1
|
Tian X, Lei J, Gao T, Zou S, Wang X, Li M, Wang C, Chen J, Grabow JU, Jäger W, Gou Q. Complex Dance of Molecules in the Sky: Choreography of Intermolecular Structure and Dynamics in the Cyclopentene-CO 2-H 2O Hetero Ternary Cluster. Angew Chem Int Ed Engl 2024; 63:e202412406. [PMID: 39175182 DOI: 10.1002/anie.202412406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
This study delves into driving forces behind the formation of a hetero ternary cluster consisting of volatile organic compounds from industrial or combustion sources, specifically cyclopentene, alongside greenhouse gases like carbon dioxide, and water vapor. While substantial progress has been made in understanding binary complexes, the structural intricacies of hetero ternary clusters remain largely uncharted. Our research characterized the cyclopentene-CO2-H2O hetero ternary cluster utilizing Fourier transform microwave spectroscopy. The observed isomer in the pulsed jet has CO2 and H2O aligning above the cyclopentene ring, with water undergoing an internal rotation approximately about its C2 symmetry axis. Theoretical analyses support these observations, identifying an O-H⋅⋅⋅π hydrogen bond and a secondary C⋅⋅⋅O tetrel bond within this cluster. This study marks a critical step towards comprehending the molecular dynamics and interactions of VOCs, greenhouse gases, and water in the atmosphere, paving the way for further investigations into their roles in climate dynamics and air quality.
Collapse
Affiliation(s)
- Xiao Tian
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China
| | - Juncheng Lei
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China
| | - Tianyue Gao
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China
| | - Siyu Zou
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China
| | - Xiujuan Wang
- Institut für Physikalische Chemie & Elektrochemie, Leibniz Universität Hannover, Callinstraβe 3A, 30167, Hannover, Germany
| | - Meiyue Li
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China
| | - Chenxu Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China
| | - Junhua Chen
- School of Pharmacy, Guizhou Medical University, 561113, Guiyang, Guizhou, China
| | - Jens-Uwe Grabow
- Institut für Physikalische Chemie & Elektrochemie, Leibniz Universität Hannover, Callinstraβe 3A, 30167, Hannover, Germany
| | - Wolfgang Jäger
- Department of Chemistry, University of Alberta, T6G 2G2, Edmonton, AB, Canada
| | - Qian Gou
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China
| |
Collapse
|
2
|
Gao X, Sun S, Meng P, Cai J, Pei S, Huang H, Zhang J. Carbon fluxes and water-use efficiency in a Pinus tabuliformis plantation in Northeast China and their relationship to drought. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174258. [PMID: 38925374 DOI: 10.1016/j.scitotenv.2024.174258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/13/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
The impact of extreme weather events on carbon fluxes and water-use efficiency (WUE) in revegetated areas under water-limited conditions is poorly understood. We analyzed changes in carbon fluxes and WUE over three years of eddy-covariance measurements in a Pinus tabuliformis plantation in Northeast China to investigate carbon fluxes and WUE responses to drought events at different time scales. Mean annual net ecosystem exchange (NEE), gross primary production (GPP), and ecosystem respiration (Re) were -368.48, 1042.42, and 673.94 g C m-2, respectively. Drought events increased NEE, as GPP was more sensitive to water stress than Re at different growing stages. Mean annual WUE was 2.46 g C kg-1 H2O, and plant phenology played a key role in WUE responses to drought. Water stress had negative and positive effects on daily WUE at the early and late growing stages, respectively, and daily WUE was generally insensitive to drought at the mid growing stage. A lagged effect existed in the carbon fluxes and WUE dynamics after drought events at various time scales. Water stress at the early growing stage was more important than that at other growing stages on annual carbon sequestration and WUE, as it dominated canopy growth in the current year. The annual mean normalized difference vegetation index controlled interannual variations in carbon fluxes and WUE in the plantation. Our findings contribute to the prediction of possible changes in carbon and water fluxes under climate warming in the afforested areas of Northeast China.
Collapse
Affiliation(s)
- Xiang Gao
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, 100091 Beijing, China; Co-innovation Center of Sustainable Forestry in Southern China, Nanjing Forest University, 210037 Nanjing, Jiangsu, China; Henan Xiaolangdi Forest Ecosystem National Observation and Research Station, 454650 Jiyuan, Henan, China.
| | - Shoujia Sun
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, 100091 Beijing, China; Co-innovation Center of Sustainable Forestry in Southern China, Nanjing Forest University, 210037 Nanjing, Jiangsu, China; Henan Xiaolangdi Forest Ecosystem National Observation and Research Station, 454650 Jiyuan, Henan, China.
| | - Ping Meng
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, 100091 Beijing, China; Co-innovation Center of Sustainable Forestry in Southern China, Nanjing Forest University, 210037 Nanjing, Jiangsu, China; Henan Xiaolangdi Forest Ecosystem National Observation and Research Station, 454650 Jiyuan, Henan, China.
| | - Jinfeng Cai
- Co-innovation Center of Sustainable Forestry in Southern China, Nanjing Forest University, 210037 Nanjing, Jiangsu, China
| | - Songyi Pei
- State-owned Jianping County Heishui Mechanized Forest Farm, 122000 Chaoyang, Liaoning, China
| | - Hui Huang
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, 100091 Beijing, China; Co-innovation Center of Sustainable Forestry in Southern China, Nanjing Forest University, 210037 Nanjing, Jiangsu, China; Henan Xiaolangdi Forest Ecosystem National Observation and Research Station, 454650 Jiyuan, Henan, China.
| | - Jinsong Zhang
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, 100091 Beijing, China; Co-innovation Center of Sustainable Forestry in Southern China, Nanjing Forest University, 210037 Nanjing, Jiangsu, China; Henan Xiaolangdi Forest Ecosystem National Observation and Research Station, 454650 Jiyuan, Henan, China.
| |
Collapse
|
3
|
Zarakas CM, Swann ALS, Koven CD, Smith MN, Taylor TC. Different model assumptions about plant hydraulics and photosynthetic temperature acclimation yield diverging implications for tropical forest gross primary production under warming. GLOBAL CHANGE BIOLOGY 2024; 30:e17449. [PMID: 39301722 DOI: 10.1111/gcb.17449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/13/2024] [Accepted: 06/03/2024] [Indexed: 09/22/2024]
Abstract
Tropical forest photosynthesis can decline at high temperatures due to (1) biochemical responses to increasing temperature and (2) stomatal responses to increasing vapor pressure deficit (VPD), which is associated with increasing temperature. It is challenging to disentangle the influence of these two mechanisms on photosynthesis in observations, because temperature and VPD are tightly correlated in tropical forests. Nonetheless, quantifying the relative strength of these two mechanisms is essential for understanding how tropical gross primary production (GPP) will respond to climate change, because increasing atmospheric CO2 concentration may partially offset VPD-driven stomatal responses, but is not expected to mitigate the effects of temperature-driven biochemical responses. We used two terrestrial biosphere models to quantify how physiological process assumptions (photosynthetic temperature acclimation and plant hydraulic stress) and functional traits (e.g., maximum xylem conductivity) influence the relative strength of modeled temperature versus VPD effects on light-saturated GPP at an Amazonian forest site, a seasonally dry tropical forest site, and an experimental tropical forest mesocosm. By simulating idealized climate change scenarios, we quantified the divergence in GPP predictions under model configurations with stronger VPD effects compared with stronger direct temperature effects. Assumptions consistent with stronger direct temperature effects resulted in larger GPP declines under warming, while assumptions consistent with stronger VPD effects resulted in more resilient GPP under warming. Our findings underscore the importance of quantifying the role of direct temperature and indirect VPD effects for projecting the resilience of tropical forests in the future, and demonstrate that the relative strength of temperature versus VPD effects in models is highly sensitive to plant functional parameters and structural assumptions about photosynthetic temperature acclimation and plant hydraulics.
Collapse
Affiliation(s)
- Claire M Zarakas
- Department of Atmospheric Sciences, University of Washington, Seattle, Washington, USA
| | - Abigail L S Swann
- Department of Atmospheric Sciences, University of Washington, Seattle, Washington, USA
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - Charles D Koven
- Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Marielle N Smith
- Department of Forestry, Michigan State University, East Lansing, Michigan, USA
- School of Environmental and Natural Sciences, College of Environmental Sciences and Engineering, Bangor University, Bangor, UK
| | - Tyeen C Taylor
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Pfannerstill EY, Arata C, Zhu Q, Schulze BC, Ward R, Woods R, Harkins C, Schwantes RH, Seinfeld JH, Bucholtz A, Cohen RC, Goldstein AH. Temperature-dependent emissions dominate aerosol and ozone formation in Los Angeles. Science 2024; 384:1324-1329. [PMID: 38900887 DOI: 10.1126/science.adg8204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/22/2024] [Indexed: 06/22/2024]
Abstract
Despite declines in transportation emissions, urban North America and Europe still face unhealthy air pollution levels. This has challenged conventional understanding of the sources of their volatile organic compound (VOC) precursors. Using airborne flux measurements to map emissions of a wide range of VOCs, we demonstrate that biogenic terpenoid emissions contribute ~60% of emitted VOC OH reactivity, ozone, and secondary organic aerosol formation potential in summertime Los Angeles and that this contribution strongly increases with temperature. This implies that control of nitrogen oxides is key to reducing ozone formation in Los Angeles. We also show some anthropogenic VOC emissions increase with temperature, which is an effect not represented in current inventories. Air pollution mitigation efforts must consider that climate warming will strongly change emission amounts and composition.
Collapse
Affiliation(s)
- Eva Y Pfannerstill
- Department of Environmental Science, Policy and Management, University of California at Berkeley, Berkeley, CA, USA
| | - Caleb Arata
- Department of Environmental Science, Policy and Management, University of California at Berkeley, Berkeley, CA, USA
| | - Qindan Zhu
- Department of Earth and Planetary Science, University of California at Berkeley, Berkeley, CA, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- NOAA Chemical Sciences Laboratory, Boulder, CO, USA
| | | | - Ryan Ward
- NOAA Chemical Sciences Laboratory, Boulder, CO, USA
| | - Roy Woods
- Department of Environmental Science and Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Colin Harkins
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Department of Meteorology, Naval Postgraduate School, Monterey, CA, USA
| | | | | | - Anthony Bucholtz
- Department of Environmental Science and Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Ronald C Cohen
- Department of Earth and Planetary Science, University of California at Berkeley, Berkeley, CA, USA
- Department of Chemistry, University of California at Berkeley, Berkeley, CA, USA
| | - Allen H Goldstein
- Department of Environmental Science, Policy and Management, University of California at Berkeley, Berkeley, CA, USA
- Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, CA, USA
| |
Collapse
|
5
|
Gao D, Luster J, Zürcher A, Arend M, Bai E, Gessler A, Rigling A, Schaub M, Hartmann M, Werner RA, Joseph J, Poll C, Hagedorn F. Drought resistance and resilience of rhizosphere communities in forest soils from the cellular to ecosystem scale - insights from 13C pulse labeling. THE NEW PHYTOLOGIST 2024; 242:960-974. [PMID: 38402527 DOI: 10.1111/nph.19612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024]
Abstract
The link between above- and belowground communities is a key uncertainty in drought and rewetting effects on forest carbon (C) cycle. In young beech model ecosystems and mature naturally dry pine forest exposed to 15-yr-long irrigation, we performed 13C pulse labeling experiments, one during drought and one 2 wk after rewetting, tracing tree assimilates into rhizosphere communities. The 13C pulses applied in tree crowns reached soil microbial communities of the young and mature forests one and 4 d later, respectively. Drought decreased the transfer of labeled assimilates relative to the irrigation treatment. The 13C label in phospholipid fatty acids (PLFAs) indicated greater drought reduction of assimilate incorporation by fungi (-85%) than by gram-positive (-43%) and gram-negative bacteria (-58%). 13C label incorporation was more strongly reduced for PLFAs (cell membrane) than for microbial cytoplasm extracted by chloroform. This suggests that fresh rhizodeposits are predominantly used for osmoregulation or storage under drought, at the expense of new cell formation. Two weeks after rewetting, 13C enrichment in PLFAs was greater in previously dry than in continuously moist soils. Drought and rewetting effects were greater in beech systems than in pine forest. Belowground C allocation and rhizosphere communities are highly resilient to drought.
Collapse
Affiliation(s)
- Decai Gao
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903, Birmensdorf, Switzerland
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Jörg Luster
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903, Birmensdorf, Switzerland
| | - Alois Zürcher
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903, Birmensdorf, Switzerland
| | - Matthias Arend
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903, Birmensdorf, Switzerland
- Physiological Plant Ecology, University of Basel, 4056, Basel, Switzerland
| | - Edith Bai
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, Northeast Normal University, 130024, Changchun, China
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903, Birmensdorf, Switzerland
- Terrestrial Ecosystems, ETH Zürich, 8092, Zürich, Switzerland
| | - Andreas Rigling
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903, Birmensdorf, Switzerland
- Terrestrial Ecosystems, ETH Zürich, 8092, Zürich, Switzerland
| | - Marcus Schaub
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903, Birmensdorf, Switzerland
| | - Martin Hartmann
- Sustainable Agroecosystems Group, Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zürich, 8092, Zürich, Switzerland
| | - Roland A Werner
- Agricultural Sciences, ETH Zürich, 8092, Zürich, Switzerland
| | - Jobin Joseph
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903, Birmensdorf, Switzerland
| | - Christian Poll
- Soil Biology, University of Hohenheim, 70599, Stuttgart, Germany
| | - Frank Hagedorn
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903, Birmensdorf, Switzerland
| |
Collapse
|
6
|
Depardieu C, Lenz P, Marion J, Nadeau S, Girardin MP, Marchand W, Bégin C, Treydte K, Gessler A, Bousquet J, Savard MM, Isabel N. Contrasting physiological strategies explain heterogeneous responses to severe drought conditions within local populations of a widespread conifer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171174. [PMID: 38402972 DOI: 10.1016/j.scitotenv.2024.171174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/12/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Understanding how trees prioritize carbon gain at the cost of drought vulnerability under severe drought conditions is crucial for predicting which genetic groups and individuals will be resilient to future climate conditions. In this study, we investigated variations in growth, tree-ring anatomy as well as carbon and oxygen isotope ratios to assess the sensitivity and the xylem formation process in response to an episode of severe drought in 29 mature white spruce (Picea glauca [Moench] Voss) families grown in a common garden trial. During the drought episode, the majority of families displayed decreased growth and exhibited either sustained or increased intrinsic water-use efficiency (iWUE), which was largely influenced by reduced stomatal conductance as revealed by the dual carbon‑oxygen isotope approach. Different water-use strategies were detected within white spruce populations in response to drought conditions. Our results revealed intraspecific variation in the prevailing physiological mechanisms underlying drought response within and among populations of Picea glauca. The presence of different genetic groups reflecting diverse water-use strategies within this largely-distributed conifer is likely to lessen the negative effects of drought and decrease the overall forest ecosystems' sensitivity to it.
Collapse
Affiliation(s)
- Claire Depardieu
- Canada Research Chair in Forest Genomics, Institute for Systems and Integrative Biology, Université Laval, Québec, QC G1V 0A6, Canada; Forest Research Centre, Département des sciences du bois et de la forêt, Université Laval, Québec, QC G1V 0A6, Canada; Natural Ressources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 rue du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada.
| | - Patrick Lenz
- Canada Research Chair in Forest Genomics, Institute for Systems and Integrative Biology, Université Laval, Québec, QC G1V 0A6, Canada; Natural Resources Canada, Canadian Forest Service, Canadian Wood Fibre Centre, 1055 rue du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada
| | - Joelle Marion
- Geological Survey of Canada, Natural Resources Canada, 490 rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Simon Nadeau
- Canada Research Chair in Forest Genomics, Institute for Systems and Integrative Biology, Université Laval, Québec, QC G1V 0A6, Canada; Natural Resources Canada, Canadian Forest Service, Canadian Wood Fibre Centre, 1055 rue du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada
| | - Martin P Girardin
- Natural Ressources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 rue du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada; Centre d'étude de la forêt, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada; Forest Research Institute, Université du Québec en Abitibi-Témiscamingue, 445 boul. de l'Université, Rouyn-Noranda, QC J9X 5E4, Canada
| | - William Marchand
- Natural Ressources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 rue du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada; Centre d'étude de la forêt, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada; Forest Research Institute, Université du Québec en Abitibi-Témiscamingue, 445 boul. de l'Université, Rouyn-Noranda, QC J9X 5E4, Canada
| | - Christian Bégin
- Geological Survey of Canada, Natural Resources Canada, 490 rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Kerstin Treydte
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland; Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
| | - Jean Bousquet
- Canada Research Chair in Forest Genomics, Institute for Systems and Integrative Biology, Université Laval, Québec, QC G1V 0A6, Canada; Forest Research Centre, Département des sciences du bois et de la forêt, Université Laval, Québec, QC G1V 0A6, Canada
| | - Martine M Savard
- Geological Survey of Canada, Natural Resources Canada, 490 rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Nathalie Isabel
- Canada Research Chair in Forest Genomics, Institute for Systems and Integrative Biology, Université Laval, Québec, QC G1V 0A6, Canada; Natural Ressources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 rue du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada
| |
Collapse
|
7
|
Huang J, Ladd SN, Ingrisch J, Kübert A, Meredith LK, van Haren J, Bamberger I, Daber LE, Kühnhammer K, Bailey K, Hu J, Fudyma J, Shi L, Dippold MA, Meeran K, Miller L, O’Brien MJ, Yang H, Herrera-Ramírez D, Hartmann H, Trumbore S, Bahn M, Werner C, Lehmann MM. The mobilization and transport of newly fixed carbon are driven by plant water use in an experimental rainforest under drought. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2545-2557. [PMID: 38271585 PMCID: PMC11358253 DOI: 10.1093/jxb/erae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/24/2024] [Indexed: 01/27/2024]
Abstract
Non-structural carbohydrates (NSCs) are building blocks for biomass and fuel metabolic processes. However, it remains unclear how tropical forests mobilize, export, and transport NSCs to cope with extreme droughts. We combined drought manipulation and ecosystem 13CO2 pulse-labeling in an enclosed rainforest at Biosphere 2, assessed changes in NSCs, and traced newly assimilated carbohydrates in plant species with diverse hydraulic traits and canopy positions. We show that drought caused a depletion of leaf starch reserves and slowed export and transport of newly assimilated carbohydrates below ground. Drought effects were more pronounced in conservative canopy trees with limited supply of new photosynthates and relatively constant water status than in those with continual photosynthetic supply and deteriorated water status. We provide experimental evidence that local utilization, export, and transport of newly assimilated carbon are closely coupled with plant water use in canopy trees. We highlight that these processes are critical for understanding and predicting tree resistance and ecosystem fluxes in tropical forest under drought.
Collapse
Affiliation(s)
- Jianbei Huang
- Max Planck Institute for Biogeochemistry, D-07745 Jena, Germany
| | - S Nemiah Ladd
- Ecosystem Physiology, Albert-Ludwig-University of Freiburg, Freiburg, Germany
- Department of Environmental Sciences, University of Basel, Bernoullistrasse 30, 4056 Basel, Switzerland
| | - Johannes Ingrisch
- Ecosystem Physiology, Albert-Ludwig-University of Freiburg, Freiburg, Germany
- Department of Ecology, University of Innsbruck, Sternwartestr 15, 6020 Innsbruck, Austria
| | - Angelika Kübert
- Ecosystem Physiology, Albert-Ludwig-University of Freiburg, Freiburg, Germany
| | - Laura K Meredith
- School of Natural Resources and the Environment, University of Arizona, 1064 E. Lowell St., Tucson, AZ 85721, USA
- Biosphere 2, University of Arizona, 32540 S. Biosphere Rd, Oracle, AZ 85739, USA
| | - Joost van Haren
- Biosphere 2, University of Arizona, 32540 S. Biosphere Rd, Oracle, AZ 85739, USA
- Honors College, University of Arizona, 1101 East Mabel Street, Tucson, AZ 85719, USA
| | - Ines Bamberger
- Ecosystem Physiology, Albert-Ludwig-University of Freiburg, Freiburg, Germany
- Atmospheric Chemistry Group, University of Bayreuth (BayCEER), Germany
| | - L Erik Daber
- Ecosystem Physiology, Albert-Ludwig-University of Freiburg, Freiburg, Germany
| | - Kathrin Kühnhammer
- Ecosystem Physiology, Albert-Ludwig-University of Freiburg, Freiburg, Germany
| | - Kinzie Bailey
- School of Natural Resources and the Environment, University of Arizona, 1064 E. Lowell St., Tucson, AZ 85721, USA
| | - Jia Hu
- School of Natural Resources and the Environment, University of Arizona, 1064 E. Lowell St., Tucson, AZ 85721, USA
| | - Jane Fudyma
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
- Department of Land, Air, and Water Resources, University of California, Davis, CA, USA
| | - Lingling Shi
- Biogeochemistry of Agroecosystems, University of Göttingen, Göttingen, Germany
- Geo-Biosphere Interactions, University of Tuebingen, Tuebingen, Germany
| | - Michaela A Dippold
- Biogeochemistry of Agroecosystems, University of Göttingen, Göttingen, Germany
- Geo-Biosphere Interactions, University of Tuebingen, Tuebingen, Germany
| | - Kathiravan Meeran
- Department of Ecology, University of Innsbruck, Sternwartestr 15, 6020 Innsbruck, Austria
| | - Luke Miller
- Biosphere 2, University of Arizona, 32540 S. Biosphere Rd, Oracle, AZ 85739, USA
| | - Michael J O’Brien
- Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, Almería, Spain
| | - Hui Yang
- Max Planck Institute for Biogeochemistry, D-07745 Jena, Germany
| | | | - Henrik Hartmann
- Max Planck Institute for Biogeochemistry, D-07745 Jena, Germany
- Institute for Forest Protection, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Erwin-Baur-Straße 27, D-06484 Quedlinburg, Germany
| | - Susan Trumbore
- Max Planck Institute for Biogeochemistry, D-07745 Jena, Germany
| | - Michael Bahn
- Department of Ecology, University of Innsbruck, Sternwartestr 15, 6020 Innsbruck, Austria
| | - Christiane Werner
- Ecosystem Physiology, Albert-Ludwig-University of Freiburg, Freiburg, Germany
| | - Marco M Lehmann
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
| |
Collapse
|
8
|
Haberstroh S, Kübert A, Werner C. Two common pitfalls in the analysis of water-stable isotopologues with cryogenic vacuum extraction and cavity ring-down spectroscopy. ANALYTICAL SCIENCE ADVANCES 2024; 5:2300053. [PMID: 38827022 PMCID: PMC11142394 DOI: 10.1002/ansa.202300053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 06/04/2024]
Abstract
Water stable isotopologue analysis is widely used to disentangle ecohydrological processes. Yet, there are increasing reports of measurement uncertainties for established and emerging methods, such as cryogenic vacuum extraction (CVE) or cavity ring-down spectroscopy (CRDS). With this study, we investigate two pitfalls, that potentially contribute to uncertainties in water-stable isotopologue research. To investigate fractionation sources in CVE, we extracted pure water of known isotopic composition with cotton, glass wool or without cover and compared the isotopologue results with non-extracted reference samples. To characterise the dependency of δ2H and δ18O on the water mixing ratio in CRDS, which is of high importance for in-situ applications with large natural variations in mixing ratios, we chose samples with a large range of isotopic compositions and determined δ2H and δ18O for different water mixing ratios with two CRDS analysers (Picarro, Inc.). Cotton wool had a strong fractionation effect on δ2H values, which increased with more 2H-enriched samples. δ2H and δ18O values showed a strong dependency on the water mixing ratio analysed with CRDS with differences of up to 34.5‰ (δ2H) and 3.9‰ (δ18O) for the same sample at different mixing ratios. CVE and CRDS, now routinely applied in water stable isotopologue research, come with pitfalls, namely fractionation effects of cover materials and water mixing ratio dependencies of δ2H and δ18O, which can lead to erroneous isotopologue results and thus, invalid conclusions about (ecohydrological) processes. These practical issues identified here should be reported and addressed adequately in water-stable isotopologue research.
Collapse
Affiliation(s)
- Simon Haberstroh
- Ecosystem PhysiologyFaculty of Environment and Natural ResourcesInstitute of Earth and Environmental SciencesUniversity FreiburgFreiburgGermany
| | - Angelika Kübert
- Ecosystem PhysiologyFaculty of Environment and Natural ResourcesInstitute of Earth and Environmental SciencesUniversity FreiburgFreiburgGermany
- Institute for Atmospheric and Earth System Research (INAR)University of HelsinkiHelsinkiFinland
| | - Christiane Werner
- Ecosystem PhysiologyFaculty of Environment and Natural ResourcesInstitute of Earth and Environmental SciencesUniversity FreiburgFreiburgGermany
| |
Collapse
|
9
|
Vitali V, Schuler P, Holloway-Phillips M, D'Odorico P, Guidi C, Klesse S, Lehmann MM, Meusburger K, Schaub M, Zweifel R, Gessler A, Saurer M. Finding balance: Tree-ring isotopes differentiate between acclimation and stress-induced imbalance in a long-term irrigation experiment. GLOBAL CHANGE BIOLOGY 2024; 30:e17237. [PMID: 38488024 DOI: 10.1111/gcb.17237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 03/19/2024]
Abstract
Scots pine (Pinus sylvestris L.) is a common European tree species, and understanding its acclimation to the rapidly changing climate through physiological, biochemical or structural adjustments is vital for predicting future growth. We investigated a long-term irrigation experiment at a naturally dry forest in Switzerland, comparing Scots pine trees that have been continuously irrigated for 17 years (irrigated) with those for which irrigation was interrupted after 10 years (stop) and non-irrigated trees (control), using tree growth, xylogenesis, wood anatomy, and carbon, oxygen and hydrogen stable isotope measurements in the water, sugars and cellulose of plant tissues. The dendrochronological analyses highlighted three distinct acclimation phases to the treatments: irrigated trees experienced (i) a significant growth increase in the first 4 years of treatment, (ii) high growth rates but with a declining trend in the following 8 years and finally (iii) a regression to pre-irrigation growth rates, suggesting the development of a new growth limitation (i.e. acclimation). The introduction of the stop treatment resulted in further growth reductions to below-control levels during the third phase. Irrigated trees showed longer growth periods and lower tree-ring δ13 C values, reflecting lower stomatal restrictions than control trees. Their strong tree-ring δ18 O and δ2 H (O-H) relationship reflected the hydrological signature similarly to the control. On the contrary, the stop trees had lower growth rates, conservative wood anatomical traits, and a weak O-H relationship, indicating a physiological imbalance. Tree vitality (identified by crown transparency) significantly modulated growth, wood anatomical traits and tree-ring δ13 C, with low-vitality trees of all treatments performing similarly regardless of water availability. We thus provide quantitative indicators for assessing physiological imbalance and tree acclimation after environmental stresses. We also show that tree vitality is crucial in shaping such responses. These findings are fundamental for the early assessment of ecosystem imbalances and decline under climate change.
Collapse
Affiliation(s)
- Valentina Vitali
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Philipp Schuler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | | | - Petra D'Odorico
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Claudia Guidi
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Stefan Klesse
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Marco M Lehmann
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Katrin Meusburger
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Marcus Schaub
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Roman Zweifel
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
| | - Matthias Saurer
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
10
|
Kinzinger L, Mach J, Haberstroh S, Schindler Z, Frey J, Dubbert M, Seeger S, Seifert T, Weiler M, Orlowski N, Werner C. Interaction between beech and spruce trees in temperate forests affects water use, root water uptake pattern and canopy structure. TREE PHYSIOLOGY 2024; 44:tpad144. [PMID: 38070177 DOI: 10.1093/treephys/tpad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/01/2023] [Indexed: 02/09/2024]
Abstract
Beneficial and negative effects of species interactions can strongly influence water fluxes in forest ecosystems. However, little is known about how trees dynamically adjust their water use when growing with interspecific neighbours. Therefore, we investigated the interaction effects between Fagus sylvatica (European beech) and Picea abies (Norway spruce) on water-use strategies and aboveground structural characteristics. We used continuous in situ isotope spectroscopy of xylem and soil water to investigate source water dynamics and root water uptake depths. Picea abies exhibited a reduced sun-exposed crown area in equally mixed compared with spruce-dominated sites, which was further correlated to a reduction in sap flow of -14.5 ± 8.2%. Contrarily, F. sylvatica trees showed +13.3 ± 33.3% higher water fluxes in equally mixed compared with beech-dominated forest sites. Although a significantly higher crown interference by neighbouring trees was observed, no correlation of water fluxes and crown structure was found. High time-resolved xylem δ2H values showed a large plasticity of tree water use (-74.1 to -28.5‰), reflecting the δ2H dynamics of soil and especially precipitation water sources. Fagus sylvatica in equally mixed sites shifted water uptake to deeper soil layers, while uptake of fresh precipitation was faster in beech-dominated sites. Our continuous in situ water stable isotope measurements traced root water uptake dynamics at unprecedented temporal resolution, indicating highly dynamic use of water sources in response to precipitation and to neighbouring species competition. Understanding this plasticity may be highly relevant in the context of increasing water scarcity and precipitation variability under climate change.
Collapse
Affiliation(s)
- Laura Kinzinger
- Chair of Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Georges-Köhler-Allee, 79110 Freiburg, Germany
| | - Judith Mach
- Chair of Hydrology, Faculty of Environment and Natural Resources, University of Freiburg, Friedrichstraße 39, 79089 Freiburg, Germany
| | - Simon Haberstroh
- Chair of Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Georges-Köhler-Allee, 79110 Freiburg, Germany
| | - Zoe Schindler
- Chair of Forest Growth and Dendroecology, Faculty of Environment and Natural Resources, University of Freiburg, Tennenbacher Str. 4, 79106 Freiburg, Germany
| | - Julian Frey
- Chair of Forest Growth and Dendroecology, Faculty of Environment and Natural Resources, University of Freiburg, Tennenbacher Str. 4, 79106 Freiburg, Germany
| | - Maren Dubbert
- IBG, PB 1 'Landschaftsprozesse', Leibniz Zentrum für Agrarlandschaftsforschung (ZALF) e. V, Eberswalder Straße 84, 15374 Müncheberg, Germany
| | - Stefan Seeger
- Chair of Hydrology, Faculty of Environment and Natural Resources, University of Freiburg, Friedrichstraße 39, 79089 Freiburg, Germany
- Soil Physics, Department of Crop Sciences, University of Göttingen, Grisebachstraße 6, 37077 Gottingen, Germany
| | - Thomas Seifert
- Chair of Forest Growth and Dendroecology, Faculty of Environment and Natural Resources, University of Freiburg, Tennenbacher Str. 4, 79106 Freiburg, Germany
- Department of Forest and Wood Science, Stellenbosch University, Bosman Street, 7599 Stellenbosch, South Africa
| | - Markus Weiler
- Chair of Hydrology, Faculty of Environment and Natural Resources, University of Freiburg, Friedrichstraße 39, 79089 Freiburg, Germany
| | - Natalie Orlowski
- Chair of Hydrology, Faculty of Environment and Natural Resources, University of Freiburg, Friedrichstraße 39, 79089 Freiburg, Germany
- Chair of Site Ecology and Plant Nutrition, Institute of Soil Science and Site Ecology, TU Dresden, Pienner Strasse 19, Tharandt 01737, Germany
| | - Christiane Werner
- Chair of Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Georges-Köhler-Allee, 79110 Freiburg, Germany
| |
Collapse
|
11
|
Rog I, Hilman B, Fox H, Yalin D, Qubaja R, Klein T. Increased belowground tree carbon allocation in a mature mixed forest in a dry versus a wet year. GLOBAL CHANGE BIOLOGY 2024; 30:e17172. [PMID: 38343030 DOI: 10.1111/gcb.17172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/15/2024]
Abstract
Tree species differ in their carbon (C) allocation strategies during environmental change. Disentangling species-specific strategies and contribution to the C balance of mixed forests requires observations at the individual tree level. We measured a complete set of C pools and fluxes at the tree level in five tree species, conifers and broadleaves, co-existing in a mature evergreen mixed Mediterranean forest. Our study period included a drought year followed by an above-average wet year, offering an opportunity to test the effect of water availability on tree C allocation. We found that in comparison to the wet year, C uptake was lower in the dry year, C use was the same, and allocation to belowground sinks was higher. Among the five major C sinks, respiration was the largest (ca. 60%), while root exudation (ca. 10%) and reproduction (ca. 2%) were those that increased the most in the dry year. Most trees relied on stored starch for maintaining a stable soluble sugars balance, but no significant differences were detected in aboveground storage between dry and wet years. The detailed tree-level analysis of nonstructural carbohydrates and δ13 C dynamics suggest interspecific differences in C allocation among fluxes and tissues, specifically in response to the varying water availability. Overall, our findings shed light on mixed forest physiological responses to drought, an increasing phenomenon under the ongoing climate change.
Collapse
Affiliation(s)
- Ido Rog
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Boaz Hilman
- Department of Biogeochemical Processes, Max-Planck Institute for Biogeochemistry, Jena, Germany
- The Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hagar Fox
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - David Yalin
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Rafat Qubaja
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tamir Klein
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
12
|
Li D, An L, Zhong S, Shen L, Wu S. Declining coupling between vegetation and drought over the past three decades. GLOBAL CHANGE BIOLOGY 2024; 30:e17141. [PMID: 38273520 DOI: 10.1111/gcb.17141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024]
Abstract
Droughts have been implicated as the main driver behind recent vegetation die-off and are projected to drive greater mortality under future climate change. Understanding the coupling relationship between vegetation and drought has been of great global interest. Currently, the coupling relationship between vegetation and drought is mainly evaluated by correlation coefficients or regression slopes. However, the optimal drought timescale of vegetation response to drought, as a key indicator reflecting vegetation sensitivity to drought, has largely been ignored. Here, we apply the optimal drought timescale identification method to examine the change in coupling between vegetation and drought over the past three decades (1982-2015) with long-term satellite-derived Normalized Difference Vegetation Index and Standardized Precipitation-Evapotranspiration Index data. We find substantial increasing response of vegetation to drought timescales globally, and the correlation coefficient between vegetation and drought under optimal drought timescale overall declines between 1982 and 2015. This decrease in vegetation-drought coupling is mainly observed in regions with water deficit, although its initial correlation is relatively high. However, vegetation in water-surplus regions, with low coupling in earlier stages, is prone to show an increasing trend. The observed changes may be driven by the increasing trend of atmospheric CO2 . Our findings highlight more pressing drought risk in water-surplus regions than in water-deficit regions, which advances our understanding of the long-term vegetation-drought relationship and provides essential insights for mapping future vegetation sensitivity to drought under changing climate conditions.
Collapse
Affiliation(s)
- Delong Li
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Li An
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuai Zhong
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Lei Shen
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- China-Pakistan Joint Research Center on Earth Sciences, CAS-HEC, Islamabad, Pakistan
- Key Laboratory of Carrying Capacity Assessment for Resource and Environment, Ministry of Natural Resources of the People's Republic of China, Beijing, China
| | - Shuyao Wu
- Center for Yellow River Ecosystem Products, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
13
|
Muñoz E, Chanca I, Sierra CA. Increased atmospheric CO 2 and the transit time of carbon in terrestrial ecosystems. GLOBAL CHANGE BIOLOGY 2023; 29:6441-6452. [PMID: 37795922 DOI: 10.1111/gcb.16961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 10/06/2023]
Abstract
The response of terrestrial ecosystems to increased atmospheric CO2 concentrations is controversial and not yet fully understood, with previous large-scale forest manipulation experiments exhibiting contrasting responses. Although there is consensus that increased CO2 has a relevant effect on instantaneous processes such as photosynthesis and transpiration, there are large uncertainties regarding the fate of extra assimilated carbon in ecosystems. Filling this research gap is challenging because tracing the movement of new carbon across ecosystem compartments involves the study of multiple processes occurring over a wide range of timescales, from hours to millennia. We posit that a comprehensive quantification of the effect of increased CO2 must answer two interconnected questions: How much and for how long is newly assimilated carbon stored in ecosystems? Therefore, we propose that the transit time distribution of carbon is the key concept needed to effectively address these questions. Here, we show how the transit time distribution of carbon can be used to assess the fate of newly assimilated carbon and the timescales at which it is cycled in ecosystems. We use as an example a transit time distribution obtained from a tropical forest and show that most of the 60% of fixed carbon is respired in less than 1 year; therefore, we infer that under increased CO2 , most of the new carbon would follow a similar fate unless increased CO2 would cause changes in the rates at which carbon is cycled and transferred among ecosystem compartments. We call for a more frequent adoption of the transit time concept in studies seeking to quantify the ecosystem response to increased CO2 .
Collapse
Affiliation(s)
- Estefanía Muñoz
- Theoretical Ecosystem Ecology Group, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Ingrid Chanca
- Theoretical Ecosystem Ecology Group, Max Planck Institute for Biogeochemistry, Jena, Germany
- Laboratório de Radiocarbono, Instituto de Física, Universidade Federal Fluminense, Niterói, Brazil
| | - Carlos A Sierra
- Theoretical Ecosystem Ecology Group, Max Planck Institute for Biogeochemistry, Jena, Germany
| |
Collapse
|
14
|
Hildebrand GA, Honeker LK, Freire-Zapata V, Ayala-Ortiz C, Rajakaruna S, Fudyma J, Daber LE, AminiTabrizi R, Chu RL, Toyoda J, Flowers SE, Hoyt DW, Hamdan R, Gil-Loaiza J, Shi L, Dippold MA, Ladd SN, Werner C, Meredith LK, Tfaily MM. Uncovering the dominant role of root metabolism in shaping rhizosphere metabolome under drought in tropical rainforest plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165689. [PMID: 37481084 DOI: 10.1016/j.scitotenv.2023.165689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Plant-soil-microbe interactions are crucial for driving rhizosphere processes that contribute to metabolite turnover and nutrient cycling. With the increasing frequency and severity of water scarcity due to climate warming, understanding how plant-mediated processes, such as root exudation, influence soil organic matter turnover in the rhizosphere is essential. In this study, we used 16S rRNA gene amplicon sequencing, rhizosphere metabolomics, and position-specific 13C-pyruvate labeling to examine the effects of three different plant species (Piper auritum, Hibiscus rosa sinensis, and Clitoria fairchildiana) and their associated microbial communities on soil organic carbon turnover in the rhizosphere. Our findings indicate that in these tropical plants, the rhizosphere metabolome is primarily shaped by the response of roots to drought rather than direct shifts in the rhizosphere bacterial community composition. Specifically, the reduced exudation of plant roots had a notable effect on the metabolome of the rhizosphere of P. auritum, with less reliance on neighboring microbes. Contrary to P. auritum, H. rosa sinensis and C. fairchildiana experienced changes in their exudate composition during drought, causing alterations to the bacterial communities in the rhizosphere. This, in turn, had a collective impact on the rhizosphere's metabolome. Furthermore, the exclusion of phylogenetically distant microbes from the rhizosphere led to shifts in its metabolome. Additionally, C. fairchildiana appeared to be associated with only a subset of symbiotic bacteria under drought conditions. These results indicate that plant species-specific microbial interactions systematically change with the root metabolome. As roots respond to drought, their associated microbial communities adapt, potentially reinforcing the drought tolerance strategies of plant roots. These findings have significant implications for maintaining plant health and preference during drought stress and improving plant performance under climate change.
Collapse
Affiliation(s)
- Gina A Hildebrand
- Department of Environmental Science, University of Arizona, 1177 E 4th St., AZ 85721, USA
| | - Linnea K Honeker
- BIO5 Institute, The University of Arizona, 1657 E Helen St., Tucson, AZ 85719, USA; School of Natural Resources and the Environment, University of Arizona, 1064 E Lowell St., Tucson, AZ 85721, USA
| | - Viviana Freire-Zapata
- Department of Environmental Science, University of Arizona, 1177 E 4th St., AZ 85721, USA
| | - Christian Ayala-Ortiz
- Department of Environmental Science, University of Arizona, 1177 E 4th St., AZ 85721, USA
| | - Sumudu Rajakaruna
- Department of Environmental Science, University of Arizona, 1177 E 4th St., AZ 85721, USA
| | - Jane Fudyma
- Department of Environmental Science, University of Arizona, 1177 E 4th St., AZ 85721, USA; Department of Plant Pathology, University of California, Davis, One Shields Avenue, Davis, CA 95816, USA
| | - L Erik Daber
- Georges-Köhler-Allee 53/54, University of Freiburg, 79110 Freiburg, Germany
| | - Roya AminiTabrizi
- Department of Environmental Science, University of Arizona, 1177 E 4th St., AZ 85721, USA
| | - Rosalie L Chu
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Jason Toyoda
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Sarah E Flowers
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - David W Hoyt
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Rasha Hamdan
- Department of Chemistry and Biochemistry, Lebanese University, Beirut, Lebanon
| | - Juliana Gil-Loaiza
- School of Natural Resources and the Environment, University of Arizona, 1064 E Lowell St., Tucson, AZ 85721, USA
| | - Lingling Shi
- Geo-Biosphere Interactions, Department of Geosciences, University of Tuebingen, Schnarrenbergstrasse 94-96, 72076 Tuebingen, Germany
| | - Michaela A Dippold
- Geo-Biosphere Interactions, Department of Geosciences, University of Tuebingen, Schnarrenbergstrasse 94-96, 72076 Tuebingen, Germany
| | - S Nemiah Ladd
- Georges-Köhler-Allee 53/54, University of Freiburg, 79110 Freiburg, Germany; Department of Environmental Science, University of Basel, Bernoullistrasse 30/32, 4056 Basel, Switzerland
| | - Christiane Werner
- Georges-Köhler-Allee 53/54, University of Freiburg, 79110 Freiburg, Germany
| | - Laura K Meredith
- BIO5 Institute, The University of Arizona, 1657 E Helen St., Tucson, AZ 85719, USA; School of Natural Resources and the Environment, University of Arizona, 1064 E Lowell St., Tucson, AZ 85721, USA; Biosphere 2, University of Arizona, 32540 S Biosphere Rd, Oracle, AZ 85739, USA
| | - Malak M Tfaily
- Department of Environmental Science, University of Arizona, 1177 E 4th St., AZ 85721, USA; BIO5 Institute, The University of Arizona, 1657 E Helen St., Tucson, AZ 85719, USA; Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA.
| |
Collapse
|
15
|
Ladd SN, Daber LE, Bamberger I, Kübert A, Kreuzwieser J, Purser G, Ingrisch J, Deleeuw J, van Haren J, Meredith LK, Werner C. Leaf-level metabolic changes in response to drought affect daytime CO2 emission and isoprenoid synthesis pathways. TREE PHYSIOLOGY 2023; 43:1917-1932. [PMID: 37552065 PMCID: PMC10643046 DOI: 10.1093/treephys/tpad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/28/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
In the near future, climate change will cause enhanced frequency and/or severity of droughts in terrestrial ecosystems, including tropical forests. Drought responses by tropical trees may affect their carbon use, including production of volatile organic compounds (VOCs), with implications for carbon cycling and atmospheric chemistry that are challenging to predict. It remains unclear how metabolic adjustments by mature tropical trees in response to drought will affect their carbon fluxes associated with daytime CO2 production and VOC emission. To address this gap, we used position-specific 13C-pyruvate labeling to investigate leaf CO2 and VOC fluxes from four tropical species before and during a controlled drought in the enclosed rainforest of Biosphere 2 (B2). Overall, plants that were more drought-sensitive had greater reductions in daytime CO2 production. Although daytime CO2 production was always dominated by non-mitochondrial processes, the relative contribution of CO2 from the tricarboxylic acid cycle tended to increase under drought. A notable exception was the legume tree Clitoria fairchildiana R.A. Howard, which had less anabolic CO2 production than the other species even under pre-drought conditions, perhaps due to more efficient refixation of CO2 and anaplerotic use for amino acid synthesis. The C. fairchildiana was also the only species to allocate detectable amounts of 13C label to VOCs and was a major source of VOCs in B2. In C. fairchildiana leaves, our data indicate that intermediates from the mevalonic acid (MVA) pathway are used to produce the volatile monoterpene trans-β-ocimene, but not isoprene. This apparent crosstalk between the MVA and methylerythritol phosphate pathways for monoterpene synthesis declined with drought. Finally, although trans-β-ocimene emissions increased under drought, it was increasingly sourced from stored intermediates and not de novo synthesis. Unique metabolic responses of legumes may play a disproportionate role in the overall changes in daytime CO2 and VOC fluxes in tropical forests experiencing drought.
Collapse
Affiliation(s)
- S Nemiah Ladd
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Georges–Köhler–Allee 053/054, Freiburg 79110, Germany
- Department of Environmental Sciences, University of Basel, Bernoullistrasse 30, Basel 4056, Switzerland
| | - L Erik Daber
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Georges–Köhler–Allee 053/054, Freiburg 79110, Germany
| | - Ines Bamberger
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Georges–Köhler–Allee 053/054, Freiburg 79110, Germany
- Atmospheric Chemistry Group, University of Bayreuth (BayCEER), Dr–Hans–Frisch–Straße 1–3, Bayreuth 95448, Germany
| | - Angelika Kübert
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Georges–Köhler–Allee 053/054, Freiburg 79110, Germany
- Institute for Atmospheric and Earth System Research, University of Helsinki, Pietari Kalmin katu 5, Helsinki 00014, Finland
| | - Jürgen Kreuzwieser
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Georges–Köhler–Allee 053/054, Freiburg 79110, Germany
| | - Gemma Purser
- School of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik EH26 0QB, UK
| | - Johannes Ingrisch
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Georges–Köhler–Allee 053/054, Freiburg 79110, Germany
- Department of Ecology, University of Innsbruck, Sternwartestrasse 15, Innsbruck 6020, Austria
| | - Jason Deleeuw
- Biosphere 2, University of Arizona, 32540 S. Biosphere Rd, Oracle, AZ 85739, USA
| | - Joost van Haren
- Biosphere 2, University of Arizona, 32540 S. Biosphere Rd, Oracle, AZ 85739, USA
- Honors College, University of Arizona, 1101 E. Mabel Street, Tucson, AZ 85719, USA
| | - Laura K Meredith
- Biosphere 2, University of Arizona, 32540 S. Biosphere Rd, Oracle, AZ 85739, USA
- School of Natural Resources and the Environment, University of Arizona, 1064 E. Lowell St., Tucson, AZ, 85721, USA
| | - Christiane Werner
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Georges–Köhler–Allee 053/054, Freiburg 79110, Germany
| |
Collapse
|
16
|
Wang J, Yan R, Wu G, Liu Y, Wang M, Zeng N, Jiang F, Wang H, He W, Wu M, Ju W, Chen JM. Unprecedented decline in photosynthesis caused by summer 2022 record-breaking compound drought-heatwave over Yangtze River Basin. Sci Bull (Beijing) 2023; 68:2160-2163. [PMID: 37598060 DOI: 10.1016/j.scib.2023.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 08/21/2023]
Affiliation(s)
- Jun Wang
- Frontiers Science Center for Critical Earth Material Cycling, International Institute for Earth System Science, Nanjing University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China.
| | - Ran Yan
- Frontiers Science Center for Critical Earth Material Cycling, International Institute for Earth System Science, Nanjing University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Guoxiong Wu
- State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yimin Liu
- State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Meirong Wang
- Joint Center for Data Assimilation Research and Applications, Key Laboratory of Meteorological Disaster, Ministry of Education, Joint International Research Laboratory of Climate and Environment Change, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Ning Zeng
- Department of Atmospheric and Oceanic Science and Earth System Interdisciplinary Center, University of Maryland, College Park MD 20742, USA
| | - Fei Jiang
- Frontiers Science Center for Critical Earth Material Cycling, International Institute for Earth System Science, Nanjing University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Hengmao Wang
- Frontiers Science Center for Critical Earth Material Cycling, International Institute for Earth System Science, Nanjing University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Wei He
- Frontiers Science Center for Critical Earth Material Cycling, International Institute for Earth System Science, Nanjing University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Mousong Wu
- Frontiers Science Center for Critical Earth Material Cycling, International Institute for Earth System Science, Nanjing University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Weimin Ju
- Frontiers Science Center for Critical Earth Material Cycling, International Institute for Earth System Science, Nanjing University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Jing M Chen
- Department of Geography and Planning, University of Toronto, Toronto ON M5S3G3, Canada
| |
Collapse
|
17
|
Kühnhammer K, van Haren J, Kübert A, Bailey K, Dubbert M, Hu J, Ladd SN, Meredith LK, Werner C, Beyer M. Deep roots mitigate drought impacts on tropical trees despite limited quantitative contribution to transpiration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 893:164763. [PMID: 37308023 PMCID: PMC10331952 DOI: 10.1016/j.scitotenv.2023.164763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Deep rooting is considered a central drought-mitigation trait with vast impact on ecosystem water cycling. Despite its importance, little is known about the overall quantitative water use via deep roots and dynamic shifts of water uptake depths with changing ambient conditions. Knowledge is especially sparse for tropical trees. Therefore, we conducted a drought, deep soil water labeling and re-wetting experiment at Biosphere 2 Tropical Rainforest. We used in situ methods to determine water stable isotope values in soil and tree water in high temporal resolution. Complemented by soil and stem water content and sap flow measurements we determined percentages and quantities of deep-water in total root water uptake dynamics of different tree species. All canopy trees had access to deep-water (max. uptake depth 3.3 m), with contributions to transpiration ranging between 21 % and 90 % during drought, when surface soil water availability was limited. Our results suggest that deep soil is an essential water source for tropical trees that delays potentially detrimental drops in plant water potentials and stem water content when surface soil water is limited and could hence mitigate the impacts of increasing drought occurrence and intensity as a consequence of climate change. Quantitatively, however, the amount of deep-water uptake was low due to the trees' reduction of sap flow during drought. Total water uptake largely followed surface soil water availability and trees switched back their uptake depth dynamically, from deep to shallow soils, following rainfall. Total transpiration fluxes were hence largely driven by precipitation input.
Collapse
Affiliation(s)
- Kathrin Kühnhammer
- IGOE, Environmental Geochemistry, TU Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany; Ecosystem Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany.
| | - Joost van Haren
- Biosphere 2, University of Arizona, 32540 S Biosphere Road, Oracle, AZ 85623, USA; Honors College, University of Arizona, 1101 E. Mabel St., Tucson, AZ 85719, USA
| | - Angelika Kübert
- Ecosystem Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany; Institute for Atmospheric and Earth System Research, University of Helsinki, P.O. Box 68, Pietari Kalmin katu 5, 00014 Helsinki, Finland
| | - Kinzie Bailey
- School of Natural Resources and the Environment, University of Arizona, 1064 E Lowell St, Tucson, AZ 85721, USA
| | - Maren Dubbert
- Ecosystem Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany; Isotope Biogeochemistry and Gasfluxes, ZALF, Eberswalder Straße 84, 15374 Müncheberg, Germany
| | - Jia Hu
- School of Natural Resources and the Environment, University of Arizona, 1064 E Lowell St, Tucson, AZ 85721, USA
| | - S Nemiah Ladd
- Ecosystem Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany; Department of Environmental Sciences, University of Basel, Bernoullistrasse 32, 4056 Basel, Switzerland
| | - Laura K Meredith
- Biosphere 2, University of Arizona, 32540 S Biosphere Road, Oracle, AZ 85623, USA; School of Natural Resources and the Environment, University of Arizona, 1064 E Lowell St, Tucson, AZ 85721, USA
| | - Christiane Werner
- Ecosystem Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany
| | - Matthias Beyer
- IGOE, Environmental Geochemistry, TU Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany
| |
Collapse
|
18
|
Sukul P, Richter A, Junghanss C, Schubert JK, Miekisch W. Origin of breath isoprene in humans is revealed via multi-omic investigations. Commun Biol 2023; 6:999. [PMID: 37777700 PMCID: PMC10542801 DOI: 10.1038/s42003-023-05384-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023] Open
Abstract
Plants, animals and humans metabolically produce volatile isoprene (C5H8). Humans continuously exhale isoprene and exhaled concentrations differ under various physio-metabolic and pathophysiological conditions. Yet unknown metabolic origin hinders isoprene to reach clinical practice as a biomarker. Screening 2000 individuals from consecutive mass-spectrometric studies, we herein identify five healthy German adults without exhaled isoprene. Whole exome sequencing in these adults reveals only one shared homozygous (European prevalence: <1%) IDI2 stop-gain mutation, which causes losses of enzyme active site and Mg2+-cofactor binding sites. Consequently, the conversion of isopentenyl diphosphate to dimethylallyl diphosphate (DMAPP) as part of the cholesterol metabolism is prevented in these adults. Targeted sequencing depicts that the IDI2 rs1044261 variant (p.Trp144Stop) is heterozygous in isoprene deficient blood-relatives and absent in unrelated isoprene normal adults. Wild-type IDI1 and cholesterol metabolism related serological parameters are normal in all adults. IDI2 determines isoprene production as only DMAPP sources isoprene and unlike plants, humans lack isoprene synthase and its enzyme homologue. Human IDI2 is expressed only in skeletal-myocellular peroxisomes and instant spikes in isoprene exhalation during muscle activity underpins its origin from muscular lipolytic cholesterol metabolism. Our findings translate isoprene as a clinically interpretable breath biomarker towards potential applications in human medicine.
Collapse
Affiliation(s)
- Pritam Sukul
- Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Dept. of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Medicine Rostock, Schillingallee 35, 18057, Rostock, Germany.
| | - Anna Richter
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Strasse 6, 18057, Rostock, Germany
| | - Christian Junghanss
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Strasse 6, 18057, Rostock, Germany
| | - Jochen K Schubert
- Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Dept. of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Medicine Rostock, Schillingallee 35, 18057, Rostock, Germany
| | - Wolfram Miekisch
- Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Dept. of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Medicine Rostock, Schillingallee 35, 18057, Rostock, Germany
| |
Collapse
|
19
|
Pugliese G, Ingrisch J, Meredith LK, Pfannerstill EY, Klüpfel T, Meeran K, Byron J, Purser G, Gil-Loaiza J, van Haren J, Dontsova K, Kreuzwieser J, Ladd SN, Werner C, Williams J. Effects of drought and recovery on soil volatile organic compound fluxes in an experimental rainforest. Nat Commun 2023; 14:5064. [PMID: 37604817 PMCID: PMC10442410 DOI: 10.1038/s41467-023-40661-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 08/02/2023] [Indexed: 08/23/2023] Open
Abstract
Drought can affect the capacity of soils to emit and consume biogenic volatile organic compounds (VOCs). Here we show the impact of prolonged drought followed by rewetting and recovery on soil VOC fluxes in an experimental rainforest. Under wet conditions the rainforest soil acts as a net VOC sink, in particular for isoprenoids, carbonyls and alcohols. The sink capacity progressively decreases during drought, and at soil moistures below ~19%, the soil becomes a source of several VOCs. Position specific 13C-pyruvate labeling experiments reveal that soil microbes are responsible for the emissions and that the VOC production is higher during drought. Soil rewetting induces a rapid and short abiotic emission peak of carbonyl compounds, and a slow and long biotic emission peak of sulfur-containing compounds. Results show that, the extended drought periods predicted for tropical rainforest regions will strongly affect soil VOC fluxes thereby impacting atmospheric chemistry and climate.
Collapse
Affiliation(s)
- Giovanni Pugliese
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany.
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany.
| | - Johannes Ingrisch
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
- Universität Innsbruck, Department of Ecology, Innsbruck, Austria
| | - Laura K Meredith
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
- Biosphere 2, University of Arizona, Oracle, AZ, USA
| | - Eva Y Pfannerstill
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
- Department of Environmental Science, Policy, and Management, University of California at Berkeley, Berkeley, CA, USA
| | - Thomas Klüpfel
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | | | - Joseph Byron
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Gemma Purser
- UK Centre for Ecology & Hydrology, Penicuik, Edinburgh, UK
- School of Chemistry, The University of Edinburgh, Edinburgh, UK
| | - Juliana Gil-Loaiza
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
| | - Joost van Haren
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
- Biosphere 2, University of Arizona, Oracle, AZ, USA
| | - Katerina Dontsova
- Biosphere 2, University of Arizona, Oracle, AZ, USA
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| | - Jürgen Kreuzwieser
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
| | - S Nemiah Ladd
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Christiane Werner
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
| | - Jonathan Williams
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
- Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia, Cyprus
| |
Collapse
|
20
|
Orlowski N, Rinderer M, Dubbert M, Ceperley N, Hrachowitz M, Gessler A, Rothfuss Y, Sprenger M, Heidbüchel I, Kübert A, Beyer M, Zuecco G, McCarter C. Challenges in studying water fluxes within the soil-plant-atmosphere continuum: A tracer-based perspective on pathways to progress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163510. [PMID: 37059146 DOI: 10.1016/j.scitotenv.2023.163510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 06/01/2023]
Abstract
Tracing and quantifying water fluxes in the hydrological cycle is crucial for understanding the current state of ecohydrological systems and their vulnerability to environmental change. Especially the interface between ecosystems and the atmosphere that is strongly mediated by plants is important to meaningfully describe ecohydrological system functioning. Many of the dynamic interactions generated by water fluxes between soil, plant and the atmosphere are not well understood, which is partly due to a lack of interdisciplinary research. This opinion paper reflects the outcome of a discussion among hydrologists, plant ecophysiologists and soil scientists on open questions and new opportunities for collaborative research on the topic "water fluxes in the soil-plant-atmosphere continuum" especially focusing on environmental and artificial tracers. We emphasize the need for a multi-scale experimental approach, where a hypothesis is tested at multiple spatial scales and under diverse environmental conditions to better describe the small-scale processes (i.e., causes) that lead to large-scale patterns of ecosystem functioning (i.e., consequences). Novel in-situ, high-frequency measurement techniques offer the opportunity to sample data at a high spatial and temporal resolution needed to understand the underlying processes. We advocate for a combination of long-term natural abundance measurements and event-based approaches. Multiple environmental and artificial tracers, such as stable isotopes, and a suite of experimental and analytical approaches should be combined to complement information gained by different methods. Virtual experiments using process-based models should be used to inform sampling campaigns and field experiments, e.g., to improve experimental designs and to simulate experimental outcomes. On the other hand, experimental data are a pre-requisite to improve our currently incomplete models. Interdisciplinary collaboration will help to overcome research gaps that overlap across different earth system science fields and help to generate a more holistic view of water fluxes between soil, plant and atmosphere in diverse ecosystems.
Collapse
Affiliation(s)
- Natalie Orlowski
- Hydrology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg im Breisgau, Germany.
| | - Michael Rinderer
- Hydrology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg im Breisgau, Germany; Geo7 AG, Bern, Switzerland
| | - Maren Dubbert
- Isotope Biogeochemistry and Gasfluxes, ZALF, Müncheberg, Germany
| | | | - Markus Hrachowitz
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628CN Delft, Netherlands
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland; Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
| | - Youri Rothfuss
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich, Germany; Terra Teaching and Research Centre, University of Liège, Gembloux, Belgium
| | - Matthias Sprenger
- Earth and Environmental Sciences at the Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Ingo Heidbüchel
- Hydrological Modelling, University of Bayreuth, Bayreuth, Germany; Hydrogeology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Angelika Kübert
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
| | - Matthias Beyer
- Institute for Geoecology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Giulia Zuecco
- Department of Land, Environment, Agriculture and Forestry, University of Padova, Legnaro, Italy; Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Colin McCarter
- Department of Geography, Department of Biology and Chemistry, Nipissing University, North Bay, Ontario, Canada
| |
Collapse
|
21
|
Feldman AF, Zhang Z, Yoshida Y, Gentine P, Chatterjee A, Entekhabi D, Joiner J, Poulter B. A multi-satellite framework to rapidly evaluate extreme biosphere cascades: The Western US 2021 drought and heatwave. GLOBAL CHANGE BIOLOGY 2023; 29:3634-3651. [PMID: 37070967 DOI: 10.1111/gcb.16725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/04/2023] [Indexed: 06/06/2023]
Abstract
The increasing frequency and intensity of climate extremes and complex ecosystem responses motivate the need for integrated observational studies at low latency to determine biosphere responses and carbon-climate feedbacks. Here, we develop a satellite-based rapid attribution workflow and demonstrate its use at a 1-2-month latency to attribute drivers of the carbon cycle feedbacks during the 2020-2021 Western US drought and heatwave. In the first half of 2021, concurrent negative photosynthesis anomalies and large positive column CO2 anomalies were detected with satellites. Using a simple atmospheric mass balance approach, we estimate a surface carbon efflux anomaly of 132 TgC in June 2021, a magnitude corroborated independently with a dynamic global vegetation model. Integrated satellite observations of hydrologic processes, representing the soil-plant-atmosphere continuum (SPAC), show that these surface carbon flux anomalies are largely due to substantial reductions in photosynthesis because of a spatially widespread moisture-deficit propagation through the SPAC between 2020 and 2021. A causal model indicates deep soil moisture stores partially drove photosynthesis, maintaining its values in 2020 and driving its declines throughout 2021. The causal model also suggests legacy effects may have amplified photosynthesis deficits in 2021 beyond the direct effects of environmental forcing. The integrated, observation framework presented here provides a valuable first assessment of a biosphere extreme response and an independent testbed for improving drought propagation and mechanisms in models. The rapid identification of extreme carbon anomalies and hotspots can also aid mitigation and adaptation decisions.
Collapse
Affiliation(s)
- Andrew F Feldman
- Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- NASA Postdoctoral Program, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Zhen Zhang
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland, USA
| | - Yasuko Yoshida
- Science Systems and Applications, Inc. (SSAI), Lanham, Maryland, USA
| | - Pierre Gentine
- Department of Earth and Environmental Engineering, Columbia University, New York, New York, USA
| | - Abhishek Chatterjee
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Dara Entekhabi
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Joanna Joiner
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Benjamin Poulter
- Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| |
Collapse
|
22
|
Malone SC, Simonpietri A, Knighton WB, Trowbridge AM. Drought impairs herbivore-induced volatile terpene emissions by ponderosa pine but not through constraints on newly assimilated carbon. TREE PHYSIOLOGY 2023; 43:938-951. [PMID: 36762917 DOI: 10.1093/treephys/tpad016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/02/2023] [Indexed: 06/11/2023]
Abstract
Volatile terpenes serve multiple biological roles including tree resistance against herbivores. The increased frequency and severity of drought stress observed in forests across the globe may hinder trees from producing defense-related volatiles in response to biotic stress. To assess how drought-induced physiological stress alters volatile emissions alone and in combination with a biotic challenge, we monitored pre-dawn water potential, gas-exchange, needle terpene concentrations and terpene volatile emissions of ponderosa pine (Pinus ponderosa) saplings during three periods of drought and in response to simulated herbivory via methyl jasmonate application. Although 3-, 6- and 7-week drought treatments reduced net photosynthetic rates by 20, 89 and 105%, respectively, the magnitude of volatile fluxes remained generally resistant to drought. Herbivore-induced emissions, however, exhibited threshold-like behavior; saplings were unable to induce emissions above constitutive levels when pre-dawn water potentials were below the approximate zero-assimilation point. By comparing compositional shifts in emissions to needle terpene concentrations, we found evidence that drought effects on constitutive and herbivore-induced volatile flux and composition are primarily via constraints on the de novo fraction, suggesting that reduced photosynthesis during drought limits the carbon substrate available for de novo volatile synthesis. However, results from a subsequent 13CO2 pulse-chase labeling experiment then confirmed that both constitutive (<3% labeled) and herbivore-induced (<8% labeled) de novo emissions from ponderosa pine are synthesized predominantly from older carbon sources with little contribution from new photosynthates. Taken together, we provide evidence that in ponderosa pine, drought does not constrain herbivore-induced de novo emissions through substrate limitation via reduced photosynthesis, but rather through more sophisticated molecular and/or biophysical mechanisms that manifest as saplings reach the zero-assimilation point. These results highlight the importance of considering drought severity when assessing impacts on the herbivore-induced response and suggest that drought-altered volatile metabolism constrains induced emissions once a physiological threshold is surpassed.
Collapse
Affiliation(s)
- Shealyn C Malone
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI 53711, USA
- Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, MT 59717, USA
| | - Austin Simonpietri
- Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, MT 59717, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Walter B Knighton
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Amy M Trowbridge
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI 53711, USA
- Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
23
|
Barnes PW, Robson TM, Zepp RG, Bornman JF, Jansen MAK, Ossola R, Wang QW, Robinson SA, Foereid B, Klekociuk AR, Martinez-Abaigar J, Hou WC, Mackenzie R, Paul ND. Interactive effects of changes in UV radiation and climate on terrestrial ecosystems, biogeochemical cycles, and feedbacks to the climate system. Photochem Photobiol Sci 2023; 22:1049-1091. [PMID: 36723799 PMCID: PMC9889965 DOI: 10.1007/s43630-023-00376-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/13/2023] [Indexed: 02/02/2023]
Abstract
Terrestrial organisms and ecosystems are being exposed to new and rapidly changing combinations of solar UV radiation and other environmental factors because of ongoing changes in stratospheric ozone and climate. In this Quadrennial Assessment, we examine the interactive effects of changes in stratospheric ozone, UV radiation and climate on terrestrial ecosystems and biogeochemical cycles in the context of the Montreal Protocol. We specifically assess effects on terrestrial organisms, agriculture and food supply, biodiversity, ecosystem services and feedbacks to the climate system. Emphasis is placed on the role of extreme climate events in altering the exposure to UV radiation of organisms and ecosystems and the potential effects on biodiversity. We also address the responses of plants to increased temporal variability in solar UV radiation, the interactive effects of UV radiation and other climate change factors (e.g. drought, temperature) on crops, and the role of UV radiation in driving the breakdown of organic matter from dead plant material (i.e. litter) and biocides (pesticides and herbicides). Our assessment indicates that UV radiation and climate interact in various ways to affect the structure and function of terrestrial ecosystems, and that by protecting the ozone layer, the Montreal Protocol continues to play a vital role in maintaining healthy, diverse ecosystems on land that sustain life on Earth. Furthermore, the Montreal Protocol and its Kigali Amendment are mitigating some of the negative environmental consequences of climate change by limiting the emissions of greenhouse gases and protecting the carbon sequestration potential of vegetation and the terrestrial carbon pool.
Collapse
Affiliation(s)
- P W Barnes
- Biological Sciences and Environment Program, Loyola University New Orleans, New Orleans, USA.
| | - T M Robson
- Organismal & Evolutionary Biology (OEB), Faculty of Biological and Environmental Sciences, Viikki Plant Sciences Centre (ViPS), University of Helsinki, Helsinki, Finland.
- National School of Forestry, University of Cumbria, Ambleside, UK.
| | - R G Zepp
- ORD/CEMM, US Environmental Protection Agency, Athens, GA, USA
| | - J F Bornman
- Food Futures Institute, Murdoch University, Perth, Australia
| | | | - R Ossola
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, USA
| | - Q-W Wang
- Institute of Applied Ecology, Chinese Academy of Sciences (CAS), Shenyang, China
| | - S A Robinson
- Global Challenges Program & School of Earth, Atmospheric and Life Sciences, Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, Australia
| | - B Foereid
- Environment and Natural Resources, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - A R Klekociuk
- Antarctic Climate Program, Australian Antarctic Division, Kingston, Australia
| | - J Martinez-Abaigar
- Faculty of Science and Technology, University of La Rioja, Logroño (La Rioja), Spain
| | - W-C Hou
- Department of Environmental Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - R Mackenzie
- Cape Horn International Center (CHIC), Puerto Williams, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - N D Paul
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
24
|
Dubbert M, Couvreur V, Kübert A, Werner C. Plant water uptake modelling: added value of cross-disciplinary approaches. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:32-42. [PMID: 36245305 DOI: 10.1111/plb.13478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
In recent years, research interest in plant water uptake strategies has rapidly increased in many disciplines, such as hydrology, plant ecology and ecophysiology. Quantitative modelling approaches to estimate plant water uptake and spatiotemporal dynamics have significantly advanced through different disciplines across scales. Despite this progress, major limitations, for example, predicting plant water uptake under drought or drought impact at large scales, remain. These are less attributed to limitations in process understanding, but rather to a lack of implementation of cross-disciplinary insights into plant water uptake model structure. The main goal of this review is to highlight how the four dominant model approaches, that is, Feddes approach, hydrodynamic approach, optimality and statistical approaches, can be and have been used to create interdisciplinary hybrid models enabling a holistic system understanding that, among other things, embeds plant water uptake plasticity into a broader conceptual view of soil-plant feedbacks of water, nutrient and carbon cycling, or reflects observed drought responses of plant-soil feedbacks and their dynamics under, that is, drought. Specifically, we provide examples of how integration of Bayesian and hydrodynamic approaches might overcome challenges in interpreting plant water uptake related to different travel and residence times of different plant water sources or trade-offs between root system optimization to forage for water and nutrients during different seasons and phenological stages.
Collapse
Affiliation(s)
- M Dubbert
- Isotope Biogeochemistry and Gasfluxes, Leibniz Institute of Agricultural Landscape Research (ZALF), Müncheberg, Germany
- Ecosystem Physiology, University of Freiburg, Freiburg, Germany
| | - V Couvreur
- Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - A Kübert
- Ecosystem Physiology, University of Freiburg, Freiburg, Germany
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
| | - C Werner
- Ecosystem Physiology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
25
|
Kübert A, Dubbert M, Bamberger I, Kühnhammer K, Beyer M, van Haren J, Bailey K, Hu J, Meredith LK, Nemiah Ladd S, Werner C. Tracing plant source water dynamics during drought by continuous transpiration measurements: An in-situ stable isotope approach. PLANT, CELL & ENVIRONMENT 2023; 46:133-149. [PMID: 36305510 DOI: 10.1111/pce.14475] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
The isotopic composition of xylem water (δX ) is of considerable interest for plant source water studies. In-situ monitored isotopic composition of transpired water (δT ) could provide a nondestructive proxy for δX -values. Using flow-through leaf chambers, we monitored 2-hourly δT -dynamics in two tropical plant species, one canopy-forming tree and one understory herbaceous species. In an enclosed rainforest (Biosphere 2), we observed δT -dynamics in response to an experimental severe drought, followed by a 2 H deep-water pulse applied belowground before starting regular rain. We also sampled branches to obtain δX -values from cryogenic vacuum extraction (CVE). Daily flux-weighted δ18 OT -values were a good proxy for δ18 OX -values under well-watered and drought conditions that matched the rainforest's water source. Transpiration-derived δ18 OX -values were mostly lower than CVE-derived values. Transpiration-derived δ2 HX -values were relatively high compared to source water and consistently higher than CVE-derived values during drought. Tracing the 2 H deep-water pulse in real-time showed distinct water uptake and transport responses: a fast and strong contribution of deep water to canopy tree transpiration contrasting with a slow and limited contribution to understory species transpiration. Thus, the in-situ transpiration method is a promising tool to capture rapid dynamics in plant water uptake and use by both woody and nonwoody species.
Collapse
Affiliation(s)
- Angelika Kübert
- Ecosystem Physiology, University of Freiburg, Freiburg, Germany
- Institute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, Finland
| | - Maren Dubbert
- Isotope Biogeochemistry and Gas Fluxes, Landscape Functioning, ZALF, Müncheberg, Germany
| | - Ines Bamberger
- Atmospheric Chemistry Group, University of Bayreuth, Bayreuth, Germany
| | - Kathrin Kühnhammer
- Ecosystem Physiology, University of Freiburg, Freiburg, Germany
- Institute for Geoecology, Technical University of Braunschweig, Braunschweig, Germany
| | - Matthias Beyer
- Institute for Geoecology, Technical University of Braunschweig, Braunschweig, Germany
| | - Joost van Haren
- Biosphere 2, University of Arizona, Tucson, Arizona, USA
- Honors College, University of Arizona, Tucson, Arizona, USA
| | - Kinzie Bailey
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, USA
| | - Jia Hu
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, USA
| | - Laura K Meredith
- Biosphere 2, University of Arizona, Tucson, Arizona, USA
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, USA
| | - S Nemiah Ladd
- Ecosystem Physiology, University of Freiburg, Freiburg, Germany
- Biogeochemistry Group, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | | |
Collapse
|
26
|
Losso A, Challis A, Gauthey A, Nolan RH, Hislop S, Roff A, Boer MM, Jiang M, Medlyn BE, Choat B. Canopy dieback and recovery in Australian native forests following extreme drought. Sci Rep 2022; 12:21608. [PMID: 36517498 PMCID: PMC9751299 DOI: 10.1038/s41598-022-24833-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
In 2019, south-eastern Australia experienced its driest and hottest year on record, resulting in massive canopy dieback events in eucalypt dominated forests. A subsequent period of high precipitation in 2020 provided a rare opportunity to quantify the impacts of extreme drought and consequent recovery. We quantified canopy health and hydraulic impairment (native percent loss of hydraulic conductivity, PLC) of 18 native tree species growing at 15 sites that were heavily impacted by the drought both during and 8-10 months after the drought. Most species exhibited high PLC during drought (PLC:65.1 ± 3.3%), with no clear patterns across sites or species. Heavily impaired trees (PLC > 70%) showed extensive canopy browning. In the post-drought period, most surviving trees exhibited hydraulic recovery (PLC:26.1 ± 5.1%), although PLC remained high in some trees (50-70%). Regained hydraulic function (PLC < 50%) corresponded to decreased canopy browning indicating improved tree health. Similar drought (37.1 ± 4.2%) and post-drought (35.1 ± 4.4%) percentages of basal area with dead canopy suggested that trees with severely compromised canopies immediately after drought were not able to recover. This dataset provides insights into the impacts of severe natural drought on the health of mature trees, where hydraulic failure is a major contributor in canopy dieback and tree mortality during extreme drought events.
Collapse
Affiliation(s)
- Adriano Losso
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria.
| | - Anthea Challis
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Alice Gauthey
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- Plant Ecology Research Laboratory PERL, Ecole Polytechnique Fédérale de Lausanne EPFL, 1015, Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Rachael H Nolan
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- NSW Bushfire Risk Management Research Hub, Wollongong, NSW, Australia
| | - Samuel Hislop
- Forest Science, NSW Department of Primary Industries, Parramatta, NSW, 2150, Australia
| | - Adam Roff
- Department of Planning, Industry and Environment, Remote Sensing and Landscape Science, 26 Honeysuckle Drive, Newcastle, NSW, 2302, Australia
| | - Matthias M Boer
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- NSW Bushfire Risk Management Research Hub, Wollongong, NSW, Australia
| | - Mingkai Jiang
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, Zhejiang, China
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
27
|
Haberstroh S, Werner C. The role of species interactions for forest resilience to drought. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1098-1107. [PMID: 35312142 DOI: 10.1111/plb.13415] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Increasing durations and frequencies of droughts under climate change endanger the sustainable functioning of forests worldwide. The admixture of species with complementary resource use may increase the resilience of forests towards drought; however, little is known about modifications of species interactions (i.e. facilitation and competition) by increasing drought severity in mixed forests. In particular, knowledge on the regulation of central ecohydrological processes, such as tree water fluxes, is lacking. Therefore, we conducted a literature review to assess the impact of species interactions on tree resilience (resistance + recovery) under increasing drought severity. The classification of studies into three drought classes suggested that beneficial species interactions, i.e. through improved water relations, were prevalent under mild droughts. However, with increasing drought, negative effects, such as interspecific competition, occurred. These negative interactions were prominent under extreme droughts, where even trees with complementary resource-use strategies competed for water resources. Fewer data are available on recovery of water fluxes. The limited evidence supported the patterns observed for drought resistance, with facilitation and complementarity of species in mixtures enhancing tree recovery after moderate droughts. However, after extreme droughts, competition effects and reduced recovery for some species were observed, which can strongly compromise tree resilience. While we acknowledge the importance of mixed forests for biodiversity, ecosystem services or pest resistance, we caution that beneficial species interactions may shift under extreme droughts. Thus, there is an urgent need to investigate species interaction effects on resilience in more depth to adapt forest trees to increasing drought stress.
Collapse
Affiliation(s)
- S Haberstroh
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University Freiburg, Freiburg, Germany
| | - C Werner
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University Freiburg, Freiburg, Germany
| |
Collapse
|
28
|
Hikino K, Danzberger J, Riedel VP, Hesse BD, Hafner BD, Gebhardt T, Rehschuh R, Ruehr NK, Brunn M, Bauerle TL, Landhäusser SM, Lehmann MM, Rötzer T, Pretzsch H, Buegger F, Weikl F, Pritsch K, Grams TEE. Dynamics of initial carbon allocation after drought release in mature Norway spruce-Increased belowground allocation of current photoassimilates covers only half of the carbon used for fine-root growth. GLOBAL CHANGE BIOLOGY 2022; 28:6889-6905. [PMID: 36039835 DOI: 10.1111/gcb.16388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
After drought events, tree recovery depends on sufficient carbon (C) allocation to the sink organs. The present study aimed to elucidate dynamics of tree-level C sink activity and allocation of recent photoassimilates (Cnew ) and stored C in c. 70-year-old Norway spruce (Picea abies) trees during a 4-week period after drought release. We conducted a continuous, whole-tree 13 C labeling in parallel with controlled watering after 5 years of experimental summer drought. The fate of Cnew to growth and CO2 efflux was tracked along branches, stems, coarse- and fine roots, ectomycorrhizae and root exudates to soil CO2 efflux after drought release. Compared with control trees, drought recovering trees showed an overall 6% lower C sink activity and 19% less allocation of Cnew to aboveground sinks, indicating a low priority for aboveground sinks during recovery. In contrast, fine-root growth in recovering trees was seven times greater than that of controls. However, only half of the C used for new fine-root growth was comprised of Cnew while the other half was supplied by stored C. For drought recovery of mature spruce trees, in addition to Cnew , stored C appears to be critical for the regeneration of the fine-root system and the associated water uptake capacity.
Collapse
Affiliation(s)
- Kyohsuke Hikino
- Professorship for Land Surface-Atmosphere Interactions, Ecophysiology of Plants, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Jasmin Danzberger
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Vincent P Riedel
- Professorship for Land Surface-Atmosphere Interactions, Ecophysiology of Plants, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Benjamin D Hesse
- Professorship for Land Surface-Atmosphere Interactions, Ecophysiology of Plants, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Benjamin D Hafner
- School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Timo Gebhardt
- Professorship for Land Surface-Atmosphere Interactions, Ecophysiology of Plants, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Romy Rehschuh
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research-Atmospheric Environmental Research (KIT/IMK-IFU), Garmisch-Partenkirchen, Germany
- Institute of General Ecology and Environmental Protection, Technische Universität Dresden, Pienner Str. 7, Tharandt, 01737, Germany
| | - Nadine K Ruehr
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research-Atmospheric Environmental Research (KIT/IMK-IFU), Garmisch-Partenkirchen, Germany
| | - Melanie Brunn
- Institute for Environmental Sciences, University Koblenz-Landau, Landau, Germany
| | - Taryn L Bauerle
- School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Simon M Landhäusser
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Marco M Lehmann
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Forest Dynamics, Birmensdorf, Switzerland
| | - Thomas Rötzer
- Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Hans Pretzsch
- Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Franz Buegger
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Fabian Weikl
- Professorship for Land Surface-Atmosphere Interactions, Ecophysiology of Plants, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Karin Pritsch
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Thorsten E E Grams
- Professorship for Land Surface-Atmosphere Interactions, Ecophysiology of Plants, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
29
|
Haberstroh S, Werner C, Grün M, Kreuzwieser J, Seifert T, Schindler D, Christen A. Central European 2018 hot drought shifts scots pine forest to its tipping point. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1186-1197. [PMID: 35869655 DOI: 10.1111/plb.13455] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
The occurrence of hot drought, i.e. low water availability and simultaneous high air temperature, represents a severe threat to ecosystems. Here, we investigated how the 2018 hot drought in Central Europe caused a tipping point in tree and ecosystem functioning in a Scots pine (Pinus sylvestris L.) forest in southwest Germany. Measurements of stress indicators, such as needle water potential, carbon assimilation and volatile organic compound (VOC) emissions, of dominant P. sylvestris trees were deployed to evaluate tree functioning during hot drought. Ecosystem impact and recovery were assessed as ecosystem carbon exchange, normalized difference vegetation index (NDVI) from satellite data and tree mortality data. During summer 2018, needle water potentials of trees dropped to minimum values of -7.5 ± 0.2 MPa, which implied severe hydraulic impairment of P. sylvestris. Likewise, carbon assimilation and VOC emissions strongly declined after mid-July. Decreasing NDVI values from August 2018 onwards were detected, along with severe defoliation in P. sylvestris, impairing ecosystem carbon flux recovery in 2019, shifting the forest into a year-round carbon source. A total of 47% of all monitored trees (n = 368) died by September 2020. NDVI recovered to pre-2018 levels in 2019, likely caused by emerging broadleaved understorey species. The 2018 hot drought had severe negative impacts on P. sylvestris. The co-occurrence of unfavourable site-specific conditions with recurrent severe droughts resulted in accelerated mortality. Thus, the 2018 hot drought pushed the P. sylvestris stand towards its tipping point, with a subsequent vegetation shift to a broadleaf-dominated forest.
Collapse
Affiliation(s)
- S Haberstroh
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University Freiburg, Freiburg, Germany
| | - C Werner
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University Freiburg, Freiburg, Germany
| | - M Grün
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University Freiburg, Freiburg, Germany
| | - J Kreuzwieser
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University Freiburg, Freiburg, Germany
| | - T Seifert
- Forest Growth and Dendroecology, Faculty of Environment and Natural Resources, University Freiburg, Freiburg, Germany
- Department of Forest and Wood Science, Stellenbosch University, Matieland, South Africa
| | - D Schindler
- Environmental Meteorology, Faculty of Environment and Natural Resources, University Freiburg, Freiburg, Germany
| | - A Christen
- Environmental Meteorology, Faculty of Environment and Natural Resources, University Freiburg, Freiburg, Germany
| |
Collapse
|
30
|
Mihalitsis M, Morais RA, Bellwood DR. Small predators dominate fish predation in coral reef communities. PLoS Biol 2022; 20:e3001898. [PMID: 36445867 PMCID: PMC9707750 DOI: 10.1371/journal.pbio.3001898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022] Open
Abstract
Ecosystem processes are challenging to quantify at a community level, particularly within complex ecosystems (e.g., rainforests, coral reefs). Predation is one of the most important types of species interactions, determining several ecosystem processes. However, while it is widely recognised, it is rarely quantified, especially in aquatic systems. To address these issues, we model predation on fish by fish, in a hyperdiverse coral reef community. We show that body sizes previously examined in fish-fish predation studies (based on a metanalysis), only represent about 5% of likely predation events. The average fish predator on coral reefs is just 3.65 cm; the average fish prey just 1.5 cm. These results call for a shift in the way we view fish predation and its ability to shape the species or functional composition of coral reef fish communities. Considered from a functional group approach, we found general agreement in the distribution of simulated and observed predation events, among both predator and prey functional groups. Predation on coral reefs is a process driven by small fish, most of which are neither seen nor quantified.
Collapse
Affiliation(s)
- Michalis Mihalitsis
- Research Hub for Coral Reef Ecosystem Functions, James Cook University, Townsville, Queensland, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
- * E-mail:
| | - Renato A. Morais
- Research Hub for Coral Reef Ecosystem Functions, James Cook University, Townsville, Queensland, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - David R. Bellwood
- Research Hub for Coral Reef Ecosystem Functions, James Cook University, Townsville, Queensland, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
31
|
Palmer PI, Woodwark AJP, Finch DP, Taylor TE, Butz A, Tamminen J, Bösch H, Eldering A, Vincent-Bonnieu S. Role of space station instruments for improving tropical carbon flux estimates using atmospheric data. NPJ Microgravity 2022; 8:51. [PMID: 36404345 PMCID: PMC9676185 DOI: 10.1038/s41526-022-00231-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/03/2022] [Indexed: 11/21/2022] Open
Abstract
The tropics is the nexus for many of the remaining gaps in our knowledge of environmental science, including the carbon cycle and atmospheric chemistry, with dire consequences for our ability to describe the Earth system response to a warming world. Difficulties associated with accessibility, coordinated funding models and economic instabilities preclude the establishment of a dense pan-tropical ground-based atmospheric measurement network that would otherwise help to describe the evolving state of tropical ecosystems and the associated biosphere-atmosphere fluxes on decadal timescales. The growing number of relevant sensors aboard sun-synchronous polar orbiters provide invaluable information over the remote tropics, but a large fraction of the data collected along their orbits is from higher latitudes. The International Space Station (ISS), which is in a low-inclination, precessing orbit, has already demonstrated value as a proving ground for Earth observing atmospheric sensors and as a testbed for new technology. Because low-inclination orbits spend more time collecting data over the tropics, we argue that the ISS and its successors, offer key opportunities to host new Earth-observing atmospheric sensors that can lead to a step change in our understanding of tropical carbon fluxes.
Collapse
Affiliation(s)
- Paul I Palmer
- School of GeoSciences, University of Edinburgh, Edinburgh, UK.
- National Centre for Earth Observation, University of Edinburgh, Edinburgh, UK.
| | | | - Douglas P Finch
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - Thomas E Taylor
- Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, USA
| | - André Butz
- Institute of Environmental Physics, Heidelberg University, Heidelberg, Germany
| | | | - Hartmut Bösch
- National Centre for Earth Observation, University of Leicester, Leicester, UK
- Earth Observation Science, School of Physics and Astronomy, University of Leicester, Leicester, UK
| | - Annmarie Eldering
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Sebastien Vincent-Bonnieu
- Directorate of Human and Robotic Exploration Programmes, European Space Agency - ESTEC, Noordwijk-ZH, The Netherlands
| |
Collapse
|
32
|
Martínez‐Sancho E, Treydte K, Lehmann MM, Rigling A, Fonti P. Drought impacts on tree carbon sequestration and water use - evidence from intra-annual tree-ring characteristics. THE NEW PHYTOLOGIST 2022; 236:58-70. [PMID: 35576102 PMCID: PMC9542003 DOI: 10.1111/nph.18224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/04/2022] [Indexed: 05/22/2023]
Abstract
The impact of climate extremes on forest ecosystems is poorly understood but important for predicting carbon and water cycle feedbacks to climate. Some knowledge gaps still remain regarding how drought-related adjustments in intra-annual tree-ring characteristics directly impact tree carbon and water use. In this study we quantified the impact of an extreme summer drought on the water-use efficiency and carbon sequestration of four mature Norway spruce trees. We used detailed observations of wood formation (xylogenesis) and intra-annual tree-ring properties (quantitative wood anatomy and stable carbon isotopes) combined with physiological water-stress monitoring. During 41 d of tree water deficit, we observed an enrichment in 13 C but a reduction in cell enlargement and wall-thickening processes, which impacted the anatomical characteristics. These adjustments diminished carbon sequestration by 67% despite an 11% increase in water-use efficiency during drought. However, with the resumption of a positive hydric state in the stem, we observed a fast recovery of cell formation rates based on the accumulated assimilates produced during drought. Our findings enhance our understanding of carbon and water fluxes between the atmosphere and forest ecosystems, providing observational evidence on the tree intra-annual carbon sequestration and water-use efficiency dynamics to improve future generations of vegetation models.
Collapse
Affiliation(s)
- Elisabet Martínez‐Sancho
- Research Unit Forest DynamicsSwiss Federal Institute for Forest Snow and Landscape Research WSLZürcherstrasse 1118903BirmensdorfSwitzerland
| | - Kerstin Treydte
- Research Unit Forest DynamicsSwiss Federal Institute for Forest Snow and Landscape Research WSLZürcherstrasse 1118903BirmensdorfSwitzerland
| | - Marco M. Lehmann
- Research Unit Forest DynamicsSwiss Federal Institute for Forest Snow and Landscape Research WSLZürcherstrasse 1118903BirmensdorfSwitzerland
| | - Andreas Rigling
- Research Unit Forest DynamicsSwiss Federal Institute for Forest Snow and Landscape Research WSLZürcherstrasse 1118903BirmensdorfSwitzerland
- Institute of Terrestrial EcosystemsSwiss Federal Institute of Technology ETHUniversitaetsstrasse 168092ZurichSwitzerland
| | - Patrick Fonti
- Research Unit Forest DynamicsSwiss Federal Institute for Forest Snow and Landscape Research WSLZürcherstrasse 1118903BirmensdorfSwitzerland
| |
Collapse
|
33
|
Chiral monoterpenes reveal forest emission mechanisms and drought responses. Nature 2022; 609:307-312. [PMID: 36071188 PMCID: PMC9452298 DOI: 10.1038/s41586-022-05020-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 06/23/2022] [Indexed: 11/08/2022]
Abstract
Monoterpenes (C10H16) are emitted in large quantities by vegetation to the atmosphere (>100 TgC year-1), where they readily react with hydroxyl radicals and ozone to form new particles and, hence, clouds, affecting the Earth's radiative budget and, thereby, climate change1-3. Although most monoterpenes exist in two chiral mirror-image forms termed enantiomers, these (+) and (-) forms are rarely distinguished in measurement or modelling studies4-6. Therefore, the individual formation pathways of monoterpene enantiomers in plants and their ecological functions are poorly understood. Here we present enantiomerically separated atmospheric monoterpene and isoprene data from an enclosed tropical rainforest ecosystem in the absence of ultraviolet light and atmospheric oxidation chemistry, during a four-month controlled drought and rewetting experiment7. Surprisingly, the emitted enantiomers showed distinct diel emission peaks, which responded differently to progressive drying. Isotopic labelling established that vegetation emitted mainly de novo-synthesized (-)-α-pinene, whereas (+)-α-pinene was emitted from storage pools. As drought progressed, the source of (-)-α-pinene emissions shifted to storage pools, favouring cloud formation. Pre-drought mixing ratios of both α-pinene enantiomers correlated better with other monoterpenes than with each other, indicating different enzymatic controls. These results show that enantiomeric distribution is key to understanding the underlying processes driving monoterpene emissions from forest ecosystems and predicting atmospheric feedbacks in response to climate change.
Collapse
|
34
|
Responses of Tree Growth and Intrinsic Water Use Efficiency to Environmental Factors in Central and Northern China in the Context of Global Warming. FORESTS 2022. [DOI: 10.3390/f13081209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Loess Plateau is a fragile ecological zone that is sensitive to climate change. The response, adaptation, and feedback of tree growth in forest ecosystems to global warming and CO2 enrichment are urgent scientific issues. Intrinsic water use efficiency (iWUE) is an important indicator for understanding forest ecosystem adaptability to climate change and CO2 enrichment. In this study, tree-ring width, tree-ring stable carbon isotope ratio (δ13C), and iWUE of P. tabulaeformis Carr. were established. Climate response analysis showed that temperature was the main limiting factor affecting radial tree growth and that relative humidity significantly affected the stable carbon isotope fractionation of tree rings. During 1645–2011, the iWUE increased by 27.1%. The responses of iWUE to climate factors and atmospheric CO2 concentrations (Ca) showed that the long-term variation in iWUE was affected by Ca, which could explain 69% of iWUE variation, and temperature was the main factor causing iWUE interannual variation. The ecosystem of P. tabulaeformis showed a positive response to rising Ca, as its carbon sequestration capacity increased. In response to global warming and CO2 enrichment, rising Ca promoted increases in iWUE but ultimately failed to offset the negative impact of warming on tree growth in the study area.
Collapse
|
35
|
Bellanthudawa BKA, Chang NB. Spectral index-based time series analysis of canopy resistance and resilience in a watershed under intermittent weather changes. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Haberstroh S, Lobo‐do‐Vale R, Caldeira MC, Dubbert M, Cuntz M, Werner C. Plant invasion modifies isohydricity in Mediterranean tree species. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Simon Haberstroh
- Ecosystem Physiology, Faculty of Environment and Natural Resources University Freiburg 79110 Freiburg Germany
- Forest Research Centre School of Agriculture University of Lisbon, 1349‐017 Lisbon Portugal
| | - Raquel Lobo‐do‐Vale
- Forest Research Centre School of Agriculture University of Lisbon, 1349‐017 Lisbon Portugal
| | - Maria C. Caldeira
- Forest Research Centre School of Agriculture University of Lisbon, 1349‐017 Lisbon Portugal
| | - Maren Dubbert
- Ecosystem Physiology, Faculty of Environment and Natural Resources University Freiburg 79110 Freiburg Germany
- Leibniz Centre for Agricultural Landscape Research (ZALF), Isotope Biogeochemistry and Gas Fluxes, 15374 Müncheberg Germany
| | - Matthias Cuntz
- Université de Lorraine AgroParisTech, INRAE, UMR Silva, 54000 Nancy France
| | - Christiane Werner
- Ecosystem Physiology, Faculty of Environment and Natural Resources University Freiburg 79110 Freiburg Germany
| |
Collapse
|
37
|
Honeker LK, Hildebrand GA, Fudyma JD, Daber LE, Hoyt D, Flowers SE, Gil-Loaiza J, Kübert A, Bamberger I, Anderton CR, Cliff J, Leichty S, AminiTabrizi R, Kreuzwieser J, Shi L, Bai X, Velickovic D, Dippold MA, Ladd SN, Werner C, Meredith LK, Tfaily MM. Elucidating Drought-Tolerance Mechanisms in Plant Roots through 1H NMR Metabolomics in Parallel with MALDI-MS, and NanoSIMS Imaging Techniques. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2021-2032. [PMID: 35048708 DOI: 10.1021/acs.est.1c06772] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As direct mediators between plants and soil, roots play an important role in metabolic responses to environmental stresses such as drought, yet these responses are vastly uncharacterized on a plant-specific level, especially for co-occurring species. Here, we aim to examine the effects of drought on root metabolic profiles and carbon allocation pathways of three tropical rainforest species by combining cutting-edge metabolomic and imaging technologies in an in situ position-specific 13C-pyruvate root-labeling experiment. Further, washed (rhizosphere-depleted) and unwashed roots were examined to test the impact of microbial presence on root metabolic pathways. Drought had a species-specific impact on the metabolic profiles and spatial distribution in Piper sp. and Hibiscus rosa sinensis roots, signifying different defense mechanisms; Piper sp. enhanced root structural defense via recalcitrant compounds including lignin, while H. rosa sinensis enhanced biochemical defense via secretion of antioxidants and fatty acids. In contrast, Clitoria fairchildiana, a legume tree, was not influenced as much by drought but rather by rhizosphere presence where carbohydrate storage was enhanced, indicating a close association with symbiotic microbes. This study demonstrates how multiple techniques can be combined to identify how plants cope with drought through different drought-tolerance strategies and the consequences of such changes on below-ground organic matter composition.
Collapse
Affiliation(s)
- Linnea K Honeker
- BIO5 Institute, The University of Arizona, 1657 East Helen Street., Tucson, Arizona 85719, United States
- Biosphere 2, University of Arizona, 32540 South Biosphere Road, Oracle, Arizona 85739, United States
| | - Gina A Hildebrand
- Department of Environmental Science, University of Arizona, 1177 East Fourth Street, Tucson, Arizona 85721, United States
| | - Jane D Fudyma
- Department of Environmental Science, University of Arizona, 1177 East Fourth Street, Tucson, Arizona 85721, United States
| | - L Erik Daber
- Chair of Ecosystem Physiology, Georges-Köhler-Allee 53/54, University of Freiburg, 79110 Freiburg, Germany
| | - David Hoyt
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Sarah E Flowers
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Juliana Gil-Loaiza
- School of Natural Resources and the Environment, University of Arizona, 1064 East Lowell Sreet, Tucson, Arizona 85721, United States
| | - Angelika Kübert
- Chair of Ecosystem Physiology, Georges-Köhler-Allee 53/54, University of Freiburg, 79110 Freiburg, Germany
| | - Ines Bamberger
- Chair of Ecosystem Physiology, Georges-Köhler-Allee 53/54, University of Freiburg, 79110 Freiburg, Germany
| | - Christopher R Anderton
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - John Cliff
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Sarah Leichty
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Roya AminiTabrizi
- Department of Environmental Science, University of Arizona, 1177 East Fourth Street, Tucson, Arizona 85721, United States
| | - Jürgen Kreuzwieser
- Chair of Ecosystem Physiology, Georges-Köhler-Allee 53/54, University of Freiburg, 79110 Freiburg, Germany
| | - Lingling Shi
- Biogeochemistry of Agroecosystems, Department of Crop Science, Georg August University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Xuejuan Bai
- State Key Laboratory of Soil Erosion and Dry Land Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, 712100 Shaanxi, China
| | - Dusan Velickovic
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Michaela A Dippold
- Biogeochemistry of Agroecosystems, Department of Crop Science, Georg August University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - S Nemiah Ladd
- Chair of Ecosystem Physiology, Georges-Köhler-Allee 53/54, University of Freiburg, 79110 Freiburg, Germany
| | - Christiane Werner
- Chair of Ecosystem Physiology, Georges-Köhler-Allee 53/54, University of Freiburg, 79110 Freiburg, Germany
| | - Laura K Meredith
- BIO5 Institute, The University of Arizona, 1657 East Helen Street., Tucson, Arizona 85719, United States
- Biosphere 2, University of Arizona, 32540 South Biosphere Road, Oracle, Arizona 85739, United States
- School of Natural Resources and the Environment, University of Arizona, 1064 East Lowell Sreet, Tucson, Arizona 85721, United States
| | - Malak M Tfaily
- BIO5 Institute, The University of Arizona, 1657 East Helen Street., Tucson, Arizona 85719, United States
- Department of Environmental Science, University of Arizona, 1177 East Fourth Street, Tucson, Arizona 85721, United States
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| |
Collapse
|
38
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany.,Institute of Biology, Leipzig University, Puschstraße 4, 04103 Leipzig, Germany
| | - Alexandra Weigelt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany.,Institute of Biology, Leipzig University, Johannisallee 21, 04103 Leipzig, Germany
| |
Collapse
|