1
|
Li L, Cheng G, Li W, Zhang D, Yu J, Zhou H, Ding X, Wang Z, Zhu W, Li J, He J, Duan M, Liu C. Utilization of natural alleles and haplotypes of Ctb1 for rice cold adaptability. Gene 2025; 941:149225. [PMID: 39793938 DOI: 10.1016/j.gene.2025.149225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
Cold stress during the booting stage of rice (Oryza sativa) significantly reduces yields, particularly in temperate and high-altitude regions. This study investigates the Ctb1 gene, critical for booting-stage cold tolerance, to improve breeding of resilient rice varieties. Re-sequencing the Ctb1 promoter in 202 accessions identified six Insertions and/or deletions (InDels) and four Single nucleotide polymorphisms (SNPs), with an InDel at -1,302 bp significantly boosting Ctb1 expression and cold tolerance. Accessions carrying this InDel (Haplotype I) exhibited the highest tolerance. Near-isogenic lines (NIL-Ctb1HapI) introduced Haplotype I into the cold-sensitive Huazhan (HZ) variety, resulting in a 5.9-fold increase in Ctb1 expression, higher seedling survival, improved pollen fertility, a 64.2 % increase in seed setting rate, and a 12 g per plant yield boost under cold stress. These findings confirm the critical role of the -1,302 InDel in cold tolerance and establish NIL-Ctb1HapI as a valuable breeding tool for cold-resilient rice.
Collapse
Affiliation(s)
- Lingling Li
- College of Agriculture, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Gongye Cheng
- College of Agriculture, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Wenyu Li
- College of Agriculture, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Di Zhang
- College of Agriculture, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jianghui Yu
- College of Agriculture, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Huang Zhou
- College of Agriculture, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xiaoping Ding
- College of Agriculture, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Zhijun Wang
- College of Agriculture, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Wanjing Zhu
- College of Agriculture, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jiajia Li
- College of Agriculture, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jiwai He
- College of Agriculture, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Meijuan Duan
- College of Agriculture, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Citao Liu
- College of Agriculture, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
2
|
Staacke T, Mueller‐Roeber B, Balazadeh S. Stress resilience in plants: the complex interplay between heat stress memory and resetting. THE NEW PHYTOLOGIST 2025; 245:2402-2421. [PMID: 39853503 PMCID: PMC11840417 DOI: 10.1111/nph.20377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/11/2024] [Indexed: 01/26/2025]
Abstract
Heat stress (HS) poses a major challenge to plants and agriculture, especially during climate change-induced heatwaves. Plants have evolved mechanisms to combat HS and remember past stress. This memory involves lasting changes in specific stress responses, enabling plants to better anticipate and react to future heat events. HS memory is a multi-layered cellular phenomenon that, in addition to epigenetic modifications, involves changes in protein quality control, metabolic pathways and broader physiological adjustments. An essential aspect of modulating stress memory is timely resetting, which restores defense responses to baseline levels and optimizes resource allocation for growth. Balancing stress memory with resetting enables plants to withstand stress while maintaining growth and reproductive capacity. In this review, we discuss mechanisms and regulatory layers of HS memory and resetting, highlighting their critical balance for enhancing stress resilience and plant fitness. We primarily focus on the model plant Arabidopsis thaliana due to the limited research on other species and outline key areas for future study.
Collapse
Affiliation(s)
- Tobias Staacke
- Institute of Biology Leiden, Sylvius LaboratoryLeiden UniversitySylviusweg 72Leiden2333 BEthe Netherlands
| | - Bernd Mueller‐Roeber
- Institute of Biochemistry and BiologyUniversity of PotsdamKarl‐Liebknecht‐Straße 24‐25, Haus 20Potsdam14476Germany
| | - Salma Balazadeh
- Institute of Biology Leiden, Sylvius LaboratoryLeiden UniversitySylviusweg 72Leiden2333 BEthe Netherlands
| |
Collapse
|
3
|
Peng J, Yu Y, Fang X. Stress sensing and response through biomolecular condensates in plants. PLANT COMMUNICATIONS 2025; 6:101225. [PMID: 39702967 DOI: 10.1016/j.xplc.2024.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
Plants have developed intricate mechanisms for rapid and efficient stress perception and adaptation in response to environmental stressors. Recent research highlights the emerging role of biomolecular condensates in modulating plant stress perception and response. These condensates function through numerous mechanisms to regulate cellular processes such as transcription, translation, RNA metabolism, and signaling pathways under stress conditions. In this review, we provide an overview of current knowledge on stress-responsive biomolecular condensates in plants, including well-defined condensates such as stress granules, processing bodies, and the nucleolus, as well as more recently discovered plant-specific condensates. By briefly referring to findings from yeast and animal studies, we discuss mechanisms by which plant condensates perceive stress signals and elicit cellular responses. Finally, we provide insights for future investigations on stress-responsive condensates in plants. Understanding how condensates act as stress sensors and regulators will pave the way for potential applications in improving plant resilience through targeted genetic or biotechnological interventions.
Collapse
Affiliation(s)
- Jiaxuan Peng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yidan Yu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaofeng Fang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Sharma A, Samtani H, Laxmi A. Molecular dialogue between light and temperature signalling in plants: from perception to thermotolerance. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:677-694. [PMID: 39167699 DOI: 10.1093/jxb/erae356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024]
Abstract
Light and temperature are the two most variable environmental signals that regulate plant growth and development. Plants in the natural environment usually encounter warmer temperatures during the day and cooler temperatures at night, suggesting both light and temperature are closely linked signals. Due to global warming, it has become important to understand how light and temperature signalling pathways converge and regulate plant development. This review outlines the diverse mechanisms of light and temperature perception, and downstream signalling, with an emphasis on their integration and interconnection. Recent research has highlighted the regulation of thermomorphogenesis by photoreceptors and their downstream light signalling proteins under different light conditions, and circadian clock components at warm temperatures. Here, we comprehensively describe these studies and demonstrate their connection with plant developmental responses. We also explain how the gene signalling pathways of photomorphogenesis and thermomorphogenesis are interconnected with the heat stress response to mediate thermotolerance, revealing new avenues to manipulate plants for climate resilience. In addition, the role of sugars as signalling molecules between light and temperature signalling pathways is also highlighted. Thus, we envisage that such detailed knowledge will enhance the understanding of how plants perceive light and temperature cues simultaneously and bring about responses that help in their adaptation.
Collapse
Affiliation(s)
- Aishwarye Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Harsha Samtani
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
5
|
Patnaik A, Mishra P, Dash A, Panigrahy M, Panigrahi KCS. Evolution of light-dependent functions of GIGANTEA. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:819-835. [PMID: 39499031 DOI: 10.1093/jxb/erae441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 11/04/2024] [Indexed: 11/07/2024]
Abstract
GIGANTEA (GI) is a multifaceted plant-specific protein that originated in a streptophyte ancestor. The current known functions of GI include circadian clock control, light signalling, flowering time regulation, stomata response, chloroplast biogenesis, accumulation of anthocyanin, chlorophyll, and starch, phytohormone signalling, senescence, and response to drought, salt, and oxidative stress. Six decades since its discovery, no functional domains have been defined, and its mechanism of action is still not well characterized. In this review, we explore the functional evolution of GI to distinguish between ancestral and more recently acquired roles. GI integrated itself into various existing signalling pathways of the circadian clock, blue light, photoperiod, and osmotic and oxidative stress response. It also evolved parallelly to acquire new functions for chloroplast accumulation, red light signalling, and anthocyanin production. In this review, we have encapsulated the known mechanisms of various biological functions of GI, and cast light on the evolution of GI in the plant lineage.
Collapse
Affiliation(s)
- Alena Patnaik
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Jatni, Khorda, Odisha 752050, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, India
| | - Priyanka Mishra
- Department of Botany, Faculty of Science, University of Allahabad, Prayagraj, Uttar Pradesh 211002, India
| | - Anish Dash
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Jatni, Khorda, Odisha 752050, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, India
| | - Madhusmita Panigrahy
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Jatni, Khorda, Odisha 752050, India
- Institute of Agricultural Sciences, Siksha 'O' Anusandhan University, Odisha 751003, India
| | - Kishore C S Panigrahi
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Jatni, Khorda, Odisha 752050, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, India
| |
Collapse
|
6
|
Gautrat P, Matton SEA, Oskam L, Shetty SS, van der Velde KJ, Pierik R. Lights, location, action: shade avoidance signalling over spatial scales. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:695-711. [PMID: 38767295 PMCID: PMC11805592 DOI: 10.1093/jxb/erae217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/18/2024] [Indexed: 05/22/2024]
Abstract
Plants growing in dense vegetation need to flexibly position their photosynthetic organs to ensure optimal light capture in a competitive environment. They do so through a suite of developmental responses referred to as the shade avoidance syndrome. Below ground, root development is also adjusted in response to above-ground neighbour proximity. Canopies are dynamic and complex environments with heterogeneous light cues in the far-red, red, blue, and UV spectrum, which can be perceived by photoreceptors in spatially separated plant tissues. Molecular regulation of plant architecture adjustment via PHYTOCHROME-INTERACTING FACTOR transcription factors and growth-related hormones such as auxin, gibberellic acid, brassinosteroids, and abscisic acid were historically studied without much attention to spatial or tissue-specific context. Recent developments and technologies have, however, sparked strong interest in spatially explicit understanding of shade avoidance regulation. Other environmental factors such as temperature and nutrient availability interact with the molecular shade avoidance regulation network, often depending on the spatial location of the signals, and the responding organs. Here, we review recent advances in how plants respond to heterogeneous light cues and integrate these with other environmental signals.
Collapse
Affiliation(s)
- Pierre Gautrat
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Sanne E A Matton
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Lisa Oskam
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
- Experimental and Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Siddhant S Shetty
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Kyra J van der Velde
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
- Experimental and Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Ronald Pierik
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
7
|
Yang R, Dong H, Xie X, Zhang Y, Sun J. GSK3s promote the phyB-ELF3-HMR complex formation to regulate plant thermomorphogenesis. THE NEW PHYTOLOGIST 2025; 245:1577-1588. [PMID: 39192577 DOI: 10.1111/nph.20064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024]
Abstract
Although elevated ambient temperature causes many effects on plant growth and development, the mechanisms of plant high-ambient temperature sensing remain unknown. In this study, we show that GLYCOGEN SYNTHASE KINASE 3s (GSK3s) negatively regulate high-ambient temperature response and oligomerize upon high-temperature treatment. We demonstrate that GSK3 kinase BIN2 specifically interacts with the high-temperature sensor phytochrome B (phyB) but not the high-temperature sensor EARLY FLOWER 3 (ELF3) to phosphorylate and promote phyB photobody formation. Furthermore, we show that phosphorylation of phyB by GSK3s promotes its interaction with ELF3. Subsequently, we find that ELF3 recruits the phyB photobody facilitator HEMERA (HMR) to promote its association with phyB. Taken together, our data reveal a mechanism that GSK3s promote the phyB-ELF3-HMR complex formation in regulating plant thermomorphogenesis.
Collapse
Affiliation(s)
- Ruizhen Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huixue Dong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xianzhi Xie
- Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yunwei Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiaqiang Sun
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
8
|
Hamid RSB, Nagy F, Kaszler N, Domonkos I, Gombos M, Marton A, Vizler C, Molnár E, Pettkó‐Szandtner A, Bögre L, Fehér A, Magyar Z. RETINOBLASTOMA-RELATED Has Both Canonical and Noncanonical Regulatory Functions During Thermo-Morphogenic Responses in Arabidopsis Seedlings. PLANT, CELL & ENVIRONMENT 2025; 48:1217-1231. [PMID: 39420660 PMCID: PMC11695787 DOI: 10.1111/pce.15202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/09/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Warm temperatures accelerate plant growth, but the underlying molecular mechanism is not fully understood. Here, we show that increasing the temperature from 22°C to 28°C rapidly activates proliferation in the apical shoot and root meristems of wild-type Arabidopsis seedlings. We found that one of the central regulators of cell proliferation, the cell cycle inhibitor RETINOBLASTOMA-RELATED (RBR), is suppressed by warm temperatures. RBR became hyper-phosphorylated at a conserved CYCLIN-DEPENDENT KINASE (CDK) site in young seedlings growing at 28°C, in parallel with the stimulation of the expressions of the regulatory CYCLIN D/A subunits of CDK(s). Interestingly, while under warm temperatures ectopic RBR slowed down the acceleration of cell proliferation, it triggered elongation growth of post-mitotic cells in the hypocotyl. In agreement, the central regulatory genes of thermomorphogenic response, including PIF4 and PIF7, as well as their downstream auxin biosynthetic YUCCA genes (YUC1-2 and YUC8-9) were all up-regulated in the ectopic RBR expressing line but down-regulated in a mutant line with reduced RBR level. We suggest that RBR has both canonical and non-canonical functions under warm temperatures to control proliferative and elongation growth, respectively.
Collapse
Affiliation(s)
- Rasik Shiekh Bin Hamid
- Institute of Plant BiologyHUN‐REN Biological Research CentreSzegedHungary
- Doctoral School in Biology, Faculty of Science and InformaticsUniversity of SzegedSzegedHungary
| | - Fruzsina Nagy
- Institute of Plant BiologyHUN‐REN Biological Research CentreSzegedHungary
- Doctoral School in Biology, Faculty of Science and InformaticsUniversity of SzegedSzegedHungary
| | - Nikolett Kaszler
- Institute of Plant BiologyHUN‐REN Biological Research CentreSzegedHungary
| | - Ildikó Domonkos
- Institute of Plant BiologyHUN‐REN Biological Research CentreSzegedHungary
| | - Magdolna Gombos
- Institute of Plant BiologyHUN‐REN Biological Research CentreSzegedHungary
| | - Annamária Marton
- Institute of BiochemistryHUN‐REN Biological Research CentreSzegedHungary
| | - Csaba Vizler
- Institute of BiochemistryHUN‐REN Biological Research CentreSzegedHungary
| | - Eszter Molnár
- Institute of Plant BiologyHUN‐REN Biological Research CentreSzegedHungary
| | | | - László Bögre
- Department of Biological SciencesRoyal Holloway, University of LondonEgham, SurreyUK
| | - Attila Fehér
- Institute of Plant BiologyHUN‐REN Biological Research CentreSzegedHungary
- Department of Plant BiologyFaculty of Science and Informatics, University of SzegedSzegedHungary
| | - Zoltán Magyar
- Institute of Plant BiologyHUN‐REN Biological Research CentreSzegedHungary
| |
Collapse
|
9
|
Zubieta C, Hutin S, Jung JH, Lai X. Phosphorylation of phyB by GSK3s, a key mechanism that brings temperature sensors together. THE NEW PHYTOLOGIST 2025; 245:1335-1337. [PMID: 39468831 DOI: 10.1111/nph.20232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
This article is a Commentary on Yang et al. (2025), 245: 1577–1588.
Collapse
Affiliation(s)
- Chloe Zubieta
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, Grenoble, 38000, France
| | - Stephanie Hutin
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, Grenoble, 38000, France
| | - Jae-Hoon Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Xuelei Lai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
10
|
Xu T, Patitaki E, Zioutopoulou A, Kaiserli E. Light and high temperatures control epigenomic and epitranscriptomic events in Arabidopsis. CURRENT OPINION IN PLANT BIOLOGY 2025; 83:102668. [PMID: 39586185 DOI: 10.1016/j.pbi.2024.102668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/08/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024]
Abstract
Light and temperature are two key environmental factors that control plant growth and adaptation by influencing biomolecular events. This review highlights the latest milestones on the role of light and high temperatures in modulating the epigenetic and epitranscriptomic landscape of Arabidopsis to trigger developmental and adaptive responses to a changing environment. Recent discoveries on how light and high temperature signals are integrated in the nucleus to modulate gene expression are discussed, as well as highlighting research gaps and future perspectives in further understanding how to promote plant resilience in times of climate change.
Collapse
Affiliation(s)
- Tianyuan Xu
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Eirini Patitaki
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Anna Zioutopoulou
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Eirini Kaiserli
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
11
|
Chen H, Zhou T, Wu X, Kumar V, Lan X, Xuan YH. Phytochrome B-mediated light signalling enhances rice resistance to saline-alkaline and sheath blight by regulating multiple downstream transcription factors. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 39890591 DOI: 10.1111/pbi.14599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 02/03/2025]
Abstract
Light signalling regulates plant growth and stress resistance, whereas its mechanism in controlling saline-alkaline tolerance (SAT) remains largely unknown. This study identified that light signalling, primarily mediated by Phytochrome B (PhyB), inhibited ammonium transporter 1 (AMT1) to negatively regulate SAT. Our previous findings have shown that PhyB can impede the transcription factors indeterminate domain 10 (IDD10) and brassinazole resistant 1 (BZR1) to reduce NH4 + uptake, thereby modulating SAT and sheath blight (ShB) resistance in rice. However, inhibition of IDD10 and BZR1 in the phyB background did not fully suppress NH4 + uptake, suggesting that other signalling pathways regulated AMT1 downstream of PhyB. Further analysis revealed that PhyB interacted with Calcineurin B-like protein-interacting protein kinase 31 (CIPK31), which positively regulated AMT1 expression. CIPK31 also interacted with Teosinte Branched1/Cycloidea/PCF19 (TCP19), a key regulator of nitrogen use efficiency (NUE). However, PhyB neither degraded CIPK31 nor directly interacted with TCP19. Instead, PhyB inhibited the CIPK31-TCP19 interaction, releasing TCP19, which repressed AMT1;2 directly and AMT1;1 and AMT1;3 indirectly, thereby inhibiting NH4 + uptake and SAT while reducing ShB resistance. Additionally, Phytochrome Interacting Factor-Like 15 (PIL15) interacted with TCP19. Different from TCP19, PIL15 directly activated AMT1;2 to promote SAT, suggesting a balancing mechanism for NH4 + uptake downstream of PhyB. Furthermore, PIL15 interacted with IDD10 and BZR1 to form a transcriptional complex that collaboratively activated AMT1;2 expression. Overall, this study provides novel insights into how PhyB signalling regulates NH4 + uptake and coordinates SAT and ShB resistance in rice.
Collapse
Affiliation(s)
- Huan Chen
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Tiange Zhou
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- State Key Laboratory of Elemento-Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin, China
| | - Xianxin Wu
- Institute of Agricultural Quality Standards and Testing Technology, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China
| | - Vikranth Kumar
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, USA
| | - Xingguo Lan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Yuan Hu Xuan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin, China
| |
Collapse
|
12
|
Jeong SJ, Zhen S, Zhang Q, Niu G. Lowering light intensity while extending photoperiod at a constant daily light integral synergistically interacts with warm temperature to enhance leaf expansion and crop yield in lettuce in the absence of far-red light. FRONTIERS IN PLANT SCIENCE 2025; 16:1529455. [PMID: 39926643 PMCID: PMC11803448 DOI: 10.3389/fpls.2025.1529455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/08/2025] [Indexed: 02/11/2025]
Abstract
Introduction Low light intensity and far-red (FR) light act as shade signals to induce specific morphological changes mediated by plant photoreceptors phytochromes (PHYs). Applying FR light or lowering light intensity over a longer photoperiod at a constant daily light integral (DLI) can increase crop yield by enhancing leaf expansion and photon capture. However, PHY activity is also dependent on temperature. We aimed to investigate the interactive effects of FR light, light intensity, photoperiod, and temperature on plant growth and morphology. Methods Lettuce (Lactuca sativa L.) 'Rex' was grown under three temperatures (20, 24, and 28 °C), each containing six light treatments [two levels of FR light (0 and 20% FR in total photon flux density from 400-800 nm) x three light intensities (150, 200, and 300 μmol m-2 s-1)]. As light intensity increased, photoperiod was reduced (150, 200, and 300 μmol m-2 s-1 with photoperiods of 24 h, 18 h, and 12 h, respectively) to maintain a constant DLI of 13 mol m-2 d-1. Results Under 0% FR light, the combination of lower light intensity/longer photoperiod and warmer temperature synergistically enhanced leaf expansion and photon capture; however, this interactive effect disappeared under 20% FR light. Stem elongation exhibited an opposite response pattern to leaf expansion; lower light intensity and warm temperature had a synergistic enhancement on stem elongation under 20% FR light, but not under 0% FR light. Shoot dry weight responded to the light and temperature factors similarly to total leaf area. Our results showed that plant biomass accumulation depended primarily on photon capture (r2 = 0.93), rather than single-leaf photosynthetic efficiency. Antioxidant capacity was generally reduced by lower light intensity and FR light, but the reduction could be compensated by warmer temperatures. Discussion Thus, we concluded that applying lower light intensity over a longer photoperiod, combined with warm temperature, can effectively maximize leaf expansion and crop yield while maintaining nutritional quality in the absence of FR light. However, under strong shade signals composed of FR light, low light intensity, and warm temperature, lettuce prioritizes stem elongation at the expense of leaf expansion, leading to reduced crop yield.
Collapse
Affiliation(s)
- Sang Jun Jeong
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
- Texas A&M AgriLife Research, Dallas, TX, United States
| | - Shuyang Zhen
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Qianwen Zhang
- Texas A&M AgriLife Research, Dallas, TX, United States
- Truck Crops Branch Experiment Station, Mississippi State University, Crystal Springs, MS, United States
| | - Genhua Niu
- Texas A&M AgriLife Research, Dallas, TX, United States
| |
Collapse
|
13
|
Fehér A, Hamid RSB, Magyar Z. How Do Arabidopsis Seedlings Sense and React to Increasing Ambient Temperatures? PLANTS (BASEL, SWITZERLAND) 2025; 14:248. [PMID: 39861601 PMCID: PMC11769069 DOI: 10.3390/plants14020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Plants respond to higher ambient temperatures by modifying their growth rate and habitus. This review aims to summarize the accumulated knowledge obtained with Arabidopsis seedlings grown at normal and elevated ambient temperatures. Thermomorphogenesis in the shoot and the root is overviewed separately, since the experiments indicate differences in key aspects of thermomorphogenesis in the two organs. This includes the variances in thermosensors and key transcription factors, as well as the predominance of cell elongation or cell division, respectively, even though auxin plays a key role in regulating this process in both organs. Recent findings also highlight the role of the root and shoot meristems in thermomorphogenesis and suggest that the cell cycle inhibitor RETINOBLASTOMA-RELATED protein may balance cell division and elongation at increased temperatures.
Collapse
Affiliation(s)
- Attila Fehér
- Institute of Plant Biology, Biological Research Centre, H-6726 Szeged, Hungary (Z.M.)
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Rasik Shiekh Bin Hamid
- Institute of Plant Biology, Biological Research Centre, H-6726 Szeged, Hungary (Z.M.)
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Zoltán Magyar
- Institute of Plant Biology, Biological Research Centre, H-6726 Szeged, Hungary (Z.M.)
| |
Collapse
|
14
|
Hwang G, Lee T, Park J, Paik I, Lee N, Kim YJ, Song YH, Kim WY, Oh E. UV-B increases active phytochrome B to suppress thermomorphogenesis and enhance UV-B stress tolerance at high temperatures. PLANT COMMUNICATIONS 2025; 6:101142. [PMID: 39390743 PMCID: PMC11783897 DOI: 10.1016/j.xplc.2024.101142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Plants respond to slight increases in ambient temperature by altering their architecture, a phenomenon collectively termed thermomorphogenesis. Thermomorphogenesis helps mitigate the damage caused by potentially harmful high-temperature conditions and is modulated by multiple environmental factors. Among these factors, ultraviolet-B (UV-B) light has been shown to strongly suppress this response. However, the molecular mechanisms by which UV-B light regulates thermomorphogenesis and the physiological roles of the UV-B-mediated suppression remain poorly understood. Here, we show that UV-B light inhibits thermomorphogenesis through the UV RESISTANCE LOCUS8 (UVR8)-CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1)-phytochrome B (phyB)/LONG HYPOCOTYL IN FAR RED 1 (HFR1) signaling pathway. We found that cop1 mutants maintain high levels of active phyB at high temperatures. Extensive genetic analyses revealed that the increased levels of phyB, HFR1, and CRY1 in cop1 mutants redundantly reduce both the level and the activity of PHYTOCHROME INTERACTING FACTOR4 (PIF4), a key positive regulator in thermomorphogenesis, thereby repressing this growth response. In addition, we found that UV-B light inactivates COP1 to enhance phyB stability and increase its photobody number. The UV-B-stabilized active phyB, in concert with HFR1, inhibits thermomorphogenesis by interfering with PIF4 activity. We further demonstrate that increased levels of active phyB enhance UV-B tolerance by promoting flavonoid biosynthesis and inhibiting thermomorphogenic growth. Taken together, our results elucidate that UV-B increases the levels of active phyB and HFR1 by inhibiting COP1 to suppress PIF4-mediated growth responses, which is crucial for plant tolerance to UV-B stress at high temperatures.
Collapse
Affiliation(s)
- Geonhee Hwang
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Taedong Lee
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Jeonghyang Park
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Inyup Paik
- US Army Engineer Research and Development Center, Austin, TX 39180, USA
| | - Nayoung Lee
- Research Institute of Molecular Alchemy, Gyeongsang National University, Jinju 52828, Korea
| | - Yun Ju Kim
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Young Hun Song
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21four), Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Eunkyoo Oh
- Department of Life Sciences, Korea University, Seoul 02841, Korea.
| |
Collapse
|
15
|
Catarino B, Andrade L, Cordeiro AM, Carvalho P, Barros PM, Blázquez MA, Saibo NJM. Light and temperature signals are integrated through a phytochrome B-dependent gene regulatory network in rice. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:562-575. [PMID: 39374096 DOI: 10.1093/jxb/erae402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Angiosperms are the most dominant land plant flora and have colonized most of the terrestrial habitats, thriving in different environmental conditions, among which light and temperature play a crucial role. In the eudicot Arabidopsis thaliana, light and temperature are integrated into a phytochrome B (phyB)-dependent signalling network that regulates development. However, whether this signal integration controls the development in other angiosperm lineages and whether phyB is a conserved hub of this integratory network in angiosperms is unclear. We used a combination of phylogenetic, phenotypic, and transcriptomic analyses to understand the phyB-dependent light and temperature integratory network in the monocot Oryza sativa and infer its conservation in angiosperms. Here, we showed that light and temperature co-regulate rice growth through a phyB-dependent regulatory network that shares conserved features between O. sativa and A. thaliana. Despite the conservation of the components of this regulatory network, the transcriptional regulation between the components has changed qualitatively since monocots and eudicots diverged (~192-145 million years ago). The evolutionary flexibility of this integratory network might underlie the successful adaptation of plants to diverse ecological niches. Furthermore, our findings provide promising candidate genes whose activity and expression can be fine-tuned to improve plant growth and productivity in a warming planet.
Collapse
Affiliation(s)
- Bruno Catarino
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, Spain
| | - Luís Andrade
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - André M Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Pedro Carvalho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Pedro M Barros
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, Spain
| | - Nelson J M Saibo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
16
|
Wang Y, Zhang TL, Barnett EM, Sureshkumar S, Balasubramanian S, Fournier-Level A. Warm temperature perceived at the vegetative stage affects progeny seed germination in natural accessions of Arabidopsis thaliana. THE NEW PHYTOLOGIST 2025; 245:668-683. [PMID: 39550624 DOI: 10.1111/nph.20241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 10/10/2024] [Indexed: 11/18/2024]
Abstract
Temperatures perceived early in the life cycle of mother plants can affect the germination of the offspring seeds. In Arabidopsis thaliana, vernalisation-insensitive mutants showed altered germination response to elevated maternal temperature, hence revealing a strong genetic determinism. However, the genetic control of this maternal effect and its prevalence across natural populations remain unclear. Here, we exposed a collection of European accessions of A. thaliana to increased temperature during the vegetative phase and assessed germination in their progeny to identify the genetic basis of transgenerational germination response. We found that genotypes with rapidly germinating progeny after early maternal exposure to elevated temperature originated from regions with low-light radiation. Combining genome-wide association, expression analysis and functional assays across multiple genetic backgrounds, we show a central role for PHYB in mediating the response to maternally perceived temperature at the vegetative stage. Differential gene expression analysis in leaves identified a similar genetic network as previously found in seed endosperm under elevated temperature, supporting the pleiotropic involvement of PHYB signalling across different tissues and stages. This provides evidence that complex environmental responses modulated by the maternal genotype can rely on a consistent set of genes yet produce different effects at the different stages of exposure.
Collapse
Affiliation(s)
- Yu Wang
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
| | - Tania L Zhang
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
| | - Emma M Barnett
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
| | - Sridevi Sureshkumar
- School of Biological Sciences, Monash University, Clayton, Vic., 3800, Australia
| | | | | |
Collapse
|
17
|
Sun Y, Zheng Y, Wang W, Yao H, Ali Z, Xiao M, Ma Z, Li J, Zhou W, Cui J, Yu K, Liu Y. VvFHY3 links auxin and endoplasmic reticulum stress to regulate grape anthocyanin biosynthesis at high temperatures. THE PLANT CELL 2024; 37:koae303. [PMID: 39539042 DOI: 10.1093/plcell/koae303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Anthocyanins affect quality in fruits such as grape (Vitis vinifera). High temperatures reduce anthocyanin levels by suppressing the expression of anthocyanin biosynthesis genes and decreasing the biosynthetic rate. However, the regulatory mechanisms that coordinate these 2 processes remain largely unknown. In this study, we demonstrate that high-temperature-mediated inhibition of anthocyanin biosynthesis in grape berries depends on the auxin and endoplasmic reticulum (ER) stress pathways. Inactivation of these pathways restores anthocyanin accumulation under high temperatures. We identified and characterized FAR-RED ELONGATED HYPOCOTYL3 (FHY3), a high-temperature-modulated transcription factor that activates multiple anthocyanin biosynthesis genes by binding to their promoters. The auxin response factor VvARF3 interacts with VvFHY3 and represses its transactivation activity, antagonizing VvFHY3-induced anthocyanin biosynthesis. Additionally, we found that the ER stress sensor VvbZIP17 represses anthocyanin biosynthesis. VvFHY3 suppresses VvbZIP17 activity by directly binding to the VvbZIP17 promoter to repress its transcription and by physically interacting with VvbZIP17 to block its DNA binding ability. Furthermore, AUXIN RESPONSE FACTOR 3 (ARF3) interferes with the VvFHY3-VvbZIP17 interaction, releasing VvbZIP17 to activate the unfolded protein response and further suppress anthocyanin production. Our results unravel the VvARF3-VvFHY3-VvbZIP17 regulatory module, which links the auxin and ER stress pathways to coordinately repress anthocyanin structural gene expression and biosynthesis under high-temperature stress.
Collapse
Affiliation(s)
- Yanzhao Sun
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yanyan Zheng
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Wenyuan Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Heng Yao
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zain Ali
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Mengwei Xiao
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhaodong Ma
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jingjing Li
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Wenfei Zhou
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jing Cui
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Kun Yu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yang Liu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
18
|
Feng Z, Zioutopoulou A, Xu T, Li J, Kaiserli E. TANDEM ZINC-FINGER/PLUS3: a multifaceted integrator of light signaling. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00315-7. [PMID: 39701906 DOI: 10.1016/j.tplants.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
TANDEM ZINC-FINGER/PLUS3 (TZP) is a nuclear-localized protein with multifaceted roles in modulating plant growth and development under diverse light conditions. The unique combination of two intrinsically disordered regions (IDRs), two zinc-fingers (ZFs), and a PLUS3 domain provide a platform for interactions with the photoreceptors phytochrome A (phyA) and phyB, light signaling components, and nucleic acids. TZP controls flowering and hypocotyl elongation by regulating gene expression and protein abundance in a blue, red, or far-red light-specific context. Recently, TZP was shown to undergo liquid-liquid phase separation through its IDRs, thus promoting phyA phosphorylation. Collectively, TZP is an emerging regulator of diverse light signaling pathways; therefore, understanding its biochemical function in integrating environmental signaling networks is key for optimizing plant adaptation.
Collapse
Affiliation(s)
- Ziyi Feng
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Anna Zioutopoulou
- School of Molecular Biosciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Tianyuan Xu
- School of Molecular Biosciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Jigang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China.
| | - Eirini Kaiserli
- School of Molecular Biosciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
19
|
Jeong SJ, Zhang Q, Niu G, Zhen S. The interactive effects between far-red light and temperature on lettuce growth and morphology diminish at high light intensity. FRONTIERS IN PLANT SCIENCE 2024; 15:1497672. [PMID: 39687317 PMCID: PMC11646736 DOI: 10.3389/fpls.2024.1497672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024]
Abstract
Phytochromes (PHYs) play a dual role in sensing light spectral quality and temperature. PHYs can interconvert between the active Pfr form and inactive Pr form upon absorption of red (R) and far-red (FR) light (Photoconversion). In addition, active Pfr can be converted to inactive Pr in a temperature-dependent manner (Thermal Reversion). Recent studies have shown that FR light and temperature can interactively affect plant growth and morphology through co-regulating phytochrome activities. These studies were primarily conducted under relatively low light intensities. As light intensity increases, the impact of thermal reversion on phytochrome dynamics decreases. However, the light intensity dependency of the interactive effects between FR light and temperature on plant growth and morphology has not been characterized. In this study, lettuce (Lactuca sativa L.) 'Rex' was grown under two total photon flux densities (TPFD; 400-800 nm) (150 and 300 μmol m-2 s-1) x three temperatures (20, 24, and 28°C) x two light spectra (0 and 20% of FR light in TPFD). Our results showed that the effects of FR light on leaf, stem, and root elongation, leaf number, and leaf expansion were dependent on temperature at lower TPFD. However, the magnitude of the interactive effects between FR light and temperature on plant morphology decreased at higher TPFD. Particularly, at a lower TPFD, FR light stimulated leaf expansion and canopy photon capture only under a cooler temperature of 20°C. However, at a higher TPFD, FR light consistently increased total leaf area across all three temperatures. Plant biomass was more strongly correlated with the total number of photons intercepted by the leaves than with the photosynthetic activities of individual leaves. FR light decreased the contents of chlorophylls, carotenoids, flavonoids, and phenolics, as well as the total antioxidant capacity. In contrast, warmer temperatures and high light intensity increased the values of these parameters. We concluded that the interactive effects between FR light and temperature on plant growth and morphology diminished as total light intensity increased. Additionally, the combination of high light intensity, warm temperature, and FR light resulted in the highest crop yield and antioxidant capacity in lettuce.
Collapse
Affiliation(s)
- Sang Jun Jeong
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
- Texas A&M AgriLife Research and Extension Center at Dallas, Dallas, TX, United States
| | - Qianwen Zhang
- Texas A&M AgriLife Research and Extension Center at Dallas, Dallas, TX, United States
- Truck Crops Branch Experiment Station, Mississippi State University, Crystal Springs, MS, United States
| | - Genhua Niu
- Texas A&M AgriLife Research and Extension Center at Dallas, Dallas, TX, United States
| | - Shuyang Zhen
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
20
|
Huang ZD, Bugaj LJ. Optogenetic Control of Condensates: Principles and Applications. J Mol Biol 2024; 436:168835. [PMID: 39454749 DOI: 10.1016/j.jmb.2024.168835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Biomolecular condensates appear throughout cell physiology and pathology, but the specific role of condensation or its dynamics is often difficult to determine. Optogenetics offers an expanding toolset to address these challenges, providing tools to directly control condensation of arbitrary proteins with precision over their formation, dissolution, and patterning in space and time. In this review, we describe the current state of the field for optogenetic control of condensation. We survey the proteins and their derivatives that form the foundation of this toolset, and we discuss the factors that distinguish them to enable appropriate selection for a given application. We also describe recent examples of the ways in which optogenetic condensation has been used in both basic and applied studies. Finally, we discuss important design considerations when engineering new proteins for optogenetic condensation, and we preview future innovations that will further empower this toolset in the coming years.
Collapse
Affiliation(s)
- Zikang Dennis Huang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lukasz J Bugaj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
21
|
Lu A, Luo J, Pi K, Yu Q, Zhang J, Peng L, Zeng S, Long B, Xu D, Meng J, Chen G, Tan Y, Mo Z, Duan L, Liu R. Construction and evaluation of a model for efficient identification of photothermal sensitivity of tobacco cultivars based on agronomic traits. Sci Rep 2024; 14:27918. [PMID: 39537678 PMCID: PMC11561057 DOI: 10.1038/s41598-024-78877-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
The photothermal sensitivity of tobacco refers to the degree to which tobacco responds to changes in light and temperature conditions in its growth environment, which is crucial for determining the planting area of cultivars and improving tobacco yield and quality. In order to accurately and effectively evaluate the photothermal sensitivity of tobacco cultivars, this study selected five cultivars and their hybrid combinations with significant differences planted under different ecological conditions from 2021 to 2022 as materials. The experiment was conducted in two locations with significant differences in temperature and light. We measured the agronomic traits and biomass of the experimental materials, and constructed an effective tobacco photothermal sensitivity evaluation model using principal component analysis, membership function, and regression analysis. The reliability of the model was evaluated by utilizing the photosynthetic characteristics, chlorophyll content, and antioxidant enzyme system activity of the experimental materials. The results showed that tobacco biomass is the most important principal component in agricultural traits, and the comprehensive evaluation model for tobacco photothermal sensitivity is: y = 0.4571y1 + 0.2406y2 + 0.1725y3, where the fitting coefficients R2 of y1, y2, and y3 are 0.945, 0.851, and 0.977, respectively; The photothermal sensitivity of the experimental materials was calculated using this model, and the comprehensive ranking of the 11 experimental materials is: G3 < G5 < G10 < G9 < G11 < G6 < G7 < G2 < G4 < G8 < G1. Conventional identification methods have found that G2, G4, G6, G7, G8, and G11 are sensitive materials, G3, G5, and G10 are insensitive materials, and G1 and G9 are intermediate materials. The consistency rate of the evaluation results of the two methods reached 90.91%. And there is a significant correlation between the agronomic traits selected in the model and the physiological indicators selected by conventional evaluation methods, providing a scientific basis for evaluating the light temperature sensitivity of tobacco cultivars using agronomic traits in this study. The results indicate that the photothermal sensitivity evaluation model established in this study provides an efficient, convenient, and reliable method for evaluating the photothermal sensitivity of tobacco.
Collapse
Affiliation(s)
- Anbin Lu
- College of Tobacco Science, Guizhou University/Guizhou Key Laboratory of Tobacco Quality Research, Guiyang, 550025, China
| | - Jiajun Luo
- College of Tobacco Science, Guizhou University/Guizhou Key Laboratory of Tobacco Quality Research, Guiyang, 550025, China
| | - Kai Pi
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Qiwei Yu
- Bijie City Tobacco Company of Guizhou Province, Bijie, 551700, China
| | - Jingyao Zhang
- College of Tobacco Science, Guizhou University/Guizhou Key Laboratory of Tobacco Quality Research, Guiyang, 550025, China
| | - Lisha Peng
- College of Tobacco Science, Guizhou University/Guizhou Key Laboratory of Tobacco Quality Research, Guiyang, 550025, China
| | - Shuaibo Zeng
- College of Tobacco Science, Guizhou University/Guizhou Key Laboratory of Tobacco Quality Research, Guiyang, 550025, China
| | - Benshan Long
- College of Tobacco Science, Guizhou University/Guizhou Key Laboratory of Tobacco Quality Research, Guiyang, 550025, China
| | - Duoduo Xu
- College of Tobacco Science, Guizhou University/Guizhou Key Laboratory of Tobacco Quality Research, Guiyang, 550025, China
| | - Jun Meng
- College of Tobacco Science, Guizhou University/Guizhou Key Laboratory of Tobacco Quality Research, Guiyang, 550025, China
| | - Gang Chen
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Yongyan Tan
- College of Tobacco Science, Guizhou University/Guizhou Key Laboratory of Tobacco Quality Research, Guiyang, 550025, China
| | - Zejun Mo
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Lili Duan
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Renxiang Liu
- College of Tobacco Science, Guizhou University/Guizhou Key Laboratory of Tobacco Quality Research, Guiyang, 550025, China.
| |
Collapse
|
22
|
Péter C, Ádám É, Klose C, Grézal G, Hajdu A, Steinbach G, Kozma-Bognár L, Silhavy D, Nagy F, Viczián A. Phytochrome C and Low Temperature Promote the Protein Accumulation and Red-Light Signaling of Phytochrome D. PLANT & CELL PHYSIOLOGY 2024; 65:1717-1735. [PMID: 39119682 PMCID: PMC11558544 DOI: 10.1093/pcp/pcae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024]
Abstract
Light affects almost every aspect of plant development. It is perceived by photoreceptors, among which phytochromes (PHY) are responsible for monitoring the red and far-red spectrum. Arabidopsis thaliana possesses five phytochrome genes (phyA-phyE). Whereas functions of phyA and phyB are extensively studied, our knowledge of other phytochromes is still rudimentary. To analyze phyD function, we expressed it at high levels in different phytochrome-deficient genetic backgrounds. Overexpressed phyD-YFP can govern effective light signaling but only at low temperatures and in cooperation with functional phyC. Under these conditions, phyD-YFP accumulates to high levels, and opposite to phyB, this pool is stable in light. By comparing the photoconvertible phyD-YFP and phyB levels and their signaling in continuous and pulsed irradiation, we showed that phyD-YFP is a less efficient photoreceptor than phyB. This conclusion is supported by the facts that only a part of the phyD-YFP pool is photoconvertible and that thermal reversion of phyD-YFP is faster than that of phyB. Our data suggest that the temperature-dependent function of phyD is based on the amount of phyD protein and not on its Pfr stability, as described for phyB. We also found that phyD-YFP and phyB-GFP are associated with strongly overlapping genomic locations and are able to mediate similar changes in gene expression; however, the efficiency of phyD-YFP is lower. Based on these data, we propose that under certain conditions, synergistic interaction of phyD and phyC can substitute phyB function in seedlings and in adult plants and thus increases the ability of plants to respond more flexibly to environmental changes.
Collapse
Affiliation(s)
- Csaba Péter
- Laboratory of Photo and Chronobiology, Institute of Plant Biology, Biological Research Centre, Hungarian Research Network (HUN-REN), Temesvari krt. 62, Szeged H-6726, Hungary
- Doctoral School of Biology, Faculty of Sciences and Informatics, University of Szeged, Középfasor 52, Szeged H-6726, Hungary
| | - Éva Ádám
- Laboratory of Photo and Chronobiology, Institute of Plant Biology, Biological Research Centre, Hungarian Research Network (HUN-REN), Temesvari krt. 62, Szeged H-6726, Hungary
| | - Cornelia Klose
- Institute of Biology II, University of Freiburg, Schänzlestr. 1, Freiburg 79104, Germany
| | - Gábor Grézal
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Research Network (HUN-REN), Temesvari krt. 62, Szeged H-6726, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Temesvari krt. 62, Szeged HU-6726, Hungary
| | - Anita Hajdu
- Laboratory of Photo and Chronobiology, Institute of Plant Biology, Biological Research Centre, Hungarian Research Network (HUN-REN), Temesvari krt. 62, Szeged H-6726, Hungary
| | - Gábor Steinbach
- Cellular Imaging Laboratory, Biological Research Center, Hungarian Research Network (HUN-REN), Temesvari krt. 62, Szeged H-6726, Hungary
| | - László Kozma-Bognár
- Laboratory of Photo and Chronobiology, Institute of Plant Biology, Biological Research Centre, Hungarian Research Network (HUN-REN), Temesvari krt. 62, Szeged H-6726, Hungary
- Department of Genetics, Faculty of Sciences and Informatics, University of Szeged, Középfasor 52, Szeged H-6726, Hungary
| | - Dániel Silhavy
- Laboratory of Photo and Chronobiology, Institute of Plant Biology, Biological Research Centre, Hungarian Research Network (HUN-REN), Temesvari krt. 62, Szeged H-6726, Hungary
| | - Ferenc Nagy
- Laboratory of Photo and Chronobiology, Institute of Plant Biology, Biological Research Centre, Hungarian Research Network (HUN-REN), Temesvari krt. 62, Szeged H-6726, Hungary
| | - András Viczián
- Laboratory of Photo and Chronobiology, Institute of Plant Biology, Biological Research Centre, Hungarian Research Network (HUN-REN), Temesvari krt. 62, Szeged H-6726, Hungary
| |
Collapse
|
23
|
Salehin M. Emerging roles of auxin in plant abiotic stress tolerance. PHYSIOLOGIA PLANTARUM 2024; 176:e14601. [PMID: 39489540 DOI: 10.1111/ppl.14601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 11/05/2024]
Abstract
Plants are continuously attacked by several biotic and abiotic factors. Among abiotic factors, heat, cold, drought, and salinity are common stresses. Plants produce several hormones as their main weapon in fightback against these stresses. Among these hormones, the role of auxin is well established in regulating plant growth and development at various scales. However, in recent literature, the important role of auxin in abiotic stress tolerance has emerged. Several auxin signalling and transport mutants exhibit heat, drought, and salinity-related phenotypes. Among them, auxin-mediated hypocotyl elongation and root growth in response to increased heat are of importance due to the continuous rise in global temperature. Auxin is also involved in regulating and recruiting specialized metabolites like aliphatic glucosinolate to defend themselves from drought stress. Aliphatic glucosinolate (A-GLS) regulates guard cell closure using auxin, which is independent of the major abiotic stress hormone abscisic acid. This regulatory mechanism serves as an additional layer of guard cell movement to protect plants from drought. Transferring the aliphatic glucosinolate pathway into non-brassica plants such as rice and soybean holds the promise to improve drought tolerance. In addition to these, post-translational modification of auxin signalling components and redistribution of auxin efflux transporters are also playing important roles in drought and salt tolerance and, hence, may be exploited to breed drought-tolerant crops. Also, reactive oxygen species, along with peptide hormone and auxin signalling, are important in root growth under stress. In conclusion, we summarize recent discoveries that suggest auxin is involved in various abiotic stresses.
Collapse
Affiliation(s)
- Mohammad Salehin
- Department of Biology, North Carolina A&T State University, Greensboro, NC
| |
Collapse
|
24
|
Casal JJ, Murcia G, Bianchimano L. Plant Thermosensors. Annu Rev Genet 2024; 58:135-158. [PMID: 38986032 DOI: 10.1146/annurev-genet-111523-102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Plants are exposed to temperature conditions that fluctuate over different time scales, including those inherent to global warming. In the face of these variations, plants sense temperature to adjust their functions and minimize the negative consequences. Transcriptome responses underlie changes in growth, development, and biochemistry (thermomorphogenesis and acclimation to extreme temperatures). We are only beginning to understand temperature sensation by plants. Multiple thermosensors convey complementary temperature information to a given signaling network to control gene expression. Temperature-induced changes in protein or transcript structure and/or in the dynamics of biomolecular condensates are the core sensing mechanisms of known thermosensors, but temperature impinges on their activities via additional indirect pathways. The diversity of plant responses to temperature anticipates that many new thermosensors and eventually novel sensing mechanisms will be uncovered soon.
Collapse
Affiliation(s)
- Jorge J Casal
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina; ,
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina;
| | - Germán Murcia
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina; ,
| | | |
Collapse
|
25
|
Zhu W, Fu Y, Zhou H, Zhou Y, Zhang D, Wang Y, Su Y, Li Z, Liang J. RACK1 links phyB and BES1 to coordinate brassinosteroid-dependent root meristem development. THE NEW PHYTOLOGIST 2024; 244:883-899. [PMID: 39149918 DOI: 10.1111/nph.20055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024]
Abstract
Light and brassinosteroids (BR) are indispensable for plant growth and control cell division in the apical meristem. However, how external light signals cooperate with internal brassinosteroids to program root meristem development remains elusive. We reveal that the photoreceptor phytochrome B (phyB) guides the scaffold protein RACK1 to coordinate BR signaling for maintaining root meristematic activity. phyB and RACK1 promote early root meristem development. Mechanistically, RACK1 could reinforce the phyB-SPA1 association by interacting with both phyB and SPA1, which indirectly affects COP1-dependent RACK1 degradation, resulting in the accumulation of RACK1 in roots. Subsequently, RACK1 interacts with BES1 to repress its DNA-binding activity toward the target gene CYCD3;1, leading to the release of BES1-mediated inhibition of CYCD3;1 transcription, and hence the promotion of root meristem development. Our study provides mechanistic insights into the regulation of root meristem development by combination of light and phytohormones signals through the photoreceptors and scaffold proteins.
Collapse
Affiliation(s)
- Wei Zhu
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yajuan Fu
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hua Zhou
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yeling Zhou
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dayan Zhang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuzhu Wang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yujing Su
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhiyong Li
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiansheng Liang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
26
|
Ding Y, Shi Y, Yang S. Regulatory Networks Underlying Plant Responses and Adaptation to Cold Stress. Annu Rev Genet 2024; 58:43-65. [PMID: 39018466 DOI: 10.1146/annurev-genet-111523-102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Cold is an important environmental factor limiting plant growth and development. Recent studies have revealed the complex regulatory networks associated with plant responses to cold and identified their interconnections with signaling pathways related to light, the circadian clock, plant hormones, and pathogen defense. In this article, we review recent advances in understanding the molecular basis of cold perception and signal transduction pathways. We also summarize recent developments in the study of cold-responsive growth and flowering. Finally, we propose future directions for the study of long-term cold sensing, RNA secondary structures in response to cold, and the development of cold-tolerant and high-yield crops.
Collapse
Affiliation(s)
- Yanglin Ding
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China; ,
| | - Yiting Shi
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China; ,
| | - Shuhua Yang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China; ,
| |
Collapse
|
27
|
Wang Z, Wang W, Zhao D, Song Y, Lin X, Shen M, Chi C, Xu B, Zhao J, Deng XW, Wang J. Light-induced remodeling of phytochrome B enables signal transduction by phytochrome-interacting factor. Cell 2024; 187:6235-6250.e19. [PMID: 39317197 DOI: 10.1016/j.cell.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/08/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024]
Abstract
Phytochrome B (phyB) and phytochrome-interacting factors (PIFs) constitute a well-established signaling module critical for plants adapting to ambient light. However, mechanisms underlying phyB photoactivation and PIF binding for signal transduction remain elusive. Here, we report the cryo-electron microscopy (cryo-EM) structures of the photoactivated phyB or the constitutively active phyBY276H mutant in complex with PIF6, revealing a similar trimer. The light-induced configuration switch of the chromophore drives a conformational transition of the nearby tongue signature within the phytochrome-specific (PHY) domain of phyB. The resulting α-helical PHY tongue further disrupts the head-to-tail dimer of phyB in the dark-adapted state. These structural remodelings of phyB facilitate the induced-fit recognition of PIF6, consequently stabilizing the N-terminal extension domain and a head-to-head dimer of activated phyB. Interestingly, the phyB dimer exhibits slight asymmetry, resulting in the binding of only one PIF6 molecule. Overall, our findings solve a key question with respect to how light-induced remodeling of phyB enables PIF signaling in phytochrome research.
Collapse
Affiliation(s)
- Zhengdong Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China; State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, China; Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing, China
| | - Wenfeng Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China
| | - Didi Zhao
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China
| | - Yanping Song
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China; State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, China; Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing, China
| | - Xiaoli Lin
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China
| | - Meng Shen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Cheng Chi
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China
| | - Bin Xu
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China
| | - Jun Zhao
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China
| | - Xing Wang Deng
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China; State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, China; Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing, China.
| | - Jizong Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China; State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, China.
| |
Collapse
|
28
|
Chua LC, Lau OS. Stomatal development in the changing climate. Development 2024; 151:dev202681. [PMID: 39431330 PMCID: PMC11528219 DOI: 10.1242/dev.202681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Stomata, microscopic pores flanked by symmetrical guard cells, are vital regulators of gas exchange that link plant processes with environmental dynamics. The formation of stomata involves the multi-step progression of a specialized cell lineage. Remarkably, this process is heavily influenced by environmental factors, allowing plants to adjust stomatal production to local conditions. With global warming set to alter our climate at an unprecedented pace, understanding how environmental factors impact stomatal development and plant fitness is becoming increasingly important. In this Review, we focus on the effects of carbon dioxide, high temperature and drought - three environmental factors tightly linked to global warming - on stomatal development. We summarize the stomatal response of a variety of plant species and highlight the existence of species-specific adaptations. Using the model plant Arabidopsis, we also provide an update on the molecular mechanisms involved in mediating the plasticity of stomatal development. Finally, we explore how knowledge on stomatal development is being applied to generate crop varieties with optimized stomatal traits that enhance their resilience against climate change and maintain agricultural productivity.
Collapse
Affiliation(s)
- Li Cong Chua
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore
| | - On Sun Lau
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore
| |
Collapse
|
29
|
Zhu Z, Trenner J, Delker C, Quint M. Tracing the Evolutionary History of the Temperature-Sensing Prion-like Domain in EARLY FLOWERING 3 Highlights the Uniqueness of AtELF3. Mol Biol Evol 2024; 41:msae205. [PMID: 39391982 PMCID: PMC11523139 DOI: 10.1093/molbev/msae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/03/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Plants have evolved mechanisms to anticipate and adjust their growth and development in response to environmental changes. Understanding the key regulators of plant performance is crucial to mitigate the negative influence of global climate change on crop production. EARLY FLOWERING 3 (ELF3) is one such regulator playing a critical role in the circadian clock and thermomorphogenesis. In Arabidopsis thaliana, ELF3 contains a prion-like domain (PrLD) that acts as a thermosensor, facilitating liquid-liquid phase separation at high ambient temperatures. To assess the conservation of this function across the plant kingdom, we traced the evolutionary emergence of ELF3, with a focus on the presence of PrLDs. We found that the PrLD, primarily influenced by the length of polyglutamine (polyQ) repeats, is most prominent in Brassicales. Analyzing 319 natural A. thaliana accessions, we confirmed the previously described wide range of polyQ length variation in AtELF3, but found it to be only weakly associated with geographic origin, climate conditions, and classic temperature-responsive phenotypes. Interestingly, similar polyQ length variation was not observed in several other investigated Bassicaceae species. Based on these findings, available prediction tools and limited experimental evidence, we conclude that the emergence of PrLD, and particularly polyQ length variation, is unlikely to be a key driver of environmental adaptation. Instead, it likely adds an additional layer to ELF3's role in thermomorphogenesis in A. thaliana, with its relevance in other species yet to be confirmed.
Collapse
Affiliation(s)
- Zihao Zhu
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Jana Trenner
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Carolin Delker
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
30
|
Hong SF, Wei WL, Pan ZJ, Yu JZ, Cheng S, Hung YL, Tjita V, Wang HC, Komatsu A, Nishihama R, Kohchi T, Chen HM, Chen WC, Lo JC, Chiu YH, Yang HC, Lu MY, Liu LYD, Lin SS. Molecular Insights into MpAGO1 and Its Regulatory miRNA, miR11707, in the High-Temperature Acclimation of Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2024; 65:1414-1433. [PMID: 38988198 DOI: 10.1093/pcp/pcae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/24/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
As a model plant for bryophytes, Marchantia polymorpha offers insights into the role of RNA silencing in aiding early land plants navigate the challenges posed by high-temperature environments. Genomic analysis revealed unique ARGONAUTE1 ortholog gene (MpAGO1) in M. polymorpha, which is regulated by two species-specific microRNAs (miRNAs), miR11707.1 and miR11707.2. Comparative studies of small RNA profiles from M. polymorpha cellular and MpAGO1 immunoprecipitation (MpAGO1-IP) profiles at various temperatures, along with analyses of Arabidopsis AGO1 (AtAGO1), revealed that MpAGO1 has a low selectivity for a diverse range of small RNA species than AtAGO1. Protein structural comparisons revealed no discernible differences in the guide strand small RNA recognition middle domain, MID domain, of MpAGO1 and AtAGO1, suggesting the complexity of miRNA species specificity and necessitating further exploration. Small RNA profiling and size exclusion chromatography have pinpointed a subset of M. polymorpha miRNAs, notably miR11707, that remain in free form within the cell at 22°C but are loaded into MpAGO1 at 28°C to engage in RNA silencing. Investigations into the mir11707 gene editing (mir11707ge) mutants provided evidence of the regulation of miR11707 in MpAGO1. Notably, while MpAGO1 mRNA expression decreases at 28°C, the stability of the MpAGO1 protein and its associated miRNAs is essential for enhancing the RNA-inducing silencing complex (RISC) activity, revealing the importance of RNA silencing in enabling M. polymorpha to survive thermal stress. This study advances our understanding of RNA silencing in bryophytes and provides groundbreaking insights into the evolutionary resilience of land plants to climatic adversities.
Collapse
Affiliation(s)
- Syuan-Fei Hong
- Institute of Biotechnology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, ROC
| | - Wei-Lun Wei
- Institute of Biotechnology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, ROC
| | - Zhao-Jun Pan
- Institute of Biotechnology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, ROC
| | - Jia-Zhen Yu
- Institute of Biotechnology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, ROC
| | - Shiuan Cheng
- Institute of Biotechnology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, ROC
| | - Yu-Ling Hung
- Institute of Biotechnology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, ROC
| | - Veny Tjita
- Institute of Biotechnology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, ROC
| | - Hao-Ching Wang
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, No. 250 Wu-Xing St., Taipei 11031, Taiwan, ROC
| | - Aino Komatsu
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8502, Japan
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai 980-8577, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8502, Japan
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8502, Japan
| | - Ho-Ming Chen
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128 Academia Rd., Sec. 2, Nankang, Taipei 11529, Taiwan, ROC
| | - Wan-Chieh Chen
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128 Academia Rd., Sec. 2, Nankang, Taipei 11529, Taiwan, ROC
| | - Jing-Chi Lo
- Department of Horticulture and Biotechnology, Chinese Culture University, No. 55, Huagang Rd., Shilin Dist., Taipei 11114, Taiwan, ROC
| | - Yen-Hsin Chiu
- Institute of Biotechnology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, ROC
- Taiwan Seed Improvement and Propagation Station, MOA, No.46, Xingzhong St., Xinshe Dist., Taichung 426015, Taiwan, ROC
| | - Ho-Chun Yang
- NGS High Throughput Genomics Core, Biodiversity Research Center, Academia Sinica, No. 128 Academia Rd., Sec. 2, Nankang, Taipei 11529, Taiwan, ROC
| | - Mei-Yeh Lu
- NGS High Throughput Genomics Core, Biodiversity Research Center, Academia Sinica, No. 128 Academia Rd., Sec. 2, Nankang, Taipei 11529, Taiwan, ROC
| | - Li-Yu Daisy Liu
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taipei 106319, Taiwan, ROC
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, ROC
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128 Academia Rd., Sec. 2, Nankang, Taipei 11529, Taiwan, ROC
- Center of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taipei 106319, Taiwan, ROC
| |
Collapse
|
31
|
Bakery A, Vraggalas S, Shalha B, Chauhan H, Benhamed M, Fragkostefanakis S. Heat stress transcription factors as the central molecular rheostat to optimize plant survival and recovery from heat stress. THE NEW PHYTOLOGIST 2024; 244:51-64. [PMID: 39061112 DOI: 10.1111/nph.20017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
Heat stress transcription factors (HSFs) are the core regulators of the heat stress (HS) response in plants. HSFs are considered as a molecular rheostat: their activities define the response intensity, incorporating information about the environmental temperature through a network of partner proteins. A prompted activation of HSFs is required for survival, for example the de novo synthesis of heat shock proteins. Furthermore, a timely attenuation of the stress response is necessary for the restoration of cellular functions and recovery from stress. In an ever-changing environment, the balance between thermotolerance and developmental processes such as reproductive fitness highlights the importance of a tightly tuned response. In many cases, the response is described as an ON/OFF mode, while in reality, it is very dynamic. This review compiles recent findings to update existing models about the HSF-regulated HS response and address two timely questions: How do plants adjust the intensity of cellular HS response corresponding to the temperature they experience? How does this adjustment contribute to the fine-tuning of the HS and developmental networks? Understanding these processes is crucial not only for enhancing our basic understanding of plant biology but also for developing strategies to improve crop resilience and productivity under stressful conditions.
Collapse
Affiliation(s)
- Ayat Bakery
- Institute of Molecular Biosciences, Plant Cell and Molecular Biology, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- Botany Department, Faculty of Science, Ain Shams University, 11517, Cairo, Egypt
| | - Stavros Vraggalas
- Institute of Molecular Biosciences, Plant Cell and Molecular Biology, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Boushra Shalha
- Institute of Molecular Biosciences, Plant Cell and Molecular Biology, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Harsh Chauhan
- Institute of Molecular Biosciences, Plant Cell and Molecular Biology, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
| | - Moussa Benhamed
- Université de Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), F-91190, Gif-sur-Yvette, France
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, 91405, France
- Institut Universitaire de France (IUF), Orsay, 91405, France
| | - Sotirios Fragkostefanakis
- Institute of Molecular Biosciences, Plant Cell and Molecular Biology, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| |
Collapse
|
32
|
Choi D, Kim SH, Choi DM, Moon H, Kim JI, Huq E, Kim DH. ELONGATED HYPOCOTYL 5 interacts with HISTONE DEACETYLASE 9 to suppress glucosinolate biosynthesis in Arabidopsis. PLANT PHYSIOLOGY 2024; 196:1340-1355. [PMID: 38753298 DOI: 10.1093/plphys/kiae284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/28/2024] [Indexed: 10/03/2024]
Abstract
Glucosinolates (GSLs) are defensive secondary metabolites produced by Brassicaceae species in response to abiotic and biotic stresses. The biosynthesis of GSL compounds and the expression of GSL-related genes are highly modulated by endogenous signals (i.e. circadian clocks) and environmental cues, such as temperature, light, and pathogens. However, the detailed mechanism by which light signaling influences GSL metabolism remains poorly understood. In this study, we found that a light-signaling factor, ELONGATED HYPOCOTYL 5 (HY5), was involved in the regulation of GSL content under light conditions in Arabidopsis (Arabidopsis thaliana). In hy5-215 mutants, the transcript levels of GSL pathway genes were substantially upregulated compared with those in wild-type (WT) plants. The content of GSL compounds was also substantially increased in hy5-215 mutants, whereas 35S::HY5-GFP/hy5-215 transgenic lines exhibited comparable levels of GSL-related transcripts and GSL content to those in WT plants. HY5 physically interacts with HISTONE DEACETYLASE9 and binds to the proximal promoter region of MYB29 and IMD1 to suppress aliphatic GSL biosynthetic processes. These results demonstrate that HY5 suppresses GSL accumulation during the daytime, thus properly modulating GSL content daily in Arabidopsis plants.
Collapse
Affiliation(s)
- Dasom Choi
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Seong-Hyeon Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Da-Min Choi
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Heewon Moon
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Jeong-Il Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Enamul Huq
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Dong-Hwan Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| |
Collapse
|
33
|
Shao Z, Bai Y, Huq E, Qiao H. LHP1 and INO80 cooperate with ethylene signaling for warm ambient temperature response by activating specific bivalent genes. Cell Rep 2024; 43:114758. [PMID: 39269904 PMCID: PMC11830372 DOI: 10.1016/j.celrep.2024.114758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/09/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Ethylene signaling has been indicated as a potential positive regulator of plant warm ambient temperature response, but its underlying molecular mechanisms are largely unknown. Here, we show that LHP1 and INO80 cooperate with ethylene signaling for warm ambient temperature response by activating specific bivalent genes. We found that the presence of warm ambient temperature activates ethylene signaling through EIN2 and EIN3, leading to an interaction between LHP1 and accumulated EIN2-C to co-regulate a subset of LHP1-bound genes marked by H3K27me3 and H3K4me3 bivalency. Furthermore, we demonstrate that INO80 is recruited to bivalent genes by interacting with EIN2-C and EIN3, promoting H3K4me3 enrichment and facilitating transcriptional activation in response to a warm ambient temperature. Together, our findings illustrate a mechanism wherein ethylene signaling orchestrates LHP1 and INO80 to regulate warm ambient temperature response by activating specific bivalent genes in Arabidopsis.
Collapse
Affiliation(s)
- Zhengyao Shao
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yanan Bai
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Enamul Huq
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hong Qiao
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
34
|
Yi C, Gerken U, Tang K, Philipp M, Zurbriggen MD, Köhler J, Möglich A. Plant Phytochrome Interactions Decode Light and Temperature Signals. THE PLANT CELL 2024; 36:koae249. [PMID: 39259296 PMCID: PMC11638003 DOI: 10.1093/plcell/koae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/05/2024] [Accepted: 09/10/2024] [Indexed: 09/13/2024]
Abstract
Plant phytochromes perceive red and far-red light to elicit adaptations to the changing environment. Downstream physiological responses revolve around red-light-induced interactions with phytochrome-interacting factors (PIF). Phytochromes double as thermoreceptors, owing to the pronounced temperature dependence of thermal reversion from the light-adapted Pfr to the dark-adapted Pr state. Here, we assess whether thermoreception may extend to the phytochrome:PIF interactions. While the association between Arabidopsis (Arabidopsis thaliana) PHYTOCHROME B (PhyB) and several PHYTOCHROME-INTERACTING FACTOR (PIF) variants moderately accelerates with temperature, the dissociation does more so, thus causing net destabilization of the phytochrome:PIF complex. Markedly different temperature profiles of PIF3 and PIF6 might underlie stratified temperature responses in plants. Accidentally, we identify a photoreception mechanism under strong continuous light, where the extent of phytochrome:PIF complexation decreases with red-light intensity rather than increases. Mathematical modeling rationalizes this attenuation mechanism and ties it to rapid red-light-driven Pr⇄Pfr interconversion and complex dissociation out of Pr. Varying phytochrome abundance, e.g., during diurnal and developmental cycles, and interaction dynamics, e.g., across different PIFs, modify the nature and extent of attenuation, thus permitting light-response profiles more malleable than possible for the phytochrome Pr⇄Pfr interconversion alone. Our data and analyses reveal a photoreception mechanism with implications for plant physiology, optogenetics, and biotechnological applications.
Collapse
Affiliation(s)
- Chengwei Yi
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Uwe Gerken
- Lehrstuhl für Spektroskopie weicher Materie, Universität Bayreuth, 95447 Bayreuth, Germany
| | - Kun Tang
- Institute of Synthetic Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Michael Philipp
- Lehrstuhl für Spektroskopie weicher Materie, Universität Bayreuth, 95447 Bayreuth, Germany
| | - Matias D Zurbriggen
- Institute of Synthetic Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- CEPLAS – Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Jürgen Köhler
- Lehrstuhl für Spektroskopie weicher Materie, Universität Bayreuth, 95447 Bayreuth, Germany
- Bayerisches Polymer Institut, Universität Bayreuth, 95447 Bayreuth, Germany
- Bayreuther Institut für Makromolekülforschung, Universität Bayreuth, 95447 Bayreuth, Germany
| | - Andreas Möglich
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
- Bayreuth Center for Biochemistry & Molecular Biology, Universität Bayreuth, 95447 Bayreuth, Germany
- North-Bavarian NMR Center, Universität Bayreuth, 95447 Bayreuth, Germany
| |
Collapse
|
35
|
Raza A, Zaman QU, Hu Z. Leveraging a new thermosensor for heat-smart future agriculture. PLANT COMMUNICATIONS 2024; 5:101007. [PMID: 38909281 DOI: 10.1016/j.xplc.2024.101007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/24/2024]
Affiliation(s)
- Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Technology Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Shenzhen Collaborative Innovation Public Service Platform for Marine Algae Industry, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Qamar U Zaman
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan Yazhou-Bay Seed Laboratory, Hainan University, Sanya 572025, China; Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, School of Tropical Crops, Hainan University, Haikou 570228, China
| | - Zhangli Hu
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Technology Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Shenzhen Collaborative Innovation Public Service Platform for Marine Algae Industry, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
36
|
Zhu C, Hu Z, Hu C, Ma H, Zhou J, Xia X, Shi K, Foyer CH, Yu J, Zhou Y. SlCPK27 cross-links SlHY5 and SlPIF4 in brassinosteroid-dependent photo- and thermo-morphogenesis in tomato. Proc Natl Acad Sci U S A 2024; 121:e2403040121. [PMID: 39190354 PMCID: PMC11388283 DOI: 10.1073/pnas.2403040121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/16/2024] [Indexed: 08/28/2024] Open
Abstract
ELONGATED HYPOCOTOYL5 (HY5) and PHYTOCHROME INTERACTING FACTORs (PIFs) are two types of important light-related regulators of plant growth, however, their interplay remains elusive. Here, we report that the activated tomato (Solanum lycopersicum) HY5 (SlHY5) triggers the transcription of a Calcium-dependent Protein Kinase SlCPK27. SlCPK27 interacts with and phosphorylates SlPIF4 at Ser-252 and Ser-308 phosphosites to promote its degradation. SlPIF4 promotes hypocotyl elongation mainly by activating the transcription of SlDWF, a key gene in brassinosteroid (BR) biosynthesis. Such a SlHY5-SlCPK27-SlPIF4-BR cascade not only plays a crucial role in photomorphogenesis but also regulates thermomorphogenesis. Our results uncover a previously unidentified mechanism that integrates Ca2+ signaling with the light signaling pathways to regulate plant growth by modulating BR biosynthesis in response to changes in ambient light and temperature.
Collapse
Affiliation(s)
- Changan Zhu
- Department of Horticulture, Zhejiang University, Hangzhou310058, China
| | - Zhangjian Hu
- Department of Horticulture, Zhejiang University, Hangzhou310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya572025, China
| | - Chaoyi Hu
- Department of Horticulture, Zhejiang University, Hangzhou310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya572025, China
| | - Hongxue Ma
- Department of Horticulture, Zhejiang University, Hangzhou310058, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang University, Hangzhou310058, China
- Key Laboratory of Horticultural Plant Growth and Development, Agricultural and Rural Ministry of China, Zhejiang University, Hangzhou310058, China
| | - Xiaojian Xia
- Department of Horticulture, Zhejiang University, Hangzhou310058, China
- Key Laboratory of Horticultural Plant Growth and Development, Agricultural and Rural Ministry of China, Zhejiang University, Hangzhou310058, China
| | - Kai Shi
- Department of Horticulture, Zhejiang University, Hangzhou310058, China
- Key Laboratory of Horticultural Plant Growth and Development, Agricultural and Rural Ministry of China, Zhejiang University, Hangzhou310058, China
| | - Christine H. Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, EdgbastonB15 2TT, United Kingdom
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou310058, China
- Key Laboratory of Horticultural Plant Growth and Development, Agricultural and Rural Ministry of China, Zhejiang University, Hangzhou310058, China
| | - Yanhong Zhou
- Department of Horticulture, Zhejiang University, Hangzhou310058, China
- Key Laboratory of Horticultural Plant Growth and Development, Agricultural and Rural Ministry of China, Zhejiang University, Hangzhou310058, China
| |
Collapse
|
37
|
Battle MW, Ewing SF, Dickson C, Obaje J, Edgeworth KN, Bindbeutel R, Antoniou-Kourounioti RL, Nusinow DA, Jones MA. Manipulation of photosensory and circadian signaling restricts phenotypic plasticity in response to changing environmental conditions in Arabidopsis. MOLECULAR PLANT 2024; 17:1458-1471. [PMID: 39014898 DOI: 10.1016/j.molp.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/14/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024]
Abstract
Plants exploit phenotypic plasticity to adapt their growth and development to prevailing environmental conditions. Interpretation of light and temperature signals is aided by the circadian system, which provides a temporal context. Phenotypic plasticity provides a selective and competitive advantage in nature but is obstructive during large-scale, intensive agricultural practices since economically important traits (including vegetative growth and flowering time) can vary widely depending on local environmental conditions. This prevents accurate prediction of harvesting times and produces a variable crop. In this study, we sought to restrict phenotypic plasticity and circadian regulation by manipulating signaling systems that govern plants' responses to environmental signals. Mathematical modeling of plant growth and development predicted reduced plant responses to changing environments when circadian and light signaling pathways were manipulated. We tested this prediction by utilizing a constitutively active allele of the plant photoreceptor phytochrome B, along with disruption of the circadian system via mutation of EARLY FLOWERING3. We found that these manipulations produced plants that are less responsive to light and temperature cues and thus fail to anticipate dawn. These engineered plants have uniform vegetative growth and flowering time, demonstrating how phenotypic plasticity can be limited while maintaining plant productivity. This has significant implications for future agriculture in both open fields and controlled environments.
Collapse
Affiliation(s)
- Martin William Battle
- Plant Science Group, School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Scott Fraser Ewing
- Plant Science Group, School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Cathryn Dickson
- Plant Science Group, School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Joseph Obaje
- Plant Science Group, School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Kristen N Edgeworth
- Danforth Plant Science Center, St. Louis, MO 63132, USA; Department of Biological and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | | | | | - Matthew Alan Jones
- Plant Science Group, School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
38
|
Xu M, Wang YY, Wu Y, Zhou X, Shan Z, Tao K, Qian K, Wang X, Li J, Wu Q, Deng XW, Ling JJ. Green light mediates atypical photomorphogenesis by dual modulation of Arabidopsis phytochromes B and A. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1915-1933. [PMID: 39023402 DOI: 10.1111/jipb.13742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
Although green light (GL) is located in the middle of the visible light spectrum and regulates a series of plant developmental processes, the mechanism by which it regulates seedling development is largely unknown. In this study, we demonstrated that GL promotes atypical photomorphogenesis in Arabidopsis thaliana via the dual regulations of phytochrome B (phyB) and phyA. Although the Pr-to-Pfr conversion rates of phyB and phyA under GL were lower than those under red light (RL) in a fluence rate-dependent and time-dependent manner, long-term treatment with GL induced high Pfr/Pr ratios of phyB and phyA. Moreover, GL induced the formation of numerous small phyB photobodies in the nucleus, resulting in atypical photomorphogenesis, with smaller cotyledon opening angles and longer hypocotyls in seedlings compared to RL. The abundance of phyA significantly decreased after short- and long-term GL treatments. We determined that four major PHYTOCHROME-INTERACTING FACTORs (PIFs: PIF1, PIF3, PIF4, and PIF5) act downstream of phyB in GL-mediated cotyledon opening. In addition, GL plays opposite roles in regulating different PIFs. For example, under continuous GL, the protein levels of all PIFs decreased, whereas the transcript levels of PIF4 and PIF5 strongly increased compared with dark treatment. Taken together, our work provides a detailed molecular framework for understanding the role of the antagonistic regulations of phyB and phyA in GL-mediated atypical photomorphogenesis.
Collapse
Affiliation(s)
- Miqi Xu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yi-Yuan Wang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yujie Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xiuhong Zhou
- Biotechnology Center, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Ziyan Shan
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Kunying Tao
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Kaiqiang Qian
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xuncheng Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jian Li
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Qingqing Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences, and School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Wheat Improvement, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, China
| | - Jun-Jie Ling
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
39
|
Cai K, Zhu S, Jiang Z, Xu K, Sun X, Li X. Biological macromolecules mediated by environmental signals affect flowering regulation in plants: A comprehensive review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108931. [PMID: 39003975 DOI: 10.1016/j.plaphy.2024.108931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Flowering time is a crucial developmental stage in the life cycle of plants, as it determines the reproductive success and overall fitness of the organism. The precise regulation of flowering time is influenced by various internal and external factors, including genetic, environmental, and hormonal cues. This review provided a comprehensive overview of the molecular mechanisms and regulatory pathways of biological macromolecules (e.g. proteins and phytohormone) and environmental factors (e.g. light and temperature) involved in the control of flowering time in plants. We discussed the key proteins and signaling pathways that govern the transition from vegetative growth to reproductive development, highlighting the intricate interplay between genetic networks, environmental cues, and phytohormone signaling. Additionally, we explored the impact of flowering time regulation on plant adaptation, crop productivity, and agricultural practices. Moreover, we summarized the similarities and differences of flowering mechanisms between annual and perennial plants. Understanding the mechanisms underlying flowering time control is not only essential for fundamental plant biology research but also holds great potential for crop improvement and sustainable agriculture.
Collapse
Affiliation(s)
- Kefan Cai
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Siting Zhu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Zeyu Jiang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Kai Xu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Xuepeng Sun
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Xiaolong Li
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
40
|
Jeon J, Rahman MM, Yang HW, Kim J, Gam HJ, Song JY, Jeong SW, Kim JI, Choi MG, Shin DH, Choi G, Shim D, Jung JH, Lee IJ, Jeon JS, Park YI. Modulation of warm temperature-sensitive growth using a phytochrome B dark reversion variant, phyB[G515E], in Arabidopsis and rice. J Adv Res 2024; 63:57-72. [PMID: 37926145 PMCID: PMC11379985 DOI: 10.1016/j.jare.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/19/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023] Open
Abstract
INTRODUCTION Ambient temperature-induced hypocotyl elongation in Arabidopsis seedlings is sensed by the epidermis-localized phytochrome B (phyB) and transduced into auxin biosynthesis via a basic helix-loop-helix transcription factor, phytochrome-interacting factor 4 (PIF4). Once synthesized, auxin travels down from the cotyledons to the hypocotyl, triggering hypocotyl cell elongation. Thus, the phyB-PIF4 module involved in thermosensing and signal transduction is a potential genetic target for engineering warm temperature-insensitive plants. OBJECTIVES This study aims to manipulate warm temperature-induced elongation of plants at the post-translational level using phyB variants with dark reversion, the expression of which is subjected to heat stress. METHODS The thermosensitive growth response of Arabidopsis was manipulated by expressing the single amino acid substitution variant of phyB (phyB[G515E]), which exhibited a lower dark reversion rate than wild-type phyB. Other variants with slow (phyB[G564E]) or rapid (phyB[S584F]) dark reversion or light insensitivity (phyB[G767R]) were also included in this study for comparison. Warming-induced transient expression of phyB variants was achieved using heat shock-inducible promoters. Arabidopsis PHYB[G515E] and PHYB[G564E] were also constitutively expressed in rice in an attempt to manipulate the heat sensitivity of a monocotyledonous plant species. RESULTS At an elevated temperature, Arabidopsis seedlings transiently expressing PHYB[G515E] under the control of a heat shock-inducible promoter exhibited shorter hypocotyls than those expressing PHYB and other PHYB variant genes. This warm temperature-insensitive growth was related to the lowered PIF4 and auxin responses. In addition, transgenic rice seedlings expressing Arabidopsis PHYB[G515E] and PHYB[G564E] showed warm temperature-insensitive shoot growth. CONCLUSION Transient expression of phyB variants with altered dark reversion rates could serve as an effective optogenetic technique for manipulating PIF4-auxin-mediated thermomorphogenic responses in plants.
Collapse
Affiliation(s)
- Jin Jeon
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Md Mizanor Rahman
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hee Wook Yang
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jaewook Kim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ho-Jun Gam
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji Young Song
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seok Won Jeong
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jeong-Il Kim
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Myoung-Goo Choi
- National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Dong-Ho Shin
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Giltsu Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jae-Hoon Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea.
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
41
|
Zhou J, Tang X, Li J, Dang S, Ma H, Zhang Y. Comparative transcriptomic and metabolomic analyses provide insights into the responses to high temperature stress in Alfalfa (Medicago sativa L.). BMC PLANT BIOLOGY 2024; 24:776. [PMID: 39143536 PMCID: PMC11325607 DOI: 10.1186/s12870-024-05494-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
High temperature stress is one of the most severe forms of abiotic stress in alfalfa. With the intensification of climate change, the frequency of high temperature stress will further increase in the future, which will bring challenges to the growth and development of alfalfa. Therefore, untargeted metabolomic and RNA-Seq profiling were implemented to unravel the possible alteration in alfalfa seedlings subjected to different temperature stress (25 ℃, 30 ℃, 35 ℃, 40 ℃) in this study. Results revealed that High temperature stress significantly altered some pivotal transcripts and metabolites. The number of differentially expressed genes (DEGs) markedly up and down-regulated was 1876 and 1524 in T30_vs_CK, 2, 815 and 2667 in T35_vs_CK, and 2115 and 2, 226 in T40_vs_CK, respectively. The number for significantly up-regulated and down-regulated differential metabolites was 173 and 73 in T30_vs_CK, 188 and 57 in T35_vs_CK, and 220 and 66 in T40_vs_CK, respectively. It is worth noting that metabolomics and transcriptomics co-analysis characterized enriched in plant hormone signal transduction (ko04705), glyoxylate and dicarboxylate metabolism (ko00630), from which some differentially expressed genes and differential metabolites participated. In particular, the content of hormone changed significantly under T40 stress, suggesting that maintaining normal hormone synthesis and metabolism may be an important way to improve the HTS tolerance of alfalfa. The qRT-PCR further showed that the expression pattern was similar to the expression abundance in the transcriptome. This study provides a practical and in-depth perspective from transcriptomics and metabolomics in investigating the effects conferred by temperature on plant growth and development, which provided the theoretical basis for breeding heat-resistant alfalfa.
Collapse
Affiliation(s)
- Juan Zhou
- College of Forestry and Prataculture, Ningxia University, Yinchuan, 750021, China
| | - Xueshen Tang
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia, 750021, China
| | - Jiahao Li
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia, 750021, China
| | - Shizhuo Dang
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia, 750021, China
| | - Haimei Ma
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia, 750021, China
| | - Yahong Zhang
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia, 750021, China.
| |
Collapse
|
42
|
Burgie ES, Basore K, Rau MJ, Summers B, Mickles AJ, Grigura V, Fitzpatrick JAJ, Vierstra RD. Signaling by a bacterial phytochrome histidine kinase involves a conformational cascade reorganizing the dimeric photoreceptor. Nat Commun 2024; 15:6853. [PMID: 39127720 DOI: 10.1038/s41467-024-50412-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/09/2024] [Indexed: 08/12/2024] Open
Abstract
Phytochromes (Phys) are a divergent cohort of bili-proteins that detect light through reversible interconversion between dark-adapted Pr and photoactivated Pfr states. While our understandings of downstream events are emerging, it remains unclear how Phys translate light into an interpretable conformational signal. Here, we present models of both states for a dimeric Phy with histidine kinase (HK) activity from the proteobacterium Pseudomonas syringae, which were built from high-resolution cryo-EM maps (2.8-3.4-Å) of the photosensory module (PSM) and its following signaling (S) helix together with lower resolution maps for the downstream output region augmented by RoseTTAFold and AlphaFold structural predictions. The head-to-head models reveal the PSM and its photointerconversion mechanism with strong clarity, while the HK region is interpretable but relatively mobile. Pr/Pfr comparisons show that bilin phototransformation alters PSM architecture culminating in a scissoring motion of the paired S-helices linking the PSMs to the HK bidomains that ends in reorientation of the paired catalytic ATPase modules relative to the phosphoacceptor histidines. This action apparently primes autophosphorylation enroute to phosphotransfer to the cognate DNA-binding response regulator AlgB which drives quorum-sensing behavior through transient association with the photoreceptor. Collectively, these models illustrate how light absorption conformationally translates into accelerated signaling by Phy-type kinases.
Collapse
Affiliation(s)
- E Sethe Burgie
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Bayer Crop Sciences, Chesterfield, MO, USA
| | - Katherine Basore
- Washington University in St. Louis Center for Cellular Imaging, St. Louis, MO, 63130, USA
| | - Michael J Rau
- Washington University in St. Louis Center for Cellular Imaging, St. Louis, MO, 63130, USA
- Bayer Crop Sciences, Chesterfield, MO, USA
| | - Brock Summers
- Washington University in St. Louis Center for Cellular Imaging, St. Louis, MO, 63130, USA
| | - Alayna J Mickles
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Vadim Grigura
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - James A J Fitzpatrick
- Washington University in St. Louis Center for Cellular Imaging, St. Louis, MO, 63130, USA
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Grenzacherstrasse, 124, 4070, Switzerland
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
43
|
Shi Q, Xia Y, Wang Q, Lv K, Yang H, Cui L, Sun Y, Wang X, Tao Q, Song X, Xu D, Xu W, Wang X, Wang X, Kong F, Zhang H, Li B, Li P, Wang H, Li G. Phytochrome B interacts with LIGULELESS1 to control plant architecture and density tolerance in maize. MOLECULAR PLANT 2024; 17:1255-1271. [PMID: 38946140 DOI: 10.1016/j.molp.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/02/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Over the past few decades, significant improvements in maize yield have been largely attributed to increased plant density of upright hybrid varieties rather than increased yield per plant. However, dense planting triggers shade avoidance responses (SARs) that optimize light absorption but impair plant vigor and performance, limiting yield improvement through increasing plant density. In this study, we demonstrated that high-density-induced leaf angle narrowing and stem/stalk elongation are largely dependent on phytochrome B (phyB1/B2), the primary photoreceptor responsible for perceiving red (R) and far-red (FR) light in maize. We found that maize phyB physically interacts with the LIGULELESS1 (LG1), a classical key regulator of leaf angle, to coordinately regulate plant architecture and density tolerance. The abundance of LG1 is significantly increased by phyB under high R:FR light (low density) but rapidly decreases under low R:FR light (high density), correlating with variations in leaf angle and plant height under various densities. In addition, we identified the homeobox transcription factor HB53 as a target co-repressed by both phyB and LG1 but rapidly induced by canopy shade. Genetic and cellular analyses showed that HB53 regulates plant architecture by controlling the elongation and division of ligular adaxial and abaxial cells. Taken together, these findings uncover the phyB-LG1-HB53 regulatory module as a key molecular mechanism governing plant architecture and density tolerance, providing potential genetic targets for breeding maize hybrid varieties suitable for high-density planting.
Collapse
Affiliation(s)
- Qingbiao Shi
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Ying Xia
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Qibin Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Kaiwen Lv
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China
| | - Hengjia Yang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China
| | - Lianzhe Cui
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yue Sun
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xiaofei Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Qing Tao
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xiehai Song
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China
| | - Di Xu
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Wenchang Xu
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xingyun Wang
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Xianglan Wang
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Fanying Kong
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Haisen Zhang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Bosheng Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China
| | - Pinghua Li
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | - Haiyang Wang
- Guandong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China.
| | - Gang Li
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
44
|
Roussin-Léveillée C, Rossi CAM, Castroverde CDM, Moffett P. The plant disease triangle facing climate change: a molecular perspective. TRENDS IN PLANT SCIENCE 2024; 29:895-914. [PMID: 38580544 DOI: 10.1016/j.tplants.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
Variations in climate conditions can dramatically affect plant health and the generation of climate-resilient crops is imperative to food security. In addition to directly affecting plants, it is predicted that more severe climate conditions will also result in greater biotic stresses. Recent studies have identified climate-sensitive molecular pathways that can result in plants being more susceptible to infection under unfavorable conditions. Here, we review how expected changes in climate will impact plant-pathogen interactions, with a focus on mechanisms regulating plant immunity and microbial virulence strategies. We highlight the complex interactions between abiotic and biotic stresses with the goal of identifying components and/or pathways that are promising targets for genetic engineering to enhance adaptation and strengthen resilience in dynamically changing environments.
Collapse
Affiliation(s)
| | - Christina A M Rossi
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada
| | | | - Peter Moffett
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
45
|
Kim H, Lee N, Kim Y, Choi G. The phytochrome-interacting factor genes PIF1 and PIF4 are functionally diversified due to divergence of promoters and proteins. THE PLANT CELL 2024; 36:2778-2797. [PMID: 38593049 PMCID: PMC11289632 DOI: 10.1093/plcell/koae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/19/2024] [Accepted: 03/23/2024] [Indexed: 04/11/2024]
Abstract
Phytochrome-interacting factors (PIFs) are basic helix-loop-helix transcription factors that regulate light responses downstream of phytochromes. In Arabidopsis (Arabidopsis thaliana), 8 PIFs (PIF1-8) regulate light responses, either redundantly or distinctively. Distinctive roles of PIFs may be attributed to differences in mRNA expression patterns governed by promoters or variations in molecular activities of proteins. However, elements responsible for the functional diversification of PIFs have yet to be determined. Here, we investigated the role of promoters and proteins in the functional diversification of PIF1 and PIF4 by analyzing transgenic lines expressing promoter-swapped PIF1 and PIF4, as well as chimeric PIF1 and PIF4 proteins. For seed germination, PIF1 promoter played a major role, conferring dominance to PIF1 gene with a minor contribution from PIF1 protein. Conversely, for hypocotyl elongation under red light, PIF4 protein was the major element conferring dominance to PIF4 gene with the minor contribution from PIF4 promoter. In contrast, both PIF4 promoter and PIF4 protein were required for the dominant role of PIF4 in promoting hypocotyl elongation at high ambient temperatures. Together, our results support that the functional diversification of PIF1 and PIF4 genes resulted from contributions of both promoters and proteins, with their relative importance varying depending on specific light responses.
Collapse
Affiliation(s)
- Hanim Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Nayoung Lee
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Yeojae Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
46
|
Ebrahimi Naghani S, Šmeringai J, Pleskačová B, Dobisová T, Panzarová K, Pernisová M, Robert HS. Integrative phenotyping analyses reveal the relevance of the phyB-PIF4 pathway in Arabidopsis thaliana reproductive organs at high ambient temperature. BMC PLANT BIOLOGY 2024; 24:721. [PMID: 39075366 PMCID: PMC11285529 DOI: 10.1186/s12870-024-05394-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/08/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND The increasing ambient temperature significantly impacts plant growth, development, and reproduction. Uncovering the temperature-regulating mechanisms in plants is of high importance, for increasing our fundamental understanding of plant thermomorphogenesis, for its potential in applied science, and for aiding plant breeders in improving plant thermoresilience. Thermomorphogenesis, the developmental response to warm temperatures, has been primarily studied in seedlings and in the regulation of flowering time. PHYTOCHROME B and PHYTOCHROME-INTERACTING FACTORs (PIFs), particularly PIF4, are key components of this response. However, the thermoresponse of other adult vegetative tissues and reproductive structures has not been systematically evaluated, especially concerning the involvement of phyB and PIFs. RESULTS We screened the temperature responses of the wild type and several phyB-PIF4 pathway Arabidopsis mutant lines in combined and integrative phenotyping platforms for root growth in soil, shoot, inflorescence, and seed. Our findings demonstrate that phyB-PIF4 is generally involved in the relay of temperature signals throughout plant development, including the reproductive stage. Furthermore, we identified correlative responses to high ambient temperature between shoot and root tissues. This integrative and automated phenotyping was complemented by monitoring the changes in transcript levels in reproductive organs. Transcriptomic profiling of the pistils from plants grown under high ambient temperature identified key elements that may provide insight into the molecular mechanisms behind temperature-induced reduced fertilization rate. These include a downregulation of auxin metabolism, upregulation of genes involved auxin signalling, miRNA156 and miRNA160 pathways, and pollen tube attractants. CONCLUSIONS Our findings demonstrate that phyB-PIF4 involvement in the interpretation of temperature signals is pervasive throughout plant development, including processes directly linked to reproduction.
Collapse
Affiliation(s)
- Shekoufeh Ebrahimi Naghani
- Hormonal Crosstalk in Plant Development, Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, 625 00, Czech Republic
| | - Ján Šmeringai
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, 625 00, Czech Republic
- Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic
| | | | | | - Klára Panzarová
- PSI - Photon Systems Instruments, Drasov, 66424, Czech Republic
| | - Markéta Pernisová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, 625 00, Czech Republic
- Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic
| | - Hélène S Robert
- Hormonal Crosstalk in Plant Development, Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic.
| |
Collapse
|
47
|
Praat M, Jiang Z, Earle J, Smeekens S, van Zanten M. Using a thermal gradient table to study plant temperature signalling and response across a temperature spectrum. PLANT METHODS 2024; 20:114. [PMID: 39075474 PMCID: PMC11285400 DOI: 10.1186/s13007-024-01230-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024]
Abstract
Plants must cope with ever-changing temperature conditions in their environment. In many plant species, suboptimal high and low temperatures can induce adaptive mechanisms that allow optimal performance. Thermomorphogenesis is the acclimation to high ambient temperature, whereas cold acclimation refers to the acquisition of cold tolerance following a period of low temperatures. The molecular mechanisms underlying thermomorphogenesis and cold acclimation are increasingly well understood but neither signalling components that have an apparent role in acclimation to both cold and warmth, nor factors determining dose-responsiveness, are currently well defined. This can be explained in part by practical limitations, as applying temperature gradients requires the use of multiple growth conditions simultaneously, usually unavailable in research laboratories. Here we demonstrate that commercially available thermal gradient tables can be used to grow and assess plants over a defined and adjustable steep temperature gradient within one experiment. We describe technical and thermodynamic aspects and provide considerations for plant growth and treatment. We show that plants display the expected morphological, physiological, developmental and molecular responses that are typically associated with high temperature and cold acclimation. This includes temperature dose-response effects on seed germination, hypocotyl elongation, leaf development, hyponasty, rosette growth, temperature marker gene expression, stomatal conductance, chlorophyll content, ion leakage and hydrogen peroxide levels. In conclusion, thermal gradient table systems enable standardized and predictable environments to study plant responses to varying temperature regimes and can be swiftly implemented in research on temperature signalling and response.
Collapse
Affiliation(s)
- Myrthe Praat
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
| | - Zhang Jiang
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
| | - Joe Earle
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
- Present address: Evolutionary Plant Ecophysiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, Groningen, 9747AG, The Netherlands
| | - Sjef Smeekens
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
| | - Martijn van Zanten
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands.
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands.
- Netherlands Plant Eco-Phenotyping Centre, Institute of Environmental Biology, Utrecht University, Padualaan 6, Utrecht, 3584CH, The Netherlands.
| |
Collapse
|
48
|
Leal JL, Milesi P, Hodková E, Zhou Q, James J, Eklund DM, Pyhäjärvi T, Salojärvi J, Lascoux M. Complex Polyploids: Origins, Genomic Composition, and Role of Introgressed Alleles. Syst Biol 2024; 73:392-418. [PMID: 38613229 PMCID: PMC11282369 DOI: 10.1093/sysbio/syae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/18/2023] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Introgression allows polyploid species to acquire new genomic content from diploid progenitors or from other unrelated diploid or polyploid lineages, contributing to genetic diversity and facilitating adaptive allele discovery. In some cases, high levels of introgression elicit the replacement of large numbers of alleles inherited from the polyploid's ancestral species, profoundly reshaping the polyploid's genomic composition. In such complex polyploids, it is often difficult to determine which taxa were the progenitor species and which taxa provided additional introgressive blocks through subsequent hybridization. Here, we use population-level genomic data to reconstruct the phylogenetic history of Betula pubescens (downy birch), a tetraploid species often assumed to be of allopolyploid origin and which is known to hybridize with at least four other birch species. This was achieved by modeling polyploidization and introgression events under the multispecies coalescent and then using an approximate Bayesian computation rejection algorithm to evaluate and compare competing polyploidization models. We provide evidence that B. pubescens is the outcome of an autoploid genome doubling event in the common ancestor of B. pendula and its extant sister species, B. platyphylla, that took place approximately 178,000-188,000 generations ago. Extensive hybridization with B. pendula, B. nana, and B. humilis followed in the aftermath of autopolyploidization, with the relative contribution of each of these species to the B. pubescens genome varying markedly across the species' range. Functional analysis of B. pubescens loci containing alleles introgressed from B. nana identified multiple genes involved in climate adaptation, while loci containing alleles derived from B. humilis revealed several genes involved in the regulation of meiotic stability and pollen viability in plant species.
Collapse
Affiliation(s)
- J Luis Leal
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Pascal Milesi
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, 75237 Uppsala, Sweden
| | - Eva Hodková
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16521 Prague, Czech Republic
| | - Qiujie Zhou
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Jennifer James
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - D Magnus Eklund
- Physiology and Environmental Toxicology, Department of Organismal Biology, Uppsala University, Norbyvägen 18A, 75236 Uppsala, Sweden
| | - Tanja Pyhäjärvi
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, P.O. Box 65 (Viikinkaari 1), 00014 Helsinki, Finland
- Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Jarkko Salojärvi
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, P.O. Box 65 (Viikinkaari 1), 00014 Helsinki, Finland
| | - Martin Lascoux
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, 75237 Uppsala, Sweden
| |
Collapse
|
49
|
Zong W, Guo X, Zhang K, Chen L, Liu YG, Guo J. Photoperiod and temperature synergistically regulate heading date and regional adaptation in rice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3762-3777. [PMID: 38779909 DOI: 10.1093/jxb/erae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
Plants must accurately integrate external environmental signals with their own development to initiate flowering at the appropriate time for reproductive success. Photoperiod and temperature are key external signals that determine flowering time; both are cyclical and periodic, and they are closely related. In this review, we describe photoperiod-sensitive genes that simultaneously respond to temperature signals in rice (Oryza sativa). We introduce the mechanisms by which photoperiod and temperature synergistically regulate heading date and regional adaptation in rice. We also discuss the prospects for designing different combinations of heading date genes and other cold tolerance or thermo-tolerance genes to help rice better adapt to changes in light and temperature via molecular breeding to enhance yield in the future.
Collapse
Affiliation(s)
- Wubei Zong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaotong Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Kai Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jingxin Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
50
|
Jin S, Wei M, Wei Y, Jiang Z. Insights into Plant Sensory Mechanisms under Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:1907. [PMID: 39065434 PMCID: PMC11280238 DOI: 10.3390/plants13141907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
As sessile organisms, plants cannot survive in harmful environments, such as those characterized by drought, flood, heat, cold, nutrient deficiency, and salt or toxic metal stress. These stressors impair plant growth and development, leading to decreased crop productivity. To induce an appropriate response to abiotic stresses, plants must sense the pertinent stressor at an early stage to initiate precise signal transduction. Here, we provide an overview of recent progress in our understanding of the molecular mechanisms underlying plant abiotic stress sensing. Numerous biomolecules have been found to participate in the process of abiotic stress sensing and function as abiotic stress sensors in plants. Based on their molecular structure, these biomolecules can be divided into four groups: Ca2+-permeable channels, receptor-like kinases (RLKs), sphingolipids, and other proteins. This improved knowledge can be used to identify key molecular targets for engineering stress-resilient crops in the field.
Collapse
Affiliation(s)
- Songsong Jin
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (S.J.); (M.W.); (Y.W.)
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Mengting Wei
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (S.J.); (M.W.); (Y.W.)
| | - Yunmin Wei
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (S.J.); (M.W.); (Y.W.)
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhonghao Jiang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (S.J.); (M.W.); (Y.W.)
| |
Collapse
|