1
|
Agamme ALDA, Tufik S, Torterolo P, D'Almeida V. Effects of Paradoxical Sleep Deprivation on MCH and Hypocretin Systems. Sleep Sci 2024; 17:e392-e400. [PMID: 39698172 PMCID: PMC11651861 DOI: 10.1055/s-0044-1782171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 12/20/2023] [Indexed: 12/20/2024] Open
Abstract
Melanin-concentrating hormone (MCH) and hypocretins (Hcrt) 1 and 2 are neuropeptides synthesized in the lateral hypothalamic area by neurons that are critical in the regulation of sleep and wakefulness. Their receptors are located in the same cerebral regions, including the frontal cortex and hippocampus. The present study aimed to assess whether 96 hours of paradoxical sleep deprivation alters the functioning of the MCH and hypocretin systems. To do this, in control rats with normal sleep (CTL) and in rats that were deprived of paradoxical sleep (SD), we quantified the following parameters: 1) levels of MCH and hypocretin-1 in the cerebrospinal fluid (CSF); 2) expression of the prepro-MCH ( Pmch ) and prepro-hypocretin ( Hcrt ) genes in the hypothalamus; 3) expression of the Mchr1 and Hcrtr1 genes in the frontal cortex and hippocampus; and 4) expression of the Hcrtr2 gene in the hippocampus. These measures were performed at 6 Zeitgeber time (ZT) points of the day (ZTs: 0, 4, 8, 12, 16, and 20). In the SD group, we found higher levels of MCH in the CSF at the beginning of the dark phase. In the frontal cortex, sleep deprivation decreased the expression of Hcrtr1 at ZT0 . Moreover, we identified significant differences between the light and dark phases in the expression of Mchr1 and Hcrtr1 , but only in the CTL animals . We conclude that there is a day/night modulation in the expression of components of the MCH and hypocretin systems, and this profile is affected by paradoxical sleep deprivation.
Collapse
Affiliation(s)
- Ana Luiza Dias Abdo Agamme
- Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Sergio Tufik
- Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Pablo Torterolo
- Department of Physiology, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Vânia D'Almeida
- Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
2
|
Su X, Lei B, He J, Liu Y, Wang A, Tang Y, Liu W, Zhong Y. Identification of GABAergic subpopulations in the lateral hypothalamus for home-driven behaviors in mice. Cell Rep 2024; 43:114842. [PMID: 39412991 DOI: 10.1016/j.celrep.2024.114842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/20/2024] [Accepted: 09/21/2024] [Indexed: 10/18/2024] Open
Abstract
Home information profoundly influences behavioral states in both humans and animals. However, how "home" is represented in the brain and its role in driving diverse related behaviors remain elusive. Here, we demonstrate that home bedding contains sufficient home information to modulate affective behaviors, including aversion responses, defensive aggression, and mating behaviors. These varied responses to home information are mediated by gama-aminobutyric acid (GABA)ergic neurons in the lateral hypothalamus (LHGABA). Inhibiting LHGABA abolishes, while activating mimics, the effects of home bedding on these behaviors across different contexts. Specifically, projections from LHGABA to the ventral tegmental area (VTA) mediate the relaxation of aversive emotion, while projections to the periaqueductal gray (PAG) initiate defensive concerns. Thus, our data suggest that home information in different contexts converges to activate distinct subgroups of the LHGABA, which, in turn, elicit appropriate affective behaviors in relieving aversion, fighting intruders, or enhancing mating through involving distinct downstream projections.
Collapse
Affiliation(s)
- Xiaoya Su
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; McGovern Institute of Brain Research, Beijing 100084, P.R. China
| | - Bo Lei
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; McGovern Institute of Brain Research, Beijing 100084, P.R. China; Beijing Academy of Artificial Intelligence, Beijing 100084, P.R. China.
| | - Junyue He
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; McGovern Institute of Brain Research, Beijing 100084, P.R. China; Peking University, Tsinghua University, National Institute Biological Science Joint Graduate Program, Beijing, P.R. China
| | - Yunlong Liu
- Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ao Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; McGovern Institute of Brain Research, Beijing 100084, P.R. China; School of Life Sciences, Peking University, Beijing 100871, P.R. China
| | - Yikai Tang
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; McGovern Institute of Brain Research, Beijing 100084, P.R. China
| | - Weixuan Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; McGovern Institute of Brain Research, Beijing 100084, P.R. China
| | - Yi Zhong
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; McGovern Institute of Brain Research, Beijing 100084, P.R. China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, P.R. China; MOE Key Laboratory of Protein Sciences, Tsinghua University, Beijing 100084, P.R. China.
| |
Collapse
|
3
|
Wang Y, Li D, Widjaja J, Guo R, Cai L, Yan R, Ozsoy S, Allocca G, Fang J, Dong Y, Tseng GC, Huang C, Huang YH. An Electroencephalogram Signature of Melanin-Concentrating Hormone Neuron Activities Predicts Cocaine Seeking. Biol Psychiatry 2024; 96:739-751. [PMID: 38677639 DOI: 10.1016/j.biopsych.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Identifying biomarkers that predict substance use disorder propensity may better strategize antiaddiction treatment. Melanin-concentrating hormone (MCH) neurons in the lateral hypothalamus critically mediate interactions between sleep and substance use; however, their activities are largely obscured in surface electroencephalogram (EEG) measures, hindering the development of biomarkers. METHODS Surface EEG signals and real-time calcium (Ca2+) activities of lateral hypothalamus MCH neurons (Ca2+MCH) were simultaneously recorded in male and female adult rats. Mathematical modeling and machine learning were then applied to predict Ca2+MCH using EEG derivatives. The robustness of the predictions was tested across sex and treatment conditions. Finally, features extracted from the EEG-predicted Ca2+MCH either before or after cocaine experience were used to predict future drug-seeking behaviors. RESULTS An EEG waveform derivative-a modified theta-delta-theta peak ratio (EEGTDT ratio)-accurately tracked real-time Ca2+MCH in rats. The prediction was robust during rapid eye movement sleep (REMS), persisted through vigilance states, sleep manipulations, and circadian phases, and was consistent across sex. Moreover, cocaine self-administration and long-term withdrawal altered EEGTDT ratio, suggesting shortening and circadian redistribution of synchronous MCH neuron activities. In addition, features of EEGTDT ratio indicative of prolonged synchronous MCH neuron activities predicted lower subsequent cocaine seeking. EEGTDT ratio also exhibited advantages over conventional REMS measures for the predictions. CONCLUSIONS The identified EEGTDT ratio may serve as a noninvasive measure for assessing MCH neuron activities in vivo and evaluating REMS; it may also serve as a potential biomarker for predicting drug use propensity.
Collapse
Affiliation(s)
- Yao Wang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Danyang Li
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Rong Guo
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Li Cai
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rongzhen Yan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sahin Ozsoy
- Somnivore Pty. Ltd., Bacchus Marsh, Victoria, Australia
| | - Giancarlo Allocca
- Somnivore Pty. Ltd., Bacchus Marsh, Victoria, Australia; Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Jidong Fang
- Department of Psychiatry and Behavioral Health, Penn State College of Medicine, Hershey, Pennsylvania
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - George C Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Chengcheng Huang
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yanhua H Huang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
4
|
Oh JY, Lee H, Jang SY, Kim H, Park G, Serikov A, Jang JH, Kim J, Yang S, Sa M, Lee SE, Han YE, Hwang TY, Jung SJ, Kim HY, Lee SE, Oh SJ, Kim J, Kim J, Kim J, McHugh TJ, Lee CJ, Nam MH, Park HJ. Central Role of Hypothalamic Circuits for Acupuncture's Anti-Parkinsonian Effects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403245. [PMID: 39119926 DOI: 10.1002/advs.202403245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/30/2024] [Indexed: 08/10/2024]
Abstract
Despite clinical data stretching over millennia, the neurobiological basis of the effectiveness of acupuncture in treating diseases of the central nervous system has remained elusive. Here, using an established model of acupuncture treatment in Parkinson's disease (PD) model mice, we show that peripheral acupuncture stimulation activates hypothalamic melanin-concentrating hormone (MCH) neurons via nerve conduction. We further identify two separate neural pathways originating from anatomically and electrophysiologically distinct MCH neuronal subpopulations, projecting to the substantia nigra and hippocampus, respectively. Through chemogenetic manipulation specifically targeting these MCH projections, their respective roles in mediating the acupuncture-induced motor recovery and memory improvements following PD onset are demonstrated, as well as the underlying mechanisms mediating recovery from dopaminergic neurodegeneration, reactive gliosis, and impaired hippocampal synaptic plasticity. Collectively, these MCH neurons constitute not only a circuit-based explanation for the therapeutic effectiveness of traditional acupuncture, but also a potential cellular target for treating both motor and non-motor PD symptoms.
Collapse
Affiliation(s)
- Ju-Young Oh
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
- Studies of Translational Acupuncture Research (STAR), Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hyowon Lee
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sun-Young Jang
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
- Studies of Translational Acupuncture Research (STAR), Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hyunjin Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of KHU-KIST Convergence Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Geunhong Park
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Almas Serikov
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jae-Hwan Jang
- Studies of Translational Acupuncture Research (STAR), Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Junyeop Kim
- Laboratory of Stem Cells & Cell Reprogramming, Department of Chemistry, Dongguk University, Seoul, 04629, Republic of Korea
| | - Seulkee Yang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Moonsun Sa
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Sung Eun Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Young-Eun Han
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Tae-Yeon Hwang
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
- Studies of Translational Acupuncture Research (STAR), Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sharon Jiyoon Jung
- Technological Convergence Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hee Young Kim
- Department of Physiology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seung Eun Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Soo-Jin Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jeongjin Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jeongyeon Kim
- Emotion, Cognition & Behavior Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Jongpil Kim
- Laboratory of Stem Cells & Cell Reprogramming, Department of Chemistry, Dongguk University, Seoul, 04629, Republic of Korea
| | - Thomas J McHugh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Laboratory for Circuit and Behavioral Physiology, RIKEN, Wako-shi Saitama, 351-0198, Japan
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of KHU-KIST Convergence Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hi-Joon Park
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
- Studies of Translational Acupuncture Research (STAR), Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of KHU-KIST Convergence Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea
| |
Collapse
|
5
|
Wiest A, Maurer JJ, Weber F, Chung S. A hypothalamic circuit mechanism underlying the impact of stress on memory and sleep. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618467. [PMID: 39463948 PMCID: PMC11507874 DOI: 10.1101/2024.10.17.618467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Stress profoundly affects sleep and memory processes. Stress impairs memory consolidation, and similarly, disruptions in sleep compromise memory functions. Yet, the neural circuits underlying stress-induced sleep and memory disturbances are still not fully understood. Here, we show that activation of CRHPVN neurons, similar to acute restraint stress, decreases sleep and impairs memory in a spatial object recognition task. Conversely, inhibiting CRHPVN neurons during stress reverses stress-induced memory deficits while slightly increasing the amount of sleep. We found that both stress and stimulation of CRHPVN neurons activate neurons in the lateral hypothalamus (LH), and that their projections to the LH are critical for mediating stress-induced memory deficits and sleep disruptions. Our results suggest a pivotal role for CRHPVN neuronal pathways in regulating the adverse effects of stress on memory and sleep, an important step towards improving sleep and ameliorating the cognitive deficits that occur in stress-related disorders.
Collapse
Affiliation(s)
- Alyssa Wiest
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Pharmacology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John J. Maurer
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Pharmacology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Franz Weber
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shinjae Chung
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Zhang Q, Liu X, Ma Q, Zhang J. Melanin concentrating hormone regulates the JNK/ERK signaling pathway to alleviate influenza A virus infection-induced neuroinflammation. J Neuroinflammation 2024; 21:259. [PMID: 39390522 PMCID: PMC11468281 DOI: 10.1186/s12974-024-03251-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
Melanin concentrating hormone (MCH) controls many brain functions, such as sleep/wake cycle and memory, and modulates the inflammation response. Previous studies have shown that influenza A virus (IAV) infection-induced neuroinflammation leads to central nervous damage. This study investigated the potential effects of MCH against neuroinflammation induced by IAV infection and its mechanism. MCH (1 and 2 mg/ml) was administrated for 5 consecutive days before IAV infection. Pentobarbital-induced sleep tests, an open-field test, and a Morris water maze were performed to measure sleep quality, spatial learning and memory ability. Neuronal loss and microglial activation were observed with Nissl staining and immunofluorescence assay. The levels of inflammatory cytokines and the expression of the JNK/ERK signaling pathway were examined by ELISA and western blot. IAV infection led to poor sleep quality, impaired the ability of spatial learning and memory, caused neuronal loss and microglial activation in mice's hippocampus and cortex. Meanwhile the level of inflammatory cytokines increased, and the JNK/ERK signaling pathway was activated after IAV infection. MCH administration significantly alleviated IAV-induced neuroinflammation, cognitive impairment, and sleep disorder, decreased the levels of inflammatory cytokines, and inhibited neuronal loss and microglial activation in the hippocampus and cortex by regulating the JNK/ERK signaling pathway. Therefore, MCH alleviated the neuroinflammation, spatial learning and memory impairment, and sleep disorder in IAV-infected mice by regulating the JNK/ERK signaling pathway.
Collapse
Affiliation(s)
- Qianlin Zhang
- Neurology Department, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan Province, 450003, China
| | - Xiaoyang Liu
- Neurology Department, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan Province, 450003, China
| | - Qiankun Ma
- Neurology Department, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan Province, 450003, China
| | - Jiewen Zhang
- Neurology Department, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan Province, 450003, China.
| |
Collapse
|
7
|
Payant MA, Shankhatheertha A, Chee MJ. Melanin-concentrating hormone promotes feeding through the lateral septum. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111163. [PMID: 39389251 DOI: 10.1016/j.pnpbp.2024.111163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Feeding is necessary for survival but can be hindered by anxiety or fear, thus neural systems that can regulate anxiety states are key to elucidating the expression of food-related behaviors. Melanin-concentrating hormone (MCH) is a neuropeptide produced in the lateral hypothalamus and zona incerta that promotes feeding and anxiogenesis. The orexigenic actions of MCH that prolong ongoing homeostatic or hedonic feeding are context-dependent and more prominent in male than female rodents, but it is not clear where MCH acts to initiate feeding. The lateral septum (LS) promotes feeding and suppresses anxiogenesis when inhibited, and it comprises the densest projections from MCH neurons. However, it is not known whether the LS is a major contributor to MCH-mediated feeding. As MCH inhibits LS cells by MCH receptor (MCHR1) activation, MCH may promote feeding via the LS. We bilaterally infused MCH into the LS and found that MCH elicited a rapid and long-lasting increase in the consumption of standard chow and a palatable, high sugar diet in male and female mice; these MCH effects were blocked by the co-administration of a MCHR1 antagonist TC- MCH 7c. Interestingly, the orexigenic effect of MCH was abolished in a novel, anxiogenic environment even when presented with a food reward, but MCH did not induce anxiety-like behaviors. These findings indicated the LS as a novel region underlying orexigenic MCH actions, which stimulated and enhanced feeding in both sexes in a context -dependent manner that was most prominent in the homecage.
Collapse
Affiliation(s)
- Mikayla A Payant
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | | | - Melissa J Chee
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
8
|
Reichardt R, Király A, Szőllősi Á, Racsmány M, Simor P. A daytime nap with REM sleep is linked to enhanced generalization of emotional stimuli. J Sleep Res 2024; 33:e14177. [PMID: 38369938 DOI: 10.1111/jsr.14177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/20/2024] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
How memory representations are shaped during and after their encoding is a central question in the study of human memory. Recognition responses to stimuli that are similar to those observed previously can hint at the fidelity of the memories or point to processes of generalization at the expense of precise memory representations. Experimental studies utilizing this approach showed that emotions and sleep both influence these responses. Sleep, and more specifically rapid eye movement sleep, is assumed to facilitate the generalization of emotional memories. We studied mnemonic discrimination by the emotional variant of the Mnemonic Separation Task in participants (N = 113) who spent a daytime nap between learning and testing compared with another group that spent an equivalent time awake between the two sessions. Our findings indicate that the discrimination of similar but previously not seen items from previously seen ones is enhanced in case of negative compared with neutral and positive stimuli. Moreover, whereas the sleep and the wake groups did not differ in memory performance, participants entering rapid eye movement sleep exhibited increased generalization of emotional memories. Our findings indicate that entering into rapid eye movement sleep during a daytime nap shapes emotional memories in a way that enhances recognition at the expense of detailed memory representations.
Collapse
Affiliation(s)
- Richárd Reichardt
- Institute of Psychology, Eötvös Loránd University, Budapest, Hungary
| | - Anna Király
- National Institute of Locomotor Diseases and Disabilities, Budapest, Hungary
| | - Ágnes Szőllősi
- Institute of Cognitive Neuroscience and Psychology, Eötvös Loránd Research Network (ELKH), Budapest, Hungary
- Centre for Cognitive Medicine, University of Szeged, Szeged, Hungary
| | - Mihály Racsmány
- Institute of Cognitive Neuroscience and Psychology, Eötvös Loránd Research Network (ELKH), Budapest, Hungary
- Centre for Cognitive Medicine, University of Szeged, Szeged, Hungary
| | - Péter Simor
- Institute of Psychology, Eötvös Loránd University, Budapest, Hungary
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
9
|
Berry JA, Guhle DC, Davis RL. Active forgetting and neuropsychiatric diseases. Mol Psychiatry 2024; 29:2810-2820. [PMID: 38532011 PMCID: PMC11420092 DOI: 10.1038/s41380-024-02521-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
Recent and pioneering animal research has revealed the brain utilizes a variety of molecular, cellular, and network-level mechanisms used to forget memories in a process referred to as "active forgetting". Active forgetting increases behavioral flexibility and removes irrelevant information. Individuals with impaired active forgetting mechanisms can experience intrusive memories, distressing thoughts, and unwanted impulses that occur in neuropsychiatric diseases. The current evidence indicates that active forgetting mechanisms degrade, or mask, molecular and cellular memory traces created in synaptic connections of "engram cells" that are specific for a given memory. Combined molecular genetic/behavioral studies using Drosophila have uncovered a complex system of cellular active-forgetting pathways within engram cells that is regulated by dopamine neurons and involves dopamine-nitric oxide co-transmission and reception, endoplasmic reticulum Ca2+ signaling, and cytoskeletal remodeling machinery regulated by small GTPases. Some of these molecular cellular mechanisms have already been found to be conserved in mammals. Interestingly, some pathways independently regulate forgetting of distinct memory types and temporal phases, suggesting a multi-layering organization of forgetting systems. In mammals, active forgetting also involves modulation of memory trace synaptic strength by altering AMPA receptor trafficking. Furthermore, active-forgetting employs network level mechanisms wherein non-engram neurons, newly born-engram neurons, and glial cells regulate engram synapses in a state and experience dependent manner. Remarkably, there is evidence for potential coordination between the network and cellular level forgetting mechanisms. Finally, subjects with several neuropsychiatric diseases have been tested and shown to be impaired in active forgetting. Insights obtained from research on active forgetting in animal models will continue to enrich our understanding of the brain dysfunctions that occur in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Jacob A Berry
- Department of Biological Sciences, University of Alberta, Edmonton, AL, T6G 2E9, Canada.
| | - Dana C Guhle
- Department of Biological Sciences, University of Alberta, Edmonton, AL, T6G 2E9, Canada
| | - Ronald L Davis
- Department of Neuroscience, UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL, 33458, USA.
| |
Collapse
|
10
|
Ba W, Nollet M, Yin C, Yu X, Wong S, Miao A, Beckwith EJ, Harding EC, Ma Y, Yustos R, Vyssotski AL, Wisden W, Franks NP. A REM-active basal ganglia circuit that regulates anxiety. Curr Biol 2024; 34:3301-3314.e4. [PMID: 38944034 DOI: 10.1016/j.cub.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 04/22/2024] [Accepted: 06/05/2024] [Indexed: 07/01/2024]
Abstract
Rapid eye movement (REM) sleep has been hypothesized to promote emotional resilience, but any neuronal circuits mediating this have not been identified. We find that in mice, somatostatin (Som) neurons in the entopeduncular nucleus (EPSom)/internal globus pallidus are predominantly active during REM sleep. This unique REM activity is both necessary and sufficient for maintaining normal REM sleep. Inhibiting or exciting EPSom neurons reduced or increased REM sleep duration, respectively. Activation of the sole downstream target of EPSom neurons, Vglut2 cells in the lateral habenula (LHb), increased sleep via the ventral tegmental area (VTA). A simple chemogenetic scheme to periodically inhibit the LHb over 4 days selectively removed a significant amount of cumulative REM sleep. Chronic, but not acute, REM reduction correlated with mice becoming anxious and more sensitive to aversive stimuli. Therefore, we suggest that cumulative REM sleep, in part generated by the EP → LHb → VTA circuit identified here, could contribute to stabilizing reactions to habitual aversive stimuli.
Collapse
Affiliation(s)
- Wei Ba
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Mathieu Nollet
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; UK Dementia Research Institute, Imperial College London, London SW7 2AZ, UK
| | - Chunyu Yin
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; Department of Neonatal Medical Center, Children's Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Xiao Yu
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Sara Wong
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; UK Dementia Research Institute, Imperial College London, London SW7 2AZ, UK
| | - Andawei Miao
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; UK Dementia Research Institute, Imperial College London, London SW7 2AZ, UK
| | - Esteban J Beckwith
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Edward C Harding
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Ying Ma
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Raquel Yustos
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich 8057, Switzerland
| | - William Wisden
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; UK Dementia Research Institute, Imperial College London, London SW7 2AZ, UK.
| | - Nicholas P Franks
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; UK Dementia Research Institute, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
11
|
Luppi PH, Malcey J, Chancel A, Duval B, Cabrera S, Fort P. Neuronal network controlling REM sleep. J Sleep Res 2024:e14266. [PMID: 38972672 DOI: 10.1111/jsr.14266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 07/09/2024]
Abstract
Rapid eye movement sleep is a state characterized by concomitant occurrence of rapid eye movements, electroencephalographic activation and muscle atonia. In this review, we provide up to date knowledge on the neuronal network controlling its onset and maintenance. It is now accepted that muscle atonia during rapid eye movement sleep is due to activation of glutamatergic neurons localized in the pontine sublaterodorsal tegmental nucleus. These neurons directly project and excite glycinergic/γ-aminobutyric acid-ergic pre-motoneurons localized in the ventromedial medulla. The sublaterodorsal tegmental nucleus rapid eye movement-on neurons are inactivated during wakefulness and non-rapid eye movement by rapid eye movement-off γ-aminobutyric acid-ergic neurons localized in the ventrolateral periaqueductal grey and the adjacent dorsal deep mesencephalic reticular nucleus. Melanin-concentrating hormone and γ-aminobutyric acid-ergic rapid eye movement sleep-on neurons localized in the lateral hypothalamus would inhibit these rapid eye movement sleep-off neurons initiating the state. Finally, the activation of a few limbic cortical structures during rapid eye movement sleep by the claustrum and the supramammillary nucleus as well as that of the basolateral amygdala would be involved in the function(s) of rapid eye movement sleep. In summary, rapid eye movement sleep is generated by a brainstem generator controlled by forebrain structures involved in autonomic control.
Collapse
Affiliation(s)
- Pierre-Hervé Luppi
- INSERM, U1028; CNRS, UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Lyon 1, Lyon, France
| | - Justin Malcey
- INSERM, U1028; CNRS, UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Lyon 1, Lyon, France
| | - Amarine Chancel
- INSERM, U1028; CNRS, UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Lyon 1, Lyon, France
| | - Blandine Duval
- INSERM, U1028; CNRS, UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
| | - Sébastien Cabrera
- INSERM, U1028; CNRS, UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Lyon 1, Lyon, France
| | - Patrice Fort
- INSERM, U1028; CNRS, UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Lyon 1, Lyon, France
| |
Collapse
|
12
|
Curry G, Cheung T, Zhang SD, Logue S, McAnena L, Price R, Sittlington JJ. Repeated electrical vestibular nerve stimulation (VeNS) reduces severity in moderate to severe insomnia; a randomised, sham-controlled trial; the modius sleep study. Brain Stimul 2024; 17:782-793. [PMID: 38797370 DOI: 10.1016/j.brs.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/26/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Insomnia is a prevalent health concern in the general population associated with a range of adverse health effects. New, effective, safe and low-cost treatments, suitable for long-term use, are urgently required. Previous studies have shown the potential of electrical vestibular nerve stimulation (VeNS) in improving insomnia symptoms, however only one sham-controlled trial has been conducted on people with chronic insomnia. OBJECTIVES/HYPOTHESIS Repeated VeNS delivered by the Modius Sleep device prior to sleep onset will show superior improvement in Insomnia Severity Index (ISI) scores over a 4-week period compared to sham stimulation. METHODS In this double-blinded, multi-site, randomised, sham-controlled study, 147 participants with moderate to severe insomnia (ISI≥15) were recruited and allocated a VeNS or a sham device (1:1 ratio) which they were asked to use at home for 30 min daily (minimum 5 days per week) for 4 weeks. RESULTS After 4 weeks, mean ISI score reduction was 2.26 greater in the VeNS treatment group than the sham group (p = 0.002). In the per protocol analysis, the treatment group had a mean ISI score decrease of 5.8 (95 % CI [-6.8, -4.81], approaching the clinically meaningful threshold of a 6-point reduction, with over half achieving a clinically significant decrease. Furthermore, the treatment group showed superior improvement to the sham group in the SF-36 (Quality of Life) energy/fatigue component (PP p = 0.004, effect size 0.26; ITT p = 0.006, effect size 0.22). CONCLUSIONS Modius sleep has the potential to provide a viable, non-invasive and safe clinically meaningful alternative treatment option for insomnia.
Collapse
Affiliation(s)
- Grace Curry
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, United Kingdom.
| | - Teris Cheung
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong SAR, China; The Mental Health Research Centre, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| | - Shu-Dong Zhang
- School of Medicine, Ulster University, Londonderry, BT48 7JL, United Kingdom.
| | - Susan Logue
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, United Kingdom.
| | - Liadhan McAnena
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, United Kingdom.
| | - Ruth Price
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, United Kingdom.
| | - Julie J Sittlington
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, United Kingdom.
| |
Collapse
|
13
|
Pham XT, Abe Y, Mukai Y, Ono D, Tanaka KF, Ohmura Y, Wake H, Yamanaka A. Glutamatergic signaling from melanin-concentrating hormone-producing neurons: A requirement for memory regulation, but not for metabolism control. PNAS NEXUS 2024; 3:pgae275. [PMID: 39035036 PMCID: PMC11259978 DOI: 10.1093/pnasnexus/pgae275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 06/29/2024] [Indexed: 07/23/2024]
Abstract
Melanin-concentrating hormone-producing neurons (MCH neurons), found mainly in the lateral hypothalamus and surrounding areas, play essential roles in various brain functions, including sleep and wakefulness, reward, metabolism, learning, and memory. These neurons coexpress several neurotransmitters and act as glutamatergic neurons. The contribution of glutamate from MCH neurons to memory- and metabolism-related functions has not been fully investigated. In a mouse model, we conditionally knocked out Slc17a6 gene, which encodes for vesicular glutamate transporter 2 (vGlut2), in the MCH neurons exclusively by using two different methods: the Cre recombinase/loxP system and in vivo genome editing using CRISPR/Cas9. Then, we evaluated several aspects of memory and measured metabolic rates using indirect calorimetry. We found that mice with MCH neuron-exclusive vGlut2 ablation had higher discrimination ratios between novel and familiar stimuli for novel object recognition, object location, and three-chamber tests. In contrast, there was no significant change in body weight, food intake, oxygen consumption, respiratory quotient, or locomotor activity. These findings suggest that glutamatergic signaling from MCH neurons is required to regulate memory, but its role in regulating metabolic rate is negligible.
Collapse
Affiliation(s)
- Xuan Thang Pham
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Department of Psychiatry, Hanoi Medical University, Hanoi 100000, Vietnam
| | - Yoshifumi Abe
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yasutaka Mukai
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Daisuke Ono
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yu Ohmura
- Chinese Institute for Brain Research, Beijing (CIBR), Beijing 102206, China
| | - Hiroaki Wake
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Akihiro Yamanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
- Chinese Institute for Brain Research, Beijing (CIBR), Beijing 102206, China
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi 444-8585, Japan
| |
Collapse
|
14
|
Pesonen AK, Koskinen MK, Vuorenhela N, Halonen R, Mäkituuri S, Selin M, Luokkala S, Suutari A, Hovatta I. The effect of REM-sleep disruption on affective processing: A systematic review of human and animal experimental studies. Neurosci Biobehav Rev 2024; 162:105714. [PMID: 38729279 DOI: 10.1016/j.neubiorev.2024.105714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/15/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
Evidence on the importance of rapid-eye-movement sleep (REMS) in processing emotions is accumulating. The focus of this systematic review is the outcomes of experimental REMS deprivation (REMSD), which is the most common method in animal models and human studies on REMSD. This review revealed that variations in the applied REMSD methods were substantial. Animal models used longer deprivation protocols compared with studies in humans, which mostly reported acute deprivation effects after one night. Studies on animal models showed that REMSD causes aggressive behavior, increased pain sensitivity, reduced sexual behavior, and compromised consolidation of fear memories. Animal models also revealed that REMSD during critical developmental periods elicits lasting consequences on affective-related behavior. The few human studies revealed increases in pain sensitivity and suggest stronger consolidation of emotional memories after REMSD. As pharmacological interventions (such as selective serotonin reuptake inhibitors [SSRIs]) may suppress REMS for long periods, there is a clear gap in knowledge regarding the effects and mechanisms of chronic REMS suppression in humans.
Collapse
Affiliation(s)
- Anu-Katriina Pesonen
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland.
| | - Maija-Kreetta Koskinen
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland
| | - Neea Vuorenhela
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland
| | - Risto Halonen
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland
| | - Saara Mäkituuri
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland
| | - Maikki Selin
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland
| | - Sanni Luokkala
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland
| | - Alma Suutari
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland
| | - Iiris Hovatta
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland
| |
Collapse
|
15
|
Shuster AE, Chen PC, Niknazar H, McDevitt EA, Lopour B, Mednick SC. Novel Electrophysiological Signatures of Learning and Forgetting in Human Rapid Eye Movement Sleep. J Neurosci 2024; 44:e1517232024. [PMID: 38670803 PMCID: PMC11170679 DOI: 10.1523/jneurosci.1517-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Despite the known behavioral benefits of rapid eye movement (REM) sleep, discrete neural oscillatory events in human scalp electroencephalography (EEG) linked with behavior have not been discovered. This knowledge gap hinders mechanistic understanding of the function of sleep, as well as the development of biophysical models and REM-based causal interventions. We designed a detection algorithm to identify bursts of activity in high-density, scalp EEG within theta (4-8 Hz) and alpha (8-13 Hz) bands during REM sleep. Across 38 nights of sleep, we characterized the burst events (i.e., count, duration, density, peak frequency, amplitude) in healthy, young male and female human participants (38; 21F) and investigated burst activity in relation to sleep-dependent memory tasks: hippocampal-dependent episodic verbal memory and nonhippocampal visual perceptual learning. We found greater burst count during the more REM-intensive second half of the night (p < 0.05), longer burst duration during the first half of the night (p < 0.05), but no differences across the night in density or power (p > 0.05). Moreover, increased alpha burst power was associated with increased overnight forgetting for episodic memory (p < 0.05). Furthermore, we show that increased REM theta burst activity in retinotopically specific regions was associated with better visual perceptual performance. Our work provides a critical bridge between discrete REM sleep events in human scalp EEG that support cognitive processes and the identification of similar activity patterns in animal models that allow for further mechanistic characterization.
Collapse
Affiliation(s)
| | - Pin-Chun Chen
- University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Hamid Niknazar
- Sleep and Cognition Lab, University of California, Irvine, California 92697
| | | | - Beth Lopour
- Sleep and Cognition Lab, University of California, Irvine, California 92697
| | - Sara C Mednick
- Sleep and Cognition Lab, University of California, Irvine, California 92697
| |
Collapse
|
16
|
Concetti C, Viskaitis P, Grujic N, Duss SN, Privitera M, Bohacek J, Peleg-Raibstein D, Burdakov D. Exploratory Rearing Is Governed by Hypothalamic Melanin-Concentrating Hormone Neurons According to Locus Ceruleus. J Neurosci 2024; 44:e0015242024. [PMID: 38575343 PMCID: PMC11112542 DOI: 10.1523/jneurosci.0015-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
Information seeking, such as standing on tiptoes to look around in humans, is observed across animals and helps survival. Its rodent analog-unsupported rearing on hind legs-was a classic model in deciphering neural signals of cognition and is of intense renewed interest in preclinical modeling of neuropsychiatric states. Neural signals and circuits controlling this dedicated decision to seek information remain largely unknown. While studying subsecond timing of spontaneous behavioral acts and activity of melanin-concentrating hormone (MCH) neurons (MNs) in behaving male and female mice, we observed large MN activity spikes that aligned to unsupported rears. Complementary causal, loss and gain of function, analyses revealed specific control of rear frequency and duration by MNs and MCHR1 receptors. Activity in a key stress center of the brain-the locus ceruleus noradrenaline cells-rapidly inhibited MNs and required functional MCH receptors for its endogenous modulation of rearing. By defining a neural module that both tracks and controls rearing, these findings may facilitate further insights into biology of information seeking.
Collapse
Affiliation(s)
- Cristina Concetti
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Paulius Viskaitis
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Nikola Grujic
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Sian N Duss
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Mattia Privitera
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Johannes Bohacek
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Daria Peleg-Raibstein
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Denis Burdakov
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| |
Collapse
|
17
|
Satpati A, Pereira FL, Soloviev AV, Mladinov M, Larsen E, Hua SL, Tu CL, Leite REP, Suemoto CK, Rodriguez RD, Paes VR, Walsh C, Spina S, Seeley WW, Pasqualucci CA, Filho WJ, Chang W, Neylan TC, Grinberg LT. The wake- and sleep-modulating neurons of the lateral hypothalamic area demonstrate a differential pattern of degeneration in Alzheimers disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583765. [PMID: 38559184 PMCID: PMC10979907 DOI: 10.1101/2024.03.06.583765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
BACKGROUND Sleep-wake dysfunction is an early and common event in Alzheimer's disease (AD). The lateral hypothalamic area (LHA) regulates the sleep and wake cycle through wake-promoting orexinergic neurons (OrxN) and sleep-promoting melanin-concentrating hormone or MCHergic neurons (MCHN). These neurons share close anatomical proximity with functional reciprocity. This study investigated LHA OrxN and MCHN loss patterns in AD individuals. Understanding the degeneration pattern of these neurons will be instrumental in designing potential therapeutics to slow down the disease progression and remediate the sleep-wake dysfunction in AD. METHODS Postmortem human brain tissue from donors with AD (across progressive stages) and controls were examined using unbiased stereology. Formalin-fixed, celloidin-embedded hypothalamic sections were stained with Orx-A/MCH, p-tau (CP13), and counterstained with gallocyanin. Orx or MCH-positive neurons with or without CP13 inclusions and gallocyanin-stained neurons were considered for stereology counting. Additionally, we extracted RNA from the LHA using conventional techniques. We used customized Neuropathology and Glia nCounter (Nanostring) panels to study gene expression. Wald statistical test was used to compare the groups, and the genes were considered differentially expressed when the p-value was <.05. RESULTS We observed a progressive decline in OrxN alongside a relative preservation of MCHN. OrxN decreased by 58% (p=0.03) by Braak stages (BB) 1-2 and further declined to 81% (p=0.03) by BB 5-6. Conversely, MCHN demonstrated a non-statistical significant decline (27%, p=0.1088) by BB 6. We observed a progressive increase in differentially expressed genes (DEGs), starting with glial profile changes in BB2. While OrxN loss was observed, Orx-related genes showed upregulation in BB 3-4 compared to BB 0-1. GO and KEGG terms related to neuroinflammatory pathways were mainly enriched. CONCLUSIONS To date, OrxN loss in the LHA represents the first neuronal population to die preceding the loss of LC neurons. Conversely, MCHN shows resilience to AD p-tau accumulation across Braak stages. The initial loss of OrxN correlates with specific neuroinflammation, glial profile changes, and an overexpression of HCRT, possibly due to hyperexcitation following compensation mechanisms. Interventions preventing OrxN loss and inhibiting p-tau accumulation in the LHA could prevent neuronal loss in AD and, perhaps, the progression of the disease.
Collapse
|
18
|
Dugan BJ, Fraigne JJ, Peever J. REM sleep: Out-dreaming fear. Curr Biol 2024; 34:R510-R512. [PMID: 38772341 DOI: 10.1016/j.cub.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The ability to forget fear-inducing situations is essential for adapting to our environment, but the neural mechanisms underlying 'fear forgetting' remain unclear. Novel findings reveal that the activity of the infralimbic cortex - specifically during REM sleep - contributes to the extinction of fear memory.
Collapse
Affiliation(s)
- Brittany J Dugan
- Department of Cell and Systems Biology, University of Toronto, Toronto ON, Canada
| | - Jimmy J Fraigne
- Department of Cell and Systems Biology, University of Toronto, Toronto ON, Canada
| | - John Peever
- Department of Cell and Systems Biology, University of Toronto, Toronto ON, Canada.
| |
Collapse
|
19
|
Hong J, Choi K, Fuccillo MV, Chung S, Weber F. Infralimbic activity during REM sleep facilitates fear extinction memory. Curr Biol 2024; 34:2247-2255.e5. [PMID: 38714199 PMCID: PMC11111341 DOI: 10.1016/j.cub.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 05/09/2024]
Abstract
Rapid eye movement (REM) sleep is known to facilitate fear extinction and play a protective role against fearful memories.1,2 Consequently, disruption of REM sleep after a traumatic event may increase the risk for developing PTSD.3,4 However, the underlying mechanisms by which REM sleep promotes extinction of aversive memories remain largely unknown. The infralimbic cortex (IL) is a key brain structure for the consolidation of extinction memory.5 Using calcium imaging, we found in mice that most IL pyramidal neurons are intensively activated during REM sleep. Optogenetically suppressing the IL specifically during REM sleep within a 4-h window after auditory-cued fear conditioning impaired extinction memory consolidation. In contrast, REM-specific IL inhibition after extinction learning did not affect the extinction memory. Whole-cell patch-clamp recordings demonstrated that inactivating IL neurons during REM sleep depresses their excitability. Together, our findings suggest that REM sleep after fear conditioning facilitates fear extinction by enhancing IL excitability and highlight the importance of REM sleep in the aftermath of traumatic events for protecting against traumatic memories.
Collapse
Affiliation(s)
- Jiso Hong
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyuhyun Choi
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marc V Fuccillo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shinjae Chung
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Franz Weber
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
20
|
Shiromani PJ, Vidal-Ortiz A. Most dynorphin neurons in the zona incerta-perifornical area are active in waking relative to non-rapid-eye movement and rapid-eye movement sleep. Sleep 2024; 47:zsae065. [PMID: 38447008 PMCID: PMC11494376 DOI: 10.1093/sleep/zsae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/26/2024] [Indexed: 03/08/2024] Open
Abstract
Dynorphin is an endogenous opiate localized in many brain regions and spinal cord, but the activity of dynorphin neurons during sleep is unknown. Dynorphin is an inhibitory neuropeptide that is coreleased with orexin, an excitatory neuropeptide. We used microendoscopy to test the hypothesis that, like orexin, the dynorphin neurons are wake-active. Dynorphin-cre mice (n = 3) were administered rAAV8-Ef1a-Con/Foff 2.0-GCaMP6M into the zona incerta-perifornical area, implanted with a GRIN lens (gradient reflective index), and electrodes to the skull that recorded sleep. One month later, a miniscope imaged calcium fluorescence in dynorphin neurons during multiple bouts of wake, non-rapid-eye movement (NREM), and rapid-eye movement (REM) sleep. Unbiased data analysis identified changes in calcium fluorescence in 64 dynorphin neurons. Most of the dynorphin neurons (72%) had the highest fluorescence during bouts of active and quiet waking compared to NREM or REM sleep; a subset (20%) were REM-max. Our results are consistent with the emerging evidence that the activity of orexin neurons can be classified as wake-max or REM-max. Since the two neuropeptides are coexpressed and coreleased, we suggest that dynorphin-cre-driven calcium sensors could increase understanding of the role of this endogenous opiate in pain and sleep.
Collapse
Affiliation(s)
- Priyattam J Shiromani
- Laboratory of Sleep Medicine and Chronobiology, Research Service, Ralph H. Johnson Veterans Healthcare System Charleston, SC, USA
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Aurelio Vidal-Ortiz
- Laboratory of Sleep Medicine and Chronobiology, Research Service, Ralph H. Johnson Veterans Healthcare System Charleston, SC, USA
| |
Collapse
|
21
|
Zhang J, Pena A, Delano N, Sattari N, Shuster AE, Baker FC, Simon K, Mednick SC. Evidence of an active role of dreaming in emotional memory processing shows that we dream to forget. Sci Rep 2024; 14:8722. [PMID: 38622204 PMCID: PMC11018802 DOI: 10.1038/s41598-024-58170-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
Dreaming is a universal human behavior that has inspired searches for meaning across many disciplines including art, psychology, religion, and politics, yet its function remains poorly understood. Given the suggested role of sleep in emotional memory processing, we investigated whether reported overnight dreaming and dream content are associated with sleep-dependent changes in emotional memory and reactivity, and whether dreaming plays an active or passive role. Participants completed an emotional picture task before and after a full night of sleep and they recorded the presence and content of their dreams upon waking in the morning. The results replicated the emotional memory trade-off (negative images maintained at the cost of neutral memories), but only in those who reported dreaming (Dream-Recallers), and not in Non-Dream-Recallers. Results also replicated sleep-dependent reductions in emotional reactivity, but only in Dream-Recallers, not in Non-Dream-Recallers. Additionally, the more positive the dream report, the more positive the next-day emotional reactivity is compared to the night before. These findings implicate an active role for dreaming in overnight emotional memory processing and suggest a mechanistic framework whereby dreaming may enhance salient emotional experiences via the forgetting of less relevant information.
Collapse
|
22
|
Bandarabadi M, Prouvot Bouvier PH, Corsi G, Tafti M. The paradox of REM sleep: Seven decades of evolution. Sleep Med Rev 2024; 74:101918. [PMID: 38457935 DOI: 10.1016/j.smrv.2024.101918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024]
Affiliation(s)
- Mojtaba Bandarabadi
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
| | | | - Giorgio Corsi
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Mehdi Tafti
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
23
|
Luppi PH, Chancel A, Malcey J, Cabrera S, Fort P, Maciel RM. Which structure generates paradoxical (REM) sleep: The brainstem, the hypothalamus, the amygdala or the cortex? Sleep Med Rev 2024; 74:101907. [PMID: 38422648 DOI: 10.1016/j.smrv.2024.101907] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/31/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024]
Abstract
Paradoxical or Rapid eye movement (REM) sleep (PS) is a state characterized by REMs, EEG activation and muscle atonia. In this review, we discuss the contribution of brainstem, hypothalamic, amygdalar and cortical structures in PS genesis. We propose that muscle atonia during PS is due to activation of glutamatergic neurons localized in the pontine sublaterodorsal tegmental nucleus (SLD) projecting to glycinergic/GABAergic pre-motoneurons localized in the ventro-medial medulla (vmM). The SLD PS-on neurons are inactivated during wakefulness and slow-wave sleep by PS-off GABAergic neurons localized in the ventrolateral periaqueductal gray (vPAG) and the adjacent deep mesencephalic reticular nucleus. Melanin concentrating hormone (MCH) and GABAergic PS-on neurons localized in the posterior hypothalamus would inhibit these PS-off neurons to initiate the state. Finally, the activation of a few limbic cortical structures during PS by the claustrum and the supramammillary nucleus as well as that of the basolateral amygdala would also contribute to PS expression. Accumulating evidence indicates that the activation of these limbic structures plays a role in memory consolidation and would communicate to the PS-generating structures the need for PS to process memory. In summary, PS generation is controlled by structures distributed from the cortex to the medullary level of the brain.
Collapse
Affiliation(s)
- Pierre-Hervé Luppi
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France.
| | - Amarine Chancel
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France
| | - Justin Malcey
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France
| | - Sébastien Cabrera
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France
| | - Patrice Fort
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France
| | - Renato M Maciel
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France
| |
Collapse
|
24
|
Wang Y, Li D, Widjaja J, Guo R, Cai L, Yan R, Ozsoy S, Allocca G, Fang J, Dong Y, Tseng GC, Huang C, Huang YH. An EEG Signature of MCH Neuron Activities Predicts Cocaine Seeking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.586887. [PMID: 38586019 PMCID: PMC10996698 DOI: 10.1101/2024.03.27.586887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Background Identifying biomarkers that predict substance use disorder (SUD) propensity may better strategize anti-addiction treatment. The melanin-concentrating hormone (MCH) neurons in the lateral hypothalamus (LH) critically mediates interactions between sleep and substance use; however, their activities are largely obscured in surface electroencephalogram (EEG) measures, hindering the development of biomarkers. Methods Surface EEG signals and real-time Ca2+ activities of LH MCH neurons (Ca2+MCH) were simultaneously recorded in male and female adult rats. Mathematical modeling and machine learning were then applied to predict Ca2+MCH using EEG derivatives. The robustness of the predictions was tested across sex and treatment conditions. Finally, features extracted from the EEG-predicted Ca2+MCH either before or after cocaine experience were used to predict future drug-seeking behaviors. Results An EEG waveform derivative - a modified theta-to-delta ratio (EEG Ratio) - accurately tracks real-time Ca2+MCH in rats. The prediction was robust during rapid eye movement sleep (REMS), persisted through REMS manipulations, wakefulness, circadian phases, and was consistent across sex. Moreover, cocaine self-administration and long-term withdrawal altered EEG Ratio suggesting shortening and circadian redistribution of synchronous MCH neuron activities. In addition, features of EEG Ratio indicative of prolonged synchronous MCH neuron activities predicted lower subsequent cocaine seeking. EEG Ratio also exhibited advantages over conventional REMS measures for the predictions. Conclusions The identified EEG Ratio may serve as a non-invasive measure for assessing MCH neuron activities in vivo and evaluating REMS; it may also serve as a potential biomarker predicting drug use propensity.
Collapse
Affiliation(s)
- Yao Wang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15219; 15260; 15213
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15219; 15260; 15213
| | - Danyang Li
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15219; 15260; 15213
| | | | - Rong Guo
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15219; 15260; 15213
| | - Li Cai
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15219; 15260; 15213
| | - Rongzhen Yan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15219; 15260; 15213
| | - Sahin Ozsoy
- Somnivore Pty. Ltd., Bacchus Marsh, VIC, Australia 3340
| | - Giancarlo Allocca
- Somnivore Pty. Ltd., Bacchus Marsh, VIC, Australia 3340
- Department of Pharmacology and Therapeutics, The University of Melbourne, VIC, Australia 3010
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia
| | - Jidong Fang
- Department of Psychiatry and Behavioral Health, Penn State College of Medicine, Hershey, PA 17033
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15219; 15260; 15213
| | - George C. Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15219; 15260; 15213
| | - Chengcheng Huang
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15219; 15260; 15213
| | - Yanhua H. Huang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15219; 15260; 15213
| |
Collapse
|
25
|
Alonso-Lozares I, Wilbers P, Asperl L, Teijsse S, van der Neut C, Schetters D, van Mourik Y, McDonald AJ, Heistek T, Mansvelder HD, De Vries TJ, Marchant NJ. Lateral hypothalamic GABAergic neurons encode alcohol memories. Curr Biol 2024; 34:1086-1097.e6. [PMID: 38423016 DOI: 10.1016/j.cub.2024.01.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/02/2024] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
In alcohol use disorder, the alcohol memories persist during abstinence, and exposure to stimuli associated with alcohol use can lead to relapse. This highlights the importance of investigating the neural substrates underlying not only relapse but also encoding and expression of alcohol memories. GABAergic neurons in the lateral hypothalamus (LH-GABA) have been shown to be critical for food-cue memories and motivation; however, the extent to which this role extends to alcohol-cue memories and motivations remains unexplored. In this study, we aimed to describe how alcohol-related memories are encoded and expressed in LH GABAergic neurons. Our first step was to monitor LH-GABA calcium transients during acquisition, extinction, and reinstatement of an alcohol-cue memory using fiber photometry. We trained the rats on a Pavlovian conditioning task, where one conditioned stimulus (CS+) predicted alcohol (20% EtOH) and another conditioned stimulus (CS-) had no outcome. We then extinguished this association through non-reinforced presentations of the CS+ and CS- and finally, in two different groups, we measured relapse under non-primed and alcohol-primed induced reinstatement. Our results show that initially both cues caused increased LH-GABA activity, and after learning only the alcohol cue increased LH-GABA activity. After extinction, this activity decreases, and we found no differences in LH-GABA activity during reinstatement in either group. Next, we inhibited LH-GABA neurons with optogenetics to show that activity of these neurons is necessary for the formation of an alcohol-cue association. These findings suggest that LH-GABA might be involved in attentional processes modulated by learning.
Collapse
Affiliation(s)
- Isis Alonso-Lozares
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam 1081 HZ, the Netherlands; Compulsivity Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam 1081 HZ, the Netherlands
| | - Pelle Wilbers
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam 1081 HZ, the Netherlands; Compulsivity Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam 1081 HZ, the Netherlands
| | - Lina Asperl
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam 1081 HZ, the Netherlands; Compulsivity Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam 1081 HZ, the Netherlands
| | - Sem Teijsse
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam 1081 HZ, the Netherlands; Compulsivity Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam 1081 HZ, the Netherlands
| | - Charlotte van der Neut
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam 1081 HZ, the Netherlands; Compulsivity Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam 1081 HZ, the Netherlands
| | - Dustin Schetters
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam 1081 HZ, the Netherlands; Compulsivity Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam 1081 HZ, the Netherlands
| | - Yvar van Mourik
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam 1081 HZ, the Netherlands; Compulsivity Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam 1081 HZ, the Netherlands
| | - Allison J McDonald
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam 1081 HZ, the Netherlands; Compulsivity Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam 1081 HZ, the Netherlands
| | - Tim Heistek
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam 1081 HZ, the Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam 1081 HZ, the Netherlands
| | - Taco J De Vries
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam 1081 HZ, the Netherlands; Compulsivity Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam 1081 HZ, the Netherlands
| | - Nathan J Marchant
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam 1081 HZ, the Netherlands; Compulsivity Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam 1081 HZ, the Netherlands.
| |
Collapse
|
26
|
Gao Y, Zhou Q, Li H, Zhao Y, Zhu H, Zhang X, Li Y. Melanin-Concentrating Hormone Is Associated With Delayed Neurocognitive Recovery in Older Adult Patients With Preoperative Sleep Disorders Undergoing Spinal Anesthesia. Anesth Analg 2024; 138:579-588. [PMID: 38051670 DOI: 10.1213/ane.0000000000006768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
BACKGROUND Aging and preoperative sleep disorders are the main risk factors affecting postoperative cognitive outcomes. However, the pathogenesis of delayed neurocognitive recovery after surgery remains ambiguous, and there is still a lack of potential biomarkers for delayed neurocognitive recovery in older adult patients with preoperative sleep disorders. Our study aimed to explore the relationship between melanin-concentrating hormone (MCH) and delayed neurocognitive recovery early after surgery in older adult patients with preoperative sleep disorders. METHODS In this monocentric prospective observational study, 156 older adult patients (aged 65 years or older) with preoperative sleep disorders undergoing elective total hip arthroplasty (THA) or total knee arthroplasty (TKA) were included at an academic medical center in Inner Mongolia, China, from October 2021 to November 2022, and all patients underwent spinal anesthesia. The Pittsburgh Sleep Quality Index (PSQI) was applied to assess the preoperative sleep quality of all patients, and preoperative sleep disorders were defined as a score of PSQI >5. We measured the levels of cerebrospinal fluid (CSF) MCH and plasma MCH of all patients. The primary outcome was delayed neurocognitive recovery early after surgery. All patients received cognitive function assessment through the Montreal Cognitive Assessment (MoCA) 1 day before and 7 days after surgery (postoperative day 7 [POD7]). Delayed neurocognitive recovery was defined as a score of POD7 MoCA <26. The potential confounders included variables with P < .2 in the univariate logistic analysis, as well as the important risk factors of delayed neurocognitive recovery reported in the literature. Multivariable logistic regression model based on the Enter method assessed the association of MCH and delayed neurocognitive recovery in older adult patients with preoperative sleep disorders. RESULTS Fifty-nine (37.8%) older adult patients with preoperative sleep disorders experienced delayed neurocognitive recovery at POD7. Increase in CSF MCH levels (odds ratio [OR] for an increase of 1 pg/mL = 1.16, 95% confidence interval [CI], 1.09-1.23, P < .001) and decrease in plasma MCH levels (OR for an increase of 1 pg/mL = 0.92, 95% CI, 0.86-0.98, P = .003) were associated with delayed neurocognitive recovery, after adjusting for age, sex, education, baseline MoCA scores, American Society of Anesthesiologists (ASA) grade, and coronary heart disease (CHD). CONCLUSIONS In older adult patients with preoperative sleep disorders, MCH is associated with the occurrence of delayed neurocognitive recovery after surgery. Preoperative testing of CSF MCH or plasma MCH may increase the likelihood of identifying the high-risk population for delayed neurocognitive recovery in older adult patients with preoperative sleep disorders.
Collapse
Affiliation(s)
- Yi Gao
- From the Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng, China
- Department of Anesthesiology, Chifeng Municipal Hospital, Chifeng, China
| | - Qi Zhou
- From the Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng, China
- Department of Anesthesiology, Chifeng Municipal Hospital, Chifeng, China
| | - Haibo Li
- From the Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng, China
- Department of Anesthesiology, Chifeng Municipal Hospital, Chifeng, China
| | - Yunjiao Zhao
- From the Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng, China
| | - Hongyan Zhu
- From the Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng, China
- Department of Anesthesiology, Chifeng Municipal Hospital, Chifeng, China
| | - Xizhe Zhang
- From the Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng, China
- Department of Anesthesiology, Chifeng Municipal Hospital, Chifeng, China
| | - Yun Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin Research Institute of Anesthesiology, Tianjin, China
| |
Collapse
|
27
|
Xing L, Zou X, Yin C, Webb JM, Shi G, Ptáček LJ, Fu YH. Diverse roles of pontine NPS-expressing neurons in sleep regulation. Proc Natl Acad Sci U S A 2024; 121:e2320276121. [PMID: 38381789 PMCID: PMC10907243 DOI: 10.1073/pnas.2320276121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024] Open
Abstract
Neuropeptide S (NPS) was postulated to be a wake-promoting neuropeptide with unknown mechanism, and a mutation in its receptor (NPSR1) causes the short sleep duration trait in humans. We investigated the role of different NPS+ nuclei in sleep/wake regulation. Loss-of-function and chemogenetic studies revealed that NPS+ neurons in the parabrachial nucleus (PB) are wake-promoting, whereas peri-locus coeruleus (peri-LC) NPS+ neurons are not important for sleep/wake modulation. Further, we found that a NPS+ nucleus in the central gray of the pons (CGPn) strongly promotes sleep. Fiber photometry recordings showed that NPS+ neurons are wake-active in the CGPn and wake/REM-sleep active in the PB and peri-LC. Blocking NPS-NPSR1 signaling or knockdown of Nps supported the function of the NPS-NPSR1 pathway in sleep/wake regulation. Together, these results reveal that NPS and NPS+ neurons play dichotomous roles in sleep/wake regulation at both the molecular and circuit levels.
Collapse
Affiliation(s)
- Lijuan Xing
- Department of Neurology, University of California San Francisco, San Francisco, CA94143
| | - Xianlin Zou
- Department of Neurology, University of California San Francisco, San Francisco, CA94143
| | - Chen Yin
- Department of Neurology, University of California San Francisco, San Francisco, CA94143
| | - John M. Webb
- Department of Neurology, University of California San Francisco, San Francisco, CA94143
| | - Guangsen Shi
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan528400, China
| | - Louis J. Ptáček
- Department of Neurology, University of California San Francisco, San Francisco, CA94143
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA94143
- Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA94143
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA94143
| | - Ying-Hui Fu
- Department of Neurology, University of California San Francisco, San Francisco, CA94143
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA94143
- Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA94143
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA94143
| |
Collapse
|
28
|
Harris JJ, Burdakov D. A role for MCH neuron firing in modulating hippocampal plasticity threshold. Peptides 2024; 172:171128. [PMID: 38070684 DOI: 10.1016/j.peptides.2023.171128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/25/2023]
Abstract
It has been revealed that hypothalamic neurons containing the peptide, melanin-concentrating hormone (MCH) can influence learning [1] and memory formation [2], but the cellular mechanisms by which they perform this function are not well understood. Here, we examine the role of MCH neural input to the hippocampus, and show in vitro that optogenetically increasing MCH axon activity facilitates hippocampal plasticity by lowering the threshold for synaptic potentiation. These results align with increasing evidence that MCH neurons play a regulatory role in learning, and reveal that this could be achieved by modulating plasticity thresholds in the hippocampus.
Collapse
Affiliation(s)
- Julia J Harris
- Sensory Circuits and Neurotechnology Laboratory, Francis Crick Institute, London, UK; Department of Life Sciences, Imperial College London, London, UK; System Neuroscience and Energy Control Laboratory, Francis Crick Institute, London, UK.
| | - Denis Burdakov
- System Neuroscience and Energy Control Laboratory, Francis Crick Institute, London, UK; Department of Health Sciences and Technology, ETH Zürich, 8603 Schwerzenbach, Switzerland; Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, 8603 Schwerzenbach, Switzerland; Institute of Food Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, 8603 Schwerzenbach, Switzerland; Neuroscience Center Zürich, 8057 Zürich, Switzerland.
| |
Collapse
|
29
|
Vetrivelan R, Bandaru SS. Neural Control of REM Sleep and Motor Atonia: Current Perspectives. Curr Neurol Neurosci Rep 2023; 23:907-923. [PMID: 38060134 DOI: 10.1007/s11910-023-01322-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE OF REVIEW Since the formal discovery of rapid eye movement (REM) sleep in 1953, we have gained a vast amount of knowledge regarding the specific populations of neurons, their connections, and synaptic mechanisms regulating this stage of sleep and its accompanying features. This article discusses REM sleep circuits and their dysfunction, specifically emphasizing recent studies using conditional genetic tools. RECENT FINDINGS Sublaterodorsal nucleus (SLD) in the dorsolateral pons, especially the glutamatergic subpopulation in this region (SLDGlut), are shown to be indispensable for REM sleep. These neurons appear to be single REM generators in the rodent brain and may initiate and orchestrate all REM sleep events, including cortical and hippocampal activation and muscle atonia through distinct pathways. However, several cell groups in the brainstem and hypothalamus may influence SLDGlut neuron activity, thereby modulating REM sleep timing, amounts, and architecture. Damage to SLDGlut neurons or their projections involved in muscle atonia leads to REM behavior disorder, whereas the abnormal activation of this pathway during wakefulness may underlie cataplexy in narcolepsy. Despite some opposing views, it has become evident that SLDGlut neurons are the sole generators of REM sleep and its associated characteristics. Further research should prioritize a deeper understanding of their cellular, synaptic, and molecular properties, as well as the mechanisms that trigger their activation during cataplexy and make them susceptible in RBD.
Collapse
Affiliation(s)
- Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA.
| | - Sathyajit Sai Bandaru
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| |
Collapse
|
30
|
Mukai Y, Okubo TS, Lazarus M, Ono D, Tanaka KF, Yamanaka A. Prostaglandin E 2 Induces Long-Lasting Inhibition of Noradrenergic Neurons in the Locus Coeruleus and Moderates the Behavioral Response to Stressors. J Neurosci 2023; 43:7982-7999. [PMID: 37734949 PMCID: PMC10669809 DOI: 10.1523/jneurosci.0353-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Neuronal activity is modulated not only by inputs from other neurons but also by various factors, such as bioactive substances. Noradrenergic (NA) neurons in the locus coeruleus (LC-NA neurons) are involved in diverse physiological functions, including sleep/wakefulness and stress responses. Previous studies have identified various substances and receptors that modulate LC-NA neuronal activity through techniques including electrophysiology, calcium imaging, and single-cell RNA sequencing. However, many substances with unknown physiological significance have been overlooked. Here, we established an efficient screening method for identifying substances that modulate LC-NA neuronal activity through intracellular calcium ([Ca2+]i) imaging using brain slices. Using both sexes of mice, we screened 53 bioactive substances, and identified five novel substances: gastrin-releasing peptide, neuromedin U, and angiotensin II, which increase [Ca2+]i, and pancreatic polypeptide and prostaglandin D2, which decrease [Ca2+]i Among them, neuromedin U induced the greatest response in female mice. In terms of the duration of [Ca2+]i change, we focused on prostaglandin E2 (PGE2), since it induces a long-lasting decrease in [Ca2+]i via the EP3 receptor. Conditional knock-out of the receptor in LC-NA neurons resulted in increased depression-like behavior, prolonged wakefulness in the dark period, and increased [Ca2+]i after stress exposure. Our results demonstrate the effectiveness of our screening method for identifying substances that modulate a specific neuronal population in an unbiased manner and suggest that stress-induced prostaglandin E2 can suppress LC-NA neuronal activity to moderate the behavioral response to stressors. Our screening method will contribute to uncovering previously unknown physiological functions of uncharacterized bioactive substances in specific neuronal populations.SIGNIFICANCE STATEMENT Bioactive substances modulate the activity of specific neuronal populations. However, since only a limited number of substances with predicted effects have been investigated, many substances that may modulate neuronal activity have gone unrecognized. Here, we established an unbiased method for identifying modulatory substances by measuring the intracellular calcium signal, which reflects neuronal activity. We examined noradrenergic (NA) neurons in the locus coeruleus (LC-NA neurons), which are involved in diverse physiological functions. We identified five novel substances that modulate LC-NA neuronal activity. We also found that stress-induced prostaglandin E2 (PGE2) may suppress LC-NA neuronal activity and influence behavioral outcomes. Our screening method will help uncover previously overlooked functions of bioactive substances and provide insight into unrecognized roles of specific neuronal populations.
Collapse
Affiliation(s)
- Yasutaka Mukai
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Tatsuo S Okubo
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS) and Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Daisuke Ono
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
- Chinese Institute for Brain Research, Beijing 102206, China
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
31
|
Koyama Y. The role of orexinergic system in the regulation of cataplexy. Peptides 2023; 169:171080. [PMID: 37598758 DOI: 10.1016/j.peptides.2023.171080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/06/2023] [Accepted: 08/18/2023] [Indexed: 08/22/2023]
Abstract
Loss of orexin/hypocretin causes serious sleep disorder; narcolepsy. Cataplexy is the most striking symptom of narcolepsy, characterized by abrupt muscle paralysis induced by emotional stimuli, and has been considered pathological activation of REM sleep atonia system. Clinical treatments for cataplexy/narcolepsy and early pharmacological studies in narcoleptic dogs tell us about the involvement of monoaminergic and cholinergic systems in the control of cataplexy/narcolepsy. Muscle atonia may be induced by activation of REM sleep-atonia generating system in the brainstem. Emotional stimuli may be processed in the limbic systems including the amygdala, nucleus accumbens, and medial prefrontal cortex. It is now considered that orexin/hypocretin prevents cataplexy by modulating the activity of different points of cataplexy-inducing circuit, including monoaminergic/cholinergic systems, muscle atonia-generating systems, and emotion-related systems. This review will describe the recent advances in understanding the neural mechanisms controlling cataplexy, with a focus on the involvement of orexin/hypocretin system, and will discuss future experimental strategies that will lead to further understanding and treatment of this disease.
Collapse
Affiliation(s)
- Yoshimasa Koyama
- Faculty of Symbiotic Systems Science, Fukushima University, 1 Kanaya-gawa, Fukushima 960-1296, Japan..
| |
Collapse
|
32
|
Concetti C, Peleg-Raibstein D, Burdakov D. Hypothalamic MCH Neurons: From Feeding to Cognitive Control. FUNCTION 2023; 5:zqad059. [PMID: 38020069 PMCID: PMC10667013 DOI: 10.1093/function/zqad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Modern neuroscience is progressively elucidating that the classic view positing distinct brain regions responsible for survival, emotion, and cognitive functions is outdated. The hypothalamus demonstrates the interdependence of these roles, as it is traditionally known for fundamental survival functions like energy and electrolyte balance, but is now recognized to also play a crucial role in emotional and cognitive processes. This review focuses on lateral hypothalamic melanin-concentrating hormone (MCH) neurons, producing the neuropeptide MCH-a relatively understudied neuronal population with integrative functions related to homeostatic regulation and motivated behaviors, with widespread inputs and outputs throughout the entire central nervous system. Here, we review early findings and recent literature outlining their role in the regulation of energy balance, sleep, learning, and memory processes.
Collapse
Affiliation(s)
- Cristina Concetti
- Neurobehavioural Dynamics Laboratory, ETH Zürich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland
| | - Daria Peleg-Raibstein
- Neurobehavioural Dynamics Laboratory, ETH Zürich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland
| | - Denis Burdakov
- Neurobehavioural Dynamics Laboratory, ETH Zürich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland
| |
Collapse
|
33
|
Wang Y, You L, Tan K, Li M, Zou J, Zhao Z, Hu W, Li T, Xie F, Li C, Yuan R, Ding K, Cao L, Xin F, Shang C, Liu M, Gao Y, Wei L, You Z, Gao X, Xiong W, Cao P, Luo M, Chen F, Li K, Wu J, Hong B, Yuan K. A common thalamic hub for general and defensive arousal control. Neuron 2023; 111:3270-3287.e8. [PMID: 37557180 DOI: 10.1016/j.neuron.2023.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/25/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023]
Abstract
The expression of defensive responses to alerting sensory cues requires both general arousal and a specific arousal state associated with defensive emotions. However, it remains unclear whether these two forms of arousal can be regulated by common brain regions. We discovered that the medial sector of the auditory thalamus (ATm) in mice is a thalamic hub controlling both general and defensive arousal. The spontaneous activity of VGluT2-expressing ATm (ATmVGluT2+) neurons was correlated with and causally contributed to wakefulness. In sleeping mice, sustained ATmVGluT2+ population responses were predictive of sensory-induced arousal, the likelihood of which was markedly decreased by inhibiting ATmVGluT2+ neurons or multiple downstream pathways. In awake mice, ATmVGluT2+ activation led to heightened arousal accompanied by excessive anxiety and avoidance behavior. Notably, blocking their neurotransmission abolished alerting stimuli-induced defensive behaviors. These findings may shed light on the comorbidity of sleep disturbances and abnormal sensory sensitivity in specific brain disorders.
Collapse
Affiliation(s)
- Yiwei Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China
| | - Ling You
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China
| | - KaMun Tan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China
| | - Meijie Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China
| | - Jingshan Zou
- Hospital of Chengdu University of Traditional Chinese Medicine, Traditional Chinese Medicine Hospital of Sichuan Province, Chengdu 610036, China
| | - Zhifeng Zhao
- IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China; Department of Automation, Tsinghua University, Beijing 100084, China
| | - Wenxin Hu
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Tianyu Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China
| | - Fenghua Xie
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua Laboratory of Brain and Intelligence (THBI), Beijing 100084, China
| | - Caiqin Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China
| | - Ruizhi Yuan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Kai Ding
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Lingwei Cao
- Zhili College, Tsinghua University, Beijing 100084, China
| | - Fengyuan Xin
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China
| | - Congping Shang
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Miaomiao Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; Laboratory Animal Resources Center, Tsinghua University, Beijing 100084, China
| | - Yixiao Gao
- IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Liqiang Wei
- IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Zhiwei You
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Xiaorong Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China; Tsinghua Laboratory of Brain and Intelligence (THBI), Beijing 100084, China
| | - Wei Xiong
- IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Peng Cao
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Minmin Luo
- National Institute of Biological Sciences (NIBS), Beijing 102206, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Feng Chen
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Kun Li
- IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Jiamin Wu
- IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China; Department of Automation, Tsinghua University, Beijing 100084, China
| | - Bo Hong
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua Laboratory of Brain and Intelligence (THBI), Beijing 100084, China.
| | - Kexin Yuan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China; Tsinghua Laboratory of Brain and Intelligence (THBI), Beijing 100084, China.
| |
Collapse
|
34
|
Weber F, Hong J, Lozano D, Beier K, Chung S. Prefrontal Cortical Regulation of REM Sleep. RESEARCH SQUARE 2023:rs.3.rs-1417511. [PMID: 37886570 PMCID: PMC10602053 DOI: 10.21203/rs.3.rs-1417511/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Rapid-eye-movement (REM) sleep is accompanied by intense cortical activity, underlying its wake-like electroencephalogram (EEG). The neural activity inducing REM sleep is thought to originate from subcortical circuits in brainstem and hypothalamus. However, whether cortical neurons can also trigger REM sleep has remained unknown. Here, we show in mice that the medial prefrontal cortex (mPFC) strongly promotes REM sleep. Bidirectional optogenetic manipulations demonstrate that excitatory mPFC neurons promote REM sleep through their projections to the lateral hypothalamus (LH) and regulate phasic events, reflected in accelerated EEG theta oscillations and increased eye-movement density during REM sleep. Calcium imaging reveals that the majority of LH-projecting mPFC neurons are maximally activated during REM sleep and a subpopulation is recruited during phasic theta accelerations. Our results delineate a cortico-hypothalamic circuit for the top-down control of REM sleep and identify a critical role of the mPFC in regulating phasic events during REM sleep.
Collapse
|
35
|
Ito H, Fukatsu N, Rahaman SM, Mukai Y, Izawa S, Ono D, Kilduff TS, Yamanaka A. Deficiency of orexin signaling during sleep is involved in abnormal REM sleep architecture in narcolepsy. Proc Natl Acad Sci U S A 2023; 120:e2301951120. [PMID: 37796986 PMCID: PMC10576136 DOI: 10.1073/pnas.2301951120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/10/2023] [Indexed: 10/07/2023] Open
Abstract
Narcolepsy is a sleep disorder caused by deficiency of orexin signaling. However, the neural mechanisms by which deficient orexin signaling causes the abnormal rapid eye movement (REM) sleep characteristics of narcolepsy, such as cataplexy and frequent transitions to REM states, are not fully understood. Here, we determined the activity dynamics of orexin neurons during sleep that suppress the abnormal REM sleep architecture of narcolepsy. Orexin neurons were highly active during wakefulness, showed intermittent synchronous activity during non-REM (NREM) sleep, were quiescent prior to the transition from NREM to REM sleep, and a small subpopulation of these cells was active during REM sleep. Orexin neurons that lacked orexin peptides were less active during REM sleep and were mostly silent during cataplexy. Optogenetic inhibition of orexin neurons established that the activity dynamics of these cells during NREM sleep regulate NREM-REM sleep transitions. Inhibition of orexin neurons during REM sleep increased subsequent REM sleep in "orexin intact" mice and subsequent cataplexy in mice lacking orexin peptides, indicating that the activity of a subpopulation of orexin neurons during the preceding REM sleep suppresses subsequent REM sleep and cataplexy. Thus, these results identify how deficient orexin signaling during sleep results in the abnormal REM sleep architecture characteristic of narcolepsy.
Collapse
Affiliation(s)
- Hiroto Ito
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya466-8550, Japan
- Japan Society for the Promotion of Science Research Fellowship for Young Scientists, Tokyo102-0083, Japan
| | - Noriaki Fukatsu
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya466-8550, Japan
| | - Sheikh Mizanur Rahaman
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya466-8550, Japan
| | - Yasutaka Mukai
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya466-8550, Japan
| | - Shuntaro Izawa
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya466-8550, Japan
| | - Daisuke Ono
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya466-8550, Japan
| | - Thomas S. Kilduff
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA94025
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya466-8550, Japan
- Chinese Institute for Brain Research, Beijing102206, China
- National Institute for Physiological Sciences, Aichi444-8585, Japan
- National Institutes of Natural Sciences, Aichi444-8585, Japan
- Division of Brain Sciences Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo160-8582, Japan
| |
Collapse
|
36
|
Hong J, Lozano DE, Beier KT, Chung S, Weber F. Prefrontal cortical regulation of REM sleep. Nat Neurosci 2023; 26:1820-1832. [PMID: 37735498 DOI: 10.1038/s41593-023-01398-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/28/2023] [Indexed: 09/23/2023]
Abstract
Rapid eye movement (REM) sleep is accompanied by intense cortical activity, underlying its wake-like electroencephalogram. The neural activity inducing REM sleep is thought to originate from subcortical circuits in brainstem and hypothalamus. However, whether cortical neurons can also trigger REM sleep has remained unknown. Here we show in mice that the medial prefrontal cortex (mPFC) strongly promotes REM sleep. Bidirectional optogenetic manipulations demonstrate that excitatory mPFC neurons promote REM sleep through their projections to the lateral hypothalamus and regulate phasic events, reflected in accelerated electroencephalogram theta oscillations and increased eye movement density during REM sleep. Calcium imaging reveals that the majority of lateral hypothalamus-projecting mPFC neurons are maximally activated during REM sleep and a subpopulation is recruited during phasic theta accelerations. Our results delineate a cortico-hypothalamic circuit for the top-down control of REM sleep and identify a critical role of the mPFC in regulating phasic events during REM sleep.
Collapse
Affiliation(s)
- Jiso Hong
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - David E Lozano
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin T Beier
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Shinjae Chung
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Franz Weber
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
37
|
Gao JX, Yan G, Li XX, Xie JF, Spruyt K, Shao YF, Hou YP. The Ponto-Geniculo-Occipital (PGO) Waves in Dreaming: An Overview. Brain Sci 2023; 13:1350. [PMID: 37759951 PMCID: PMC10526299 DOI: 10.3390/brainsci13091350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Rapid eye movement (REM) sleep is the main sleep correlate of dreaming. Ponto-geniculo-occipital (PGO) waves are a signature of REM sleep. They represent the physiological mechanism of REM sleep that specifically limits the processing of external information. PGO waves look just like a message sent from the pons to the lateral geniculate nucleus of the visual thalamus, the occipital cortex, and other areas of the brain. The dedicated visual pathway of PGO waves can be interpreted by the brain as visual information, leading to the visual hallucinosis of dreams. PGO waves are considered to be both a reflection of REM sleep brain activity and causal to dreams due to their stimulation of the cortex. In this review, we summarize the role of PGO waves in potential neural circuits of two major theories, i.e., (1) dreams are generated by the activation of neural activity in the brainstem; (2) PGO waves signaling to the cortex. In addition, the potential physiological functions during REM sleep dreams, such as memory consolidation, unlearning, and brain development and plasticity and mood regulation, are discussed. It is hoped that our review will support and encourage research into the phenomenon of human PGO waves and their possible functions in dreaming.
Collapse
Affiliation(s)
- Jin-Xian Gao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Departments of Neuroscience, Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.-X.G.); (G.Y.); (X.-X.L.); (J.-F.X.)
| | - Guizhong Yan
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Departments of Neuroscience, Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.-X.G.); (G.Y.); (X.-X.L.); (J.-F.X.)
| | - Xin-Xuan Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Departments of Neuroscience, Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.-X.G.); (G.Y.); (X.-X.L.); (J.-F.X.)
| | - Jun-Fan Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Departments of Neuroscience, Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.-X.G.); (G.Y.); (X.-X.L.); (J.-F.X.)
| | - Karen Spruyt
- NeuroDiderot-INSERM, Université de Paris, 75019 Paris, France;
| | - Yu-Feng Shao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Departments of Neuroscience, Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.-X.G.); (G.Y.); (X.-X.L.); (J.-F.X.)
| | - Yi-Ping Hou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Departments of Neuroscience, Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.-X.G.); (G.Y.); (X.-X.L.); (J.-F.X.)
- Sleep Medicine Center of Gansu Provincial Hospital, Lanzhou 730000, China
| |
Collapse
|
38
|
Bouâouda H, Jha PK. Orexin and MCH neurons: regulators of sleep and metabolism. Front Neurosci 2023; 17:1230428. [PMID: 37674517 PMCID: PMC10478345 DOI: 10.3389/fnins.2023.1230428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
Sleep-wake and fasting-feeding are tightly coupled behavioral states that require coordination between several brain regions. The mammalian lateral hypothalamus (LH) is a functionally and anatomically complex brain region harboring heterogeneous cell populations that regulate sleep, feeding, and energy metabolism. Significant attempts were made to understand the cellular and circuit bases of LH actions. Rapid advancements in genetic and electrophysiological manipulation help to understand the role of discrete LH cell populations. The opposing action of LH orexin/hypocretin and melanin-concentrating hormone (MCH) neurons on metabolic sensing and sleep-wake regulation make them the candidate to explore in detail. This review surveys the molecular, genetic, and neuronal components of orexin and MCH signaling in the regulation of sleep and metabolism.
Collapse
Affiliation(s)
- Hanan Bouâouda
- Pharmacology Institute, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Pawan Kumar Jha
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
39
|
Fraigne JJ, Luppi PH, Mahoney CE, De Luca R, Shiromani PJ, Weber F, Adamantidis A, Peever J. Dopamine neurons in the ventral tegmental area modulate rapid eye movement sleep. Sleep 2023; 46:zsad024. [PMID: 36775897 DOI: 10.1093/sleep/zsad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/13/2023] [Indexed: 02/14/2023] Open
Affiliation(s)
- Jimmy J Fraigne
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Pierre H Luppi
- Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM, and Université Claude Bernard Lyon 1, Lyon, France
| | - Carrie E Mahoney
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Roberto De Luca
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Priyattam J Shiromani
- Laboratory of Sleep Medicine and Chronobiology, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Franz Weber
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Antoine Adamantidis
- Departments of Neurology and Biomedical Research, Centre for Experimental Neurology, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
| | - John Peever
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
40
|
Fang LZ, Linehan V, Licursi M, Alberto CO, Power JL, Parsons MP, Hirasawa M. Prostaglandin E 2 activates melanin-concentrating hormone neurons to drive diet-induced obesity. Proc Natl Acad Sci U S A 2023; 120:e2302809120. [PMID: 37467285 PMCID: PMC10401019 DOI: 10.1073/pnas.2302809120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/09/2023] [Indexed: 07/21/2023] Open
Abstract
Hypothalamic inflammation reduces appetite and body weight during inflammatory diseases, while promoting weight gain when induced by high-fat diet (HFD). How hypothalamic inflammation can induce opposite energy balance outcomes remains unclear. We found that prostaglandin E2 (PGE2), a key hypothalamic inflammatory mediator of sickness, also mediates diet-induced obesity (DIO) by activating appetite-promoting melanin-concentrating hormone (MCH) neurons in the hypothalamus in rats and mice. The effect of PGE2 on MCH neurons is excitatory at low concentrations while inhibitory at high concentrations, indicating that these neurons can bidirectionally respond to varying levels of inflammation. During prolonged HFD, endogenous PGE2 depolarizes MCH neurons through an EP2 receptor-mediated inhibition of the electrogenic Na+/K+-ATPase. Disrupting this mechanism by genetic deletion of EP2 receptors on MCH neurons is protective against DIO and liver steatosis in male and female mice. Thus, an inflammatory mediator can directly stimulate appetite-promoting neurons to exacerbate DIO and fatty liver.
Collapse
Affiliation(s)
- Lisa Z. Fang
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’sA1B 3V6, Canada
| | - Victoria Linehan
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’sA1B 3V6, Canada
| | - Maria Licursi
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’sA1B 3V6, Canada
| | - Christian O. Alberto
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’sA1B 3V6, Canada
| | - Jacob L. Power
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’sA1B 3V6, Canada
| | - Matthew P. Parsons
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’sA1B 3V6, Canada
| | - Michiru Hirasawa
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’sA1B 3V6, Canada
| |
Collapse
|
41
|
Calafate S, Özturan G, Thrupp N, Vanderlinden J, Santa-Marinha L, Morais-Ribeiro R, Ruggiero A, Bozic I, Rusterholz T, Lorente-Echeverría B, Dias M, Chen WT, Fiers M, Lu A, Vlaeminck I, Creemers E, Craessaerts K, Vandenbempt J, van Boekholdt L, Poovathingal S, Davie K, Thal DR, Wierda K, Oliveira TG, Slutsky I, Adamantidis A, De Strooper B, de Wit J. Early alterations in the MCH system link aberrant neuronal activity and sleep disturbances in a mouse model of Alzheimer's disease. Nat Neurosci 2023:10.1038/s41593-023-01325-4. [PMID: 37188873 DOI: 10.1038/s41593-023-01325-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/10/2023] [Indexed: 05/17/2023]
Abstract
Early Alzheimer's disease (AD) is associated with hippocampal hyperactivity and decreased sleep quality. Here we show that homeostatic mechanisms transiently counteract the increased excitatory drive to CA1 neurons in AppNL-G-F mice, but that this mechanism fails in older mice. Spatial transcriptomics analysis identifies Pmch as part of the adaptive response in AppNL-G-F mice. Pmch encodes melanin-concentrating hormone (MCH), which is produced in sleep-active lateral hypothalamic neurons that project to CA1 and modulate memory. We show that MCH downregulates synaptic transmission, modulates firing rate homeostasis in hippocampal neurons and reverses the increased excitatory drive to CA1 neurons in AppNL-G-F mice. AppNL-G-F mice spend less time in rapid eye movement (REM) sleep. AppNL-G-F mice and individuals with AD show progressive changes in morphology of CA1-projecting MCH axons. Our findings identify the MCH system as vulnerable in early AD and suggest that impaired MCH-system function contributes to aberrant excitatory drive and sleep defects, which can compromise hippocampus-dependent functions.
Collapse
Affiliation(s)
- Sara Calafate
- VIB Center for Brain & Disease Research, Leuven, Belgium.
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium.
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Gökhan Özturan
- VIB Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Nicola Thrupp
- VIB Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Jeroen Vanderlinden
- VIB Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Luísa Santa-Marinha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rafaela Morais-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Antonella Ruggiero
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ivan Bozic
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
| | - Thomas Rusterholz
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Blanca Lorente-Echeverría
- VIB Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Marcelo Dias
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Wei-Ting Chen
- VIB Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Mark Fiers
- VIB Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Ashley Lu
- VIB Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Ine Vlaeminck
- VIB Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Eline Creemers
- VIB Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Katleen Craessaerts
- VIB Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Joris Vandenbempt
- VIB Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Luuk van Boekholdt
- VIB Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
- KU Leuven, Department of Otorhinolaryngology, Leuven, Belgium
| | - Suresh Poovathingal
- VIB Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Kristofer Davie
- VIB Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Dietmar Rudolf Thal
- Department of Imaging and Pathology, Laboratory of Neuropathology, and Leuven Brain Institute, KU-Leuven, O&N IV, Leuven, Belgium
- Department of Pathology, UZ Leuven, Leuven, Belgium
| | - Keimpe Wierda
- VIB Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Tiago Gil Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Antoine Adamantidis
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Bart De Strooper
- VIB Center for Brain & Disease Research, Leuven, Belgium.
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium.
- UK Dementia Research Institute (UK DRI@UCL) at University College London, London, UK.
| | - Joris de Wit
- VIB Center for Brain & Disease Research, Leuven, Belgium.
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium.
| |
Collapse
|
42
|
Ruiz-Viroga V, de Ceglia M, Morelli L, Castaño EM, Calvo EB, Suárez J, Rodríguez de Fonseca F, Galeano P, Lagos P. Acute intrahippocampal administration of melanin-concentrating hormone impairs memory consolidation and decreases the expression of MCHR-1 and TrkB receptors. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110703. [PMID: 36565982 DOI: 10.1016/j.pnpbp.2022.110703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 11/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Interest in the role of melanin-concentrating hormone (MCH) in memory processes has increased in recent years, with some studies reporting memory-enhancing effects, while others report deleterious effects. Due to these discrepancies, this study seeks to provide new evidence about the role of MCH in memory consolidation and its relation with BDNF/TrkB system. To this end, in the first experiment, increased doses of MCH were acutely administered in both hippocampi to groups of male rats (25, 50, 200, and 500 ng). Microinjections were carried out immediately after finishing the sample trial of two hippocampal-dependent behavioral tasks: the Novel Object Recognition Test (NORT) and the modified Elevated Plus Maze (mEPM) test. Results indicated that a dose of 200 ng of MCH or higher impaired memory consolidation in both tasks. A second experiment was performed in which a dose of 200 ng of MCH was administered alone or co-administered with the MCHR-1 antagonist ATC-0175 at the end of the sample trial in the NORT. Results showed that MCH impaired memory consolidation, while the co-administration with ATC-0175 reverted this detrimental effect. Moreover, MCH induced a significant decrease in hippocampal MCHR-1 and TrkB expression with no modification in the expression of BDNF and NMDA receptor subunits NR1, NR2A, and NR2B. These results suggest that MCH in vivo elicits pro-amnesic effects in the rat hippocampus by decreasing the availability of its receptor and TrkB receptors, thus linking both endogenous systems to memory processes.
Collapse
Affiliation(s)
- Vicente Ruiz-Viroga
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, Montevideo ZP11800, Uruguay
| | - Marialuisa de Ceglia
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Av. Carlos Haya 82, Málaga 29010, Spain.
| | - Laura Morelli
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir (IIBBA-CONICET), Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina.
| | - Eduardo M Castaño
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir (IIBBA-CONICET), Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina.
| | - Eduardo Blanco Calvo
- Instituto de Investigación Biomédica de Málaga (IBIMA), Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Campus de Teatinos S/N, Málaga 29071, Spain.
| | - Juan Suárez
- Instituto de Investigación Biomédica de Málaga (IBIMA), Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, Universidad de Málaga, Málaga 29071, Spain.
| | - Fernando Rodríguez de Fonseca
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Av. Carlos Haya 82, Málaga 29010, Spain.
| | - Pablo Galeano
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir (IIBBA-CONICET), Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina.
| | - Patricia Lagos
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, Montevideo ZP11800, Uruguay.
| |
Collapse
|
43
|
Brodt S, Inostroza M, Niethard N, Born J. Sleep-A brain-state serving systems memory consolidation. Neuron 2023; 111:1050-1075. [PMID: 37023710 DOI: 10.1016/j.neuron.2023.03.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023]
Abstract
Although long-term memory consolidation is supported by sleep, it is unclear how it differs from that during wakefulness. Our review, focusing on recent advances in the field, identifies the repeated replay of neuronal firing patterns as a basic mechanism triggering consolidation during sleep and wakefulness. During sleep, memory replay occurs during slow-wave sleep (SWS) in hippocampal assemblies together with ripples, thalamic spindles, neocortical slow oscillations, and noradrenergic activity. Here, hippocampal replay likely favors the transformation of hippocampus-dependent episodic memory into schema-like neocortical memory. REM sleep following SWS might balance local synaptic rescaling accompanying memory transformation with a sleep-dependent homeostatic process of global synaptic renormalization. Sleep-dependent memory transformation is intensified during early development despite the immaturity of the hippocampus. Overall, beyond its greater efficacy, sleep consolidation differs from wake consolidation mainly in that it is supported, rather than impaired, by spontaneous hippocampal replay activity possibly gating memory formation in neocortex.
Collapse
Affiliation(s)
- Svenja Brodt
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Niels Niethard
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Werner Reichert Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
44
|
Ochoa C, Revilla M. Willingness to participate in in-the-moment surveys triggered by online behaviors. Behav Res Methods 2023; 55:1275-1291. [PMID: 35641681 PMCID: PMC9155198 DOI: 10.3758/s13428-022-01872-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2022] [Indexed: 11/08/2022]
Abstract
Surveys are a fundamental tool of empirical research, but they suffer from errors: in particular, respondents can have difficulties recalling information of interest to researchers. Recent technological developments offer new opportunities to collect data passively (i.e., without participant's intervention), avoiding recall errors. One of these opportunities is registering online behaviors (e.g., visited URLs) through tracking software ("meter") voluntarily installed by a sample of individuals on their browsing devices. Nevertheless, metered data are also affected by errors and only cover part of the objective information, while subjective information is not directly observable. Asking participants about such missing information by means of web surveys conducted in the moment an event of interest is detected by the meter has the potential to fill the gap. However, this method requires participants to be willing to participate. This paper explores the willingness to participate in in-the-moment web surveys triggered by online activities recorded by a participant-installed meter. A conjoint experiment implemented in an opt-in metered panel in Spain reveals overall high levels of willingness to participate among panelists already sharing metered data, ranging from 69% to 95%. The main aspects affecting this willingness are related to the incentive levels offered. Limited differences across participants are observed, except for household size and education. Answers to open questions also confirm that the incentive is the key driver of the decision to participate, whereas other potential problematic aspects such as the limited time to participate, privacy concerns, and discomfort caused by being interrupted play a limited role.
Collapse
Affiliation(s)
- Carlos Ochoa
- Research and Expertise Centre for Survey Methodology, Universitat Pompeu Fabra, Barcelona, Spain.
| | - Melanie Revilla
- Research and Expertise Centre for Survey Methodology, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
45
|
Blanco-Centurion C, Vidal-Ortiz A, Sato T, Shiromani PJ. Activity of GABA neurons in the zona incerta and ventral lateral periaqueductal grey is biased towards sleep. Sleep 2023; 46:6902001. [PMID: 36516419 DOI: 10.1093/sleep/zsac306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/31/2022] [Indexed: 12/15/2022] Open
Abstract
STUDY OBJECTIVES As in various brain regions the activity of gamma-aminobutyric acid (GABA) neurons is largely unknown, we measured in vivo changes in calcium fluorescence in GABA neurons in the zona incerta (ZI) and the ventral lateral periaqueductal grey (vlPAG), two areas that have been implicated in regulating sleep. METHODS vGAT-Cre mice were implanted with sleep electrodes, microinjected with rAAV-DIO-GCaMP6 into the ZI (n = 6) or vlPAG (n = 5) (isoflurane anesthesia) and a GRIN (Gradient-Index) lens inserted atop the injection site. Twenty-one days later, fluorescence in individual vGAT neurons was recorded over multiple REM cycles. Regions of interest corresponding to individual vGAT somata were automatically extracted with PCA-ICA analysis. RESULTS In the ZI, 372 neurons were identified. Previously, we had recorded the activity of 310 vGAT neurons in the ZI and we combined the published dataset with the new dataset to create a comprehensive dataset of ZI vGAT neurons (total neurons = 682; mice = 11). In the vlPAG, 169 neurons (mice = 5) were identified. In both regions, most neurons were maximally active in REM sleep (R-Max; ZI = 51.0%, vlPAG = 60.9%). The second most abundant group was W-Max (ZI = 23.9%, vlPAG = 25.4%). In the ZI, but not in vlPAG, there were neurons that were NREMS-Max (11.7%). vlPAG had REMS-Off neurons (8.3%). In both areas, there were two minor classes: wake/REMS-Max and state indifferent. In the ZI, the NREMS-Max neurons fluoresced 30 s ahead of sleep onset. CONCLUSIONS These descriptive data show that the activity of GABA neurons is biased in favor of sleep in two brain regions implicated in sleep.
Collapse
Affiliation(s)
| | - Aurelio Vidal-Ortiz
- Laboratory of Sleep Medicine and Chronobiology, Ralph H. Johnson Veterans Healthcare System, Charleston, SC, USA
| | - Takashi Sato
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Priyattam J Shiromani
- Department of Psychiatry and Behavioral Sciences, Charleston, SC, USA
- Laboratory of Sleep Medicine and Chronobiology, Ralph H. Johnson Veterans Healthcare System, Charleston, SC, USA
| |
Collapse
|
46
|
Cre-dependent ACR2-expressing reporter mouse strain for efficient long-lasting inhibition of neuronal activity. Sci Rep 2023; 13:3966. [PMID: 36894577 PMCID: PMC9998869 DOI: 10.1038/s41598-023-30907-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Optogenetics is a powerful tool for manipulating neuronal activity by light illumination with high temporal and spatial resolution. Anion-channelrhodopsins (ACRs) are light-gated anion channels that allow researchers to efficiently inhibit neuronal activity. A blue light-sensitive ACR2 has recently been used in several in vivo studies; however, the reporter mouse strain expressing ACR2 has not yet been reported. Here, we generated a new reporter mouse strain, LSL-ACR2, in which ACR2 is expressed under the control of Cre recombinase. We crossed this strain with a noradrenergic neuron-specific driver mouse (NAT-Cre) to generate NAT-ACR2 mice. We confirmed Cre-dependent expression and function of ACR2 in the targeted neurons by immunohistochemistry and electrophysiological recordings in vitro, and confirmed physiological function using an in vivo behavioral experiment. Our results show that the LSL-ACR2 mouse strain can be applied for optogenetic inhibition of targeted neurons, particularly for long-lasting continuous inhibition, upon crossing with Cre-driver mouse strains. The LSL-ACR2 strain can be used to prepare transgenic mice with homogenous expression of ACR2 in targeted neurons with a high penetration ratio, good reproducibility, and no tissue invasion.
Collapse
|
47
|
Yuksel C, Denis D, Coleman J, Oh A, Cox R, Morgan A, Sato E, Stickgold R. Emotional memories are enhanced when reactivated in slow wave sleep, but impaired when reactivated in REM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530661. [PMID: 36909630 PMCID: PMC10002730 DOI: 10.1101/2023.03.01.530661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Sleep supports memory consolidation. However, it is not completely clear how different sleep stages contribute to this process. While rapid eye movement sleep (REM) has been traditionally implicated in the processing of emotionally charged material, recent studies indicate a role for slow wave sleep (SWS) in strengthening the memories of emotional stimuli. Here, to directly examine which sleep stage is primarily involved in emotional memory consolidation, we used targeted memory reactivation (TMR) in REM and SWS during a daytime nap. We also examined neural oscillations associated with TMR-related changes in memory. Contrary to our hypothesis, reactivation of emotional stimuli during REM led to impaired memory. Meanwhile, reactivation of emotional stimuli in SWS improved memory and was strongly correlated with the product of times spent in REM and SWS (%SWS Ã- %REM). When this variable was taken into account, reactivation significantly enhanced memory, with larger reactivation benefits compared to reactivation in REM. Notably, sleep spindle activity was modulated by emotional valence, and delta/theta activity was correlated with the memory benefit for both emotional and neutral items. Finally, we found no evidence that emotional memories benefited from TMR more than did neutral ones. Our results provide direct evidence for a complementary role of both REM and SWS in emotional memory consolidation, and suggest that REM may separately facilitate forgetting. In addition, our findings expand upon recent evidence indicating a link between sleep spindles and emotional processing.
Collapse
|
48
|
Si Y, Chen J, Shen Y, Kubra S, Mei B, Qin ZS, Pan B, Meng B. Circadian rhythm sleep disorders and time-of-day-dependent memory deficiency in Presenilin1/2 conditional knockout mice with long noncoding RNA expression profiling changes. Sleep Med 2023; 103:146-158. [PMID: 36805914 DOI: 10.1016/j.sleep.2023.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Alzheimer's disease (AD) patients exhibit sleep and circadian disturbances prior to the onset of cognitive decline, and these disruptions worsen with disease severity. However, the molecular mechanisms behind sleep and circadian disruptions in AD patients are poorly understood. In this study, we investigated sleep pattern and circadian rhythms in Presenilin-1/2 conditional knockout (DKO) mice. Assessment of EEG and EMG recordings showed that DKO mice displayed increased NREM sleep time but not REM sleep during the dark phase compared to WT mice at the age of two months; at the age of six months, the DKO mice showed increased wakefulness periods and decreased total time spent in both NREM and REM sleep. WT exhibited time-of-day dependent modulation of contextual and cued memory. Compared with WT mice, 4-month-old DKO mice exhibited the deficiency regardless trained and tested in the same light/night phase or not. Particularly interesting was that DKO showed circadian modulation deficiency when trained in the resting period but not in the active period. Long noncoding RNAs (lncRNAs) are typically defined as transcripts longer than 200 nucleotides, and they have rhythmic expression in mammals. To date no study has investigated rhythmic lncRNA expression in Alzheimer's disease. We applied RNA-seq technology to profile hippocampus expression of lncRNAs in DKO mice during the light (/resting) and dark (/active) phases and performed gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses of the cis lncRNA targets. Expression alteration of lncRNAs associated with immune response and metallodipeptidase activity may contribute to the circadian disruptions of DKO mice. Especially we identified some LncRNAs which expression change oppositely between day and light in DKO mice compared to WT mice and are worthy to be studied further. Our results exhibited the circadian rhythm sleep disorders and a noteworthy time-of-day-dependent memory deficiency in AD model mice and provide a useful resource for studying the expression and function of lncRNAs during circadian disruptions in Alzheimer's disease.
Collapse
Affiliation(s)
- Youwen Si
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Jing Chen
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Yang Shen
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, United States.
| | - Syeda Kubra
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Bing Mei
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Zhaohui S Qin
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, United States.
| | - Boxi Pan
- Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, China.
| | - Bo Meng
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
49
|
Vas S, Papp RS, Könczöl K, Bogáthy E, Papp N, Ádori C, Durst M, Sípos K, Ocskay K, Farkas I, Bálint F, Ferenci S, Török B, Kovács A, Szabó E, Zelena D, Kovács KJ, Földes A, Kató E, Köles L, Bagdy G, Palkovits M, Tóth ZE. Prolactin-Releasing Peptide Contributes to Stress-Related Mood Disorders and Inhibits Sleep/Mood Regulatory Melanin-Concentrating Hormone Neurons in Rats. J Neurosci 2023; 43:846-862. [PMID: 36564184 PMCID: PMC9899089 DOI: 10.1523/jneurosci.2139-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 08/31/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Stress disorders impair sleep and quality of life; however, their pathomechanisms are unknown. Prolactin-releasing peptide (PrRP) is a stress mediator; we therefore hypothesized that PrRP may be involved in the development of stress disorders. PrRP is produced by the medullary A1/A2 noradrenaline (NA) cells, which transmit stress signals to forebrain centers, and by non-NA cells in the hypothalamic dorsomedial nucleus. We found in male rats that both PrRP and PrRP-NA cells innervate melanin-concentrating hormone (MCH) producing neurons in the dorsolateral hypothalamus (DLH). These cells serve as a key hub for regulating sleep and affective states. Ex vivo, PrRP hyperpolarized MCH neurons and further increased the hyperpolarization caused by NA. Following sleep deprivation, intracerebroventricular PrRP injection reduced the number of REM sleep-active MCH cells. PrRP expression in the dorsomedial nucleus was upregulated by sleep deprivation, while downregulated by REM sleep rebound. Both in learned helplessness paradigm and after peripheral inflammation, impaired coping with sustained stress was associated with (1) overactivation of PrRP cells, (2) PrRP protein and receptor depletion in the DLH, and (3) dysregulation of MCH expression. Exposure to stress in the PrRP-insensitive period led to increased passive coping with stress. Normal PrRP signaling, therefore, seems to protect animals against stress-related disorders. PrRP signaling in the DLH is an important component of the PrRP's action, which may be mediated by MCH neurons. Moreover, PrRP receptors were downregulated in the DLH of human suicidal victims. As stress-related mental disorders are the leading cause of suicide, our findings may have particular translational relevance.SIGNIFICANCE STATEMENT Treatment resistance to monoaminergic antidepressants is a major problem. Neuropeptides that modulate the central monoaminergic signaling are promising targets for developing alternative therapeutic strategies. We found that stress-responsive prolactin-releasing peptide (PrRP) cells innervated melanin-concentrating hormone (MCH) neurons that are crucial in the regulation of sleep and mood. PrRP inhibited MCH cell activity and enhanced the inhibitory effect evoked by noradrenaline, a classic monoamine, on MCH neurons. We observed that impaired PrRP signaling led to failure in coping with chronic/repeated stress and was associated with altered MCH expression. We found alterations of the PrRP system also in suicidal human subjects. PrRP dysfunction may underlie stress disorders, and fine-tuning MCH activity by PrRP may be an important part of the mechanism.
Collapse
Affiliation(s)
- Szilvia Vas
- Department of Pharmacodynamics, Semmelweis University, Budapest, 1089, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Semmelweis University, Budapest, 1089, Hungary
| | - Rege S Papp
- Human Brain Tissue Bank and Laboratory, Semmelweis University, Budapest, 1094, Hungary
| | - Katalin Könczöl
- Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - Emese Bogáthy
- Department of Pharmacodynamics, Semmelweis University, Budapest, 1089, Hungary
| | - Noémi Papp
- Department of Pharmacodynamics, Semmelweis University, Budapest, 1089, Hungary
| | - Csaba Ádori
- Department of Neuroscience, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Máté Durst
- Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - Klaudia Sípos
- Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - Klementina Ocskay
- Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - Imre Farkas
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Eötvös Loránd Research Network, Budapest, 1083, Hungary
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Eötvös Loránd Research Network, Budapest, 1083, Hungary
| | - Flóra Bálint
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Eötvös Loránd Research Network, Budapest, 1083, Hungary
| | - Szilamér Ferenci
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Eötvös Loránd Research Network, Budapest, 1083, Hungary
| | - Bibiána Török
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Eötvös Loránd Research Network, Budapest, 1083, Hungary
- Institute of Physiology, Medical School, University of Pécs, Centre for Neuroscience, Szentágothai Research Center, Pécs, 7624, Hungary
| | - Anita Kovács
- Institute of Physiology, Medical School, University of Pécs, Centre for Neuroscience, Szentágothai Research Center, Pécs, 7624, Hungary
| | - Evelin Szabó
- Institute of Physiology, Medical School, University of Pécs, Centre for Neuroscience, Szentágothai Research Center, Pécs, 7624, Hungary
| | - Dóra Zelena
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Eötvös Loránd Research Network, Budapest, 1083, Hungary
- Institute of Physiology, Medical School, University of Pécs, Centre for Neuroscience, Szentágothai Research Center, Pécs, 7624, Hungary
| | - Krisztina J Kovács
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Eötvös Loránd Research Network, Budapest, 1083, Hungary
| | - Anna Földes
- Department of Oral Biology, Semmelweis University, Budapest, 1089, Hungary
| | - Erzsébet Kató
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, 1089, Hungary
| | - László Köles
- Department of Oral Biology, Semmelweis University, Budapest, 1089, Hungary
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, 1089, Hungary
| | - György Bagdy
- Department of Pharmacodynamics, Semmelweis University, Budapest, 1089, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Semmelweis University, Budapest, 1089, Hungary
- NAP2-SE New Antidepressant Target Research Group, Budapest, 1085, Hungary
| | - Miklós Palkovits
- Human Brain Tissue Bank and Laboratory, Semmelweis University, Budapest, 1094, Hungary
- Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - Zsuzsanna E Tóth
- Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| |
Collapse
|
50
|
Rattenborg NC, Ungurean G. The evolution and diversification of sleep. Trends Ecol Evol 2023; 38:156-170. [PMID: 36411158 DOI: 10.1016/j.tree.2022.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/19/2022]
Abstract
The evolutionary origins of sleep and its sub-states, rapid eye movement (REM) and non-REM (NREM) sleep, found in mammals and birds, remain a mystery. Although the discovery of a single type of sleep in jellyfish suggests that sleep evolved much earlier than previously thought, it is unclear when and why sleep diversified into multiple types of sleep. Intriguingly, multiple types of sleep have recently been found in animals ranging from non-avian reptiles to arthropods to cephalopods. Although there are similarities between these states and those found in mammals and birds, notable differences also exist. The diversity in the way sleep is expressed confounds attempts to trace the evolution of sleep states, but also serves as a rich resource for exploring the functions of sleep.
Collapse
Affiliation(s)
- Niels C Rattenborg
- Max Planck Institute for Biological Intelligence (in foundation), Seewiesen, Germany.
| | - Gianina Ungurean
- Max Planck Institute for Biological Intelligence (in foundation), Seewiesen, Germany
| |
Collapse
|