1
|
Alarcon B, Schamel WW. Allosteric Changes Underlie the Outside-In Transmission of Activatory Signals in the TCR. Immunol Rev 2025; 329:e13438. [PMID: 39754405 DOI: 10.1111/imr.13438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/18/2024] [Indexed: 01/06/2025]
Abstract
Rather than being contained in a single polypeptide, and unlike receptor tyrosine kinases, the T cell receptor (TCR) divides its signaling functions among its subunits: TCRα/β bind the extracellular ligand, an antigenic peptide-MHC complex (pMHC), and the CD3 subunits (CD3γ, CD3δ, CD3ε, and CD3ζ) transmit this information to the cytoplasm. How information about the quality of pMHC binding outside is transmitted to the cytoplasm remains a matter of debate. In this review, we compile data generated using a wide variety of experimental systems indicating that TCR engagement by an appropriate pMHC triggers allosteric changes transmitted from the ligand-binding loops in the TCRα and TCRβ subunits to the cytoplasmic tails of the CD3 subunits. We summarize how pMHC and stimulatory antibody binding to TCR ectodomains induces the exposure of a polyproline sequence in the CD3ε cytoplasmic tail for binding to the Nck adapter, the exposure of the RK motif in CD3ε for recruiting the Lck tyrosine kinase, and the induced exposure and phosphorylation of tyrosine residues in all the CD3 cytoplasmic tails. We also review the yet incipient data that help elucidate the structural basis of the Active and Resting conformations of the TCR.
Collapse
Affiliation(s)
- Balbino Alarcon
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Wolfgang W Schamel
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Center Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Minguet S, Maus MV, Schamel WW. From TCR fundamental research to innovative chimeric antigen receptor design. Nat Rev Immunol 2024:10.1038/s41577-024-01093-7. [PMID: 39433885 DOI: 10.1038/s41577-024-01093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/23/2024]
Abstract
Engineered T cells that express chimeric antigen receptors (CARs) have transformed the treatment of haematological cancers. CARs combine the tumour-antigen-binding function of antibodies with the signalling functions of the T cell receptor (TCR) ζ chain and co-stimulatory receptors. The resulting constructs aim to mimic the TCR-based and co-receptor-based activation of T cells. Although these have been successful for some types of cancer, new CAR formats are needed, to limit side effects and broaden their use to solid cancers. Insights into the mechanisms of TCR signalling, including the identification of signalling motifs that are not present in the TCR ζ chain and mechanistic insights in TCR activation, have enabled the development of CAR formats that outcompete the current CARs in preclinical mouse models and clinical trials. In this Perspective, we explore the mechanistic rationale behind new CAR designs.
Collapse
Affiliation(s)
- Susana Minguet
- Signalling Research Centers BIOSS and CIBSS, Freiburg, Germany.
- Department of Synthetic Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Marcela V Maus
- Cellular Immunotherapy Program and Krantz Family Center for Cancer Research, Mass General Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Wolfgang W Schamel
- Signalling Research Centers BIOSS and CIBSS, Freiburg, Germany.
- Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
3
|
Matsubayashi HT, Razavi S, Rock TW, Nakajima D, Nakamura H, Kramer DA, Matsuura T, Chen B, Murata S, Nomura SM, Inoue T. Light-guided actin polymerization drives directed motility in protocells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.617543. [PMID: 39464024 PMCID: PMC11507749 DOI: 10.1101/2024.10.14.617543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Motility is a hallmark of life's dynamic processes, enabling cells to actively chase prey, repair wounds, and shape organs. Recreating these intricate behaviors using well-defined molecules remains a major challenge at the intersection of biology, physics, and molecular engineering. Although the polymerization force of the actin cytoskeleton is characterized as a primary driver of cell motility, recapitulating this process in protocellular systems has proven elusive. The difficulty lies in the daunting task of distilling key components from motile cells and integrating them into model membranes in a physiologically relevant manner. To address this, we developed a method to optically control actin polymerization with high spatiotemporal precision within cell-mimetic lipid vesicles known as giant unilamellar vesicles (GUVs). Within these active protocells, the reorganization of actin networks triggered outward membrane extensions as well as the unidirectional movement of GUVs at speeds of up to 0.43 μm/min, comparable to typical adherent mammalian cells. Notably, our findings reveal a synergistic interplay between branched and linear actin forms in promoting membrane protrusions, highlighting the cooperative nature of these cytoskeletal elements. This approach offers a powerful platform for unraveling the intricacies of cell migration, designing synthetic cells with active morphodynamics, and advancing bioengineering applications, such as self-propelled delivery systems and autonomous tissue-like materials.
Collapse
Affiliation(s)
- Hideaki T. Matsubayashi
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University
| | - Shiva Razavi
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University
- Department of Biological Engineering, School of Engineering, Massachusetts Institute of Technology
| | - T. Willow Rock
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
| | - Daichi Nakajima
- Department of Robotics, Graduate School of Engineering, Tohoku University
| | - Hideki Nakamura
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
- Hakubi Center for Advanced Research, Kyoto University
- Department of Synthetic Chemistry and Biological Chemistry, School of Engineering, Kyoto University
| | - Daniel A. Kramer
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University
| | | | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University
| | - Satoshi Murata
- Department of Robotics, Graduate School of Engineering, Tohoku University
| | | | - Takanari Inoue
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
| |
Collapse
|
4
|
Dintzner E, Bandekar SJ, Leon K, Cechova K, Vafabakhsh R, Araç D. The far extracellular CUB domain of the adhesion GPCR ADGRG6/GPR126 is a key regulator of receptor signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580607. [PMID: 38766069 PMCID: PMC11100614 DOI: 10.1101/2024.02.16.580607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Adhesion G Protein-coupled receptors (aGPCRs) transduce extracellular adhesion signals into cytoplasmic signaling pathways. ADGRG6/GPR126 is an aGPCR critical for axon myelination, heart development and ear development; and is associated with developmental diseases and cancers. ADGRG6 has a large, alternatively-spliced, five-domain extracellular region (ECR) that samples different conformations and regulates receptor signaling. However, the molecular details of how the ECR regulates signaling are unclear. Herein, we studied the conformational dynamics of the conserved CUB domain which is located at the distal N-terminus of the ECR and is deleted in an alternatively-spliced isoform ( Δ CUB). We showed that the Δ CUB isoform has decreased signaling. Molecular dynamics simulations suggest that the CUB domain is involved in interdomain contacts to maintain a compact ECR conformation. A cancer-associated CUB domain mutant, C94Y, drastically perturbs the ECR conformation and results in elevated signaling, whereas another CUB mutant, Y96A, located near a conserved Ca 2+ -binding site, decreases signaling. Our results suggest an ECR-mediated mechanism for ADGRG6 regulation in which the CUB domain instructs conformational changes within the ECR to regulate receptor signaling.
Collapse
|
5
|
Bandekar SJ, Garbett K, Kordon SP, Dintzner E, Shearer T, Sando RC, Araç D. Structure of the extracellular region of the adhesion GPCR CELSR1 reveals a compact module which regulates G protein-coupling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577439. [PMID: 38328199 PMCID: PMC10849658 DOI: 10.1101/2024.01.26.577439] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Cadherin EGF Laminin G seven-pass G-type receptors (CELSRs or ADGRCs) are conserved adhesion G protein-coupled receptors which are essential for animal development. CELSRs have extracellular regions (ECRs) containing 23 adhesion domains which couple adhesion to intracellular signaling. However, molecular-level insight into CELSR function is sparsely available. We report the 4.3 Å cryo-EM reconstruction of the mCELSR1 ECR with 13 domains resolved in the structure. These domains form a compact module mediated by interdomain interactions with contact between the N- and C-terminal domains. We show the mCELSR1 ECR forms an extended species in the presence of Ca 2+ , which we propose represents the antiparallel cadherin repeat dimer. Using assays for adhesion and G protein-coupling, we assign the N-terminal CADH1-8 module as necessary for cell adhesion and we show the C-terminal CAHD9-GAIN module regulates signaling. Our work provides important molecular context to the literature on CELSR function and opens the door towards further mechanistic studies.
Collapse
|
6
|
McGinnis MM, Sutter BM, Jahangiri S, Tu BP. Exonuclease Xrn1 regulates TORC1 signaling in response to SAM availability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.559955. [PMID: 37808861 PMCID: PMC10557749 DOI: 10.1101/2023.09.28.559955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Autophagy is a conserved process of cellular self-digestion that promotes survival during nutrient stress. In yeast, methionine starvation is sufficient to induce autophagy. One pathway of autophagy induction is governed by the SEACIT complex, which regulates TORC1 activity in response to amino acids through the Rag GTPases Gtr1 and Gtr2. However, the precise mechanism by which SEACIT senses amino acids and regulates TORC1 signaling remains incompletely understood. Here, we identify the conserved 5'-3' RNA exonuclease Xrn1 as a surprising and novel regulator of TORC1 activity in response to methionine starvation. This role of Xrn1 is dependent on its catalytic activity, but not on degradation of any specific class of mRNAs. Instead, Xrn1 modulates the nucleotide-binding state of the Gtr1/2 complex, which is critical for its interaction with and activation of TORC1. This work identifies a critical role for Xrn1 in nutrient sensing and growth control that extends beyond its canonical housekeeping function in RNA degradation and indicates an avenue for RNA metabolism to function in amino acid signaling into TORC1.
Collapse
Affiliation(s)
- Madeline M McGinnis
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin M Sutter
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Samira Jahangiri
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin P Tu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
7
|
Paul MS, Michener SL, Pan H, Pfliger JM, Rosenfeld JA, Lerma VC, Tran A, Longley MA, Lewis RA, Weisz-Hubshman M, Bekheirnia MR, Bekheirnia N, Massingham L, Zech M, Wagner M, Engels H, Cremer K, Mangold E, Peters S, Trautmann J, Mester JL, Guillen Sacoto MJ, Person R, McDonnell PP, Cohen SR, Lusk L, Cohen ASA, Pichon JBL, Pastinen T, Zhou D, Engleman K, Racine C, Faivre L, Moutton S, Pichon ASD, Schuhmann S, Vasileiou G, Russ-Hall S, Scheffer IE, Carvill GL, Mefford H, Network UD, Bacino CA, Lee BH, Chao HT. Rare variants in PPFIA3 cause delayed development, intellectual disability, autism, and epilepsy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.27.23287689. [PMID: 37034625 PMCID: PMC10081396 DOI: 10.1101/2023.03.27.23287689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
PPFIA3 encodes the Protein-Tyrosine Phosphatase, Receptor-Type, F Polypeptide-Interacting Protein Alpha-3 (PPFIA3), which is a member of the LAR protein-tyrosine phosphatase-interacting protein (liprin) family involved in synaptic vesicle transport and presynaptic active zone assembly. The protein structure and function are well conserved in both invertebrates and vertebrates, but human diseases related to PPFIA3 dysfunction are not yet known. Here, we report 14 individuals with rare mono-allelic PPFIA3 variants presenting with features including developmental delay, intellectual disability, hypotonia, autism, and epilepsy. To determine the pathogenicity of PPFIA3 variants in vivo , we generated transgenic fruit flies expressing either human PPFIA3 wildtype (WT) or variant protein using GAL4-UAS targeted gene expression systems. Ubiquitous expression with Actin-GAL4 showed that the PPFIA3 variants had variable penetrance of pupal lethality, eclosion defects, and anatomical leg defects. Neuronal expression with elav-GAL4 showed that the PPFIA3 variants had seizure-like behaviors, motor defects, and bouton loss at the 3 rd instar larval neuromuscular junction (NMJ). Altogether, in the fly overexpression assays, we found that the PPFIA3 variants in the N-terminal coiled coil domain exhibited stronger phenotypes compared to those in the C-terminal region. In the loss-of-function fly assay, we show that the homozygous loss of fly Liprin- α leads to embryonic lethality. This lethality is partially rescued by the expression of human PPFIA3 WT, suggesting human PPFIA3 protein function is partially conserved in the fly. However, the PPFIA3 variants failed to rescue lethality. Altogether, the human and fruit fly data reveal that the rare PPFIA3 variants are dominant negative loss-of-function alleles that perturb multiple developmental processes and synapse formation.
Collapse
|
8
|
Ray S, Gurung P, Manning RS, Kravchuk A, Singhvi A. Neuron cilia constrain glial regulators to microdomains around distal neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.18.533255. [PMID: 36993507 PMCID: PMC10055228 DOI: 10.1101/2023.03.18.533255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Each glia interacts with multiple neurons, but the fundamental logic of whether it interacts with all equally remains unclear. We find that a single sense-organ glia modulates different contacting neurons distinctly. To do so, it partitions regulatory cues into molecular microdomains at specific neuron contact-sites, at its delimited apical membrane. For one glial cue, K/Cl transporter KCC-3, microdomain-localization occurs through a two-step, neuron-dependent process. First, KCC-3 shuttles to glial apical membranes. Second, some contacting neuron cilia repel it, rendering it microdomain-localized around one distal neuron-ending. KCC-3 localization tracks animal aging, and while apical localization is sufficient for contacting neuron function, microdomain-restriction is required for distal neuron properties. Finally, we find the glia regulates its microdomains largely independently. Together, this uncovers that glia modulate cross-modal sensor processing by compartmentalizing regulatory cues into microdomains. Glia across species contact multiple neurons and localize disease-relevant cues like KCC-3. Thus, analogous compartmentalization may broadly drive how glia regulate information processing across neural circuits.
Collapse
Affiliation(s)
- Sneha Ray
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
- Neuroscience Graduate Program, University of Washington, Seattle, WA
| | - Pralaksha Gurung
- Neuroscience Graduate Program, University of Washington, Seattle, WA
| | - R. Sean Manning
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Alexandra Kravchuk
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
- University of Washington School of Medicine, WA 98195
| | - Aakanksha Singhvi
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
- Department of Biological Structure, University of Washington School of Medicine, WA 98195
| |
Collapse
|
9
|
Matsubayashi HT, Mountain J, Yao T, Peterson AF, Deb Roy A, Inoue T. Non-catalytic role of phosphoinositide 3-kinase in mesenchymal cell migration through non-canonical induction of p85β/AP-2-mediated endocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2022.12.31.522383. [PMID: 36712134 PMCID: PMC9881872 DOI: 10.1101/2022.12.31.522383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Class IA phosphoinositide 3-kinase (PI3K) galvanizes fundamental cellular processes such as migration, proliferation, and differentiation. To enable multifaceted roles, the catalytic subunit p110 utilizes a multidomain, regulatory subunit p85 through its inter SH2 domain (iSH2). In cell migration, their product PI(3,4,5)P3 generates locomotive activity. While non-catalytic roles are also implicated, underlying mechanisms and its relationship to PI(3,4,5)P3 signaling remain elusive. Here, we report that a disordered region of iSH2 contains previously uncharacterized AP-2 binding motifs which can trigger clathrin and dynamin-mediated endocytosis independent of PI3K catalytic activity. The AP-2 binding motif mutants of p85 aberrantly accumulate at focal adhesions and upregulate both velocity and persistency in fibroblast migration. We thus propose the dual functionality of PI3K in the control of cell motility, catalytic and non-catalytic, arising distinctly from juxtaposed regions within iSH2.
Collapse
Affiliation(s)
- Hideaki T. Matsubayashi
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
| | - Jack Mountain
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
| | - Tony Yao
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
| | - Amy F. Peterson
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
| | - Abhijit Deb Roy
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
| | - Takanari Inoue
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
| |
Collapse
|
10
|
A set point in the selection of the αβTCR T cell repertoire imposed by pre-TCR signaling strength. Proc Natl Acad Sci U S A 2022; 119:e2201907119. [PMID: 35617435 DOI: 10.1073/pnas.2201907119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
SignificanceThe ability of the T cell receptor (TCR) to convey signals of different intensity is essential for the generation of a diverse, protecting, and self-tolerant T cell repertoire. We provide evidence that pre-TCR signaling during the first stage of T cell differentiation, thought to only check for in-frame rearrangement of TCRβ gene segments, determines the degree of diversity in a signaling intensity-dependent manner and controls the diversity of the TCR repertoire available for subsequent thymic positive and negative selection. Pre-TCR signaling intensity is regulated by the transmembrane region of its associated CD3ζ chains, possibly by organizing pre-TCRs into nanoclusters. Our data provide insights into immune receptor signaling mechanisms and reveal an additional checkpoint of T cell repertoire diversity.
Collapse
|
11
|
Borroto A, Alarcón B, Navarro MN. Mutation of the Polyproline Sequence in CD3ε Evidences TCR Signaling Requirements for Differentiation and Function of Pro-Inflammatory Tγδ17 Cells. Front Immunol 2022; 13:799919. [PMID: 35432331 PMCID: PMC9008450 DOI: 10.3389/fimmu.2022.799919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/09/2022] [Indexed: 11/23/2022] Open
Abstract
Tγδ17 cells have emerged as a key population in the development of inflammatory and autoimmune conditions such as psoriasis. Thus, the therapeutic intervention of Tγδ17 cells can exert protective effects in this type of pathologies. Tγδ cells commit to IL-17 production during thymus development, and upon immune challenge, additional extrathymic signals induce the differentiation of uncommitted Tγδ cells into Tγδ17 effector cells. Despite the interest in Tγδ17 cells during the past 20 years, the role of TCR signaling in the generation and function of Tγδ17 cells has not been completely elucidated. While some studies point to the notion that Tγδ17 differentiation requires weak or no TCR signaling, other works suggest that Tγδ17 require the participation of specific kinases and adaptor molecules downstream of the TCR. Here we have examined the differentiation and pathogenic function of Tγδ17 cells in “knockin” mice bearing conservative mutations in the CD3ε polyproline rich sequence (KI-PRS) with attenuated TCR signaling due to lack of binding of the essential adaptor Nck. KI-PRS mice presented decreased frequency and numbers of Tγδ17 cells in adult thymus and lymph nodes. In the Imiquimod model of skin inflammation, KI-PRS presented attenuated skin inflammation parameters compared to wild-type littermates. Moreover, the generation, expansion and effector function Tγδ17 cells were impaired in KI-PRS mice upon Imiquimod challenge. Thus, we conclude that an intact CD3ε-PRS sequence is required for optimal differentiation and pathogenic function of Tγδ17 cells. These data open new opportunities for therapeutic targeting of specific TCR downstream effectors for treatment of Tγδ17-mediated diseases.
Collapse
Affiliation(s)
- Aldo Borroto
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Balbino Alarcón
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - María N Navarro
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
12
|
Chen Y, Zhu Y, Li X, Gao W, Zhen Z, Dong D, Huang B, Ma Z, Zhang A, Song X, Ma Y, Guo C, Zhang F, Huang Z. Cholesterol inhibits TCR signaling by directly restricting TCR-CD3 core tunnel motility. Mol Cell 2022; 82:1278-1287.e5. [PMID: 35271814 DOI: 10.1016/j.molcel.2022.02.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/09/2022] [Accepted: 02/09/2022] [Indexed: 12/28/2022]
Abstract
Cholesterol molecules specifically bind to the resting αβTCR to inhibit cytoplasmic CD3ζ ITAM phosphorylation through sequestering the TCR-CD3 complex in an inactive conformation. The mechanisms of cholesterol-mediated inhibition of TCR-CD3 and its activation remain unclear. Here, we present cryoelectron microscopy structures of cholesterol- and cholesterol sulfate (CS)-inhibited TCR-CD3 complexes and an auto-active TCR-CD3 variant. The structures reveal that cholesterol molecules act like a latch to lock CD3ζ into an inactive conformation in the membrane. Mutations impairing binding of cholesterol molecules to the tunnel result in the movement of the proximal C terminus of the CD3ζ transmembrane helix, thereby activating the TCR-CD3 complex in human cells. Together, our data reveal the structural basis of TCR inhibition by cholesterol, illustrate how the cholesterol-binding tunnel is allosterically coupled to TCR triggering, and lay a foundation for the development of immunotherapies through directly targeting the TCR-CD3 complex.
Collapse
Affiliation(s)
- Yan Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Yuwei Zhu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Xiang Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Wenbo Gao
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Ziqi Zhen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - De Dong
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Buliao Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Zhuo Ma
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Anqi Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Xiaocui Song
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | - Yan Ma
- National Institute of Biological Sciences, Beijing, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Changyou Guo
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Fan Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Zhiwei Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China.
| |
Collapse
|
13
|
Figueroa MG, Parker LM, Krol K, Zhao M. Distal Lck Promoter-Driven Cre Shows Cell Type-Specific Function in Innate-like T Cells. Immunohorizons 2021; 5:772-781. [PMID: 34583938 PMCID: PMC8612026 DOI: 10.4049/immunohorizons.2100079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 11/19/2022] Open
Abstract
Innate-like T cells, including invariant NKT cells, mucosal-associated invariant T (MAIT) cells, and γ δ T (γδT) cells, are groups of unconventional T lymphocytes. They play important roles in the immune system. Because of the lack of Cre recombinase lines that are specific for innate-like T cells, pan-T cell Cre lines are often used to study innate-like T cells. In this study, we found that distal Lck promoter-driven Cre (dLckCre) in which the distal Lck gene promoter drives Cre expression in the late stage of thymocyte development has limited function in the innate-like T cells using ROSA26floxed-Stop-tdTomato reporter. Innate-like T cells differentiate into mature functional subsets comparable to the CD4+ Th subsets under homeostatic conditions. We further showed that dLckCre-expressing γδT cells are strongly biased toward γδT1 phenotype. Interestingly, the γδT cells residing in the epidermis and comprising the vast majority of dendritic epidermal T cells nearly all express dLckCre, indicating dLckCre is a useful tool for studying dendritic epidermal T cells. Taken together, these data suggest that Lck distal promoter has different activity in the conventional and unconventional T cells. The use of dLCKcre transgenic mice in the innate-like T cells needs to be guided by a reporter for the dLckCre function.
Collapse
Affiliation(s)
- Maday G Figueroa
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Loretta M Parker
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Pediatrics, Oklahoma University Health Sciences Center, Oklahoma City, OK
| | - Kamila Krol
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; and
| | - Meng Zhao
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK;
- Department of Microbiology and Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK
| |
Collapse
|
14
|
Hartl FA, Ngoenkam J, Beck-Garcia E, Cerqueira L, Wipa P, Paensuwan P, Suriyaphol P, Mishra P, Schraven B, Günther S, Pongcharoen S, Schamel WWA, Minguet S. Cooperative Interaction of Nck and Lck Orchestrates Optimal TCR Signaling. Cells 2021; 10:834. [PMID: 33917227 PMCID: PMC8068026 DOI: 10.3390/cells10040834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 11/17/2022] Open
Abstract
The T cell antigen receptor (TCR) is expressed on T cells, which orchestrate adaptive immune responses. It is composed of the ligand-binding clonotypic TCRαβ heterodimer and the non-covalently bound invariant signal-transducing CD3 complex. Among the CD3 subunits, the CD3ε cytoplasmic tail contains binding motifs for the Src family kinase, Lck, and the adaptor protein, Nck. Lck binds to a receptor kinase (RK) motif and Nck binds to a proline-rich sequence (PRS). Both motifs only become accessible upon ligand binding to the TCR and facilitate the recruitment of Lck and Nck independently of phosphorylation of the TCR. Mutations in each of these motifs cause defects in TCR signaling and T cell activation. Here, we investigated the role of Nck in proximal TCR signaling by silencing both Nck isoforms, Nck1 and Nck2. In the absence of Nck, TCR phosphorylation, ZAP70 recruitment, and ZAP70 phosphorylation was impaired. Mechanistically, this is explained by loss of Lck recruitment to the stimulated TCR in cells lacking Nck. Hence, our data uncover a previously unknown cooperative interaction between Lck and Nck to promote optimal TCR signaling.
Collapse
Affiliation(s)
- Frederike A. Hartl
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; (F.A.H.); (E.B.-G.); (L.C.); (W.W.A.S.)
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, 79106 Freiburg, Germany
| | - Jatuporn Ngoenkam
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; (J.N.); (P.W.)
| | - Esmeralda Beck-Garcia
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; (F.A.H.); (E.B.-G.); (L.C.); (W.W.A.S.)
| | - Liz Cerqueira
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; (F.A.H.); (E.B.-G.); (L.C.); (W.W.A.S.)
| | - Piyamaporn Wipa
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; (J.N.); (P.W.)
| | - Pussadee Paensuwan
- Department of Optometry, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand;
| | - Prapat Suriyaphol
- Division of Bioinformatics and Data Management for Research, Research Group and Research Network Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Pankaj Mishra
- Pharmaceutical Bioinformatics, Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg, Germany; (P.M.); (S.G.)
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology and Health Campus Immunology, Infectiology and Inflammation, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany;
| | - Stefan Günther
- Pharmaceutical Bioinformatics, Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg, Germany; (P.M.); (S.G.)
| | - Sutatip Pongcharoen
- Division of Immunology, Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok 65000, Thailand;
- Center of Excellence in Petroleum, Petrochemical, and Advanced Materials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Wolfgang W. A. Schamel
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; (F.A.H.); (E.B.-G.); (L.C.); (W.W.A.S.)
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, 79106 Freiburg, Germany
| | - Susana Minguet
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; (F.A.H.); (E.B.-G.); (L.C.); (W.W.A.S.)
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, 79106 Freiburg, Germany
| |
Collapse
|
15
|
Pathan-Chhatbar S, Drechsler C, Richter K, Morath A, Wu W, OuYang B, Xu C, Schamel WW. Direct Regulation of the T Cell Antigen Receptor's Activity by Cholesterol. Front Cell Dev Biol 2021; 8:615996. [PMID: 33490080 PMCID: PMC7820176 DOI: 10.3389/fcell.2020.615996] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/09/2020] [Indexed: 11/14/2022] Open
Abstract
Biological membranes consist of hundreds of different lipids that together with the embedded transmembrane (TM) proteins organize themselves into small nanodomains. In addition to this function of lipids, TM regions of proteins bind to lipids in a very specific manner, but the function of these TM region-lipid interactions is mostly unknown. In this review, we focus on the role of plasma membrane cholesterol, which directly binds to the αβ T cell antigen receptor (TCR), and has at least two opposing functions in αβ TCR activation. On the one hand, cholesterol binding to the TM domain of the TCRβ subunit keeps the TCR in an inactive, non-signaling conformation by stabilizing this conformation. This assures that the αβ T cell remains quiescent in the absence of antigenic peptide-MHC (the TCR's ligand) and decreases the sensitivity of the T cell toward stimulation. On the other hand, cholesterol binding to TCRβ leads to an increased formation of TCR nanoclusters, increasing the avidity of the TCRs toward the antigen, thus increasing the sensitivity of the αβ T cell. In mouse models, pharmacological increase of the cholesterol concentration in T cells caused an increase in TCR clustering, and thereby enhanced anti-tumor responses. In contrast, the γδ TCR does not bind to cholesterol and might be regulated in a different manner. The goal of this review is to put these seemingly controversial findings on the impact of cholesterol on the αβ TCR into perspective.
Collapse
Affiliation(s)
- Salma Pathan-Chhatbar
- Centre for Biological Signalling Studies and Centre for Integrative Biological Signalling Studies, University Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), University of Freiburg, Freiburg, Germany
| | - Carina Drechsler
- Centre for Biological Signalling Studies and Centre for Integrative Biological Signalling Studies, University Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), University of Freiburg, Freiburg, Germany
| | - Kirsten Richter
- Immunology, Infectious Diseases and Ophthalmology Disease Translational Area, Roche Innovation Center Basel, Basel, Switzerland
| | - Anna Morath
- Centre for Biological Signalling Studies and Centre for Integrative Biological Signalling Studies, University Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), University of Freiburg, Freiburg, Germany
| | - Wei Wu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Bo OuYang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Chenqi Xu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wolfgang W. Schamel
- Centre for Biological Signalling Studies and Centre for Integrative Biological Signalling Studies, University Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), University of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Inhibition of the activation of γδT17 cells through PPARγ-PTEN/Akt/GSK3β/NFAT pathway contributes to the anti-colitis effect of madecassic acid. Cell Death Dis 2020; 11:752. [PMID: 32929062 PMCID: PMC7490397 DOI: 10.1038/s41419-020-02969-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022]
Abstract
Type-17 immune response, mediated mainly by IL-17, plays a critical role in ulcerative colitis. Previously, we showed that madecassic acid (MA), the main active ingredient of Centella asiatica herbs for anti-colitis effect, ameliorated dextran sulfate sodium (DSS)-induced mouse colitis through reducing the level of IL-17. Here, we explore the effect of MA on the activation of γδT17 cells, an alternative source of IL-17 in colitis. In DSS-induced colitis mice, oral administration of MA decreased the number of γδT17 cells and attenuated the inflammation in the colon, and the anti-colitis effect of MA was significantly counteracted by redundant γδT17 cells, suggesting that the decrease in γδT17 cells is important for the anti-colitis effect of MA. In vitro, MA could inhibit the activation but not the proliferation of γδT17 cells at concentrations without evident cytotoxicity. Antibody microarray profiling showed that the inhibition of MA on the activation of γδT17 cells involved PPARγ–PTEN/Akt/GSK3β/NFAT signals. In γδT17 cells, MA could reduce the nuclear localization of NFATc1 through inhibiting Akt phosphorylation to promote GSK3β activation. Moreover, it was confirmed that MA inhibited the Akt/GSK3β/NFATc1 pathway and the activation of γδT17 cells through activating PPARγ to increase PTEN expression and phosphorylation. The correlation between activation of PPARγ, decrease in γδT17 cell number, and amelioration of colitis by MA was validated in mice with DSS-induced colitis. In summary, these findings reveal that MA inhibits the activation of γδT17 cells through PPARγ–PTEN/Akt/GSK3β/NFAT pathway, which contributes to the amelioration of colitis.
Collapse
|
17
|
Noncanonical binding of Lck to CD3ε promotes TCR signaling and CAR function. Nat Immunol 2020; 21:902-913. [PMID: 32690949 DOI: 10.1038/s41590-020-0732-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/08/2020] [Indexed: 11/09/2022]
Abstract
Initiation of T cell antigen receptor (TCR) signaling involves phosphorylation of CD3 cytoplasmic tails by the tyrosine kinase Lck. How Lck is recruited to the TCR to initiate signaling is not well known. We report a previously unknown binding motif in the CD3ε cytoplasmic tail that interacts in a noncanonical mode with the Lck SH3 domain: the receptor kinase (RK) motif. The RK motif is accessible only upon TCR ligation, demonstrating how ligand binding leads to Lck recruitment. Binding of the Lck SH3 domain to the exposed RK motif resulted in local augmentation of Lck activity, CD3 phosphorylation, T cell activation and thymocyte development. Introducing the RK motif into a well-characterized 41BB-based chimeric antigen receptor enhanced its antitumor function in vitro and in vivo. Our findings underscore how a better understanding of the functioning of the TCR might promote rational improvement of chimeric antigen receptor design for the treatment of cancer.
Collapse
|
18
|
Wei Q, Brzostek J, Sankaran S, Casas J, Hew LSQ, Yap J, Zhao X, Wojciech L, Gascoigne NRJ. Lck bound to coreceptor is less active than free Lck. Proc Natl Acad Sci U S A 2020; 117:15809-15817. [PMID: 32571924 PMCID: PMC7355011 DOI: 10.1073/pnas.1913334117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Src family kinase Lck plays critical roles during T cell development and activation, as it phosphorylates the TCR/CD3 complex to initiate TCR signaling. Lck is present either in coreceptor-bound or coreceptor-unbound (free) forms, and we here present evidence that the two pools of Lck have different molecular properties. We discovered that the free Lck fraction exhibited higher mobility than CD8α-bound Lck in OT-I T hybridoma cells. The free Lck pool showed more activating Y394 phosphorylation than the coreceptor-bound Lck pool. Consistent with this, free Lck also had higher kinase activity, and free Lck mediated higher T cell activation as compared to coreceptor-bound Lck. Furthermore, the coreceptor-Lck coupling was independent of TCR activation. These findings give insights into the initiation of TCR signaling, suggesting that changes in coreceptor-Lck coupling constitute a mechanism for regulation of T cell sensitivity.
Collapse
Affiliation(s)
- Qianru Wei
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545
| | - Joanna Brzostek
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545
| | - Shvetha Sankaran
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117456
| | - Javier Casas
- Department of Biochemistry, Molecular Biology and Physiology, Universidad de Valladolid, Valladolid, Spain, 47005
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain, 47003
| | - Lois Shi-Qi Hew
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545
| | - Jiawei Yap
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545
| | - Xiang Zhao
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545
| | - Lukasz Wojciech
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545
| | - Nicholas R J Gascoigne
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545;
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117456
| |
Collapse
|
19
|
Schamel WW, Alarcon B, Minguet S. The TCR is an allosterically regulated macromolecular machinery changing its conformation while working. Immunol Rev 2020; 291:8-25. [PMID: 31402501 DOI: 10.1111/imr.12788] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 05/30/2019] [Indexed: 12/13/2022]
Abstract
The αβ T-cell receptor (TCR) is a multiprotein complex controlling the activation of T cells. Although the structure of the complete TCR is not known, cumulative evidence supports that the TCR cycles between different conformational states that are promoted either by thermal motion or by force. These structural transitions determine whether the TCR engages intracellular effectors or not, regulating TCR phosphorylation and signaling. As for other membrane receptors, ligand binding selects and stabilizes the TCR in active conformations, and/or switches the TCR to activating states that were not visited before ligand engagement. Here we review the main models of TCR allostery, that is, ligand binding at TCRαβ changes the structure at CD3 and ζ. (a) The ITAM and proline-rich sequence exposure model, in which the TCR's cytoplasmic tails shield each other and ligand binding exposes them for phosphorylation. (b) The membrane-ITAM model, in which the CD3ε and ζ tails are sequestered inside the membrane and again ligand binding exposes them. (c) The mechanosensor model in which ligand binding exerts force on the TCR, inducing structural changes that allow signaling. Since these models are complementary rather than competing, we propose a unified model that aims to incorporate all existing data.
Collapse
Affiliation(s)
- Wolfgang W Schamel
- Department of Immunology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| | - Balbino Alarcon
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Susana Minguet
- Department of Immunology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| |
Collapse
|
20
|
Morath A, Schamel WW. αβ and γδ T cell receptors: Similar but different. J Leukoc Biol 2020; 107:1045-1055. [DOI: 10.1002/jlb.2mr1219-233r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/15/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Anna Morath
- Signalling Research Centres BIOSS and CIBSS University of Freiburg Freiburg Germany
- Institute of Biology III Faculty of Biology University of Freiburg Freiburg Germany
- Spemann Graduate School of Biology and Medicine (SGBM) University of Freiburg Freiburg Germany
| | - Wolfgang W. Schamel
- Signalling Research Centres BIOSS and CIBSS University of Freiburg Freiburg Germany
- Institute of Biology III Faculty of Biology University of Freiburg Freiburg Germany
- Center for Chronic Immunodeficiency (CCI) Medical Center Freiburg and Faculty of Medicine University of Freiburg Freiburg Germany
| |
Collapse
|
21
|
Hardy IR, Schamel WW, Baeuerle PA, Getts DR, Hofmeister R. Implications of T cell receptor biology on the development of new T cell therapies for cancer. Immunotherapy 2020; 12:89-103. [PMID: 31902264 DOI: 10.2217/imt-2019-0046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recently, two chimeric antigen receptor (CAR) T cell therapies were approved based on their remarkable efficacy in patients with hematological malignancies. By contrast, CAR-T cell therapies results in solid tumors have been less promising. To develop the next generation of T cell therapies a better understanding of T cell receptor (TCR) biology and its implication for the design of synthetic receptors is critical. Here, we review current and newly developed forms of T cell therapies and how their utilization of different components of the TCR signaling machinery and their requirement for engagement (or not) of human leukocyte antigen impacts their design, efficacy and applicability as cancer drugs. Notably, we highlight the development of human leukocyte antigen-independent T cell platforms that utilize the full TCR complex as having promise to overcome some of the limitations of existing T cell therapies.
Collapse
Affiliation(s)
- Ian R Hardy
- TCR2 Therapeutics, Inc., 100 Binney St. Suite 710, Cambridge, MA 02142, USA
| | - Wolfgang W Schamel
- Department of Immunology, Faculty of Biology, BIOSS Center for Biological Signalling Studies, CIBSS - Centre for Integrative Biological Signalling Studies & Centre for Chronic Immunodeficiency CCI, University of Freiburg, Schänzlestraβe 18,79104 Freiburg, Germany
| | - Patrick A Baeuerle
- TCR Therapeutics, Inc., 100 Binney St. Suite 710, Cambridge, MA 02142, USA.,Institute for Immunology, Ludwig-Maximilians-University Munich, Grosshadernerstr. 9, 82152 Planegg-Martinsried, Germany
| | - Daniel R Getts
- TCR Therapeutics, Inc., 100 Binney St. Suite 710, Cambridge, MA 02142, USA
| | - Robert Hofmeister
- TCR Therapeutics, Inc., 100 Binney St. Suite 710, Cambridge, MA 02142, USA
| |
Collapse
|
22
|
Shen Z, Liu S, Li X, Wan Z, Mao Y, Chen C, Liu W. Conformational change within the extracellular domain of B cell receptor in B cell activation upon antigen binding. eLife 2019; 8:42271. [PMID: 31290744 PMCID: PMC6620044 DOI: 10.7554/elife.42271] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 06/27/2019] [Indexed: 12/20/2022] Open
Abstract
B lymphocytes use B cell receptors (BCRs) to recognize antigens. It is still not clear how BCR transduces antigen-specific physical signals upon binding across cell membrane for the conversion to chemical signals, triggering downstream signaling cascades. It is hypothesized that through a series of conformational changes within BCR, antigen engagement in the extracellular domain of BCR is transduced to its intracellular domain. By combining site-specific labeling methodology and FRET-based assay, we monitored conformational changes in the extracellular domains within BCR upon antigen engagement. Conformational changes within heavy chain of membrane-bound immunoglobulin (mIg), as well as conformational changes in the spatial relationship between mIg and Igβ were observed. These conformational changes were correlated with the strength of BCR activation and were distinct in IgM- and IgG-BCR. These findings provide molecular mechanisms to explain the fundamental aspects of BCR activation and a framework to investigate ligand-induced molecular events in immune receptors.
Collapse
Affiliation(s)
- Zhixun Shen
- Laboratory of Lymphocyte Signaling & Molecular Imaging, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, Center for Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Sichen Liu
- Laboratory of Lymphocyte Signaling & Molecular Imaging, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, Center for Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Xinxin Li
- Laboratory of Lymphocyte Signaling & Molecular Imaging, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, Center for Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Zhengpeng Wan
- Laboratory of Lymphocyte Signaling & Molecular Imaging, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, Center for Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Youxiang Mao
- Laboratory of Lymphocyte Signaling & Molecular Imaging, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, Center for Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Chunlai Chen
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Wanli Liu
- Laboratory of Lymphocyte Signaling & Molecular Imaging, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, Center for Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| |
Collapse
|
23
|
Fiala GJ, Schaffer AM, Merches K, Morath A, Swann J, Herr LA, Hils M, Esser C, Minguet S, Schamel WWA. Proximal Lck Promoter–Driven Cre Function Is Limited in Neonatal and Ineffective in Adult γδ T Cell Development. THE JOURNAL OF IMMUNOLOGY 2019; 203:569-579. [DOI: 10.4049/jimmunol.1701521] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 05/08/2019] [Indexed: 01/13/2023]
|
24
|
Baeuerle PA, Ding J, Patel E, Thorausch N, Horton H, Gierut J, Scarfo I, Choudhary R, Kiner O, Krishnamurthy J, Le B, Morath A, Baldeviano GC, Quinn J, Tavares P, Wei Q, Weiler S, Maus MV, Getts D, Schamel WW, Hofmeister R. Synthetic TRuC receptors engaging the complete T cell receptor for potent anti-tumor response. Nat Commun 2019; 10:2087. [PMID: 31064990 PMCID: PMC6504948 DOI: 10.1038/s41467-019-10097-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/08/2019] [Indexed: 12/30/2022] Open
Abstract
T cells expressing CD19-targeting chimeric antigen receptors (CARs) reveal high efficacy in the treatment of B cell malignancies. Here, we report that T cell receptor fusion constructs (TRuCs) comprising an antibody-based binding domain fused to T cell receptor (TCR) subunits can effectively reprogram an intact TCR complex to recognize tumor surface antigens. Unlike CARs, TRuCs become a functional component of the TCR complex. TRuC-T cells kill tumor cells as potently as second-generation CAR-T cells, but at significant lower cytokine release and despite the absence of an extra co-stimulatory domain. TRuC-T cells demonstrate potent anti-tumor activity in both liquid and solid tumor xenograft models. In several models, TRuC-T cells are more efficacious than respective CAR-T cells. TRuC-T cells are shown to engage the signaling capacity of the entire TCR complex in an HLA-independent manner.
Collapse
MESH Headings
- Animals
- Antigens, CD19/immunology
- Antigens, Neoplasm/immunology
- Cell Line, Tumor
- Female
- Humans
- Immunotherapy, Adoptive/methods
- Mice
- Mice, Inbred NOD
- Neoplasms/immunology
- Neoplasms/therapy
- Primary Cell Culture
- Protein Domains
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Artificial/genetics
- Receptors, Artificial/immunology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Single-Chain Antibodies/genetics
- Single-Chain Antibodies/immunology
- T-Lymphocytes/immunology
- Treatment Outcome
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
| | - Jian Ding
- TCR² Therapeutics, Inc., 100 Binney Street, Cambridge, MA, 02142, USA
| | - Ekta Patel
- TCR² Therapeutics, Inc., 100 Binney Street, Cambridge, MA, 02142, USA
| | - Niko Thorausch
- Department of Immunology, Faculty of Biology, BIOSS Center for Biological Signalling Studies, CIBSS-Centre for Integrative Biological Signalling Studies and Centre for Chronic Immunodeficiency CCI, University of Freiburg, Schänzlestraβe 18, Freiburg, 79104, Germany
| | - Holly Horton
- TCR² Therapeutics, Inc., 100 Binney Street, Cambridge, MA, 02142, USA
| | - Jessica Gierut
- TCR² Therapeutics, Inc., 100 Binney Street, Cambridge, MA, 02142, USA
| | - Irene Scarfo
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center and Harvard Medical School, Bldg. 149 13th Street, Charlestown, MA, USA
| | - Rashmi Choudhary
- TCR² Therapeutics, Inc., 100 Binney Street, Cambridge, MA, 02142, USA
| | - Olga Kiner
- TCR² Therapeutics, Inc., 100 Binney Street, Cambridge, MA, 02142, USA
| | | | - Bonnie Le
- TCR² Therapeutics, Inc., 100 Binney Street, Cambridge, MA, 02142, USA
| | - Anna Morath
- Department of Immunology, Faculty of Biology, BIOSS Center for Biological Signalling Studies, CIBSS-Centre for Integrative Biological Signalling Studies and Centre for Chronic Immunodeficiency CCI, University of Freiburg, Schänzlestraβe 18, Freiburg, 79104, Germany
| | | | - Justin Quinn
- TCR² Therapeutics, Inc., 100 Binney Street, Cambridge, MA, 02142, USA
| | - Patrick Tavares
- TCR² Therapeutics, Inc., 100 Binney Street, Cambridge, MA, 02142, USA
| | - Qi Wei
- TCR² Therapeutics, Inc., 100 Binney Street, Cambridge, MA, 02142, USA
| | - Solly Weiler
- TCR² Therapeutics, Inc., 100 Binney Street, Cambridge, MA, 02142, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center and Harvard Medical School, Bldg. 149 13th Street, Charlestown, MA, USA
| | - Daniel Getts
- TCR² Therapeutics, Inc., 100 Binney Street, Cambridge, MA, 02142, USA
| | - Wolfgang W Schamel
- Department of Immunology, Faculty of Biology, BIOSS Center for Biological Signalling Studies, CIBSS-Centre for Integrative Biological Signalling Studies and Centre for Chronic Immunodeficiency CCI, University of Freiburg, Schänzlestraβe 18, Freiburg, 79104, Germany
| | - Robert Hofmeister
- TCR² Therapeutics, Inc., 100 Binney Street, Cambridge, MA, 02142, USA.
| |
Collapse
|
25
|
Abstract
T cells are central to the vertebrate immune system. Two distinct types of T cells, αβT and γδT cells, express different types of T cell antigen receptors (TCRs), αβTCR and γδTCR, respectively, that are composed of different sets of somatically rearranged TCR chains and CD3 subunits. γδT cells have recently attracted considerable attention due to their ability to produce abundant cytokines and versatile roles in host defense, tissue regeneration, inflammation, and autoimmune diseases. Both αβT and γδT cells develop in the thymus. Unlike the development of αβT cells, which depends on αβTCR-mediated positive and negative selection, the development of γδT cells, including the requirement of γδTCR, has been less well understood. αβT cells differentiate into effector cells in the peripheral tissues, whereas γδT cells acquire effector functions during their development in the thymus. In this review, we will discuss the current state of knowledge of the molecular mechanism of TCR signal transduction and its role in the thymic development of γδT cells, particularly highlighting a newly discovered mechanism that controls proinflammatory γδT cell development.
Collapse
|
26
|
Goyette J, Nieves DJ, Ma Y, Gaus K. How does T cell receptor clustering impact on signal transduction? J Cell Sci 2019; 132:132/4/jcs226423. [DOI: 10.1242/jcs.226423] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
ABSTRACT
The essential function of the T cell receptor (TCR) is to translate the engagement of peptides on the major histocompatibility complex (pMHC) into appropriate intracellular signals through the associated cluster of differentiation 3 (CD3) complex. The spatial organization of the TCR–CD3 complex in the membrane is thought to be a key regulatory element of signal transduction, raising the question of how receptor clustering impacts on TCR triggering. How signal transduction at the TCR–CD3 complex encodes the quality and quantity of pMHC molecules is not fully understood. This question can be approached by reconstituting T cell signaling in model and cell membranes and addressed by single-molecule imaging of endogenous proteins in T cells. We highlight such methods and further discuss how TCR clustering could affect pMHC rebinding rates, the local balance between kinase and phosphatase activity and/or the lipid environment to regulate the signal efficiency of the TCR–CD3 complex. We also examine whether clustering could affect the conformation of cytoplasmic CD3 tails through a biophysical mechanism. Taken together, we highlight how the spatial organization of the TCR–CD3 complex – addressed by reconstitution approaches – has emerged as a key regulatory element in signal transduction of this archetypal immune receptor.
Collapse
Affiliation(s)
- Jesse Goyette
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney 2052, Australia
- ARC Centre of Excellence in Advanced Molecular imaging, University of New South Wales, Sydney 2052, Australia
| | - Daniel J. Nieves
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney 2052, Australia
- ARC Centre of Excellence in Advanced Molecular imaging, University of New South Wales, Sydney 2052, Australia
| | - Yuanqing Ma
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney 2052, Australia
- ARC Centre of Excellence in Advanced Molecular imaging, University of New South Wales, Sydney 2052, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney 2052, Australia
- ARC Centre of Excellence in Advanced Molecular imaging, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
27
|
Juraske C, Wipa P, Morath A, Hidalgo JV, Hartl FA, Raute K, Oberg HH, Wesch D, Fisch P, Minguet S, Pongcharoen S, Schamel WW. Anti-CD3 Fab Fragments Enhance Tumor Killing by Human γδ T Cells Independent of Nck Recruitment to the γδ T Cell Antigen Receptor. Front Immunol 2018; 9:1579. [PMID: 30038626 PMCID: PMC6046647 DOI: 10.3389/fimmu.2018.01579] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 06/26/2018] [Indexed: 01/18/2023] Open
Abstract
T lymphocytes expressing the γδ T cell receptor (γδ TCR) can recognize antigens expressed by tumor cells and subsequently kill these cells. γδ T cells are indeed used in cancer immunotherapy clinical trials. The anti-CD3ε antibody UCHT1 enhanced the in vitro tumor killing activity of human γδ T cells by an unknown molecular mechanism. Here, we demonstrate that Fab fragments of UCHT1, which only bind monovalently to the γδ TCR, also enhanced tumor killing by expanded human Vγ9Vδ2 γδ T cells or pan-γδ T cells of the peripheral blood. The Fab fragments induced Nck recruitment to the γδ TCR, suggesting that they stabilized the γδ TCR in an active CD3ε conformation. However, blocking the Nck-CD3ε interaction in γδ T cells using the small molecule inhibitor AX-024 neither reduced the γδ T cells' natural nor the Fab-enhanced tumor killing activity. Likewise, Nck recruitment to CD3ε was not required for intracellular signaling, CD69 and CD25 up-regulation, or cytokine secretion by γδ T cells. Thus, the Nck-CD3ε interaction seems to be dispensable in γδ T cells.
Collapse
Affiliation(s)
- Claudia Juraske
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Piyamaporn Wipa
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany.,Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Anna Morath
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Jose Villacorta Hidalgo
- Department of Pathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,University Hospital "José de San Martin", University of Buenos Aires, Buenos Aires, Argentina
| | - Frederike A Hartl
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katrin Raute
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Daniela Wesch
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Paul Fisch
- Department of Pathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susana Minguet
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sutatip Pongcharoen
- Division of Immunology, Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand.,Research Center for Academic Excellence in Petroleum, Petrochemical and Advanced Materials, Faculty of Science, Naresuan University, Phitsanulok, Thailand.,Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Wolfgang W Schamel
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
28
|
Martin-Blanco N, Blanco R, Alda-Catalinas C, Bovolenta ER, Oeste CL, Palmer E, Schamel WW, Lythe G, Molina-París C, Castro M, Alarcon B. A window of opportunity for cooperativity in the T Cell Receptor. Nat Commun 2018; 9:2618. [PMID: 29976994 PMCID: PMC6033938 DOI: 10.1038/s41467-018-05050-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 06/10/2018] [Indexed: 01/15/2023] Open
Abstract
The T-cell antigen receptor (TCR) is pre-organised in oligomers, known as nanoclusters. Nanoclusters could provide a framework for inter-TCR cooperativity upon peptide antigen-major histocompatibility complex (pMHC) binding. Here we have used soluble pMHC oligomers in search for cooperativity effects along the plasma membrane plane. We find that initial binding events favour subsequent pMHC binding to additional TCRs, during a narrow temporal window. This behaviour can be explained by a 3-state model of TCR transition from Resting to Active, to a final Inhibited state. By disrupting nanoclusters and hampering the Active conformation, we show that TCR cooperativity is consistent with TCR nanoclusters adopting the Active state in a coordinated manner. Preferential binding of pMHC to the Active TCR at the immunological synapse suggests that there is a transient time frame for signal amplification in the TCR, allowing the T cells to keep track of antigen quantity and binding time. T cells can be activated by a small, two-digit, number of antigen peptide molecules even though the receptor for antigen (TCR) is of low affinity. Here the authors present evidence that all TCRs within a nanocluster can become activated when only a subset is bound to antigen.
Collapse
Affiliation(s)
- N Martin-Blanco
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - R Blanco
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - C Alda-Catalinas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - E R Bovolenta
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - C L Oeste
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - E Palmer
- University Hospital Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - W W Schamel
- Faculty of Biology, Institute Biology III, University of Freiburg, 79104, Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS), University of Freiburg, 79104, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center Freiburg and Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - G Lythe
- School of Mathematics, University of Leeds, Leeds, LS2 9JT, UK
| | - C Molina-París
- School of Mathematics, University of Leeds, Leeds, LS2 9JT, UK.
| | - M Castro
- School of Mathematics, University of Leeds, Leeds, LS2 9JT, UK. .,Grupo Interdisciplinar de Sistemas Complejos (GISC), Universidad Pontificia Comillas, Alberto Aguilera25, 28015, Madrid, Spain.
| | - B Alarcon
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
29
|
|
30
|
Borroto A, Reyes-Garau D, Jiménez MA, Carrasco E, Moreno B, Martínez-Pasamar S, Cortés JR, Perona A, Abia D, Blanco S, Fuentes M, Arellano I, Lobo J, Heidarieh H, Rueda J, Esteve P, Cibrián D, Martinez-Riaño A, Mendoza P, Prieto C, Calleja E, Oeste CL, Orfao A, Fresno M, Sánchez-Madrid F, Alcamí A, Bovolenta P, Martín P, Villoslada P, Morreale A, Messeguer A, Alarcon B. First-in-class inhibitor of the T cell receptor for the treatment of autoimmune diseases. Sci Transl Med 2017; 8:370ra184. [PMID: 28003549 DOI: 10.1126/scitranslmed.aaf2140] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 08/25/2016] [Indexed: 12/14/2022]
Abstract
Modulating T cell activation is critical for treating autoimmune diseases but requires avoiding concomitant opportunistic infections. Antigen binding to the T cell receptor (TCR) triggers the recruitment of the cytosolic adaptor protein Nck to a proline-rich sequence in the cytoplasmic tail of the TCR's CD3ε subunit. Through virtual screening and using combinatorial chemistry, we have generated an orally available, low-molecular weight inhibitor of the TCR-Nck interaction that selectively inhibits TCR-triggered T cell activation with an IC50 (median inhibitory concentration) ~1 nM. By modulating TCR signaling, the inhibitor prevented the development of psoriasis and asthma and, furthermore, exerted a long-lasting therapeutic effect in a model of autoimmune encephalomyelitis. However, it did not prevent the generation of a protective memory response against a mouse pathogen, suggesting that the compound might not exert its effects through immunosuppression. These results suggest that inhibiting an immediate TCR signal has promise for treating a broad spectrum of human T cell-mediated autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Aldo Borroto
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Diana Reyes-Garau
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | | | - Esther Carrasco
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Beatriz Moreno
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS)-Hospital Clinic, Barcelona, Spain
| | - Sara Martínez-Pasamar
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS)-Hospital Clinic, Barcelona, Spain
| | - José R Cortés
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Almudena Perona
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - David Abia
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Soledad Blanco
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Manuel Fuentes
- Centro de Investigación del Cáncer, University of Salamanca-CSIC, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Irene Arellano
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Juan Lobo
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Haleh Heidarieh
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Javier Rueda
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Pilar Esteve
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Danay Cibrián
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Ana Martinez-Riaño
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Pilar Mendoza
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Cristina Prieto
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Enrique Calleja
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Clara L Oeste
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Alberto Orfao
- Centro de Investigación del Cáncer, University of Salamanca-CSIC, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | | | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Paola Bovolenta
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Pilar Martín
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Pablo Villoslada
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS)-Hospital Clinic, Barcelona, Spain
| | - Antonio Morreale
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Angel Messeguer
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Balbino Alarcon
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
31
|
Abstract
T cell receptors (TCRs) are protein complexes formed by six different polypeptides. In most T cells, TCRs are composed of αβ subunits displaying immunoglobulin-like variable domains that recognize peptide antigens associated with major histocompatibility complex molecules expressed on the surface of antigen-presenting cells. TCRαβ subunits are associated with the CD3 complex formed by the γ, δ, ε, and ζ subunits, which are invariable and ensure signal transduction. Here, we review how the expression and function of TCR complexes are orchestrated by several fine-tuned cellular processes that encompass (a) synthesis of the subunits and their correct assembly and expression at the plasma membrane as a single functional complex, (b) TCR membrane localization and dynamics at the plasma membrane and in endosomal compartments, (c) TCR signal transduction leading to T cell activation, and (d) TCR degradation. These processes balance each other to ensure efficient T cell responses to a variety of antigenic stimuli while preventing autoimmunity.
Collapse
Affiliation(s)
- Andrés Alcover
- Lymphocyte Cell Biology Unit, INSERM U1221, Department of Immunology, Institut Pasteur, Paris 75015, France; ,
| | - Balbino Alarcón
- Severo Ochoa Center for Molecular Biology, CSIC-UAM, Madrid 28049, Spain;
| | - Vincenzo Di Bartolo
- Lymphocyte Cell Biology Unit, INSERM U1221, Department of Immunology, Institut Pasteur, Paris 75015, France; ,
| |
Collapse
|
32
|
Muro R, Nitta T, Nakano K, Okamura T, Takayanagi H, Suzuki H. γδTCR recruits the Syk/PI3K axis to drive proinflammatory differentiation program. J Clin Invest 2017; 128:415-426. [PMID: 29202478 DOI: 10.1172/jci95837] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/31/2017] [Indexed: 12/14/2022] Open
Abstract
γδT cells produce inflammatory cytokines and have been implicated in the pathogenesis of cancer, infectious diseases, and autoimmunity. The T cell receptor (TCR) signal transduction that specifically regulates the development of IL-17-producing γδT (γδT17) cells largely remains unclear. Here, we showed that the receptor proximal tyrosine kinase Syk is essential for γδTCR signal transduction and development of γδT17 in the mouse thymus. Zap70, another tyrosine kinase essential for the development of αβT cells, failed to functionally substitute for Syk in the development of γδT17. Syk induced the activation of the PI3K/Akt pathway upon γδTCR stimulation. Mice deficient in PI3K signaling exhibited a complete loss of γδT17, without impaired development of IFN-γ-producing γδT cells. Moreover, γδT17-dependent skin inflammation was ameliorated in mice deficient in RhoH, an adaptor known to recruit Syk. Thus, we deciphered lineage-specific TCR signaling and identified the Syk/PI3K pathway as a critical determinant of proinflammatory γδT cell differentiation.
Collapse
Affiliation(s)
- Ryunosuke Muro
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan.,Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Tadashi Okamura
- Department of Laboratory Animal Medicine, and.,Section of Animal Models, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Harumi Suzuki
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
| |
Collapse
|
33
|
Three distinct developmental pathways for adaptive and two IFN-γ-producing γδ T subsets in adult thymus. Nat Commun 2017; 8:1911. [PMID: 29203769 PMCID: PMC5715069 DOI: 10.1038/s41467-017-01963-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/29/2017] [Indexed: 01/23/2023] Open
Abstract
Murine γδ T cells include subsets that are programmed for distinct effector functions during their development in the thymus. Under pathological conditions, different γδ T cell subsets can be protective or can exacerbate a disease. Here we show that CD117, CD200 and CD371, together with other markers, identify seven developmental stages of γδ T cells. These seven stages can be divided into three distinct developmental pathways that are enriched for different TCRδ repertoires and exhibit characteristic expression patterns associated with adaptive (γδTn), IFN-γ-producing (γδT1) and IFN-γ/IL-4-co-producing γδ T cells (γδNKT). Developmental progression towards both IFN-γ-producing subsets can be induced by TCR signalling, and each pathway results in thymic emigration at a different stage. Finally, we show that γδT1 cells are the predominating IFN-γ-producing subset developing in the adult thymus. Thus, this study maps out three distinct development pathways that result in the programming of γδTn, γδT1 and γδNKT cells.
Collapse
|
34
|
A Cholesterol-Based Allostery Model of T Cell Receptor Phosphorylation. Immunity 2017; 44:1091-101. [PMID: 27192576 DOI: 10.1016/j.immuni.2016.04.011] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 11/17/2015] [Accepted: 04/11/2016] [Indexed: 12/20/2022]
Abstract
Signaling through the T cell receptor (TCR) controls adaptive immune responses. Antigen binding to TCRαβ transmits signals through the plasma membrane to induce phosphorylation of the CD3 cytoplasmic tails by incompletely understood mechanisms. Here we show that cholesterol bound to the TCRβ transmembrane region keeps the TCR in a resting, inactive conformation that cannot be phosphorylated by active kinases. Only TCRs that spontaneously detached from cholesterol could switch to the active conformation (termed primed TCRs) and then be phosphorylated. Indeed, by modulating cholesterol binding genetically or enzymatically, we could switch the TCR between the resting and primed states. The active conformation was stabilized by binding to peptide-MHC, which thus controlled TCR signaling. These data are explained by a model of reciprocal allosteric regulation of TCR phosphorylation by cholesterol and ligand binding. Our results provide both a molecular mechanism and a conceptual framework for how lipid-receptor interactions regulate signal transduction.
Collapse
|
35
|
Schamel WWA, Alarcon B, Höfer T, Minguet S. The Allostery Model of TCR Regulation. THE JOURNAL OF IMMUNOLOGY 2017; 198:47-52. [PMID: 27994168 DOI: 10.4049/jimmunol.1601661] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/01/2016] [Indexed: 12/20/2022]
Abstract
The activity of the αβ TCR is controlled by conformational switches. In the resting conformation, the TCR is not phosphorylated and is inactive. Binding of multivalent peptide-MHC to the TCR stabilizes the active conformation, leading to TCR signaling. These two conformations allow the TCRs to be allosterically regulated. We review recent data on heterotropic allostery where peptide-MHC and membrane cholesterol serve opposing functions as positive and negative allosteric regulators, respectively. In resting T cells cholesterol keeps TCRs in the resting conformation that otherwise would become spontaneously active. This regulation is well described by the classical Monod-Wyman-Changeux model of allostery. Moreover, the observation that TCRs assemble into nanoclusters might allow for homotropic allostery, in which individual TCRs could positively cooperate and thus enhance the sensitivity of T cell activation. This new view of TCR regulation will contribute to a better understanding of TCR functioning.
Collapse
Affiliation(s)
- Wolfgang W A Schamel
- Department of Immunology, Institute for Biology III, Faculty of Biology, University of Freiburg, 79108 Freiburg, Germany; .,BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany.,Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Balbino Alarcon
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center, 69120 Heidelberg, Germany; and.,BioQuant Center, University of Heidelberg, 69120 Heidelberg, Germany
| | - Susana Minguet
- Department of Immunology, Institute for Biology III, Faculty of Biology, University of Freiburg, 79108 Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
36
|
Lipid-dependent conformational dynamics underlie the functional versatility of T-cell receptor. Cell Res 2017; 27:505-525. [PMID: 28337984 DOI: 10.1038/cr.2017.42] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 01/19/2017] [Accepted: 02/09/2017] [Indexed: 01/11/2023] Open
Abstract
T-cell receptor-CD3 complex (TCR) is a versatile signaling machine that can initiate antigen-specific immune responses based on various biochemical changes of CD3 cytoplasmic domains, but the underlying structural basis remains elusive. Here we developed biophysical approaches to study the conformational dynamics of CD3ε cytoplasmic domain (CD3εCD). At the single-molecule level, we found that CD3εCD could have multiple conformational states with different openness of three functional motifs, i.e., ITAM, BRS and PRS. These conformations were generated because different regions of CD3εCD had heterogeneous lipid-binding properties and therefore had heterogeneous dynamics. Live-cell imaging experiments demonstrated that different antigen stimulations could stabilize CD3εCD at different conformations. Lipid-dependent conformational dynamics thus provide structural basis for the versatile signaling property of TCR.
Collapse
|
37
|
Muñoz-Ruiz M, Sumaria N, Pennington DJ, Silva-Santos B. Thymic Determinants of γδ T Cell Differentiation. Trends Immunol 2017; 38:336-344. [PMID: 28285814 DOI: 10.1016/j.it.2017.01.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 01/01/2023]
Abstract
γd T cells have emerged as major sources of the proinflammatory cytokines interleukin-17 (IL-17) and interferon-γ (IFNγ) in multiple models of infection, cancer and autoimmune disease. However, unlike their αβ T cell counterparts that require peripheral activation for effector cell differentiation, γδ T cells instead can be 'developmentally programmed' in the thymus to generate discrete γδ T cell effector subsets with distinctive molecular signatures. Nonetheless, recent studies have presented conflicting viewpoints on the signals involved in thymic γδ T cell development and differentiation, namely on the role of both T cell receptor (TCR)-dependent and TCR-independent factors. Here we review the current data and the ongoing controversies.
Collapse
Affiliation(s)
- Miguel Muñoz-Ruiz
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Nital Sumaria
- Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, London, E1 2AT, United Kingdom
| | - Daniel J Pennington
- Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, London, E1 2AT, United Kingdom.
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
38
|
Geometry Dynamics of α -Helices in Different Class I Major Histocompatibility Complexes. J Immunol Res 2015; 2015:173593. [PMID: 26649324 PMCID: PMC4651647 DOI: 10.1155/2015/173593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 01/05/2023] Open
Abstract
MHC α-helices form the antigen-binding cleft and are of particular interest for immunological reactions. To monitor these helices in molecular dynamics simulations, we applied a parsimonious fragment-fitting method to trace the axes of the α-helices. Each resulting axis was fitted by polynomials in a least-squares sense and the curvature integral was computed. To find the appropriate polynomial degree, the method was tested on two artificially modelled helices, one performing a bending movement and another a hinge movement. We found that second-order polynomials retrieve predefined parameters of helical motion with minimal relative error. From MD simulations we selected those parts of α-helices that were stable and also close to the TCR/MHC interface. We monitored the curvature integral, generated a ruled surface between the two MHC α-helices, and computed interhelical area and surface torsion, as they changed over time. We found that MHC α-helices undergo rapid but small changes in conformation. The curvature integral of helices proved to be a sensitive measure, which was closely related to changes in shape over time as confirmed by RMSD analysis. We speculate that small changes in the conformation of individual MHC α-helices are part of the intrinsic dynamics induced by engagement with the TCR.
Collapse
|
39
|
Affiliation(s)
- Clara L Oeste
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Balbino Alarcón
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
40
|
Paensuwan P, Hartl FA, Yousefi OS, Ngoenkam J, Wipa P, Beck-Garcia E, Dopfer EP, Khamsri B, Sanguansermsri D, Minguet S, Schamel WW, Pongcharoen S. Nck Binds to the T Cell Antigen Receptor Using Its SH3.1 and SH2 Domains in a Cooperative Manner, Promoting TCR Functioning. THE JOURNAL OF IMMUNOLOGY 2015; 196:448-58. [PMID: 26590318 DOI: 10.4049/jimmunol.1500958] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/23/2015] [Indexed: 11/19/2022]
Abstract
Ligand binding to the TCR causes a conformational change at the CD3 subunits to expose the CD3ε cytoplasmic proline-rich sequence (PRS). It was suggested that the PRS is important for TCR signaling and T cell activation. It has been shown that the purified, recombinant SH3.1 domain of the adaptor molecule noncatalytic region of tyrosine kinase (Nck) can bind to the exposed PRS of CD3ε, but the molecular mechanism of how full-length Nck binds to the TCR in cells has not been investigated so far. Using the in situ proximity ligation assay and copurifications, we show that the binding of Nck to the TCR requires partial phosphorylation of CD3ε, as it is based on two cooperating interactions. First, the SH3.1(Nck) domain has to bind to the nonphosphorylated and exposed PRS, that is, the first ITAM tyrosine has to be in the unphosphorylated state. Second, the SH2(Nck) domain has to bind to the second ITAM tyrosine in the phosphorylated state. Likewise, mutations of the SH3.1 and SH2 domains in Nck1 resulted in the loss of Nck1 binding to the TCR. Furthermore, expression of an SH3.1-mutated Nck impaired TCR signaling and T cell activation. Our data suggest that the exact pattern of CD3ε phosphorylation is critical for TCR functioning.
Collapse
Affiliation(s)
- Pussadee Paensuwan
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Frederike A Hartl
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany
| | - O Sascha Yousefi
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany; Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg 79104, Germany
| | - Jatuporn Ngoenkam
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Piyamaporn Wipa
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Esmeralda Beck-Garcia
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany; International Max Planck Research School for Molecular and Cellular Biology, Freiburg 79108, Germany
| | - Elaine P Dopfer
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany
| | - Boonruang Khamsri
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Donruedee Sanguansermsri
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Susana Minguet
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany
| | - Wolfgang W Schamel
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany;
| | - Sutatip Pongcharoen
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Research Center for Academic Excellence in Petroleum, Petrochemical and Advanced Materials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand; and Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
41
|
Wu W, Yan C, Shi X, Li L, Liu W, Xu C. Lipid in T-cell receptor transmembrane signaling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 118:130-8. [DOI: 10.1016/j.pbiomolbio.2015.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 12/18/2022]
|
42
|
Hem CD, Sundvold-Gjerstad V, Granum S, Koll L, Abrahamsen G, Buday L, Spurkland A. T cell specific adaptor protein (TSAd) promotes interaction of Nck with Lck and SLP-76 in T cells. Cell Commun Signal 2015; 13:31. [PMID: 26163016 PMCID: PMC4499191 DOI: 10.1186/s12964-015-0109-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 07/03/2015] [Indexed: 11/12/2022] Open
Abstract
Background The Lck and Src binding adaptor protein TSAd (T cell specific adaptor) regulates actin polymerization in T cells and endothelial cells. The molecular details as to how TSAd regulates this process remain to be elucidated. Results To identify novel interaction partners for TSAd, we used a scoring matrix-assisted ligand algorithm (SMALI), and found that the Src homology 2 (SH2) domain of the actin regulator Non-catalytic region of tyrosine kinase adaptor protein (Nck) potentially binds to TSAd phosphorylated on Tyr280 (pTyr280) and pTyr305. These predictions were confirmed by peptide array analysis, showing direct binding of recombinant Nck SH2 to both pTyr280 and pTyr305 on TSAd. In addition, the SH3 domains of Nck interacted with the proline rich region (PRR) of TSAd. Pull-down and immunoprecipitation experiments further confirmed the Nck-TSAd interactions through Nck SH2 and SH3 domains. In line with this Nck and TSAd co-localized in Jurkat cells as assessed by confocal microscopy and imaging flow cytometry. Co-immunoprecipitation experiments in Jurkat TAg cells lacking TSAd revealed that TSAd promotes interaction of Nck with Lck and SLP-76, but not Vav1. TSAd expressing Jurkat cells contained more polymerized actin, an effect dependent on TSAd exon 7, which includes interactions sites for both Nck and Lck. Conclusions TSAd binds to and co-localizes with Nck. Expression of TSAd increases both Nck-Lck and Nck-SLP-76 interaction in T cells. Recruitment of Lck and SLP-76 to Nck by TSAd could be one mechanism by which TSAd promotes actin polymerization in activated T cells.
Collapse
Affiliation(s)
- Cecilie Dahl Hem
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0317, Norway.
| | - Vibeke Sundvold-Gjerstad
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0317, Norway.
| | - Stine Granum
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0317, Norway.
| | - Lise Koll
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0317, Norway.
| | - Greger Abrahamsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0317, Norway.
| | - Laszlo Buday
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1117, Hungary.
| | - Anne Spurkland
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0317, Norway. .,Institute of Basal Medical Sciences, University of Oslo, PB 1105, Blindern, Oslo, 0317, Norway.
| |
Collapse
|