1
|
Wang T, Li Z, Xu K, Huang W, Huang G, Zhang QC, Yan N. CryoSeek: A strategy for bioentity discovery using cryoelectron microscopy. Proc Natl Acad Sci U S A 2024; 121:e2417046121. [PMID: 39382995 PMCID: PMC11494351 DOI: 10.1073/pnas.2417046121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Structural biology is experiencing a paradigm shift from targeted structural determination to structure-guided discovery of previously uncharacterized bioentities. We employed cryoelectron microscopy (cryo-EM) to analyze filtered water samples collected from the Tsinghua Lotus Pond. Here, we report the structural determination and characterization of two highly similar helical fibrils, named TLP-1a and TLP-1b, each approximately 8 nm in diameter with a 15-Å wide tunnel. These fibrils are assembled from a similar protein protomer, whose structure was conveniently automodeled in CryoNet. The protomer structure does not match any available experimental structures, but shares the same fold as many predicted structures of unknown functions. The amino-terminal β strand of protomer n + 4 inserts into a cleft in protomer n to complete an immunoglobulin (Ig)-like domain. This packing mechanism, known as donor-strand exchange (DSE), has been observed in several bacterial pilus assemblies, wherein the donor is protomer n + 1. Despite distinct shape and thickness, this reminiscence suggests that TLP-1a/b fibrils may represent uncharacterized bacterial pili. Our study demonstrates an emerging paradigm in structural biology, where high-resolution structural determination precedes and drives the identification and characterization of completely unknown objects.
Collapse
Affiliation(s)
- Tongtong Wang
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Zhangqiang Li
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Kui Xu
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Wenze Huang
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Gaoxingyu Huang
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou310024, Zhejiang, China
| | - Qiangfeng Cliff Zhang
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Nieng Yan
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
- Institute of Bio-Architecture and Bio-Interactions, Shenzhen Medical Academy of Research and Translation, Shenzhen518107, Guangdong, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen518132, Guangdong, China
| |
Collapse
|
2
|
Che R, Panah M, Mirani B, Knowles K, Ostapovich A, Majumdar D, Chen X, DeSimone J, White W, Noonan M, Luo H, Alexandrov A. Identification of Human Pathways Acting on Nuclear Non-Coding RNAs Using the Mirror Forward Genetic Approach. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615073. [PMID: 39386709 PMCID: PMC11463631 DOI: 10.1101/2024.09.26.615073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Despite critical roles in diseases, human pathways acting on strictly nuclear non-coding RNAs have been refractory to forward genetics. To enable their forward genetic discovery, we developed a single-cell approach that "Mirrors" activities of nuclear pathways with cytoplasmic fluorescence. Application of Mirror to two nuclear pathways targeting MALAT1's 3' end, the pathway of its maturation and the other, the degradation pathway blocked by the triple-helical Element for Nuclear Expression (ENE), identified nearly all components of three complexes: Ribonuclease P and the RNA Exosome, including nuclear DIS3, EXOSC10, and C1D, as well as the Nuclear Exosome Targeting (NEXT) complex. Additionally, Mirror identified DEAD-box helicase DDX59 associated with the genetic disorder Oral-Facial-Digital syndrome (OFD), yet lacking known substrates or roles in nuclear RNA degradation. Knockout of DDX59 exhibits stabilization of the full-length MALAT1 with a stability-compromised ENE and increases levels of such long non-coding RNAs as NEAT1_1 and NIPBL-DT, as well as 3'-extended forms of small nuclear RNAs. It also exhibits extensive retention of minor introns, including in OFD-associated genes, suggesting a mechanism for DDX59 association with OFD. Mirror efficiently identifies pathways acting on strictly nuclear non-coding RNAs, including essential and indirectly-acting components, and, as a result, uncovers unexpected links to human disease.
Collapse
Affiliation(s)
- Rui Che
- Dept. of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
- Clemson University Center for Human Genetics, Greenwood, SC 29646, USA
| | - Monireh Panah
- Dept. of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
- Clemson University Center for Human Genetics, Greenwood, SC 29646, USA
| | - Bhoomi Mirani
- Dept. of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
- Clemson University Center for Human Genetics, Greenwood, SC 29646, USA
| | - Krista Knowles
- Dept. of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
- Clemson University Center for Human Genetics, Greenwood, SC 29646, USA
| | - Anastacia Ostapovich
- Dept. of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06536, USA
| | - Debarati Majumdar
- Dept. of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
- Clemson University Center for Human Genetics, Greenwood, SC 29646, USA
| | - Xiaotong Chen
- Dept. of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
| | - Joseph DeSimone
- Dept. of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
| | - William White
- Dept. of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
| | - Megan Noonan
- Dept. of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
| | - Hong Luo
- Dept. of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
| | - Andrei Alexandrov
- Dept. of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
- Clemson University Center for Human Genetics, Greenwood, SC 29646, USA
| |
Collapse
|
3
|
Alsina FC, Lupan BM, Lin LJ, Musso CM, Mosti F, Newman CR, Wood LM, Suzuki A, Agostino M, Moore JK, Silver DL. The RNA-binding protein EIF4A3 promotes axon development by direct control of the cytoskeleton. Cell Rep 2024; 43:114666. [PMID: 39182224 PMCID: PMC11488691 DOI: 10.1016/j.celrep.2024.114666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 02/28/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024] Open
Abstract
The exon junction complex (EJC), nucleated by EIF4A3, is indispensable for mRNA fate and function throughout eukaryotes. We discover that EIF4A3 directly controls microtubules, independent of RNA, which is critical for neural wiring. While neuronal survival in the developing mouse cerebral cortex depends upon an intact EJC, axonal tract development requires only Eif4a3. Using human cortical organoids, we show that EIF4A3 disease mutations also impair neuronal growth, highlighting conserved functions relevant for neurodevelopmental pathology. Live imaging of growing neurons shows that EIF4A3 is essential for microtubule dynamics. Employing biochemistry and competition experiments, we demonstrate that EIF4A3 directly binds to microtubules, mutually exclusive of the EJC. Finally, in vitro reconstitution assays and rescue experiments demonstrate that EIF4A3 is sufficient to promote microtubule polymerization and that EIF4A3-microtubule association is a major contributor to axon growth. This reveals a fundamental mechanism by which neurons re-utilize core gene expression machinery to directly control the cytoskeleton.
Collapse
Affiliation(s)
- Fernando C Alsina
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Bianca M Lupan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lydia J Lin
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Camila M Musso
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Federica Mosti
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Carly R Newman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lisa M Wood
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark Agostino
- Curtin Health Innovation Research Institute, Curtin Medical School, and Curtin Institute for Computation, Curtin University, Bentley, WA 6102, Australia
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Departments of Cell Biology and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Duke Institute for Brain Sciences and Duke Regeneration Center, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
4
|
He L, Sun F, Wu Y, Li Z, Fu Y, Huang Q, Li J, Wang Z, Cai J, Feng C, Deng X, Gu H, He X, Yu J, Sun F. L(1)10Bb serves as a conservative determinant for soma-germline communications via cellular non-autonomous effects within the testicular stem cell niche. Mol Cell Endocrinol 2024; 591:112278. [PMID: 38795826 DOI: 10.1016/j.mce.2024.112278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/21/2024] [Accepted: 05/07/2024] [Indexed: 05/28/2024]
Abstract
The testicular stem cell niche is the central regulator of spermatogenesis in Drosophila melanogaster. However, the underlying regulatory mechanisms are unclear. This study demonstrated the crucial role of lethal (1) 10Bb [l(1)10Bb] in regulating the testicular stem cell niche. Dysfunction of l(1)10Bb in early-stage cyst cells led to male fertility disorders and compromised cyst stem cell maintenance. Moreover, the dysfunction of l(1)10Bb in early-stage cyst cells exerted non-autonomous effects on germline stem cell differentiation, independently of hub signals. Notably, our study highlights the rescue of testicular defects through ectopic expression of L(1)10Bb and the human homologous protein BUD31 homolog (BUD31). In addition, l(1)10Bb dysfunction in early-stage cyst cells downregulated the expression of spliceosome subunits in the Sm and the precursor RNA processing complexes. Collectively, our findings established l(1)10Bb as a pivotal factor in the modulation of Drosophila soma-germline communications within the testicular stem cell niche.
Collapse
Affiliation(s)
- Lei He
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Feiteng Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Yunhao Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Zhiran Li
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Yangbo Fu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Qiuru Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Jiaxin Li
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Zihan Wang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Jiaying Cai
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Chenrui Feng
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Xiaonan Deng
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Han Gu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Xuxin He
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Jun Yu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
5
|
Zhang J, Xu X, Deng H, Liu L, Xiang Y, Feng J. Overcoming cancer drug-resistance calls for novel strategies targeting abnormal alternative splicing. Pharmacol Ther 2024; 261:108697. [PMID: 39025436 DOI: 10.1016/j.pharmthera.2024.108697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/12/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Abnormal gene alternative splicing (AS) events are strongly associated with cancer progression. Here, we summarize AS events that contribute to the development of drug resistance and classify them into three categories: alternative cis-splicing (ACS), alternative trans-splicing (ATS), and alternative back-splicing (ABS). The regulatory mechanisms underlying AS processes through cis-acting regulatory elements and trans-acting factors are comprehensively described, and the distinct functions of spliced variants, including linear spliced variants derived from ACS, chimeric spliced variants arising from ATS, and circRNAs generated through ABS, are discussed. The identification of dysregulated spliced variants, which contribute to drug resistance and hinder effective cancer treatment, suggests that abnormal AS processes may together serve as a precise regulatory mechanism enabling drug-resistant cancer cell survival or, alternatively, represent an evolutionary pathway for cancer cells to adapt to changes in the external environment. Moreover, this review summarizes recent advancements in treatment approaches targeting AS-associated drug resistance, focusing on cis-acting regulatory elements, trans-acting factors, and specific spliced variants. Collectively, gaining an in-depth understanding of the mechanisms underlying aberrant alternative splicing events and developing strategies to target this process hold great promise for overcoming cancer drug resistance.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Xinyu Xu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Hongwei Deng
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Yuancai Xiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou city, Sichuan 646000, China.
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
6
|
Olthof A, Schwoerer C, Girardini K, Weber A, Doggett K, Mieruszynski S, Heath J, Moore T, Biran J, Kanadia R. Taxonomy of introns and the evolution of minor introns. Nucleic Acids Res 2024; 52:9247-9266. [PMID: 38943346 PMCID: PMC11347168 DOI: 10.1093/nar/gkae550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 07/01/2024] Open
Abstract
Classification of introns, which is crucial to understanding their evolution and splicing, has historically been binary and has resulted in the naming of major and minor introns that are spliced by their namesake spliceosome. However, a broad range of intron consensus sequences exist, leading us to here reclassify introns as minor, minor-like, hybrid, major-like, major and non-canonical introns in 263 species across six eukaryotic supergroups. Through intron orthology analysis, we discovered that minor-like introns are a transitory node for intron conversion across evolution. Despite close resemblance of their consensus sequences to minor introns, these introns possess an AG dinucleotide at the -1 and -2 position of the 5' splice site, a salient feature of major introns. Through combined analysis of CoLa-seq, CLIP-seq for major and minor spliceosome components, and RNAseq from samples in which the minor spliceosome is inhibited we found that minor-like introns are also an intermediate class from a splicing mechanism perspective. Importantly, this analysis has provided insight into the sequence elements that have evolved to make minor-like introns amenable to recognition by both minor and major spliceosome components. We hope that this revised intron classification provides a new framework to study intron evolution and splicing.
Collapse
Affiliation(s)
- Anouk M Olthof
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, USA
| | - Charles F Schwoerer
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, USA
| | - Kaitlin N Girardini
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, USA
| | - Audrey L Weber
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, USA
| | - Karen Doggett
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Stephen Mieruszynski
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Joan K Heath
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Timothy E Moore
- Statistical Consulting Services, Center for Open Research Resources & Equipment, University of Connecticut, Storrs, CT, USA
| | - Jakob Biran
- Department of Poultry and Aquaculture, Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon, Israel
| | - Rahul N Kanadia
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
7
|
Powell-Rodgers G, Pirzada MUR, Richee J, Jungers CF, Colijn S, Stratman AN, Djuranovic S. Role of U11/U12 minor spliceosome gene ZCRB1 in Ciliogenesis and WNT Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607392. [PMID: 39149385 PMCID: PMC11326282 DOI: 10.1101/2024.08.09.607392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Despite the fact that 0.5% of human introns are processed by the U11/U12 minor spliceosome, the latter influences gene expression across multiple cellular processes. The ZCRB1 protein is a recently described core component of the U12 mono-snRNP minor spliceosome, but its functional significance to minor splicing, gene regulation, and biological signaling cascades is poorly understood. Using CRISPR-Cas9 and siRNA targeted knockout and knockdown strategies, we show that human cell lines with a partial reduction in ZCRB1 expression exhibit significant dysregulation of the splicing and expression of U12-type genes, primarily due to dysregulation of U12 mono-snRNA. RNA-Seq and targeted analyses of minor intron-containing genes indicate a downregulation in the expression of genes involved in ciliogenesis, and consequentially an upregulation in WNT signaling. Additionally, zcrb1 CRISPR-Cas12a knockdown in zebrafish embryos led to gross developmental and body axis abnormalities, disrupted ciliogenesis, and upregulated WNT signaling, complementing our human cell studies. This work highlights a conserved and essential biological role of the minor spliceosome in general, and the ZCRB1 protein specifically in cellular and developmental processes across species, shedding light on the multifaceted relationship between splicing regulation, ciliogenesis, and WNT signaling.
Collapse
Affiliation(s)
- Geralle Powell-Rodgers
- Washington University in St. Louis, School of Medicine, Cell Biology and Physiology, St. Louis, MO
| | - Mujeeb Ur Rehman Pirzada
- Washington University in St. Louis, School of Medicine, Cell Biology and Physiology, St. Louis, MO
| | - Jahmiera Richee
- Washington University in St. Louis, School of Medicine, Cell Biology and Physiology, St. Louis, MO
| | - Courtney F. Jungers
- Washington University in St. Louis, School of Medicine, Cell Biology and Physiology, St. Louis, MO
| | - Sarah Colijn
- Washington University in St. Louis, School of Medicine, Cell Biology and Physiology, St. Louis, MO
| | - Amber N. Stratman
- Washington University in St. Louis, School of Medicine, Cell Biology and Physiology, St. Louis, MO
| | - Sergej Djuranovic
- Washington University in St. Louis, School of Medicine, Cell Biology and Physiology, St. Louis, MO
| |
Collapse
|
8
|
Li C, Liang S, Huang Q, Zhou Z, Ding Z, Long N, Wi K, Li L, Jiang X, Fan Y, Xu Y. Minor Spliceosomal 65K/RNPC3 Interacts with ANKRD11 and Mediates HDAC3-Regulated Histone Deacetylation and Transcription. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307804. [PMID: 38837887 PMCID: PMC11304329 DOI: 10.1002/advs.202307804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/12/2024] [Indexed: 06/07/2024]
Abstract
RNA splicing is crucial in the multilayer regulatory networks for gene expression, making functional interactions with DNA- and other RNA-processing machineries in the nucleus. However, these established couplings are all major spliceosome-related; whether the minor spliceosome is involved remains unclear. Here, through affinity purification using Drosophila lysates, an interaction is identified between the minor spliceosomal 65K/RNPC3 and ANKRD11, a cofactor of histone deacetylase 3 (HDAC3). Using a CRISPR/Cas9 system, Deletion strains are constructed and found that both Dm65KΔ/Δ and Dmankrd11Δ/Δ mutants have reduced histone deacetylation at Lys9 of histone H3 (H3K9) and Lys5 of histone H4 (H4K5) in their heads, exhibiting various neural-related defects. The 65K-ANKRD11 interaction is also conserved in human cells, and the HsANKRD11 middle-uncharacterized domain mediates Hs65K association with HDAC3. Cleavage under targets and tagmentation (CUT&Tag) assays revealed that HsANKRD11 is a bridging factor, which facilitates the synergistic common chromatin-binding of HDAC3 and Hs65K. Knockdown (KD) of HsANKRD11 simultaneously decreased their common binding, resulting in reduced deacetylation of nearby H3K9. Ultimately, this study demonstrates that expression changes of many genes caused by HsANKRD11-KD are due to the decreased common chromatin-binding of HDAC3 and Hs65K and subsequently reduced deacetylation of H3K9, illustrating a novel and conserved coupling mechanism that links the histone deacetylation with minor spliceosome for the regulation of gene expression.
Collapse
Affiliation(s)
- Chen‐Hui Li
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
| | - Shao‐Bo Liang
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
| | - Qi‐Wei Huang
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
| | - Zhen‐Zhen Zhou
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
| | - Zhan Ding
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
- Key Laboratory of Insect Developmental and Evolutionary BiologyCenter for Excellence in Molecular Plant SciencesChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200032China
| | - Ni Long
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
| | - Kwang‐Chon Wi
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
| | - Liang Li
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
| | - Xi‐Ping Jiang
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
| | - Yu‐Jie Fan
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
| | - Yong‐Zhen Xu
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
| |
Collapse
|
9
|
Choi MK, Cook A, Mungikar K, Eachus H, Tochwin A, Linke M, Gerber S, Ryu S. Exposure to elevated glucocorticoid during development primes altered transcriptional responses to acute stress in adulthood. iScience 2024; 27:110160. [PMID: 38989456 PMCID: PMC11233911 DOI: 10.1016/j.isci.2024.110160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/02/2024] [Accepted: 05/29/2024] [Indexed: 07/12/2024] Open
Abstract
Early life stress (ELS) is a major risk factor for developing psychiatric disorders, with glucocorticoids (GCs) implicated in mediating its effects in shaping adult phenotypes. In this process, exposure to high levels of developmental GC (hdGC) is thought to induce molecular changes that prime differential adult responses. However, identities of molecules targeted by hdGC exposure are not completely known. Here, we describe lifelong molecular consequences of hdGC exposure using a newly developed zebrafish double-hit stress model, which shows altered behaviors and stress hypersensitivity in adulthood. We identify a set of primed genes displaying altered expression only upon acute stress in hdGC-exposed adult fish brains. Interestingly, this gene set is enriched in risk factors for psychiatric disorders in humans. Lastly, we identify altered epigenetic regulatory elements following hdGC exposure. Thus, our study provides comprehensive datasets delineating potential molecular targets mediating the impact of hdGC exposure on adult responses.
Collapse
Affiliation(s)
- Min-Kyeung Choi
- Living Systems Institute & Department of Clinical and Biomedical Sciences, University of Exeter, Stocker Road, EX4 4QD Exeter, UK
| | - Alexander Cook
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Kanak Mungikar
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Helen Eachus
- Living Systems Institute & Department of Clinical and Biomedical Sciences, University of Exeter, Stocker Road, EX4 4QD Exeter, UK
| | - Anna Tochwin
- Living Systems Institute & Department of Clinical and Biomedical Sciences, University of Exeter, Stocker Road, EX4 4QD Exeter, UK
| | - Matthias Linke
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Soojin Ryu
- Living Systems Institute & Department of Clinical and Biomedical Sciences, University of Exeter, Stocker Road, EX4 4QD Exeter, UK
| |
Collapse
|
10
|
Su Y, Wu J, Chen W, Shan J, Chen D, Zhu G, Ge S, Liu Y. Spliceosomal snRNAs, the Essential Players in pre-mRNA Processing in Eukaryotic Nucleus: From Biogenesis to Functions and Spatiotemporal Characteristics. Adv Biol (Weinh) 2024; 8:e2400006. [PMID: 38797893 DOI: 10.1002/adbi.202400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Spliceosomal small nuclear RNAs (snRNAs) are a fundamental class of non-coding small RNAs abundant in the nucleoplasm of eukaryotic cells, playing a crucial role in splicing precursor messenger RNAs (pre-mRNAs). They are transcribed by DNA-dependent RNA polymerase II (Pol II) or III (Pol III), and undergo subsequent processing and 3' end cleavage to become mature snRNAs. Numerous protein factors are involved in the transcription initiation, elongation, termination, splicing, cellular localization, and terminal modification processes of snRNAs. The transcription and processing of snRNAs are regulated spatiotemporally by various mechanisms, and the homeostatic balance of snRNAs within cells is of great significance for the growth and development of organisms. snRNAs assemble with specific accessory proteins to form small nuclear ribonucleoprotein particles (snRNPs) that are the basal components of spliceosomes responsible for pre-mRNA maturation. This article provides an overview of the biological functions, biosynthesis, terminal structure, and tissue-specific regulation of snRNAs.
Collapse
Affiliation(s)
- Yuan Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Jiaming Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Wei Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Junling Shan
- Department of basic medicine, Guangxi Medical University of Nursing College, Nanning, Guangxi, 530021, China
| | - Dan Chen
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
| | - Guangyu Zhu
- Guangxi Medical University Hospital of Stomatology, Nanning, Guangxi, 530021, China
| | - Shengchao Ge
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yunfeng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| |
Collapse
|
11
|
Norppa AJ, Chowdhury I, van Rooijen LE, Ravantti JJ, Snel B, Varjosalo M, Frilander MJ. Distinct functions for the paralogous RBM41 and U11/U12-65K proteins in the minor spliceosome. Nucleic Acids Res 2024; 52:4037-4052. [PMID: 38499487 DOI: 10.1093/nar/gkae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/19/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024] Open
Abstract
Here, we identify RBM41 as a novel unique protein component of the minor spliceosome. RBM41 has no previously recognized cellular function but has been identified as a paralog of U11/U12-65K, a known unique component of the U11/U12 di-snRNP. Both proteins use their highly similar C-terminal RRMs to bind to 3'-terminal stem-loops in U12 and U6atac snRNAs with comparable affinity. Our BioID data indicate that the unique N-terminal domain of RBM41 is necessary for its association with complexes containing DHX8, an RNA helicase, which in the major spliceosome drives the release of mature mRNA from the spliceosome. Consistently, we show that RBM41 associates with excised U12-type intron lariats, is present in the U12 mono-snRNP, and is enriched in Cajal bodies, together suggesting that RBM41 functions in the post-splicing steps of the minor spliceosome assembly/disassembly cycle. This contrasts with U11/U12-65K, which uses its N-terminal region to interact with U11 snRNP during intron recognition. Finally, while RBM41 knockout cells are viable, they show alterations in U12-type 3' splice site usage. Together, our results highlight the role of the 3'-terminal stem-loop of U12 snRNA as a dynamic binding platform for the U11/U12-65K and RBM41 proteins, which function at distinct stages of the assembly/disassembly cycle.
Collapse
Affiliation(s)
- Antto J Norppa
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Iftekhar Chowdhury
- Molecular Systems Biology Research Group and Proteomics Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Laura E van Rooijen
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Janne J Ravantti
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Markku Varjosalo
- Molecular Systems Biology Research Group and Proteomics Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Mikko J Frilander
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Du X, Qin W, Yang C, Dai L, San M, Xia Y, Zhou S, Wang M, Wu S, Zhang S, Zhou H, Li F, He F, Tang J, Chen JY, Zhou Y, Xiao R. RBM22 regulates RNA polymerase II 5' pausing, elongation rate, and termination by coordinating 7SK-P-TEFb complex and SPT5. Genome Biol 2024; 25:102. [PMID: 38641822 PMCID: PMC11027413 DOI: 10.1186/s13059-024-03242-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/09/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Splicing factors are vital for the regulation of RNA splicing, but some have also been implicated in regulating transcription. The underlying molecular mechanisms of their involvement in transcriptional processes remain poorly understood. RESULTS Here, we describe a direct role of splicing factor RBM22 in coordinating multiple steps of RNA Polymerase II (RNAPII) transcription in human cells. The RBM22 protein widely occupies the RNAPII-transcribed gene locus in the nucleus. Loss of RBM22 promotes RNAPII pause release, reduces elongation velocity, and provokes transcriptional readthrough genome-wide, coupled with production of transcripts containing sequences from downstream of the gene. RBM22 preferentially binds to the hyperphosphorylated, transcriptionally engaged RNAPII and coordinates its dynamics by regulating the homeostasis of the 7SK-P-TEFb complex and the association between RNAPII and SPT5 at the chromatin level. CONCLUSIONS Our results uncover the multifaceted role of RBM22 in orchestrating the transcriptional program of RNAPII and provide evidence implicating a splicing factor in both RNAPII elongation kinetics and termination control.
Collapse
Affiliation(s)
- Xian Du
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Wenying Qin
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Chunyu Yang
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Lin Dai
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Mingkui San
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yingdan Xia
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Siyu Zhou
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Mengyang Wang
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Shuang Wu
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Shaorui Zhang
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Huiting Zhou
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Fangshu Li
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Fang He
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Jia-Yu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Yu Zhou
- TaiKang Center for Life and Medical Sciences, College of Life Sciences, State Key Laboratory of Virology, Wuhan University, Wuhan, China
| | - Rui Xiao
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
13
|
Damianov A, Lin CH, Huang J, Zhou L, Jami-Alahmadi Y, Peyda P, Wohlschlegel J, Black DL. The splicing regulators RBM5 and RBM10 are subunits of the U2 snRNP engaged with intron branch sites on chromatin. Mol Cell 2024; 84:1496-1511.e7. [PMID: 38537639 PMCID: PMC11057915 DOI: 10.1016/j.molcel.2024.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 04/09/2024]
Abstract
Understanding the mechanisms of pre-mRNA splicing is limited by the technical challenges to examining spliceosomes in vivo. Here, we report the isolation of RNP complexes derived from precatalytic A or B-like spliceosomes solubilized from the chromatin pellet of mammalian cell nuclei. We found that these complexes contain U2 snRNP proteins and a portion of the U2 snRNA bound with protected RNA fragments that precisely map to intronic branch sites across the transcriptome. These U2 complexes also contained the splicing regulators RBM5 and RBM10. We found RBM5 and RBM10 bound to nearly all branch site complexes and not simply those at regulated exons. The deletion of a conserved RBM5/RBM10 peptide sequence, including a zinc finger motif, disrupted U2 interaction and rendered the proteins inactive for the repression of many alternative exons. We propose a model where RBM5 and RBM10 regulate splicing as components of the U2 snRNP complex following branch site base pairing.
Collapse
Affiliation(s)
- Andrey Damianov
- Department of Microbiology, Immunology, and Molecular Genetics, the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Chia-Ho Lin
- Department of Microbiology, Immunology, and Molecular Genetics, the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jeffrey Huang
- Department of Microbiology, Immunology, and Molecular Genetics, the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lin Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Parham Peyda
- Department of Microbiology, Immunology, and Molecular Genetics, the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - James Wohlschlegel
- Department of Biological Chemistry, the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Hannes L, Atzori M, Goldenberg A, Argente J, Attie-Bitach T, Amiel J, Attanasio C, Braslavsky DG, Bruel AL, Castanet M, Dubourg C, Jacobs A, Lyonnet S, Martinez-Mayer J, Pérez Millán MI, Pezzella N, Pelgrims E, Aerden M, Bauters M, Rochtus A, Scaglia P, Swillen A, Sifrim A, Tammaro R, Mau-Them FT, Odent S, Thauvin-Robinet C, Franco B, Breckpot J. Differential alternative splicing analysis links variation in ZRSR2 to a novel type of oral-facial-digital syndrome. Genet Med 2024; 26:101059. [PMID: 38158857 DOI: 10.1016/j.gim.2023.101059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024] Open
Abstract
PURPOSE Oral-facial-digital (OFD) syndromes are genetically heterogeneous developmental disorders, caused by pathogenic variants in genes involved in primary cilia formation and function. We identified a previously undescribed type of OFD with brain anomalies, ranging from alobar holoprosencephaly to pituitary anomalies, in 6 unrelated families. METHODS Exome sequencing of affected probands was supplemented with alternative splicing analysis in patient and control lymphoblastoid and fibroblast cell lines, and primary cilia structure analysis in patient fibroblasts. RESULTS In 1 family with 2 affected males, we identified a germline variant in the last exon of ZRSR2, NM_005089.4:c.1211_1212del NP_005080.1:p.(Gly404GlufsTer23), whereas 7 affected males from 5 unrelated families were hemizygous for the ZRSR2 variant NM_005089.4:c.1207_1208del NP_005080.1:p.(Arg403GlyfsTer24), either occurring de novo or inherited in an X-linked recessive pattern. ZRSR2, located on chromosome Xp22.2, encodes a splicing factor of the minor spliceosome complex, which recognizes minor introns, representing 0.35% of human introns. Patient samples showed significant enrichment of minor intron retention. Among differentially spliced targets are ciliopathy-related genes, such as TMEM107 and CIBAR1. Primary fibroblasts containing the NM_005089.4:c.1207_1208del ZRSR2 variant had abnormally elongated cilia, confirming an association between defective U12-type intron splicing, OFD and abnormal primary cilia formation. CONCLUSION We introduce a novel type of OFD associated with elongated cilia and differential splicing of minor intron-containing genes due to germline variation in ZRSR2.
Collapse
Affiliation(s)
- Laurens Hannes
- Department of Human Genetics, KU Leuven, Leuven, Belgium; Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Marta Atzori
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Alice Goldenberg
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHU Rouen, Rouen, France
| | - Jesús Argente
- Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain; CIBEROBN de fisiopatología de la obesidad y nutrición, Instituto de Salud Carlos III, Madrid, Spain; IMDEA Food Institute, Madrid, Spain
| | - Tania Attie-Bitach
- Université Paris Cité, INSERM, IHU Imagine - Institut des maladies génétiques, Paris, France; Service de médecine génomique des maladies rares, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Institut Imagine, Paris, France
| | - Jeanne Amiel
- Université Paris Cité, INSERM, IHU Imagine - Institut des maladies génétiques, Paris, France; Service de médecine génomique des maladies rares, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Institut Imagine, Paris, France
| | | | - Débora G Braslavsky
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez. Buenos Aires, Argentina
| | - Ange-Line Bruel
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France; UF Innovation diagnostique des maladies rares, FHU TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Mireille Castanet
- Normandie Univ, UNIROUEN, Inserm U1239, CHU Rouen, Department of Pediatrics, Rouen, France
| | - Christèle Dubourg
- Department of Molecular Genetics and Genomics, Rennes University Hospital, Rennes, France; Univ Rennes, CNRS, INSERM, IGDR, UMR 6290, ERL U1305, Rennes, France
| | - An Jacobs
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Stanislas Lyonnet
- Université Paris Cité, INSERM, IHU Imagine - Institut des maladies génétiques, Paris, France; Service de médecine génomique des maladies rares, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Institut Imagine, Paris, France
| | - Julian Martinez-Mayer
- Instituto de Biociencias, Biotecnología y Biología Traslacional (IB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - María Inés Pérez Millán
- Instituto de Biociencias, Biotecnología y Biología Traslacional (IB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Nunziana Pezzella
- Telethon Institute of Genetics and Medicine-TIGEM, Naples, Italy; Scuola Superiore Meridionale, School for Advanced Studies, Genomics and Experimental Medicine program, Naples, Italy
| | - Elise Pelgrims
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Mio Aerden
- Department of Human Genetics, KU Leuven, Leuven, Belgium; Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Marijke Bauters
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Anne Rochtus
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Paula Scaglia
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez. Buenos Aires, Argentina
| | - Ann Swillen
- Department of Human Genetics, KU Leuven, Leuven, Belgium; Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | | | - Roberta Tammaro
- Telethon Institute of Genetics and Medicine-TIGEM, Naples, Italy
| | - Frederic Tran Mau-Them
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France; UF Innovation diagnostique des maladies rares, FHU TRANSLAD, CHU Dijon Bourgogne, Dijon, France; Unité Fonctionnelle Innovation en Diagnostic Génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France
| | - Sylvie Odent
- Department of Molecular Genetics and Genomics, Rennes University Hospital, Rennes, France; Univ Rennes, CNRS, INSERM, IGDR, UMR 6290, ERL U1305, Rennes, France; Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Ouest, ERN ITHACA, FHU GenOmedS, Centre Hospitalier Universitaire Rennes, Rennes, France
| | - Christel Thauvin-Robinet
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France; UF Innovation diagnostique des maladies rares, FHU TRANSLAD, CHU Dijon Bourgogne, Dijon, France; Centre de Référence Anomalies du Développement de l'Est, Centre de Génétique, Centre Hospitalier Universitaire Dijon Bourgogne, Dijon, France
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine-TIGEM, Naples, Italy; Scuola Superiore Meridionale, School for Advanced Studies, Genomics and Experimental Medicine program, Naples, Italy; Department of Translational Medicine, Medical Genetics Federico II University of Naples, Naples, Italy
| | - Jeroen Breckpot
- Department of Human Genetics, KU Leuven, Leuven, Belgium; Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
15
|
Bai R, Yuan M, Zhang P, Luo T, Shi Y, Wan R. Structural basis of U12-type intron engagement by the fully assembled human minor spliceosome. Science 2024; 383:1245-1252. [PMID: 38484052 DOI: 10.1126/science.adn7272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/09/2024] [Indexed: 03/19/2024]
Abstract
The minor spliceosome, which is responsible for the splicing of U12-type introns, comprises five small nuclear RNAs (snRNAs), of which only one is shared with the major spliceosome. In this work, we report the 3.3-angstrom cryo-electron microscopy structure of the fully assembled human minor spliceosome pre-B complex. The atomic model includes U11 small nuclear ribonucleoprotein (snRNP), U12 snRNP, and U4atac/U6atac.U5 tri-snRNP. U11 snRNA is recognized by five U11-specific proteins (20K, 25K, 35K, 48K, and 59K) and the heptameric Sm ring. The 3' half of the 5'-splice site forms a duplex with U11 snRNA; the 5' half is recognized by U11-35K, U11-48K, and U11 snRNA. Two proteins, CENATAC and DIM2/TXNL4B, specifically associate with the minor tri-snRNP. A structural analysis uncovered how two conformationally similar tri-snRNPs are differentiated by the minor and major prespliceosomes for assembly.
Collapse
Affiliation(s)
- Rui Bai
- Research Center for Industries of the Future, Key Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Institute of Biology, Westlake Institute for Advanced Study, Xihu District, Hangzhou 310024, Zhejiang Province, China
| | - Meng Yuan
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Pu Zhang
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ting Luo
- Research Center for Industries of the Future, Key Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Institute of Biology, Westlake Institute for Advanced Study, Xihu District, Hangzhou 310024, Zhejiang Province, China
| | - Yigong Shi
- Research Center for Industries of the Future, Key Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Institute of Biology, Westlake Institute for Advanced Study, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ruixue Wan
- Research Center for Industries of the Future, Key Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Institute of Biology, Westlake Institute for Advanced Study, Xihu District, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
16
|
Polic D, Yıldırım Y, Merilaita S, Franzén M, Forsman A. Genetic structure, UV-vision, wing coloration and size coincide with colour polymorphism in Fabriciana adippe butterflies. Mol Ecol 2024; 33:e17272. [PMID: 38240162 DOI: 10.1111/mec.17272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 02/22/2024]
Abstract
Colour polymorphisms have long served as model systems in evolutionary studies and continue to inform about processes involved in the origin and dynamics of biodiversity. Modern sequencing tools allow for evaluating whether phenotypic differences between morphs reflect genetic differentiation rather than developmental plasticity, and for investigating whether polymorphisms represent intermediate stages of diversification towards speciation. We investigated phenotypic and genetic differentiation between two colour morphs of the butterfly Fabriciana adippe using a combination of ddRAD-sequencing and comparisons of body size, colour patterns and optical properties of bright wing spots. The silvery-spotted adippe form had larger and darker wings and reflected UV light, while the yellow cleodoxa form displayed more green scales and reflected very little UV, showcasing that they constitute distinct and alternative integrated phenotypes. Genomic analyses revealed genetic structuring according to source population, and to colour morph, suggesting that the phenotypic differentiation reflects evolutionary modifications. We report 17 outlier loci associated with colour morph, including ultraviolet-sensitive visual pigment (UVRh1), which is associated with intraspecific communication and mate choice in butterflies. Together with the demonstration that the wings of the adippe (but essentially not the cleodoxa) morph reflect UV light, that UV reflectance is higher in females than males and that morphs differ in wing size, this suggests that these colour morphs might represent genetically integrated phenotypes, possibly adapted to different microhabitats. We propose that non-random mating might contribute to the differentiation and maintenance of the polymorphism.
Collapse
Affiliation(s)
- Daniela Polic
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Yeşerin Yıldırım
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Sami Merilaita
- Department of Biology, University of Turku, Turku, Finland
| | - Markus Franzén
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Anders Forsman
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
17
|
Kwon YS, Jin SW, Song H. Global analysis of binding sites of U2AF1 and ZRSR2 reveals RNA elements required for mutually exclusive splicing by the U2- and U12-type spliceosome. Nucleic Acids Res 2024; 52:1420-1434. [PMID: 38088204 PMCID: PMC10853781 DOI: 10.1093/nar/gkad1180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/18/2023] [Accepted: 12/05/2023] [Indexed: 02/10/2024] Open
Abstract
Recurring mutations in genes encoding 3' splice-site recognition proteins, U2AF1 and ZRSR2 are associated with human cancers. Here, we determined binding sites of the proteins to reveal that U2-type and U12-type splice sites are recognized by U2AF1 and ZRSR2, respectively. However, some sites are spliced by both the U2-type and U12-type spliceosomes, indicating that well-conserved consensus motifs in some U12-type introns could be recognized by the U2-type spliceosome. Nucleotides flanking splice sites of U12-type introns are different from those flanking U2-type introns. Remarkably, the AG dinucleotide at the positions -1 and -2 of 5' splice sites of U12-type introns with GT-AG termini is not present. AG next to 5' splice site introduced by a single nucleotide substitution at the -2 position could convert a U12-type splice site to a U2-type site. The class switch of introns by a single mutation and the bias against G at the -1 position of U12-type 5' splice site support the notion that the identities of nucleotides in exonic regions adjacent to splice sites are fine-tuned to avoid recognition by the U2-type spliceosome. These findings may shed light on the mechanism of selectivity in U12-type intron splicing and the mutations that affect splicing.
Collapse
Affiliation(s)
- Young-Soo Kwon
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Korea
| | - Sang Woo Jin
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea
| | - Hoseok Song
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea
| |
Collapse
|
18
|
Martins DJ, Di Lazzaro Filho R, Bertola DR, Hoch NC. Rothmund-Thomson syndrome, a disorder far from solved. FRONTIERS IN AGING 2023; 4:1296409. [PMID: 38021400 PMCID: PMC10676203 DOI: 10.3389/fragi.2023.1296409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Rothmund-Thomson syndrome (RTS) is a rare autosomal recessive disorder characterized by a range of clinical symptoms, including poikiloderma, juvenile cataracts, short stature, sparse hair, eyebrows/eyelashes, nail dysplasia, and skeletal abnormalities. While classically associated with mutations in the RECQL4 gene, which encodes a DNA helicase involved in DNA replication and repair, three additional genes have been recently identified in RTS: ANAPC1, encoding a subunit of the APC/C complex; DNA2, which encodes a nuclease/helicase involved in DNA repair; and CRIPT, encoding a poorly characterized protein implicated in excitatory synapse formation and splicing. Here, we review the clinical spectrum of RTS patients, analyze the genetic basis of the disease, and discuss molecular functions of the affected genes, drawing some novel genotype-phenotype correlations and proposing avenues for future studies into this enigmatic disorder.
Collapse
Affiliation(s)
- Davi Jardim Martins
- Genomic Stability Unit, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Ricardo Di Lazzaro Filho
- Center for Human Genome Studies, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Dasa Genômica/Genera, Genômica, São Paulo, Brazil
| | - Debora Romeo Bertola
- Center for Human Genome Studies, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Genetics Unit, Department of Pediatrics, Faculty of Medicine, Children’s Institute, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Nícolas Carlos Hoch
- Genomic Stability Unit, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Cross T, Øvstebø R, Brusletto BS, Trøseid AMS, Olstad OK, Aspelin T, Jackson CJ, Chen X, Utheim TP, Haug KBF. RNA Profiles of Tear Fluid Extracellular Vesicles in Patients with Dry Eye-Related Symptoms. Int J Mol Sci 2023; 24:15390. [PMID: 37895069 PMCID: PMC10607363 DOI: 10.3390/ijms242015390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Currently, diagnosing and stratifying dry eye disease (DED) require multiple tests, motivating interest in a single definitive test. The purpose of this study was to investigate the potential for using tear fluid extracellular vesicle (EV)-RNA in DED diagnostics. With a role in intercellular communication, nanosized EVs facilitate the protected transport of diverse bioactive molecules in biofluids, including tears. Schirmer strips were used to collect tears from 10 patients presenting with dry eye-related symptoms at the Norwegian Dry Eye Clinic. The samples comprised two groups, five from patients with a tear film break-up time (TBUT) of 2 s and five from patients with a TBUT of 10 s. Tear fluid EV-RNA was isolated using a Qiagen exoRNeasy Midi Kit, and the RNA was characterized using Affymetrix ClariomTM D microarrays. The mean signal values of the two groups were compared using a one-way ANOVA. A total of 26,639 different RNA transcripts were identified, comprising both mRNA and ncRNA subtypes. Approximately 6% of transcripts showed statistically significant differential abundance between the two groups. The mRNA sodium channel modifier 1 (SCNM1) was detected at a level 3.8 times lower, and the immature microRNA-130b was detected at a level 1.5 times higher in the group with TBUT 2 s compared to the group with TBUT 10 s. This study demonstrates the potential for using tear fluid EV-RNA in DED diagnostics.
Collapse
Affiliation(s)
- Tanya Cross
- The Regenerative Medicine Unit, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway; (T.C.)
| | - Reidun Øvstebø
- Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway; (R.Ø.)
| | - Berit Sletbakk Brusletto
- Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway; (R.Ø.)
| | - Anne-Marie Siebke Trøseid
- Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway; (R.Ø.)
| | - Ole Kristoffer Olstad
- Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway; (R.Ø.)
| | - Trude Aspelin
- Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway; (R.Ø.)
| | - Catherine Joan Jackson
- The Regenerative Medicine Unit, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway; (T.C.)
| | - Xiangjun Chen
- The Regenerative Medicine Unit, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway; (T.C.)
- Department of Ophthalmology, Sørlandet Hospital Arendal, 4838 Arendal, Norway
| | - Tor Paaske Utheim
- The Regenerative Medicine Unit, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway; (T.C.)
- Department of Ophthalmology, Sørlandet Hospital Arendal, 4838 Arendal, Norway
- The Norwegian Dry Eye Clinic, 0369 Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, 0450 Oslo, Norway
- Department of Ophthalmology, Vestfold Hospital Trust, 3103 Tønsberg, Norway
| | - Kari Bente Foss Haug
- Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway; (R.Ø.)
| |
Collapse
|
20
|
Heindel AJ, Brulet JW, Wang X, Founds MW, Libby AH, Bai DL, Lemke MC, Leace DM, Harris TE, Hafner M, Hsu KL. Chemoproteomic capture of RNA binding activity in living cells. Nat Commun 2023; 14:6282. [PMID: 37805600 PMCID: PMC10560261 DOI: 10.1038/s41467-023-41844-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/20/2023] [Indexed: 10/09/2023] Open
Abstract
Proteomic methods for RNA interactome capture (RIC) rely principally on crosslinking native or labeled cellular RNA to enrich and investigate RNA-binding protein (RBP) composition and function in cells. The ability to measure RBP activity at individual binding sites by RIC, however, has been more challenging due to the heterogenous nature of peptide adducts derived from the RNA-protein crosslinked site. Here, we present an orthogonal strategy that utilizes clickable electrophilic purines to directly quantify protein-RNA interactions on proteins through photoaffinity competition with 4-thiouridine (4SU)-labeled RNA in cells. Our photo-activatable-competition and chemoproteomic enrichment (PACCE) method facilitated detection of >5500 cysteine sites across ~3000 proteins displaying RNA-sensitive alterations in probe binding. Importantly, PACCE enabled functional profiling of canonical RNA-binding domains as well as discovery of moonlighting RNA binding activity in the human proteome. Collectively, we present a chemoproteomic platform for global quantification of protein-RNA binding activity in living cells.
Collapse
Affiliation(s)
- Andrew J Heindel
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Jeffrey W Brulet
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Xiantao Wang
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Disease, Bethesda, MD, 20892, USA
| | - Michael W Founds
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Adam H Libby
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
- University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, 22903, USA
| | - Dina L Bai
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Michael C Lemke
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - David M Leace
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Markus Hafner
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Disease, Bethesda, MD, 20892, USA
| | - Ku-Lung Hsu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA.
- University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, 22903, USA.
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA.
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
21
|
Damianov A, Lin CH, Huang J, Zhou L, Jami-Alahmadi Y, Wohlschlegel J, Black DL. The apoptotic splicing regulators RBM5 and RBM10 are subunits of the U2 snRNP engaged with intron branch sites on chromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558883. [PMID: 37790489 PMCID: PMC10542197 DOI: 10.1101/2023.09.21.558883] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Understanding the mechanisms of pre-mRNA splicing and spliceosome assembly is limited by technical challenges to examining spliceosomes in vivo. Here we report the isolation of RNP complexes derived from precatalytic A or B-like spliceosomes solubilized from the chromatin pellet of lysed nuclei. We found that these complexes contain U2 snRNP proteins and a portion of the U2 snRNA, bound with intronic branch sites prior to the first catalytic step of splicing. Sequencing these pre-mRNA fragments allowed the transcriptome-wide mapping of branch sites with high sensitivity. In addition to known U2 snRNP proteins, these complexes contained the proteins RBM5 and RBM10. RBM5 and RBM10 are alternative splicing regulators that control exons affecting apoptosis and cell proliferation in cancer, but were not previously shown to associate with the U2 snRNP or to play roles in branch site selection. We delineate a common segment of RBM5 and RBM10, separate from their known functional domains, that is required for their interaction with the U2 snRNP. We identify a large set of splicing events regulated by RBM5 and RBM10 and find that they predominantly act as splicing silencers. Disruption of their U2 interaction renders the proteins inactive for repression of many alternative exons. We further find that these proteins assemble on branch sites of nearly all exons across the transcriptome, including those whose splicing is not altered by them. We propose a model where RBM5 and RBM10 act as components of the U2 snRNP complex. From within this complex, they sense structural features of branchpoint recognition to either allow progression to functional spliceosome or rejection of the complex to inhibit splicing.
Collapse
|
22
|
Zhou S, Van Bortle K. The Pol III transcriptome: Basic features, recurrent patterns, and emerging roles in cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1782. [PMID: 36754845 PMCID: PMC10498592 DOI: 10.1002/wrna.1782] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/10/2023]
Abstract
The RNA polymerase III (Pol III) transcriptome is universally comprised of short, highly structured noncoding RNA (ncRNA). Through RNA-protein interactions, the Pol III transcriptome actuates functional activities ranging from nuclear gene regulation (7SK), splicing (U6, U6atac), and RNA maturation and stability (RMRP, RPPH1, Y RNA), to cytoplasmic protein targeting (7SL) and translation (tRNA, 5S rRNA). In higher eukaryotes, the Pol III transcriptome has expanded to include additional, recently evolved ncRNA species that effectively broaden the footprint of Pol III transcription to additional cellular activities. Newly evolved ncRNAs function as riboregulators of autophagy (vault), immune signaling cascades (nc886), and translation (Alu, BC200, snaR). Notably, upregulation of Pol III transcription is frequently observed in cancer, and multiple ncRNA species are linked to both cancer progression and poor survival outcomes among cancer patients. In this review, we outline the basic features and functions of the Pol III transcriptome, and the evidence for dysregulation and dysfunction for each ncRNA in cancer. When taken together, recurrent patterns emerge, ranging from shared functional motifs that include molecular scaffolding and protein sequestration, overlapping protein interactions, and immunostimulatory activities, to the biogenesis of analogous small RNA fragments and noncanonical miRNAs, augmenting the function of the Pol III transcriptome and further broadening its role in cancer. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Processing of Small RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Sihang Zhou
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Kevin Van Bortle
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
23
|
DiIorio MC, Kulczyk AW. Novel Artificial Intelligence-Based Approaches for Ab Initio Structure Determination and Atomic Model Building for Cryo-Electron Microscopy. MICROMACHINES 2023; 14:1674. [PMID: 37763837 PMCID: PMC10534518 DOI: 10.3390/mi14091674] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
Single particle cryo-electron microscopy (cryo-EM) has emerged as the prevailing method for near-atomic structure determination, shedding light on the important molecular mechanisms of biological macromolecules. However, the inherent dynamics and structural variability of biological complexes coupled with the large number of experimental images generated by a cryo-EM experiment make data processing nontrivial. In particular, ab initio reconstruction and atomic model building remain major bottlenecks that demand substantial computational resources and manual intervention. Approaches utilizing recent innovations in artificial intelligence (AI) technology, particularly deep learning, have the potential to overcome the limitations that cannot be adequately addressed by traditional image processing approaches. Here, we review newly proposed AI-based methods for ab initio volume generation, heterogeneous 3D reconstruction, and atomic model building. We highlight the advancements made by the implementation of AI methods, as well as discuss remaining limitations and areas for future development.
Collapse
Affiliation(s)
- Megan C. DiIorio
- Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Arkadiusz W. Kulczyk
- Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
- Department of Biochemistry & Microbiology, Rutgers University, 76 Lipman Drive, New Brunswick, NJ 08901, USA
| |
Collapse
|
24
|
Juan-Mateu J, Valcárcel J. Minority report: The minor spliceosome as a novel cancer vulnerability factor. Mol Cell 2023; 83:1958-1960. [PMID: 37327771 DOI: 10.1016/j.molcel.2023.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 06/18/2023]
Abstract
The minor spliceosome regulates the removal of a conserved subset of introns present in genes with regulatory functions. In this issue of Molecular Cell, Augspach et al.1 report that elevated levels of U6atac snRNA, a key minor spliceosome component, contribute to prostate cancer cell growth and can be a novel therapeutic target.
Collapse
Affiliation(s)
- Jonàs Juan-Mateu
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Juan Valcárcel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
25
|
Girardini KN, Olthof AM, Kanadia RN. Introns: the "dark matter" of the eukaryotic genome. Front Genet 2023; 14:1150212. [PMID: 37260773 PMCID: PMC10228655 DOI: 10.3389/fgene.2023.1150212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/28/2023] [Indexed: 06/02/2023] Open
Abstract
The emergence of introns was a significant evolutionary leap that is a major distinguishing feature between prokaryotic and eukaryotic genomes. While historically introns were regarded merely as the sequences that are removed to produce spliced transcripts encoding functional products, increasingly data suggests that introns play important roles in the regulation of gene expression. Here, we use an intron-centric lens to review the role of introns in eukaryotic gene expression. First, we focus on intron architecture and how it may influence mechanisms of splicing. Second, we focus on the implications of spliceosomal snRNAs and their variants on intron splicing. Finally, we discuss how the presence of introns and the need to splice them influences transcription regulation. Despite the abundance of introns in the eukaryotic genome and their emerging role regulating gene expression, a lot remains unexplored. Therefore, here we refer to introns as the "dark matter" of the eukaryotic genome and discuss some of the outstanding questions in the field.
Collapse
Affiliation(s)
- Kaitlin N. Girardini
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
| | - Anouk M. Olthof
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rahul N. Kanadia
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
26
|
Lyu M, Lai H, Wang Y, Zhou Y, Chen Y, Wu D, Chen J, Ying B. Roles of alternative splicing in infectious diseases: from hosts, pathogens to their interactions. Chin Med J (Engl) 2023; 136:767-779. [PMID: 36893312 PMCID: PMC10150853 DOI: 10.1097/cm9.0000000000002621] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Indexed: 03/11/2023] Open
Abstract
ABSTRACT Alternative splicing (AS) is an evolutionarily conserved mechanism that removes introns and ligates exons to generate mature messenger RNAs (mRNAs), extremely improving the richness of transcriptome and proteome. Both mammal hosts and pathogens require AS to maintain their life activities, and inherent physiological heterogeneity between mammals and pathogens makes them adopt different ways to perform AS. Mammals and fungi conduct a two-step transesterification reaction by spliceosomes to splice each individual mRNA (named cis -splicing). Parasites also use spliceosomes to splice, but this splicing can occur among different mRNAs (named trans -splicing). Bacteria and viruses directly hijack the host's splicing machinery to accomplish this process. Infection-related changes are reflected in the spliceosome behaviors and the characteristics of various splicing regulators (abundance, modification, distribution, movement speed, and conformation), which further radiate to alterations in the global splicing profiles. Genes with splicing changes are enriched in immune-, growth-, or metabolism-related pathways, highlighting approaches through which hosts crosstalk with pathogens. Based on these infection-specific regulators or AS events, several targeted agents have been developed to fight against pathogens. Here, we summarized recent findings in the field of infection-related splicing, including splicing mechanisms of pathogens and hosts, splicing regulation and aberrant AS events, as well as emerging targeted drugs. We aimed to systemically decode host-pathogen interactions from a perspective of splicing. We further discussed the current strategies of drug development, detection methods, analysis algorithms, and database construction, facilitating the annotation of infection-related splicing and the integration of AS with disease phenotype.
Collapse
Affiliation(s)
- Mengyuan Lyu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongli Lai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yili Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanbing Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Dongsheng Wu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jie Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
27
|
Phylogenetic Analysis of Spliceosome SF3a2 in Different Plant Species. Int J Mol Sci 2023; 24:ijms24065232. [PMID: 36982311 PMCID: PMC10049718 DOI: 10.3390/ijms24065232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
The formation of mature mRNA requires cutting introns and splicing exons. The occurrence of splicing involves the participation of the spliceosome. Common spliceosomes mainly include five snRNPs: U1, U2, U4/U6, and U5. SF3a2, an essential component of spliceosome U2 snRNP, participates in splicing a series of genes. There is no definition of SF3a2 in plants. The paper elaborated on SF3a2s from a series of plants through protein sequence similarity. We constructed the evolutionary relationship of SF3a2s in plants. Moreover, we analyzed the similarities and differences in gene structure, protein structure, the cis-element of the promoter, and expression pattern; we predicted their interacting proteins and constructed their collinearity. We have preliminarily analyzed SF3a2s in plants and clarified the evolutionary relationship between different species; these studies can better serve for in-depth research on the members of the spliceosome in plants.
Collapse
|
28
|
Almentina Ramos Shidi F, Cologne A, Delous M, Besson A, Putoux A, Leutenegger AL, Lacroix V, Edery P, Mazoyer S, Bordonné R. Mutations in the non-coding RNU4ATAC gene affect the homeostasis and function of the Integrator complex. Nucleic Acids Res 2023; 51:712-727. [PMID: 36537210 PMCID: PMC9881141 DOI: 10.1093/nar/gkac1182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Various genetic diseases associated with microcephaly and developmental defects are due to pathogenic variants in the U4atac small nuclear RNA (snRNA), a component of the minor spliceosome essential for the removal of U12-type introns from eukaryotic mRNAs. While it has been shown that a few RNU4ATAC mutations result in impaired binding of essential protein components, the molecular defects of the vast majority of variants are still unknown. Here, we used lymphoblastoid cells derived from RNU4ATAC compound heterozygous (g.108_126del;g.111G>A) twin patients with MOPD1 phenotypes to analyze the molecular consequences of the mutations on small nuclear ribonucleoproteins (snRNPs) formation and on splicing. We found that the U4atac108_126del mutant is unstable and that the U4atac111G>A mutant as well as the minor di- and tri-snRNPs are present at reduced levels. Our results also reveal the existence of 3'-extended snRNA transcripts in patients' cells. Moreover, we show that the mutant cells have alterations in splicing of INTS7 and INTS10 minor introns, contain lower levels of the INTS7 and INTS10 proteins and display changes in the assembly of Integrator subunits. Altogether, our results show that compound heterozygous g.108_126del;g.111G>A mutations induce splicing defects and affect the homeostasis and function of the Integrator complex.
Collapse
Affiliation(s)
- Fatimat Almentina Ramos Shidi
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS UMR5535, 34293 Montpellier, France
| | - Audric Cologne
- INRIA Erable, CNRS LBBE UMR 5558, University Lyon 1, University of Lyon, 69622 Villeurbanne, France
| | - Marion Delous
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon U1028 UMR5292, GENDEV, 69500 Bron, France
| | - Alicia Besson
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon U1028 UMR5292, GENDEV, 69500 Bron, France
| | - Audrey Putoux
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon U1028 UMR5292, GENDEV, 69500 Bron, France
- Clinical Genetics Unit, Department of Genetics, Centre de Référence Anomalies du Développement et Syndromes Polymalformatifs, Hospices Civils de Lyon, University Lyon 1, Bron, France
| | | | - Vincent Lacroix
- INRIA Erable, CNRS LBBE UMR 5558, University Lyon 1, University of Lyon, 69622 Villeurbanne, France
| | - Patrick Edery
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon U1028 UMR5292, GENDEV, 69500 Bron, France
- Clinical Genetics Unit, Department of Genetics, Centre de Référence Anomalies du Développement et Syndromes Polymalformatifs, Hospices Civils de Lyon, University Lyon 1, Bron, France
| | - Sylvie Mazoyer
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon U1028 UMR5292, GENDEV, 69500 Bron, France
| | - Rémy Bordonné
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS UMR5535, 34293 Montpellier, France
| |
Collapse
|
29
|
Vosseberg J, Stolker D, von der Dunk SHA, Snel B. Integrating Phylogenetics With Intron Positions Illuminates the Origin of the Complex Spliceosome. Mol Biol Evol 2023; 40:msad011. [PMID: 36631250 PMCID: PMC9887622 DOI: 10.1093/molbev/msad011] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/09/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
Eukaryotic genes are characterized by the presence of introns that are removed from pre-mRNA by a spliceosome. This ribonucleoprotein complex is comprised of multiple RNA molecules and over a hundred proteins, which makes it one of the most complex molecular machines that originated during the prokaryote-to-eukaryote transition. Previous works have established that these introns and the spliceosomal core originated from self-splicing introns in prokaryotes. Yet, how the spliceosomal core expanded by recruiting many additional proteins remains largely elusive. In this study, we use phylogenetic analyses to infer the evolutionary history of 145 proteins that we could trace back to the spliceosome in the last eukaryotic common ancestor. We found that an overabundance of proteins derived from ribosome-related processes was added to the prokaryote-derived core. Extensive duplications of these proteins substantially increased the complexity of the emerging spliceosome. By comparing the intron positions between spliceosomal paralogs, we infer that most spliceosomal complexity postdates the spread of introns through the proto-eukaryotic genome. The reconstruction of early spliceosomal evolution provides insight into the driving forces behind the emergence of complexes with many proteins during eukaryogenesis.
Collapse
Affiliation(s)
- Julian Vosseberg
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
- Laboratory of Microbiology, Wageningen University & Research, 6700 EH Wageningen, the Netherlands
| | - Daan Stolker
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Samuel H A von der Dunk
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
30
|
Qin J, Huang T, Wang Z, Zhang X, Wang J, Dang Q, Cui D, Wang X, Zhai Y, Zhao L, Lu G, Shao C, Li S, Liu H, Liu Z. Bud31-mediated alternative splicing is required for spermatogonial stem cell self-renewal and differentiation. Cell Death Differ 2023; 30:184-194. [PMID: 36114296 PMCID: PMC9883385 DOI: 10.1038/s41418-022-01057-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 02/01/2023] Open
Abstract
Alternative splicing (AS) is tightly regulated during cell differentiation and development. AS events are prevalent in the testis, but the splicing regulation in spermatogenesis remains unclear. Here we report that the spliceosome component Bud31 plays a crucial role during spermatogenesis in mice. Germ cell-specific knockout of Bud31 led to loss of spermatogonia and to male infertility. We further demonstrate that Bud31 is required for both spermatogonial stem cell pool maintenance and the initiation of spermatogenesis. SMART-seq revealed that deletion of Bud31 in germ cells causes widespread exon-skipping and intron retention. Particularly, we identified Cdk2 as one of the direct splicing targets of Bud31, knockout of Bud31 resulted in retention of the first intron of Cdk2, which led to a decrease in Cdk2 expression. Our findings suggest that Bud31-mediated AS within spermatogonial stem cells regulates the self-renewal and differentiation of male germ cells in mammals.
Collapse
Affiliation(s)
- Junchao Qin
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Huang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zixiang Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiyu Zhang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qianli Dang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Donghai Cui
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinyu Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yunjiao Zhai
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ling Zhao
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Changshun Shao
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Shiyang Li
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Zhaojian Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
31
|
Ding Z, Meng YR, Fan YJ, Xu YZ. Roles of minor spliceosome in intron recognition and the convergence with the better understood major spliceosome. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1761. [PMID: 36056453 DOI: 10.1002/wrna.1761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/06/2022] [Accepted: 08/06/2022] [Indexed: 01/31/2023]
Abstract
Catalyzed by spliceosomes in the nucleus, RNA splicing removes intronic sequences from precursor RNAs in eukaryotes to generate mature RNA, which also significantly increases proteome complexity and fine-tunes gene expression. Most metazoans have two coexisting spliceosomes; the major spliceosome, which removes >99.5% of introns, and the minor spliceosome, which removes far fewer introns (only 770 at present have been predicted in the human genome). Both spliceosomes are large and dynamic machineries, each consisting of five small nuclear RNAs (snRNAs) and more than 100 proteins. However, the dynamic assembly, catalysis, and protein composition of the minor spliceosome are still poorly understood. With different splicing signals, minor introns are rare and usually distributed alone and flanked by major introns in genes, raising questions of how they are recognized by the minor spliceosome and how their processing deals with the splicing of neighboring major introns. Due to large numbers of introns and close similarities between the two machinery, cooperative, and competitive recognition by the two spliceosomes has been investigated. Functionally, many minor-intron-containing genes are evolutionarily conserved and essential. Mutations in the minor spliceosome exhibit a variety of developmental defects in plants and animals and are linked to numerous human diseases. Here, we review recent progress in the understanding of minor splicing, compare currently known components of the two spliceosomes, survey minor introns in a wide range of organisms, discuss cooperation and competition of the two spliceosomes in splicing of minor-intron-containing genes, and contributions of minor splicing mutations in development and diseases. This article is categorized under: RNA Processing > Processing of Small RNAs RNA Processing > Splicing Mechanisms RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry.
Collapse
Affiliation(s)
- Zhan Ding
- RNA Institute, State Key Laboratory of Virology, and Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan-Ran Meng
- RNA Institute, State Key Laboratory of Virology, and Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei, China
| | - Yu-Jie Fan
- RNA Institute, State Key Laboratory of Virology, and Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei, China
| | - Yong-Zhen Xu
- RNA Institute, State Key Laboratory of Virology, and Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
32
|
Zhang P, Philippot Q, Ren W, Lei WT, Li J, Stenson PD, Palacín PS, Colobran R, Boisson B, Zhang SY, Puel A, Pan-Hammarström Q, Zhang Q, Cooper DN, Abel L, Casanova JL. Genome-wide detection of human variants that disrupt intronic branchpoints. Proc Natl Acad Sci U S A 2022; 119:e2211194119. [PMID: 36306325 PMCID: PMC9636908 DOI: 10.1073/pnas.2211194119] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022] Open
Abstract
Pre-messenger RNA splicing is initiated with the recognition of a single-nucleotide intronic branchpoint (BP) within a BP motif by spliceosome elements. Forty-eight rare variants in 43 human genes have been reported to alter splicing and cause disease by disrupting BP. However, until now, no computational approach was available to efficiently detect such variants in massively parallel sequencing data. We established a comprehensive human genome-wide BP database by integrating existing BP data and generating new BP data from RNA sequencing of lariat debranching enzyme DBR1-mutated patients and from machine-learning predictions. We characterized multiple features of BP in major and minor introns and found that BP and BP-2 (two nucleotides upstream of BP) positions exhibit a lower rate of variation in human populations and higher evolutionary conservation than the intronic background, while being comparable to the exonic background. We developed BPHunter as a genome-wide computational approach to systematically and efficiently detect intronic variants that may disrupt BP recognition. BPHunter retrospectively identified 40 of the 48 known pathogenic BP variants, in which we summarized a strategy for prioritizing BP variant candidates. The remaining eight variants all create AG-dinucleotides between the BP and acceptor site, which is the likely reason for missplicing. We demonstrated the practical utility of BPHunter prospectively by using it to identify a novel germline heterozygous BP variant of STAT2 in a patient with critical COVID-19 pneumonia and a novel somatic intronic 59-nucleotide deletion of ITPKB in a lymphoma patient, both of which were validated experimentally. BPHunter is publicly available from https://hgidsoft.rockefeller.edu/BPHunter and https://github.com/casanova-lab/BPHunter.
Collapse
Affiliation(s)
- Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, 75015 Paris, France
- Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Weicheng Ren
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Wei-Te Lei
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Juan Li
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Peter D. Stenson
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Pere Soler Palacín
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d’Hebron Research Institute, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital, Vall d’Hebron Research Institute, Vall d’Hebron Barcelona Hospital Campus, Autonomous University of Barcelona, 08035 Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, 08035 Barcelona, Spain
| | - Roger Colobran
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, 08035 Barcelona, Spain
- Diagnostic Immunology Group, Vall d’Hebron Research Institute, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
- Immunology Division, Genetics Department, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Autonomous University of Barcelona, 08035 Barcelona, Spain
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, 75015 Paris, France
- Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, 75015 Paris, France
- Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, 75015 Paris, France
- Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Qiang Pan-Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, 75015 Paris, France
- Paris Cité University, Imagine Institute, 75015 Paris, France
| | - David N. Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, 75015 Paris, France
- Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, 75015 Paris, France
- Paris Cité University, Imagine Institute, 75015 Paris, France
- HHMI, New York, NY 10065
| |
Collapse
|
33
|
Iturrate A, Rivera-Barahona A, Flores CL, Otaify GA, Elhossini R, Perez-Sanz ML, Nevado J, Tenorio-Castano J, Triviño JC, Garcia-Gonzalo FR, Piceci-Sparascio F, De Luca A, Martínez L, Kalaycı T, Lapunzina P, Altunoglu U, Aglan M, Abdalla E, Ruiz-Perez VL. Mutations in SCNM1 cause orofaciodigital syndrome due to minor intron splicing defects affecting primary cilia. Am J Hum Genet 2022; 109:1828-1849. [PMID: 36084634 PMCID: PMC9606384 DOI: 10.1016/j.ajhg.2022.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 08/12/2022] [Indexed: 01/25/2023] Open
Abstract
Orofaciodigital syndrome (OFD) is a genetically heterogeneous ciliopathy characterized by anomalies of the oral cavity, face, and digits. We describe individuals with OFD from three unrelated families having bi-allelic loss-of-function variants in SCNM1 as the cause of their condition. SCNM1 encodes a protein recently shown to be a component of the human minor spliceosome. However, so far the effect of loss of SCNM1 function on human cells had not been assessed. Using a comparative transcriptome analysis between fibroblasts derived from an OFD-affected individual harboring SCNM1 mutations and control fibroblasts, we identified a set of genes with defective minor intron (U12) processing in the fibroblasts of the affected subject. These results were reproduced in SCNM1 knockout hTERT RPE-1 (RPE-1) cells engineered by CRISPR-Cas9-mediated editing and in SCNM1 siRNA-treated RPE-1 cultures. Notably, expression of TMEM107 and FAM92A encoding primary cilia and basal body proteins, respectively, and that of DERL2, ZC3H8, and C17orf75, were severely reduced in SCNM1-deficient cells. Primary fibroblasts containing SCNM1 mutations, as well as SCNM1 knockout and SCNM1 knockdown RPE-1 cells, were also found with abnormally elongated cilia. Conversely, cilia length and expression of SCNM1-regulated genes were restored in SCNM1-deficient fibroblasts following reintroduction of SCNM1 via retroviral delivery. Additionally, functional analysis in SCNM1-retrotransduced fibroblasts showed that SCNM1 is a positive mediator of Hedgehog (Hh) signaling. Our findings demonstrate that defective U12 intron splicing can lead to a typical ciliopathy such as OFD and reveal that primary cilia length and Hh signaling are regulated by the minor spliceosome through SCNM1 activity.
Collapse
Affiliation(s)
- Asier Iturrate
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Ana Rivera-Barahona
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28029 Madrid, Spain,CIBER de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carmen-Lisset Flores
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Ghada A. Otaify
- Department of Clinical Genetics, Institute of Human Genetics and Genome Research, National Research Centre, Cairo, Egypt
| | - Rasha Elhossini
- Department of Clinical Genetics, Institute of Human Genetics and Genome Research, National Research Centre, Cairo, Egypt
| | - Marina L. Perez-Sanz
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Julián Nevado
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain,Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IdiPAZ, ITHACA-ERN, 28046 Madrid, Spain
| | - Jair Tenorio-Castano
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain,Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IdiPAZ, ITHACA-ERN, 28046 Madrid, Spain
| | | | - Francesc R. Garcia-Gonzalo
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28029 Madrid, Spain,CIBER de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain,Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain,Área de Cáncer y Genética Molecular Humana, Instituto de Investigaciones del Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Francesca Piceci-Sparascio
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy,Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Alessandro De Luca
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Leopoldo Martínez
- Departamento de Cirugía Pediátrica. Hospital Universitario La Paz-IdiPAZ, ITHACA-ERN, 28046 Madrid, Spain
| | - Tugba Kalaycı
- Medical Genetics Department, Istanbul Medical Faculty, Istanbul University, Istanbul 34093, Turkey
| | - Pablo Lapunzina
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain,Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IdiPAZ, ITHACA-ERN, 28046 Madrid, Spain
| | - Umut Altunoglu
- Medical Genetics Department, Koç University School of Medicine, Istanbul 34450, Turkey
| | - Mona Aglan
- Department of Clinical Genetics, Institute of Human Genetics and Genome Research, National Research Centre, Cairo, Egypt
| | - Ebtesam Abdalla
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt,Genetics Department, Armed Forces College of Medicine, Cairo, Egypt
| | - Victor L. Ruiz-Perez
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28029 Madrid, Spain,CIBER de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain,Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IdiPAZ, ITHACA-ERN, 28046 Madrid, Spain,Corresponding author
| |
Collapse
|
34
|
Siebert AE, Corll J, Paige Gronevelt J, Levine L, Hobbs LM, Kenney C, Powell CLE, Battistuzzi FU, Davenport R, Mark Settles A, Brad Barbazuk W, Westrick RJ, Madlambayan GJ, Lal S. Genetic analysis of human RNA binding motif protein 48 (RBM48) reveals an essential role in U12-type intron splicing. Genetics 2022; 222:iyac129. [PMID: 36040194 PMCID: PMC9526058 DOI: 10.1093/genetics/iyac129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
U12-type or minor introns are found in most multicellular eukaryotes and constitute ∼0.5% of all introns in species with a minor spliceosome. Although the biological significance for the evolutionary conservation of U12-type introns is debated, mutations disrupting U12 splicing cause developmental defects in both plants and animals. In human hematopoietic stem cells, U12 splicing defects disrupt proper differentiation of myeloid lineages and are associated with myelodysplastic syndrome, predisposing individuals to acute myeloid leukemia. Mutants in the maize ortholog of RNA binding motif protein 48 (RBM48) have aberrant U12-type intron splicing. Human RBM48 was recently purified biochemically as part of the minor spliceosome and shown to recognize the 5' end of the U6atac snRNA. In this report, we use CRISPR/Cas9-mediated ablation of RBM48 in human K-562 cells to show the genetic function of RBM48. RNA-seq analysis comparing wild-type and mutant K-562 genotypes found that 48% of minor intron-containing genes have significant U12-type intron retention in RBM48 mutants. Comparing these results to maize rbm48 mutants defined a subset of minor intron-containing genes disrupted in both species. Mutations in the majority of these orthologous minor intron-containing genes have been reported to cause developmental defects in both plants and animals. Our results provide genetic evidence that the primary defect of human RBM48 mutants is aberrant U12-type intron splicing, while a comparison of human and maize RNA-seq data identifies candidate genes likely to mediate mutant phenotypes of U12-type splicing defects.
Collapse
Affiliation(s)
- Amy E Siebert
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Jacob Corll
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - J Paige Gronevelt
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Laurel Levine
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Linzi M Hobbs
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Catalina Kenney
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Christopher L E Powell
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Fabia U Battistuzzi
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Ruth Davenport
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - A Mark Settles
- Horticultural Sciences Department and Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
| | - W Brad Barbazuk
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Randal J Westrick
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Gerard J Madlambayan
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Shailesh Lal
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| |
Collapse
|
35
|
Vorländer MK, Pacheco-Fiallos B, Plaschka C. Structural basis of mRNA maturation: Time to put it together. Curr Opin Struct Biol 2022; 75:102431. [PMID: 35930970 DOI: 10.1016/j.sbi.2022.102431] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/02/2022] [Accepted: 06/14/2022] [Indexed: 11/27/2022]
Abstract
In eukaryotes, the expression of genetic information begins in the cell nucleus with precursor messenger RNA (pre-mRNA) transcription and processing into mature mRNA. The mRNA is subsequently recognized and packaged by proteins into an mRNA ribonucleoprotein complex (mRNP) and exported to the cytoplasm for translation. Each of the nuclear mRNA maturation steps is carried out by a dedicated molecular machine. Here, we highlight recent structural and mechanistic insights into how these machines function, including the capping enzyme, the spliceosome, the 3'-end processing machinery, and the transcription-export complex. While we increasingly understand individual steps of nuclear gene expression, many questions remain. For example, we are only beginning to reveal how mature mRNAs are recognized and packaged for nuclear export and how mRNA maturation events are coupled to transcription and to each other. Advances in the preparation of recombinant and endogenous protein-nucleic acid complexes, cryo-electron microscopy, and machine learning promise exciting insights into the mechanisms of nuclear gene expression and its spatial organization.
Collapse
Affiliation(s)
- Matthias K Vorländer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria. https://twitter.com/@MVorlandr
| | - Belén Pacheco-Fiallos
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030, Vienna, Austria. https://twitter.com/@bpachecofiallos
| | - Clemens Plaschka
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria.
| |
Collapse
|
36
|
De Kesel J, Fijalkowski I, Taylor J, Ntziachristos P. Splicing dysregulation in human hematologic malignancies: beyond splicing mutations. Trends Immunol 2022; 43:674-686. [PMID: 35850914 DOI: 10.1016/j.it.2022.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
Splicing is a fundamental process in pre-mRNA maturation. Whereas alternative splicing (AS) enriches the diversity of the proteome, its aberrant regulation can drive oncogenesis. So far, most attention has been given to spliceosome mutations (SMs) in the context of splicing dysregulation in hematologic diseases. However, in recent years, post-translational modifications (PTMs) and transcriptional alterations of splicing factors (SFs), just as epigenetic signatures, have all been shown to contribute to global splicing dysregulation as well. In addition, the contribution of aberrant splicing to the neoantigen repertoire of cancers has been recognized. With the pressing need for novel therapeutics to combat blood cancers, this article provides an overview of emerging mechanisms that contribute to aberrant splicing, as well as their clinical potential.
Collapse
Affiliation(s)
- Jonas De Kesel
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium; Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Igor Fijalkowski
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium; Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Justin Taylor
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Panagiotis Ntziachristos
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium; Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
37
|
Neuhaus D. Zinc finger structure determination by NMR: Why zinc fingers can be a handful. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 130-131:62-105. [PMID: 36113918 PMCID: PMC7614390 DOI: 10.1016/j.pnmrs.2022.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/09/2022] [Accepted: 07/10/2022] [Indexed: 06/07/2023]
Abstract
Zinc fingers can be loosely defined as protein domains containing one or more tetrahedrally-co-ordinated zinc ions whose role is to stabilise the structure rather than to be involved in enzymatic chemistry; such zinc ions are often referred to as "structural zincs". Although structural zincs can occur in proteins of any size, they assume particular significance for very small protein domains, where they are often essential for maintaining a folded state. Such small structures, that sometimes have only marginal stability, can present particular difficulties in terms of sample preparation, handling and structure determination, and early on they gained a reputation for being resistant to crystallisation. As a result, NMR has played a more prominent role in structural studies of zinc finger proteins than it has for many other types of proteins. This review will present an overview of the particular issues that arise for structure determination of zinc fingers by NMR, and ways in which these may be addressed.
Collapse
Affiliation(s)
- David Neuhaus
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
38
|
Suzuki T, Shinagawa T, Niwa T, Akeda H, Hashimoto S, Tanaka H, Hiroaki Y, Yamasaki F, Mishima H, Kawai T, Higashiyama T, Nakamura K. The DROL1 subunit of U5 snRNP in the spliceosome is specifically required to splice AT-AC-type introns in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:633-648. [PMID: 34780096 DOI: 10.1111/tpj.15582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 10/25/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
An Arabidopsis mutant named defective repression of OLE3::LUC 1 (drol1) was originally isolated as a mutant with defects in the repression of OLEOSIN3 (OLE3) after seed germination. In this study, we show that DROL1 is an Arabidopsis homolog of yeast DIB1, a subunit of the U5 small nuclear ribonucleoprotein particle (snRNP) in the spliceosome. It is also part of a new subfamily that is specific to a certain class of eukaryotes. Comprehensive analysis of the intron splicing using RNA sequencing analysis of the drol1 mutants revealed that most of the minor introns with AT-AC dinucleotide termini had reduced levels of splicing. Only two nucleotide substitutions from AT-AC to GT-AG enabled AT-AC-type introns to be spliced in drol1 mutants. Forty-eight genes, including those having important roles in abiotic stress responses and cell proliferation, exhibited reduced splicing of AT-AC-type introns in the drol1 mutants. Additionally, drol1 mutant seedlings showed retarded growth, similar to that caused by the activation of abscisic acid signaling, possibly as a result of reduced AT-AC-type intron splicing in the endosomal Na+ /H+ antiporters and plant-specific histone deacetylases. These results indicate that DROL1 is specifically involved in the splicing of minor introns with AT-AC termini and that this plays an important role in plant growth and development.
Collapse
Affiliation(s)
- Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Tomomi Shinagawa
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Tomoko Niwa
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Hibiki Akeda
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Satoki Hashimoto
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Hideki Tanaka
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Yoko Hiroaki
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Fumiya Yamasaki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Hiroyuki Mishima
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Tsutae Kawai
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bukyo-ku, Tokyo, 113-0033, Japan
| | - Kenzo Nakamura
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| |
Collapse
|
39
|
Xue Y. Architecture of RNA-RNA interactions. Curr Opin Genet Dev 2021; 72:138-144. [PMID: 34954430 DOI: 10.1016/j.gde.2021.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/04/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022]
Abstract
RNA molecules tend to form intricate tertiary structures via intramolecular RNA-RNA interactions (RRIs) to regulate transcription, RNA processing, and translation processes. In these biological processes, RNAs, especially noncoding RNAs, usually achieve their regulatory specificity through intermolecular RNA-RNA base pairing and execute their regulatory outcomes via associated RNA-binding proteins. Decoding intramolecular and intermolecular RRIs is a prerequisite for understanding the architecture of various RNA molecules and their regulatory roles in development, differentiation, and disease. Many sequencing-based methods have recently been invented and have revealed extraordinarily complicated RRIs in mammalian cells. Here, we discuss the technical advances and limitations of various methodologies developed for studying cellular RRIs, with a focus on the emerging architectural roles of RRIs in gene regulation.
Collapse
Affiliation(s)
- Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
40
|
Abstract
Cryogenic electron microscopy (cryo-EM) has revolutionized the field of structural biology, particularly in solving the structures of large protein complexes or cellular machineries that play important biological functions. This review focuses on the contribution and future potential of cryo-EM in related emerging applications-enzymatic mechanisms and dynamic processes. Work on these subjects can benefit greatly from the capability of cryo-EM to solve the structures of specific protein complexes in multiple conditions, including variations in the buffer condition, ligands, and temperature, and to capture multiple conformational states, conformational change intermediates, and reaction intermediates. These studies can expand the structural landscape of specific proteins or protein complexes in multiple dimensions and drive new advances in the fields of enzymology and dynamic processes. The advantages and complementarity of cryo-EM relative to X-ray crystallography and nuclear magnetic resonance with regard to these applications are also addressed. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; .,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Wen-Jin Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan;
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; .,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
41
|
de Wolf B, Oghabian A, Akinyi MV, Hanks S, Tromer EC, van Hooff JJE, van Voorthuijsen L, van Rooijen LE, Verbeeren J, Uijttewaal ECH, Baltissen MPA, Yost S, Piloquet P, Vermeulen M, Snel B, Isidor B, Rahman N, Frilander MJ, Kops GJPL. Chromosomal instability by mutations in the novel minor spliceosome component CENATAC. EMBO J 2021; 40:e106536. [PMID: 34009673 PMCID: PMC8280824 DOI: 10.15252/embj.2020106536] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
Aneuploidy is the leading cause of miscarriage and congenital birth defects, and a hallmark of cancer. Despite this strong association with human disease, the genetic causes of aneuploidy remain largely unknown. Through exome sequencing of patients with constitutional mosaic aneuploidy, we identified biallelic truncating mutations in CENATAC (CCDC84). We show that CENATAC is a novel component of the minor (U12-dependent) spliceosome that promotes splicing of a specific, rare minor intron subtype. This subtype is characterized by AT-AN splice sites and relatively high basal levels of intron retention. CENATAC depletion or expression of disease mutants resulted in excessive retention of AT-AN minor introns in ˜ 100 genes enriched for nucleocytoplasmic transport and cell cycle regulators, and caused chromosome segregation errors. Our findings reveal selectivity in minor intron splicing and suggest a link between minor spliceosome defects and constitutional aneuploidy in humans.
Collapse
Affiliation(s)
- Bas de Wolf
- Oncode InstituteHubrecht Institute ‐ Royal Academy of Arts and Sciences and University Medical Centre UtrechtUtrechtThe Netherlands
| | - Ali Oghabian
- Institute of BiotechnologyHelsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
- Present address:
Faculty of MedicineResearch Programs UnitUniversity of HelsinkiHelsinkiFinland
| | - Maureen V Akinyi
- Institute of BiotechnologyHelsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Sandra Hanks
- Division of Genetics and EpidemiologyInstitute of Cancer ResearchLondonUK
| | - Eelco C Tromer
- Oncode InstituteHubrecht Institute ‐ Royal Academy of Arts and Sciences and University Medical Centre UtrechtUtrechtThe Netherlands
- Theoretical Biology and Bioinformatics, BiologyScience FacultyUtrecht UniversityUtrechtThe Netherlands
- Present address:
Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Jolien J E van Hooff
- Oncode InstituteHubrecht Institute ‐ Royal Academy of Arts and Sciences and University Medical Centre UtrechtUtrechtThe Netherlands
- Theoretical Biology and Bioinformatics, BiologyScience FacultyUtrecht UniversityUtrechtThe Netherlands
- Present address:
Unité d'EcologieSystématique et EvolutionCNRSUniversité Paris‐SudUniversité Paris‐SaclayAgroParisTechOrsayFrance
| | - Lisa van Voorthuijsen
- Oncode InstituteDepartment of Molecular BiologyFaculty of ScienceRadboud Institute for Molecular Life ScienceRadboud University NijmegenNijmegenThe Netherlands
| | - Laura E van Rooijen
- Theoretical Biology and Bioinformatics, BiologyScience FacultyUtrecht UniversityUtrechtThe Netherlands
| | - Jens Verbeeren
- Institute of BiotechnologyHelsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Esther C H Uijttewaal
- Oncode InstituteHubrecht Institute ‐ Royal Academy of Arts and Sciences and University Medical Centre UtrechtUtrechtThe Netherlands
| | - Marijke P A Baltissen
- Oncode InstituteDepartment of Molecular BiologyFaculty of ScienceRadboud Institute for Molecular Life ScienceRadboud University NijmegenNijmegenThe Netherlands
| | - Shawn Yost
- Division of Genetics and EpidemiologyInstitute of Cancer ResearchLondonUK
| | - Philippe Piloquet
- Service de Génétique MédicaleUnité de génétique CliniqueCHU Hotel DieuNantes CedexFrance
| | - Michiel Vermeulen
- Oncode InstituteDepartment of Molecular BiologyFaculty of ScienceRadboud Institute for Molecular Life ScienceRadboud University NijmegenNijmegenThe Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, BiologyScience FacultyUtrecht UniversityUtrechtThe Netherlands
| | - Bertrand Isidor
- Service de Génétique MédicaleUnité de génétique CliniqueCHU Hotel DieuNantes CedexFrance
| | - Nazneen Rahman
- Division of Genetics and EpidemiologyInstitute of Cancer ResearchLondonUK
| | - Mikko J Frilander
- Institute of BiotechnologyHelsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Geert J P L Kops
- Oncode InstituteHubrecht Institute ‐ Royal Academy of Arts and Sciences and University Medical Centre UtrechtUtrechtThe Netherlands
| |
Collapse
|
42
|
Marcia M, Manigrasso J, De Vivo M. Finding the Ion in the RNA-Stack: Can Computational Models Accurately Predict Key Functional Elements in Large Macromolecular Complexes? J Chem Inf Model 2021; 61:2511-2515. [PMID: 34133879 PMCID: PMC8278382 DOI: 10.1021/acs.jcim.1c00572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This viewpoint discusses the predictive power and impact of computational analyses and simulations to gain prospective, experimentally supported mechanistic insights into complex biological systems. Remarkably, two newly resolved cryoEM structures have confirmed the previous, and independent, prediction of the precise localization and dynamics of key catalytic ions in megadalton-large spliceosomal complexes. This outstanding outcome endorses a prominent synergy of computational and experimental methods in the prospective exploration of such large multicomponent biosystems.
Collapse
Affiliation(s)
- Marco Marcia
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble 38042, France
| | - Jacopo Manigrasso
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|