1
|
Chen Z, Tsui JLH, Gutierrez B, Busch Moreno S, du Plessis L, Deng X, Cai J, Bajaj S, Suchard MA, Pybus OG, Lemey P, Kraemer MUG, Yu H. COVID-19 pandemic interventions reshaped the global dispersal of seasonal influenza viruses. Science 2024; 386:eadq3003. [PMID: 39509510 DOI: 10.1126/science.adq3003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/11/2024] [Indexed: 11/15/2024]
Abstract
The global dynamics of seasonal influenza viruses inform the design of surveillance, intervention, and vaccination strategies. The COVID-19 pandemic provided a singular opportunity to evaluate how influenza circulation worldwide was perturbed by human behavioral changes. We combine molecular, epidemiological, and international travel data and find that the pandemic's onset led to a shift in the intensity and structure of international influenza lineage movement. During the pandemic, South Asia played an important role as a phylogenetic trunk location of influenza A viruses, whereas West Asia maintained the circulation of influenza B/Victoria. We explore drivers of influenza lineage dynamics across the pandemic period and reasons for the possible extinction of the B/Yamagata lineage. After a period of 3 years, the intensity of among-region influenza lineage movements returned to pre-pandemic levels, with the exception of B/Yamagata, after the recovery of global air traffic, highlighting the robustness of global lineage dispersal patterns to substantial perturbation.
Collapse
Affiliation(s)
- Zhiyuan Chen
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | | | - Bernardo Gutierrez
- Department of Biology, University of Oxford, Oxford, UK
- Colegio de Ciencias Biologicas y Ambientales, Universidad San Francisco de Quito (USFQ), Quito, Ecuador
| | | | - Louis du Plessis
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Xiaowei Deng
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
- Department of Epidemiology, National Vaccine Innovation Platform, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jun Cai
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Sumali Bajaj
- Department of Biology, University of Oxford, Oxford, UK
| | - Marc A Suchard
- Departments of Biostatistics, Biomathematics, and Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Oliver G Pybus
- Department of Biology, University of Oxford, Oxford, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, UK
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Moritz U G Kraemer
- Department of Biology, University of Oxford, Oxford, UK
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | - Hongjie Yu
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Gutierrez B, Tsui JLH, Pullano G, Mazzoli M, Gangavarapu K, Inward RPD, Bajaj S, Evans Pena R, Busch-Moreno S, Suchard MA, Pybus OG, Dunner A, Puentes R, Ayala S, Fernandez J, Araos R, Ferres L, Colizza V, Kraemer MUG. Routes of importation and spatial dynamics of SARS-CoV-2 variants during localized interventions in Chile. PNAS NEXUS 2024; 3:pgae483. [PMID: 39525554 PMCID: PMC11547135 DOI: 10.1093/pnasnexus/pgae483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/27/2024] [Indexed: 11/16/2024]
Abstract
Human mobility is strongly associated with the spread of SARS-CoV-2 via air travel on an international scale and with population mixing and the number of people moving between locations on a local scale. However, these conclusions are drawn mostly from observations in the context of the global north where international and domestic connectivity is heavily influenced by the air travel network; scenarios where land-based mobility can also dominate viral spread remain understudied. Furthermore, research on the effects of nonpharmaceutical interventions (NPIs) has mostly focused on national- or regional-scale implementations, leaving gaps in our understanding of the potential benefits of implementing NPIs at higher granularity. Here, we use Chile as a model to explore the role of human mobility on disease spread within the global south; the country implemented a systematic genomic surveillance program and NPIs at a very high spatial granularity. We combine viral genomic data, anonymized human mobility data from mobile phones and official records of international travelers entering the country to characterize the routes of importation of different variants, the relative contributions of airport and land border importations, and the real-time impact of the country's mobility network on the diffusion of SARS-CoV-2. The introduction of variants which are dominant in neighboring countries (and not detected through airport genomic surveillance) is predicted by land border crossings and not by air travelers, and the strength of connectivity between comunas (Chile's lowest administrative divisions) predicts the time of arrival of imported lineages to new locations. A higher stringency of local NPIs was also associated with fewer domestic viral importations. Our analysis sheds light on the drivers of emerging respiratory infectious disease spread outside of air travel and on the consequences of disrupting regular movement patterns at lower spatial scales.
Collapse
Affiliation(s)
- Bernardo Gutierrez
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
- Pandemic Sciences Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| | - Joseph L -H Tsui
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
| | - Giulia Pullano
- Department of Biology, Georgetown University, Washington, DC 20057, USA
- INSERM, Sorbonne Université, Institut Pierre Louis d’Epidémiologie et de Santé Publique, IPLESP, 75012 Paris, France
| | - Mattia Mazzoli
- INSERM, Sorbonne Université, Institut Pierre Louis d’Epidémiologie et de Santé Publique, IPLESP, 75012 Paris, France
- ISI Foundation, 10126 Turin, Italy
| | - Karthik Gangavarapu
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Rhys P D Inward
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
| | - Sumali Bajaj
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
| | - Rosario Evans Pena
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
| | - Simon Busch-Moreno
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
| | - Marc A Suchard
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biostatistics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomathematics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Oliver G Pybus
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
- Pandemic Sciences Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom
- Department of Pathobiology and Population Science, Royal Veterinary College, London AL9 7TA, United Kingdom
| | | | - Rodrigo Puentes
- Instituto de Salud Pública de Chile, 7780050 Santiago, Chile
| | - Salvador Ayala
- Instituto de Salud Pública de Chile, 7780050 Santiago, Chile
| | - Jorge Fernandez
- Instituto de Salud Pública de Chile, 7780050 Santiago, Chile
| | - Rafael Araos
- Facultad de Medicina Clínica Alemana, Instituto de Ciencias e Innovación en Medicina (ICIM), Universidad del Desarrollo, 7610671 Santiago, Chile
| | - Leo Ferres
- ISI Foundation, 10126 Turin, Italy
- Data Science Institute, Universidad del Desarrollo, 7610671 Santiago, Chile
- Telefónica, 7500775 Santiago, Chile
| | - Vittoria Colizza
- INSERM, Sorbonne Université, Institut Pierre Louis d’Epidémiologie et de Santé Publique, IPLESP, 75012 Paris, France
- Tokyo Tech World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Moritz U G Kraemer
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
- Pandemic Sciences Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
3
|
Bajaj S, Chen S, Creswell R, Naidoo R, Tsui JLH, Kolade O, Nicholson G, Lehmann B, Hay JA, Kraemer MUG, Aguas R, Donnelly CA, Fowler T, Hopkins S, Cantrell L, Dahal P, White LJ, Stepniewska K, Voysey M, Lambert B. COVID-19 testing and reporting behaviours in England across different sociodemographic groups: a population-based study using testing data and data from community prevalence surveillance surveys. Lancet Digit Health 2024; 6:e778-e790. [PMID: 39455191 DOI: 10.1016/s2589-7500(24)00169-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/09/2024] [Accepted: 07/16/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Understanding underlying mechanisms of heterogeneity in test-seeking and reporting behaviour during an infectious disease outbreak can help to protect vulnerable populations and guide equity-driven interventions. The COVID-19 pandemic probably exerted different stresses on individuals in different sociodemographic groups and ensuring fair access to and usage of COVID-19 tests was a crucial element of England's testing programme. We aimed to investigate the relationship between sociodemographic factors and COVID-19 testing behaviours in England during the COVID-19 pandemic. METHODS We did a population-based study of COVID-19 testing behaviours with mass COVID-19 testing data for England and data from community prevalence surveillance surveys (REACT-1 and ONS-CIS) from Oct 1, 2020, to March 30, 2022. We used mass testing data for lateral flow device (LFD; data for approximately 290 million tests performed and reported) and PCR (data for approximately 107 million tests performed and returned from the laboratory) tests made available for the general public and provided by date and self-reported age and ethnicity at the lower tier local authority (LTLA) level. We also used publicly available data on mean population size estimates for individual LTLAs, and data on ethnic groups, age groups, and deprivation indices for LTLAs. We did not have access to REACT-1 or ONS-CIS prevalence data disaggregated by sex or gender. Using a mechanistic causal model to debias the PCR testing data, we obtained estimates of weekly SARS-CoV-2 prevalence by both self-reported ethnic groups and age groups for LTLAs in England. This approach to debiasing the PCR (or LFD) testing data also estimated a testing bias parameter defined as the odds of testing in infected versus not infected individuals, which would be close to zero if the likelihood of test seeking (or seeking and reporting) was the same regardless of infection status. With confirmatory PCR data, we estimated false positivity rates, sensitivity, specificity, and the rate of decline in detection probability subsequent to reporting a positive LFD for PCR tests by sociodemographic groups. We also estimated the daily incidence, allowing us to calculate the fraction of cases captured by the testing programme. FINDINGS From March, 2021 onwards, individuals in the most deprived regions reported approximately half as many LFD tests per capita as individuals in the least deprived areas (median ratio 0·50 [IQR 0·44-0·54]). During the period October, 2020, to June, 2021, PCR testing patterns showed the opposite trend, with individuals in the most deprived areas performing almost double the number of PCR tests per capita than those in the least deprived areas (1·8 [1·7-1·9]). Infection prevalences in Asian or Asian British individuals were considerably higher than those of other ethnic groups during the alpha (B.1.1.7) and omicron (B.1.1.529) BA.1 waves. Our estimates indicate that the England Pillar 2 COVID-19 testing programme detected 26-40% of all cases (including asymptomatic cases) over the study period with no consistent differences by deprivation levels or ethnic groups. Testing biases for PCR were generally higher than those for LFDs, in line with the general policy of symptomatic and asymptomatic use of these tests. Deprivation and age were associated with testing biases on average; however, the uncertainty intervals overlapped across deprivation levels, although the age-specific patterns were more distinct. We also found that ethnic minorities and older individuals were less likely to use confirmatory PCR tests through most of the pandemic and that delays in reporting a positive LFD test were possibly longer in populations self-reporting as "Black; African; Black British or Caribbean". INTERPRETATION Differences in testing behaviours across sociodemographic groups might be reflective of the higher costs of self-isolation to vulnerable populations, differences in test accessibility, differences in digital literacy, and differing perceptions about the utility of tests and risks posed by infection. This study shows how mass testing data can be used in conjunction with surveillance surveys to identify gaps in the uptake of public health interventions both at fine-scale levels and across sociodemographic groups. It provides a framework for monitoring local interventions and yields valuable lessons for policy makers in ensuring an equitable response to future pandemics. FUNDING UK Health Security Agency.
Collapse
Affiliation(s)
- Sumali Bajaj
- Department of Biology, University of Oxford, Oxford, UK.
| | - Siyu Chen
- High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA
| | - Richard Creswell
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Reshania Naidoo
- EY Health Sciences and Wellness, London, UK; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | - George Nicholson
- Department of Statistics, University of Oxford, Oxford, UK; The Alan Turing Institute and Royal Statistical Society Health Data Lab, London, UK
| | - Brieuc Lehmann
- The Alan Turing Institute and Royal Statistical Society Health Data Lab, London, UK; Department of Statistical Science, University College London, London, UK
| | - James A Hay
- Pandemic Sciences Institute, University of Oxford, Oxford, UK; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Moritz U G Kraemer
- Department of Biology, University of Oxford, Oxford, UK; Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | - Ricardo Aguas
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Christl A Donnelly
- Department of Statistics, University of Oxford, Oxford, UK; Pandemic Sciences Institute, University of Oxford, Oxford, UK; MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - Tom Fowler
- UK Health Security Agency, London, UK; William Harvey Research Institute, Queen Mary University of London, London, UK
| | | | - Liberty Cantrell
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Prabin Dahal
- Infectious Diseases Data Observatory, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lisa J White
- Department of Biology, University of Oxford, Oxford, UK
| | - Kasia Stepniewska
- Infectious Diseases Data Observatory, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Merryn Voysey
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Ben Lambert
- Department of Statistics, University of Oxford, Oxford, UK; College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
4
|
Sun Y, Xing J, Hong SL, Bollen N, Xu S, Li Y, Zhong J, Gao X, Zhu D, Liu J, Gong L, Zhou L, An T, Shi M, Wang H, Baele G, Zhang G. Untangling lineage introductions, persistence and transmission drivers of HP-PRRSV sublineage 8.7. Nat Commun 2024; 15:8842. [PMID: 39397015 PMCID: PMC11471759 DOI: 10.1038/s41467-024-53076-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 09/27/2024] [Indexed: 10/15/2024] Open
Abstract
Despite a rapid expansion of Porcine reproductive and respiratory syndrome virus (PRRSV) sublineage 8.7 over recent years, very little is known about the patterns of virus evolution, dispersal, and the factors influencing this dispersal. Relying on a national PRRSV surveillance project established over 20 years ago, we expand the available genomic data of sublineage 8.7 from China. We perform independent interlineage and intralineage recombination analyses for the entire study period, which showed a heterogeneous recombination pattern. A series of Bayesian phylogeographic analyses uncover the role of Guangdong as an important infection hub within Asia. The spatial spread of PRRSV is highly linked with a composite of human activities and the heterogeneous provincial distribution of the swine industry, largely propelled by the smaller-scale Chinese rural farming systems in the past years. We sequence all four available modified live vaccines (MLVs) and perform genomic analyses with publicly available data, of which our results suggest a key "leaky" period spanning 2011-2017 with two concurrent amino acid mutations in ORF1a 957 and ORF2 250. Overall, our study provides an in-depth overview of the evolution, transmission dynamics, and potential leaky status of HP-PRRS MLVs, providing critical insights into new MLV development.
Collapse
Affiliation(s)
- Yankuo Sun
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China
| | - Jiabao Xing
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Samuel L Hong
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Nena Bollen
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sijia Xu
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yue Li
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jianhao Zhong
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaopeng Gao
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Dihua Zhu
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jing Liu
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lang Gong
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mang Shi
- School of Medicine, Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Heng Wang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium.
| | - Guihong Zhang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| |
Collapse
|
5
|
Dyrdak R, Hodcroft EB, Broddesson S, Grabbe M, Franklin H, Gisslén M, Holm ME, Lindh M, Nederby-Öhd J, Ringlander J, Sundqvist M, Neher RA, Albert J. Early unrecognised SARS-CoV-2 introductions shaped the first pandemic wave, Sweden, 2020. Euro Surveill 2024; 29:2400021. [PMID: 39392000 PMCID: PMC11484920 DOI: 10.2807/1560-7917.es.2024.29.41.2400021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/30/2024] [Indexed: 10/12/2024] Open
Abstract
BackgroundDespite the unprecedented measures implemented globally in early 2020 to prevent the spread of SARS-CoV-2, Sweden, as many other countries, experienced a severe first wave during the COVID-19 pandemic.AimWe investigated the introduction and spread of SARS-CoV-2 into Sweden.MethodsWe analysed stored respiratory specimens (n = 1,979), sampled 7 February-2 April 2020, by PCR for SARS-CoV-2 and sequenced PCR-positive specimens. Sequences generated from newly detected cases and stored positive specimens February-June 2020 (n = 954) were combined with sequences (Sweden: n = 730; other countries: n = 129,913) retrieved from other sources for Nextstrain clade assignment and phylogenetic analyses.ResultsTwelve previously unrecognised SARS-CoV-2 cases were identified: the earliest was sampled on 3 March, 1 week before recognised community transmission. We showed an early influx of clades 20A and 20B from Italy (201/328, 61% of cases exposed abroad) and clades 19A and 20C from Austria (61/328, 19%). Clade 20C dominated the first wave (20C: 908/1,684, 54%; 20B: 438/1,684, 26%; 20A: 263/1,684, 16%), and 800 of 1,684 (48%) Swedish sequences formed a country-specific 20C cluster defined by a spike mutation (G24368T). At the regional level, the proportion of clade 20C sequences correlated with an earlier weighted mean date of COVID-19 deaths.ConclusionCommunity transmission in Sweden started when mitigation efforts still focused on preventing influx. This created a transmission advantage for clade 20C, likely introduced from ongoing cryptic spread in Austria. Therefore, pandemic preparedness should have a comprehensive approach, including capacity for large-scale diagnostics to allow early detection of travel-related cases and community transmission.
Collapse
Affiliation(s)
- Robert Dyrdak
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Emma B Hodcroft
- Institute for Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sandra Broddesson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Malin Grabbe
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hildur Franklin
- Department of Laboratory Medicine, Clinical Microbiology, Örebro University Hospital, Örebro, Sweden
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden
- Public Health Agency of Sweden, Solna, Sweden
| | - Maricris E Holm
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Magnus Lindh
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Joanna Nederby-Öhd
- Department of Infectious Disease Prevention and Control, Stockholm Region, Stockholm, Sweden
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Johan Ringlander
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Martin Sundqvist
- Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Laboratory Medicine, Clinical Microbiology, Örebro University Hospital, Örebro, Sweden
| | - Richard A Neher
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jan Albert
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Holmes EC. The Emergence and Evolution of SARS-CoV-2. Annu Rev Virol 2024; 11:21-42. [PMID: 38631919 DOI: 10.1146/annurev-virology-093022-013037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The origin of SARS-CoV-2 has evoked heated debate and strong accusations, yet seemingly little resolution. I review the scientific evidence on the origin of SARS-CoV-2 and its subsequent spread through the human population. The available data clearly point to a natural zoonotic emergence within, or closely linked to, the Huanan Seafood Wholesale Market in Wuhan. There is no direct evidence linking the emergence of SARS-CoV-2 to laboratory work conducted at the Wuhan Institute of Virology. The subsequent global spread of SARS-CoV-2 was characterized by a gradual adaptation to humans, with dual increases in transmissibility and virulence until the emergence of the Omicron variant. Of note has been the frequent transmission of SARS-CoV-2 from humans to other animals, marking it as a strongly host generalist virus. Unless lessons from the origin of SARS-CoV-2 are learned, it is inevitable that more zoonotic events leading to more epidemics and pandemics will plague human populations.
Collapse
Affiliation(s)
- Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia;
| |
Collapse
|
7
|
Keeling MJ, Dyson L. A retrospective assessment of forecasting the peak of the SARS-CoV-2 Omicron BA.1 wave in England. PLoS Comput Biol 2024; 20:e1012452. [PMID: 39312582 PMCID: PMC11449292 DOI: 10.1371/journal.pcbi.1012452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 10/03/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
We discuss the invasion of the Omicron BA.1 variant into England as a paradigm for real-time model fitting and projection. Here we use a mixture of simple SIR-type models, analysis of the early data and a more complex age-structure model fit to the outbreak to understand the dynamics. In particular, we highlight that early data shows that the invading Omicron variant had a substantial growth advantage over the resident Delta variant. However, early data does not allow us to reliably infer other key epidemiological parameters-such as generation time and severity-which influence the expected peak hospital numbers. With more complete epidemic data from January 2022 are we able to capture the true scale of the epidemic in terms of both infections and hospital admissions, driven by different infection characteristics of Omicron compared to Delta and a substantial shift in estimated precautionary behaviour during December. This work highlights the challenges of real time forecasting, in a rapidly changing environment with limited information on the variant's epidemiological characteristics.
Collapse
Affiliation(s)
- Matt J Keeling
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom
- Joint UNIversities Pandemic and Epidemiological Research, https://maths.org/juniper/
| | - Louise Dyson
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom
- Joint UNIversities Pandemic and Epidemiological Research, https://maths.org/juniper/
| |
Collapse
|
8
|
Khurana MP, Curran-Sebastian J, Scheidwasser N, Morgenstern C, Rasmussen M, Fonager J, Stegger M, Tang MHE, Juul JL, Escobar-Herrera LA, Møller FT, Albertsen M, Kraemer MUG, du Plessis L, Jokelainen P, Lehmann S, Krause TG, Ullum H, Duchêne DA, Mortensen LH, Bhatt S. High-resolution epidemiological landscape from ~290,000 SARS-CoV-2 genomes from Denmark. Nat Commun 2024; 15:7123. [PMID: 39164246 PMCID: PMC11335946 DOI: 10.1038/s41467-024-51371-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024] Open
Abstract
Vast amounts of pathogen genomic, demographic and spatial data are transforming our understanding of SARS-CoV-2 emergence and spread. We examined the drivers of molecular evolution and spread of 291,791 SARS-CoV-2 genomes from Denmark in 2021. With a sequencing rate consistently exceeding 60%, and up to 80% of PCR-positive samples between March and November, the viral genome set is broadly whole-epidemic representative. We identify a consistent rise in viral diversity over time, with notable spikes upon the importation of novel variants (e.g., Delta and Omicron). By linking genomic data with rich individual-level demographic data from national registers, we find that individuals aged < 15 and > 75 years had a lower contribution to molecular change (i.e., branch lengths) compared to other age groups, but similar molecular evolutionary rates, suggesting a lower likelihood of introducing novel variants. Similarly, we find greater molecular change among vaccinated individuals, suggestive of immune evasion. We also observe evidence of transmission in rural areas to follow predictable diffusion processes. Conversely, urban areas are expectedly more complex due to their high mobility, emphasising the role of population structure in driving virus spread. Our analyses highlight the added value of integrating genomic data with detailed demographic and spatial information, particularly in the absence of structured infection surveys.
Collapse
Affiliation(s)
- Mark P Khurana
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Jacob Curran-Sebastian
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Neil Scheidwasser
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Christian Morgenstern
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Morten Rasmussen
- Virus Research and Development Laboratory, Statens Serum Institut, Copenhagen, Denmark
| | - Jannik Fonager
- Virus Research and Development Laboratory, Statens Serum Institut, Copenhagen, Denmark
| | - Marc Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Man-Hung Eric Tang
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Jonas L Juul
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | | | - Mads Albertsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | - Louis du Plessis
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Pikka Jokelainen
- Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
| | - Sune Lehmann
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Tyra G Krause
- Epidemiological Infectious Disease Preparedness, Statens Serum Institut Copenhagen, Copenhagen, Denmark
| | | | - David A Duchêne
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Laust H Mortensen
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Statistics Denmark, Copenhagen, Denmark
| | - Samir Bhatt
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
9
|
Pekar JE, Wang Y, Wang JC, Shao Y, Taki F, Forgione LA, Amin H, Clabby T, Johnson K, Torian LV, Braunstein SL, Pathela P, Omoregie E, Hughes S, Suchard MA, Vasylyeva TI, Lemey P, Wertheim JO. Genomic epidemiology reveals 2022 mpox epidemic in New York City governed by heavy-tailed sexual contact networks. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.30.24311083. [PMID: 39132479 PMCID: PMC11312668 DOI: 10.1101/2024.07.30.24311083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The global mpox epidemic in 2022 was likely caused by transmission of mpox virus (MPXV) through sexual contact networks, with New York City (NYC) experiencing the first and largest outbreak in the United States. By performing a phylogeographic and epidemiological analysis of MPXV, we identify at least 200 introductions of MPXV into NYC and 84 leading to onward transmission. Through a comparative analysis with human immunodeficiency virus (HIV) in NYC, we find that both MPXV and HIV genomic cluster sizes are best fit by scale-free distributions and that people in MPXV clusters are more likely to have previously received an HIV diagnosis (odds ratio=1.58; p=0.012) and be a member of a recently growing HIV transmission cluster, indicating overlapping sexual contact networks. We then model the transmission of MPXV through sexual contact networks and show that highly connected individuals would be disproportionately infected at the start of an epidemic, thereby likely resulting in the exhaustion of the most densely connected parts of the sexual network. This dynamic explains the rapid expansion and decline of the NYC outbreak, as well as the estimated cumulative incidence of less than 2% within high-risk populations. By synthesizing the genomic epidemiology of MPXV and HIV with epidemic modeling, we demonstrate that MPXV transmission dynamics can be understood by general principles of sexually transmitted pathogens.
Collapse
Affiliation(s)
- Jonathan E Pekar
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
- Department of Biomedical Informatics, University of California San Diego, La Jolla, CA 92093, USA
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Yu Wang
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Jade C Wang
- New York City Department of Health and Mental Hygiene, Public Health Laboratory, New York, NY 11101, USA
| | - Yucai Shao
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Faten Taki
- New York City Department of Health and Mental Hygiene, Public Health Laboratory, New York, NY 11101, USA
| | - Lisa A Forgione
- New York City Department of Health and Mental Hygiene, Bureau of Hepatitis, HIV, and Sexually Transmitted Infections, Long Island City, NY 11101, USA
| | - Helly Amin
- New York City Department of Health and Mental Hygiene, Public Health Laboratory, New York, NY 11101, USA
| | - Tyler Clabby
- New York City Department of Health and Mental Hygiene, Public Health Laboratory, New York, NY 11101, USA
| | - Kimberly Johnson
- New York City Department of Health and Mental Hygiene, Bureau of Hepatitis, HIV, and Sexually Transmitted Infections, Long Island City, NY 11101, USA
| | - Lucia V Torian
- New York City Department of Health and Mental Hygiene, Bureau of Hepatitis, HIV, and Sexually Transmitted Infections, Long Island City, NY 11101, USA
| | - Sarah L Braunstein
- New York City Department of Health and Mental Hygiene, Bureau of Hepatitis, HIV, and Sexually Transmitted Infections, Long Island City, NY 11101, USA
| | - Preeti Pathela
- New York City Department of Health and Mental Hygiene, Bureau of Hepatitis, HIV, and Sexually Transmitted Infections, Long Island City, NY 11101, USA
| | - Enoma Omoregie
- New York City Department of Health and Mental Hygiene, Public Health Laboratory, New York, NY 11101, USA
| | - Scott Hughes
- New York City Department of Health and Mental Hygiene, Public Health Laboratory, New York, NY 11101, USA
| | - Marc A Suchard
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomathematics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Tetyana I Vasylyeva
- Department of Population Health and Disease Prevention, University of California Irvine, Irvine, CA 92617, USA
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Joel O Wertheim
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
10
|
Gallego-García P, Hong SL, Bollen N, Dellicour S, Baele G, Suchard MA, Lemey P, Posada D. Dispersal history of SARS-CoV-2 variants Alpha, Delta, and Omicron (BA.1) in Spain. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.01.24309632. [PMID: 39006420 PMCID: PMC11245079 DOI: 10.1101/2024.07.01.24309632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Different factors influence the spread of SARS-CoV-2, from the inherent transmission capabilities of the different variants to the control measurements put in place. Here we studied the introduction of the Alpha, Delta, and Omicron-BA.1 variants of concern (VOCs) into Spain. For this, we collected genomic data from the GISAID database and combined it with connectivity data from different countries with Spain to perform a phylodynamic Bayesian analysis of the introductions. Our findings reveal that the introductions of these VOCs predominantly originated from France, especially in the case of Alpha. As travel restrictions were eased during the Delta and Omicron-BA.1 waves, the number of introductions from distinct countries increased, with the United Kingdom and Germany becoming significant sources of the virus. The largest number of introductions detected corresponded to the Delta wave, which was associated with fewer restrictions and the summer period, when Spain receives a considerable number of tourists. This research underscores the importance of monitoring international travel patterns and implementing targeted public health measures to manage the spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Pilar Gallego-García
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO
| | - Samuel L. Hong
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven – University of Leuven, 3000 Leuven, Belgium
| | - Nena Bollen
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven – University of Leuven, 3000 Leuven, Belgium
| | - Simon Dellicour
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven – University of Leuven, 3000 Leuven, Belgium
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven – University of Leuven, 3000 Leuven, Belgium
| | - Marc A. Suchard
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven – University of Leuven, 3000 Leuven, Belgium
- Global Virus Network (GVN), Baltimore, MD 21201, USA
| | - David Posada
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, Vigo 36310, Spain
| |
Collapse
|
11
|
Gallego-García P, Estévez-Gómez N, De Chiara L, Alvariño P, Juiz-González PM, Torres-Beceiro I, Poza M, Vallejo JA, Rumbo-Feal S, Conde-Pérez K, Aja-Macaya P, Ladra S, Moreno-Flores A, Gude-González MJ, Coira A, Aguilera A, Costa-Alcalde JJ, Trastoy R, Barbeito-Castiñeiras G, García-Souto D, Tubio JMC, Trigo-Daporta M, Camacho-Zamora P, Costa JG, González-Domínguez M, Canoura-Fernández L, Glez-Peña D, Pérez-Castro S, Cabrera JJ, Daviña-Núñez C, Godoy-Diz M, Treinta-Álvarez AB, Veiga MI, Sousa JC, Osório NS, Comas I, González-Candelas F, Hong SL, Bollen N, Dellicour S, Baele G, Suchard MA, Lemey P, Agulla A, Bou G, Alonso-García P, Pérez-Del-Molino ML, García-Campello M, Paz-Vidal I, Regueiro B, Posada D. Dispersal history of SARS-CoV-2 in Galicia, Spain. J Med Virol 2024; 96:e29773. [PMID: 38940448 DOI: 10.1002/jmv.29773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
The dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission are influenced by a variety of factors, including social restrictions and the emergence of distinct variants. In this study, we delve into the origins and dissemination of the Alpha, Delta, and Omicron-BA.1 variants of concern in Galicia, northwest Spain. For this, we leveraged genomic data collected by the EPICOVIGAL Consortium and from the GISAID database, along with mobility information from other Spanish regions and foreign countries. Our analysis indicates that initial introductions during the Alpha phase were predominantly from other Spanish regions and France. However, as the pandemic progressed, introductions from Portugal and the United States became increasingly significant. The number of detected introductions varied from 96 and 101 for Alpha and Delta to 39 for Omicron-BA.1. Most of these introductions left a low number of descendants (<10), suggesting a limited impact on the evolution of the pandemic in Galicia. Notably, Galicia's major coastal cities emerged as critical hubs for viral transmission, highlighting their role in sustaining and spreading the virus. This research emphasizes the critical role of regional connectivity in the spread of SARS-CoV-2 and offers essential insights for enhancing public health strategies and surveillance measures.
Collapse
Affiliation(s)
- Pilar Gallego-García
- CINBIO, Universidade de Vigo, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Nuria Estévez-Gómez
- CINBIO, Universidade de Vigo, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Loretta De Chiara
- CINBIO, Universidade de Vigo, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, Vigo, Spain
| | | | - Pedro M Juiz-González
- Servicio de Microbiología del Complejo Hospitalario Universitario de Ferrol, Ferrol, Spain
| | - Isabel Torres-Beceiro
- Servicio de Microbiología del Complejo Hospitalario Universitario de Ferrol, Ferrol, Spain
| | - Margarita Poza
- Microbiology Research Group, Institute of Biomedical Research (INIBIC) - Interdisciplinary Center for Chemistry and Biology (CICA), University of A Coruña (UDC) - CIBER de Enfermedades Infecciosas (CIBERINFEC-ISCIII), Edificio Sur, Hospital Universitario A Coruña, As Xubias, A Coruña, Spain
- Microbiome and Health Group, Faculty of Sciences, University of A Coruña (UDC), A Coruña, Spain
| | - Juan A Vallejo
- Microbiology Research Group, Institute of Biomedical Research (INIBIC) - Interdisciplinary Center for Chemistry and Biology (CICA), University of A Coruña (UDC) - CIBER de Enfermedades Infecciosas (CIBERINFEC-ISCIII), Edificio Sur, Hospital Universitario A Coruña, As Xubias, A Coruña, Spain
| | - Soraya Rumbo-Feal
- Microbiology Research Group, Institute of Biomedical Research (INIBIC) - Interdisciplinary Center for Chemistry and Biology (CICA), University of A Coruña (UDC) - CIBER de Enfermedades Infecciosas (CIBERINFEC-ISCIII), Edificio Sur, Hospital Universitario A Coruña, As Xubias, A Coruña, Spain
| | - Kelly Conde-Pérez
- Microbiology Research Group, Institute of Biomedical Research (INIBIC) - Interdisciplinary Center for Chemistry and Biology (CICA), University of A Coruña (UDC) - CIBER de Enfermedades Infecciosas (CIBERINFEC-ISCIII), Edificio Sur, Hospital Universitario A Coruña, As Xubias, A Coruña, Spain
| | - Pablo Aja-Macaya
- Microbiology Research Group, Institute of Biomedical Research (INIBIC) - Interdisciplinary Center for Chemistry and Biology (CICA), University of A Coruña (UDC) - CIBER de Enfermedades Infecciosas (CIBERINFEC-ISCIII), Edificio Sur, Hospital Universitario A Coruña, As Xubias, A Coruña, Spain
| | - Susana Ladra
- Database Laboratory, Research Center for Information and Communication Technologies (CITIC), University of A Coruña (UDC), A Coruña, Spain
| | | | | | - Amparo Coira
- Department of Microbiology, Complexo Hospitalario Universitario de Santiago de Compostela. SERGAS - Microbiology Research Group, Institute of Biomedical Research (IDIS), Santiago de Compostela, Spain
| | - Antonio Aguilera
- Department of Microbiology, Complexo Hospitalario Universitario de Santiago de Compostela. SERGAS - Microbiology Research Group, Institute of Biomedical Research (IDIS), Santiago de Compostela, Spain
| | - José J Costa-Alcalde
- Department of Microbiology, Complexo Hospitalario Universitario de Santiago de Compostela. SERGAS - Microbiology Research Group, Institute of Biomedical Research (IDIS), Santiago de Compostela, Spain
| | - Rocío Trastoy
- Department of Microbiology, Complexo Hospitalario Universitario de Santiago de Compostela. SERGAS - Microbiology Research Group, Institute of Biomedical Research (IDIS), Santiago de Compostela, Spain
| | - Gema Barbeito-Castiñeiras
- Department of Microbiology, Complexo Hospitalario Universitario de Santiago de Compostela. SERGAS - Microbiology Research Group, Institute of Biomedical Research (IDIS), Santiago de Compostela, Spain
| | - Daniel García-Souto
- CiMUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José M C Tubio
- CiMUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Zoology, Genetics and Physic Anthropology, Santiago de Compostela, Spain
| | - Matilde Trigo-Daporta
- Clinical Microbiology Unit, Complexo Hospitalario Universitario de Pontevedra, Pontevedra, Spain
| | - Pablo Camacho-Zamora
- Clinical Microbiology Unit, Complexo Hospitalario Universitario de Pontevedra, Pontevedra, Spain
| | - Juan García Costa
- Servicio de Microbiología, Complejo Hospitalario Universitario de Ourense, Ourense, Spain
| | | | - Luis Canoura-Fernández
- Servicio de Microbiología, Complejo Hospitalario Universitario de Ourense, Ourense, Spain
| | - Daniel Glez-Peña
- CINBIO, Universidade de Vigo, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Sonia Pérez-Castro
- Department of Microbiology, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Jorge J Cabrera
- Department of Microbiology, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Carlos Daviña-Núñez
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Montserrat Godoy-Diz
- Department of Microbiology, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Ana Belén Treinta-Álvarez
- Department of Microbiology, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Maria Isabel Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - João Carlos Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - Nuno S Osório
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - Iñaki Comas
- Tuberculosis Genomics Unit, BioMedicine Institute of Valencia, Spanish Research Council (CSIC), Valencia, Spain
- CIBER in Epidemiology and Public Health, Madrid, Spain
- Joint Research Unit "Infection and Public Health", FISABIO-University of Valencia, Valencia, Spain
| | - Fernando González-Candelas
- CIBER in Epidemiology and Public Health, Madrid, Spain
- Joint Research Unit "Infection and Public Health", FISABIO-University of Valencia, Valencia, Spain
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Valencia, Spain
| | - Samuel L Hong
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven, University of Leuven, Leuven, Belgium
| | - Nena Bollen
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven, University of Leuven, Leuven, Belgium
| | - Simon Dellicour
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven, University of Leuven, Leuven, Belgium
- Spatial Epidemiology Lab, Université Libre de Bruxelles, Brussels, Belgium
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven, University of Leuven, Leuven, Belgium
| | - Marc A Suchard
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, California, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven, University of Leuven, Leuven, Belgium
- Global Virus Network (GVN), Baltimore, Maryland, USA
| | - Andrés Agulla
- Servicio de Microbiología del Complejo Hospitalario Universitario de Ferrol, Ferrol, Spain
| | - Germán Bou
- Microbiology Research Group, Institute of Biomedical Research (INIBIC) - Interdisciplinary Center for Chemistry and Biology (CICA), University of A Coruña (UDC) - CIBER de Enfermedades Infecciosas (CIBERINFEC-ISCIII), Edificio Sur, Hospital Universitario A Coruña, As Xubias, A Coruña, Spain
| | - Pilar Alonso-García
- Servicio de Microbiología, Hospital Universitario Lucus Augusti, Lugo, Spain
| | - María Luisa Pérez-Del-Molino
- Department of Microbiology, Complexo Hospitalario Universitario de Santiago de Compostela. SERGAS - Microbiology Research Group, Institute of Biomedical Research (IDIS), Santiago de Compostela, Spain
| | - Marta García-Campello
- Clinical Microbiology Unit, Complexo Hospitalario Universitario de Pontevedra, Pontevedra, Spain
| | - Isabel Paz-Vidal
- Servicio de Microbiología, Complejo Hospitalario Universitario de Ourense, Ourense, Spain
| | - Benito Regueiro
- Department of Microbiology, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - David Posada
- CINBIO, Universidade de Vigo, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
12
|
Gabriele-Rivet V, Rees E, Rahman A, Milwid RM. Impact of the COVID-19 pandemic on inbound air travel to Canada. CANADA COMMUNICABLE DISEASE REPORT = RELEVE DES MALADIES TRANSMISSIBLES AU CANADA 2024; 50:106-113. [PMID: 38742161 PMCID: PMC11090504 DOI: 10.14745/ccdr.v50i34a04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Background Commercial air travel can result in global dispersal of infectious diseases. During the coronavirus disease 2019 (COVID-19) pandemic, many countries implemented border measures, including restrictions on air travel, to reduce the importation risk of COVID-19. In the context of inbound air travel to Canada, this study aimed to: 1) characterize travel trends before and during the pandemic, and 2) statistically assess the association between travel volumes and travel restrictions during the pandemic. Methods Monthly commercial air travel volume data from March 2017 to February 2023 were obtained from the International Air Transport Association (IATA). National and airport-level travel trends to Canada were characterized by inbound travel volumes, the number of countries contributing travellers and the ranking of the top ten countries contributing travellers across the study period, by six year-length subperiod groupings (three pre-pandemic and three pandemic). Using seasonal autoregressive integrated moving average (SARIMA) models, interrupted time series (ITS) analyses assessed the association between major travel restrictions and travel volumes by including variables to represent changes to the level and slope of the time series. Results The pre-pandemic inbound travel volume increased by 3% to 7% between consecutive subperiods, with three seasonal peaks (July-August, December-January, March). At the onset of the pandemic, travel volume decreased by 90%, with the number of contributing countries declining from approximately 200 to 140, followed by a slow recovery in volume and seasonality. A disruption in the ranking of countries that contributed travellers was also noticeable during the pandemic. Results from the ITS analysis aligned with the timing of travel restrictions as follows: implementation in March 2020 coincided with a sharp reduction in volumes, while the easing of major restrictions, starting with the authorization of fully vaccinated travellers from the United States to enter Canada in August 2021, coincided with an increase in the slope of travel volumes. Descriptive and statistical results suggest a near-return of pre-pandemic travel patterns by the end of the study period. Conclusion Study results suggest resilience in commercial air travel into Canada. Although the COVID-19 pandemic led to a disruption in travel trends, easing of travel restrictions appeared to enable pre-pandemic trends to re-emerge. Understanding trends in air travel volumes, as demonstrated here, can provide information that supports preparedness and response regarding importation risk of infectious pathogens.
Collapse
Affiliation(s)
| | - Erin Rees
- National Microbiology Laboratory, Public Health Agency of Canada, St-Hyacinthe, QC
| | - Afnan Rahman
- National Microbiology Laboratory, Public Health Agency of Canada, St-Hyacinthe, QC
| | - Rachael M Milwid
- National Microbiology Laboratory, Public Health Agency of Canada, St-Hyacinthe, QC
| |
Collapse
|
13
|
Parino F, Gustani-Buss E, Bedford T, Suchard MA, Trovão NS, Rambaut A, Colizza V, Poletto C, Lemey P. Integrating dynamical modeling and phylogeographic inference to characterize global influenza circulation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.14.24303719. [PMID: 38559244 PMCID: PMC10980132 DOI: 10.1101/2024.03.14.24303719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Global seasonal influenza circulation involves a complex interplay between local (seasonality, demography, host immunity) and global factors (international mobility) shaping recurrent epidemic patterns. No studies so far have reconciled the two spatial levels, evaluating the coupling between national epidemics, considering heterogeneous coverage of epidemiological and virological data, integrating different data sources. We propose a novel combined approach based on a dynamical model of global influenza spread (GLEAM), integrating high-resolution demographic and mobility data, and a generalized linear model of phylogeographic diffusion that accounts for time-varying migration rates. Seasonal migration fluxes across global macro-regions simulated with GLEAM are tested as phylogeographic predictors to provide model validation and calibration based on genetic data. Seasonal fluxes obtained with a specific transmissibility peak time and recurrent travel outperformed the raw air-transportation predictor, previously considered as optimal indicator of global influenza migration. Influenza A subtypes supported autumn-winter reproductive number as high as 2.25 and an average immunity duration of 2 years. Similar dynamics were preferred by influenza B lineages, with a lower autumn-winter reproductive number. Comparing simulated epidemic profiles against FluNet data offered comparatively limited resolution power. The multiscale approach enables model selection yielding a novel computational framework for describing global influenza dynamics at different scales - local transmission and national epidemics vs. international coupling through mobility and imported cases. Our findings have important implications to improve preparedness against seasonal influenza epidemics. The approach can be generalized to other epidemic contexts, such as emerging disease outbreaks to improve the flexibility and predictive power of modeling.
Collapse
Affiliation(s)
- Francesco Parino
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidemiologie et de Santé Publique (IPLESP), Paris, France
| | - Emanuele Gustani-Buss
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven – University of Leuven, 3000 Leuven, Belgium
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
- Howard Hughes Medical Institute, Seattle, Washington 98109, USA
| | - Marc A. Suchard
- Departments of Biomathematics and Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, 90095, USA
- Department of Biostatistics, UCLA Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA
| | | | - Andrew Rambaut
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Vittoria Colizza
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidemiologie et de Santé Publique (IPLESP), Paris, France
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Chiara Poletto
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven – University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
14
|
Faucher B, Sabbatini CE, Czuppon P, Kraemer MUG, Lemey P, Colizza V, Blanquart F, Boëlle PY, Poletto C. Drivers and impact of the early silent invasion of SARS-CoV-2 Alpha. Nat Commun 2024; 15:2152. [PMID: 38461311 PMCID: PMC10925057 DOI: 10.1038/s41467-024-46345-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/22/2024] [Indexed: 03/11/2024] Open
Abstract
SARS-CoV-2 variants of concern (VOCs) circulated cryptically before being identified as a threat, delaying interventions. Here we studied the drivers of such silent spread and its epidemic impact to inform future response planning. We focused on Alpha spread out of the UK. We integrated spatio-temporal records of international mobility, local epidemic growth and genomic surveillance into a Bayesian framework to reconstruct the first three months after Alpha emergence. We found that silent circulation lasted from days to months and decreased with the logarithm of sequencing coverage. Social restrictions in some countries likely delayed the establishment of local transmission, mitigating the negative consequences of late detection. Revisiting the initial spread of Alpha supports local mitigation at the destination in case of emerging events.
Collapse
Affiliation(s)
- Benjamin Faucher
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (IPLESP), F75012, Paris, France
| | - Chiara E Sabbatini
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (IPLESP), F75012, Paris, France
| | - Peter Czuppon
- Institute for Evolution and Biodiversity, University of Münster, Münster, 48149, Germany
| | - Moritz U G Kraemer
- Department of Biology, University of Oxford, Oxford, UK
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Vittoria Colizza
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (IPLESP), F75012, Paris, France
- Department of Biology, Georgetown University, Washington, DC, USA
| | - François Blanquart
- Center for Interdisciplinary Research in Biology, CNRS, Collège de France, PSL Research University, Paris, 75005, France
| | - Pierre-Yves Boëlle
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (IPLESP), F75012, Paris, France
| | - Chiara Poletto
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy.
| |
Collapse
|
15
|
Gallego-García P, Estévez-Gómez N, De Chiara L, Alvariño P, Juiz-González PM, Torres-Beceiro I, Poza M, Vallejo JA, Rumbo-Feal S, Conde-Pérez K, Aja-Macaya P, Ladra S, Moreno-Flores A, Gude-González MJ, Coira A, Aguilera A, Costa-Alcalde JJ, Trastoy R, Barbeito-Castiñeiras G, García-Souto D, Tubio JMC, Trigo-Daporta M, Camacho-Zamora P, Costa JG, González-Domínguez M, Canoura-Fernández L, Glez-Peña D, Pérez-Castro S, Cabrera JJ, Daviña-Núñez C, Godoy-Diz M, Treinta-Álvarez AB, Veiga MI, Sousa JC, Osório NS, Comas I, González-Candelas F, Hong SL, Bollen N, Dellicour S, Baele G, Suchard MA, Lemey P, Agulla A, Bou G, Alonso-García P, Pérez-Del-Molino ML, García-Campello M, Paz-Vidal I, Regueiro B, Posada D. Dispersal history of SARS-CoV-2 in Galicia, Spain. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.27.24303385. [PMID: 38463998 PMCID: PMC10925372 DOI: 10.1101/2024.02.27.24303385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The dynamics of SARS-CoV-2 transmission are influenced by a variety of factors, including social restrictions and the emergence of distinct variants. In this study, we delve into the origins and dissemination of the Alpha, Delta, and Omicron variants of concern in Galicia, northwest Spain. For this, we leveraged genomic data collected by the EPICOVIGAL Consortium and from the GISAID database, along with mobility information from other Spanish regions and foreign countries. Our analysis indicates that initial introductions during the Alpha phase were predominantly from other Spanish regions and France. However, as the pandemic progressed, introductions from Portugal and the USA became increasingly significant. Notably, Galicia's major coastal cities emerged as critical hubs for viral transmission, highlighting their role in sustaining and spreading the virus. This research emphasizes the critical role of regional connectivity in the spread of SARS-CoV-2 and offers essential insights for enhancing public health strategies and surveillance measures.
Collapse
Affiliation(s)
- Pilar Gallego-García
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO
| | - Nuria Estévez-Gómez
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO
| | - Loretta De Chiara
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, Vigo 36310, Spain
| | | | - Pedro M Juiz-González
- Servicio de Microbiología del Complejo Hospitalario Universitario de Ferrol, 15405 Ferrol
| | - Isabel Torres-Beceiro
- Servicio de Microbiología del Complejo Hospitalario Universitario de Ferrol, 15405 Ferrol
| | - Margarita Poza
- Microbiology Research Group, Institute of Biomedical Research (INIBIC) - Interdisciplinary Center for Chemistry and Biology (CICA) - University of A Coruña (UDC) - CIBER de Enfermedades Infecciosas (CIBERINFEC-ISCIII), Madrid. Servicio de Microbiología, 3° planta, Edificio Sur, Hospital Universitario A Coruña, As Xubias, 15006, A Coruña, Spain
- Microbiome and Health Group, Faculty of Sciences, University of A Coruña (UDC). Campus da Zapateira, 15008, A Coruña, Spain
| | - Juan A Vallejo
- Microbiology Research Group, Institute of Biomedical Research (INIBIC) - Interdisciplinary Center for Chemistry and Biology (CICA) - University of A Coruña (UDC) - CIBER de Enfermedades Infecciosas (CIBERINFEC-ISCIII), Madrid. Servicio de Microbiología, 3° planta, Edificio Sur, Hospital Universitario A Coruña, As Xubias, 15006, A Coruña, Spain
| | - Soraya Rumbo-Feal
- Microbiology Research Group, Institute of Biomedical Research (INIBIC) - Interdisciplinary Center for Chemistry and Biology (CICA) - University of A Coruña (UDC) - CIBER de Enfermedades Infecciosas (CIBERINFEC-ISCIII), Madrid. Servicio de Microbiología, 3° planta, Edificio Sur, Hospital Universitario A Coruña, As Xubias, 15006, A Coruña, Spain
| | - Kelly Conde-Pérez
- Microbiology Research Group, Institute of Biomedical Research (INIBIC) - Interdisciplinary Center for Chemistry and Biology (CICA) - University of A Coruña (UDC) - CIBER de Enfermedades Infecciosas (CIBERINFEC-ISCIII), Madrid. Servicio de Microbiología, 3° planta, Edificio Sur, Hospital Universitario A Coruña, As Xubias, 15006, A Coruña, Spain
| | - Pablo Aja-Macaya
- Microbiology Research Group, Institute of Biomedical Research (INIBIC) - Interdisciplinary Center for Chemistry and Biology (CICA) - University of A Coruña (UDC) - CIBER de Enfermedades Infecciosas (CIBERINFEC-ISCIII), Madrid. Servicio de Microbiología, 3° planta, Edificio Sur, Hospital Universitario A Coruña, As Xubias, 15006, A Coruña, Spain
| | - Susana Ladra
- Database Laboratory, Research Center for Information and Communication Technologies (CITIC), University of A Coruña (UDC), Campus de Elviña, 15071 A Coruña, Spain
| | | | | | - Amparo Coira
- Microbiology Department, Complexo Hospitalario Universitario de Santiago de Compostela. SERGAS - Microbiology Research Group, Institute of Biomedical Research (IDIS) - Santiago de Compostela 15706, Spain
| | - Antonio Aguilera
- Microbiology Department, Complexo Hospitalario Universitario de Santiago de Compostela. SERGAS - Microbiology Research Group, Institute of Biomedical Research (IDIS) - Santiago de Compostela 15706, Spain
| | - José J Costa-Alcalde
- Microbiology Department, Complexo Hospitalario Universitario de Santiago de Compostela. SERGAS - Microbiology Research Group, Institute of Biomedical Research (IDIS) - Santiago de Compostela 15706, Spain
| | - Rocío Trastoy
- Microbiology Department, Complexo Hospitalario Universitario de Santiago de Compostela. SERGAS - Microbiology Research Group, Institute of Biomedical Research (IDIS) - Santiago de Compostela 15706, Spain
| | - Gema Barbeito-Castiñeiras
- Microbiology Department, Complexo Hospitalario Universitario de Santiago de Compostela. SERGAS - Microbiology Research Group, Institute of Biomedical Research (IDIS) - Santiago de Compostela 15706, Spain
| | - Daniel García-Souto
- CiMUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain. - Department of Zoology, Genetics and Physic Anthropology, 15782, Santiago de Compostela, Spain
| | - José M C Tubio
- CiMUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain. - Department of Zoology, Genetics and Physic Anthropology, 15782, Santiago de Compostela, Spain
| | - Matilde Trigo-Daporta
- Clinical Microbiology Unit, Complexo Hospitalario Universitario de Pontevedra, Pontevedra, Spain
| | - Pablo Camacho-Zamora
- Clinical Microbiology Unit, Complexo Hospitalario Universitario de Pontevedra, Pontevedra, Spain
| | - Juan García Costa
- Servicio de Microbiología. Complejo Hospitalario Universitario de Ourense, 32005, Ourense, Spain
| | - María González-Domínguez
- Servicio de Microbiología. Complejo Hospitalario Universitario de Ourense, 32005, Ourense, Spain
| | - Luis Canoura-Fernández
- Servicio de Microbiología. Complejo Hospitalario Universitario de Ourense, 32005, Ourense, Spain
| | - Daniel Glez-Peña
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO
| | - Sonia Pérez-Castro
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo 36213, Spain
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Jorge J Cabrera
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo 36213, Spain
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Carlos Daviña-Núñez
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Montserrat Godoy-Diz
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo 36213, Spain
| | - Ana Belén Treinta-Álvarez
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo 36213, Spain
| | - Maria Isabel Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal - ICVS/3B's-PT Government Associate Laboratory, 4806-909, Guimarães/ Braga, Portugal
| | - João Carlos Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal - ICVS/3B's-PT Government Associate Laboratory, 4806-909, Guimarães/ Braga, Portugal
| | - Nuno S Osório
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal - ICVS/3B's-PT Government Associate Laboratory, 4806-909, Guimarães/ Braga, Portugal
| | - Iñaki Comas
- Tuberculosis Genomics Unit, Biomedicine Institute of Valencia, Spanish Research Council (CSIC), Valencia, Spain
- CIBER in Epidemiology and Public Health, Spain; Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain
| | - Fernando González-Candelas
- CIBER in Epidemiology and Public Health, Spain; Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Valencia, Spain
| | - Samuel L Hong
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Nena Bollen
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Simon Dellicour
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven - University of Leuven, 3000 Leuven, Belgium
- Spatial Epidemiology Lab, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Marc A Suchard
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA - Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA - Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven - University of Leuven, 3000 Leuven, Belgium
- Global Virus Network (GVN), Baltimore, MD 21201, USA
| | - Andrés Agulla
- Servicio de Microbiología del Complejo Hospitalario Universitario de Ferrol, 15405 Ferrol
| | - Germán Bou
- Microbiology Research Group, Institute of Biomedical Research (INIBIC) - Interdisciplinary Center for Chemistry and Biology (CICA) - University of A Coruña (UDC) - CIBER de Enfermedades Infecciosas (CIBERINFEC-ISCIII), Madrid. Servicio de Microbiología, 3° planta, Edificio Sur, Hospital Universitario A Coruña, As Xubias, 15006, A Coruña, Spain
| | - Pilar Alonso-García
- Servicio de Microbiología, Hospital Universitario Lucus Augusti, Lugo, Spain
| | - María Luisa Pérez-Del-Molino
- Microbiology Department, Complexo Hospitalario Universitario de Santiago de Compostela. SERGAS - Microbiology Research Group, Institute of Biomedical Research (IDIS) - Santiago de Compostela 15706, Spain
| | - Marta García-Campello
- Clinical Microbiology Unit, Complexo Hospitalario Universitario de Pontevedra, Pontevedra, Spain
| | - Isabel Paz-Vidal
- Servicio de Microbiología. Complejo Hospitalario Universitario de Ourense, 32005, Ourense, Spain
| | - Benito Regueiro
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo 36213, Spain
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - David Posada
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, Vigo 36310, Spain
| |
Collapse
|
16
|
Chen Z, Lemey P, Yu H. Approaches and challenges to inferring the geographical source of infectious disease outbreaks using genomic data. THE LANCET. MICROBE 2024; 5:e81-e92. [PMID: 38042165 DOI: 10.1016/s2666-5247(23)00296-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/03/2023] [Accepted: 09/13/2023] [Indexed: 12/04/2023]
Abstract
Genomic data hold increasing potential in the elucidation of transmission dynamics and geographical sources of infectious disease outbreaks. Phylogeographic methods that use epidemiological and genomic data obtained from surveillance enable us to infer the history of spatial transmission that is naturally embedded in the topology of phylogenetic trees as a record of the dispersal of infectious agents between geographical locations. In this Review, we provide an overview of phylogeographic approaches widely used for reconstructing the geographical sources of outbreaks of interest. These approaches can be classified into ancestral trait or state reconstruction and structured population models, with structured population models including popular structured coalescent and birth-death models. We also describe the major challenges associated with sequencing technologies, surveillance strategies, data sharing, and analysis frameworks that became apparent during the generation of large-scale genomic data in recent years, extending beyond inference approaches. Finally, we highlight the role of genomic data in geographical source inference and clarify how this enhances understanding and molecular investigations of outbreak sources.
Collapse
Affiliation(s)
- Zhiyuan Chen
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Evolutionary Virology, KU Leuven, Leuven, Belgium
| | - Hongjie Yu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China.
| |
Collapse
|
17
|
Matteson NL, Hassler GW, Kurzban E, Schwab MA, Perkins SA, Gangavarapu K, Levy JI, Parker E, Pride D, Hakim A, De Hoff P, Cheung W, Castro-Martinez A, Rivera A, Veder A, Rivera A, Wauer C, Holmes J, Wilson J, Ngo SN, Plascencia A, Lawrence ES, Smoot EW, Eisner ER, Tsai R, Chacón M, Baer NA, Seaver P, Salido RA, Aigner S, Ngo TT, Barber T, Ostrander T, Fielding-Miller R, Simmons EH, Zazueta OE, Serafin-Higuera I, Sanchez-Alavez M, Moreno-Camacho JL, García-Gil A, Murphy Schafer AR, McDonald E, Corrigan J, Malone JD, Stous S, Shah S, Moshiri N, Weiss A, Anderson C, Aceves CM, Spencer EG, Hufbauer EC, Lee JJ, King AJ, Ramesh KS, Nguyen KN, Saucedo K, Robles-Sikisaka R, Fisch KM, Gonias SL, Birmingham A, McDonald D, Karthikeyan S, Martin NK, Schooley RT, Negrete AJ, Reyna HJ, Chavez JR, Garcia ML, Cornejo-Bravo JM, Becker D, Isaksson M, Washington NL, Lee W, Garfein RS, Luna-Ruiz Esparza MA, Alcántar-Fernández J, Henson B, Jepsen K, Olivares-Flores B, Barrera-Badillo G, Lopez-Martínez I, Ramírez-González JE, Flores-León R, Kingsmore SF, Sanders A, Pradenas A, White B, Matthews G, Hale M, McLawhon RW, Reed SL, Winbush T, McHardy IH, Fielding RA, Nicholson L, Quigley MM, Harding A, Mendoza A, Bakhtar O, Browne SH, Olivas Flores J, Rincon Rodríguez DG, Gonzalez Ibarra M, Robles Ibarra LC, Arellano Vera BJ, Gonzalez Garcia J, Harvey-Vera A, Knight R, Laurent LC, Yeo GW, Wertheim JO, Ji X, Worobey M, Suchard MA, Andersen KG, Campos-Romero A, Wohl S, Zeller M. Genomic surveillance reveals dynamic shifts in the connectivity of COVID-19 epidemics. Cell 2023; 186:5690-5704.e20. [PMID: 38101407 PMCID: PMC10795731 DOI: 10.1016/j.cell.2023.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/21/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023]
Abstract
The maturation of genomic surveillance in the past decade has enabled tracking of the emergence and spread of epidemics at an unprecedented level. During the COVID-19 pandemic, for example, genomic data revealed that local epidemics varied considerably in the frequency of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage importation and persistence, likely due to a combination of COVID-19 restrictions and changing connectivity. Here, we show that local COVID-19 epidemics are driven by regional transmission, including across international boundaries, but can become increasingly connected to distant locations following the relaxation of public health interventions. By integrating genomic, mobility, and epidemiological data, we find abundant transmission occurring between both adjacent and distant locations, supported by dynamic mobility patterns. We find that changing connectivity significantly influences local COVID-19 incidence. Our findings demonstrate a complex meaning of "local" when investigating connected epidemics and emphasize the importance of collaborative interventions for pandemic prevention and mitigation.
Collapse
Affiliation(s)
| | - Gabriel W Hassler
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ezra Kurzban
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Madison A Schwab
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Sarah A Perkins
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Karthik Gangavarapu
- Department of Biomathematics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA; Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Joshua I Levy
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Edyth Parker
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - David Pride
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA; Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Abbas Hakim
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA; COVID-19 Detection, Investigation, Surveillance, Clinical, and Outbreak Response, California Department of Public Health, Richmond, CA, USA
| | - Peter De Hoff
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA; COVID-19 Detection, Investigation, Surveillance, Clinical, and Outbreak Response, California Department of Public Health, Richmond, CA, USA
| | - Willi Cheung
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA; COVID-19 Detection, Investigation, Surveillance, Clinical, and Outbreak Response, California Department of Public Health, Richmond, CA, USA
| | - Anelizze Castro-Martinez
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA; Sanford Consortium of Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Andrea Rivera
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Anthony Veder
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Ariana Rivera
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Cassandra Wauer
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Jacqueline Holmes
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Jedediah Wilson
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Shayla N Ngo
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Ashley Plascencia
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Elijah S Lawrence
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Elizabeth W Smoot
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Emily R Eisner
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Rebecca Tsai
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Marisol Chacón
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Nathan A Baer
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Phoebe Seaver
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Rodolfo A Salido
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Stefan Aigner
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Toan T Ngo
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Tom Barber
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Tyler Ostrander
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Rebecca Fielding-Miller
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, USA; Division of Infectious Disease and Global Public Health, University of California, San Diego, La Jolla, CA, USA
| | | | - Oscar E Zazueta
- Department of Epidemiology, Secretaria de Salud de Baja California, Tijuana, Baja California, Mexico
| | | | - Manuel Sanchez-Alavez
- Centro de Diagnostico COVID-19 UABC, Tijuana, Baja California, Mexico; Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | | | - Abraham García-Gil
- Clinical Laboratory Department, Salud Digna, A.C, Tijuana, Baja California, Mexico
| | | | - Eric McDonald
- County of San Diego Health and Human Services Agency, San Diego, CA, USA
| | - Jeremy Corrigan
- County of San Diego Health and Human Services Agency, San Diego, CA, USA
| | - John D Malone
- County of San Diego Health and Human Services Agency, San Diego, CA, USA
| | - Sarah Stous
- County of San Diego Health and Human Services Agency, San Diego, CA, USA
| | - Seema Shah
- County of San Diego Health and Human Services Agency, San Diego, CA, USA
| | - Niema Moshiri
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Alana Weiss
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Catelyn Anderson
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Christine M Aceves
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Emily G Spencer
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Emory C Hufbauer
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Justin J Lee
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Alison J King
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Karthik S Ramesh
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Kelly N Nguyen
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Kieran Saucedo
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | | | - Kathleen M Fisch
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA; Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, CA, USA
| | - Steven L Gonias
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Amanda Birmingham
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Daniel McDonald
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Smruthi Karthikeyan
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Natasha K Martin
- Division of Infectious Disease and Global Public Health, University of California, San Diego, La Jolla, CA, USA
| | - Robert T Schooley
- Division of Infectious Disease and Global Public Health, University of California, San Diego, La Jolla, CA, USA
| | - Agustin J Negrete
- Facultad de Ciencias de la Salud Universidad Autonoma de Baja California Valle de Las Palmas, Tijuana, Baja California, Mexico
| | - Horacio J Reyna
- Facultad de Ciencias de la Salud Universidad Autonoma de Baja California Valle de Las Palmas, Tijuana, Baja California, Mexico
| | - Jose R Chavez
- Facultad de Ciencias de la Salud Universidad Autonoma de Baja California Valle de Las Palmas, Tijuana, Baja California, Mexico
| | - Maria L Garcia
- Facultad de Ciencias de la Salud Universidad Autonoma de Baja California Valle de Las Palmas, Tijuana, Baja California, Mexico
| | - Jose M Cornejo-Bravo
- Facultad de Ciencias Quimicas e Ingenieria, Universidad Autonoma de Baja California, Tijuana, Baja California, Mexico
| | | | | | | | | | - Richard S Garfein
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, USA
| | | | | | - Benjamin Henson
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kristen Jepsen
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Beatriz Olivares-Flores
- Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE), Ciudad de México, CDMX, Mexico
| | - Gisela Barrera-Badillo
- Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE), Ciudad de México, CDMX, Mexico
| | - Irma Lopez-Martínez
- Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE), Ciudad de México, CDMX, Mexico
| | - José E Ramírez-González
- Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE), Ciudad de México, CDMX, Mexico
| | - Rita Flores-León
- Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE), Ciudad de México, CDMX, Mexico
| | | | - Alison Sanders
- Return to Learn, University of California, San Diego, La Jolla, CA, USA
| | - Allorah Pradenas
- Return to Learn, University of California, San Diego, La Jolla, CA, USA
| | - Benjamin White
- Return to Learn, University of California, San Diego, La Jolla, CA, USA
| | - Gary Matthews
- Return to Learn, University of California, San Diego, La Jolla, CA, USA
| | - Matt Hale
- Return to Learn, University of California, San Diego, La Jolla, CA, USA
| | - Ronald W McLawhon
- Return to Learn, University of California, San Diego, La Jolla, CA, USA
| | - Sharon L Reed
- Return to Learn, University of California, San Diego, La Jolla, CA, USA
| | - Terri Winbush
- Return to Learn, University of California, San Diego, La Jolla, CA, USA
| | | | | | | | | | | | | | | | - Sara H Browne
- Division of Infectious Disease and Global Public Health, University of California, San Diego, La Jolla, CA, USA; Specialist in Global Health, Encinitas, CA, USA
| | - Jocelyn Olivas Flores
- Facultad de Ciencias Quimicas e Ingenieria, Universidad Autonoma de Baja California, Tijuana, Baja California, Mexico; University of HealthMx, Tijuana, Baja California, Mexico
| | - Diana G Rincon Rodríguez
- University of HealthMx, Tijuana, Baja California, Mexico; Facultad de Medicina, Universidad Xochicalco, Tijuana, Baja California, Mexico
| | - Martin Gonzalez Ibarra
- University of HealthMx, Tijuana, Baja California, Mexico; Facultad de Medicina, Universidad Xochicalco, Tijuana, Baja California, Mexico
| | - Luis C Robles Ibarra
- University of HealthMx, Tijuana, Baja California, Mexico; Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Tijuana, Baja California, Mexico
| | - Betsy J Arellano Vera
- University of HealthMx, Tijuana, Baja California, Mexico; Instituto Mexicano del Seguro Social, Tijuana, Baja California, Mexico
| | - Jonathan Gonzalez Garcia
- University of HealthMx, Tijuana, Baja California, Mexico; SIMNSA, Tijuana, Baja California, Mexico
| | | | - Rob Knight
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Louise C Laurent
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA; Sanford Consortium of Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Sanford Consortium of Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Joel O Wertheim
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Xiang Ji
- Department of Mathematics, School of Science and Engineering, Tulane University, New Orleans, LA, USA
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Marc A Suchard
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kristian G Andersen
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA.
| | - Abraham Campos-Romero
- Innovation and Research Department, Salud Digna, A.C, Tijuana, Baja California, Mexico
| | - Shirlee Wohl
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Mark Zeller
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
18
|
Stenseth NC, Schlatte R, Liu X, Pielke R, Chen B, Bjørnstad ON, Kusnezov D, Gao GF, Fraser C, Whittington JD, Gong P, Guan D, Johnsen EB. Reply to Ekström and Ottersen: Real-time access to data during outbreaks is a key to avoid a local epidemic becoming a global pandemic. Proc Natl Acad Sci U S A 2023; 120:e2312649120. [PMID: 37748067 PMCID: PMC10556645 DOI: 10.1073/pnas.2312649120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Affiliation(s)
- Nils Chr. Stenseth
- Center for Pandemics and One Health Research, Sustainable Health Unit (SUSTAINIT), Faculty of Medicine, Oslo0316, Norway
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo0316, Norway
- Vanke School of Public Health, Tsinghua University, Beijing100084, China
| | - Rudolf Schlatte
- Department of Informatics, University of Oslo, Oslo0316, Norway
| | - Xiaoli Liu
- Department of Computer Science, University of Helsinki, Helsinki00560, Finland
| | - Roger Pielke
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo0316, Norway
- Department of Environmental Studies, University of Colorado Boulder, Boulder, CO80309
| | - Bin Chen
- Division of Landscape Architecture, Faculty of Architecture, University of Hong Kong, Hong Kong999077, China
| | - Ottar N. Bjørnstad
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo0316, Norway
- Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA16802
| | - Dimitri Kusnezov
- Deputy Under Secretary, Artificial Intelligence and Technology Office, US Department of Energy, Washington, DC20585
| | - George F. Gao
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing100101, China
| | - Christophe Fraser
- Pandemic Sciences Institute, University of Oxford, OxfordOX3 7DQ, United Kingdom
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford0X37LF, United Kingdom
| | - Jason D. Whittington
- Center for Pandemics and One Health Research, Sustainable Health Unit (SUSTAINIT), Faculty of Medicine, Oslo0316, Norway
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo0316, Norway
| | - Peng Gong
- Department of Geography and Earth Sciences, Urban Systems Institute, University of Hong Kong, Hong Kong999077, China
| | - Dabo Guan
- Department of Earth System Science, Tsinghua University, Beijing100084, China
- The Bartlett School of Sustainable Construction, University College London, LondonWC1E 6BT, United Kingdom
| | | |
Collapse
|