1
|
Cortez-Romero CR, Lyu J, Pillai AS, Laganowsky A, Thornton JW. Symmetry facilitated the evolution of heterospecificity and high-order stoichiometry in vertebrate hemoglobin. Proc Natl Acad Sci U S A 2025; 122:e2414756122. [PMID: 39847336 DOI: 10.1073/pnas.2414756122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/04/2024] [Indexed: 01/24/2025] Open
Abstract
Many proteins form paralogous multimers-molecular complexes in which evolutionarily related proteins are arranged into specific quaternary structures. Little is known about the mechanisms by which they acquired their stoichiometry (the number of total subunits in the complex) and heterospecificity (the preference of subunits for their paralogs rather than other copies of the same protein). Here, we use ancestral protein reconstruction and biochemical experiments to study historical increases in stoichiometry and specificity during the evolution of vertebrate hemoglobin (Hb), an α2β2 heterotetramer that evolved from a homodimeric ancestor after a gene duplication. We show that the mechanisms for this evolutionary transition were simple. One hydrophobic substitution in subunit β after the gene duplication was sufficient to cause the ancestral dimer to homotetramerize with high affinity across a new interface. During this same interval, a single-residue deletion in subunit α at the older interface conferred specificity for the heterotetrameric form and the trans-orientation of subunits within it. These sudden transitions in stoichiometry and specificity were possible because the interfaces in Hb are isologous, binding via the same surface patch on interacting subunits, but rotated 180° relative to each other. This architecture amplifies the impacts of individual mutations on stoichiometry and specificity, especially in higher-order complexes, and allows single substitutions to differentially affect heteromeric and homomeric interactions. Our findings suggest that elaborate and specific symmetrical molecular complexes may often evolve via simple genetic and physical mechanisms.
Collapse
Affiliation(s)
| | - Jixing Lyu
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Arvind S Pillai
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637
- Institute of Protein Design, University of Washington, Seattle, WA 98195
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Joseph W Thornton
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| |
Collapse
|
2
|
Cortez-Romero CR, Lyu J, Pillai AS, Laganowsky A, Thornton JW. Symmetry facilitated the evolution of heterospecificity and high-order stoichiometry in vertebrate hemoglobin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604985. [PMID: 39091803 PMCID: PMC11291130 DOI: 10.1101/2024.07.24.604985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Many proteins form paralogous multimers - molecular complexes in which evolutionarily related proteins are arranged into specific quaternary structures. Little is known about the mechanisms by which they acquired their stoichiometry (the number of total subunits in the complex) and heterospecificity (the preference of subunits for their paralogs rather than other copies of the same protein). Here we use ancestral protein reconstruction and biochemical experiments to study historical increases in stoichiometry and specificity during the evolution of vertebrate hemoglobin (Hb), aα 2 β 2 heterotetramer that evolved from a homodimeric ancestor after a gene duplication. We show that the mechanisms for this evolutionary transition were simple. One hydrophobic substitution in subunit β after the gene duplication was sufficient to cause the ancestral dimer to homotetramerize with high affinity across a new interface. During this same interval, a single-residue deletion in subunit α at the older interface conferred specificity for the heterotetrameric form and the trans-orientation of subunits within it. These sudden transitions in stoichiometry and specificity were possible because the interfaces in Hb are isologous - involving the same surface patch on interacting subunits, rotated 180° relative to each other. This architecture amplifies the impacts of individual mutations on stoichiometry and specificity, especially in higher-order complexes, and allows single substitutions to differentially affect heteromeric vs homomeric interactions. Our findings suggest that elaborate and specific symmetrical molecular complexes may often evolve via simple genetic and physical mechanisms.
Collapse
Affiliation(s)
| | - Jixing Lyu
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | - Arvind S Pillai
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, 60637
- Institute of Protein Design, University of Washington, Seattle, WA, 98195
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | - Joseph W Thornton
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, 60637
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637
| |
Collapse
|
3
|
Peters C, Haslbeck M, Buchner J. Catchers of folding gone awry: a tale of small heat shock proteins. Trends Biochem Sci 2024; 49:1063-1078. [PMID: 39271417 DOI: 10.1016/j.tibs.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024]
Abstract
Small heat shock proteins (sHsps) are an important part of the cellular system maintaining protein homeostasis under physiological and stress conditions. As molecular chaperones, they form complexes with different non-native proteins in an ATP-independent manner. Many sHsps populate ensembles of energetically similar but different-sized oligomers. Regulation of chaperone activity occurs by changing the equilibrium of these ensembles. This makes sHsps a versatile and adaptive system for trapping non-native proteins in complexes, allowing recycling with the help of ATP-dependent chaperones. In this review, we discuss progress in our understanding of the structural principles of sHsp oligomers and their functional principles, as well as their roles in aging and eye lens transparency.
Collapse
Affiliation(s)
- Carsten Peters
- School of Natural Sciences, and Department Bioscience, Center for Functional Protein Assemblies, Technical University Munich, Ernst-Otto-Fischer Str. 8, 85748 Garching, Germany
| | - Martin Haslbeck
- School of Natural Sciences, and Department Bioscience, Center for Functional Protein Assemblies, Technical University Munich, Ernst-Otto-Fischer Str. 8, 85748 Garching, Germany.
| | - Johannes Buchner
- School of Natural Sciences, and Department Bioscience, Center for Functional Protein Assemblies, Technical University Munich, Ernst-Otto-Fischer Str. 8, 85748 Garching, Germany.
| |
Collapse
|
4
|
Yan H, Du M, Ding J, Song D, Ma W, Li Y. Pan-Genome-Wide Investigation and Co-Expression Network Analysis of HSP20 Gene Family in Maize. Int J Mol Sci 2024; 25:11550. [PMID: 39519102 PMCID: PMC11546149 DOI: 10.3390/ijms252111550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Heat shock protein 20 (HSP20) is a diverse and functionally important protein family that plays a crucial role in plants' tolerance to various abiotic stresses. In this study, we systematically analyzed the structural and functional characteristics of the HSP20 gene family within the Zea pan-genome. By identifying 56 HSP20 pan-genes, we revealed the variation in the number of these genes across different maize inbreds or relatives. Among those 56 genes, only 31 are present in more than 52 inbreds or relatives. Further phylogenetic analysis classified these genes into four major groups (Class A, B, C, D) and explored their diversity in subcellular localization, physicochemical properties, and the terminal structures of those HSP20s. Through collinearity analysis and Ka/Ks ratio calculations, we found that most HSP20 genes underwent purifying selection during maize domestication, although a few genes showed signs of positive selection pressure. Additionally, expression analysis showed that several HSP20 genes were significantly upregulated under high temperatures, particularly in tassels and leaves. Co-expression network analysis revealed that HSP20 genes were significantly enriched in GO terms related to environmental stress responses, suggesting that HSP20 genes not only play key roles in heat stress but may also be involved in regulating various other biological processes, such as secondary metabolism and developmental processes. These findings expand our understanding of the functions of the maize HSP20 family and provide new insights for further research into maize's response mechanisms to environmental stresses.
Collapse
Affiliation(s)
| | | | | | | | | | - Yubin Li
- College of Agronomy, Qingdao Agricultural University, Qingdao 266000, China
| |
Collapse
|
5
|
Boone BA, Mendoza CP, Behrendt NJ, Jacobsen SE. α-Crystalline Domains and Intrinsically Disordered Regions Can Work in Parallel to Induce Accumulation of MBD6 at Chromocenters in Arabidopsis thaliana. EPIGENOMES 2024; 8:33. [PMID: 39311135 PMCID: PMC11417779 DOI: 10.3390/epigenomes8030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/06/2024] [Accepted: 08/23/2024] [Indexed: 09/26/2024] Open
Abstract
Proteins are localized and concentrated at cellular and genomic locations for specific and efficient functions. Efforts to understand protein accumulation in eukaryotic organisms have primarily focused on multivalent interactions between intrinsically disordered regions (IDRs) as mediators of protein condensation. We previously showed that α-crystalline domain (ACD) proteins 15 (ACD15) and 21 (ACD21) were required for multimerization and the accumulation of gene-silencing methyl-CpG-binding domain protein 6 (MBD6) at chromocenters in Arabidopsis thaliana. Here, we demonstrate that ACDs and IDRs can act as parallel mechanisms, facilitating higher-order MBD6 assemblies. Using human IDRs known to be important for protein accumulation, we replicated and enhanced the accumulation of MBD6 at chromocenters. In addition, IDRs fused to MBD6 could substitute for ACD function and partially reconstitute the MBD6 gene-silencing function. However, the accumulation of MBD6 by IDRs still required ACD15 and ACD21 for full effect. These results establish that ACD-mediated protein accumulation is a mechanism that can function similarly to and together with IDR-mediated mechanisms.
Collapse
Affiliation(s)
- Brandon A. Boone
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; (B.A.B.); (C.P.M.); (N.J.B.)
| | - Cristy P. Mendoza
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; (B.A.B.); (C.P.M.); (N.J.B.)
| | - Noah J. Behrendt
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; (B.A.B.); (C.P.M.); (N.J.B.)
| | - Steven E. Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; (B.A.B.); (C.P.M.); (N.J.B.)
- Eli and Edyth Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
- Howard Hughes Medical Institute (HHMI), University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Cisneros AF, Nielly-Thibault L, Mallik S, Levy ED, Landry CR. Mutational biases favor complexity increases in protein interaction networks after gene duplication. Mol Syst Biol 2024; 20:549-572. [PMID: 38499674 PMCID: PMC11066126 DOI: 10.1038/s44320-024-00030-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
Biological systems can gain complexity over time. While some of these transitions are likely driven by natural selection, the extent to which they occur without providing an adaptive benefit is unknown. At the molecular level, one example is heteromeric complexes replacing homomeric ones following gene duplication. Here, we build a biophysical model and simulate the evolution of homodimers and heterodimers following gene duplication using distributions of mutational effects inferred from available protein structures. We keep the specific activity of each dimer identical, so their concentrations drift neutrally without new functions. We show that for more than 60% of tested dimer structures, the relative concentration of the heteromer increases over time due to mutational biases that favor the heterodimer. However, allowing mutational effects on synthesis rates and differences in the specific activity of homo- and heterodimers can limit or reverse the observed bias toward heterodimers. Our results show that the accumulation of more complex protein quaternary structures is likely under neutral evolution, and that natural selection would be needed to reverse this tendency.
Collapse
Affiliation(s)
- Angel F Cisneros
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, G1V 0A6, Québec, Canada
- Institut de biologie intégrative et des systèmes, Université Laval, G1V 0A6, Québec, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, G1V 0A6, Québec, Canada
- Centre de recherche sur les données massives, Université Laval, G1V 0A6, Québec, Canada
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Lou Nielly-Thibault
- Institut de biologie intégrative et des systèmes, Université Laval, G1V 0A6, Québec, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, G1V 0A6, Québec, Canada
- Centre de recherche sur les données massives, Université Laval, G1V 0A6, Québec, Canada
- Département de biologie, Faculté des sciences et de génie, Université Laval, G1V 0A6, Québec, Canada
| | - Saurav Mallik
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Emmanuel D Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Christian R Landry
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, G1V 0A6, Québec, Canada.
- Institut de biologie intégrative et des systèmes, Université Laval, G1V 0A6, Québec, Canada.
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, G1V 0A6, Québec, Canada.
- Centre de recherche sur les données massives, Université Laval, G1V 0A6, Québec, Canada.
- Département de biologie, Faculté des sciences et de génie, Université Laval, G1V 0A6, Québec, Canada.
| |
Collapse
|
7
|
Boone BA, Ichino L, Wang S, Gardiner J, Yun J, Jami-Alahmadi Y, Sha J, Mendoza CP, Steelman BJ, van Aardenne A, Kira-Lucas S, Trentchev I, Wohlschlegel JA, Jacobsen SE. ACD15, ACD21, and SLN regulate the accumulation and mobility of MBD6 to silence genes and transposable elements. SCIENCE ADVANCES 2023; 9:eadi9036. [PMID: 37967186 PMCID: PMC10651127 DOI: 10.1126/sciadv.adi9036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023]
Abstract
DNA methylation mediates silencing of transposable elements and genes in part via recruitment of the Arabidopsis MBD5/6 complex, which contains the methyl-CpG binding domain (MBD) proteins MBD5 and MBD6, and the J-domain containing protein SILENZIO (SLN). Here, we characterize two additional complex members: α-crystalline domain (ACD) containing proteins ACD15 and ACD21. We show that they are necessary for gene silencing, bridge SLN to the complex, and promote higher-order multimerization of MBD5/6 complexes within heterochromatin. These complexes are also highly dynamic, with the mobility of MBD5/6 complexes regulated by the activity of SLN. Using a dCas9 system, we demonstrate that tethering the ACDs to an ectopic site outside of heterochromatin can drive a massive accumulation of MBD5/6 complexes into large nuclear bodies. These results demonstrate that ACD15 and ACD21 are critical components of the gene-silencing MBD5/6 complex and act to drive the formation of higher-order, dynamic assemblies at CG methylation (meCG) sites.
Collapse
Affiliation(s)
- Brandon A. Boone
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Lucia Ichino
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Shuya Wang
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jason Gardiner
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jaewon Yun
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jihui Sha
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Cristy P. Mendoza
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Bailey J. Steelman
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Aliya van Aardenne
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sophia Kira-Lucas
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Isabelle Trentchev
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - James A. Wohlschlegel
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Steven E. Jacobsen
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edyth Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Howard Hughes Medical Institute (HHMI), University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Boone BA, Ichino L, Wang S, Gardiner J, Yun J, Jami-Alahmadi Y, Sha J, Mendoza CP, Steelman BJ, van Aardenne A, Kira-Lucas S, Trentchev I, Wohlschlegel JA, Jacobsen SE. ACD15, ACD21 and SLN regulate accumulation and mobility of MBD6 to silence genes and transposable elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554494. [PMID: 37662299 PMCID: PMC10473691 DOI: 10.1101/2023.08.23.554494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
DNA methylation mediates silencing of transposable elements and genes in part via recruitment of the Arabidopsis MBD5/6 complex, which contains the methyl-CpG-binding domain (MBD) proteins MBD5 and MBD6, and the J-domain containing protein SILENZIO (SLN). Here we characterize two additional complex members: α-crystalline domain containing proteins ACD15 and ACD21. We show that they are necessary for gene silencing, bridge SLN to the complex, and promote higher order multimerization of MBD5/6 complexes within heterochromatin. These complexes are also highly dynamic, with the mobility of complex components regulated by the activity of SLN. Using a dCas9 system, we demonstrate that tethering the ACDs to an ectopic site outside of heterochromatin can drive massive accumulation of MBD5/6 complexes into large nuclear bodies. These results demonstrate that ACD15 and ACD21 are critical components of gene silencing complexes that act to drive the formation of higher order, dynamic assemblies.
Collapse
Affiliation(s)
- Brandon A. Boone
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- These authors contributed equally
| | - Lucia Ichino
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- These authors contributed equally
| | - Shuya Wang
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jason Gardiner
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Translational Plant Biology, Department of Biology, Utrecht University, 3584CH, Utrecht, The Netherlands
| | - Jaewon Yun
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jihui Sha
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Cristy P. Mendoza
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Bailey J. Steelman
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Aliya van Aardenne
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sophia Kira-Lucas
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Isabelle Trentchev
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - James A. Wohlschlegel
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Steven E. Jacobsen
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edyth Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Howard Hughes Medical Institute (HHMI), UCLA; Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Chmelova K, Gao T, Polak M, Schenkmayerova A, Croll TI, Shaikh TR, Skarupova J, Chaloupkova R, Diederichs K, Read RJ, Damborsky J, Novacek J, Marek M. Multimeric structure of a subfamily III haloalkane dehalogenase-like enzyme solved by combination of cryo-EM and x-ray crystallography. Protein Sci 2023; 32:e4751. [PMID: 37574754 PMCID: PMC10503415 DOI: 10.1002/pro.4751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/25/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
Haloalkane dehalogenase (HLD) enzymes employ an SN 2 nucleophilic substitution mechanism to erase halogen substituents in diverse organohalogen compounds. Subfamily I and II HLDs are well-characterized enzymes, but the mode and purpose of multimerization of subfamily III HLDs are unknown. Here we probe the structural organization of DhmeA, a subfamily III HLD-like enzyme from the archaeon Haloferax mediterranei, by combining cryo-electron microscopy (cryo-EM) and x-ray crystallography. We show that full-length wild-type DhmeA forms diverse quaternary structures, ranging from small oligomers to large supramolecular ring-like assemblies of various sizes and symmetries. We optimized sample preparation steps, enabling three-dimensional reconstructions of an oligomeric species by single-particle cryo-EM. Moreover, we engineered a crystallizable mutant (DhmeAΔGG ) that provided diffraction-quality crystals. The 3.3 Å crystal structure reveals that DhmeAΔGG forms a ring-like 20-mer structure with outer and inner diameter of ~200 and ~80 Å, respectively. An enzyme homodimer represents a basic repeating building unit of the crystallographic ring. Three assembly interfaces (dimerization, tetramerization, and multimerization) were identified to form the supramolecular ring that displays a negatively charged exterior, while its interior part harboring catalytic sites is positively charged. Localization and exposure of catalytic machineries suggest a possible processing of large negatively charged macromolecular substrates.
Collapse
Affiliation(s)
- Klaudia Chmelova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
- International Clinical Research CenterSt. Anne's University Hospital BrnoBrnoCzech Republic
| | - Tadeja Gao
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
- International Clinical Research CenterSt. Anne's University Hospital BrnoBrnoCzech Republic
| | - Martin Polak
- Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
| | - Andrea Schenkmayerova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
- International Clinical Research CenterSt. Anne's University Hospital BrnoBrnoCzech Republic
| | - Tristan I. Croll
- Department of Hematology, Cambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | - Tanvir R. Shaikh
- Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
- Institute of NeuropathologyUniversity Medical Center GöttingenGöttingenGermany
| | - Jana Skarupova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Radka Chaloupkova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
- International Clinical Research CenterSt. Anne's University Hospital BrnoBrnoCzech Republic
| | - Kay Diederichs
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | - Randy J. Read
- Department of Hematology, Cambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
- International Clinical Research CenterSt. Anne's University Hospital BrnoBrnoCzech Republic
| | - Jiri Novacek
- Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
| | - Martin Marek
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
- International Clinical Research CenterSt. Anne's University Hospital BrnoBrnoCzech Republic
| |
Collapse
|
10
|
Goldtzvik Y, Sen N, Lam SD, Orengo C. Protein diversification through post-translational modifications, alternative splicing, and gene duplication. Curr Opin Struct Biol 2023; 81:102640. [PMID: 37354790 DOI: 10.1016/j.sbi.2023.102640] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/05/2023] [Accepted: 05/24/2023] [Indexed: 06/26/2023]
Abstract
Proteins provide the basis for cellular function. Having multiple versions of the same protein within a single organism provides a way of regulating its activity or developing novel functions. Post-translational modifications of proteins, by means of adding/removing chemical groups to amino acids, allow for a well-regulated and controlled way of generating functionally distinct protein species. Alternative splicing is another method with which organisms possibly generate new isoforms. Additionally, gene duplication events throughout evolution generate multiple paralogs of the same genes, resulting in multiple versions of the same protein within an organism. In this review, we discuss recent advancements in the study of these three methods of protein diversification and provide illustrative examples of how they affect protein structure and function.
Collapse
Affiliation(s)
- Yonathan Goldtzvik
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Neeladri Sen
- Department of Structural and Molecular Biology, University College London, London, United Kingdom. https://twitter.com/@NeeladriSen
| | - Su Datt Lam
- Department of Structural and Molecular Biology, University College London, London, United Kingdom; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Christine Orengo
- Department of Structural and Molecular Biology, University College London, London, United Kingdom.
| |
Collapse
|
11
|
Strauch A, Rossa B, Köhler F, Haeussler S, Mühlhofer M, Rührnößl F, Körösy C, Bushman Y, Conradt B, Haslbeck M, Weinkauf S, Buchner J. The permanently chaperone-active small heat shock protein Hsp17 from Caenorhabditis elegans exhibits topological separation of its N-terminal regions. J Biol Chem 2022; 299:102753. [PMID: 36442512 PMCID: PMC9800568 DOI: 10.1016/j.jbc.2022.102753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Small Heat shock proteins (sHsps) are a family of molecular chaperones that bind nonnative proteins in an ATP-independent manner. Caenorhabditis elegans encodes 16 different sHsps, among them Hsp17, which is evolutionarily distinct from other sHsps in the nematode. The structure and mechanism of Hsp17 and how these may differ from other sHsps remain unclear. Here, we find that Hsp17 has a distinct expression pattern, structural organization, and chaperone function. Consistent with its presence under nonstress conditions, and in contrast to many other sHsps, we determined that Hsp17 is a mono-disperse, permanently active chaperone in vitro, which interacts with hundreds of different C. elegans proteins under physiological conditions. Additionally, our cryo-EM structure of Hsp17 reveals that in the 24-mer complex, 12 N-terminal regions are involved in its chaperone function. These flexible regions are located on the outside of the spherical oligomer, whereas the other 12 N-terminal regions are engaged in stabilizing interactions in its interior. This allows the same region in Hsp17 to perform different functions depending on the topological context. Taken together, our results reveal structural and functional features that further define the structural basis of permanently active sHsps.
Collapse
Affiliation(s)
- Annika Strauch
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Benjamin Rossa
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Fabian Köhler
- Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Simon Haeussler
- Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Moritz Mühlhofer
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Florian Rührnößl
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Caroline Körösy
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany; Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands
| | - Yevheniia Bushman
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Barbara Conradt
- Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Martin Haslbeck
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Sevil Weinkauf
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany.
| |
Collapse
|
12
|
Hu C, Yang J, Qi Z, Wu H, Wang B, Zou F, Mei H, Liu J, Wang W, Liu Q. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm (Beijing) 2022; 3:e161. [PMID: 35928554 PMCID: PMC9345296 DOI: 10.1002/mco2.161] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
The heat shock proteins (HSPs) are ubiquitous and conserved protein families in both prokaryotic and eukaryotic organisms, and they maintain cellular proteostasis and protect cells from stresses. HSP protein families are classified based on their molecular weights, mainly including large HSPs, HSP90, HSP70, HSP60, HSP40, and small HSPs. They function as molecular chaperons in cells and work as an integrated network, participating in the folding of newly synthesized polypeptides, refolding metastable proteins, protein complex assembly, dissociating protein aggregate dissociation, and the degradation of misfolded proteins. In addition to their chaperone functions, they also play important roles in cell signaling transduction, cell cycle, and apoptosis regulation. Therefore, malfunction of HSPs is related with many diseases, including cancers, neurodegeneration, and other diseases. In this review, we describe the current understandings about the molecular mechanisms of the major HSP families including HSP90/HSP70/HSP60/HSP110 and small HSPs, how the HSPs keep the protein proteostasis and response to stresses, and we also discuss their roles in diseases and the recent exploration of HSP related therapy and diagnosis to modulate diseases. These research advances offer new prospects of HSPs as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Chen Hu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Jing Yang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Ziping Qi
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Hong Wu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Beilei Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Fengming Zou
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Husheng Mei
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
- Precision Medicine Research Laboratory of Anhui ProvinceHefeiAnhuiP. R. China
| |
Collapse
|
13
|
Mallik S, Tawfik DS, Levy ED. How gene duplication diversifies the landscape of protein oligomeric state and function. Curr Opin Genet Dev 2022; 76:101966. [PMID: 36007298 PMCID: PMC9548406 DOI: 10.1016/j.gde.2022.101966] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022]
Abstract
Oligomeric proteins are central to cellular life and the duplication and divergence of their genes is a key driver of evolutionary innovations. The duplication of a gene coding for an oligomeric protein has numerous possible outcomes, which motivates questions on the relationship between structural and functional divergence. How do protein oligomeric states diversify after gene duplication? In the simple case of duplication of a homo-oligomeric protein gene, what properties can influence the fate of descendant paralogs toward forming independent homomers or maintaining their interaction as a complex? Furthermore, how are functional innovations associated with the diversification of oligomeric states? Here, we review recent literature and present specific examples in an attempt to illustrate and answer these questions.
Collapse
Affiliation(s)
- Saurav Mallik
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Dan S Tawfik
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Emmanuel D Levy
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
14
|
Wu R, Metternich JB, Tiwari P, Benzenberg LR, Harrison JA, Liu Q, Zenobi R. Structural Studies of a Stapled Peptide with Native Ion Mobility-Mass Spectrometry and Transition Metal Ion Förster Resonance Energy Transfer in the Gas Phase. J Am Chem Soc 2022; 144:14441-14445. [PMID: 35943275 DOI: 10.1021/jacs.2c02776] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Native mass spectrometry has emerged as an important tool for gas-phase structural biology. However, the conformations that a biomolecular ion adopts in the gas phase can differ from those found in solution. Herein, we report a synergistic, native ion mobility-mass spectrometry (IM-MS) and transition metal ion Förster resonance energy transfer (tmFRET)-based approach to probe the gas-phase ion structures of a nonstapled peptide (nsp; Ac-CAARAAHAAAHARARA-NH2) and a stapled peptide (sp; Ac-CXARAXHAAAHARARA-NH2). The stapled peptide contains a single hydrocarbon chain connecting the peptide backbone in the i and i + 4 positions via a Grubbs ring-closure metathesis. Fluorescence lifetime measurements indicated that the Cu-bound complexes of carboxyrhodamine 6g (crh6g)-labeled stapled peptide (sp-crh6g) had a shorter donor-acceptor distance (rDA) than the labeled nonstapled peptide (nsp-crh6g). Experimental collision cross-section (CCS) values were then determined by native IM-MS, which could separate the conformations of Cu-bound complexes of nsp-crh6g and sp-crh6g. Finally, the experimental CCS (i.e., shape) and rDA (i.e., distance) values were used as constraints for computational studies, which unambiguously revealed how a staple reduces the elongation of the peptide ions in the gas phase. This study demonstrates the superiority of combining native IM-MS, tmFRET, and computational studies to investigate the structure of biomolecular ions.
Collapse
Affiliation(s)
- Ri Wu
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Jonas B Metternich
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Prince Tiwari
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Lukas R Benzenberg
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Julian A Harrison
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Qinlei Liu
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Renato Zenobi
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
15
|
Li Y, Zhang R, Wang C, Forouhar F, Clarke OB, Vorobiev S, Singh S, Montelione GT, Szyperski T, Xu Y, Hunt JF. Oligomeric interactions maintain active-site structure in a noncooperative enzyme family. EMBO J 2022; 41:e108368. [PMID: 35801308 DOI: 10.15252/embj.2021108368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/07/2022] [Accepted: 04/16/2022] [Indexed: 11/09/2022] Open
Abstract
The evolutionary benefit accounting for widespread conservation of oligomeric structures in proteins lacking evidence of intersubunit cooperativity remains unclear. Here, crystal and cryo-EM structures, and enzymological data, demonstrate that a conserved tetramer interface maintains the active-site structure in one such class of proteins, the short-chain dehydrogenase/reductase (SDR) superfamily. Phylogenetic comparisons support a significantly longer polypeptide being required to maintain an equivalent active-site structure in the context of a single subunit. Oligomerization therefore enhances evolutionary fitness by reducing the metabolic cost of enzyme biosynthesis. The large surface area of the structure-stabilizing oligomeric interface yields a synergistic gain in fitness by increasing tolerance to activity-enhancing yet destabilizing mutations. We demonstrate that two paralogous SDR superfamily enzymes with different specificities can form mixed heterotetramers that combine their individual enzymological properties. This suggests that oligomerization can also diversify the functions generated by a given metabolic investment, enhancing the fitness advantage provided by this architectural strategy.
Collapse
Affiliation(s)
- Yaohui Li
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Department of Biological Sciences, 702 Sherman Fairchild Center, MC2434, Columbia University, New York, NY, USA
| | - Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China
| | - Chi Wang
- Department of Biological Sciences, 702 Sherman Fairchild Center, MC2434, Columbia University, New York, NY, USA.,Cryo-Electron Microscopy Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Farhad Forouhar
- Department of Biological Sciences, 702 Sherman Fairchild Center, MC2434, Columbia University, New York, NY, USA.,Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics and Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sergey Vorobiev
- Department of Biological Sciences, 702 Sherman Fairchild Center, MC2434, Columbia University, New York, NY, USA
| | - Shikha Singh
- Department of Biological Sciences, 702 Sherman Fairchild Center, MC2434, Columbia University, New York, NY, USA
| | - Gaetano T Montelione
- Department of Chemistry & Chemical Biology and Center for Biotechnology & Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Thomas Szyperski
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY, USA
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China
| | - John F Hunt
- Department of Biological Sciences, 702 Sherman Fairchild Center, MC2434, Columbia University, New York, NY, USA
| |
Collapse
|
16
|
Allison TM, Degiacomi MT, Marklund EG, Jovine L, Elofsson A, Benesch JLP, Landreh M. Complementing machine learning‐based structure predictions with native mass spectrometry. Protein Sci 2022; 31:e4333. [PMID: 35634779 PMCID: PMC9123603 DOI: 10.1002/pro.4333] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/11/2022]
Abstract
The advent of machine learning‐based structure prediction algorithms such as AlphaFold2 (AF2) and RoseTTa Fold have moved the generation of accurate structural models for the entire cellular protein machinery into the reach of the scientific community. However, structure predictions of protein complexes are based on user‐provided input and may require experimental validation. Mass spectrometry (MS) is a versatile, time‐effective tool that provides information on post‐translational modifications, ligand interactions, conformational changes, and higher‐order oligomerization. Using three protein systems, we show that native MS experiments can uncover structural features of ligand interactions, homology models, and point mutations that are undetectable by AF2 alone. We conclude that machine learning can be complemented with MS to yield more accurate structural models on a small and large scale.
Collapse
Affiliation(s)
- Timothy M. Allison
- Biomolecular Interaction Centre, School of Physical and Chemical Sciences University of Canterbury Christchurch New Zealand
| | | | | | - Luca Jovine
- Department of Biosciences and Nutrition Karolinska Institutet Huddinge Sweden
| | - Arne Elofsson
- Science for Life Laboratory and Department of Biochemistry and Biophysics Stockholm University Solna Sweden
| | | | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology Karolinska Institutet – Biomedicum Stockholm Sweden
| |
Collapse
|
17
|
Grabarics M, Lettow M, Kirschbaum C, Greis K, Manz C, Pagel K. Mass Spectrometry-Based Techniques to Elucidate the Sugar Code. Chem Rev 2022; 122:7840-7908. [PMID: 34491038 PMCID: PMC9052437 DOI: 10.1021/acs.chemrev.1c00380] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Indexed: 12/22/2022]
Abstract
Cells encode information in the sequence of biopolymers, such as nucleic acids, proteins, and glycans. Although glycans are essential to all living organisms, surprisingly little is known about the "sugar code" and the biological roles of these molecules. The reason glycobiology lags behind its counterparts dealing with nucleic acids and proteins lies in the complexity of carbohydrate structures, which renders their analysis extremely challenging. Building blocks that may differ only in the configuration of a single stereocenter, combined with the vast possibilities to connect monosaccharide units, lead to an immense variety of isomers, which poses a formidable challenge to conventional mass spectrometry. In recent years, however, a combination of innovative ion activation methods, commercialization of ion mobility-mass spectrometry, progress in gas-phase ion spectroscopy, and advances in computational chemistry have led to a revolution in mass spectrometry-based glycan analysis. The present review focuses on the above techniques that expanded the traditional glycomics toolkit and provided spectacular insight into the structure of these fascinating biomolecules. To emphasize the specific challenges associated with them, major classes of mammalian glycans are discussed in separate sections. By doing so, we aim to put the spotlight on the most important element of glycobiology: the glycans themselves.
Collapse
Affiliation(s)
- Márkó Grabarics
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Maike Lettow
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Carla Kirschbaum
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kim Greis
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Christian Manz
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kevin Pagel
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| |
Collapse
|
18
|
Giska F, Mariappan M, Bhattacharyya M, Gupta K. Deciphering the molecular organization of GET pathway chaperones through native mass spectrometry. Biophys J 2022; 121:1289-1298. [PMID: 35189106 PMCID: PMC9034188 DOI: 10.1016/j.bpj.2022.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 02/15/2022] [Indexed: 11/02/2022] Open
Abstract
Get3/4/5 chaperone complex is responsible for targeting C-terminal tail-anchored membrane proteins to the endoplasmic reticulum. Despite the availability of several crystal structures of independent proteins and partial structures of subcomplexes, different models of oligomeric states and structural organization have been proposed for the protein complexes involved. Here, using native mass spectrometry (Native-MS), coupled with intact dissociation, we show that Get4/5 exclusively forms a tetramer using both Get5/5 and a novel Get4/4 dimerization interface. Addition of Get3 to this leads to a hexameric (Get3)2-(Get4)2-(Get5)2 complex with closed-ring cyclic architecture. We further validate our claims through molecular modeling and mutational abrogation of the proposed interfaces. Native-MS has become a principal tool to determine the state of oligomeric organization of proteins. The work demonstrates that for multiprotein complexes, native-MS, coupled with molecular modeling and mutational perturbation, can provide an alternative route to render a detailed view of both the oligomeric states as well as the molecular interfaces involved. This is especially useful for large multiprotein complexes with large unstructured domains that make it recalcitrant to conventional structure determination approaches.
Collapse
Affiliation(s)
- Fabian Giska
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut
| | - Malaiyalam Mariappan
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut
| | | | - Kallol Gupta
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut.
| |
Collapse
|
19
|
Karamanos TK, Clore GM. Large Chaperone Complexes Through the Lens of Nuclear Magnetic Resonance Spectroscopy. Annu Rev Biophys 2022; 51:223-246. [PMID: 35044800 DOI: 10.1146/annurev-biophys-090921-120150] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Molecular chaperones are the guardians of the proteome inside the cell. Chaperones recognize and bind unfolded or misfolded substrates, thereby preventing further aggregation; promoting correct protein folding; and, in some instances, even disaggregating already formed aggregates. Chaperones perform their function by means of an array of weak protein-protein interactions that take place over a wide range of timescales and are therefore invisible to structural techniques dependent upon the availability of highly homogeneous samples. Nuclear magnetic resonance (NMR) spectroscopy, however, is ideally suited to study dynamic, rapidly interconverting conformational states and protein-protein interactions in solution, even if these involve a high-molecular-weight component. In this review, we give a brief overview of the principles used by chaperones to bind their client proteins and describe NMR methods that have emerged as valuable tools to probe chaperone-substrate and chaperone-chaperone interactions. We then focus on a few systems for which the application of these methods has greatly increased our understanding of the mechanisms underlying chaperone functions. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Theodoros K Karamanos
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom;
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
20
|
Kiss-Szemán AJ, Stráner P, Jákli I, Hosogi N, Harmat V, Menyhárd DK, Perczel A. Cryo-EM structure of acylpeptide hydrolase reveals substrate selection by multimerization and a multi-state serine-protease triad. Chem Sci 2022; 13:7132-7142. [PMID: 35799812 PMCID: PMC9214879 DOI: 10.1039/d2sc02276a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/09/2022] [Indexed: 12/03/2022] Open
Abstract
The first structure of tetrameric mammalian acylaminoacyl peptidase, an enzyme that functions as an upstream regulator of the proteasome through the removal of terminal N-acetylated residues from its protein substrates, was determined by cryo-EM and further elucidated by MD simulations. Self-association results in a toroid-shaped quaternary structure, guided by an amyloidogenic β-edge and unique inserts. With a Pro introduced into its central β-sheet, sufficient conformational freedom is awarded to the segment containing the catalytic Ser587 that the serine protease catalytic triad alternates between active and latent states. Active site flexibility suggests that the dual function of catalysis and substrate selection are fulfilled by a novel mechanism: substrate entrance is regulated by flexible loops creating a double-gated channel system, while binding of the substrate to the active site is required for stabilization of the catalytic apparatus – as a second filter before hydrolysis. The structure not only underlines that within the family of S9 proteases homo-multimerization acts as a crucial tool for substrate selection, but it will also allow drug design targeting of the ubiquitin-proteasome system. The structure of tetrameric mammalian acylaminoacyl peptidase – a key upstream regulator of the proteasome – was determined by cryo-EM (and elucidated by MD), showing a “shutters-and-channels” substrate selection apparatus created by oligomerization.![]()
Collapse
Affiliation(s)
- Anna J. Kiss-Szemán
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest – 1117, Hungary
| | - Pál Stráner
- MTA-ELTE Protein Modelling Research Group, Eötvös Loránd Research Network, Budapest – 1117, Hungary
| | - Imre Jákli
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest – 1117, Hungary
- MTA-ELTE Protein Modelling Research Group, Eötvös Loránd Research Network, Budapest – 1117, Hungary
| | - Naoki Hosogi
- EM Application Department, EM Business Unit, JEOL Ltd, Tokyo 196-8556, Japan
| | - Veronika Harmat
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest – 1117, Hungary
- MTA-ELTE Protein Modelling Research Group, Eötvös Loránd Research Network, Budapest – 1117, Hungary
| | - Dóra K. Menyhárd
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest – 1117, Hungary
- MTA-ELTE Protein Modelling Research Group, Eötvös Loránd Research Network, Budapest – 1117, Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest – 1117, Hungary
- MTA-ELTE Protein Modelling Research Group, Eötvös Loránd Research Network, Budapest – 1117, Hungary
| |
Collapse
|
21
|
Martino E, Chiarugi S, Margheriti F, Garau G. Mapping, Structure and Modulation of PPI. Front Chem 2021; 9:718405. [PMID: 34692637 PMCID: PMC8529325 DOI: 10.3389/fchem.2021.718405] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Because of the key relevance of protein–protein interactions (PPI) in diseases, the modulation of protein-protein complexes is of relevant clinical significance. The successful design of binding compounds modulating PPI requires a detailed knowledge of the involved protein-protein system at molecular level, and investigation of the structural motifs that drive the association of the proteins at the recognition interface. These elements represent hot spots of the protein binding free energy, define the complex lifetime and possible modulation strategies. Here, we review the advanced technologies used to map the PPI involved in human diseases, to investigate the structure-function features of protein complexes, and to discover effective ligands that modulate the PPI for therapeutic intervention.
Collapse
Affiliation(s)
- Elisa Martino
- Laboratorio NEST, Scuola Normale Superiore, Pisa, Italy
| | - Sara Chiarugi
- Laboratorio NEST, Scuola Normale Superiore, Pisa, Italy.,BioStructures Lab, Istituto Italiano di Tecnologia (IIT@NEST), Pisa, Italy
| | | | - Gianpiero Garau
- BioStructures Lab, Istituto Italiano di Tecnologia (IIT@NEST), Pisa, Italy
| |
Collapse
|
22
|
Structural basis of substrate recognition and thermal protection by a small heat shock protein. Nat Commun 2021; 12:3007. [PMID: 34021140 PMCID: PMC8140096 DOI: 10.1038/s41467-021-23338-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Small heat shock proteins (sHsps) bind unfolding proteins, thereby playing a pivotal role in the maintenance of proteostasis in virtually all living organisms. Structural elucidation of sHsp-substrate complexes has been hampered by the transient and heterogeneous nature of their interactions, and the precise mechanisms underlying substrate recognition, promiscuity, and chaperone activity of sHsps remain unclear. Here we show the formation of a stable complex between Arabidopsis thaliana plastid sHsp, Hsp21, and its natural substrate 1-deoxy-D-xylulose 5-phosphate synthase (DXPS) under heat stress, and report cryo-electron microscopy structures of Hsp21, DXPS and Hsp21-DXPS complex at near-atomic resolution. Monomeric Hsp21 binds across the dimer interface of DXPS and engages in multivalent interactions by recognizing highly dynamic structural elements in DXPS. Hsp21 partly unfolds its central α-crystallin domain to facilitate binding of DXPS, which preserves a native-like structure. This mode of interaction suggests a mechanism of sHsps anti-aggregation activity towards a broad range of substrates.
Collapse
|
23
|
Piróg A, Cantini F, Nierzwicki Ł, Obuchowski I, Tomiczek B, Czub J, Liberek K. Two Bacterial Small Heat Shock Proteins, IbpA and IbpB, Form a Functional Heterodimer. J Mol Biol 2021; 433:167054. [PMID: 34022209 DOI: 10.1016/j.jmb.2021.167054] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 01/29/2023]
Abstract
Small heat shock proteins (sHsps) are a conserved class of ATP-independent chaperones which in stress conditions bind to unfolded protein substrates and prevent their irreversible aggregation. Substrates trapped in sHsps-containing aggregates are efficiently refolded into native structures by ATP-dependent Hsp70 and Hsp100 chaperones. Most γ-proteobacteria possess a single sHsp (IbpA), while in a subset of Enterobacterales, as a consequence of ibpA gene duplication event, a two-protein sHsp (IbpA and IbpB) system has evolved. IbpA and IbpB are functionally divergent. Purified IbpA, but not IbpB, stably interacts with aggregated substrates, yet both sHsps are required to be present at the substrate denaturation step for subsequent efficient Hsp70-Hsp100-dependent substrate refolding. IbpA and IbpB interact with each other, influence each other's expression levels and degradation rates. However, the crucial information on how these two sHsps interact and what is the basic building block required for proper sHsps functioning was missing. Here, based on NMR, mass spectrometry and crosslinking studies, we show that IbpA-IbpB heterodimer is a dominating functional unit of the two sHsp system in Enterobacterales. The principle of heterodimer formation is similar to one described for homodimers of single bacterial sHsps. β-hairpins formed by strands β5 and β7 of IbpA or IbpB crystallin domains associate with the other one's β-sandwich in the heterodimer structure. Relying on crosslinking and molecular dynamics studies, we also propose the orientation of two IbpA-IbpB heterodimers in a higher order tetrameric structure.
Collapse
Affiliation(s)
- Artur Piróg
- Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Francesca Cantini
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Łukasz Nierzwicki
- Department of Physical Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Igor Obuchowski
- Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Bartłomiej Tomiczek
- Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Jacek Czub
- Department of Physical Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland.
| | - Krzysztof Liberek
- Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| |
Collapse
|
24
|
Xu L, Hu Y, Jin G, Lei P, Sang L, Luo Q, Liu Z, Guan F, Meng F, Zhao X. Physiological and Proteomic Responses to Drought in Leaves of Amygdalus mira ( Koehne) Yü et Lu. FRONTIERS IN PLANT SCIENCE 2021; 12:620499. [PMID: 34249029 PMCID: PMC8264794 DOI: 10.3389/fpls.2021.620499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/20/2021] [Indexed: 05/05/2023]
Abstract
Various environmental stresses strongly influence plant development. Among these stresses is drought, which is a serious threat that can reduce agricultural productivity and obstruct plant growth. Although the mechanism of plants in response to drought has been studied extensively, the adaptive strategies of Amygdalus mira (Koehne) Yü et Lu grown in drought and rewatered habitats remain undefined. Amygdalus mira from the Tibetan Plateau has outstanding nutritional and medicinal values and can thrive in extreme drought. In this study, the physiological and proteomic responses in leaves of A. mira were investigated during drought and recovery period. The changes in plant growth, photosynthesis, enzymes, and non-enzymatic antioxidant under drought and rewatering were also analyzed in leaves. Compared with controls, A. mira showed stronger adaptive and resistant characteristics to drought. In addition, the proteomic technique was also used to study drought tolerance mechanisms in A. mira leaves. Differentially expressed proteins were identified using mass spectrometry. Accordingly, 103 proteins involved in 10 functional categories: cytoskeleton dynamics, energy metabolism, carbohydrate metabolism, photosynthesis, transcription and translation, transport, stress and defense, molecular chaperones, other materials metabolism, and unknown function were identified. These results showed that an increase of stress-defense-related proteins in leaves after drought treatment contributed to coping with drought. Importantly, A. mira developed an adaptive mechanism to scavenge reactive oxygen species (ROS), including enhancing antioxidant enzyme activities and non-enzymatic antioxidant contents, reducing energy, and adjusting the efficiency of gas exchanges. These results may help to understand the acclimation of A. mira to drought.
Collapse
Affiliation(s)
- Liping Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yanbo Hu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Guangze Jin
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Pei Lei
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Liqun Sang
- Tibet Agriculture and Animal Husbandry College, Nyingchi, China
| | - Qiuxiang Luo
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Zhi Liu
- Department of Medical Genetics, Center for Genome Research, Center for Precision Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Fachun Guan
- Tibet Agriculture and Animal Husbandry College, Nyingchi, China
- Jilin Academy of Agricultural Science, Changchun, China
| | - Fanjuan Meng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
- *Correspondence: Fanjuan Meng,
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Xiyang Zhao,
| |
Collapse
|
25
|
Kaltenegger E, Prakashrao AS, Çiçek SS, Ober D. Development of an activity assay for characterizing deoxyhypusine synthase and its diverse reaction products. FEBS Open Bio 2021; 11:10-25. [PMID: 33247548 PMCID: PMC7780104 DOI: 10.1002/2211-5463.13046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/04/2020] [Accepted: 11/24/2020] [Indexed: 02/02/2023] Open
Abstract
Deoxyhypusine synthase transfers an aminobutyl moiety from spermidine to the eukaryotic translation initiation factor 5A (eIF5A) in the first step of eIF5A activation. This exclusive post-translational modification is conserved in all eukaryotes. Activated eIF5A has been shown to be essential for cell proliferation and viability. Recent reports have linked the activation of eIF5A to several human diseases. Deoxyhypusine synthase, which is encoded by a single gene copy in most eukaryotes, was duplicated in several plant lineages during evolution, the copies being repeatedly recruited to pyrrolizidine alkaloid biosynthesis. However, the function of many of these duplicates is unknown. Notably, deoxyhypusine synthase is highly promiscuous and can catalyze various reactions, often of unknown biological relevance. To facilitate in-depth biochemical studies of this enzyme, we report here the development of a simple and robust in vitro enzyme assay. It involves precolumn derivatization of the polyamines taking part in the reaction and avoids the need for the previously used radioactively labeled tracers. The derivatized polyamines are quantified after high-performance liquid chromatography coupled to diode array and fluorescence detectors. By performing kinetic analyses of deoxyhypusine synthase and its paralog from the pyrrolizidine alkaloid-producing plant Senecio vernalis, we demonstrate that the assay unequivocally differentiates the paralogous enzymes. Furthermore, it detects and quantifies, in a single assay, the side reactions that occur in parallel to the main reaction. The presented assay thus provides a detailed biochemical characterization of deoxyhypusine synthase and its paralogs.
Collapse
Affiliation(s)
- Elisabeth Kaltenegger
- Biochemical Ecology and Molecular Evolution GroupBotanical Institute and Kiel Botanic GardensChristian‐Albrechts‐UniversityKielGermany
| | - Arunraj S. Prakashrao
- Biochemical Ecology and Molecular Evolution GroupBotanical Institute and Kiel Botanic GardensChristian‐Albrechts‐UniversityKielGermany
| | - Serhat S. Çiçek
- Pharmacognosy GroupPharmaceutical InstituteChristian‐Albrechts‐UniversityKielGermany
| | - Dietrich Ober
- Biochemical Ecology and Molecular Evolution GroupBotanical Institute and Kiel Botanic GardensChristian‐Albrechts‐UniversityKielGermany
| |
Collapse
|
26
|
Sinelnikova A, Mandl T, Östlin C, Grånäs O, Brodmerkel MN, Marklund EG, Caleman C. Reproducibility in the unfolding process of protein induced by an external electric field. Chem Sci 2020; 12:2030-2038. [PMID: 34163965 PMCID: PMC8179335 DOI: 10.1039/d0sc06008a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The dynamics of proteins are crucial for their function. However, commonly used techniques for studying protein structures are limited in monitoring time-resolved dynamics at high resolution. Combining electric fields with existing techniques to study gas-phase proteins, such as single particle imaging using free-electron lasers and gas-phase small angle X-ray scattering, has the potential to open up a new era in time-resolved studies of gas-phase protein dynamics. Using molecular dynamics simulations, we identify well-defined unfolding pathways of a protein, induced by experimentally achievable external electric fields. Our simulations show that strong electric fields in conjunction with short-pulsed X-ray sources such as free-electron lasers can be a new path for imaging dynamics of gas-phase proteins at high spatial and temporal resolution.
Collapse
Affiliation(s)
- Anna Sinelnikova
- Department of Physics and Astronomy, Uppsala University Box 516 SE-751 20 Uppsala Sweden
| | - Thomas Mandl
- Department of Physics and Astronomy, Uppsala University Box 516 SE-751 20 Uppsala Sweden .,University of Applied Sciences Technikum Wien Höchstädtplatz 6 A-1200 Wien Austria
| | - Christofer Östlin
- Department of Physics and Astronomy, Uppsala University Box 516 SE-751 20 Uppsala Sweden
| | - Oscar Grånäs
- Department of Physics and Astronomy, Uppsala University Box 516 SE-751 20 Uppsala Sweden
| | - Maxim N Brodmerkel
- Department of Chemistry - BMC, Uppsala University Box 576 SE-751 23 Uppsala Sweden
| | - Erik G Marklund
- Department of Chemistry - BMC, Uppsala University Box 576 SE-751 23 Uppsala Sweden
| | - Carl Caleman
- Department of Physics and Astronomy, Uppsala University Box 516 SE-751 20 Uppsala Sweden .,Center for Free-Electron Laser Science, DESY Notkestrasse 85 DE-22607 Hamburg Germany
| |
Collapse
|
27
|
Hochberg GKA, Liu Y, Marklund EG, Metzger BPH, Laganowsky A, Thornton JW. A hydrophobic ratchet entrenches molecular complexes. Nature 2020; 588:503-508. [PMID: 33299178 PMCID: PMC8168016 DOI: 10.1038/s41586-020-3021-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
Most proteins assemble into multisubunit complexes1. The persistence of these complexes across evolutionary time is usually explained as the result of natural selection for functional properties that depend on multimerization, such as intersubunit allostery or the capacity to do mechanical work2. In many complexes, however, multimerization does not enable any known function3. An alternative explanation is that multimers could become entrenched if substitutions accumulate that are neutral in multimers but deleterious in monomers; purifying selection would then prevent reversion to the unassembled form, even if assembly per se does not enhance biological function3-7. Here we show that a hydrophobic mutational ratchet systematically entrenches molecular complexes. By applying ancestral protein reconstruction and biochemical assays to the evolution of steroid hormone receptors, we show that an ancient hydrophobic interface, conserved for hundreds of millions of years, is entrenched because exposure of this interface to solvent reduces protein stability and causes aggregation, even though the interface makes no detectable contribution to function. Using structural bioinformatics, we show that a universal mutational propensity drives sites that are buried in multimeric interfaces to accumulate hydrophobic substitutions to levels that are not tolerated in monomers. In a database of hundreds of families of multimers, most show signatures of long-term hydrophobic entrenchment. It is therefore likely that many protein complexes persist because a simple ratchet-like mechanism entrenches them across evolutionary time, even when they are functionally gratuitous.
Collapse
Affiliation(s)
- Georg K A Hochberg
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Yang Liu
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| | - Erik G Marklund
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Brian P H Metzger
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| | - Joseph W Thornton
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA.
- Department of Human Genetics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
28
|
Lite TLV, Grant RA, Nocedal I, Littlehale ML, Guo MS, Laub MT. Uncovering the basis of protein-protein interaction specificity with a combinatorially complete library. eLife 2020; 9:e60924. [PMID: 33107822 PMCID: PMC7669267 DOI: 10.7554/elife.60924] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022] Open
Abstract
Protein-protein interaction specificity is often encoded at the primary sequence level. However, the contributions of individual residues to specificity are usually poorly understood and often obscured by mutational robustness, sequence degeneracy, and epistasis. Using bacterial toxin-antitoxin systems as a model, we screened a combinatorially complete library of antitoxin variants at three key positions against two toxins. This library enabled us to measure the effect of individual substitutions on specificity in hundreds of genetic backgrounds. These distributions allow inferences about the general nature of interface residues in promoting specificity. We find that positive and negative contributions to specificity are neither inherently coupled nor mutually exclusive. Further, a wild-type antitoxin appears optimized for specificity as no substitutions improve discrimination between cognate and non-cognate partners. By comparing crystal structures of paralogous complexes, we provide a rationale for our observations. Collectively, this work provides a generalizable approach to understanding the logic of molecular recognition.
Collapse
Affiliation(s)
- Thuy-Lan V Lite
- Department of Biology Massachusetts Institute of TechnologyCambridgeUnited States
| | - Robert A Grant
- Department of Biology Massachusetts Institute of TechnologyCambridgeUnited States
| | - Isabel Nocedal
- Department of Biology Massachusetts Institute of TechnologyCambridgeUnited States
| | - Megan L Littlehale
- Department of Biology Massachusetts Institute of TechnologyCambridgeUnited States
| | - Monica S Guo
- Department of Biology Massachusetts Institute of TechnologyCambridgeUnited States
| | - Michael T Laub
- Department of Biology Massachusetts Institute of TechnologyCambridgeUnited States
- Howard Hughes Medical Institute Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
29
|
Mallik S, Tawfik DS. Determining the interaction status and evolutionary fate of duplicated homomeric proteins. PLoS Comput Biol 2020; 16:e1008145. [PMID: 32853212 PMCID: PMC7480870 DOI: 10.1371/journal.pcbi.1008145] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 09/09/2020] [Accepted: 07/12/2020] [Indexed: 12/16/2022] Open
Abstract
Oligomeric proteins are central to life. Duplication and divergence of their genes is a key evolutionary driver, also because duplications can yield very different outcomes. Given a homomeric ancestor, duplication can yield two paralogs that form two distinct homomeric complexes, or a heteromeric complex comprising both paralogs. Alternatively, one paralog remains a homomer while the other acquires a new partner. However, so far, conflicting trends have been noted with respect to which fate dominates, primarily because different methods and criteria are being used to assign the interaction status of paralogs. Here, we systematically analyzed all Saccharomyces cerevisiae and Escherichia coli oligomeric complexes that include paralogous proteins. We found that the proportions of homo-hetero duplication fates strongly depend on a variety of factors, yet that nonetheless, rigorous filtering gives a consistent picture. In E. coli about 50%, of the paralogous pairs appear to have retained the ancestral homomeric interaction, whereas in S. cerevisiae only ~10% retained a homomeric state. This difference was also observed when unique complexes were counted instead of paralogous gene pairs. We further show that this difference is accounted for by multiple cases of heteromeric yeast complexes that share common ancestry with homomeric bacterial complexes. Our analysis settles contradicting trends and conflicting previous analyses, and provides a systematic and rigorous pipeline for delineating the fate of duplicated oligomers in any organism for which protein-protein interaction data are available. About half of all proteins assemble as oligomers, either by self-interaction (homomers) or via interaction with another protein (heteromers). The latter can be unrelated, yet, quite commonly, the interacting proteins are paralogs, namely two genes that arose by gene duplication. Indeed, while a homomer is encoded by a single gene, heteromers demand two genes as a minimum. Duplication can therefore yield two discrete homomeric complexes or a single heteromer. Do paralogs tend to retain the ancestral homomeric interaction, or do they mostly diverge into heteromeric complexes? Despite several studies addressing this question, to date, we lack a systematic, rigorous approach for delineating the oligomeric fates of paralogs on an organism scale. To this end, we developed a new pipeline for analysis of molecular interaction databases that includes various filtering steps and unambiguous definitions of all possible oligomeric fates. Applying this method to Escherichia coli and Saccharomyces cerevisiae we noted that paralogous pairs tend to remain homomeric in the former while in the latter heteromeric complexes dominate. We consequently note a systematic trend of homomeric bacterial proteins diverging into heteromeric complexes in eukaryotes.
Collapse
Affiliation(s)
- Saurav Mallik
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Dan S. Tawfik
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
30
|
Chebotareva NA, Roman SG, Borzova VA, Eronina TB, Mikhaylova VV, Kurganov BI. Chaperone-Like Activity of HSPB5: The Effects of Quaternary Structure Dynamics and Crowding. Int J Mol Sci 2020; 21:ijms21144940. [PMID: 32668633 PMCID: PMC7404038 DOI: 10.3390/ijms21144940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/04/2020] [Accepted: 07/10/2020] [Indexed: 11/16/2022] Open
Abstract
Small heat-shock proteins (sHSPs) are ATP-independent molecular chaperones that interact with partially unfolded proteins, preventing their aberrant aggregation, thereby exhibiting a chaperone-like activity. Dynamics of the quaternary structure plays an important role in the chaperone-like activity of sHSPs. However, relationship between the dynamic structure of sHSPs and their chaperone-like activity remains insufficiently characterized. Many factors (temperature, ions, a target protein, crowding etc.) affect the structure and activity of sHSPs. The least studied is an effect of crowding on sHSPs activity. In this work the chaperone-like activity of HSPB5 was quantitatively characterized by dynamic light scattering using two test systems, namely test systems based on heat-induced aggregation of muscle glycogen phosphorylase b (Phb) at 48 °C and dithiothreitol-induced aggregation of α-lactalbumin at 37 °C. Analytical ultracentrifugation was used to control the oligomeric state of HSPB5 and target proteins. The possible anti-aggregation functioning of suboligomeric forms of HSPB5 is discussed. The effect of crowding on HSPB5 anti-aggregation activity was characterized using Phb as a target protein. The duration of the nucleation stage was shown to decrease with simultaneous increase in the relative rate of aggregation of Phb in the presence of HSPB5 under crowded conditions. Crowding may subtly modulate sHSPs activity.
Collapse
|
31
|
Waters ER, Vierling E. Plant small heat shock proteins - evolutionary and functional diversity. THE NEW PHYTOLOGIST 2020; 227:24-37. [PMID: 32297991 DOI: 10.1111/nph.16536] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/21/2020] [Indexed: 05/22/2023]
Abstract
Small heat shock proteins (sHSPs) are an ubiquitous protein family found in archaea, bacteria and eukaryotes. In plants, as in other organisms, sHSPs are upregulated by stress and are proposed to act as molecular chaperones to protect other proteins from stress-induced damage. sHSPs share an 'α-crystallin domain' with a β-sandwich structure and a diverse N-terminal domain. Although sHSPs are 12-25 kDa polypeptides, most assemble into oligomers with ≥ 12 subunits. Plant sHSPs are particularly diverse and numerous; some species have as many as 40 sHSPs. In angiosperms this diversity comprises ≥ 11 sHSP classes encoding proteins targeted to the cytosol, nucleus, endoplasmic reticulum, chloroplasts, mitochondria and peroxisomes. The sHSPs underwent a lineage-specific gene expansion, diversifying early in land plant evolution, potentially in response to stress in the terrestrial environment, and expanded again in seed plants and again in angiosperms. Understanding the structure and evolution of plant sHSPs has progressed, and a model for their chaperone activity has been proposed. However, how the chaperone model applies to diverse sHSPs and what processes sHSPs protect are far from understood. As more plant genomes and transcriptomes become available, it will be possible to explore theories of the evolutionary pressures driving sHSP diversification.
Collapse
Affiliation(s)
- Elizabeth R Waters
- Biology Department, San Diego State University, San Diego, CA, 92182, USA
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
32
|
Collier MP, Benesch JLP. Small heat-shock proteins and their role in mechanical stress. Cell Stress Chaperones 2020; 25:601-613. [PMID: 32253742 PMCID: PMC7332611 DOI: 10.1007/s12192-020-01095-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
The ability of cells to respond to stress is central to health. Stress can damage folded proteins, which are vulnerable to even minor changes in cellular conditions. To maintain proteostasis, cells have developed an intricate network in which molecular chaperones are key players. The small heat-shock proteins (sHSPs) are a widespread family of molecular chaperones, and some sHSPs are prominent in muscle, where cells and proteins must withstand high levels of applied force. sHSPs have long been thought to act as general interceptors of protein aggregation. However, evidence is accumulating that points to a more specific role for sHSPs in protecting proteins from mechanical stress. Here, we briefly introduce the sHSPs and outline the evidence for their role in responses to mechanical stress. We suggest that sHSPs interact with mechanosensitive proteins to regulate physiological extension and contraction cycles. It is likely that further study of these interactions - enabled by the development of experimental methodologies that allow protein contacts to be studied under the application of mechanical force - will expand our understanding of the activity and functions of sHSPs, and of the roles played by chaperones in general.
Collapse
Affiliation(s)
- Miranda P Collier
- Department of Biology, Stanford University, 318 Campus Drive, Stanford, CA, 94305, USA
| | - Justin L P Benesch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
33
|
Boelens WC. Structural aspects of the human small heat shock proteins related to their functional activities. Cell Stress Chaperones 2020; 25:581-591. [PMID: 32253739 PMCID: PMC7332592 DOI: 10.1007/s12192-020-01093-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2020] [Indexed: 01/18/2023] Open
Abstract
Small heat shock proteins function as chaperones by binding unfolding substrate proteins in an ATP-independent manner to keep them in a folding-competent state and to prevent irreversible aggregation. They play crucial roles in diseases that are characterized by protein aggregation, such as neurodegenerative and neuromuscular diseases, but are also involved in cataract, cancer, and congenital disorders. For this reason, these proteins are interesting therapeutic targets for finding molecules that could affect the chaperone activity or compensate specific mutations. This review will give an overview of the available knowledge on the structural complexity of human small heat shock proteins, which may aid in the search for such therapeutic molecules.
Collapse
Affiliation(s)
- Wilbert C Boelens
- Department of Biomolecular Chemistry 284, Institute for Molecules and Materials (IMM), Radboud University, PO Box 9101, NL-6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
34
|
Obuchowski I, Liberek K. Small but mighty: a functional look at bacterial sHSPs. Cell Stress Chaperones 2020; 25:593-600. [PMID: 32301005 PMCID: PMC7332594 DOI: 10.1007/s12192-020-01094-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2020] [Indexed: 02/02/2023] Open
Abstract
Small heat shock proteins (sHSPs) are widespread in every kingdom of life, being indispensable for protein quality control networks. Alongside canonical chaperone functions, sHSPs seem to have been a very plastic scaffold for acquiring multiple related functions across evolution. This review aims to summarize what is known about sHSPs functioning in the Bacteria Kingdom.
Collapse
Affiliation(s)
- Igor Obuchowski
- Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland.
| | - Krzysztof Liberek
- Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| |
Collapse
|
35
|
SNX-2112, an Hsp90 inhibitor, suppresses cervical cancer cells proliferation, migration, and invasion by inhibiting the Akt/mTOR signaling pathway. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02534-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
36
|
Andreani J, Quignot C, Guerois R. Structural prediction of protein interactions and docking using conservation and coevolution. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jessica Andreani
- Université Paris‐Saclay CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette France
| | - Chloé Quignot
- Université Paris‐Saclay CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette France
| | - Raphael Guerois
- Université Paris‐Saclay CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette France
| |
Collapse
|
37
|
Exploring the therapeutic potential of modern and ancestral phenylalanine/tyrosine ammonia-lyases as supplementary treatment of hereditary tyrosinemia. Sci Rep 2020; 10:1315. [PMID: 31992763 PMCID: PMC6987202 DOI: 10.1038/s41598-020-57913-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/07/2020] [Indexed: 12/01/2022] Open
Abstract
Phenylalanine/tyrosine ammonia-lyases (PAL/TALs) have been approved by the FDA for treatment of phenylketonuria and may harbour potential for complementary treatment of hereditary tyrosinemia Type I. Herein, we explore ancestral sequence reconstruction as an enzyme engineering tool to enhance the therapeutic potential of PAL/TALs. We reconstructed putative ancestors from fungi and compared their catalytic activity and stability to two modern fungal PAL/TALs. Surprisingly, most putative ancestors could be expressed as functional tetramers in Escherichia coli and thus retained their ability to oligomerize. All ancestral enzymes displayed increased thermostability compared to both modern enzymes, however, the increase in thermostability was accompanied by a loss in catalytic turnover. One reconstructed ancestral enzyme in particular could be interesting for further drug development, as its ratio of specific activities is more favourable towards tyrosine and it is more thermostable than both modern enzymes. Moreover, long-term stability assessment showed that this variant retained substantially more activity after prolonged incubation at 25 °C and 37 °C, as well as an increased resistance to incubation at 60 °C. Both of these factors are indicative of an extended shelf-life of biopharmaceuticals. We believe that ancestral sequence reconstruction has potential for enhancing the properties of enzyme therapeutics, especially with respect to stability. This work further illustrates that resurrection of putative ancestral oligomeric proteins is feasible and provides insight into the extent of conservation of a functional oligomerization surface area from ancestor to modern enzyme.
Collapse
|
38
|
Mymrikov EV, Riedl M, Peters C, Weinkauf S, Haslbeck M, Buchner J. Regulation of small heat-shock proteins by hetero-oligomer formation. J Biol Chem 2020; 295:158-169. [PMID: 31767683 PMCID: PMC6952609 DOI: 10.1074/jbc.ra119.011143] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/16/2019] [Indexed: 01/16/2023] Open
Abstract
Small heat-shock proteins (sHsps) compose the most widespread family of molecular chaperones. The human genome encodes 10 different sHsps (HspB1-10). It has been shown that HspB1 (Hsp27), HspB5 (αB-crystallin), and HspB6 (Hsp20) can form hetero-oligomers in vivo However, the impact of hetero-oligomerization on their structure and chaperone mechanism remains enigmatic. Here, we analyzed hetero-oligomer formation in human cells and in vitro using purified proteins. Our results show that the effect of hetero-oligomer formation on the composition of the sHsp ensembles and their chaperone activities depends strongly on the respective sHsps involved. We observed that hetero-oligomer formation between HspB1 and HspB5 leads to an ensemble that is dominated by species larger than the individual homo-oligomers. In contrast, the interaction of dimeric HspB6 with either HspB1 or HspB5 oligomers shifted the ensemble toward smaller oligomers. We noted that the larger HspB1-HspB5 hetero-oligomers are less active and that HspB6 activates HspB5 by dissociation to smaller oligomer complexes. The chaperone activity of HspB1-HspB6 hetero-oligomers, however, was modulated in a substrate-specific manner, presumably due to the specific enrichment of an HspB1-HspB6 heterodimer. These heterodimeric species may allow the tuning of the chaperone properties toward specific substrates. We conclude that sHsp hetero-oligomerization exerts distinct regulatory effects depending on the sHsps involved.
Collapse
Affiliation(s)
- Evgeny V Mymrikov
- Center for Integrated Protein Science, Department of Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Mareike Riedl
- Center for Integrated Protein Science, Department of Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Carsten Peters
- Center for Integrated Protein Science, Department of Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Sevil Weinkauf
- Center for Integrated Protein Science, Department of Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Martin Haslbeck
- Center for Integrated Protein Science, Department of Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science, Department of Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany.
| |
Collapse
|
39
|
Obuchowski I, Piróg A, Stolarska M, Tomiczek B, Liberek K. Duplicate divergence of two bacterial small heat shock proteins reduces the demand for Hsp70 in refolding of substrates. PLoS Genet 2019; 15:e1008479. [PMID: 31652260 PMCID: PMC6834283 DOI: 10.1371/journal.pgen.1008479] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 11/06/2019] [Accepted: 10/15/2019] [Indexed: 12/22/2022] Open
Abstract
Small heat shock proteins (sHsps) are a conserved class of ATP-independent chaperones that bind to aggregation-prone polypeptides at stress conditions. sHsps encage these polypeptides in assemblies, shielding them from further aggregation. To facilitate their subsequent solubilization and refolding by Hsp70 (DnaK) and Hsp100 (ClpB) chaperones, first, sHsps need to dissociate from the assemblies. In most γ-proteobacteria, these functions are fulfilled by a single sHsp (IbpA), but in a subset of Enterobacterales, a two-protein sHsp (IbpA and IbpB) system has evolved. To gain insight into the emergence of complexity within this chaperone system, we reconstructed the phylogeny of γ-proteobacteria and their sHsps. We selected proteins representative of systems comprising either one or two sHsps and analysed their ability to form sHsps-substrate assemblies. All the tested IbpA proteins, but not IbpBs, stably interact with an aggregating substrate. Moreover, in Escherichia coli cells, ibpA but not ibpB suppress the growth defect associated with low DnaK level, which points to the major protective role of IbpA during the breakdown of protein quality control. We also examined how sHsps affect the association of Hsp70 with the assemblies at the initial phase of disaggregation and how they affect protein recovery after stress. Our results suggest that a single gene duplication event has given rise to the sHsp system consisting of a strong canonical binder, IbpA, and its non-canonical paralog IbpB that enhances sHsps dissociation from the assemblies. The cooperation between the sHsps reduces the demand for Hsp70 needed to outcompete them from the assemblies by promoting sHsps dissociation without compromising assembly formation at heat shock. This potentially increases the robustness and elasticity of sHsps protection against irreversible aggregation. Small heat shock proteins (sHsps) are a class of molecular chaperones playing an important role in maintaining cell proteostasis. Their most widespread and evolutionarily conserved function is binding to denaturing polypeptides. Small Hsps shield their substrates from further aggregation until conditions are favourable for their refolding by chaperones from the Hsp70 and Hsp100 families. To exert this function, at stress conditions, oligomeric sHsps dissociate into dimers and scavenge partially unfolded substrates, forming assemblies containing both substrate proteins and sHsps. Substrate proteins in such assemblies are refolding-competent. Later, when a cell recovers from stress, sHsps need to dissociate from the assemblies to make the substrates available for the disaggregating and refolding chaperones. Most bacteria possess one sHsp-encoding gene. However, their single sHsp is burdened with a trade-off: on one hand, it has to rapidly associate with the misfolding proteins, on the other, it needs to dissociate from them to allow effective disaggregation. With phylogenetic and biochemical approaches, we analysed a two-sHsp system distinctive of the Enterobacterales order, unravelling a potential evolutionary advantage granted by functional cooperation between the two sHsps. Our results indicate that after a gene duplication event, one sHsp specialized in tight substrate binding, whereas another sHsp became important for efficient dissociation of both sHsps to enable recovery of proteins trapped in the assemblies.
Collapse
Affiliation(s)
- Igor Obuchowski
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Gdansk, Poland
| | - Artur Piróg
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Gdansk, Poland
| | - Milena Stolarska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Gdansk, Poland
| | - Bartłomiej Tomiczek
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Gdansk, Poland
| | - Krzysztof Liberek
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Gdansk, Poland
- * E-mail:
| |
Collapse
|
40
|
Marchant A, Cisneros AF, Dubé AK, Gagnon-Arsenault I, Ascencio D, Jain H, Aubé S, Eberlein C, Evans-Yamamoto D, Yachie N, Landry CR. The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs. eLife 2019; 8:46754. [PMID: 31454312 PMCID: PMC6711710 DOI: 10.7554/elife.46754] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/11/2019] [Indexed: 01/07/2023] Open
Abstract
Gene duplication is a driver of the evolution of new functions. The duplication of genes encoding homomeric proteins leads to the formation of homomers and heteromers of paralogs, creating new complexes after a single duplication event. The loss of these heteromers may be required for the two paralogs to evolve independent functions. Using yeast as a model, we find that heteromerization is frequent among duplicated homomers and correlates with functional similarity between paralogs. Using in silico evolution, we show that for homomers and heteromers sharing binding interfaces, mutations in one paralog can have structural pleiotropic effects on both interactions, resulting in highly correlated responses of the complexes to selection. Therefore, heteromerization could be preserved indirectly due to selection for the maintenance of homomers, thus slowing down functional divergence between paralogs. We suggest that paralogs can overcome the obstacle of structural pleiotropy by regulatory evolution at the transcriptional and post-translational levels.
Collapse
Affiliation(s)
- Axelle Marchant
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada.,PROTEO, le réseau québécois de recherche sur la fonction, la structure et l'ingénierie des protéines, Université Laval, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada.,Département de biologie, Université Laval, Québec, Canada
| | - Angel F Cisneros
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada.,PROTEO, le réseau québécois de recherche sur la fonction, la structure et l'ingénierie des protéines, Université Laval, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada
| | - Alexandre K Dubé
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada.,PROTEO, le réseau québécois de recherche sur la fonction, la structure et l'ingénierie des protéines, Université Laval, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada.,Département de biologie, Université Laval, Québec, Canada
| | - Isabelle Gagnon-Arsenault
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada.,PROTEO, le réseau québécois de recherche sur la fonction, la structure et l'ingénierie des protéines, Université Laval, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada.,Département de biologie, Université Laval, Québec, Canada
| | - Diana Ascencio
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada.,PROTEO, le réseau québécois de recherche sur la fonction, la structure et l'ingénierie des protéines, Université Laval, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada.,Département de biologie, Université Laval, Québec, Canada
| | - Honey Jain
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada.,PROTEO, le réseau québécois de recherche sur la fonction, la structure et l'ingénierie des protéines, Université Laval, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada.,Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, India
| | - Simon Aubé
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada.,PROTEO, le réseau québécois de recherche sur la fonction, la structure et l'ingénierie des protéines, Université Laval, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada
| | - Chris Eberlein
- PROTEO, le réseau québécois de recherche sur la fonction, la structure et l'ingénierie des protéines, Université Laval, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada.,Département de biologie, Université Laval, Québec, Canada
| | - Daniel Evans-Yamamoto
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Nozomu Yachie
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Graduate School of Media and Governance, Keio University, Fujisawa, Japan.,Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Christian R Landry
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada.,PROTEO, le réseau québécois de recherche sur la fonction, la structure et l'ingénierie des protéines, Université Laval, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada.,Département de biologie, Université Laval, Québec, Canada
| |
Collapse
|
41
|
Rothbard JB, Kurnellas MP, Ousman SS, Brownell S, Rothbard JJ, Steinman L. Small Heat Shock Proteins, Amyloid Fibrils, and Nicotine Stimulate a Common Immune Suppressive Pathway with Implications for Future Therapies. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a034223. [PMID: 30249602 DOI: 10.1101/cshperspect.a034223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The α7 nicotinic acetylcholine receptor (α7nAChR) is central to the anti-inflammatory function of the vagus nerve in a physiological mechanism termed the inflammatory reflex. Studies on the inflammatory reflex have been instrumental for the current development of the field of bioelectronic medicine. An independent investigation of the biological role of αB-crystallin (HspB5), the most abundant gene transcript present in active multiple sclerosis lesions in human brains, also led to α7nAChR. Induction of experimental autoimmune encephalomyelitis (EAE) in HspB5-/- mice results in greater paralytic signs, increased levels of proinflammatory cytokines, and T-lymphocyte activation relative to wild-type animals. Administration of HspB5 was therapeutic in animal models of multiple sclerosis, retinal and cardiac ischemia, and stroke. Structure-activity studies established that residues 73-92 were as potent as the parent protein, but only when it formed amyloid fibrils. Amyloid fibrils and small heat shock proteins (sHsps) selectively bound α7nAChR on peritoneal macrophages (MΦs) and B lymphocytes, converting the MΦs to an immune suppressive phenotype and mobilizing the migration of both cell types from the peritoneum to secondary lymph organs. Here, we review multiple aspects of this work, which may be of interest for developing future therapeutic approaches for multiple sclerosis and other disorders.
Collapse
Affiliation(s)
- Jonathan B Rothbard
- Department of Neurology, Stanford University School of Medicine, Stanford, California 94305-5316
| | | | - Shalina S Ousman
- Department of Clinical Neurosciences, University of Calgary, Alberta T2N 1N4, Canada
| | - Sara Brownell
- School of Life Sciences, Arizona State University, Tempe, Arizona 85281
| | - Jesse J Rothbard
- Department of Neurology, Stanford University School of Medicine, Stanford, California 94305-5316
| | - Lawrence Steinman
- Department of Neurology, Stanford University School of Medicine, Stanford, California 94305-5316
| |
Collapse
|
42
|
Mogk A, Ruger-Herreros C, Bukau B. Cellular Functions and Mechanisms of Action of Small Heat Shock Proteins. Annu Rev Microbiol 2019; 73:89-110. [PMID: 31091419 DOI: 10.1146/annurev-micro-020518-115515] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Small heat shock proteins (sHsps) constitute a diverse chaperone family that shares the α-crystallin domain, which is flanked by variable, disordered N- and C-terminal extensions. sHsps act as the first line of cellular defense against protein unfolding stress. They form dynamic, large oligomers that represent inactive storage forms. Stress conditions cause a rapid increase in cellular sHsp levels and trigger conformational rearrangements, resulting in exposure of substrate-binding sites and sHsp activation. sHsps bind to early-unfolding intermediates of misfolding proteins in an ATP-independent manner and sequester them in sHsp/substrate complexes. Sequestration protects substrates from further uncontrolled aggregation and facilitates their refolding by ATP-dependent Hsp70-Hsp100 disaggregases. Some sHsps with particularly strong sequestrase activity, such as yeast Hsp42, are critical factors for forming large, microscopically visible deposition sites of misfolded proteins in vivo. These sites are organizing centers for triaging substrates to distinct quality control pathways, preferentially Hsp70-dependent refolding and selective autophagy.
Collapse
Affiliation(s)
- Axel Mogk
- Center for Molecular Biology of the University of Heidelberg and German Cancer Research Center, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; ,
| | - Carmen Ruger-Herreros
- Center for Molecular Biology of the University of Heidelberg and German Cancer Research Center, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; ,
| | - Bernd Bukau
- Center for Molecular Biology of the University of Heidelberg and German Cancer Research Center, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; ,
| |
Collapse
|
43
|
Carra S, Alberti S, Benesch JLP, Boelens W, Buchner J, Carver JA, Cecconi C, Ecroyd H, Gusev N, Hightower LE, Klevit RE, Lee HO, Liberek K, Lockwood B, Poletti A, Timmerman V, Toth ME, Vierling E, Wu T, Tanguay RM. Small heat shock proteins: multifaceted proteins with important implications for life. Cell Stress Chaperones 2019; 24:295-308. [PMID: 30758704 PMCID: PMC6439001 DOI: 10.1007/s12192-019-00979-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2019] [Indexed: 12/21/2022] Open
Abstract
Small Heat Shock Proteins (sHSPs) evolved early in the history of life; they are present in archaea, bacteria, and eukaryota. sHSPs belong to the superfamily of molecular chaperones: they are components of the cellular protein quality control machinery and are thought to act as the first line of defense against conditions that endanger the cellular proteome. In plants, sHSPs protect cells against abiotic stresses, providing innovative targets for sustainable agricultural production. In humans, sHSPs (also known as HSPBs) are associated with the development of several neurological diseases. Thus, manipulation of sHSP expression may represent an attractive therapeutic strategy for disease treatment. Experimental evidence demonstrates that enhancing the chaperone function of sHSPs protects against age-related protein conformation diseases, which are characterized by protein aggregation. Moreover, sHSPs can promote longevity and healthy aging in vivo. In addition, sHSPs have been implicated in the prognosis of several types of cancer. Here, sHSP upregulation, by enhancing cellular health, could promote cancer development; on the other hand, their downregulation, by sensitizing cells to external stressors and chemotherapeutics, may have beneficial outcomes. The complexity and diversity of sHSP function and properties and the need to identify their specific clients, as well as their implication in human disease, have been discussed by many of the world's experts in the sHSP field during a dedicated workshop in Québec City, Canada, on 26-29 August 2018.
Collapse
Affiliation(s)
- Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, and Centre for Neuroscience and Nanotechnology, University of Modena and Reggio Emilia, via G. Campi 287, 41125, Modena, Italy.
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
- Center for Molecular and Cellular Bioengineering (CMCB), Biotechnology Center (BIOTEC), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany
| | - Justin L P Benesch
- Department of Chemistry, Physical and Theoretical Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Wilbert Boelens
- Department of Biomolecular Chemistry, Institute of Molecules and Materials, Radboud University, NL-6500, Nijmegen, The Netherlands
| | - Johannes Buchner
- Center for Integrated Protein Science Munich (CIPSM) and Department Chemie, Technische Universität München, D-85748, Garching, Germany
| | - John A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT, 2601, Australia
| | - Ciro Cecconi
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125, Modena, Italy
- Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125, Modena, Italy
| | - Heath Ecroyd
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Nikolai Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, Russian Federation, 117234
| | - Lawrence E Hightower
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT, 06269-3125, USA
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Hyun O Lee
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Krzysztof Liberek
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| | - Brent Lockwood
- Department of Biology, University of Vermont, Burlington, VT, 05405, USA
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Univrsità degli Studi di Milano, Milan, Italy
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Melinda E Toth
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Tangchun Wu
- MOE Key Lab of Environment and Health, Tongji School of Public Health, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Robert M Tanguay
- Laboratory of Cell and Developmental Genetics, IBIS, and Department of Molecular Biology, Medical Biochemistry and Pathology, Medical School, Université Laval, QC, Québec, G1V 0A6, Canada.
| |
Collapse
|
44
|
Marklund EG, Benesch JL. Weighing-up protein dynamics: the combination of native mass spectrometry and molecular dynamics simulations. Curr Opin Struct Biol 2019; 54:50-58. [PMID: 30743182 DOI: 10.1016/j.sbi.2018.12.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/22/2018] [Accepted: 12/27/2018] [Indexed: 12/21/2022]
Abstract
Structural dynamics underpin biological function at the molecular level, yet many biophysical and structural biology approaches give only a static or averaged view of proteins. Native mass spectrometry yields spectra of the many states and interactions in the structural ensemble, but its spatial resolution is limited. Conversely, molecular dynamics simulations are innately high-resolution, but have a limited capacity for exploring all structural possibilities. The two techniques hence differ fundamentally in the information they provide, returning data that reflect different length scales and time scales, making them natural bedfellows. Here we discuss how the combination of native mass spectrometry with molecular dynamics simulations is enabling unprecedented insights into a range of biological questions by interrogating the motions of proteins, their assemblies, and interactions.
Collapse
Affiliation(s)
- Erik G Marklund
- Department of Chemistry - BMC, Uppsala University, Box 576, 75 123, Uppsala, Sweden.
| | - Justin Lp Benesch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom.
| |
Collapse
|
45
|
Haslbeck M, Weinkauf S, Buchner J. Small heat shock proteins: Simplicity meets complexity. J Biol Chem 2018; 294:2121-2132. [PMID: 30385502 DOI: 10.1074/jbc.rev118.002809] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Small heat shock proteins (sHsps) are a ubiquitous and ancient family of ATP-independent molecular chaperones. A key characteristic of sHsps is that they exist in ensembles of iso-energetic oligomeric species differing in size. This property arises from a unique mode of assembly involving several parts of the subunits in a flexible manner. Current evidence suggests that smaller oligomers are more active chaperones. Thus, a shift in the equilibrium of the sHsp ensemble allows regulating the chaperone activity. Different mechanisms have been identified that reversibly change the oligomer equilibrium. The promiscuous interaction with non-native proteins generates complexes that can form aggregate-like structures from which native proteins are restored by ATP-dependent chaperones such as Hsp70 family members. In recent years, this basic paradigm has been expanded, and new roles and new cofactors, as well as variations in structure and regulation of sHsps, have emerged.
Collapse
Affiliation(s)
- Martin Haslbeck
- From the Department of Chemie and Center for Integrated Protein Science, Technische Universität München, Lichtenbergstrasse 4, 85 748 Garching, Germany
| | - Sevil Weinkauf
- From the Department of Chemie and Center for Integrated Protein Science, Technische Universität München, Lichtenbergstrasse 4, 85 748 Garching, Germany
| | - Johannes Buchner
- From the Department of Chemie and Center for Integrated Protein Science, Technische Universität München, Lichtenbergstrasse 4, 85 748 Garching, Germany
| |
Collapse
|
46
|
Santhanagopalan I, Degiacomi MT, Shepherd DA, Hochberg GKA, Benesch JLP, Vierling E. It takes a dimer to tango: Oligomeric small heat shock proteins dissociate to capture substrate. J Biol Chem 2018; 293:19511-19521. [PMID: 30348902 DOI: 10.1074/jbc.ra118.005421] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/12/2018] [Indexed: 12/23/2022] Open
Abstract
Small heat-shock proteins (sHsps) are ubiquitous molecular chaperones, and sHsp mutations or altered expression are linked to multiple human disease states. sHsp monomers assemble into large oligomers with dimeric substructure, and the dynamics of sHsp oligomers has led to major questions about the form that captures substrate, a critical aspect of their mechanism of action. We show here that substructural dimers of two plant dodecameric sHsps, Ta16.9 and homologous Ps18.1, are functional units in the initial encounter with unfolding substrate. We introduced inter-polypeptide disulfide bonds at the two dodecameric interfaces, dimeric and nondimeric, to restrict how their assemblies can dissociate. When disulfide-bonded at the nondimeric interface, mutants of Ta16.9 and Ps18.1 (TaCT-ACD and PsCT-ACD) were inactive but, when reduced, had WT-like chaperone activity, demonstrating that dissociation at nondimeric interfaces is essential for sHsp activity. Moreover, the size of the TaCT-ACD and PsCT-ACD covalent unit defined a new tetrahedral geometry for these sHsps, different from that observed in the Ta16.9 X-ray structure. Importantly, oxidized Tadimer (disulfide bonded at the dimeric interface) exhibited greatly enhanced ability to protect substrate, indicating that strengthening the dimeric interface increases chaperone efficiency. Temperature-induced size and secondary structure changes revealed that folded sHsp dimers interact with substrate and that dimer stability affects chaperone efficiency. These results yield a model in which sHsp dimers capture substrate before assembly into larger, heterogeneous sHsp-substrate complexes for substrate refolding or degradation, and suggest that tuning the strength of the dimer interface can be used to engineer sHsp chaperone efficiency.
Collapse
Affiliation(s)
- Indu Santhanagopalan
- From the Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Matteo T Degiacomi
- Department of Chemistry, Physical & Theoretical Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom, and.,Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Dale A Shepherd
- Department of Chemistry, Physical & Theoretical Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom, and
| | - Georg K A Hochberg
- Department of Chemistry, Physical & Theoretical Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom, and
| | - Justin L P Benesch
- Department of Chemistry, Physical & Theoretical Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom, and
| | - Elizabeth Vierling
- From the Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003,
| |
Collapse
|
47
|
Muranova LK, Sudnitsyna MV, Gusev NB. αB-Crystallin Phosphorylation: Advances and Problems. BIOCHEMISTRY (MOSCOW) 2018; 83:1196-1206. [DOI: 10.1134/s000629791810005x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|