1
|
Degn SE, Tolar P. Towards a unifying model for B-cell receptor triggering. Nat Rev Immunol 2024:10.1038/s41577-024-01073-x. [PMID: 39256626 DOI: 10.1038/s41577-024-01073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 09/12/2024]
Abstract
Antibodies are exceptionally versatile molecules with remarkable flexibility in their binding properties. Their natural targets range from small-molecule toxins, across viruses of different sizes, to bacteria and large multicellular parasites. The molecular determinants bound by antibodies include proteins, peptides, carbohydrates, nucleic acids, lipids and even synthetic molecules that have never existed in nature. Membrane-anchored antibodies also serve as receptors on the surface of the B cells that produce them. Despite recent structural insights, there is still no unifying molecular mechanism to explain how antibody targets (antigens) trigger the activation of these B-cell receptors (BCRs). After cognate antigen encounter, somatic hypermutation and class-switch recombination allow BCR affinity maturation and immunoglobulin class-specific responses, respectively. This raises the fundamental question of how one receptor activation mechanism can accommodate a plethora of variant receptors and ligands, and how it can ensure that individual B cells remain responsive to antigen after somatic hypermutation and class switching. There is still no definite answer. Here we give a brief historical account of the different models proposed to explain BCR triggering and discuss their merit in the context of the current knowledge of the structure of BCRs, their dynamic membrane distribution, and recent biochemical and cell biological insights.
Collapse
Affiliation(s)
- Søren E Degn
- Laboratory for Lymphocyte Biology, Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- Centre for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus, Denmark.
| | - Pavel Tolar
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
2
|
Mahtani T, Sheth H, Smith LK, Benedict L, Brecier A, Ghasemlou N, Treanor B. The ion channel TRPV5 regulates B-cell signaling and activation. Front Immunol 2024; 15:1386719. [PMID: 38694510 PMCID: PMC11061418 DOI: 10.3389/fimmu.2024.1386719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/28/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction B-cell activation triggers the release of endoplasmic reticulum calcium stores through the store-operated calcium entry (SOCE) pathway resulting in calcium influx by calcium release-activated calcium (CRAC) channels on the plasma membrane. B-cell-specific murine knockouts of SOCE do not impact humoral immunity suggesting that alternative channels may be important. Methods We identified a member of the calcium-permeable transient receptor potential (TRP) ion channel family, TRPV5, as a candidate channel expressed in B cells by a quantitative polymerase chain reaction (qPCR) screen. To further investigate the role of TRPV5 in B-cell responses, we generated a murine TRPV5 knockout (KO) by CRISPR-Cas9. Results We found TRPV5 polarized to B-cell receptor (BCR) clusters upon stimulation in a PI3K-RhoA-dependent manner. TRPV5 KO mice have normal B-cell development and mature B-cell numbers. Surprisingly, calcium influx upon BCR stimulation in primary TRPV5 KO B cells was not impaired; however, differential expression of other calcium-regulating proteins, such as ORAI1, may contribute to a compensatory mechanism for calcium signaling in these cells. We demonstrate that TRPV5 KO B cells have impaired spreading and contraction in response to membrane-bound antigen. Consistent with this, TRPV5 KO B cells have reduced BCR signaling measured through phospho-tyrosine residues. Lastly, we also found that TRPV5 is important for early T-dependent antigen specific responses post-immunization. Discussion Thus, our findings identify a role for TRPV5 in BCR signaling and B-cell activation.
Collapse
Affiliation(s)
- Trisha Mahtani
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Hena Sheth
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - L. K. Smith
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Leshawn Benedict
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Aurelie Brecier
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Nader Ghasemlou
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Bebhinn Treanor
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Cui H, Zhang L, Shi Y. Biomaterials-mediated ligation of immune cell surface receptors for immunoengineering. IMMUNO-ONCOLOGY TECHNOLOGY 2024; 21:100695. [PMID: 38405432 PMCID: PMC10891334 DOI: 10.1016/j.iotech.2023.100695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
A wide variety of cell surface receptors found on immune cells are essential to the body's immunological defense mechanisms. Cell surface receptors enable immune cells to sense extracellular stimuli and identify pathogens, transmitting activating or inhibitory signals that regulate the immune cell state and coordinate immunological responses. These receptors can dynamically aggregate or disperse due to the fluidity of the cell membrane, particularly during interactions between cells or between cells and pathogens. At the contact surface, cell surface receptors form microclusters, facilitating the recruitment and amplification of downstream signals. The strength of the immune signal is influenced by both the quantity and the specific types of participating receptors. Generally, receptor cross-linking, meaning multivalent ligation of receptors on one cell, leads to greater interface connectivity and more robust signaling. However, intercellular interactions are often spatially restricted by other cellular structures. Therefore, it is essential to comprehend these receptors' features for developing effective immunoengineering approaches. Biomaterials can stimulate and simulate interactions between immune cells and their targets. Biomaterials can activate immune cells to act against pathogenic organisms or cancer cells, thereby offering a valuable immunoengineering toolset for vaccination and immunotherapy. In this review, we systematically summarize biomaterial-based immunoengineering strategies that consider the biology of diverse immune cell surface receptors and the structural attributes of pathogens. By combining this knowledge, we aim to advance the development of rational and effective approaches for immune modulation and therapeutic interventions.
Collapse
Affiliation(s)
- H. Cui
- Department of Polymer Therapeutics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - L. Zhang
- Department of Mechanical and Production Engineering, Aarhus University, Aarhus N, Denmark
| | - Y. Shi
- Department of Polymer Therapeutics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
4
|
van Weijsten MJ, Venrooij KR, Lelieveldt L, Kissel T, van Buijtenen E, van Dalen FJ, Verdoes M, Toes R, Bonger KM. Effect of Antigen Valency on Autoreactive B-Cell Targeting. Mol Pharm 2024; 21:481-490. [PMID: 37862070 PMCID: PMC10848265 DOI: 10.1021/acs.molpharmaceut.3c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023]
Abstract
Many autoimmune diseases are characterized by B cells that mistakenly recognize autoantigens and produce antibodies toward self-proteins. Current therapies aim to suppress the immune system, which is associated with adverse effects. An attractive and more specific approach is to target the autoreactive B cells selectively through their unique B-cell receptor (BCR) using an autoantigen coupled to an effector molecule able to modulate the B-cell activity. The cellular response upon antigen binding, such as receptor internalization, impacts the choice of effector molecule. In this study, we systematically investigated how a panel of well-defined mono-, di-, tetra-, and octavalent peptide antigens affects the binding, activation, and internalization of the BCR. To test our constructs, we used a B-cell line expressing a BCR against citrullinated antigens, the main autoimmune epitope in rheumatoid arthritis. We found that the dimeric antigen construct has superior targeting properties compared to those of its monomeric and multimeric counterparts, indicating that it can serve as a basis for future antigen-specific targeting studies for the treatment of RA.
Collapse
Affiliation(s)
- M. J. van Weijsten
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Institute
for Chemical Immunology, 6525 GA Nijmegen, The Netherlands
| | - K. R. Venrooij
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Institute
for Chemical Immunology, 6525 GA Nijmegen, The Netherlands
| | - L.P.W.M. Lelieveldt
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Institute
for Chemical Immunology, 6525 GA Nijmegen, The Netherlands
| | - T. Kissel
- Department
of Rheumatology, Leiden University Medical
Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - E. van Buijtenen
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - F. J. van Dalen
- Department
of Medical BioSciences, Radboudumc, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
- Institute
for Chemical Immunology, 6525 GA Nijmegen, The Netherlands
| | - M. Verdoes
- Department
of Medical BioSciences, Radboudumc, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
- Institute
for Chemical Immunology, 6525 GA Nijmegen, The Netherlands
| | - R.E.M. Toes
- Department
of Rheumatology, Leiden University Medical
Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - K. M. Bonger
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Institute
for Chemical Immunology, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
5
|
Ma F, Xu Q, Wang A, Yang D, Li Q, Guo J, Zhang L, Ou J, Li R, Yin H, Li K, Wang L, Wang Y, Zhao X, Niu X, Zhang S, Li X, Chai S, Zhang E, Rao Z, Zhang G. A universal design of restructured dimer antigens: Development of a superior vaccine against the paramyxovirus in transgenic rice. Proc Natl Acad Sci U S A 2024; 121:e2305745121. [PMID: 38236731 PMCID: PMC10823241 DOI: 10.1073/pnas.2305745121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
The development of vaccines, which induce effective immune responses while ensuring safety and affordability, remains a substantial challenge. In this study, we proposed a vaccine model of a restructured "head-to-tail" dimer to efficiently stimulate B cell response. We also demonstrate the feasibility of using this model to develop a paramyxovirus vaccine through a low-cost rice endosperm expression system. Crystal structure and small-angle X-ray scattering data showed that the restructured hemagglutinin-neuraminidase (HN) formed tetramers with fully exposed quadruple receptor binding domains and neutralizing epitopes. In comparison with the original HN antigen and three traditional commercial whole virus vaccines, the restructured HN facilitated critical epitope exposure and initiated a faster and more potent immune response. Two-dose immunization with 0.5 μg of the restructured antigen (equivalent to one-127th of a rice grain) and one-dose with 5 μg completely protected chickens against a lethal challenge of the virus. These results demonstrate that the restructured HN from transgenic rice seeds is safe, effective, low-dose useful, and inexpensive. We provide a plant platform and a simple restructured model for highly effective vaccine development.
Collapse
Affiliation(s)
- Fanshu Ma
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou450046, China
- School of Advanced Agriculture Sciences, Peking University, Beijing100871, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou450046, China
- College of Life Sciences, Zhengzhou University, Zhengzhou450001, China
- Chinese Academy of Sciences Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, China
| | - Qianru Xu
- School of Basic Medical Sciences, Henan University, Kaifeng475004, China
| | - Aiping Wang
- College of Life Sciences, Zhengzhou University, Zhengzhou450001, China
| | - Daichang Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan430074, China
| | - Qingmei Li
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou450002, China
| | - Junqing Guo
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou450002, China
| | - Longxian Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou450046, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou450046, China
| | - Jiquan Ou
- Wuhan Healthgen Biotechnology Corp., Wuhan430074, China
| | - Rui Li
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou450002, China
| | - Heng Yin
- Wuhan Healthgen Biotechnology Corp., Wuhan430074, China
| | - Kunpeng Li
- Wuhan Healthgen Biotechnology Corp., Wuhan430074, China
| | - Li Wang
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou450002, China
| | - Yanan Wang
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou450002, China
| | - Xiangyue Zhao
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou450002, China
| | - Xiangxiang Niu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou450046, China
| | - Shenli Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou450046, China
| | - Xueyang Li
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou450046, China
| | - Shujun Chai
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou450002, China
| | - Erqin Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou450046, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou450046, China
| | - Zihe Rao
- Laboratory of Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing100084, China
| | - Gaiping Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou450046, China
- School of Advanced Agriculture Sciences, Peking University, Beijing100871, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou450046, China
- College of Life Sciences, Zhengzhou University, Zhengzhou450001, China
| |
Collapse
|
6
|
Ferapontov A, Omer M, Baudrexel I, Nielsen JS, Dupont DM, Juul-Madsen K, Steen P, Eklund AS, Thiel S, Vorup-Jensen T, Jungmann R, Kjems J, Degn SE. Antigen footprint governs activation of the B cell receptor. Nat Commun 2023; 14:976. [PMID: 36813795 PMCID: PMC9947222 DOI: 10.1038/s41467-023-36672-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
Antigen binding by B cell receptors (BCR) on cognate B cells elicits a response that eventually leads to production of antibodies. However, it is unclear what the distribution of BCRs is on the naïve B cell and how antigen binding triggers the first step in BCR signaling. Using DNA-PAINT super-resolution microscopy, we find that most BCRs are present as monomers, dimers, or loosely associated clusters on resting B cells, with a nearest-neighbor inter-Fab distance of 20-30 nm. We leverage a Holliday junction nanoscaffold to engineer monodisperse model antigens with precision-controlled affinity and valency, and find that the antigen exerts agonistic effects on the BCR as a function of increasing affinity and avidity. Monovalent macromolecular antigens can activate the BCR at high concentrations, whereas micromolecular antigens cannot, demonstrating that antigen binding does not directly drive activation. Based on this, we propose a BCR activation model determined by the antigen footprint.
Collapse
Affiliation(s)
- Alexey Ferapontov
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.,Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark
| | - Marjan Omer
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark.,Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Isabelle Baudrexel
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark.,Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jesper Sejrup Nielsen
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark.,Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Daniel Miotto Dupont
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark.,Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | | | - Philipp Steen
- Max Planck Institute of Biochemistry, Martinsried, Germany.,Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Munich, Germany
| | - Alexandra S Eklund
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark.,Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.,Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark
| | | | - Ralf Jungmann
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark.,Max Planck Institute of Biochemistry, Martinsried, Germany.,Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Munich, Germany
| | - Jørgen Kjems
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark.,Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Søren Egedal Degn
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark. .,Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
7
|
Kerketta R, Erasmus MF, Wilson BS, Halasz AM, Edwards JS. Spatial Stochastic Model of the Pre-B Cell Receptor. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:683-693. [PMID: 35482702 PMCID: PMC10123485 DOI: 10.1109/tcbb.2022.3166149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Survival and proliferation of immature B lymphocytes requires expression and tonic signaling of the pre-B cell receptor (pre-BCR). This low level, ligand-independent signaling is likely achieved through frequent, but short-lived, homo interactions. Tonic signaling is also central in the pathology of precursor B acute lymphoblastic leukemia (B-ALL). In order to understand how repeated, transient events can lead to sustained signaling and to assess the impact of receptor accumulation induced by the membrane landscape, we developed a spatial stochastic model of receptor aggregation and downstream signaling events. Our rule- and agent-based model builds on previous mature BCR signaling models and incorporates novel parameters derived from single particle tracking of pre-BCR on surfaces of two different B-ALL cell lines, 697 and Nalm6. Live cell tracking of receptors on the two cell lines revealed characteristic differences in their dimer dissociation rates and diffusion coefficients. We report here that these differences affect pre-BCR aggregation and consequent signal initiation events. Receptors on Nalm6 cells, which have a lower off-rate and lower diffusion coefficient, more frequently form higher order oligomers than pre-BCR on 697 cells, resulting in higher levels of downstream phosphorylation in the Nalm6 cell line.
Collapse
|
8
|
A Novel TLR4-SYK Interaction Axis Plays an Essential Role in the Innate Immunity Response in Bovine Mammary Epithelial Cells. Biomedicines 2022; 11:biomedicines11010097. [PMID: 36672605 PMCID: PMC9855420 DOI: 10.3390/biomedicines11010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/11/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Mammary gland epithelium, as the first line of defense for bovine mammary gland immunity, is crucial in the process of mammary glands’ innate immunity, especially that of bovine mammary epithelial cells (bMECs). Our previous studies successfully marked SYK as an important candidate gene for mastitis traits via GWAS and preliminarily confirmed that SYK expression is down-regulated in bMECs with LPS (E. coli) stimulation, but its work mechanism is still unclear. In this study, for the first time, in vivo, TLR4 and SYK were colocalized and had a high correlation in mastitis mammary epithelium; protein−protein interaction results also confirmed that there was a direct interaction between them in mastitis tissue, suggesting that SYK participates in the immune regulation of the TLR4 cascade for bovine mastitis. In vitro, TLR4 also interacts with SYK in LPS (E. coli)-stimulated or GBS (S. agalactiae)-infected bMECs, respectively. Moreover, TLR4 mRNA expression and protein levels were little affected in bMECsSYK- with LPS stimulation or GBS infection, indicating that SYK is an important downstream element of the TLR4 cascade in bMECs. Interestingly, IL-1β, IL-8, NF-κB and NLRP3 expression in LPS-stimulated or GBS-infected bMECsSYK- were significantly higher than in the control group, while AKT1 expression was down-regulated, implying that SYK could inhibit the IL-1β, IL-8, NF-κB and NLRP3 expression and alleviate inflammation in bMECs with LPS and GBS. Taken together, our solid evidence supports that TLR4/SYK/NF-κB signal axis in bMECs regulates the innate immunity response to LPS or GBS.
Collapse
|
9
|
Kanagy WK, Cleyrat C, Fazel M, Lucero SR, Bruchez MP, Lidke KA, Wilson BS, Lidke DS. Docking of Syk to FcεRI is enhanced by Lyn but limited in duration by SHIP1. Mol Biol Cell 2022; 33:ar89. [PMID: 35793126 PMCID: PMC9582627 DOI: 10.1091/mbc.e21-12-0603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The high-affinity immunoglobulin E (IgE) receptor, FcεRI, is the primary immune receptor found on mast cells and basophils. Signal initiation is classically attributed to phosphorylation of FcεRI β− and γ-subunits by the Src family kinase (SFK) Lyn, followed by the recruitment and activation of the tyrosine kinase Syk. FcεRI signaling is tuned by the balance between Syk-driven positive signaling and the engagement of inhibitory molecules, including SHIP1. Here, we investigate the mechanistic contributions of Lyn, Syk, and SHIP1 to the formation of the FcεRI signalosome. Using Lyn-deficient RBL-2H3 mast cells, we found that another SFK can weakly monophosphorylate the γ-subunit, yet Syk still binds the incompletely phosphorylated immunoreceptor tyrosine-based activation motifs (ITAMs). Once recruited, Syk further enhances γ-phosphorylation to propagate signaling. In contrast, the loss of SHIP1 recruitment indicates that Lyn is required for phosphorylation of the β-subunit. We demonstrate two noncanonical Syk binding modes, trans γ-bridging and direct β-binding, that can support signaling when SHIP1 is absent. Using single particle tracking, we reveal a novel role of SHIP1 in regulating Syk activity, where the presence of SHIP1 in the signaling complex acts to increase the Syk:receptor off-rate. These data suggest that the composition and dynamics of the signalosome modulate immunoreceptor signaling activities.
Collapse
Affiliation(s)
- William K Kanagy
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
| | - Cédric Cleyrat
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Mohamadreza Fazel
- Department of Physics, University of New Mexico, Albuquerque, NM 87131
| | - Shayna R Lucero
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
| | - Marcel P Bruchez
- Department of Biological Sciences and Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Keith A Lidke
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131.,Department of Physics, University of New Mexico, Albuquerque, NM 87131
| | - Bridget S Wilson
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Diane S Lidke
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|
10
|
Hinke DM, Andersen TK, Gopalakrishnan RP, Skullerud LM, Werninghaus IC, Grødeland G, Fossum E, Braathen R, Bogen B. Antigen bivalency of antigen-presenting cell-targeted vaccines increases B cell responses. Cell Rep 2022; 39:110901. [PMID: 35649357 DOI: 10.1016/j.celrep.2022.110901] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 04/09/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022] Open
Abstract
Antibodies are important for vaccine efficacy. Targeting antigens to antigen-presenting cells (APCs) increases antibody levels. Here, we explore the role of antigen valency in MHC class II (MHCII)-targeted vaccines delivered as DNA. We design heterodimeric proteins that carry either two identical (bivalent vaccines), or two different antigens (monovalent vaccines). Bivalent vaccines with two identical influenza hemagglutinins (HA) elicit higher amounts of anti-HA antibodies in mice than monovalent versions with two different HAs. Bivalent vaccines increase the levels of germinal center (GC) B cells and long-lived plasma cells. Only HA-bivalent vaccines completely protect mice against challenge with homologous influenza virus. Similar results are obtained with other antigens by targeting CD11c and Xcr1 on dendritic cells (DCs) or when administering the vaccine as protein with adjuvant. Bivalency probably increases B cell responses by cross-linking BCRs in readily observable DC-B cell synapses. These results are important for generating potent APC-targeted vaccines.
Collapse
Affiliation(s)
- Daniëla Maria Hinke
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway; Department of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo 0372, Norway
| | - Tor Kristian Andersen
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway; Department of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo 0372, Norway
| | | | - Lise Madelene Skullerud
- Department of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo 0372, Norway
| | | | - Gunnveig Grødeland
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway; Department of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo 0372, Norway
| | - Even Fossum
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway; Department of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo 0372, Norway
| | - Ranveig Braathen
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway; Department of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo 0372, Norway.
| | - Bjarne Bogen
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway; Department of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo 0372, Norway.
| |
Collapse
|
11
|
Ashouri JF, Lo W, Nguyen TTT, Shen L, Weiss A. ZAP70, too little, too much can lead to autoimmunity*. Immunol Rev 2021; 307:145-160. [PMID: 34923645 PMCID: PMC8986586 DOI: 10.1111/imr.13058] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 12/21/2022]
Abstract
Establishing both central and peripheral tolerance requires the appropriate TCR signaling strength to discriminate self‐ from agonist‐peptide bound to self MHC molecules. ZAP70, a cytoplasmic tyrosine kinase, directly interacts with the TCR complex and plays a central and requisite role in TCR signaling in both thymocytes and peripheral T cells. By studying ZAP70 hypomorphic mutations in mice and humans with a spectrum of hypoactive or hyperactive activities, we have gained insights into mechanisms of central and peripheral tolerance. Interestingly, both hypoactive and hyperactive ZAP70 can lead to the development of autoimmune diseases, albeit through distinct mechanisms. Immature thymocytes and mature T cells rely on normal ZAP70 function to complete their development in the thymus and to modulate T cell responses in the periphery. Hypoactive ZAP70 function compromises key developmental checkpoints required to establish central tolerance, allowing thymocytes with potentially self‐reactive TCRs a greater chance to escape negative selection. Such ‘forbidden clones’ may escape into the periphery and may pose a greater risk for autoimmune disease development since they may not engage negative regulatory mechanisms as effectively. Hyperactive ZAP70 enhances thymic negative selection but some thymocytes will, nonetheless, escape negative selection and have greater sensitivity to weak and self‐ligands. Such cells must be controlled by mechanisms involved in anergy, expansion of Tregs, and upregulation of inhibitory receptors or signaling molecules. However, such potentially autoreactive cells may still be able to escape control by peripheral negative regulatory constraints. Consistent with findings in Zap70 mutants, the signaling defects in at least one ZAP70 substrate, LAT, can also lead to autoimmune disease. By dissecting the similarities and differences among mouse models of patient disease or mutations in ZAP70 that affect TCR signaling strength, we have gained insights into how perturbed ZAP70 function can lead to autoimmunity. Because of our work and that of others on ZAP70, it is likely that perturbations in other molecules affecting TCR signaling strength will be identified that also overcome tolerance mechanisms and cause autoimmunity. Delineating these molecular pathways could lead to the development of much needed new therapeutic targets in these complex diseases.
Collapse
Affiliation(s)
- Judith F. Ashouri
- Department of Medicine Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center University of California, San Francisco San Francisco California USA
| | - Wan‐Lin Lo
- Division of Microbiology and Immunology Department of Pathology University of Utah Salt Lake City Utah USA
| | - Trang T. T. Nguyen
- Department of Medicine Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center University of California, San Francisco San Francisco California USA
| | - Lin Shen
- Department of Medicine Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center University of California, San Francisco San Francisco California USA
| | - Arthur Weiss
- Department of Medicine Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center University of California, San Francisco San Francisco California USA
- Howard Hughes Medical Institute University of California, San Francisco San Francisco California USA
| |
Collapse
|
12
|
Hobbs HT, Shah NH, Badroos JM, Gee CL, Marqusee S, Kuriyan J. Differences in the dynamics of the tandem-SH2 modules of the Syk and ZAP-70 tyrosine kinases. Protein Sci 2021; 30:2373-2384. [PMID: 34601763 PMCID: PMC8605373 DOI: 10.1002/pro.4199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/03/2023]
Abstract
The catalytic activity of Syk-family tyrosine kinases is regulated by a tandem Src homology 2 module (tSH2 module). In the autoinhibited state, this module adopts a conformation that stabilizes an inactive conformation of the kinase domain. The binding of the tSH2 module to phosphorylated immunoreceptor tyrosine-based activation motifs necessitates a conformational change, thereby relieving kinase inhibition and promoting activation. We determined the crystal structure of the isolated tSH2 module of Syk and find, in contrast to ZAP-70, that its conformation more closely resembles that of the peptide-bound state, rather than the autoinhibited state. Hydrogen-deuterium exchange by mass spectrometry, as well as molecular dynamics simulations, reveal that the dynamics of the tSH2 modules of Syk and ZAP-70 differ, with most of these differences occurring in the C-terminal SH2 domain. Our data suggest that the conformational landscapes of the tSH2 modules in Syk and ZAP-70 have been tuned differently, such that the autoinhibited conformation of the Syk tSH2 module is less stable. This feature of Syk likely contributes to its ability to more readily escape autoinhibition when compared to ZAP-70, consistent with tighter control of downstream signaling pathways in T cells.
Collapse
Affiliation(s)
- Helen T. Hobbs
- Department of ChemistryUniversity of CaliforniaBerkeleyCaliforniaUSA
- Present address:
Department of Biomedical EngineeringUniversity of CaliforniaIrvineCaliforniaUSA
| | - Neel H. Shah
- California Institute for Quantitative BiosciencesUniversity of CaliforniaBerkeleyCaliforniaUSA
- Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- Present address:
Department of ChemistryColumbia UniversityNew YorkNew YorkUSA
| | - Jean M. Badroos
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Christine L. Gee
- California Institute for Quantitative BiosciencesUniversity of CaliforniaBerkeleyCaliforniaUSA
- Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Susan Marqusee
- Department of ChemistryUniversity of CaliforniaBerkeleyCaliforniaUSA
- California Institute for Quantitative BiosciencesUniversity of CaliforniaBerkeleyCaliforniaUSA
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - John Kuriyan
- Department of ChemistryUniversity of CaliforniaBerkeleyCaliforniaUSA
- California Institute for Quantitative BiosciencesUniversity of CaliforniaBerkeleyCaliforniaUSA
- Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| |
Collapse
|
13
|
Acute Csk inhibition hinders B cell activation by constraining the PI3 kinase pathway. Proc Natl Acad Sci U S A 2021; 118:2108957118. [PMID: 34675079 PMCID: PMC8639343 DOI: 10.1073/pnas.2108957118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 12/30/2022] Open
Abstract
B lymphocytes recognize pathogenic antigens and become activated via their B cell receptors (BCR). This BCR-dependent activation is controlled by Src-family kinases (SFKs). It is unclear how B cells tolerate the fluctuations of SFK activities and maintain unresponsiveness in the absence of foreign antigens. Using a chemical-genetic system, we acutely inhibited C-terminal Src kinase to enhance the SFK activity in mouse B cells. Surprisingly, we observed marked inhibition of BCR-downstream signaling due to associated impairment of the phosphatidylinositol-trisphosphate pathway. These results reveal the critical importance of maintaining a proper amount of SFK activity in quiescent B cells for appropriate BCR-dependent responses, which may be critical for naïve B cell unresponsiveness to self-antigens to maintain peripheral tolerance. T cell antigen receptor (TCR) and B cell antigen receptor (BCR) signaling are initiated and tightly regulated by Src-family kinases (SFKs). SFKs positively regulate TCR signaling in naïve T cells but have both positive and negative regulatory roles in BCR signaling in naïve B cells. The proper regulation of their activities depends on the opposing actions of receptor tyrosine phosphatases CD45 and CD148 and the cytoplasmic tyrosine kinase C-terminal Src kinase Csk. Csk is a major negative regulator of SFKs. Using a PP1-analog-sensitive Csk (CskAS) system, we have previously shown that inhibition of CskAS increases SFK activity, leading to augmentation of responses to weak TCR stimuli in T cells. However, the effects of Csk inhibition in B cells were not known. In this study, we surprisingly found that inhibition of CskAS led to marked inhibition of BCR-stimulated cytoplasmic free calcium increase and Erk activation despite increased SFK activation in B cells, contrasting the effects observed in T cells. Further investigation revealed that acute CskAS inhibition suppressed BCR-mediated phosphatidylinositol 3,4,5-trisphosphate (PIP3) production in B cells. Restoring PIP3 levels in B cells by CD19 cross-linking or SHIP1 deficiency eliminated the negative regulatory effect of CskAS inhibition. This reveals the critical role of Csk in maintaining an appropriate level of SFK activity and regulating PIP3 amounts as a means of compensating for SFK fluctuations to prevent inappropriate B cell activation. This regulatory mechanism controlling PIP3 amounts may also contribute to B cell anergy and self-tolerance.
Collapse
|
14
|
Pallini C, Pike JA, O'Shea C, Andrews RK, Gardiner EE, Watson SP, Poulter NS. Immobilized collagen prevents shedding and induces sustained GPVI clustering and signaling in platelets. Platelets 2021; 32:59-73. [PMID: 33455536 DOI: 10.1080/09537104.2020.1849607] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Collagen, the most thrombogenic constituent of blood vessel walls, activates platelets through glycoprotein VI (GPVI). In suspension, following platelet activation by collagen, GPVI is cleaved by A Disintegrin And Metalloproteinase (ADAM)10 and ADAM17. In this study, we use single-molecule localization microscopy and a 2-level DBSCAN-based clustering tool to show that GPVI remains clustered along immobilized collagen fibers for at least 3 hours in the absence of significant shedding. Tyrosine phosphorylation of spleen tyrosine kinase (Syk) and Linker of Activated T cells (LAT), and elevation of intracellular Ca2+, are sustained over this period. Syk, but not Src kinase-dependent signaling is required to maintain clustering of the collagen integrin α2β1, whilst neither is required for GPVI. We propose that clustering of GPVI on immobilized collagen protects GPVI from shedding in order to maintain sustained Src and Syk-kinases dependent signaling, activation of integrin α2β1, and continued adhesion.
Collapse
Affiliation(s)
- Chiara Pallini
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham , Midlands, UK
| | - Jeremy A Pike
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK
| | - Christopher O'Shea
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK
| | - Robert K Andrews
- Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University , Canberra, Australia
| | - Elizabeth E Gardiner
- Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University , Canberra, Australia
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham , Midlands, UK
| | - Natalie S Poulter
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham , Midlands, UK
| |
Collapse
|
15
|
Kliment K, Szekacs I, Peter B, Erdei A, Kurucz I, Horvath R. Label-free real-time monitoring of the BCR-triggered activation of primary human B cells modulated by the simultaneous engagement of inhibitory receptors. Biosens Bioelectron 2021; 191:113469. [PMID: 34229298 DOI: 10.1016/j.bios.2021.113469] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/26/2022]
Abstract
Today, there is an intense demand for lab-on-a-chip and tissue-on-a-chip applications in basic cell biological research and medical diagnostics. A particular challenge is the implementation of advanced biosensor techniques in point-of-care testing utilizing human primary cells. In this study, a resonant waveguide grating (RWG)-based label-free optical biosensor technique has been applied for real-time monitoring of the integrated responses of primary human tonsillar B cells initiated by B cell receptor (BCR) and modified by FcγRIIb and CR1 engagement. The BCR-triggered biosensor responses of resting and activated B cells were revealed to be specific and dose-dependent, in some cases with strong donor dependency. Targeted inhibition of Syk attenuated the label-free biosensor response upon BCR stimulation. Indifferent protein human serum albumin (HSA) did not interfere with the recorded signal to BCR stimulation. Simultaneous engagement of BCR and FcγRIIb modulated the kinetic signal of the cells. Activated and resting B cells exhibited different response profiles upon simultaneous engagement of BCR and CR1. This advanced approach has the potential to decipher interfering signaling events in human B cells, manage differences between activated and resting B cell states, helping to understand the actual integrated response of these immune cells, and could be useful in the point-of-care diagnostic testing on human primary cells.
Collapse
Affiliation(s)
- Kristof Kliment
- Department of Immunology, Eotvos Lorand University, Budapest, Hungary; Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, 29-33 Konkoly-Thege Miklós út, Budapest, Hungary
| | - Inna Szekacs
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, 29-33 Konkoly-Thege Miklós út, Budapest, Hungary.
| | - Beatrix Peter
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, 29-33 Konkoly-Thege Miklós út, Budapest, Hungary
| | - Anna Erdei
- Department of Immunology, Eotvos Lorand University, Budapest, Hungary; MTA-ELTE Immunology Research Group, Eotvos Lorand University, Budapest, Hungary
| | - Istvan Kurucz
- MTA-ELTE Immunology Research Group, Eotvos Lorand University, Budapest, Hungary
| | - Robert Horvath
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, 29-33 Konkoly-Thege Miklós út, Budapest, Hungary
| |
Collapse
|
16
|
Guedes DC, Santiani MH, Carvalho J, Soccol CR, Minozzo JC, Machado de Ávila RA, de Moura JF, Ramos ELP, Castro GR, Chávez-Olórtegi C, Thomaz-Soccol V. In silico and in vitro Evaluation of Mimetic Peptides as Potential Antigen Candidates for Prophylaxis of Leishmaniosis. Front Chem 2021; 8:601409. [PMID: 33520931 PMCID: PMC7843434 DOI: 10.3389/fchem.2020.601409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/08/2020] [Indexed: 01/03/2023] Open
Abstract
Antigen formulation is the main feature for the success of leishmaniosis diagnosis and vaccination, since the disease is caused by different parasite species that display particularities which determine their pathogenicity and virulence. It is desirable that the antigens are recognized by different antibodies and are immunogenic for almost all Leishmania species. To overcome this problem, we selected six potentially immunogenic peptides derived from Leishmania histones and parasite membrane molecules obtained by phage display or spot synthesis and entrapped in liposome structures. We used these peptides to immunize New Zealand rabbits and determine the immunogenic capacity of the chimeric antigen. The peptides induced the production of antibodies as a humoral immune response against L. braziliensis or L. infantum. Next, to evaluate the innate response to induce cellular activation, macrophages from the peptide mix-immunized rabbits were infected in vitro with L. braziliensis or L. infantum. The peptide mix generated the IFN-γ, IL-12, IL-4 and TGF-β that led to Th1 and Th2 cellular immune responses. Interestingly, this mix of peptides also induced high expression of iNOS. These results suggest that the mix of peptides derived from histone and parasites membrane molecules was able to mimic parasites proteins and induce cytokines important to CD4+ T cell Th1 and Th2 differentiation and effector molecule to control the parasite infection. Finally, this peptide induced an immune balance that is important to prevent immunopathological disorders, inflammatory reactions, and control the parasite infection.
Collapse
Affiliation(s)
- Deborah Carbonera Guedes
- Programa de Pós-Graduação Strictu Sensu em Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Manuel Hospinal Santiani
- Programa de Pós-Graduação Strictu Sensu em Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Joyce Carvalho
- Programa de Pós-Graduação Strictu Sensu em Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Carlos Ricardo Soccol
- Programa de Pós-Graduação Strictu Sensu em Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - João Carlos Minozzo
- Programa de Pós-Graduação Strictu Sensu em Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Paraná, Curitiba, Brazil.,Centro de Produção e Pesquisa de Imunobilógicos, Secretaria De Saúde do Estado do Paraná, Piraquara, Brazil
| | | | - Juliana Ferreira de Moura
- Programa de Pós-Graduação Strictu Sensu em Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Eliezer Lucas Pires Ramos
- Programa de Pós-Graduação Strictu Sensu em Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Guillermo Raul Castro
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)-CONICET (CCT La Plata), La Plata, Argentina.,Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC), Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG), Centro de Estudios Interdisciplinarios (CEI), Universidad Nacional de Rosario, Rosario, Argentina
| | - Carlos Chávez-Olórtegi
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanete Thomaz-Soccol
- Programa de Pós-Graduação Strictu Sensu em Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
17
|
Veneziano R, Moyer TJ, Stone MB, Wamhoff EC, Read BJ, Mukherjee S, Shepherd TR, Das J, Schief WR, Irvine DJ, Bathe M. Role of nanoscale antigen organization on B-cell activation probed using DNA origami. NATURE NANOTECHNOLOGY 2020; 15:716-723. [PMID: 32601450 PMCID: PMC7415668 DOI: 10.1038/s41565-020-0719-0] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 05/27/2020] [Indexed: 05/17/2023]
Abstract
Vaccine efficacy can be increased by arraying immunogens in multivalent form on virus-like nanoparticles to enhance B-cell activation. However, the effects of antigen copy number, spacing and affinity, as well as the dimensionality and rigidity of scaffold presentation on B-cell activation remain poorly understood. Here, we display the clinical vaccine immunogen eOD-GT8, an engineered outer domain of the HIV-1 glycoprotein-120, on DNA origami nanoparticles to systematically interrogate the impact of these nanoscale parameters on B-cell activation in vitro. We find that B-cell signalling is maximized by as few as five antigens maximally spaced on the surface of a 40-nm viral-like nanoparticle. Increasing antigen spacing up to ~25-30 nm monotonically increases B-cell receptor activation. Moreover, scaffold rigidity is essential for robust B-cell triggering. These results reveal molecular vaccine design principles that may be used to drive functional B-cell responses.
Collapse
Affiliation(s)
- Rémi Veneziano
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, MA, USA
- George Mason University, Volgenau School of Engineering, Department of Bioengineering, Fairfax, VA, USA
| | - Tyson J Moyer
- Massachusetts Institute of Technology, Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Matthew B Stone
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, MA, USA
| | - Eike-Christian Wamhoff
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, MA, USA
| | - Benjamin J Read
- Massachusetts Institute of Technology, Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Sayak Mukherjee
- The Ohio State University, Department of Pediatrics, Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Tyson R Shepherd
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, MA, USA
| | - Jayajit Das
- The Ohio State University, Department of Pediatrics, Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - William R Schief
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Darrell J Irvine
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, MA, USA.
- Massachusetts Institute of Technology, Koch Institute for Integrative Cancer Research, Cambridge, MA, USA.
- The Ohio State University, Department of Pediatrics, Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
- Massachusetts Institute of Technology, Department of Materials Science and Engineering, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Mark Bathe
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, MA, USA.
| |
Collapse
|
18
|
Borna S, Fabisik M, Ilievova K, Dvoracek T, Brdicka T. Mechanisms determining a differential threshold for sensing Src family kinase activity by B and T cell antigen receptors. J Biol Chem 2020; 295:12935-12945. [PMID: 32665402 DOI: 10.1074/jbc.ra120.013552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/10/2020] [Indexed: 12/11/2022] Open
Abstract
Although signal transduction by immunoreceptors such as the T cell antigen receptor (TCR), B cell antigen receptor (BCR), and Fc receptors uses the same schematic and similar molecules, the threshold and the fine-tuning are set differently for each receptor. One manifestation of these differences is that inhibition of Src family kinases (SFK) blocks TCR but not BCR signaling. SFKs are key kinases phosphorylating immunoreceptor tyrosine-based activation motifs (ITAM) in both these receptors. However, it has been proposed that in B cells, downstream kinase SYK can phosphorylate ITAM sequences independently of SFK, allowing it to compensate for the loss of SFK activity, whereas its T cell paralog ZAP-70 is not capable of this compensation. To test this proposal, we examined signaling in SYK- and ZAP-70-deficient B and T cell lines expressing SYK or ZAP-70. We also analyzed signal transduction in T cells expressing BCR or B cells expressing part of the TCR complex. We show that when compared with ZAP-70, SYK lowered the threshold for SFK activity necessary to initiate antigen receptor signaling in both T and B cells. However, neither SYK nor ZAP-70 were able to initiate signaling independently of SFK. We further found that additional important factors are involved in setting this threshold. These include differences between the antigen receptor complexes themselves and the spatial separation of the key transmembrane adaptor protein LAT from the TCR. Thus, immunoreceptor sensing of SFK activity is a complex process regulated at multiple levels.
Collapse
Affiliation(s)
- Simon Borna
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Matej Fabisik
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Kristyna Ilievova
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomas Dvoracek
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Brdicka
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
19
|
Martyanov AA, Balabin FA, Dunster JL, Panteleev MA, Gibbins JM, Sveshnikova AN. Control of Platelet CLEC-2-Mediated Activation by Receptor Clustering and Tyrosine Kinase Signaling. Biophys J 2020; 118:2641-2655. [PMID: 32396849 DOI: 10.1016/j.bpj.2020.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/06/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
Platelets are blood cells responsible for vascular integrity preservation. The activation of platelet receptor C-type lectin-like receptor II-type (CLEC-2) could partially mediate the latter function. Although this receptor is considered to be of importance for hemostasis, the rate-limiting steps of CLEC-2-induced platelet activation are not clear. Here, we aimed to investigate CLEC-2-induced platelet signal transduction using computational modeling in combination with experimental approaches. We developed a stochastic multicompartmental computational model of CLEC-2 signaling. The model described platelet activation beginning with CLEC-2 receptor clustering, followed by Syk and Src family kinase phosphorylation, determined by the cluster size. Active Syk mediated linker adaptor for T cell protein phosphorylation and membrane signalosome formation, which resulted in the activation of Bruton's tyrosine kinase, phospholipase and phosphoinositide-3-kinase, calcium, and phosphoinositide signaling. The model parameters were assessed from published experimental data. Flow cytometry, total internal reflection fluorescence and confocal microscopy, and western blotting quantification of the protein phosphorylation were used for the assessment of the experimental dynamics of CLEC-2-induced platelet activation. Analysis of the model revealed that the CLEC-2 receptor clustering leading to the membrane-based signalosome formation is a critical element required for the accurate description of the experimental data. Both receptor clustering and signalosome formation are among the rate-limiting steps of CLEC-2-mediated platelet activation. In agreement with these predictions, the CLEC-2-induced platelet activation, but not activation mediated by G-protein-coupled receptors, was strongly dependent on temperature conditions and cholesterol depletion. Besides, the model predicted that CLEC-2-induced platelet activation results in cytosolic calcium spiking, which was confirmed by single-platelet total internal reflection fluorescence microscopy imaging. Our results suggest a refined picture of the platelet signal transduction network associated with CLEC-2. We show that tyrosine kinase activation is not the only rate-limiting step in CLEC-2-induced activation of platelets. Translocation of receptor-agonist complexes to the signaling region and linker adaptor for T cell signalosome formation in this region are limiting CLEC-2-induced activation as well.
Collapse
Affiliation(s)
- Alexey A Martyanov
- Center for Theoretical Problems of Physico-chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia; Dmitry Rogachev National Medical Research Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russia; Institute for Biochemical Physics, Russian Academy of Sciences, Moscow, Russia; Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - Fedor A Balabin
- Center for Theoretical Problems of Physico-chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia; Dmitry Rogachev National Medical Research Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Joanne L Dunster
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, Harborne Building, University of Reading, Whiteknights, Reading, United Kingdom
| | - Mikhail A Panteleev
- Center for Theoretical Problems of Physico-chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia; Dmitry Rogachev National Medical Research Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russia; Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia; Faculty of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, Harborne Building, University of Reading, Whiteknights, Reading, United Kingdom
| | - Anastasia N Sveshnikova
- Center for Theoretical Problems of Physico-chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia; Dmitry Rogachev National Medical Research Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russia; Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia; Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
20
|
Feng Y, Wang Y, Zhang S, Haneef K, Liu W. Structural and immunogenomic insights into B-cell receptor activation. J Genet Genomics 2020; 47:27-35. [PMID: 32111437 DOI: 10.1016/j.jgg.2019.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/10/2019] [Accepted: 12/09/2019] [Indexed: 02/08/2023]
Abstract
B cells express B-cell receptors (BCRs) which recognize antigen to trigger signaling cascades for B-cell activation and subsequent antibody production. BCR activation has a crucial influence on B-cell fate. How BCR is activated upon encountering antigen remains to be solved, although tremendous progresses have been achieved in the past few years. Here, we summarize the models that have been proposed to explain BCR activation, including the cross-linking model, the conformation-induced oligomerization model, the dissociation activation model, and the conformational change model. Especially, we elucidate the partially resolved structures of antibodies and/or BCRs by far and discusse how these current structural and further immunogenomic messages and more importantly the future studies may shed light on the explanation of BCR activation and the relevant diseases in the case of dysregulation.
Collapse
Affiliation(s)
- Yangyang Feng
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Yu Wang
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Shaocun Zhang
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Kabeer Haneef
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
21
|
Ziegler CGK, Kim J, Piersanti K, Oyler-Yaniv A, Argyropoulos KV, van den Brink MRM, Palomba ML, Altan-Bonnet N, Altan-Bonnet G. Constitutive Activation of the B Cell Receptor Underlies Dysfunctional Signaling in Chronic Lymphocytic Leukemia. Cell Rep 2019; 28:923-937.e3. [PMID: 31340154 PMCID: PMC8018719 DOI: 10.1016/j.celrep.2019.06.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/18/2019] [Accepted: 06/19/2019] [Indexed: 12/31/2022] Open
Abstract
In cancer biology, the functional interpretation of genomic alterations is critical to achieve the promise of genomic profiling in the clinic. For chronic lymphocytic leukemia (CLL), a heterogeneous disease of B-lymphocytes maturing under constitutive B cell receptor (BCR) stimulation, the functional role of diverse clonal mutations remains largely unknown. Here, we demonstrate that alterations in BCR signaling dynamics underlie the progression of B cells toward malignancy. We reveal emergent dynamic features—bimodality, hypersensitivity, and hysteresis—in the BCR signaling pathway of primary CLL B cells. These signaling abnormalities in CLL quantitatively derive from BCR clustering and constitutive signaling with positive feedback reinforcement, as demonstrated through single-cell analysis of phospho-responses, computational modeling, and super-resolution imaging. Such dysregulated signaling segregates CLL patients by disease severity and clinical presentation. These findings provide a quantitative framework and methodology to assess complex and heterogeneous leukemia pathology and to inform therapeutic strategies in parallel with genomic profiling. Using phospho-flow cytometry and computational modeling, Ziegler et al. find that B cell receptor clustering and positive feedback through SYK and LYN drive signaling hypersensitivity, bistability, and hysteresis in chronic lymphocytic leukemic B cells. Super-resolution microscopy confirms membrane auto-aggregation in leukemic B cells, and variability in signaling dysfunction predicts disease severity.
Collapse
Affiliation(s)
- Carly G K Ziegler
- ImmunoDynamics Group, Programs in Computational Biology and Immunology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Cancer Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Joel Kim
- ImmunoDynamics Group, Programs in Computational Biology and Immunology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Cancer Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kelly Piersanti
- Center for Cancer Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alon Oyler-Yaniv
- ImmunoDynamics Group, Programs in Computational Biology and Immunology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Physics Department, Ben Gurion University, Beer-Sheva, Israel
| | - Kimon V Argyropoulos
- Center for Cancer Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marcel R M van den Brink
- Center for Cancer Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - M Lia Palomba
- Center for Cancer Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Grégoire Altan-Bonnet
- ImmunoDynamics Group, Programs in Computational Biology and Immunology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Cancer Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
22
|
Gold MR, Reth MG. Antigen Receptor Function in the Context of the Nanoscale Organization of the B Cell Membrane. Annu Rev Immunol 2019; 37:97-123. [DOI: 10.1146/annurev-immunol-042718-041704] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The B cell antigen receptor (BCR) plays a central role in the self/nonself selection of B lymphocytes and in their activation by cognate antigen during the clonal selection process. It was long thought that most cell surface receptors, including the BCR, were freely diffusing and randomly distributed. Since the advent of superresolution techniques, it has become clear that the plasma membrane is compartmentalized and highly organized at the nanometer scale. Hence, a complete understanding of the precise conformation and activation mechanism of the BCR must take into account the organization of the B cell plasma membrane. We review here the recent literature on the nanoscale organization of the lymphocyte membrane and discuss how this new information influences our view of the conformational changes that the BCR undergoes during activation.
Collapse
Affiliation(s)
- Michael R. Gold
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Michael G. Reth
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
- Department of Molecular Immunology, Institute of Biology III, Faculty of Biology, University of Freiburg, 79108 Freiburg, Germany
| |
Collapse
|
23
|
Wilhelm I, Levit-Zerdoun E, Jakob J, Villringer S, Frensch M, Übelhart R, Landi A, Müller P, Imberty A, Thuenauer R, Claudinon J, Jumaa H, Reth M, Eibel H, Hobeika E, Römer W. Carbohydrate-dependent B cell activation by fucose-binding bacterial lectins. Sci Signal 2019; 12:12/571/eaao7194. [PMID: 30837305 DOI: 10.1126/scisignal.aao7194] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bacterial lectins are typically multivalent and bind noncovalently to specific carbohydrates on host tissues to facilitate bacterial adhesion. Here, we analyzed the effects of two fucose-binding lectins, BambL from Burkholderia ambifaria and LecB from Pseudomonas aeruginosa, on specific signaling pathways in B cells. We found that these bacterial lectins induced B cell activation, which, in vitro, was dependent on the cell surface expression of the B cell antigen receptor (BCR) and its co-receptor CD19, as well as on spleen tyrosine kinase (Syk) activity. The resulting release of intracellular Ca2+ was followed by an increase in the cell surface abundance of the activation marker CD86, augmented cytokine secretion, and subsequent cell death, replicating all of the events that are observed in vitro upon canonical and antigen-mediated B cell activation. Moreover, injection of BambL in mice resulted in a substantial, BCR-independent loss of B cells in the bone marrow with simultaneous, transient enlargement of the spleen (splenomegaly), as well as an increase in the numbers of splenic B cells and myeloid cells. Together, these data suggest that bacterial lectins can initiate polyclonal activation of B cells through their sole capacity to bind to fucose.
Collapse
Affiliation(s)
- Isabel Wilhelm
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Ella Levit-Zerdoun
- Max Planck Institute of Immunology and Epigenetics Freiburg, 79108 Freiburg, Germany.,International Max Planck Research School (IMPRS), Max Planck Institute of Immunobiology and Epigenetics Freiburg, 79108 Freiburg, Germany.,German Cancer Consortium (DKTK) partner site Freiburg, German Cancer Center (DKFZ), Heidelberg, Institute of Molecular Medicine and Cell Research, 79104 Freiburg, Germany
| | - Johanna Jakob
- Institute for Immunology, University Medical Centre Ulm, 89081 Ulm, Germany
| | - Sarah Villringer
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Marco Frensch
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.,International Max Planck Research School (IMPRS), Max Planck Institute of Immunobiology and Epigenetics Freiburg, 79108 Freiburg, Germany
| | - Rudolf Übelhart
- Institute for Immunology, University Medical Centre Ulm, 89081 Ulm, Germany
| | - Alessia Landi
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Peter Müller
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Anne Imberty
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Roland Thuenauer
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Julie Claudinon
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Hassan Jumaa
- Institute for Immunology, University Medical Centre Ulm, 89081 Ulm, Germany
| | - Michael Reth
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.,Max Planck Institute of Immunology and Epigenetics Freiburg, 79108 Freiburg, Germany
| | - Hermann Eibel
- CCI-Center for Chronic Immunodeficiency (CCI), University Medical Centre, 79106 Freiburg, Germany.,Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Elias Hobeika
- Institute for Immunology, University Medical Centre Ulm, 89081 Ulm, Germany.
| | - Winfried Römer
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany. .,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
24
|
Intradermal delivery of vaccine nanoparticles using hollow microneedle array generates enhanced and balanced immune response. J Control Release 2018; 294:268-278. [PMID: 30572036 DOI: 10.1016/j.jconrel.2018.12.026] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 11/09/2018] [Accepted: 12/15/2018] [Indexed: 01/22/2023]
Abstract
Hollow microneedles can help overcome the skin permeation barrier imposed by the stratum corneum and facilitate transcutaneous delivery of nanoparticle delivery systems. In the present study, we investigated the use of the hollow microneedle array for intradermal delivery of polymeric nanoparticles (NPs) in rats. Compared to intravenous and subcutaneous routes of administration, intradermal delivery of polymeric NPs via a hollow microneedle array resulted in a unique pharmacokinetic profile, characterized by an early burst transit through the draining lymph nodes and a relatively limited overall systemic exposure. Based on high local lymphatic concentrations achieved, we investigated the use of this modality for vaccine delivery. A model antigen ovalbumin (OVA) and TLR agonists imiquimod and monophosphoryl Lipid A encapsulated in poly(d,l-lactide-co-glycolide) (PLGA) NPs were used as the vaccine formulation. Compared to soluble OVA-based vaccine, OVA loaded NPs demonstrated faster antibody affinity maturation kinetics. Moreover, antigen loaded NPs delivered via a hollow microneedle array elicited a significantly higher IgG2a antibody response and higher number of interferon (IFN)-γ secreting lymphocytes, both markers of Th1 response, in comparison to antigen loaded NPs delivered by intramuscular injection and soluble antigen delivered through hollow microneedle array. Overall, our results show that hollow microneedle mediated intradermal delivery of polymeric NPs is a promising approach to improve the effectiveness of vaccine formulations.
Collapse
|
25
|
Noviski M, Zikherman J. Control of autoreactive B cells by IgM and IgD B cell receptors: maintaining a fine balance. Curr Opin Immunol 2018; 55:67-74. [PMID: 30292928 DOI: 10.1016/j.coi.2018.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022]
Abstract
A substantial fraction of mature naïve B cells recognize endogenous antigens, and this autoreactivity must be controlled to prevent autoantibody secretion. Selective downregulation of the IgM BCR on autoreactive B cells has long been appreciated, and recent findings illustrate how this might impose tolerance. The BCR isotype maintained on autoreactive B cells, IgD, is less sensitive to endogenous antigens than IgM. This reduced sensitivity may be conferred by structural properties of IgD and/or differential association with activating and inhibitory co-receptors. Once activated, autoreactive B cells are normally excluded from rapid plasma cell responses, but they can enter the germinal center and lose their autoreactivity through a mutation-selection process termed clonal redemption.
Collapse
Affiliation(s)
- Mark Noviski
- Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, CA, 94143, USA
| | - Julie Zikherman
- Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, CA, 94143, USA.
| |
Collapse
|
26
|
Wang J, Lin F, Wan Z, Sun X, Lu Y, Huang J, Wang F, Zeng Y, Chen YH, Shi Y, Zheng W, Li Z, Xiong C, Liu W. Profiling the origin, dynamics, and function of traction force in B cell activation. Sci Signal 2018; 11:11/542/eaai9192. [PMID: 30087179 DOI: 10.1126/scisignal.aai9192] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
B lymphocytes use B cell receptors (BCRs) to recognize membrane-bound antigens to further initiate cell spreading and contraction responses during B cell activation. We combined traction force microscopy and live-cell imaging to profile the origin, dynamics, and function of traction force generation in these responses. We showed that B cell activation required the generation of 10 to 20 nN of traction force when encountering antigens presented by substrates with stiffness values from 0.5 to 1 kPa, which mimic the rigidity of antigen-presenting cells in vivo. Perturbation experiments revealed that F-actin remodeling and myosin- and dynein-mediated contractility contributed to traction force generation and B cell activation. Moreover, membrane-proximal BCR signaling molecules (including Lyn, Syk, Btk, PLC-γ2, BLNK, and Vav3) and adaptor molecules (Grb2, Cbl, and Dok-3) linking BCR microclusters and motor proteins were also required for the sustained generation of these traction forces. We found a positive correlation between the strength of the traction force and the mean fluorescence intensity of the BCR microclusters. Furthermore, we demonstrated that isotype-switched memory B cells expressing immunoglobulin G (IgG)-BCRs generated greater traction forces than did mature naïve B cells expressing IgM-BCRs during B cell activation. Last, we observed that primary B cells from patients with rheumatoid arthritis generated greater traction forces than did B cells from healthy donors in response to antigen stimulation. Together, these data delineate the origin, dynamics, and function of traction force during B cell activation.
Collapse
Affiliation(s)
- Junyi Wang
- China Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Feng Lin
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Zhengpeng Wan
- China Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Xiaolin Sun
- Department of Rheumatology and Immunology, Clinical Immunology Center, Peking University People's Hospital, Beijing, China
| | - Yun Lu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Fei Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, China
| | - Yingyue Zeng
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Ying-Hua Chen
- China Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Yan Shi
- Center for Life Sciences, Department of Basic Medical Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Wenjie Zheng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Clinical Immunology Center, Peking University People's Hospital, Beijing, China
| | - Chunyang Xiong
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China. .,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Wanli Liu
- China Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China. .,Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing 100084, China
| |
Collapse
|
27
|
Wang J, Xu L, Shaheen S, Liu S, Zheng W, Sun X, Li Z, Liu W. Growth of B Cell Receptor Microclusters Is Regulated by PIP 2 and PIP 3 Equilibrium and Dock2 Recruitment and Activation. Cell Rep 2018; 21:2541-2557. [PMID: 29186690 DOI: 10.1016/j.celrep.2017.10.117] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/18/2017] [Accepted: 10/29/2017] [Indexed: 01/24/2023] Open
Abstract
The growth of B cell receptor (BCR) microclusters upon antigen stimulation drives B cell activation. Here, we show that PI3K-mediated PIP3 production is required for the growth of BCR microclusters. This growth is likely inhibited by PTEN and dependent on its plasma membrane binding and lipid phosphatase activities. Mechanistically, we find that PIP3-dependent recruitment and activation of a guanine nucleotide exchange factor, Dock2, is required for the sustained growth of BCR microclusters through remodeling of the F-actin cytoskeleton. As a consequence, Dock2 deficiency significantly disrupts the structure of the B cell immunological synapse. Finally, we find that primary B cells from systemic lupus erythematosus (SLE) patients exhibit more prominent BCR and PI3K microclusters than B cells from healthy controls. These results demonstrate the importance of a PI3K- and PTEN-governed PIP2 and PIP3 equilibrium in regulating the activation of B cells through Dock2-controlled growth of BCR microclusters.
Collapse
Affiliation(s)
- Jing Wang
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Liling Xu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Samina Shaheen
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Sichen Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Wenjie Zheng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaolin Sun
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing 100044, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing 100044, China
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
28
|
Lck promotes Zap70-dependent LAT phosphorylation by bridging Zap70 to LAT. Nat Immunol 2018; 19:733-741. [PMID: 29915297 PMCID: PMC6202249 DOI: 10.1038/s41590-018-0131-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/18/2018] [Indexed: 12/23/2022]
Abstract
T cell-antigen receptor (TCR) signaling requires the sequential activities of the kinases Lck and Zap70. Upon TCR stimulation, Lck phosphorylates the TCR, thus leading to the recruitment, phosphorylation, and activation of Zap70. Lck binds and stabilizes phosho-Zap70 by using its SH2 domain, and Zap70 phosphorylates the critical adaptors LAT and SLP76, which coordinate downstream signaling. It is unclear whether phosphorylation of these adaptors occurs through passive diffusion or active recruitment. We report the discovery of a conserved proline-rich motif in LAT that mediates efficient LAT phosphorylation. Lck associates with this motif via its SH3 domain, and with phospho-Zap70 via its SH2 domain, thereby acting as a molecular bridge that facilitates the colocalization of Zap70 and LAT. Elimination of this proline-rich motif compromises TCR signaling and T cell development. These results demonstrate the remarkable multifunctionality of Lck, wherein each of its domains has evolved to orchestrate a distinct step in TCR signaling.
Collapse
|
29
|
Affiliation(s)
- Byron B. Au-Yeung
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Neel H. Shah
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Lin Shen
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, California 94143, USA;,
| | - Arthur Weiss
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, California 94143, USA;,
- Howard Hughes Medical Institute, University of California, San Francisco, California 94143, USA
| |
Collapse
|
30
|
Courtney AH, Lo WL, Weiss A. TCR Signaling: Mechanisms of Initiation and Propagation. Trends Biochem Sci 2017; 43:108-123. [PMID: 29269020 DOI: 10.1016/j.tibs.2017.11.008] [Citation(s) in RCA: 329] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 10/18/2022]
Abstract
The mechanisms by which a T cell detects antigen using its T cell antigen receptor (TCR) are crucial to our understanding of immunity and the harnessing of T cells therapeutically. A hallmark of the T cell response is the ability of T cells to quantitatively respond to antigenic ligands derived from pathogens while remaining inert to similar ligands derived from host tissues. Recent studies have revealed exciting properties of the TCR and the behaviors of its signaling effectors that are used to detect and discriminate between antigens. Here we highlight these recent findings, focusing on the proximal TCR signaling molecules Zap70, Lck, and LAT, to provide mechanistic models and insights into the exquisite sensitivity and specificity of the TCR.
Collapse
Affiliation(s)
- Adam H Courtney
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute (HHMI), San Francisco, CA 94143, USA
| | - Wan-Lin Lo
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute (HHMI), San Francisco, CA 94143, USA
| | - Arthur Weiss
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute (HHMI), San Francisco, CA 94143, USA.
| |
Collapse
|
31
|
Fasbender F, Claus M, Wingert S, Sandusky M, Watzl C. Differential Requirements for Src-Family Kinases in SYK or ZAP70-Mediated SLP-76 Phosphorylation in Lymphocytes. Front Immunol 2017; 8:789. [PMID: 28736554 PMCID: PMC5500614 DOI: 10.3389/fimmu.2017.00789] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/22/2017] [Indexed: 01/10/2023] Open
Abstract
In a synthetic biology approach using Schneider (S2) cells, we show that SLP-76 is directly phosphorylated at tyrosines Y113 and Y128 by SYK in the presence of ITAM-containing adapters such as CD3ζ, DAP12, or FcεRγ. This phosphorylation was dependent on at least one functional ITAM and a functional SH2 domain within SYK. Inhibition of Src-kinases by inhibitors PP1 and PP2 did not reduce SLP-76 phosphorylation in S2 cells, suggesting an ITAM and SYK dependent, but Src-kinase independent signaling pathway. This direct ITAM/SYK/SLP-76 signaling pathway therefore differs from previously described ITAM signaling. However, the SYK-family kinase ZAP70 required the additional co-expression of the Src-family kinases Fyn or Lck to efficiently phosphorylate SLP-76 in S2 cells. This difference in Src-family kinase dependency of SYK versus ZAP70-mediated ITAM-based signaling was further demonstrated in human lymphocytes. ITAM signaling in ZAP70-expressing T cells was dependent on the activity of Src-family kinases. In contrast, Src-family kinases were partially dispensable for ITAM signaling in SYK-expressing B cells or in natural killer cells, which express SYK and ZAP70. This demonstrates that SYK can signal using a Src-kinase independent ITAM-based signaling pathway, which may be involved in calibrating the threshold for lymphocyte activation.
Collapse
Affiliation(s)
- Frank Fasbender
- Leibniz Research Centre for Working Environment and Human Factors, IfADo, TU-Dortmund, Dortmund, Germany
| | - Maren Claus
- Leibniz Research Centre for Working Environment and Human Factors, IfADo, TU-Dortmund, Dortmund, Germany
| | - Sabine Wingert
- Leibniz Research Centre for Working Environment and Human Factors, IfADo, TU-Dortmund, Dortmund, Germany
| | - Mina Sandusky
- Leibniz Research Centre for Working Environment and Human Factors, IfADo, TU-Dortmund, Dortmund, Germany
| | - Carsten Watzl
- Leibniz Research Centre for Working Environment and Human Factors, IfADo, TU-Dortmund, Dortmund, Germany
| |
Collapse
|
32
|
Abstract
Phagocytosis refers to the active process that allows cells to take up large particulate material upon binding to surface receptors. The discovery of phagocytosis in 1883 by Elie Metchnikoff, leading to the concept that specialized cells are implicated in the defense against microbes, was one of the starting points of the field of immunology. After more than a century of research, phagocytosis is now appreciated to be a widely used process that enables the cellular uptake of a remarkable variety of particles, including bacteria, fungi, parasites, viruses, dead cells, and assorted debris and solid materials. Uptake of foreign particles is performed almost exclusively by specialized myeloid cells, commonly termed "professional phagocytes": neutrophils, monocytes, macrophages, and dendritic cells. Phagocytosis of microbes not only stops or at least restricts the spread of infection but also plays an important role in regulating the innate and adaptive immune responses. Activation of the myeloid cells upon phagocytosis leads to the secretion of cytokines and chemokines that convey signals to a variety of immune cells. Moreover, foreign antigens generated by the degradation of microbes following phagocytosis are loaded onto the major histocompatibility complex for presentation to specific T lymphocytes. However, phagocytosis is not restricted to professional myeloid phagocytes; an expanding diversity of cell types appear capable of engulfing apoptotic bodies and debris, playing a critical role in tissue remodeling and in the clearance of billions of effete cells every day.
Collapse
|
33
|
Abstract
Immune tolerance hinders the potentially destructive responses of lymphocytes to host tissues. Tolerance is regulated at the stage of immature B cell development (central tolerance) by clonal deletion, involving apoptosis, and by receptor editing, which reprogrammes the specificity of B cells through secondary recombination of antibody genes. Recent mechanistic studies have begun to elucidate how these divergent mechanisms are controlled. Single-cell antibody cloning has revealed defects of B cell central tolerance in human autoimmune diseases and in several human immunodeficiency diseases caused by single gene mutations, which indicates the relevance of B cell tolerance to disease and suggests possible genetic pathways that regulate tolerance.
Collapse
|
34
|
Skrzypczynska KM, Zhu JW, Weiss A. Positive Regulation of Lyn Kinase by CD148 Is Required for B Cell Receptor Signaling in B1 but Not B2 B Cells. Immunity 2016; 45:1232-1244. [PMID: 27889108 DOI: 10.1016/j.immuni.2016.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 08/09/2016] [Accepted: 09/01/2016] [Indexed: 12/31/2022]
Abstract
B1 and B2 B cells differ in their ability to respond to T-cell-independent (TI) antigens. Here we report that the Src-family kinase (SFK) regulator CD148 has a unique and critical role in the initiation of B1 but not B2 cell antigen receptor signaling. CD148 loss-of-function mice were found to have defective B1 B-cell-mediated antibody responses against the T-cell-independent antigens NP-ficoll and Pneumovax 23 and had impaired selection of the B1 B cell receptor (BCR) repertoire. These deficiencies were associated with a decreased ability of B1 B cells to induce BCR signaling downstream of the SFK Lyn. Notably, Lyn appeared to be selectively regulated by CD148 and loss of this SFK resulted in opposite signaling phenotypes in B1 and B2 B cells. These findings reveal that the function and regulation of Lyn during B1 cell BCR signaling is distinct from other B cell subsets.
Collapse
Affiliation(s)
- Katarzyna M Skrzypczynska
- Howard Hughes Medical Institute, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Departments of Medicine and of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143-0795, USA
| | - Jing W Zhu
- Howard Hughes Medical Institute, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Departments of Medicine and of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143-0795, USA
| | - Arthur Weiss
- Howard Hughes Medical Institute, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Departments of Medicine and of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143-0795, USA.
| |
Collapse
|
35
|
Shah NH, Wang Q, Yan Q, Karandur D, Kadlecek TA, Fallahee IR, Russ WP, Ranganathan R, Weiss A, Kuriyan J. An electrostatic selection mechanism controls sequential kinase signaling downstream of the T cell receptor. eLife 2016; 5:e20105. [PMID: 27700984 PMCID: PMC5089863 DOI: 10.7554/elife.20105] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/03/2016] [Indexed: 12/15/2022] Open
Abstract
The sequence of events that initiates T cell signaling is dictated by the specificities and order of activation of the tyrosine kinases that signal downstream of the T cell receptor. Using a platform that combines exhaustive point-mutagenesis of peptide substrates, bacterial surface-display, cell sorting, and deep sequencing, we have defined the specificities of the first two kinases in this pathway, Lck and ZAP-70, for the T cell receptor ζ chain and the scaffold proteins LAT and SLP-76. We find that ZAP-70 selects its substrates by utilizing an electrostatic mechanism that excludes substrates with positively-charged residues and favors LAT and SLP-76 phosphosites that are surrounded by negatively-charged residues. This mechanism prevents ZAP-70 from phosphorylating its own activation loop, thereby enforcing its strict dependence on Lck for activation. The sequence features in ZAP-70, LAT, and SLP-76 that underlie electrostatic selectivity likely contribute to the specific response of T cells to foreign antigens.
Collapse
Affiliation(s)
- Neel H Shah
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
- California Institute for Quantitative Biosciences, University of California, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, United States
| | - Qi Wang
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
- California Institute for Quantitative Biosciences, University of California, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, United States
| | - Qingrong Yan
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
- California Institute for Quantitative Biosciences, University of California, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, United States
| | - Deepti Karandur
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
- California Institute for Quantitative Biosciences, University of California, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, United States
| | - Theresa A Kadlecek
- Rosalind Russell/Ephraim P Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, United States
- Howard Hughes Medical Institute, University of California, San Francisco, United States
| | - Ian R Fallahee
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
- California Institute for Quantitative Biosciences, University of California, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, United States
| | - William P Russ
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Rama Ranganathan
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Arthur Weiss
- Rosalind Russell/Ephraim P Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, United States
- Howard Hughes Medical Institute, University of California, San Francisco, United States
| | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
- California Institute for Quantitative Biosciences, University of California, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
36
|
Dichotomy of cellular inhibition by small-molecule inhibitors revealed by single-cell analysis. Nat Commun 2016; 7:12428. [PMID: 27687249 PMCID: PMC5056434 DOI: 10.1038/ncomms12428] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/30/2016] [Indexed: 12/15/2022] Open
Abstract
Despite progress in drug development, a quantitative and physiological understanding of how small-molecule inhibitors act on cells is lacking. Here, we measure the signalling and proliferative response of individual primary T-lymphocytes to a combination of antigen, cytokine and drug. We uncover two distinct modes of signalling inhibition: digital inhibition (the activated fraction of cells diminishes upon drug treatment, but active cells appear unperturbed), versus analogue inhibition (the activated fraction is unperturbed whereas activation response is diminished). We introduce a computational model of the signalling cascade that accounts for such inhibition dichotomy, and test the model predictions for the phenotypic variability of cellular responses. Finally, we demonstrate that the digital/analogue dichotomy of cellular response as revealed on short (signal transduction) timescales, translates into similar dichotomy on longer (proliferation) timescales. Our single-cell analysis of drug action illustrates the strength of quantitative approaches to translate in vitro pharmacology into functionally relevant cellular settings. Many drugs are small molecule inhibitors of cell signalling. Through single cell analysis and mathematical modelling here the authors show that cell-to-cell variability diversifies inhibition response into digital and analogue, and that the two translate into distinct long-term functional responses.
Collapse
|
37
|
Volkmann C, Brings N, Becker M, Hobeika E, Yang J, Reth M. Molecular requirements of the B-cell antigen receptor for sensing monovalent antigens. EMBO J 2016; 35:2371-2381. [PMID: 27634959 PMCID: PMC5090217 DOI: 10.15252/embj.201694177] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/16/2016] [Indexed: 11/22/2022] Open
Abstract
How the B‐cell antigen receptor (BCR) is activated upon interaction with its cognate antigen or with anti‐BCR antibodies is not fully understood. We have recently shown that B‐cell activation is accompanied by the opening of the pre‐organized BCR oligomers, an observation that strengthens the role of receptor reorganization in signalling. We have now analysed the BCR oligomer opening and signalling upon treatment with different monovalent stimuli. Our results indicate that monovalent antigens are able to disturb and open the BCR oligomer, but that this requires the presence and activity of the Src family kinase (SFK) Lyn. We have also shown that monovalent Fab fragments of anti‐BCR antibodies can open the BCR oligomers as long as they directly interact with the antigen‐binding site. We found that monovalent antigen binding opens both the IgM‐BCR and IgD‐BCR, but calcium signalling is only seen in cells expressing IgM‐BCR; this provides a molecular basis for IgM‐ and IgD‐BCR functional segregation.
Collapse
Affiliation(s)
- Christoph Volkmann
- BIOSS Centre for Biological Signalling Studies, Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Naema Brings
- BIOSS Centre for Biological Signalling Studies, Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Martin Becker
- BIOSS Centre for Biological Signalling Studies, Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Elias Hobeika
- BIOSS Centre for Biological Signalling Studies, Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Institute of Immunology University Hospital Ulm, Ulm, Germany
| | - Jianying Yang
- BIOSS Centre for Biological Signalling Studies, Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany .,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Freiburg Institute for Advanced Studies (FRIAS) University of Freiburg, Freiburg, Germany.,University of Strasbourg Institute for Advanced Study (USIAS) University of Strasbourg, Strasbourg, France
| | - Michael Reth
- BIOSS Centre for Biological Signalling Studies, Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany .,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
38
|
Pauls SD, Ray A, Hou S, Vaughan AT, Cragg MS, Marshall AJ. FcγRIIB-Independent Mechanisms Controlling Membrane Localization of the Inhibitory Phosphatase SHIP in Human B Cells. THE JOURNAL OF IMMUNOLOGY 2016; 197:1587-96. [PMID: 27456487 DOI: 10.4049/jimmunol.1600105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/21/2016] [Indexed: 01/08/2023]
Abstract
SHIP is an important regulator of immune cell signaling that functions to dephosphorylate the phosphoinositide phosphatidylinositol 3,4,5-trisphosphate at the plasma membrane and mediate protein-protein interactions. One established paradigm for SHIP activation involves its recruitment to the phospho-ITIM motif of the inhibitory receptor FcγRIIB. Although SHIP is essential for the inhibitory function of FcγRIIB, it also has critical modulating functions in signaling initiated from activating immunoreceptors such as B cell Ag receptor. In this study, we found that SHIP is indistinguishably recruited to the plasma membrane after BCR stimulation with or without FcγRIIB coligation in human cell lines and primary cells. Interestingly, fluorescence recovery after photobleaching analysis reveals differential mobility of SHIP-enhanced GFP depending on the mode of stimulation, suggesting that although BCR and FcγRIIB can both recruit SHIP, this occurs via distinct molecular complexes. Mutagenesis of a SHIP-enhanced GFP fusion protein reveals that the SHIP-Src homology 2 domain is essential in both cases whereas the C terminus is required for recruitment via BCR stimulation, but is less important with FcγRIIB coligation. Experiments with pharmacological inhibitors reveal that Syk activity is required for optimal stimulation-induced membrane localization of SHIP, whereas neither PI3K or Src kinase activity is essential. BCR-induced association of SHIP with binding partner Shc1 is dependent on Syk, as is tyrosine phosphorylation of both partners. Our results indicate that FcγRIIB is not uniquely able to promote membrane recruitment of SHIP, but rather modulates its function via formation of distinct signaling complexes. Membrane recruitment of SHIP via Syk-dependent mechanisms may be an important factor modulating immunoreceptor signaling.
Collapse
Affiliation(s)
- Samantha D Pauls
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Arnab Ray
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada; and
| | - Sen Hou
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada; and
| | - Andrew T Vaughan
- Cancer Sciences Unit, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Mark S Cragg
- Cancer Sciences Unit, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Aaron J Marshall
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada; Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada; and
| |
Collapse
|
39
|
Utilization of a photoactivatable antigen system to examine B-cell probing termination and the B-cell receptor sorting mechanisms during B-cell activation. Proc Natl Acad Sci U S A 2016; 113:E558-67. [PMID: 26764382 DOI: 10.1073/pnas.1517612113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antigen binding to the B-cell receptor (BCR) induces several responses, resulting in B-cell activation, proliferation, and differentiation. However, it has been difficult to study these responses due to their dynamic, fast, and transient nature. Here, we attempted to solve this problem by developing a controllable trigger point for BCR and antigen recognition through the construction of a photoactivatable antigen, caged 4-hydroxy-3-nitrophenyl acetyl (caged-NP). This photoactivatable antigen system in combination with live cell and single molecule imaging techniques enabled us to illuminate the previously unidentified B-cell probing termination behaviors and the precise BCR sorting mechanisms during B-cell activation. B cells in contact with caged-NP exhibited probing behaviors as defined by the unceasing extension of membrane pseudopods in random directions. Further analyses showed that such probing behaviors are cell intrinsic with strict dependence on F-actin remodeling but not on tonic BCR signaling. B-cell probing behaviors were terminated within 4 s after photoactivation, suggesting that this response was sensitive and specific to BCR engagement. The termination of B-cell probing was concomitant with the accumulation response of the BCRs into the BCR microclusters. We also determined the Brownian diffusion coefficient of BCRs from the same B cells before and after BCR engagement. The analysis of temporally segregated single molecule images of both BCR and major histocompatibility complex class I (MHC-I) demonstrated that antigen binding induced trapping of BCRs into the BCR microclusters is a fundamental mechanism for B cells to acquire antigens.
Collapse
|
40
|
Skwarczynski M, Toth I. Peptide-based synthetic vaccines. Chem Sci 2015; 7:842-854. [PMID: 28791117 PMCID: PMC5529997 DOI: 10.1039/c5sc03892h] [Citation(s) in RCA: 372] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/14/2015] [Indexed: 01/18/2023] Open
Abstract
Classically all vaccines were produced using live or attenuated microorganisms or parts of them. However, the use of whole organisms, their components or the biological process for vaccine production has several weaknesses. The presence of immunologically redundant biological components or biological impurities in such vaccines might cause major problems. All the disadvantageous of traditional vaccines might be overcome via the development of fully synthetic peptide-based vaccines. However, once minimal antigenic epitopes only are applied for immunisation, the immune responses are poor. The use of an adjuvant can overcome this obstacle; however, it may raise new glitches. Here we briefly summarise the current stand on peptide-based vaccines, discuss epitope and adjuvant design, and multi-epitope and nanoparticle-based vaccine approaches. This mini review discusses also the disadvantages and benefits associated with peptide-based vaccines. It proposes possible methods to overcome the weaknesses of the synthetic vaccine strategy and suggests future directions for its development.
Collapse
Affiliation(s)
- Mariusz Skwarczynski
- The University of Queensland , School of Chemistry and Molecular Biosciences , St Lucia 4072 , Australia .
| | - Istvan Toth
- The University of Queensland , School of Chemistry and Molecular Biosciences , St Lucia 4072 , Australia . .,The University of Queensland , Institute for Molecular Bioscience , St Lucia 4072 , Australia.,The University of Queensland , School of Pharmacy , Brisbane , QLD 4072 , Australia
| |
Collapse
|
41
|
Keppler SJ, Gasparrini F, Burbage M, Aggarwal S, Frederico B, Geha RS, Way M, Bruckbauer A, Batista FD. Wiskott-Aldrich Syndrome Interacting Protein Deficiency Uncovers the Role of the Co-receptor CD19 as a Generic Hub for PI3 Kinase Signaling in B Cells. Immunity 2015; 43:660-73. [PMID: 26453379 PMCID: PMC4622935 DOI: 10.1016/j.immuni.2015.09.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/18/2015] [Accepted: 09/10/2015] [Indexed: 11/01/2022]
Abstract
Humans with Wiskott-Aldrich syndrome display a progressive immunological disorder associated with compromised Wiskott-Aldrich Syndrome Interacting Protein (WIP) function. Mice deficient in WIP recapitulate such an immunodeficiency that has been attributed to T cell dysfunction; however, any contribution of B cells is as yet undefined. Here we have shown that WIP deficiency resulted in defects in B cell homing, chemotaxis, survival, and differentiation, ultimately leading to diminished germinal center formation and antibody production. Furthermore, in the absence of WIP, several receptors, namely the BCR, BAFFR, CXCR4, CXCR5, CD40, and TLR4, were impaired in promoting CD19 co-receptor activation and subsequent PI3 kinase (PI3K) signaling. The underlying mechanism was due to a distortion in the actin and tetraspanin networks that lead to altered CD19 cell surface dynamics. In conclusion, our findings suggest that, by regulating the cortical actin cytoskeleton, WIP influences the function of CD19 as a general hub for PI3K signaling.
Collapse
Affiliation(s)
- Selina Jessica Keppler
- Lymphocyte Interaction Laboratory, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Francesca Gasparrini
- Lymphocyte Interaction Laboratory, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Marianne Burbage
- Lymphocyte Interaction Laboratory, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Shweta Aggarwal
- Lymphocyte Interaction Laboratory, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Bruno Frederico
- Lymphocyte Interaction Laboratory, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Raif S Geha
- Division of Immunology, Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Michael Way
- Cell Motility Laboratory, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Andreas Bruckbauer
- Lymphocyte Interaction Laboratory, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Facundo D Batista
- Lymphocyte Interaction Laboratory, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK.
| |
Collapse
|
42
|
Goodfellow HS, Frushicheva MP, Ji Q, Cheng DA, Kadlecek TA, Cantor AJ, Kuriyan J, Chakraborty AK, Salomon A, Weiss A. The catalytic activity of the kinase ZAP-70 mediates basal signaling and negative feedback of the T cell receptor pathway. Sci Signal 2015; 8:ra49. [PMID: 25990959 DOI: 10.1126/scisignal.2005596] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
T cell activation by antigens binding to the T cell receptor (TCR) must be properly regulated to ensure normal T cell development and effective immune responses to pathogens and transformed cells while avoiding autoimmunity. The Src family kinase Lck and the Syk family kinase ZAP-70 (ζ chain-associated protein kinase of 70 kD) are sequentially activated in response to TCR engagement and serve as critical components of the TCR signaling machinery that leads to T cell activation. We performed a mass spectrometry-based phosphoproteomic study comparing the quantitative differences in the temporal dynamics of phosphorylation in stimulated and unstimulated T cells with or without inhibition of ZAP-70 catalytic activity. The data indicated that the kinase activity of ZAP-70 stimulates negative feedback pathways that target Lck and thereby modulate the phosphorylation patterns of the immunoreceptor tyrosine-based activation motifs (ITAMs) of the CD3 and ζ chain components of the TCR and of signaling molecules downstream of Lck, including ZAP-70. We developed a computational model that provides a mechanistic explanation for the experimental findings on ITAM phosphorylation in wild-type cells, ZAP-70-deficient cells, and cells with inhibited ZAP-70 catalytic activity. This model incorporated negative feedback regulation of Lck activity by the kinase activity of ZAP-70 and predicted the order in which tyrosines in the ITAMs of TCR ζ chains must be phosphorylated to be consistent with the experimental data.
Collapse
Affiliation(s)
- Hanna Sjölin Goodfellow
- Howard Hughes Medical Institute, UCSF, San Francisco, CA 94143, USA.,Department of Medicine, UCSF, San Francisco, CA 94143, USA
| | - Maria P Frushicheva
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Qinqin Ji
- Department of Chemistry, Brown University, Providence, RI 02912, USA
| | - Debra A Cheng
- Howard Hughes Medical Institute, UCSF, San Francisco, CA 94143, USA.,Department of Medicine, UCSF, San Francisco, CA 94143, USA
| | - Theresa A Kadlecek
- Howard Hughes Medical Institute, UCSF, San Francisco, CA 94143, USA.,Department of Medicine, UCSF, San Francisco, CA 94143, USA
| | - Aaron J Cantor
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA.,Department of Chemistry, University of California, Berkeley, CA 94720, USA.,Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA.,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Arup K Chakraborty
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Arthur Salomon
- Department of Chemistry, Brown University, Providence, RI 02912, USA.,Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Arthur Weiss
- Howard Hughes Medical Institute, UCSF, San Francisco, CA 94143, USA.,Department of Medicine, UCSF, San Francisco, CA 94143, USA
| |
Collapse
|
43
|
Ackermann JA, Nys J, Schweighoffer E, McCleary S, Smithers N, Tybulewicz VLJ. Syk tyrosine kinase is critical for B cell antibody responses and memory B cell survival. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:4650-6. [PMID: 25862820 PMCID: PMC4416743 DOI: 10.4049/jimmunol.1500461] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/14/2015] [Indexed: 12/16/2022]
Abstract
Signals from the BCR are required for Ag-specific B cell recruitment into the immune response. Binding of Ag to the BCR induces phosphorylation of immune receptor tyrosine-based activation motifs in the cytoplasmic domains of the CD79a and CD79b signaling subunits, which subsequently bind and activate the Syk protein tyrosine kinase. Earlier work with the DT40 chicken B cell leukemia cell line showed that Syk was required to transduce BCR signals to proximal activation events, suggesting that Syk also plays an important role in the activation and differentiation of primary B cells during an immune response. In this study, we show that Syk-deficient primary mouse B cells have a severe defect in BCR-induced activation, proliferation, and survival. Furthermore, we demonstrate that Syk is required for both T-dependent and T-independent Ab responses, and that this requirement is B cell intrinsic. In the absence of Syk, Ag fails to induce differentiation of naive B cells into germinal center B cells and plasma cells. Finally, we show that the survival of existing memory B cells is dependent on Syk. These experiments demonstrate that Syk plays a critical role in multiple aspects of B cell Ab responses.
Collapse
Affiliation(s)
- Jochen A Ackermann
- Division of Immune Cell Biology, MRC National Institute for Medical Research, London NW7 1AA, United Kingdom; and
| | - Josquin Nys
- Division of Immune Cell Biology, MRC National Institute for Medical Research, London NW7 1AA, United Kingdom; and
| | - Edina Schweighoffer
- Division of Immune Cell Biology, MRC National Institute for Medical Research, London NW7 1AA, United Kingdom; and
| | - Scott McCleary
- Immuno-Inflammation Therapy Area Unit, GlaxoSmithKline, Stevenage SG1 2NY, United Kingdom
| | - Nicholas Smithers
- Immuno-Inflammation Therapy Area Unit, GlaxoSmithKline, Stevenage SG1 2NY, United Kingdom
| | - Victor L J Tybulewicz
- Division of Immune Cell Biology, MRC National Institute for Medical Research, London NW7 1AA, United Kingdom; and
| |
Collapse
|
44
|
Chylek LA, Wilson BS, Hlavacek WS. Modeling biomolecular site dynamics in immunoreceptor signaling systems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 844:245-62. [PMID: 25480645 DOI: 10.1007/978-1-4939-2095-2_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The immune system plays a central role in human health. The activities of immune cells, whether defending an organism from disease or triggering a pathological condition such as autoimmunity, are driven by the molecular machinery of cellular signaling systems. Decades of experimentation have elucidated many of the biomolecules and interactions involved in immune signaling and regulation, and recently developed technologies have led to new types of quantitative, systems-level data. To integrate such information and develop nontrivial insights into the immune system, computational modeling is needed, and it is essential for modeling methods to keep pace with experimental advances. In this chapter, we focus on the dynamic, site-specific, and context-dependent nature of interactions in immunoreceptor signaling (i.e., the biomolecular site dynamics of immunoreceptor signaling), the challenges associated with capturing these details in computational models, and how these challenges have been met through use of rule-based modeling approaches.
Collapse
Affiliation(s)
- Lily A Chylek
- Department of Chemistry and Chemical Biology, Cornell University, 14853, Ithaca, NY, USA,
| | | | | |
Collapse
|
45
|
McGee RL, Krisenko MO, Geahlen RL, Rundell AE, Buzzard GT. A Computational Study of the Effects of Syk Activity on B Cell Receptor Signaling Dynamics. Processes (Basel) 2015; 3:75-97. [PMID: 26525178 PMCID: PMC4627698 DOI: 10.3390/pr3010075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The kinase Syk is intricately involved in early signaling events in B cells and is required for proper response when antigens bind to B cell receptors (BCRs). Experiments using an analog-sensitive version of Syk (Syk-AQL) have better elucidated its role, but have not completely characterized its behavior. We present a computational model for BCR signaling, using dynamical systems, which incorporates both wild-type Syk and Syk-AQL. Following the use of sensitivity analysis to identify significant reaction parameters, we screen for parameter vectors that produced graded responses to BCR stimulation as is observed experimentally. We demonstrate qualitative agreement between the model and dose response data for both mutant and wild-type kinases. Analysis of our model suggests that the level of NF-κB activation, which is reduced in Syk-AQL cells relative to wild-type, is more sensitive to small reductions in kinase activity than Erkp activation, which is essentially unchanged. Since this profile of high Erkp and reduced NF-κB is consistent with anergy, this implies that anergy is particularly sensitive to small changes in catalytic activity. Also, under a range of forward and reverse ligand binding rates, our model of Erkp and NF-κB activation displays a dependence on a power law affinity: the ratio of the forward rate to a non-unit power of the reverse rate. This dependence implies that B cells may respond to certain details of binding and unbinding rates for ligands rather than simple affinity alone.
Collapse
Affiliation(s)
- Reginald L. McGee
- Department of Mathematics, Purdue University, 150 N. University St., West Lafayette, IN 47907, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-765–494–1901
| | - Mariya O. Krisenko
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University Street, West Lafayette, IN 47907, USA
| | - Robert L. Geahlen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University Street, West Lafayette, IN 47907, USA
| | - Ann E. Rundell
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907, USA
| | - Gregery T. Buzzard
- Department of Mathematics, Purdue University, 150 N. University St., West Lafayette, IN 47907, USA
| |
Collapse
|
46
|
Hobeika E, Nielsen PJ, Medgyesi D. Signaling mechanisms regulating B-lymphocyte activation and tolerance. J Mol Med (Berl) 2015; 93:143-58. [PMID: 25627575 DOI: 10.1007/s00109-015-1252-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/15/2014] [Accepted: 12/25/2014] [Indexed: 01/01/2023]
Abstract
It is becoming more and more accepted that, in addition to producing autoantibodies, B lymphocytes have other important functions that influence the development of autoimmunity. For example, autoreactive B cells are able to produce inflammatory cytokines and activate pathogenic T cells. B lymphocytes can react to extracellular signals with a range of responses from anergy to autoreactivity. The final outcome is determined by the relative contribution of signaling events mediated by activating and inhibitory pathways. Besides the B cell antigen receptor (BCR), several costimulatory receptors expressed on B cells can also induce B cell proliferation and survival, or regulate antibody production. These include CD19, CD40, the B cell activating factor receptor, and Toll-like receptors. Hyperactivity of these receptors clearly contributes to breaking B-cell tolerance in several autoimmune diseases. Inhibitors of these activating signals (including protein tyrosine phosphatases, deubiquitinating enzymes and several adaptor proteins) are crucial to control B-cell activation and maintain B-cell tolerance. In this review, we summarize the inhibitory signaling mechanisms that counteract B-cell activation triggered by the BCR and the coreceptors.
Collapse
Affiliation(s)
- Elias Hobeika
- BIOSS Centre of Biological Signalling Studies, University of Freiburg and Department for Molecular Immunology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | | | | |
Collapse
|
47
|
Wang Q, Vogan EM, Nocka LM, Rosen CE, Zorn JA, Harrison SC, Kuriyan J. Autoinhibition of Bruton's tyrosine kinase (Btk) and activation by soluble inositol hexakisphosphate. eLife 2015; 4:e06074. [PMID: 25699547 PMCID: PMC4384635 DOI: 10.7554/elife.06074] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 02/19/2015] [Indexed: 01/07/2023] Open
Abstract
Bruton's tyrosine kinase (Btk), a Tec-family tyrosine kinase, is essential for B-cell function. We present crystallographic and biochemical analyses of Btk, which together reveal molecular details of its autoinhibition and activation. Autoinhibited Btk adopts a compact conformation like that of inactive c-Src and c-Abl. A lipid-binding PH-TH module, unique to Tec kinases, acts in conjunction with the SH2 and SH3 domains to stabilize the inactive conformation. In addition to the expected activation of Btk by membranes containing phosphatidylinositol triphosphate (PIP3), we found that inositol hexakisphosphate (IP6), a soluble signaling molecule found in both animal and plant cells, also activates Btk. This activation is a consequence of a transient PH-TH dimerization induced by IP6, which promotes transphosphorylation of the kinase domains. Sequence comparisons with other Tec-family kinases suggest that activation by IP6 is unique to Btk.
Collapse
Affiliation(s)
- Qi Wang
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
| | - Erik M Vogan
- Beryllium Inc, Boston, United States,Laboratory of Molecular Medicine, Harvard Medical School, Howard Hughes Medical Institute, Boston, United States
| | - Laura M Nocka
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Connor E Rosen
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
| | - Julie A Zorn
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
| | - Stephen C Harrison
- Laboratory of Molecular Medicine, Harvard Medical School, Howard Hughes Medical Institute, Boston, United States,For correspondence: (SCH)
| | - John Kuriyan
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States,Department of Chemistry, University of California, Berkeley, Berkeley, United States,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States, (JK)
| |
Collapse
|
48
|
Chylek LA, Akimov V, Dengjel J, Rigbolt KTG, Hu B, Hlavacek WS, Blagoev B. Phosphorylation site dynamics of early T-cell receptor signaling. PLoS One 2014; 9:e104240. [PMID: 25147952 PMCID: PMC4141737 DOI: 10.1371/journal.pone.0104240] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/07/2014] [Indexed: 11/18/2022] Open
Abstract
In adaptive immune responses, T-cell receptor (TCR) signaling impacts multiple cellular processes and results in T-cell differentiation, proliferation, and cytokine production. Although individual protein-protein interactions and phosphorylation events have been studied extensively, we lack a systems-level understanding of how these components cooperate to control signaling dynamics, especially during the crucial first seconds of stimulation. Here, we used quantitative proteomics to characterize reshaping of the T-cell phosphoproteome in response to TCR/CD28 co-stimulation, and found that diverse dynamic patterns emerge within seconds. We detected phosphorylation dynamics as early as 5 s and observed widespread regulation of key TCR signaling proteins by 30 s. Development of a computational model pointed to the presence of novel regulatory mechanisms controlling phosphorylation of sites with central roles in TCR signaling. The model was used to generate predictions suggesting unexpected roles for the phosphatase PTPN6 (SHP-1) and shortcut recruitment of the actin regulator WAS. Predictions were validated experimentally. This integration of proteomics and modeling illustrates a novel, generalizable framework for solidifying quantitative understanding of a signaling network and for elucidating missing links.
Collapse
Affiliation(s)
- Lily A. Chylek
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - Vyacheslav Akimov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Jörn Dengjel
- Department of Dermatology, Medical Center; Freiburg Institute for Advanced Studies (FRIAS); BIOSS Centre for Biological Signalling Studies; ZBSA Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Kristoffer T. G. Rigbolt
- Department of Dermatology, Medical Center; Freiburg Institute for Advanced Studies (FRIAS); BIOSS Centre for Biological Signalling Studies; ZBSA Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Bin Hu
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - William S. Hlavacek
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
49
|
Hauser JT, Lindner R. Coalescence of B cell receptor and invariant chain MHC II in a raft-like membrane domain. J Leukoc Biol 2014; 96:843-55. [PMID: 25024398 DOI: 10.1189/jlb.2a0713-353r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The BCR binds antigen for processing and subsequent presentation on MHC II molecules. Polyvalent antigen induces BCR clustering and targeting to endocytic processing compartments, which are also accessed by Ii-MHC II. Here, we report that clustered BCR is able to team up with Ii-MHC II already at the plasma membrane of mouse B-lymphocytes. Colocalization of BCR and Ii-MHC II on the cell surface required clustering of both types of molecules. The clustering of only one type did not trigger the recruitment of the other. Ii-bound MIF (a ligand of Ii) also colocalized with clustered BCR upon oligomerization of MIF on the surface of the B cell. Abundant surface molecules, such as B220 or TfnR, did not cocluster with the BCR. Some membrane raft-associated molecules, such as peptide-loaded MHC II, coclustered with the BCR, whereas others, such as GM1, did not. The formation of a BCR- and Ii-MHC II-containing membrane domain by antibody-mediated clustering was independent of F-actin and led to the coendocytosis of its constituents. With a rapid Brij 98 extraction method, it was possible to capture this membrane domain biochemically as a DRM. Ii and clustered BCR were present on the same DRM, as shown by immunoisolation. The coalescence of BCR and Ii-MHC II increased tyrosine phosphorylation, indicative of enhanced BCR signaling. Our work suggests a novel role for MIF and Ii-MHC II in BCR-mediated antigen processing.
Collapse
Affiliation(s)
- Julian T Hauser
- Hannover Medical School, Department of Cell Biology, Center for Anatomy, Hannover, Germany
| | - Robert Lindner
- Hannover Medical School, Department of Cell Biology, Center for Anatomy, Hannover, Germany
| |
Collapse
|
50
|
Au-Yeung BB, Melichar HJ, Ross JO, Cheng DA, Zikherman J, Shokat KM, Robey EA, Weiss A. Quantitative and temporal requirements revealed for Zap70 catalytic activity during T cell development. Nat Immunol 2014; 15:687-94. [PMID: 24908390 PMCID: PMC4095875 DOI: 10.1038/ni.2918] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 05/06/2014] [Indexed: 02/06/2023]
Abstract
The catalytic activity of Zap70 is crucial for T cell antigen receptor (TCR) signaling, but the quantitative and temporal requirements for its function in thymocyte development are not known. Using a chemical-genetic system to selectively and reversibly inhibit Zap70 catalytic activity in a model of synchronized thymic selection, we showed that CD4(+)CD8(+) thymocytes integrate multiple, transient, Zap70-dependent signals over more than 36 h to reach a cumulative threshold for positive selection, whereas 1 h of signaling was sufficient for negative selection. Titration of Zap70 activity resulted in graded reductions in positive and negative selection but did not decrease the cumulative TCR signals integrated by positively selected OT-I cells, which revealed heterogeneity, even among CD4(+)CD8(+) thymocytes expressing identical TCRs undergoing positive selection.
Collapse
Affiliation(s)
- Byron B Au-Yeung
- 1] Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, USA. [2] Rosalind Russell-Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, San Francisco, California, USA. [3] Department of Medicine, University of California, San Francisco, San Francisco, California, USA. [4] Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA. [5]
| | - Heather J Melichar
- 1] Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA. [2] [3]
| | - Jenny O Ross
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
| | - Debra A Cheng
- 1] Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, USA. [2] Rosalind Russell-Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, San Francisco, California, USA. [3] Department of Medicine, University of California, San Francisco, San Francisco, California, USA. [4] Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
| | - Julie Zikherman
- 1] Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, USA. [2] Rosalind Russell-Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, San Francisco, California, USA. [3] Department of Medicine, University of California, San Francisco, San Francisco, California, USA. [4] Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
| | - Kevan M Shokat
- 1] Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, USA. [2] Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, USA
| | - Ellen A Robey
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
| | - Arthur Weiss
- 1] Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, USA. [2] Rosalind Russell-Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, San Francisco, California, USA. [3] Department of Medicine, University of California, San Francisco, San Francisco, California, USA. [4] Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|