, Mundi PS, Sims P, Dalerba P, Dela Cruz FS, Kung AL, Califano A. Identification and Pharmacological Targeting of Treatment-Resistant, Stem-like Breast Cancer Cells for Combination Therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.08.562798. [PMID: 38798673 PMCID: PMC11118419 DOI: 10.1101/2023.11.08.562798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Tumors frequently harbor isogenic yet epigenetically distinct subpopulations of multi-potent cells with high tumor-initiating potential-often called Cancer Stem-Like Cells (CSLCs). These can display preferential resistance to standard-of-care chemotherapy. Single-cell analyses can help elucidate Master Regulator (MR) proteins responsible for governing the transcriptional state of these cells, thus revealing complementary dependencies that may be leveraged via combination therapy. Interrogation of single-cell RNA sequencing profiles from seven metastatic breast cancer patients, using perturbational profiles of clinically relevant drugs, identified drugs predicted to invert the activity of MR proteins governing the transcriptional state of chemoresistant CSLCs, which were then validated by CROP-seq assays. The top drug, the anthelmintic albendazole, depleted this subpopulation in vivo without noticeable cytotoxicity. Moreover, sequential cycles of albendazole and paclitaxel-a commonly used chemotherapeutic -displayed significant synergy in a patient-derived xenograft (PDX) from a TNBC patient, suggesting that network-based approaches can help develop mechanism-based combinatorial therapies targeting complementary subpopulations.
Collapse
Affiliation(s)
- Jeremy Worley
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- J.P. Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Heeju Noh
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Daoqi You
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mikko M Turunen
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Hongxu Ding
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Department of Pharmacy Practice & Science, College of Pharmacy, University of Arizona, Tucson, Arizona, USA 85721
| | - Evan Paull
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Aaron T Griffin
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Adina Grunn
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Mingxuan Zhang
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Kristina Guillan
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Erin C Bush
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Samantha J Brosius
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hanina Hibshoosh
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, USA 10032
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, USA 10032
| | - Prabhjot S Mundi
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, USA 10032
| | - Peter Sims
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Piero Dalerba
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, USA 10032
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, USA 10032
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, USA 10032
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Filemon S Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew L Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrea Califano
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, USA 10032
- Department of Biochemistry & Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- J.P. Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY USA 10032
| |
Collapse
|
3
|
Singh P, Lanman NA, Kendall HLR, Wilson L, Long R, Franco OE, Buskin A, Miles CG, Hayward SW, Heer R, Robson CN. Human prostate organoid generation and the identification of prostate development drivers using inductive rodent tissues. Development 2023; 150:dev201328. [PMID: 37376888 PMCID: PMC10357030 DOI: 10.1242/dev.201328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
The reactivation of developmental genes and pathways during adulthood may contribute to pathogenesis of diseases such as prostate cancer. Analysis of the mechanistic links between development and disease could be exploited to identify signalling pathways leading to disease in the prostate. However, the mechanisms underpinning prostate development require further characterisation to interrogate fully the link between development and disease. Previously, our group developed methods to produce prostate organoids using induced pluripotent stem cells (iPSCs). Here, we show that human iPSCs can be differentiated into prostate organoids using neonatal rat seminal vesicle mesenchyme in vitro. The organoids can be used to study prostate development or modified to study prostate cancer. We also elucidated molecular drivers of prostate induction through RNA-sequencing analyses of the rat urogenital sinus and neonatal seminal vesicles. We identified candidate drivers of prostate development evident in the inductive mesenchyme and epithelium involved with prostate specification. Our top candidates included Spx, Trib3, Snai1, Snai2, Nrg2 and Lrp4. This work lays the foundations for further interrogation of the reactivation of developmental genes in adulthood, leading to prostate disease.
Collapse
Affiliation(s)
- Parmveer Singh
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, NE2 4AD, UK
| | - Nadia A. Lanman
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Hannah L. R. Kendall
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, NE2 4AD, UK
| | - Laura Wilson
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, NE2 4AD, UK
| | - Ryan Long
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, NE2 4AD, UK
| | - Omar E. Franco
- Department of Surgery, NorthShore University HealthSystem, Evanston, IL 60201, USA
- University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
| | - Adriana Buskin
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, NE2 4AD, UK
| | - Colin G. Miles
- Translational and Clinical Research Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Simon W. Hayward
- Department of Surgery, NorthShore University HealthSystem, Evanston, IL 60201, USA
- University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
| | - Rakesh Heer
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, NE2 4AD, UK
- Department of Urology, Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
| | - Craig N. Robson
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, NE2 4AD, UK
| |
Collapse
|
4
|
Burlibasa L, Nicu AT, Chifiriuc MC, Medar C, Petrescu A, Jinga V, Stoica I. H3 histone methylation landscape in male urogenital cancers: from molecular mechanisms to epigenetic biomarkers and therapeutic targets. Front Cell Dev Biol 2023; 11:1181764. [PMID: 37228649 PMCID: PMC10203431 DOI: 10.3389/fcell.2023.1181764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
During the last decades, male urogenital cancers (including prostate, renal, bladder and testicular cancers) have become one of the most frequently encountered malignancies affecting all ages. While their great variety has promoted the development of various diagnosis, treatment and monitoring strategies, some aspects such as the common involvement of epigenetic mechanisms are still not elucidated. Epigenetic processes have come into the spotlight in the past years as important players in the initiation and progression of tumors, leading to a plethora of studies highlighting their potential as biomarkers for diagnosis, staging, prognosis, and even as therapeutic targets. Thus, fostering research on the various epigenetic mechanisms and their roles in cancer remains a priority for the scientific community. This review focuses on one of the main epigenetic mechanisms, namely, the methylation of the histone H3 at various sites and its involvement in male urogenital cancers. This histone modification presents a great interest due to its modulatory effect on gene expression, leading either to activation (e.g., H3K4me3, H3K36me3) or repression (e.g., H3K27me3, H3K9me3). In the last few years, growing evidence has demonstrated the aberrant expression of enzymes that methylate/demethylate histone H3 in cancer and inflammatory diseases, that might contribute to the initiation and progression of such disorders. We highlight how these particular epigenetic modifications are emerging as potential diagnostic and prognostic biomarkers or targets for the treatment of urogenital cancers.
Collapse
Affiliation(s)
| | | | - Mariana Carmen Chifiriuc
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- Romanian Academy, Bucharest, Romania
| | - Cosmin Medar
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Clinical Hospital “Prof. dr Theodor Burghele”, Bucharest, Romania
| | - Amelia Petrescu
- Clinical Hospital “Prof. dr Theodor Burghele”, Bucharest, Romania
| | - Viorel Jinga
- Academy of Romanian Scientists, Bucharest, Romania
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Clinical Hospital “Prof. dr Theodor Burghele”, Bucharest, Romania
| | - Ileana Stoica
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
5
|
Mukherjee AG, Gopalakrishnan AV. Unlocking the mystery associated with infertility and prostate cancer: an update. Med Oncol 2023; 40:160. [PMID: 37099242 DOI: 10.1007/s12032-023-02028-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/08/2023] [Indexed: 04/27/2023]
Abstract
Male-specific reproductive disorders and cancers have increased intensely in recent years, making them a significant public health problem. Prostate cancer (PC) is the most often diagnosed cancer in men and is one of the leading causes of cancer-related mortality. Both genetic and epigenetic modifications contribute to the development and progression of PC, even though the exact underlying processes causing this disease have yet to be identified. Male infertility is also a complex and poorly understood phenomenon believed to afflict a significant portion of the male population. Chromosomal abnormalities, compromised DNA repair systems, and Y chromosome alterations are just a few of the proposed explanations. It is becoming widely accepted that infertility shares a link with PC. Much of the link between infertility and PC is probably attributable to common genetic defects. This article provides an overview of PC and spermatogenic abnormalities. This study also investigates the link between male infertility and PC and uncovers the underlying reasons, risk factors, and biological mechanisms contributing to this association.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
6
|
Altay G, Zapardiel-Gonzalo J, Peters B. RNA-seq preprocessing and sample size considerations for gene network inference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.02.522518. [PMID: 36711979 PMCID: PMC9881880 DOI: 10.1101/2023.01.02.522518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Background Gene network inference (GNI) methods have the potential to reveal functional relationships between different genes and their products. Most GNI algorithms have been developed for microarray gene expression datasets and their application to RNA-seq data is relatively recent. As the characteristics of RNA-seq data are different from microarray data, it is an unanswered question what preprocessing methods for RNA-seq data should be applied prior to GNI to attain optimal performance, or what the required sample size for RNA-seq data is to obtain reliable GNI estimates. Results We ran 9144 analysis of 7 different RNA-seq datasets to evaluate 300 different preprocessing combinations that include data transformations, normalizations and association estimators. We found that there was no single best performing preprocessing combination but that there were several good ones. The performance varied widely over various datasets, which emphasized the importance of choosing an appropriate preprocessing configuration before GNI. Two preprocessing combinations appeared promising in general: First, Log-2 TPM (transcript per million) with Variance-stabilizing transformation (VST) and Pearson Correlation Coefficient (PCC) association estimator. Second, raw RNA-seq count data with PCC. Along with these two, we also identified 18 other good preprocessing combinations. Any of these algorithms might perform best in different datasets. Therefore, the GNI performances of these approaches should be measured on any new dataset to select the best performing one for it. In terms of the required biological sample size of RNA-seq data, we found that between 30 to 85 samples were required to generate reliable GNI estimates. Conclusions This study provides practical recommendations on default choices for data preprocessing prior to GNI analysis of RNA-seq data to obtain optimal performance results.
Collapse
Affiliation(s)
- Gökmen Altay
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | | | - Bjoern Peters
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| |
Collapse
|
7
|
Xu C, Zhao S, Cai L. Epigenetic (De)regulation in Prostate Cancer. Cancer Treat Res 2023; 190:321-360. [PMID: 38113006 PMCID: PMC11421856 DOI: 10.1007/978-3-031-45654-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Prostate cancer (PCa) is a heterogeneous disease exhibiting both genetic and epigenetic deregulations. Epigenetic alterations are defined as changes not based on DNA sequence, which include those of DNA methylation, histone modification, and chromatin remodeling. Androgen receptor (AR) is the main driver for PCa and androgen deprivation therapy (ADT) remains a backbone treatment for patients with PCa; however, ADT resistance almost inevitably occurs and advanced diseases develop termed castration-resistant PCa (CRPC), due to both genetic and epigenetic changes. Due to the reversible nature of epigenetic modifications, inhibitors targeting epigenetic factors have become promising anti-cancer agents. In this chapter, we focus on recent studies about the dysregulation of epigenetic regulators crucially involved in the initiation, development, and progression of PCa and discuss the potential use of inhibitors targeting epigenetic modifiers for treatment of advanced PCa.
Collapse
Affiliation(s)
- Chenxi Xu
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shuai Zhao
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ling Cai
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
8
|
Adamiecki R, Hryniewicz-Jankowska A, Ortiz MA, Li X, Porter-Hansen BA, Nsouli I, Bratslavsky G, Kotula L. In Vivo Models for Prostate Cancer Research. Cancers (Basel) 2022; 14:5321. [PMID: 36358740 PMCID: PMC9654339 DOI: 10.3390/cancers14215321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/28/2022] Open
Abstract
In 2022, prostate cancer (PCa) is estimated to be the most commonly diagnosed cancer in men in the United States-almost 270,000 American men are estimated to be diagnosed with PCa in 2022. This review compares and contrasts in vivo models of PCa with regards to the altered genes, signaling pathways, and stages of tumor progression associated with each model. The main type of model included in this review are genetically engineered mouse models, which include conditional and constitutive knockout model. 2D cell lines, 3D organoids and spheroids, xenografts and allografts, and patient derived models are also included. The major applications, advantages and disadvantages, and ease of use and cost are unique to each type of model, but they all make it easier to translate the tumor progression that is seen in the mouse prostate to the human prostate. Although both human and mouse prostates are androgen-dependent, the fact that the native, genetically unaltered prostate in mice cannot give rise to carcinoma is an especially critical component of PCa models. Thanks to the similarities between the mouse and human genome, our knowledge of PCa has been expanded, and will continue to do so, through models of PCa.
Collapse
Affiliation(s)
- Robert Adamiecki
- Rutgers New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
| | - Anita Hryniewicz-Jankowska
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Maria A. Ortiz
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
| | - Xiang Li
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
| | - Baylee A. Porter-Hansen
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
| | - Imad Nsouli
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
| | - Gennady Bratslavsky
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
- Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
| | - Leszek Kotula
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
- Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
| |
Collapse
|
9
|
Laise P, Bosker G, Califano A, Alvarez MJ. A Patient-to-Model-to-Patient (PMP) Cancer Drug Discovery Protocol for Identifying and Validating Therapeutic Agents Targeting Tumor Regulatory Architecture. Curr Protoc 2022; 2:e544. [PMID: 36083100 DOI: 10.1002/cpz1.544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The current Achilles heel of cancer drug discovery is the inability to forge precise and predictive connections among mechanistic drivers of the cancer cell state, therapeutically significant molecular targets, effective drugs, and responsive patient subgroups. Although advances in molecular biology have helped identify molecular markers and stratify patients into molecular subtypes, these associational strategies typically fail to provide a mechanistic rationale to identify cancer vulnerabilities. Recently, integrative systems biology methodologies have been used to reverse engineer cellular networks and identify master regulators (MRs), proteins whose activity is both necessary and sufficient to implement phenotypic states under physiological and pathological conditions, which are organized into highly interconnected regulatory modules called tumor checkpoints. Because of their functional relevance, MRs represent ideal pharmacological targets and biomarkers. Here, we present a six-step patient-to-model-to-patient protocol that employs computational and experimental methodologies to reconstruct and interrogate the regulatory logic of human cancer cells for identifying and therapeutically targeting the tumor checkpoint with novel as well as existing pharmacological agents. This protocol systematically identifies, from specific patient tumor samples, the MRs that comprise the tumor checkpoint. Then, it identifies in vitro and in vivo models that, by recapitulating the patient's tumor checkpoint, constitute the appropriate cell lines and xenografts to further elucidate the tissue context-specific drug mechanism of action (MOA) and permit precise, biomarker-based preclinical validations of drug efficacy. The combination of determination of a drug's context-specific MOA and precise identification of patients' tumor checkpoints provides a personalized, mechanism-based biomarker to enrich prospective clinical trials with patients likely to respond. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Pasquale Laise
- DarwinHealth, New York, New York
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York
| | | | - Andrea Califano
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Medicine, Columbia University Irving Medical Center, New York, New York
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, New York
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, New York
| | - Mariano J Alvarez
- DarwinHealth, New York, New York
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
10
|
Xu Y, Pang Q. Repetitive DNA Sequences in the Human Y Chromosome and Male Infertility. Front Cell Dev Biol 2022; 10:831338. [PMID: 35912115 PMCID: PMC9326358 DOI: 10.3389/fcell.2022.831338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
The male-specific Y chromosome, which is well known for its diverse and complex repetitive sequences, has different sizes, genome structures, contents and evolutionary trajectories from other chromosomes and is of great significance for testis development and function. The large number of repetitive sequences and palindrome structure of the Y chromosome play an important role in maintaining the stability of male sex determining genes, although they can also cause non-allelic homologous recombination within the chromosome. Deletion of certain Y chromosome sequences will lead to spermatogenesis disorders and male infertility. And Y chromosome genes are also involved in the occurrence of reproductive system cancers and can increase the susceptibility of other tumors. In addition, the Y chromosome has very special value in the personal identification and parentage testing of male-related cases in forensic medicine because of its unique paternal genetic characteristics. In view of the extremely high frequency and complexity of gene rearrangements and the limitations of sequencing technology, the analysis of Y chromosome sequences and the study of Y-gene function still have many unsolved problems. This article will introduce the structure and repetitive sequence of the Y chromosome, summarize the correlation between Y chromosome various sequence deletions and male infertility for understanding the repetitive sequence of Y chromosome more systematically, in order to provide research motivation for further explore of the molecules mechanism of Y-deletion and male infertility and theoretical foundations for the transformation of basic research into applications in clinical medicine and forensic medicine.
Collapse
Affiliation(s)
- Yong Xu
- Department of Emergency Surgery, Jining NO 1 People’s Hospital, Jining, China
| | - Qianqian Pang
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
- *Correspondence: Qianqian Pang,
| |
Collapse
|
11
|
Ang GCK, Gupta A, Surana U, Yap SXL, Taneja R. Potential Therapeutics Targeting Upstream Regulators and Interactors of EHMT1/2. Cancers (Basel) 2022; 14:2855. [PMID: 35740522 PMCID: PMC9221123 DOI: 10.3390/cancers14122855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Euchromatin histone lysine methyltransferases (EHMTs) are epigenetic regulators responsible for silencing gene transcription by catalyzing H3K9 dimethylation. Dysregulation of EHMT1/2 has been reported in multiple cancers and is associated with poor clinical outcomes. Although substantial insights have been gleaned into the downstream targets and pathways regulated by EHMT1/2, few studies have uncovered mechanisms responsible for their dysregulated expression. Moreover, EHMT1/2 interacting partners, which can influence their function and, therefore, the expression of target genes, have not been extensively explored. As none of the currently available EHMT inhibitors have made it past clinical trials, understanding upstream regulators and EHMT protein complexes may provide unique insights into novel therapeutic avenues in EHMT-overexpressing cancers. Here, we review our current understanding of the regulators and interacting partners of EHMTs. We also discuss available therapeutic drugs that target the upstream regulators and binding partners of EHMTs and could potentially modulate EHMT function in cancer progression.
Collapse
Affiliation(s)
- Gareth Chin Khye Ang
- Healthy Longevity Translational Research Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (G.C.K.A.); (A.G.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Amogh Gupta
- Healthy Longevity Translational Research Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (G.C.K.A.); (A.G.)
| | - Uttam Surana
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Shirlyn Xue Ling Yap
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Reshma Taneja
- Healthy Longevity Translational Research Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (G.C.K.A.); (A.G.)
| |
Collapse
|
12
|
Azeem W, Olsen JR, Hellem MR, Hua Y, Marvyin K, Ke X, Øyan AM, Kalland KH. Proteasome-Mediated Regulation of GATA2 Expression and Androgen Receptor Transcription in Benign Prostate Epithelial Cells. Biomedicines 2022; 10:biomedicines10020473. [PMID: 35203681 PMCID: PMC8962351 DOI: 10.3390/biomedicines10020473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
GATA2 has been shown to be an important transcription factor together with androgen receptor (AR) in prostate cancer cells. Less is known about GATA2 in benign prostate epithelial cells. We have investigated if GATA2 exogenous expression in prostate epithelial basal-like cells could induce AR transcription or luminal differentiation. Prostate epithelial basal-like (transit amplifying) cells were transduced with lentiviral vector expressing GATA2. Luminal differentiation markers were assessed by RT-qPCR, Western blot and global gene expression microarrays. We utilized our previously established AR and androgen-dependent fluorescence reporter assay to investigate AR activity at the single-cell level. Exogenous GATA2 protein was rapidly and proteasome-dependently degraded. GATA2 protein expression was rescued by the proteasome inhibitor MG132 and partly by mutating the target site of the E3 ligase FBXW7. Moreover, MG132-mediated proteasome inhibition induced AR mRNA and additional luminal marker gene transcription in the prostate transit amplifying cells. Different types of intrinsic mechanisms restricted GATA2 expression in the transit amplifying cells. The appearance of AR mRNA and additional luminal marker gene expression changes following proteasome inhibition suggests control of essential cofactor(s) of AR mRNA expression and luminal differentiation at this proteolytic level.
Collapse
Affiliation(s)
- Waqas Azeem
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (J.R.O.); (M.R.H.); (Y.H.); (K.M.); (X.K.); (A.M.Ø.)
- Centre for Cancer Biomarkers, University of Bergen, 5021 Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, 5021 Bergen, Norway
- Correspondence: (W.A.); (K.-H.K.)
| | - Jan Roger Olsen
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (J.R.O.); (M.R.H.); (Y.H.); (K.M.); (X.K.); (A.M.Ø.)
| | - Margrete Reime Hellem
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (J.R.O.); (M.R.H.); (Y.H.); (K.M.); (X.K.); (A.M.Ø.)
| | - Yaping Hua
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (J.R.O.); (M.R.H.); (Y.H.); (K.M.); (X.K.); (A.M.Ø.)
| | - Kristo Marvyin
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (J.R.O.); (M.R.H.); (Y.H.); (K.M.); (X.K.); (A.M.Ø.)
| | - Xisong Ke
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (J.R.O.); (M.R.H.); (Y.H.); (K.M.); (X.K.); (A.M.Ø.)
| | - Anne Margrete Øyan
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (J.R.O.); (M.R.H.); (Y.H.); (K.M.); (X.K.); (A.M.Ø.)
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Karl-Henning Kalland
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (J.R.O.); (M.R.H.); (Y.H.); (K.M.); (X.K.); (A.M.Ø.)
- Centre for Cancer Biomarkers, University of Bergen, 5021 Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, 5021 Bergen, Norway
- Correspondence: (W.A.); (K.-H.K.)
| |
Collapse
|
13
|
Vogt PH, Zimmer J, Bender U, Strowitzki T. AZFa candidate gene UTY and its X homologue UTX are expressed in human germ cells. REPRODUCTION AND FERTILITY 2022; 2:151-160. [PMID: 35128450 PMCID: PMC8812439 DOI: 10.1530/raf-20-0049] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022] Open
Abstract
The Ubiquitous Transcribed Y (UTY a.k.a. KDM6C) AZFa candidate gene on the human Y chromosome and its paralog on the X chromosome, UTX (a.k.a. KDM6A), encode a histone lysine demethylase removing chromatin H3K27 methylation marks at genes transcriptional start sites for activation. Both proteins harbour the conserved Jumonji C (JmjC) domain, functional in chromatin metabolism, and an extended N-terminal tetratricopeptide repeat (TPR) block involved in specific protein interactions. Specific antisera for human UTY and UTX proteins were developed to distinguish the expression of both proteins in human germ cells by immunohistochemical experiments on appropriate tissue sections. In the male germ line, UTY was expressed in the fraction of A spermatogonia located at the basal membrane, probably including spermatogonia stem cells. UTX expression was more spread in all spermatogonia and in early spermatids. In female germ line, UTX expression was found in the primordial germ cells of the ovary. UTY was also expressed during fetal male germ cell development, whereas UTX expression was visible only at distinct gestation weeks. Based on these results and the conserved neighboured location of UTY and DDX3Y in Yq11 found in mammals of distinct lineages, we conclude that UTY, such as DDX3Y, is part of the Azoospermia factor a (AZFa) locus functioning in human spermatogonia to support the balance of their proliferation-differentiation rate before meiosis. Comparable UTY and DDX3Y expression was also found in gonadoblastoma and dysgerminoma cells found in germ cell nests of the dysgenetic gonads of individuals with disorders of sexual development and a Y chromosome in karyotype (DSD-XY). This confirms that AZFa overlaps with GBY, the Gonadoblastoma susceptibility Y locus, and includes the UTY gene.
Collapse
Affiliation(s)
- Peter H Vogt
- Division of Reproduction Genetics, Department of, Gynaecol. Endocrinology & Infertility Disorders, Women Hospital, University of Heidelberg, Germany
| | - Jutta Zimmer
- Division of Reproduction Genetics, Department of, Gynaecol. Endocrinology & Infertility Disorders, Women Hospital, University of Heidelberg, Germany
| | - Ulrike Bender
- Division of Reproduction Genetics, Department of, Gynaecol. Endocrinology & Infertility Disorders, Women Hospital, University of Heidelberg, Germany
| | - Thomas Strowitzki
- Department of Gynaecol. Endocrinology & Infertility Disorders, Women Hospital, University of Heidelberg, Germany
| |
Collapse
|
14
|
Abstract
NKX3.1 is a multifaceted protein with roles in prostate development and protection from oxidative stress. Acting as a pioneer factor, NKX3.1 interacts with chromatin at enhancers to help integrate androgen regulated signalling. In prostate cancer, NKX3.1 activity is frequently reduced through a combination of mutational and post-translational events. Owing to its specificity for prostate tissue, NKX3.1 has found use as an immunohistochemical marker in routine histopathology practice.
Collapse
Affiliation(s)
- Jon Griffin
- Histopathology Department, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK .,Healthy Lifespan and Neuroscience Institute, Department of Biosciences, The University of Sheffield, Sheffield, UK
| | - Yuqing Chen
- Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - James W F Catto
- Academic Urology Unit, The University of Sheffield, Sheffield, UK.,Urology Department, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Sherif El-Khamisy
- Healthy Lifespan and Neuroscience Institute, Department of Biosciences, The University of Sheffield, Sheffield, UK
| |
Collapse
|
15
|
Hua C, Chen J, Li S, Zhou J, Fu J, Sun W, Wang W. KDM6 Demethylases and Their Roles in Human Cancers. Front Oncol 2021; 11:779918. [PMID: 34950587 PMCID: PMC8688854 DOI: 10.3389/fonc.2021.779918] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/17/2021] [Indexed: 12/31/2022] Open
Abstract
Cancer therapy is moving beyond traditional chemotherapy to include epigenetic approaches. KDM6 demethylases are dynamic regulation of gene expression by histone demethylation in response to diverse stimuli, and thus their dysregulation has been observed in various cancers. In this review, we first briefly introduce structural features of KDM6 subfamily, and then discuss the regulation of KDM6, which involves the coordinated control between cellular metabolism (intrinsic regulators) and tumor microenvironment (extrinsic stimuli). We further describe the aberrant functions of KDM6 in human cancers, acting as either a tumor suppressor or an oncoprotein in a context-dependent manner. Finally, we propose potential therapy of KDM6 enzymes based on their structural features, epigenetics, and immunomodulatory mechanisms, providing novel insights for prevention and treatment of cancers.
Collapse
Affiliation(s)
- Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | | | - Shuting Li
- Wenzhou Medical University, Wenzhou, China
| | | | - Jiahong Fu
- Wenzhou Medical University, Wenzhou, China
| | - Weijian Sun
- Department of Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenqian Wang
- Department of Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
16
|
Buskin A, Singh P, Lorenz O, Robson C, Strand DW, Heer R. A Review of Prostate Organogenesis and a Role for iPSC-Derived Prostate Organoids to Study Prostate Development and Disease. Int J Mol Sci 2021; 22:ijms222313097. [PMID: 34884905 PMCID: PMC8658468 DOI: 10.3390/ijms222313097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 01/09/2023] Open
Abstract
The prostate is vulnerable to two major age-associated diseases, cancer and benign enlargement, which account for significant morbidity and mortality for men across the globe. Prostate cancer is the most common cancer reported in men, with over 1.2 million new cases diagnosed and 350,000 deaths recorded annually worldwide. Benign prostatic hyperplasia (BPH), characterised by the continuous enlargement of the adult prostate, symptomatically afflicts around 50% of men worldwide. A better understanding of the biological processes underpinning these diseases is needed to generate new treatment approaches. Developmental studies of the prostate have shed some light on the processes essential for prostate organogenesis, with many of these up- or downregulated genes expressions also observed in prostate cancer and/or BPH progression. These insights into human disease have been inferred through comparative biological studies relying primarily on rodent models. However, directly observing mechanisms of human prostate development has been more challenging due to limitations in accessing human foetal material. Induced pluripotent stem cells (iPSCs) could provide a suitable alternative as they can mimic embryonic cells, and iPSC-derived prostate organoids present a significant opportunity to study early human prostate developmental processes. In this review, we discuss the current understanding of prostate development and its relevance to prostate-associated diseases. Additionally, we detail the potential of iPSC-derived prostate organoids for studying human prostate development and disease.
Collapse
Affiliation(s)
- Adriana Buskin
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O’Gorman Building, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.S.); (C.R.)
- Correspondence: (A.B.); (R.H.)
| | - Parmveer Singh
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O’Gorman Building, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.S.); (C.R.)
| | - Oliver Lorenz
- Newcastle University School of Computing, Digital Institute, Urban Sciences Building, Newcastle University, Newcastle upon Tyne NE4 5TG, UK;
| | - Craig Robson
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O’Gorman Building, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.S.); (C.R.)
| | - Douglas W. Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Rakesh Heer
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O’Gorman Building, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.S.); (C.R.)
- Department of Urology, Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
- Correspondence: (A.B.); (R.H.)
| |
Collapse
|
17
|
Finch AJ, Baena E. Spatiofunctional Dynamics of NKX3.1 to Safeguard the Prostate from Cancer. Cancer Discov 2021; 11:2132-2134. [PMID: 34479975 DOI: 10.1158/2159-8290.cd-21-0861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A novel role of NKX3.1 in the mitochondria regulating the transcription of the electron transport chain components is reported. Mechanistically, HSPA9 chaperones NKX3.1 into the mitochondria in response to oxidative stress to regulate reactive oxygen species and suppress tumor initiation.See related article by Papachristodoulou et al., p. 2316.
Collapse
Affiliation(s)
- Andrew J Finch
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Esther Baena
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, United Kingdom. .,Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, United Kingdom
| |
Collapse
|
18
|
Papachristodoulou A, Rodriguez-Calero A, Panja S, Margolskee E, Virk RK, Milner TA, Martina LP, Kim JY, Di Bernardo M, Williams AB, Maliza EA, Caputo JM, Haas C, Wang V, De Castro GJ, Wenske S, Hibshoosh H, McKiernan JM, Shen MM, Rubin MA, Mitrofanova A, Dutta A, Abate-Shen C. NKX3.1 Localization to Mitochondria Suppresses Prostate Cancer Initiation. Cancer Discov 2021; 11:2316-2333. [PMID: 33893149 PMCID: PMC7611624 DOI: 10.1158/2159-8290.cd-20-1765] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/20/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022]
Abstract
Mitochondria provide the first line of defense against the tumor-promoting effects of oxidative stress. Here we show that the prostate-specific homeoprotein NKX3.1 suppresses prostate cancer initiation by protecting mitochondria from oxidative stress. Integrating analyses of genetically engineered mouse models, human prostate cancer cells, and human prostate cancer organotypic cultures, we find that, in response to oxidative stress, NKX3.1 is imported to mitochondria via the chaperone protein HSPA9, where it regulates transcription of mitochondrial-encoded electron transport chain (ETC) genes, thereby restoring oxidative phosphorylation and preventing cancer initiation. Germline polymorphisms of NKX3.1 associated with increased cancer risk fail to protect from oxidative stress or suppress tumorigenicity. Low expression levels of NKX3.1 combined with low expression of mitochondrial ETC genes are associated with adverse clinical outcome, whereas high levels of mitochondrial NKX3.1 protein are associated with favorable outcome. This work reveals an extranuclear role for NKX3.1 in suppression of prostate cancer by protecting mitochondrial function. SIGNIFICANCE: Our findings uncover a nonnuclear function for NKX3.1 that is a key mechanism for suppression of prostate cancer. Analyses of the expression levels and subcellular localization of NKX3.1 in patients at risk of cancer progression may improve risk assessment in a precision prevention paradigm, particularly for men undergoing active surveillance.See related commentary by Finch and Baena, p. 2132.This article is highlighted in the In This Issue feature, p. 2113.
Collapse
Affiliation(s)
- Alexandros Papachristodoulou
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York
| | - Antonio Rodriguez-Calero
- Department of Biomedical Research, University of Bern, Bern, Switzerland
- Institute of Pathology, University of Bern and Inselspital, Bern, Switzerland
| | - Sukanya Panja
- Department of Health Informatics, Rutgers School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Elizabeth Margolskee
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Renu K Virk
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Luis Pina Martina
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Jaime Y Kim
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York
| | - Matteo Di Bernardo
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York
| | - Alanna B Williams
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Elvis A Maliza
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York
| | - Joseph M Caputo
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Christopher Haas
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Vinson Wang
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Guarionex Joel De Castro
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Sven Wenske
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Hanina Hibshoosh
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - James M McKiernan
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Michael M Shen
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Mark A Rubin
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Antonina Mitrofanova
- Department of Health Informatics, Rutgers School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Aditya Dutta
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York.
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Cory Abate-Shen
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York.
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
19
|
Sanches BDA, Maldarine JS, Vilamaior PSL, Felisbino SL, Carvalho HF, Taboga SR. Stromal cell interplay in prostate development, physiology, and pathological conditions. Prostate 2021; 81:926-937. [PMID: 34254335 DOI: 10.1002/pros.24196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022]
Abstract
Advances in prostatic stroma studies over the past few decades have demonstrated that the stroma not only supports and nourishes the gland's secretory epithelium but also participates in key aspects of morphogenesis, in the prostate's hormonal metabolism, and in the functionality of the secretory epithelium. Furthermore, the stroma is implicated in the onset and progression of prostate cancer through the formation of the so-called reactive stroma, which corresponds to a tumorigenesis-permissive microenvironment. Prostatic stromal cells are interconnected and exchange paracrine signals among themselves in a gland that is highly sensitive to endocrine hormones. There is a growing body of evidence that telocytes, recently detected interstitial cells that are also present in the prostate, are involved in stromal organization, so that their processes form a network of interconnections with both the epithelium and the other stromal cells. The present review provides an update on the different types of prostate stromal cells, their interrelationships and implications for prostate development, physiology and pathological conditions.
Collapse
Affiliation(s)
- Bruno D A Sanches
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Juliana S Maldarine
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Patricia S L Vilamaior
- Department of Biological Sciences, Laboratory of Microscopy and Microanalysis, São Paulo State University-UNESP, São José do Rio Preto, Brazil
| | - Sergio L Felisbino
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
- Institute of Biosciences, São Paulo State University-UNESP, Botucatu, Brazil
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Sebastião R Taboga
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
- Department of Biological Sciences, Laboratory of Microscopy and Microanalysis, São Paulo State University-UNESP, São José do Rio Preto, Brazil
| |
Collapse
|
20
|
Kukkonen K, Taavitsainen S, Huhtala L, Uusi-Makela J, Granberg KJ, Nykter M, Urbanucci A. Chromatin and Epigenetic Dysregulation of Prostate Cancer Development, Progression, and Therapeutic Response. Cancers (Basel) 2021; 13:3325. [PMID: 34283056 PMCID: PMC8268970 DOI: 10.3390/cancers13133325] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
The dysregulation of chromatin and epigenetics has been defined as the overarching cancer hallmark. By disrupting transcriptional regulation in normal cells and mediating tumor progression by promoting cancer cell plasticity, this process has the ability to mediate all defined hallmarks of cancer. In this review, we collect and assess evidence on the contribution of chromatin and epigenetic dysregulation in prostate cancer. We highlight important mechanisms leading to prostate carcinogenesis, the emergence of castration-resistance upon treatment with androgen deprivation therapy, and resistance to antiandrogens. We examine in particular the contribution of chromatin structure and epigenetics to cell lineage commitment, which is dysregulated during tumorigenesis, and cell plasticity, which is altered during tumor progression.
Collapse
Affiliation(s)
- Konsta Kukkonen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Sinja Taavitsainen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Laura Huhtala
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Joonas Uusi-Makela
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Kirsi J. Granberg
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Alfonso Urbanucci
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
| |
Collapse
|
21
|
Servant R, Garioni M, Vlajnic T, Blind M, Pueschel H, Müller DC, Zellweger T, Templeton AJ, Garofoli A, Maletti S, Piscuoglio S, Rubin MA, Seifert H, Rentsch CA, Bubendorf L, Le Magnen C. Prostate cancer patient-derived organoids: detailed outcome from a prospective cohort of 81 clinical specimens. J Pathol 2021; 254:543-555. [PMID: 33934365 PMCID: PMC8361965 DOI: 10.1002/path.5698] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 01/06/2023]
Abstract
Patient‐derived organoids (PDOs) represent promising preclinical models in various tumor types. In the context of prostate cancer (PCa), however, their establishment has been hampered by poor success rates, which impedes their broad use for translational research applications. Along with the necessity to improve culture conditions, there is a need to identify factors influencing outcomes and to determine how to assess success versus failure in organoid generation. In the present study, we report our unbiased efforts to generate PDOs from a cohort of 81 PCa specimens with diverse pathological and clinical features. We comprehensively analyzed histological features of each enrolled sample (Gleason score, tumor content, proliferation index) and correlated them with organoid growth patterns. We identified improved culture conditions favoring the generation of PCa organoids, yet no specific intrinsic tumor feature was broadly associated with sustained organoid growth. In addition, we performed phenotypic and molecular characterization of tumor–organoid pairs using immunohistochemistry, immunofluorescence, fluorescence in situ hybridization, and targeted sequencing. Morphological and immunohistochemical profiles of whole organoids altogether provided a fast readout to identify the most promising ones. Notably, primary samples were associated with an initial take‐rate of 83% (n = 60/72) in culture, with maintenance of cancer cells displaying common PCa alterations, such as PTEN loss and ERG overexpression. These cancer organoids were, however, progressively overgrown by organoids with a benign‐like phenotype. Finally, out of nine metastasis samples, we generated a novel organoid model derived from a hormone‐naïve lung metastasis, which displays alterations in the PI3K/Akt and Wnt/β‐catenin pathways and responds to androgen deprivation. Taken together, our comprehensive study explores determinants of outcome and highlights the opportunities and challenges associated with the establishment of stable tumor organoid lines derived from PCa patients. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Raphaëlle Servant
- Department of Urology, University Hospital Basel, Basel, Switzerland.,Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Michele Garioni
- Department of Urology, University Hospital Basel, Basel, Switzerland.,Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Tatjana Vlajnic
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Melanie Blind
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Heike Pueschel
- Department of Urology, University Hospital Basel, Basel, Switzerland
| | - David C Müller
- Department of Urology, University Hospital Basel, Basel, Switzerland
| | | | - Arnoud J Templeton
- Division of Medical Oncology, St Claraspital, Basel, Switzerland.,Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Andrea Garofoli
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland.,Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Sina Maletti
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Salvatore Piscuoglio
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland.,Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Mark A Rubin
- Department for BioMedical Research, University of Bern, Bern, Switzerland.,Bern Center for Precision Medicine, University of Bern and Inselspital, Bern, Switzerland
| | - Helge Seifert
- Department of Urology, University Hospital Basel, Basel, Switzerland
| | - Cyrill A Rentsch
- Department of Urology, University Hospital Basel, Basel, Switzerland
| | - Lukas Bubendorf
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Clémentine Le Magnen
- Department of Urology, University Hospital Basel, Basel, Switzerland.,Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
22
|
Obradovic A, Chowdhury N, Haake SM, Ager C, Wang V, Vlahos L, Guo XV, Aggen DH, Rathmell WK, Jonasch E, Johnson JE, Roth M, Beckermann KE, Rini BI, McKiernan J, Califano A, Drake CG. Single-cell protein activity analysis identifies recurrence-associated renal tumor macrophages. Cell 2021; 184:2988-3005.e16. [PMID: 34019793 PMCID: PMC8479759 DOI: 10.1016/j.cell.2021.04.038] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 02/10/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022]
Abstract
Clear cell renal carcinoma (ccRCC) is a heterogeneous disease with a variable post-surgical course. To assemble a comprehensive ccRCC tumor microenvironment (TME) atlas, we performed single-cell RNA sequencing (scRNA-seq) of hematopoietic and non-hematopoietic subpopulations from tumor and tumor-adjacent tissue of treatment-naive ccRCC resections. We leveraged the VIPER algorithm to quantitate single-cell protein activity and validated this approach by comparison to flow cytometry. The analysis identified key TME subpopulations, as well as their master regulators and candidate cell-cell interactions, revealing clinically relevant populations, undetectable by gene-expression analysis. Specifically, we uncovered a tumor-specific macrophage subpopulation characterized by upregulation of TREM2/APOE/C1Q, validated by spatially resolved, quantitative multispectral immunofluorescence. In a large clinical validation cohort, these markers were significantly enriched in tumors from patients who recurred following surgery. The study thus identifies TREM2/APOE/C1Q-positive macrophage infiltration as a potential prognostic biomarker for ccRCC recurrence, as well as a candidate therapeutic target.
Collapse
MESH Headings
- Adult
- Apolipoproteins E/genetics
- Apolipoproteins E/metabolism
- Biomarkers, Tumor/genetics
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cohort Studies
- Female
- Gene Expression/genetics
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Kidney/metabolism
- Kidney Neoplasms/pathology
- Lymphocytes, Tumor-Infiltrating/pathology
- Macrophages/metabolism
- Male
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Middle Aged
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Prognosis
- Receptors, Complement/genetics
- Receptors, Complement/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Sequence Analysis, RNA/methods
- Single-Cell Analysis/methods
- Tumor Microenvironment
- Tumor-Associated Macrophages/metabolism
- Tumor-Associated Macrophages/physiology
Collapse
Affiliation(s)
- Aleksandar Obradovic
- Columbia Center for Translational Immunology (CCTI), Columbia University Irving Medical Center (CUMC), New York, NY 10032, USA; Department of Systems Biology, HICC, New York, NY 10032, USA
| | - Nivedita Chowdhury
- Columbia Center for Translational Immunology (CCTI), Columbia University Irving Medical Center (CUMC), New York, NY 10032, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | - Casey Ager
- Columbia Center for Translational Immunology (CCTI), Columbia University Irving Medical Center (CUMC), New York, NY 10032, USA
| | - Vinson Wang
- Department of Urology, Herbert Irving Comprehensive Cancer Center (HICC), New York, NY 10032, USA
| | - Lukas Vlahos
- Department of Systems Biology, HICC, New York, NY 10032, USA
| | - Xinzheng V Guo
- Columbia Center for Translational Immunology (CCTI), Columbia University Irving Medical Center (CUMC), New York, NY 10032, USA
| | - David H Aggen
- Columbia Center for Translational Immunology (CCTI), Columbia University Irving Medical Center (CUMC), New York, NY 10032, USA
| | | | - Eric Jonasch
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Marc Roth
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Brian I Rini
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - James McKiernan
- Department of Urology, Herbert Irving Comprehensive Cancer Center (HICC), New York, NY 10032, USA; HICC, Columbia University, New York, NY, USA
| | - Andrea Califano
- Department of Systems Biology, HICC, New York, NY 10032, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; HICC, Columbia University, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY; Department of Biomedical Informatics, Columbia University, New York, NY, USA; Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA; J.P. Sulzberger Columbia Genome Center, New York, NY, USA.
| | - Charles G Drake
- Columbia Center for Translational Immunology (CCTI), Columbia University Irving Medical Center (CUMC), New York, NY 10032, USA; Department of Urology, Herbert Irving Comprehensive Cancer Center (HICC), New York, NY 10032, USA; HICC, Columbia University, New York, NY, USA.
| |
Collapse
|
23
|
Sooreshjani MA, Nikhil K, Kamra M, Nguyen DN, Kumar D, Shah K. LIMK2-NKX3.1 Engagement Promotes Castration-Resistant Prostate Cancer. Cancers (Basel) 2021; 13:2324. [PMID: 34066036 PMCID: PMC8151535 DOI: 10.3390/cancers13102324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Prostate cancer is the principal cause of cancer-related mortality in men. While localized tumors can be successfully treated by orchiectomy or medical castration, most of the patients ultimately progress to the castration-resistant prostate cancer (CRPC) stage, which is incurable at present. Thus, uncovering the underlying mechanisms that cause CRPC could result in promising therapeutics. Our laboratory has identified LIMK2 kinase as an actionable target for CRPC. LIMK2 is vastly expressed in CRPC but minimally in normal prostates. LIMK2 knockout mice are healthy, indicating that LIMK2 inhibition should have minimal toxicity. LIMK2 is also expressed in other aggressive cancers; however, the molecular mechanisms leading to malignancy remain mostly unknown. This study identified that LIMK2 downregulates a prostate-specific tumor suppressor protein-NKX3.1 using two mechanisms. NKX3.1 loss is strongly associated with prostate cancer. Thus, LIMK2 inhibitor provides a powerful opportunity to rescue NKX3.1 loss, thereby preventing and/or delaying prostate cancer progression. Abstract NKX3.1’s downregulation is strongly associated with prostate cancer (PCa) initiation, progression, and CRPC development. Nevertheless, a clear disagreement exists between NKX3.1 protein and mRNA levels in PCa tissues, indicating that its regulation at a post-translational level plays a vital role. This study identified a strong negative relationship between NKX3.1 and LIMK2, which is critical in CRPC pathogenesis. We identified that NKX3.1 degradation by direct phosphorylation by LIMK2 is crucial for promoting oncogenicity in CRPC cells and in vivo. LIMK2 also downregulates NKX3.1 mRNA levels. In return, NKX3.1 promotes LIMK2’s ubiquitylation. Thus, the negative crosstalk between LIMK2-NKX3.1 regulates AR, ARv7, and AKT signaling, promoting aggressive phenotypes. We also provide a new link between NKX3.1 and PTEN, both of which are downregulated by LIMK2. PTEN loss is strongly linked with NKX3.1 downregulation. As NKX3.1 is a prostate-specific tumor suppressor, preserving its levels by LIMK2 inhibition provides a tremendous opportunity for developing targeted therapy in CRPC. Further, as NKX3.1 downregulates AR transcription and inhibits AKT signaling, restoring its levels by inhibiting LIMK2 is expected to be especially beneficial by co-targeting two driver pathways in tandem, a highly desirable requisite for developing effective PCa therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - Kavita Shah
- Department of Chemistry and Purdue University Center for Cancer Research, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA; (M.A.S.); (K.N.); (M.K.); (D.N.N.); (D.K.)
| |
Collapse
|
24
|
Ng AHM, Khoshakhlagh P, Rojo Arias JE, Pasquini G, Wang K, Swiersy A, Shipman SL, Appleton E, Kiaee K, Kohman RE, Vernet A, Dysart M, Leeper K, Saylor W, Huang JY, Graveline A, Taipale J, Hill DE, Vidal M, Melero-Martin JM, Busskamp V, Church GM. A comprehensive library of human transcription factors for cell fate engineering. Nat Biotechnol 2021; 39:510-519. [PMID: 33257861 PMCID: PMC7610615 DOI: 10.1038/s41587-020-0742-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Human pluripotent stem cells (hPSCs) offer an unprecedented opportunity to model diverse cell types and tissues. To enable systematic exploration of the programming landscape mediated by transcription factors (TFs), we present the Human TFome, a comprehensive library containing 1,564 TF genes and 1,732 TF splice isoforms. By screening the library in three hPSC lines, we discovered 290 TFs, including 241 that were previously unreported, that induce differentiation in 4 days without alteration of external soluble or biomechanical cues. We used four of the hits to program hPSCs into neurons, fibroblasts, oligodendrocytes and vascular endothelial-like cells that have molecular and functional similarity to primary cells. Our cell-autonomous approach enabled parallel programming of hPSCs into multiple cell types simultaneously. We also demonstrated orthogonal programming by including oligodendrocyte-inducible hPSCs with unmodified hPSCs to generate cerebral organoids, which expedited in situ myelination. Large-scale combinatorial screening of the Human TFome will complement other strategies for cell engineering based on developmental biology and computational systems biology.
Collapse
Affiliation(s)
- Alex H M Ng
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- GC Therapeutics, Inc, Cambridge, MA, USA
| | - Parastoo Khoshakhlagh
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- GC Therapeutics, Inc, Cambridge, MA, USA
| | - Jesus Eduardo Rojo Arias
- Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Giovanni Pasquini
- Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | - Kai Wang
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Anka Swiersy
- Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | - Seth L Shipman
- Gladstone Institutes and University of California, San Francisco, San Francisco, CA, USA
| | - Evan Appleton
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- GC Therapeutics, Inc, Cambridge, MA, USA
| | - Kiavash Kiaee
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- GC Therapeutics, Inc, Cambridge, MA, USA
| | - Richie E Kohman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Andyna Vernet
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Matthew Dysart
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Kathleen Leeper
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Wren Saylor
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Jeremy Y Huang
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Amanda Graveline
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Jussi Taipale
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- Applied Tumor Genomics Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - David E Hill
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marc Vidal
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
| | - Juan M Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Volker Busskamp
- Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany.
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany.
| | - George M Church
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.
- GC Therapeutics, Inc, Cambridge, MA, USA.
| |
Collapse
|
25
|
Antao AM, Ramakrishna S, Kim KS. The Role of Nkx3.1 in Cancers and Stemness. Int J Stem Cells 2021; 14:168-179. [PMID: 33632988 PMCID: PMC8138659 DOI: 10.15283/ijsc20121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/17/2020] [Accepted: 12/14/2020] [Indexed: 12/23/2022] Open
Abstract
The well-known androgen-regulated homeobox gene, NKX3.1, is located on the short arm of chromosome 8. It is the first known prostate epithelium-specific marker, and is a transcription factor involved in development of the testes and prostate. In addition to specifying the prostate epithelium and maintaining normal prostate secretory function, Nkx3.1 is an established marker for prostate cancer. Over the years, however, this gene has been implicated in various other cancers, and technological advances have allowed determination of its role in other cellular functions. Nkx3.1 has also been recently identified as a factor capable of replacing Oct4 in cellular reprogramming. This review highlights the role of this tumor suppressor and briefly describes its functions, ranging from prostate development to maintenance of stemness and cellular reprogramming.
Collapse
Affiliation(s)
- Ainsley Mike Antao
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea.,College of Medicine, Hanyang University, Seoul, Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea.,College of Medicine, Hanyang University, Seoul, Korea
| |
Collapse
|
26
|
Jones K, Zhang Y, Kong Y, Farah E, Wang R, Li C, Wang X, Zhang Z, Wang J, Mao F, Liu X, Liu J. Epigenetics in prostate cancer treatment. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2021; 5:341-356. [PMID: 35372800 PMCID: PMC8974353 DOI: 10.20517/jtgg.2021.19] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Prostate cancer (PCa) is the most commonly diagnosed malignancy among men, and the progression of this disease results in fewer treatment options available to clinical patients. It highlights the vital necessity for discovering novel therapeutic approaches and expanding the current understanding of molecular mechanisms. Epigenetic alternations such as DNA methylation models and histone modifications have been associated as key drivers in the development and advancement of PCa. Several studies have been conducted and demonstrated that targeting these epigenetic enzymes or regulatory proteins has been strongly associated with the regulation of cancer cell growth. Due to the success rate of these therapeutic routes in pre-clinical settings, many drugs have now advanced to clinical testing, where efficacy will be measured. This review will discuss the role of epigenetic modifications in PCa development and its function in the progression of the disease to resistant forms and introduce therapeutic strategies that have demonstrated successful results as PCa treatment.
Collapse
Affiliation(s)
- Katelyn Jones
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Yanquan Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Yifan Kong
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Elia Farah
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Ruixin Wang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Chaohao Li
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Xinyi Wang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - ZhuangZhuang Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Jianlin Wang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Fengyi Mao
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Jinghui Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
27
|
Pottmeier P, Doszyn O, Peuckert C, Jazin E. Increased Expression of Y-Encoded Demethylases During Differentiation of Human Male Neural Stem Cells. Stem Cells Dev 2020; 29:1497-1509. [PMID: 33040644 DOI: 10.1089/scd.2020.0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human neural stem cells (hNSCs) have long been used as an in vitro model to study neurogenesis and as candidates for nervous system therapy. Many parameters have been considered when evaluating the success of transplantation, but sex of donor and recipients is often not discussed. We investigated two commercial NSC lines, the female hNSC-H9 and male hNSC-H14, and we observed faster growth rates in the male cells. At 4 days of differentiation, male cells presented a significant increase in expression of DCX, an immature neuronal marker, while female cells showed a significant increase in RMST, a long noncoding RNA, which is indispensable during neurogenesis. In addition, expression of neural markers MAP2, PSD95, SYP, DCX, and TUJ1 at day 14 of differentiation suggested a similar differentiation potential in both lines. The most significant differences at day 14 of differentiation were the expression levels of RELN, with almost 100-fold difference between the sexes, and MASH1, with more than 1,000-fold increase in male cells. To evaluate whether some of the observed differences may be sex related, we measured the expression of gametologous genes located on the X- and Y-chromosome. Most noticeable was the increase of Y-encoded demethylases KDM6C (UTY) and KDM5D during differentiation of male cells. Our results indicate that attention should be paid to sex when planning neurogenesis and transplantation experiments.
Collapse
Affiliation(s)
- Philipp Pottmeier
- Department of Organismal Biology, EBC, Uppsala University, Uppsala, Sweden
| | - Olga Doszyn
- Department of Organismal Biology, EBC, Uppsala University, Uppsala, Sweden
| | - Christiane Peuckert
- Department of Organismal Biology, EBC, Uppsala University, Uppsala, Sweden.,Department of Molecular Biology, Stockholm University, Stockholm, Sweden
| | - Elena Jazin
- Department of Organismal Biology, EBC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
28
|
Li QM, Li JL, Feng ZH, Lin HC, Xu Q. Effect of histone demethylase KDM5A on the odontogenic differentiation of human dental pulp cells. Bioengineered 2020; 11:449-462. [PMID: 32208897 PMCID: PMC7161540 DOI: 10.1080/21655979.2020.1743536] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
Human dental pulp cells (hDPCs) possess the capacity to differentiate into odontoblast-like cells in response to exogenous stimuli. Histone methylation is one of the most robust epigenetic marks and is essential for the regulation of multiple cellular processes. Previous studies have shown that histone methyltransferases (HMTs) and histone demethylases (HDMs) are crucial for the osteogenic differentiation of human bone marrow, adipose tissue, and tooth tissue. However, little is known about the role of histone methylation in hDPC differentiation. Here, the expression levels of HMTs and HDMs were profiled in hDPCs undergoing odontogenic induction. Among several differentially expressed enzymes, HDM KDM5A demonstrated significantly enhanced expression during cytodifferentiation. Furthermore, KDM5A expression increased during early passages and in a time-dependent manner during odontogenic induction. Using a shRNA-expressing lentivirus, KDM5A was knocked down in hDPCs. KDM5A depletion resulted in greater alkaline phosphatase activity and more mineral deposition formation. Meanwhile, the expression levels of the odontogenic markers DMP1, DSPP, OSX, and OCN were increased by KDM5A knockdown. As a histone demethylase specific for tri- and dimethylated histone H3 at lysine 4 (H3K4me3/me2), KDM5A deficiency led to a significant increment in total H3K4me3 levels, whereas no significant difference was found for H3K4 me2. H3K4me3 levels on the promoters of the odontogenic markers increased after KDM5A knockdown in hDPCs. These results demonstrated that KDM5A is present in hDPCs and inhibits the odontogenic differentiation potentiality of hDPCs by removing H3K4me3 from specific gene promoters, suggesting that KDM5A-dependent histone demethylation may play an important role in reparative dentinogenesis.
Collapse
Affiliation(s)
- Qi-Meng Li
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Jin-Ling Li
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Zhi-Hui Feng
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Huan-Cai Lin
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Qiong Xu
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
29
|
Punjani N, Kang C, Schlegel PN. Clinical implications of Y chromosome microdeletions among infertile men. Best Pract Res Clin Endocrinol Metab 2020; 34:101471. [PMID: 33214080 DOI: 10.1016/j.beem.2020.101471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Male factor infertility contributes significantly to couples facing difficulty achieving a pregnancy. Genetic factors, and specifically those related to the Y chromosome, may occur in up to 15% of men with oligozoospermia or azoospermia. A subset of loci within the Y chromosome, known as the azoospermia factors (AZFa, AZFb, and AZFc), have been associated with male infertility. Emerging evidence has demonstrated that microdeletions of at least a subset of these regions may also have impacts on systemic conditions. This review provides a brief review of male infertility and the structure of the Y chromosome, and further highlights the role of Y chromosome microdeletions in male infertility and other systemic disease.
Collapse
Affiliation(s)
- Nahid Punjani
- Division of Urology, Weill Cornell Medical College, New York, NY, USA
| | - Caroline Kang
- Division of Urology, Weill Cornell Medical College, New York, NY, USA.
| | - Peter N Schlegel
- Division of Urology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
30
|
Pitra T, Pivovarcikova K, Alaghehbandan R, Compérat EM, Hora M, Rogala J, Slisarenko M, Michal M, Hes O. Utility of NKX3.1 immunohistochemistry in the differential diagnosis of seminal vesicles versus prostatic tissue in needle biopsy. Ann Diagn Pathol 2020; 49:151644. [PMID: 33126153 DOI: 10.1016/j.anndiagpath.2020.151644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/09/2020] [Indexed: 11/28/2022]
Abstract
NKX3.1 is considered a reliable immunohistochemical marker of prostatic origin with high specificity and sensitivity. However, NKX3.1 positivity has been described in other neoplastic and non-neoplastic tissues, such as mesenchymal chondrosarcoma, sex-cord stromal tumors, rete testis adenocarcinoma, lobular and ductal carcinoma of the breast, salivary glands, peribronchial submucosal glands, and Sertoli cells. We analyzed expression of two antibodies (mono and polyclonal) of NKX3.1 in a total of 63 non-neoplastic seminal vesicles. We used 52 resection materials (12 seminal vesicles without prostatic adenocarcinoma, 26 seminal vesicles with prostatic adenocarcinoma infiltration, and 14 cases of seminal vesicles infiltrated by urothelial carcinoma) and 11 prostatic core needle biopsies with incidentally sampled fragment of seminal vesicles. In all cases, tissues from seminal vesicles were completely negative for NKX3.1, despite using polyclonal and monoclonal NKX3.1 antibodies, and regardless of the detection system utilized (diaminobenzidine (DAB) versus alkaline phosphatase (AF)). However, prostatic adenocarcinoma was negative in several cases (n = 6), when AF detection system was used. Reaction with DAB was strong and robust in all cases. Based on our data, we can recommend NKX3.1 as a negative immunohistochemical marker of seminal vesicles.
Collapse
Affiliation(s)
- Tomas Pitra
- Department of Urology, Charles University in Prague, Faculty of Medicine in Plzeň, Pilsen, Czech Republic
| | - Kristyna Pivovarcikova
- Department of Pathology, Charles University in Prague, Faculty of Medicine in Plzeň, Pilsen, Czech Republic
| | - Reza Alaghehbandan
- Department of Pathology, Faculty of Medicine, University of British Columbia, Royal Columbian Hospital, Vancouver, BC, Canada
| | - Eva Maria Compérat
- Department of Pathology, Tenon Hospital, Sorbonne University, France; Department of Pathology, Medical University Vienna, Austria
| | - Milan Hora
- Department of Urology, Charles University in Prague, Faculty of Medicine in Plzeň, Pilsen, Czech Republic
| | - Joanna Rogala
- Department of Pathology, Charles University in Prague, Faculty of Medicine in Plzeň, Pilsen, Czech Republic
| | - Maryna Slisarenko
- Department of Pathology, Charles University in Prague, Faculty of Medicine in Plzeň, Pilsen, Czech Republic
| | - Michal Michal
- Department of Pathology, Charles University in Prague, Faculty of Medicine in Plzeň, Pilsen, Czech Republic
| | - Ondrej Hes
- Department of Pathology, Charles University in Prague, Faculty of Medicine in Plzeň, Pilsen, Czech Republic.
| |
Collapse
|
31
|
Ma W, Han C, Zhang J, Song K, Chen W, Kwon H, Wu T. The Histone Methyltransferase G9a Promotes Cholangiocarcinogenesis Through Regulation of the Hippo Pathway Kinase LATS2 and YAP Signaling Pathway. Hepatology 2020; 72:1283-1297. [PMID: 31990985 PMCID: PMC7384937 DOI: 10.1002/hep.31141] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 12/22/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Cholangiocarcinoma (CCA) is a highly malignant epithelial tumor of the biliary tree with poor prognosis. In the current study, we present evidence that the histone-lysine methyltransferase G9a is up-regulated in human CCA and that G9a enhances CCA cell growth and invasiveness through regulation of the Hippo pathway kinase large tumor suppressor 2 (LATS2) and yes-associated protein (YAP) signaling pathway. APPROACH AND RESULTS Kaplan-Meier survival analysis revealed that high G9a expression is associated with poor prognosis of CCA patients. In experimental systems, depletion of G9a by small interfering RNA/short hairpin RNA or inhibition of G9a by specific pharmacological inhibitors (UNC0642 and UNC0631) significantly inhibited human CCA cell growth in vitro and in severe combined immunodeficient mice. Increased G9a expression was also observed in mouse CCA induced by hydrodynamic tail vein injection of notch intracellular domain (NICD) and myr-Akt. Administration of the G9a inhibitor UNC0642 to NICD/Akt-injected mice reduced the growth of CCA, in vivo. These findings suggest that G9a inhibition may represent an effective therapeutic strategy for the treatment of CCA. Mechanistically, our data show that G9a-derived dimethylated H3K9 (H3K9me2) silenced the expression of the Hippo pathway kinase LATS2, and this effect led to subsequent activation of oncogenic YAP. Consequently, G9a depletion or inhibition reduced the level of H3K9me2 and restored the expression of LATS2 leading to YAP inhibition. CONCLUSIONS Our findings provide evidence for an important role of G9a in cholangiocarcinogenesis through regulation of LATS2-YAP signaling and suggest that this pathway may represent a potential therapeutic target for CCA treatment.
Collapse
|
32
|
Federer-Gsponer JR, Müller DC, Zellweger T, Eggimann M, Marston K, Ruiz C, Seifert HH, Rentsch CA, Bubendorf L, Le Magnen C. Patterns of stemness-associated markers in the development of castration-resistant prostate cancer. Prostate 2020; 80:1108-1117. [PMID: 32628318 DOI: 10.1002/pros.24039] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Putative castration-resistant (CR) stem-like cells (CRSC) have been identified based on their ability to initiate and drive prostate cancer (PCa) recurrence following castration in vivo. Yet the relevance of these CRSC in the course of the human disease and particularly for the transition from hormone-naive (HN) to castration-resistance is unclear. In this study, we aimed at deciphering the significance of CRSC markers in PCa progression. METHODS We constructed a tissue microarray comprising 112 matched HN and CR tissue specimens derived from 55 PCa patients. Expression of eight stemness-associated markers (ALDH1A1, ALDH1A3, ALDH3A1, BMI1, NANOG, NKX3.1, OCT4, SOX2) was assessed by immunohistochemistry and scored as a percentage of positive tumor cells. For each marker, the resulting scores were statistically analyzed and compared to pathological and clinical data associated with the samples. Unsupervised clustering analysis was performed to stratify patients according to the expression of the eight CRSC markers. Publicly-available transcriptional datasets comprising HN and CR PCa samples were interrogated to assess the expression of the factors in silico. RESULTS Immunohistochemical assessment of paired samples revealed atypical patterns of expression and intra- and intertumor heterogeneity for a subset of CRSC markers. While the expression of particular CRSC markers was dynamic over time in some patients, none of the markers showed significant changes in expression upon the development of castration resistance (CR vs HN). Using unsupervised clustering approaches, we identified phenotypic subtypes based on the expression of specific stem-associated markers. In particular, we found (a) patterns of mutual exclusivity for ALDH1A1 and ALDH1A3 expression, which was also observed at the transcriptomic level in publicly-available PCa datasets, and (b) a phenotypic cluster associated with more aggressive features. Finally, by comparing HN and CR matched samples, we identified phenotypic cluster switches (ie, change of phenotypic cluster between the HN and CR state), that may be associated with clinical and predictive relevance. CONCLUSIONS Our findings indicate stemness-associated patterns that are associated with the development of castration-resistance. These results pave the way toward a deeper understanding of the relevance of CRSC markers in PCa progression and resistance to androgen-deprivation therapy.
Collapse
Affiliation(s)
| | - David C Müller
- Department of Urology, University Hospital Basel, Basel, Switzerland
| | | | - Maurice Eggimann
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Katharina Marston
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Christian Ruiz
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Cyrill A Rentsch
- Department of Urology, University Hospital Basel, Basel, Switzerland
| | - Lukas Bubendorf
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Clémentine Le Magnen
- Department of Urology, University Hospital Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
33
|
Prostate cancer reactivates developmental epigenomic programs during metastatic progression. Nat Genet 2020; 52:790-799. [PMID: 32690948 PMCID: PMC10007911 DOI: 10.1038/s41588-020-0664-8] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
Epigenetic processes govern prostate cancer (PCa) biology, as evidenced by the dependency of PCa cells on the androgen receptor (AR), a prostate master transcription factor. We generated 268 epigenomic datasets spanning two state transitions-from normal prostate epithelium to localized PCa to metastases-in specimens derived from human tissue. We discovered that reprogrammed AR sites in metastatic PCa are not created de novo; rather, they are prepopulated by the transcription factors FOXA1 and HOXB13 in normal prostate epithelium. Reprogrammed regulatory elements commissioned in metastatic disease hijack latent developmental programs, accessing sites that are implicated in prostate organogenesis. Analysis of reactivated regulatory elements enabled the identification and functional validation of previously unknown metastasis-specific enhancers at HOXB13, FOXA1 and NKX3-1. Finally, we observed that prostate lineage-specific regulatory elements were strongly associated with PCa risk heritability and somatic mutation density. Examining prostate biology through an epigenomic lens is fundamental for understanding the mechanisms underlying tumor progression.
Collapse
|
34
|
From cancer to rejuvenation: incomplete regeneration as the missing link (part II: rejuvenation circle). Future Sci OA 2020; 6:FSO610. [PMID: 32983567 PMCID: PMC7491027 DOI: 10.2144/fsoa-2020-0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the first part of our study, we substantiated that the embryonic reontogenesis and malignant growth (disintegrating growth) pathways are the same, but occur at different stages of ontogenesis, this mechanism is carried out in opposite directions. Cancer has been shown to be epigenetic-blocked redifferentiation and unfinished somatic embryogenesis. We formulated that only this approach of aging elimination has real prospects for a future that is fraught with cancer, as we will be able to convert this risk into a rejuvenation process through the continuous cycling of cell dedifferentiation-differentiation processes (permanent remorphogenesis). Here, we continue to develop the idea of looped ontogenesis and formulate the concept of the rejuvenation circle.
Collapse
|
35
|
Cheng Y, Wang D, Jiang J, Huang W, Li D, Luo J, Gu W, Mo W, Wang C, Li Y, Gu S, Xu Y. Integrative analysis of AR-mediated transcriptional regulatory network reveals IRF1 as an inhibitor of prostate cancer progression. Prostate 2020; 80:640-652. [PMID: 32282098 DOI: 10.1002/pros.23976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 03/16/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Androgen receptor (AR) is crucial for prostate cancer (PCa) initiation and malignant progression. Only half of androgen-responsive genes have been identified as having androgen-responsive elements, suggesting that AR regulates downstream genes through other transcriptional factors. However, whether and how AR regulates the progression via regulating these androgen-responsive genes remains unclear. METHODS Androgen-responsive and activity-changed (AC) transcriptional factors (TFs) were identified based on the time-course gene-expression array and gene promoter regions analysis. The intersection of androgen-responsive and AC TFs was selected the core TFs, which were used to construct the core transcriptional regulatory network. GO enrichment analysis, cell proliferation assays, glycolysis experiments, and reverse transcription polymerase chain reaction analysis were used to analyze and validate the functions of the network. As one of the core TFs, the function and mechanism of IRF1 have been further explored. RESULTS We devised a new integrated approach to select core TFs and construct core transcriptional regulatory network in PCa. The 24 core TFs and core transcriptional regulatory network participate in regulating PCa cell proliferation, RNA splicing, and cancer metabolism. Further validations showed that AR signaling could promote glycolysis via inducing glycolytic enzymes in PCa cells. IRF1, a novel target of AR, served as a tumor suppressor by inhibiting PCa proliferation, cell cycle, and glycolysis. CONCLUSIONS It is the first time to demonstrate the regulating role of the AR-mediated transcriptional regulatory network in a series of important biological processes in PCa cells. IRF1, an AR-regulated TF, acts as tumor suppressor in this core transcriptional regulatory network, which highlights the therapeutic potential of targeting this regulatory network for PCa.
Collapse
Affiliation(s)
- Yihang Cheng
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Shanghai, China
| | - Dan Wang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Shanghai, China
| | - Jun Jiang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Shanghai, China
| | - Wenhua Huang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Shanghai, China
| | - Dujian Li
- Department of Urology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Jun Luo
- Department of Urology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Wei Gu
- Department of Urology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Wenjuan Mo
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Shanghai, China
| | - Chenji Wang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Shanghai, China
| | - Yao Li
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Shanghai, China
| | - Shaohua Gu
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Shanghai, China
| | - Yaoting Xu
- Department of Urology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Borgmann-Winter KE, Wang K, Bandyopadhyay S, Torshizi AD, Blair IA, Hahn CG. The proteome and its dynamics: A missing piece for integrative multi-omics in schizophrenia. Schizophr Res 2020; 217:148-161. [PMID: 31416743 PMCID: PMC7500806 DOI: 10.1016/j.schres.2019.07.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/10/2019] [Accepted: 07/13/2019] [Indexed: 01/08/2023]
Abstract
The complex and heterogeneous pathophysiology of schizophrenia can be deconstructed by integration of large-scale datasets encompassing genes through behavioral phenotypes. Genome-wide datasets are now available for genetic, epigenetic and transcriptomic variations in schizophrenia, which are then analyzed by newly devised systems biology algorithms. A missing piece, however, is the inclusion of information on the proteome and its dynamics in schizophrenia. Proteomics has lagged behind omics of the genome, transcriptome and epigenome since analytic platforms were relatively less robust for proteins. There has been remarkable progress, however, in the instrumentation of liquid chromatography (LC) and mass spectrometry (MS) (LCMS), experimental paradigms and bioinformatics of the proteome. Here, we present a summary of methodological innovations of recent years in MS based proteomics and the power of new generation proteomics, review proteomics studies that have been conducted in schizophrenia to date, and propose how such data can be analyzed and integrated with other omics results. The function of a protein is determined by multiple molecular properties, i.e., subcellular localization, posttranslational modification (PTMs) and protein-protein interactions (PPIs). Incorporation of these properties poses additional challenges in proteomics and their integration with other omics; yet is a critical next step to close the loop of multi-omics integration. In sum, the recent advent of high-throughput proteome characterization technologies and novel mathematical approaches enable us to incorporate functional properties of the proteome to offer a comprehensive multi-omics based understanding of schizophrenia pathophysiology.
Collapse
Affiliation(s)
- Karin E Borgmann-Winter
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403, United States of America; Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Kai Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America; Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Sabyasachi Bandyopadhyay
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403, United States of America
| | - Abolfazl Doostparast Torshizi
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Ian A Blair
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Chang-Gyu Hahn
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403, United States of America.
| |
Collapse
|
37
|
Singh D, Bharti A, Biswas D, Tewari M, Ansari MA, Singh S, Narayan G. Altered expression of NKX3.1 has significant prognostic value in gallbladder cancer. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Testa U, Castelli G, Pelosi E. Cellular and Molecular Mechanisms Underlying Prostate Cancer Development: Therapeutic Implications. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E82. [PMID: 31366128 PMCID: PMC6789661 DOI: 10.3390/medicines6030082] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022]
Abstract
Prostate cancer is the most frequent nonskin cancer and second most common cause of cancer-related deaths in man. Prostate cancer is a clinically heterogeneous disease with many patients exhibiting an aggressive disease with progression, metastasis, and other patients showing an indolent disease with low tendency to progression. Three stages of development of human prostate tumors have been identified: intraepithelial neoplasia, adenocarcinoma androgen-dependent, and adenocarcinoma androgen-independent or castration-resistant. Advances in molecular technologies have provided a very rapid progress in our understanding of the genomic events responsible for the initial development and progression of prostate cancer. These studies have shown that prostate cancer genome displays a relatively low mutation rate compared with other cancers and few chromosomal loss or gains. The ensemble of these molecular studies has led to suggest the existence of two main molecular groups of prostate cancers: one characterized by the presence of ERG rearrangements (~50% of prostate cancers harbor recurrent gene fusions involving ETS transcription factors, fusing the 5' untranslated region of the androgen-regulated gene TMPRSS2 to nearly the coding sequence of the ETS family transcription factor ERG) and features of chemoplexy (complex gene rearrangements developing from a coordinated and simultaneous molecular event), and a second one characterized by the absence of ERG rearrangements and by the frequent mutations in the E3 ubiquitin ligase adapter SPOP and/or deletion of CDH1, a chromatin remodeling factor, and interchromosomal rearrangements and SPOP mutations are early events during prostate cancer development. During disease progression, genomic and epigenomic abnormalities accrued and converged on prostate cancer pathways, leading to a highly heterogeneous transcriptomic landscape, characterized by a hyperactive androgen receptor signaling axis.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
39
|
Laudato S, Aparicio A, Giancotti FG. Clonal Evolution and Epithelial Plasticity in the Emergence of AR-Independent Prostate Carcinoma. Trends Cancer 2019; 5:440-455. [PMID: 31311658 DOI: 10.1016/j.trecan.2019.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
In spite of an initial clinical response to androgen deprivation therapy (ADT), the majority of prostate cancer patients eventually develop castration-resistant prostate cancer (CRPC). Recent studies have highlighted the role of epithelial plasticity, including transdifferentiation and epithelial-to-mesenchymal transition (EMT), in the development of AR pathway-negative CRPC, a form of the disease that has increased in incidence after the introduction of potent AR inhibitors. In this review, we will discuss the switches between different cell fates that occur in response to AR blockade or acquisition of specific oncogenic mutations, such as those in TP53 and RB1, during the evolution to CRPC. We highlight the urgent need to dissect the mechanistic underpinnings of these transitions and identify novel vulnerabilities that can be targeted therapeutically.
Collapse
Affiliation(s)
- Sara Laudato
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. )
| | - Ana Aparicio
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Filippo G Giancotti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
40
|
Colaco S, Modi D. Consequences of Y chromosome microdeletions beyond male infertility. J Assist Reprod Genet 2019; 36:1329-1337. [PMID: 31214882 DOI: 10.1007/s10815-019-01492-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/16/2019] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The human Y chromosome plays a central role in sex determination and spermatogenesis. The azoospermia factor (AZF) loci on the Y chromosome contain genes that were thought to be testis specific with their deletions leading to spermatogenic failure. However, beyond the testis, the AZF genes (mainly those in AZFa and AZFb loci) are widely expressed in multiple tissues. Further, these genes are predicted to play roles in processes such as gene regulation and protein synthesis. These observations suggest that the AZF genes may have functions beyond regulation of fertility. RESULTS Three major areas have emerged where alternations in AZF genes have effects beyond infertility. (1) Poor-quality embryos are generated in assisted reproduction when sperm from men harboring Y chromosome microdeletions are used, (2) a higher preponderance of neuropsychiatry disorders is observed in men with deletions in AZF genes, and (3) copy number variations and altered expression of AZF genes are found in several cancers. CONCLUSION While our data is preliminary and observational in nature, systematic studies are required to address how genetic alterations in the Y chromosome can affect the health of men beyond infertility. This information will provide a different perspective in the area of androgenetics and have implications in devising strategies for maintaining the overall well-being of infertile males.
Collapse
Affiliation(s)
- Stacy Colaco
- Department of Molecular and Cellular Biology, ICMR-National Institute for Research in Reproductive Health, JM Street, Parel, Mumbai, Maharashtra, 400012, India.
| | - Deepak Modi
- Department of Molecular and Cellular Biology, ICMR-National Institute for Research in Reproductive Health, JM Street, Parel, Mumbai, Maharashtra, 400012, India.
| |
Collapse
|
41
|
Clarke R, Tyson JJ, Tan M, Baumann WT, Jin L, Xuan J, Wang Y. Systems biology: perspectives on multiscale modeling in research on endocrine-related cancers. Endocr Relat Cancer 2019; 26:R345-R368. [PMID: 30965282 PMCID: PMC7045974 DOI: 10.1530/erc-18-0309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
Drawing on concepts from experimental biology, computer science, informatics, mathematics and statistics, systems biologists integrate data across diverse platforms and scales of time and space to create computational and mathematical models of the integrative, holistic functions of living systems. Endocrine-related cancers are well suited to study from a systems perspective because of the signaling complexities arising from the roles of growth factors, hormones and their receptors as critical regulators of cancer cell biology and from the interactions among cancer cells, normal cells and signaling molecules in the tumor microenvironment. Moreover, growth factors, hormones and their receptors are often effective targets for therapeutic intervention, such as estrogen biosynthesis, estrogen receptors or HER2 in breast cancer and androgen receptors in prostate cancer. Given the complexity underlying the molecular control networks in these cancers, a simple, intuitive understanding of how endocrine-related cancers respond to therapeutic protocols has proved incomplete and unsatisfactory. Systems biology offers an alternative paradigm for understanding these cancers and their treatment. To correctly interpret the results of systems-based studies requires some knowledge of how in silico models are built, and how they are used to describe a system and to predict the effects of perturbations on system function. In this review, we provide a general perspective on the field of cancer systems biology, and we explore some of the advantages, limitations and pitfalls associated with using predictive multiscale modeling to study endocrine-related cancers.
Collapse
Affiliation(s)
- Robert Clarke
- Department of Oncology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - John J Tyson
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Ming Tan
- Department of Biostatistics, Bioinformatics & Biomathematics, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - William T Baumann
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Lu Jin
- Department of Oncology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Jianhua Xuan
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, Virginia, USA
| | - Yue Wang
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, Virginia, USA
| |
Collapse
|
42
|
Ru B, Sun J, Kang Q, Tong Y, Zhang J. A framework for identifying dysregulated chromatin regulators as master regulators in human cancer. Bioinformatics 2019; 35:1805-1812. [PMID: 30358822 DOI: 10.1093/bioinformatics/bty836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/22/2018] [Accepted: 10/24/2018] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Chromatin regulators (CRs) are frequently dysregulated to reprogram the epigenetic landscape of the cancer genome. However, the underpinnings of the dysregulation of CRs and their downstream effectors remain to be elucidated. RESULTS Here, we designed an integrated framework based on multi-omics data to identify candidate master regulatory CRs affected by genomic alterations across eight cancer types in The Cancer Genome Atlas. Most of them showed consistent activated or repressed (i.e. oncogenic or tumor-suppressive) roles in cancer initiation and progression. In order to further explore the insight mechanism of the dysregulated CRs, we developed an R package ModReg based on differential connectivity to identify CRs as modulators of transcription factors (TFs) involved in tumorigenesis. Our analysis revealed that the connectivity between TFs and their target genes (TGs) tended to be disrupted in the patients who had a high expression of oncogenic CRs or low-expression of tumor-suppressive CRs. As a proof-of-principle study, 14 (82.4%) of the top-ranked 17 driver CRs in liver cancer were able to be validated by literature mining or experiments including shRNA knockdown and dCas9-based epigenetic editing. Moreover, we confirmed that CR SIRT7 physically interacted with TF NFE2L2, and positively modulated the transcriptional program of NFE2L2 by affecting ∼64% of its TGs. AVAILABILITY AND IMPLEMENTATION ModReg is freely accessible at http://cis.hku.hk/software/ModReg.tar.gz. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
|
43
|
Gažová I, Lengeling A, Summers KM. Lysine demethylases KDM6A and UTY: The X and Y of histone demethylation. Mol Genet Metab 2019; 127:31-44. [PMID: 31097364 DOI: 10.1016/j.ymgme.2019.04.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
Abstract
Histone demethylases remove transcriptional repressive marks from histones in the nucleus. KDM6A (also known as UTX) is a lysine demethylase which acts on the trimethylated lysine at position 27 in histone 3. The KDM6A gene is located on the X chromosome but escapes X inactivation even though it is not located in the pseudoautosomal region. There is a homologue of KDM6A on the Y chromosome, known as UTY. UTY was thought to have lost its demethylase activity and to represent a non-functional remnant of the ancestral KDM6A gene. However, results with knockout mice suggest that the gene is expressed and the protein performs some function within the cell. Female mice with homozygous deletion of Kdm6a do not survive, but hemizygous males are viable, attributed to the presence of the Uty gene. KDM6A is mutated in the human condition Kabuki syndrome type 2 (OMIM 300867) and in many cases of cancer. The amino acid sequence of KDM6A has been conserved across animal phyla, although it is only found on the X chromosome in eutherian mammals. In this review, we reanalyse existing data from various sources (protein sequence comparison, evolutionary genetics, transcription factor binding and gene expression analysis) to determine the function, expression and evolution of KDM6A and UTY and show that UTY has a functional role similar to KDM6A in metabolism and development.
Collapse
Affiliation(s)
- Iveta Gažová
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Andreas Lengeling
- Max Planck Society, Administrative Headquarters, Hofgartenstrasse 8, 80539 Munich, Germany
| | - Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
44
|
Blee AM, Huang H. Lineage plasticity-mediated therapy resistance in prostate cancer. Asian J Androl 2019; 21:241-248. [PMID: 29900883 PMCID: PMC6498731 DOI: 10.4103/aja.aja_41_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/08/2018] [Indexed: 12/21/2022] Open
Abstract
Therapy resistance is a significant challenge for prostate cancer treatment in clinic. Although targeted therapies such as androgen deprivation and androgen receptor (AR) inhibition are effective initially, tumor cells eventually evade these strategies through multiple mechanisms. Lineage reprogramming in response to hormone therapy represents a key mechanism that is increasingly observed. The studies in this area have revealed specific combinations of alterations present in adenocarcinomas that provide cells with the ability to transdifferentiate and perpetuate AR-independent tumor growth after androgen-based therapies. Interestingly, several master regulators have been identified that drive plasticity, some of which also play key roles during development and differentiation of the cell lineages in the normal prostate. Thus, further study of each AR-independent tumor type and understanding underlying mechanisms are warranted to develop combinational therapies that combat lineage plasticity in prostate cancer.
Collapse
Affiliation(s)
- Alexandra M Blee
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Department of Urology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
45
|
Rana HK, Akhtar MR, Islam MB, Ahmed MB, Liò P, Quinn JMW, Huq F, Moni MA. Genetic effects of welding fumes on the development of respiratory system diseases. Comput Biol Med 2019; 108:142-149. [PMID: 31005006 DOI: 10.1016/j.compbiomed.2019.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND The welding process releases potentially hazardous gases and fumes, mainly composed of metallic oxides, fluorides and silicates. Long term welding fume (WF) inhalation is a recognized health issue that carries a risk of developing chronic health problems, particularly respiratory system diseases (RSDs). Aside from general airway irritation, WF exposure may drive direct cellular responses in the respiratory system which increase risk of RSD, but these are not well understood. METHODS We developed a quantitative framework to identify gene expression effects of WF exposure that may affect RSD development. We analyzed gene expression microarray data from WF-exposed tissues and RSD-affected tissues, including chronic bronchitis (CB), asthma (AS), pulmonary edema (PE), lung cancer (LC) datasets. We built disease-gene (diseasome) association networks and identified dysregulated signaling and ontological pathways, and protein-protein interaction sub-network using neighborhood-based benchmarking and multilayer network topology. RESULTS We observed many genes with altered expression in WF-exposed tissues were also among differentially expressed genes (DEGs) in RSD tissues; for CB, AS, PE and LC there were 34, 27, 50 and 26 genes respectively. DEG analysis, using disease association networks, pathways, ontological analysis and protein-protein interaction sub-network suggest significant links between WF exposure and the development of CB, AS, PE and LC. CONCLUSIONS Our network-based analysis and investigation of the genetic links of WFs and RSDs confirm a number of genes and gene products are plausible participants in RSD development. Our results are a significant resource to identify causal influences on the development of RSDs, particularly in the context of WF exposure.
Collapse
Affiliation(s)
- Humayan Kabir Rana
- Department of Computer Science and Engineering, Green University of Bangladesh, Bangladesh
| | - Mst Rashida Akhtar
- Department of Computer Science and Engineering, Varendra University, Rajshahi, Bangladesh
| | - M Babul Islam
- Department of Applied Physics and Electronic Engineering, University of Rajshahi, Bangladesh
| | - Mohammad Boshir Ahmed
- School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Pietro Liò
- Computer Laboratory, The University of Cambridge, 15 JJ Thomson Avenue, Cambridge, UK
| | - Julian M W Quinn
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Fazlul Huq
- Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
| | - Mohammad Ali Moni
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia.
| |
Collapse
|
46
|
Ru B, Tong Y, Zhang J. MR4Cancer: a web server prioritizing master regulators for cancer. Bioinformatics 2019; 35:636-642. [PMID: 30052770 DOI: 10.1093/bioinformatics/bty658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 01/10/2023] Open
Abstract
MOTIVATION During cancer stage transition, a master regulator (MR) refers to the key gene controlling cancer initiation and progression by orchestrating the associated target genes (termed as its regulon). Due to their inherent importance, MRs can serve as critical biomarkers for cancer diagnosis and prognosis, and therapeutic targets. However, it is challenging to infer key MRs that might explain gene expression profile changes between two groups due to lack of context-specific regulons, whose expression level can collectively reflect the activity of likely MRs. There is also a need to design an easy-to-use tool of MR identification for research community. RESULTS First, we generated cancer-specific regulons for 26 cancer types by analyzing high-throughput omics data from TCGA, and extracted noncancer-specific regulons from public databases. We subsequently developed a web server MR4Cancer, integrating the regulons with statistical inference to identify and prioritize MRs driving a phenotypic divergence of interest. Based on the input gene list (e.g. differentially expressed genes) or expression profile with two groups, MR4Cancer outputs ranked MRs by enrichment testing against the predefined regulons. Gene Ontology and canonical pathway analyses are also conducted to elucidate the function of likely MRs. Moreover, MR4Cancer provides dynamic network visualization for MR-target relations, and users can interactively interrogate the network to produce new hypotheses and high-quality figures for publication. Finally, the presented case studies highlighted the performance of MR4Cancer. We expect this user-friendly and powerful web tool will provide researchers novel insights into tumorigenesis and therapeutic intervention. AVAILABILITY AND IMPLEMENTATION http://cis.hku.hk/MR4Cancer. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Beibei Ru
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Yin Tong
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Jiangwen Zhang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
47
|
Arriaga JM, Abate-Shen C. Genetically Engineered Mouse Models of Prostate Cancer in the Postgenomic Era. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a030528. [PMID: 29661807 DOI: 10.1101/cshperspect.a030528] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent genomic sequencing analyses have unveiled the spectrum of genomic alterations that occur in primary and advanced prostate cancer, raising the question of whether the corresponding genes are functionally relevant for prostate tumorigenesis, and whether such functions are associated with particular disease stages. In this review, we describe genetically engineered mouse models (GEMMs) of prostate cancer, focusing on those that model genomic alterations known to occur in human prostate cancer. We consider whether the phenotypes of GEMMs based on gain or loss of function of the relevant genes provide reliable counterparts to study the predicted consequences of the corresponding genomic alterations as occur in human prostate cancer, and we discuss exceptions in which the GEMMs do not fully emulate the expected phenotypes. Last, we highlight future directions for the generation of new GEMMs of prostate cancer and consider how we can use GEMMs most effectively to decipher the biological and molecular mechanisms of disease progression, as well as to tackle clinically relevant questions.
Collapse
Affiliation(s)
- Juan M Arriaga
- Departments of Urology, Medicine, Systems Biology, and Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032
| | - Cory Abate-Shen
- Departments of Urology, Medicine, Systems Biology, and Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032
| |
Collapse
|
48
|
Abstract
Comprehensive knowledge of the normal prostate epithelial lineage hierarchy is a prerequisite to investigate the identity of the cells of origin for prostate cancer. The basal and luminal cells constitute most of the prostate epithelium and have been the major focuses of the study on the cells of origin for prostate cancer. Much progress has been made during the past few decades, mainly using mouse models, to understand the inter-lineage relationship and intra-lineage heterogeneity in adults as well as the lineage plasticity during conditions of stress. These studies have concluded that the adult mouse prostate basal and luminal cells are largely independently sustained under physiological conditions, but both types of cells possess the capacity for bipotent differentiation under stress or artificial experimental conditions. However, the existence or the identity of the putative progenitors within each lineage warrants further investigation. Whether the human prostate lineage hierarchy is completely the same as that of the mouse remains uncertain. Experiments from independent groups have demonstrated that both types of cells in mice and humans can serve as targets for transformation. But controversies remain whether the disease from distinct cells of origin display different clinical behaviors. Further investigation of the intra-lineage heterogeneity will provide new insights into this issue. Understanding the identity of the cells of origin for prostate cancer will help identify novel prognostic markers for early detection of aggressive prostate cancers, provide insights into the therapeutic vulnerability of these tumors, and inspire novel therapeutic strategies.
Collapse
|
49
|
Natesan R, Aras S, Effron SS, Asangani IA. Epigenetic Regulation of Chromatin in Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:379-407. [PMID: 31900918 DOI: 10.1007/978-3-030-32656-2_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epigenetics refers to mitotically/meiotically heritable mechanisms that regulate gene transcription without a need for changes in the DNA code. Covalent modifications of DNA, in the form of methylation, and histone post-translational modifications, in the form of acetylation and methylation, constitute the epigenetic code of a cell. Both DNA and histone modifications are highly dynamic and often work in unison to define the epigenetic state of a cell. Most epigenetic mechanisms regulate gene transcription by affecting localized/genome-wide transitions between heterochromatin and euchromatin states, thereby altering the accessibility of the transcriptional machinery and in turn, reduce/increase transcriptional output. Altered chromatin structure is associated with cancer progression, and epigenetic plasticity primarily governs the resistance of cancer cells to therapeutic agents. In this chapter, we specifically focus on regulators of histone methylation and acetylation, the two well-studied chromatin post-translational modifications, in the context of prostate cancer.
Collapse
Affiliation(s)
- Ramakrishnan Natesan
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shweta Aras
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samuel Sander Effron
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Irfan A Asangani
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
50
|
Le Magnen C, Virk RK, Dutta A, Kim JY, Panja S, Lopez-Bujanda ZA, Califano A, Drake CG, Mitrofanova A, Abate-Shen C. Cooperation of loss of NKX3.1 and inflammation in prostate cancer initiation. Dis Model Mech 2018; 11:dmm035139. [PMID: 30266798 PMCID: PMC6262819 DOI: 10.1242/dmm.035139] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023] Open
Abstract
Although it is known that inflammation plays a critical role in prostate tumorigenesis, the underlying processes are not well understood. Based on analysis of genetically engineered mouse models combined with correlative analysis of expression profiling data from human prostate tumors, we demonstrate a reciprocal relationship between inflammation and the status of the NKX3.1 homeobox gene associated with prostate cancer initiation. We find that cancer initiation in aged Nkx3.1 mutant mice correlates with enrichment of specific immune populations and increased expression of immunoregulatory genes. Furthermore, expression of these immunoregulatory genes is similarly increased in human prostate tumors having low levels of NKX3.1 expression. We further show that induction of prostatitis in Nkx3.1 mutant mice accelerates prostate cancer initiation, which is coincident with aberrant cellular plasticity and differentiation. Correspondingly, human prostate tumors having low levels of NKX3.1 have de-regulated expression of genes associated with these cellular processes. We propose that loss of function of NKX3.1 accelerates inflammation-driven prostate cancer initiation potentially via aberrant cellular plasticity and impairment of cellular differentiation.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Clémentine Le Magnen
- Departments of Medicine and Urology, Institute of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Renu K Virk
- Department of Pathology and Cell Biology, Columbia University Medical Center, NY 10032, USA
| | - Aditya Dutta
- Departments of Medicine and Urology, Institute of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Jaime Yeji Kim
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Sukanya Panja
- Department of Health Informatics, Rutgers School of Health Professions, Rutgers, The State University of New Jersey, Newark, NJ 07101, USA
| | - Zoila A Lopez-Bujanda
- Graduate Program in Pathobiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Columbia Center for Translational Immunology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Andrea Califano
- Departments of Systems Biology and Biochemistry and Molecular Biophysics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Charles G Drake
- Department of Medicine, Columbia Center for Translational Immunology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Antonina Mitrofanova
- Department of Health Informatics, Rutgers School of Health Professions, Rutgers, The State University of New Jersey, Newark, NJ 07101, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Cory Abate-Shen
- Departments of Urology, Medicine, Pathology & Cell Biology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|