1
|
Meng L, Gu T, Yu P, Zhang Z, Wei Z. The role of microglia in Neuroinflammation associated with cardiopulmonary bypass. Front Cell Neurosci 2024; 18:1496520. [PMID: 39742156 PMCID: PMC11685197 DOI: 10.3389/fncel.2024.1496520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/28/2024] [Indexed: 01/03/2025] Open
Abstract
Cardiopulmonary bypass (CPB) and deep hypothermic circulatory arrest (DHCA) are indispensable core techniques in cardiac surgery. Numerous studies have shown that cardiopulmonary bypass and deep hypothermic circulatory arrest are associated with the occurrence of neuroinflammation, accompanied by the activation of microglia. Microglia, as macrophages in the central nervous system, play an irreplaceable role in neuroinflammation. Current research on neuroinflammation induced by microglia activation mainly focuses on neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, neuropathic pain, acquired brain injury, and others. However, there is relatively limited research on microglia and neuroinflammation under conditions of cardiopulmonary bypass and deep hypothermic circulatory arrest. The close relationship between cardiopulmonary bypass, deep hypothermic circulatory arrest, and cardiac surgery underscores the importance of identifying targets for intervening in neuroinflammation through microglia. This could greatly benefit cardiac surgery patients during cardiopulmonary bypass and the perioperative period, significantly improving patient prognosis. This review article provides the first comprehensive discussion on the signaling pathways associated with neuroinflammation triggered by microglia activation, the impact of cardiopulmonary bypass on microglia, as well as the current status and advancements in cardiopulmonary bypass animal models. It provides new insights and methods for the treatment of neuroinflammation related to cardiopulmonary bypass and deep hypothermic circulatory arrest, holding significant importance for clinical treatment by cardiac surgeons, management strategies by cardiopulmonary bypass physicians, and the development of neurologically related medications.
Collapse
Affiliation(s)
- Lingda Meng
- Department of Cardiac Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Tianxiang Gu
- Department of Cardiac Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Peng Yu
- Department of Cardiac Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhiwei Zhang
- Department of Cardiac Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhijing Wei
- Department of Trauma Center, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Wen L, Liu Z, Zhou L, Liu Z, Li Q, Geng B, Xia Y. Bone and Extracellular Signal-Related Kinase 5 (ERK5). Biomolecules 2024; 14:556. [PMID: 38785963 PMCID: PMC11117709 DOI: 10.3390/biom14050556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/17/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Bones are vital for anchoring muscles, tendons, and ligaments, serving as a fundamental element of the human skeletal structure. However, our understanding of bone development mechanisms and the maintenance of bone homeostasis is still limited. Extracellular signal-related kinase 5 (ERK5), a recently identified member of the mitogen-activated protein kinase (MAPK) family, plays a critical role in the pathogenesis and progression of various diseases, especially neoplasms. Recent studies have highlighted ERK5's significant role in both bone development and bone-associated pathologies. This review offers a detailed examination of the latest research on ERK5 in different tissues and diseases, with a particular focus on its implications for bone health. It also examines therapeutic strategies and future research avenues targeting ERK5.
Collapse
Affiliation(s)
- Lei Wen
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- Department of Orthopedics and Trauma Surgery, Affiliated Hospital of Yunnan University, Kunming 650032, China
| | - Zirui Liu
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Libo Zhou
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Zhongcheng Liu
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Qingda Li
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Bin Geng
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Yayi Xia
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| |
Collapse
|
3
|
Dong J, Ren B, Tian Y, Peng G, Zhai H, Meng Z, Gu R, Gan H, Wu Z, Sun Y, Dou G, Liu S. Effects of Radiation-Induced Skin Injury on Hyaluronan Degradation and Its Underlying Mechanisms. Molecules 2023; 28:7449. [PMID: 37959868 PMCID: PMC10647323 DOI: 10.3390/molecules28217449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Radiation-induced skin injury (RISI) is a frequent and severe complication with a complex pathogenesis that often occurs during radiation therapy, nuclear incidents, and nuclear war, for which there is no effective treatment. Hyaluronan (HA) plays an overwhelming role in the skin, and it has been shown that UVB irradiation induces increased HA expression. Nevertheless, to the best of our knowledge, there has been no study regarding the biological correlation between RISI and HA degradation and its underlying mechanisms. Therefore, in our study, we investigated low-molecular-weight HA content using an enzyme-linked immunosorbent assay and changes in the expression of HA-related metabolic enzymes using real-time quantitative polymerase chain reaction and a Western blotting assay. The oxidative stress level of the RISI model was assessed using sodium dismutase, malondialdehyde, and reactive oxygen species assays. We demonstrated that low-molecular-weight HA content was significantly upregulated in skin tissues during the late phase of irradiation exposure in the RISI model and that HA-related metabolic enzymes, oxidative stress levels, the MEK5/ERK5 pathway, and inflammatory factors were consistent with changes in low-molecular-weight HA content. These findings prove that HA degradation is biologically relevant to RISI development and that the HA degradation mechanisms are related to HA-related metabolic enzymes, oxidative stress, and inflammatory factors. The MEK5/ERK5 pathway represents a potential mechanism of HA degradation. In conclusion, we aimed to investigate changes in HA content and preliminarily investigate the HA degradation mechanism in a RISI model under γ-ray irradiation, to consider HA as a new target for RISI and provide ideas for novel drug development.
Collapse
Affiliation(s)
- Jiahui Dong
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.D.); (B.R.); (Z.M.); (R.G.); (H.G.); (Z.W.); (Y.S.)
| | - Boyuan Ren
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.D.); (B.R.); (Z.M.); (R.G.); (H.G.); (Z.W.); (Y.S.)
| | - Yunfei Tian
- School of Pharmacy, Henan University, Kaifeng 475004, China; (Y.T.); (H.Z.)
| | - Guanqun Peng
- College of Life Science, Hebei University, Baoding 071002, China;
| | - Huiting Zhai
- School of Pharmacy, Henan University, Kaifeng 475004, China; (Y.T.); (H.Z.)
| | - Zhiyun Meng
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.D.); (B.R.); (Z.M.); (R.G.); (H.G.); (Z.W.); (Y.S.)
| | - Ruolan Gu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.D.); (B.R.); (Z.M.); (R.G.); (H.G.); (Z.W.); (Y.S.)
| | - Hui Gan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.D.); (B.R.); (Z.M.); (R.G.); (H.G.); (Z.W.); (Y.S.)
| | - Zhuona Wu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.D.); (B.R.); (Z.M.); (R.G.); (H.G.); (Z.W.); (Y.S.)
| | - Yunbo Sun
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.D.); (B.R.); (Z.M.); (R.G.); (H.G.); (Z.W.); (Y.S.)
| | - Guifang Dou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.D.); (B.R.); (Z.M.); (R.G.); (H.G.); (Z.W.); (Y.S.)
| | - Shuchen Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.D.); (B.R.); (Z.M.); (R.G.); (H.G.); (Z.W.); (Y.S.)
| |
Collapse
|
4
|
Yang K, Kang Z, Guan W, Lotfi-Emran S, Mayer ZJ, Guerrero CR, Steffen BT, Puskarich MA, Tignanelli CJ, Lusczek E, Safo SE. Developing A Baseline Metabolomic Signature Associated with COVID-19 Severity: Insights from Prospective Trials Encompassing 13 U.S. Centers. Metabolites 2023; 13:1107. [PMID: 37999202 PMCID: PMC10672920 DOI: 10.3390/metabo13111107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 11/25/2023] Open
Abstract
Metabolic disease is a significant risk factor for severe COVID-19 infection, but the contributing pathways are not yet fully elucidated. Using data from two randomized controlled trials across 13 U.S. academic centers, our goal was to characterize metabolic features that predict severe COVID-19 and define a novel baseline metabolomic signature. Individuals (n = 133) were dichotomized as having mild or moderate/severe COVID-19 disease based on the WHO ordinal scale. Blood samples were analyzed using the Biocrates platform, providing 630 targeted metabolites for analysis. Resampling techniques and machine learning models were used to determine metabolomic features associated with severe disease. Ingenuity Pathway Analysis (IPA) was used for functional enrichment analysis. To aid in clinical decision making, we created baseline metabolomics signatures of low-correlated molecules. Multivariable logistic regression models were fit to associate these signatures with severe disease on training data. A three-metabolite signature, lysophosphatidylcholine a C17:0, dihydroceramide (d18:0/24:1), and triacylglyceride (20:4_36:4), resulted in the best discrimination performance with an average test AUROC of 0.978 and F1 score of 0.942. Pathways related to amino acids were significantly enriched from the IPA analyses, and the mitogen-activated protein kinase kinase 5 (MAP2K5) was differentially activated between groups. In conclusion, metabolites related to lipid metabolism efficiently discriminated between mild vs. moderate/severe disease. SDMA and GABA demonstrated the potential to discriminate between these two groups as well. The mitogen-activated protein kinase kinase 5 (MAP2K5) regulator is differentially activated between groups, suggesting further investigation as a potential therapeutic pathway.
Collapse
Affiliation(s)
- Kaifeng Yang
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA (S.E.S.)
| | - Zhiyu Kang
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA (S.E.S.)
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA (S.E.S.)
| | - Sahar Lotfi-Emran
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zachary J. Mayer
- Center for Metabolomics and Proteomics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Candace R. Guerrero
- Center for Metabolomics and Proteomics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brian T. Steffen
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA (E.L.)
| | - Michael A. Puskarich
- Department of Emergency Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Emergency Medicine, Hennepin County Medical Center, Minneapolis, MN 55455, USA
| | - Christopher J. Tignanelli
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA (E.L.)
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Elizabeth Lusczek
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA (E.L.)
| | - Sandra E. Safo
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA (S.E.S.)
| |
Collapse
|
5
|
Le NT. The significance of ERK5 catalytic-independent functions in disease pathways. Front Cell Dev Biol 2023; 11:1235217. [PMID: 37601096 PMCID: PMC10436230 DOI: 10.3389/fcell.2023.1235217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023] Open
Abstract
Extracellular signal-regulated kinase 5 (ERK5), also known as BMK1 or MAPK7, represents a recent addition to the classical mitogen-activated protein kinase (MAPK) family. This family includes well-known members such as ERK1/2, c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK), as well as atypical MAPKs such as ERK3, ERK4, ERK7 (ERK8), and Nemo-like kinase (NLK). Comprehensive reviews available elsewhere provide detailed insights into ERK5, which interested readers can refer to for in-depth knowledge (Nithianandarajah-Jones et al., 2012; Monti et al., Cancers (Basel), 2022, 14). The primary aim of this review is to emphasize the essential characteristics of ERK5 and shed light on the intricate nature of its activation, with particular attention to the catalytic-independent functions in disease pathways.
Collapse
Affiliation(s)
- Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
6
|
Abe JI, Imanishi M, Li S, Zhang A, Ae Ko K, Samanthapudi VSK, Lee LL, Bojorges AP, Gi YJ, Hobbs BP, Deswal A, Herrmann J, Lin SH, Chini EN, Shen YH, Schadler KL, Nguyen THM, Gupte AA, Reyes-Gibby C, Yeung SCJ, Abe RJ, Olmsted-Davis EA, Krishnan S, Dantzer R, Palaskas NL, Cooke JP, Pownall HJ, Yoshimoto M, Fujiwara K, Hamilton DJ, Burks JK, Wang G, Le NT, Kotla S. An ERK5-NRF2 Axis Mediates Senescence-Associated Stemness and Atherosclerosis. Circ Res 2023; 133:25-44. [PMID: 37264926 PMCID: PMC10357365 DOI: 10.1161/circresaha.122.322017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 05/17/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND ERK5 (extracellular signal-regulated kinase 5) is a dual kinase transcription factor containing an N-terminal kinase domain and a C-terminal transcriptional activation domain. Many ERK5 kinase inhibitors have been developed and tested to treat cancer and inflammatory diseases. However, recent data have raised questions about the role of the catalytic activity of ERK5 in proliferation and inflammation. We aimed to investigate how ERK5 reprograms myeloid cells to the proinflammatory senescent phenotype, subsequently leading to atherosclerosis. METHODS A ERK5 S496A (dephosphorylation mimic) knock in (KI) mouse model was generated using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9), and atherosclerosis was characterized by hypercholesterolemia induction. The plaque phenotyping in homozygous ERK5 S496A KI and wild type (WT) mice was studied using imaging mass cytometry. Bone marrow-derived macrophages were isolated from hypercholesterolemic mice and characterized using RNA sequencing and functional in vitro approaches, including senescence, mitochondria reactive oxygen species, and inflammation assays, as well as by metabolic extracellular flux analysis. RESULTS We show that atherosclerosis was inhibited in ERK5 S496A KI mice. Furthermore, ERK5 S496 phosphorylation mediates both senescence-associated secretory phenotype and senescence-associated stemness by upregulating AHR (aryl hydrocarbon receptor) in plaque and bone marrow-derived macrophages isolated from hypercholesterolemic mice. We also discovered that ERK5 S496 phosphorylation could induce NRF2 (NFE2-related factor 2) SUMOylation at a novel K518 site to inhibit NRF2 transcriptional activity without altering ERK5 catalytic activity and mediates oxidized LDL (low-density lipoprotein)-induced senescence-associated secretory phenotype. Specific ERK5 kinase inhibitors (AX15836 and XMD8-92) also inhibited ERK5 S496 phosphorylation, suggesting the involvement of ERK5 S496 phosphorylation in the anti-inflammatory effects of these ERK5 kinase inhibitors. CONCLUSIONS We discovered a novel mechanism by which the macrophage ERK5-NRF2 axis develops a unique senescence-associated secretory phenotype/stemness phenotype by upregulating AHR to engender atherogenesis. The finding of senescence-associated stemness phenotype provides a molecular explanation to resolve the paradox of senescence in proliferative plaque by permitting myeloid cells to escape the senescence-induced cell cycle arrest during atherosclerosis formation.
Collapse
Affiliation(s)
- Jun-ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- These authors contributed equally to this work and were designated as co-first authors
| | - Masaki Imanishi
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- These authors contributed equally to this work and were designated as co-first authors
| | - Shengyu Li
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
- These authors contributed equally to this work and were designated as co-first authors
| | - Aijun Zhang
- Center for Bioenergetics, Houston Methodist Research Institute, Texas, and Department of Medicine, Houston Methodist, Weill Cornell Medicine Affiliate, Houston, Texas, USA
| | - Kyung Ae Ko
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Ling-Ling Lee
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Young Jin Gi
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Brian P. Hobbs
- Department of Population Health, The University of Texas at Austin, Austin, Texas, USA
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joerg Herrmann
- Cardio Oncology Clinic, Division of Preventive Cardiology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Steven H. Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Eduardo N. Chini
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Ying H. Shen
- Division of Cardiothoracic Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Keri L. Schadler
- Department of Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Thi-Hong-Minh Nguyen
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Anisha A. Gupte
- Center for Bioenergetics, Houston Methodist Research Institute, Texas, and Department of Medicine, Houston Methodist, Weill Cornell Medicine Affiliate, Houston, Texas, USA
| | - Cielito Reyes-Gibby
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sai-Ching J. Yeung
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rei J. Abe
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | | | - Sunil Krishnan
- Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Robert Dantzer
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nicolas L. Palaskas
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John P. Cooke
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Henry J. Pownall
- Center for Bioenergetics, Houston Methodist Research Institute, Texas, and Department of Medicine, Houston Methodist, Weill Cornell Medicine Affiliate, Houston, Texas, USA
| | - Momoko Yoshimoto
- Center for Stem Cell & Regenerative Medicine, Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Keigi Fujiwara
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dale J. Hamilton
- Center for Bioenergetics, Houston Methodist Research Institute, Texas, and Department of Medicine, Houston Methodist, Weill Cornell Medicine Affiliate, Houston, Texas, USA
- These authors contributed equally to this work
| | - Jared K. Burks
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- These authors contributed equally to this work
| | - Guangyu Wang
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
- These authors were equivalent co-senior authors
| | - Nhat-Tu Le
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
- These authors were equivalent co-senior authors
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- These authors were equivalent co-senior authors
| |
Collapse
|
7
|
Qi C, Bujaroski RS, Baell J, Zheng X. Kinases in cerebral cavernous malformations: Pathogenesis and therapeutic targets. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119488. [PMID: 37209718 DOI: 10.1016/j.bbamcr.2023.119488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
Cerebral cavernous malformations (CCMs) are low-flow, hemorrhagic vascular lesions of the central nervous system of genetic origin, which can cause stroke-like symptoms and seizures. From the identification of CCM1, CCM2 and CCM3 as genes related to disease progression, molecular and cellular mechanisms for CCM pathogenesis have been established and the search for potential drugs to target CCM has begun. Broadly speaking, kinases are the major group signaling in CCM pathogenesis. These include the MEKK3/MEK5/ERK5 cascade, Rho/Rock signaling, CCM3/GCKIII signaling, PI3K/mTOR signaling, and others. Since the discovery of Rho/Rock in CCM pathogenesis, inhibitors for Rho signaling and subsequently other components in CCM signaling were discovered and applied in preclinical and clinical trials to ameliorate CCM progression. This review discusses the general aspects of CCM disease, kinase-mediated signaling in CCM pathogenesis and the current state of potential treatment options for CCM. It is suggested that kinase target drug development in the context of CCM might facilitate and meet the unmet requirement - a non-surgical option for CCM disease.
Collapse
Affiliation(s)
- Chunxiao Qi
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, China
| | - Richard Sean Bujaroski
- Medicinal Chemistry Theme, Monash Institute of Pharmaceutical Sciences, Australian Translational Medicinal Chemistry Facility (ATMCF), Monash University, Parkville, Victoria, Australia
| | - Jonathan Baell
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, China
| | - Xiangjian Zheng
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, China.
| |
Collapse
|
8
|
Hukkamlı B, Dağdelen B, Sönmez Aydın F, Budak H. Comparison of the efficacy of the mouse hepatic and renal antioxidant systems against inflammation-induced oxidative stress. Cell Biochem Biophys 2023:10.1007/s12013-023-01126-3. [PMID: 36773183 DOI: 10.1007/s12013-023-01126-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2023] [Indexed: 02/12/2023]
Abstract
This study was conducted to compare the efficacy of the mouse hepatic and renal antioxidant systems against inflammation-induced oxidative stress. Increased Il-1 and Il-6 expressions, markers of inflammation, were represented by inflammation models in mouse liver and kidney tissues injected intraperitoneally with LPS. After establishing the model, the GSH level and the GSH/GSSG ratio, which are oxidative stress markers, were investigated in both tissues treated with LPS and the control group. The expression of Trx1, TrxR, and Txnip genes increased in the liver tissues of LPS-treated mice. In the kidney tissue, while Trx1 expression decreased, no change was observed in TrxR1 expression, and Txnip expression increased. In the kidneys, TRXR1 and GR activities decreased, whereas GPx activity increased. In both tissues, the TRXR1 protein expression decreased significantly, while TXNIP expression increased. In conclusion, different behaviors of antioxidant system members were observed during acute inflammation in both tissues. Additionally, it can be said that the kidney tissue is more sensitive and takes earlier measures than the liver tissue against cellular damage caused by inflammation and inflammation-induced oxidative stress.
Collapse
Affiliation(s)
- Berna Hukkamlı
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, Erzurum, 25240, Türkiye
- Department of Chemical and Chemical Processing Technologies, Boyabat Vocational School, Sinop University, Sinop, 57200, Türkiye
| | - Burak Dağdelen
- Department of Medical Biology, Faculty of Medicine, Selçuk University, Konya, 42250, Türkiye
| | - Feyza Sönmez Aydın
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, Erzurum, 25240, Türkiye
- Department of Pathology Laboratory Techniques, Vocational School, Doğuş University, Istanbul, 34775, Türkiye
| | - Harun Budak
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, Erzurum, 25240, Türkiye.
| |
Collapse
|
9
|
How to kill an ERKsome target: PROTACs deliver the deathblow. Cell Chem Biol 2022; 29:1569-1571. [PMID: 36400000 DOI: 10.1016/j.chembiol.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this issue of Cell Chemical Biology, You et al. demonstrate that selective degradation of ERK5 exhibits neither anti-proliferative nor anti-inflammatory activities previously attributed to ERK5 inactivation. This settles a longstanding debate in the field and highlights the power of PROTACs to investigate non-enzymatic activities of target proteins.
Collapse
|
10
|
You I, Donovan KA, Krupnick NM, Boghossian AS, Rees MG, Ronan MM, Roth JA, Fischer ES, Wang ES, Gray NS. Acute pharmacological degradation of ERK5 does not inhibit cellular immune response or proliferation. Cell Chem Biol 2022; 29:1630-1638.e7. [PMID: 36220104 PMCID: PMC9675722 DOI: 10.1016/j.chembiol.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/26/2022] [Accepted: 09/17/2022] [Indexed: 01/31/2023]
Abstract
Recent interest in the role that extracellular signal-regulated kinase 5 (ERK5) plays in various diseases, particularly cancer and inflammation, has grown. Phenotypes observed from genetic knockdown or deletion of ERK5 suggested that targeting ERK5 could have therapeutic potential in various disease settings, motivating the development ATP-competitive ERK5 inhibitors. However, these inhibitors were unable to recapitulate the effects of genetic loss of ERK5, suggesting that ERK5 may have key kinase-independent roles. To investigate potential non-catalytic functions of ERK5, we report the development of INY-06-061, a potent and selective heterobifunctional degrader of ERK5. In contrast to results reported through genetic knockdown of ERK5, INY-06-061-induced ERK5 degradation did not induce anti-proliferative effects in multiple cancer cell lines or suppress inflammatory responses in primary endothelial cells. Thus, we developed and characterized a chemical tool useful for validating phenotypes reported to be associated with genetic ERK5 ablation and for guiding future ERK5-directed drug discovery efforts.
Collapse
Affiliation(s)
- Inchul You
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Noah M Krupnick
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Matthew G Rees
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Melissa M Ronan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jennifer A Roth
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Eric S Wang
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
ERK5 modulates IL-6 secretion and contributes to tumor-induced immune suppression. Cell Death Dis 2021; 12:969. [PMID: 34671021 PMCID: PMC8528934 DOI: 10.1038/s41419-021-04257-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/13/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022]
Abstract
Tumors exhibit a variety of strategies to dampen antitumor immune responses. With an aim to identify factors that are secreted from tumor cells, we performed an unbiased mass spectrometry-based secretome analysis in lung cancer cells. Interleukin-6 (IL-6) has been identified as a prominent factor secreted by tumor cells and cancer-associated fibroblasts isolated from cancer patients. Incubation of dendritic cell (DC) cultures with tumor cell supernatants inhibited the production of IL-12p70 in DCs but not the surface expression of other activation markers which is reversed by treatment with IL-6 antibody. Defects in IL-12p70 production in the DCs inhibited the differentiation of Th1 but not Th2 and Th17 cells from naïve CD4+ T cells. We also demonstrate that the classical mitogen-activated protein kinase, ERK5/MAPK7, is required for IL-6 production in tumor cells. Inhibition of ERK5 activity or depletion of ERK5 prevented IL-6 production in tumor cells, which could be exploited for enhancing antitumor immune responses.
Collapse
|
12
|
Howell SJ, Lee CA, Batoki JC, Zapadka TE, Lindstrom SI, Taylor BE, Taylor PR. Retinal Inflammation, Oxidative Stress, and Vascular Impairment Is Ablated in Diabetic Mice Receiving XMD8-92 Treatment. Front Pharmacol 2021; 12:732630. [PMID: 34456740 PMCID: PMC8385489 DOI: 10.3389/fphar.2021.732630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
The global number of diabetics continues to rise annually. As diabetes progresses, almost all of Type I and more than half of Type II diabetics develop diabetic retinopathy. Diabetic retinopathy is a microvascular disease of the retina, and is the leading cause of blindness in the working-age population worldwide. With such a significant health impact, new drugs are required to halt the blinding threat posed by this visual disorder. The cause of diabetic retinopathy is multifactorial, and an optimal therapeutic would halt inflammation, cease photoreceptor cell dysfunction, and ablate vascular impairment. XMD8-92 is a small molecule inhibitor that blocks inflammatory activity downstream of ERK5 (extracellular signal-related kinase 5) and BRD4 (bromodomain 4). ERK5 elicits inflammation, is increased in Type II diabetics, and plays a pathologic role in diabetic nephropathy, while BRD4 induces retinal inflammation and plays a role in retinal degeneration. Further, we provide evidence that suggests both pERK5 and BRD4 expression are increased in the retinas of our STZ (streptozotocin)-induced diabetic mice. Taken together, we hypothesized that XMD8-92 would be a good therapeutic candidate for diabetic retinopathy, and tested XMD8-92 in a murine model of diabetic retinopathy. In the current study, we developed an in vivo treatment regimen by administering one 100 μL subcutaneous injection of saline containing 20 μM of XMD8-92 weekly, to STZ-induced diabetic mice. XMD8-92 treatments significantly decreased diabetes-mediated retinal inflammation, VEGF production, and oxidative stress. Further, XMD8-92 halted the degradation of ZO-1 (zonula occludens-1), which is a tight junction protein associated with vascular permeability in the retina. Finally, XMD8-92 treatment ablated diabetes-mediated vascular leakage and capillary degeneration, which are the clinical hallmarks of non-proliferative diabetic retinopathy. Taken together, this study provides strong evidence that XMD8-92 could be a potentially novel therapeutic for diabetic retinopathy.
Collapse
Affiliation(s)
- Scott J. Howell
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Louis Stokes Cleveland VA Medical Center, VA Northeast Ohio Healthcare System, Cleveland, OH, United States
| | - Chieh A. Lee
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Julia C. Batoki
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Thomas E. Zapadka
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Louis Stokes Cleveland VA Medical Center, VA Northeast Ohio Healthcare System, Cleveland, OH, United States
| | - Sarah I. Lindstrom
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Brooklyn E. Taylor
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Patricia R. Taylor
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Louis Stokes Cleveland VA Medical Center, VA Northeast Ohio Healthcare System, Cleveland, OH, United States
| |
Collapse
|
13
|
Small molecule ERK5 kinase inhibitors paradoxically activate ERK5 signalling: be careful what you wish for…. Biochem Soc Trans 2021; 48:1859-1875. [PMID: 32915196 PMCID: PMC7609025 DOI: 10.1042/bst20190338] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022]
Abstract
ERK5 is a protein kinase that also contains a nuclear localisation signal and a transcriptional transactivation domain. Inhibition of ERK5 has therapeutic potential in cancer and inflammation and this has prompted the development of ERK5 kinase inhibitors (ERK5i). However, few ERK5i programmes have taken account of the ERK5 transactivation domain. We have recently shown that the binding of small molecule ERK5i to the ERK5 kinase domain stimulates nuclear localisation and paradoxical activation of its transactivation domain. Other kinase inhibitors paradoxically activate their intended kinase target, in some cases leading to severe physiological consequences highlighting the importance of mitigating these effects. Here, we review the assays used to monitor ERK5 activities (kinase and transcriptional) in cells, the challenges faced in development of small molecule inhibitors to the ERK5 pathway, and classify the molecular mechanisms of paradoxical activation of protein kinases by kinase inhibitors.
Collapse
|
14
|
Wong E, Xu F, Joffre J, Nguyen N, Wilhelmsen K, Hellman J. ERK1/2 Has Divergent Roles in LPS-Induced Microvascular Endothelial Cell Cytokine Production and Permeability. Shock 2021; 55:349-356. [PMID: 32826812 PMCID: PMC8139579 DOI: 10.1097/shk.0000000000001639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Endothelial cells play a major role in inflammatory responses to infection and sterile injury. Endothelial cells express Toll-like receptor 4 (TLR4) and are activated by LPS to express inflammatory cytokines/chemokines, and to undergo functional changes, including increased permeability. The extracellular signal-regulated kinase 1/2 (ERK1/2) mediates pro-inflammatory signaling in monocytes and macrophages, but the role of ERK1/2 in LPS-induced activation of microvascular endothelial cells has not been defined. We therefore studied the role of ERK1/2 in LPS-induced inflammatory activation and permeability of primary human lung microvascular endothelial cells (HMVEC). Inhibition of ERK1/2 augmented LPS-induced IL-6 and vascular cell adhesion protein (VCAM-1) production by HMVEC. ERK1/2 siRNA knockdown also augmented IL-6 production by LPS-treated HMVEC. Conversely, ERK1/2 inhibition abrogated permeability and restored cell-cell junctions of LPS-treated HMVEC. Consistent with the previously described pro-inflammatory role for ERK1/2 in leukocytes, inhibition of ERK1/2 reduced LPS-induced cytokine/chemokine production by primary human monocytes. Our study identifies a complex role for ERK1/2 in TLR4-activation of HMVEC, independent of myeloid differentiation primary response gene (MyD88) and TIR domain-containing adaptor inducing IFN-β (TRIF) signaling pathways. The activation of ERK1/2 limits LPS-induced IL-6 production by HMVEC, while at the same time promoting HMVEC permeability. Conversely, ERK1/2 activation promotes IL-6 production by human monocytes. Our results suggest that ERK1/2 may play an important role in the nuanced regulation of endothelial cell inflammation and vascular permeability in sepsis and injury.
Collapse
Affiliation(s)
- Erika Wong
- Department of Pediatrics, Division of Critical Care, UCSF Benioff Children’s Hospital, San Francisco, California, 94143
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, 94143
| | - Fengyun Xu
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, 94143
| | - Jérémie Joffre
- Medical Intensive Care Unit, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, 75571 Paris cedex 12, France
| | - Nina Nguyen
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, 94143
| | - Kevin Wilhelmsen
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, 94143
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, 94143
| |
Collapse
|
15
|
Abstract
Despite recent advances in the treatment of autoimmune and inflammatory diseases, unmet medical needs in some areas still exist. One of the main therapeutic approaches to alleviate dysregulated inflammation has been to target the activity of kinases that regulate production of inflammatory mediators. Small-molecule kinase inhibitors have the potential for broad efficacy, convenience and tissue penetrance, and thus often offer important advantages over biologics. However, designing kinase inhibitors with target selectivity and minimal off-target effects can be challenging. Nevertheless, immense progress has been made in advancing kinase inhibitors with desirable drug-like properties into the clinic, including inhibitors of JAKs, IRAK4, RIPKs, BTK, SYK and TPL2. This Review will address the latest discoveries around kinase inhibitors with an emphasis on clinically validated autoimmunity and inflammatory pathways.
Collapse
Affiliation(s)
- Ali A Zarrin
- Discovery Department, TRex Bio, South San Francisco, CA, USA.
| | - Katherine Bao
- Early Discovery Biochemistry Department, Genentech, South San Francisco, CA, USA
| | | | - Domagoj Vucic
- Early Discovery Biochemistry Department, Genentech, South San Francisco, CA, USA
| |
Collapse
|
16
|
Garman L, Pelikan RC, Rasmussen A, Lareau CA, Savoy KA, Deshmukh US, Bagavant H, Levin AM, Daouk S, Drake WP, Montgomery CG. Single Cell Transcriptomics Implicate Novel Monocyte and T Cell Immune Dysregulation in Sarcoidosis. Front Immunol 2020; 11:567342. [PMID: 33363531 PMCID: PMC7753017 DOI: 10.3389/fimmu.2020.567342] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022] Open
Abstract
Sarcoidosis is a systemic inflammatory disease characterized by infiltration of immune cells into granulomas. Previous gene expression studies using heterogeneous cell mixtures lack insight into cell-type-specific immune dysregulation. We performed the first single-cell RNA-sequencing study of sarcoidosis in peripheral immune cells in 48 patients and controls. Following unbiased clustering, differentially expressed genes were identified for 18 cell types and bioinformatically assessed for function and pathway enrichment. Our results reveal persistent activation of circulating classical monocytes with subsequent upregulation of trafficking molecules. Specifically, classical monocytes upregulated distinct markers of activation including adhesion molecules, pattern recognition receptors, and chemokine receptors, as well as enrichment of immunoregulatory pathways HMGB1, mTOR, and ephrin receptor signaling. Predictive modeling implicated TGFβ and mTOR signaling as drivers of persistent monocyte activation. Additionally, sarcoidosis T cell subsets displayed patterns of dysregulation. CD4 naïve T cells were enriched for markers of apoptosis and Th17/Treg differentiation, while effector T cells showed enrichment of anergy-related pathways. Differentially expressed genes in regulatory T cells suggested dysfunctional p53, cell death, and TNFR2 signaling. Using more sensitive technology and more precise units of measure, we identify cell-type specific, novel inflammatory and regulatory pathways. Based on our findings, we suggest a novel model involving four convergent arms of dysregulation: persistent hyperactivation of innate and adaptive immunity via classical monocytes and CD4 naïve T cells, regulatory T cell dysfunction, and effector T cell anergy. We further our understanding of the immunopathology of sarcoidosis and point to novel therapeutic targets.
Collapse
Affiliation(s)
- Lori Garman
- Oklahoma Medical Research Foundation, Genes and Human Disease, Oklahoma City, OK, United States
| | - Richard C Pelikan
- Oklahoma Medical Research Foundation, Genes and Human Disease, Oklahoma City, OK, United States
| | - Astrid Rasmussen
- Oklahoma Medical Research Foundation, Genes and Human Disease, Oklahoma City, OK, United States
| | - Caleb A Lareau
- Cell Circuits and Epigenomics Program, Broad Institute, Cambridge, MA, United States
| | - Kathryn A Savoy
- Oklahoma Medical Research Foundation, Genes and Human Disease, Oklahoma City, OK, United States
| | - Umesh S Deshmukh
- Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology, Oklahoma City, OK, United States
| | - Harini Bagavant
- Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology, Oklahoma City, OK, United States
| | - Albert M Levin
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, United States
| | - Salim Daouk
- Cardiovascular Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Wonder P Drake
- Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Courtney G Montgomery
- Oklahoma Medical Research Foundation, Genes and Human Disease, Oklahoma City, OK, United States
| |
Collapse
|
17
|
Kedika SR, Shukla SP, Udugamasooriya DG. Design of a dual ERK5 kinase activation and autophosphorylation inhibitor to block cancer stem cell activity. Bioorg Med Chem Lett 2020; 30:127552. [DOI: 10.1016/j.bmcl.2020.127552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
|
18
|
Mao L, Zhou Y, Chen L, Hu L, Liu S, Zheng W, Zhao J, Guo M, Chen C, He Z, Xu L. Identification of atypical mitogen-activated protein kinase MAPK4 as a novel regulator in acute lung injury. Cell Biosci 2020; 10:121. [PMID: 33088477 PMCID: PMC7570399 DOI: 10.1186/s13578-020-00484-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/10/2020] [Indexed: 12/15/2022] Open
Abstract
Background Acute lung injury (ALI) is a serious disease with highly morbidity and mortality that causes serious health problems worldwide. Atypical mitogen activated protein kinases (MAPKs) play critical roles in the development of tissues and have been proposed as promising therapeutic targets for various diseases. However, the potential role of atypical MAPKs in ALI remains elusive. In this study, we investigated the role of atypical MAPKs family member MAPK4 in ALI using LPS-induced murine ALI model. Results We found that MAPK4 deficiency mice exhibited prolonged survival time after LPS challenge, accompanied by alleviated pathology in lung tissues, decreased levels of pro-inflammatory cytokines and altered composition of immune cells in BALF. Furthermore, the transduction of related signaling pathways, including MK5, AKT, JNK, and p38 MAPK pathways, was reduced obviously in LPS-treated MAPK4−/− mice. Notably, the expression of MAPK4 was up-regulated in lung tissues of ALI model, which was not related with MAPK4 promoter methylation, but negatively orchestrated by transcriptional factors NFKB1 and NR3C1. Further studies have shown that the expression of MAPK4 was also increased in LPS-treated macrophages. Meanwhile, MAPK4 deficiency reduced the expression of related pro-inflammatory cytokines in macrophage in response to LPS treatment. Finally, MAPK4 knockdown using shRNA pre-treatment could ameliorate the pathology of lung tissues and prolong the survival time of mice after LPS challenge. Conclusions Collectively, these findings reveal an important biological function of atypical MAPK in mediating the pathology of ALI, indicating that MAPK4 might be a novel potential therapeutic target for ALI treatment.
Collapse
Affiliation(s)
- Ling Mao
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563003 Guizhou China.,Department of Immunology, Zunyi Medical University, Zunyi, 563003 Guizhou China
| | - Ya Zhou
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563003 Guizhou China.,Department of Medical Physics, Zunyi Medical University, Zunyi, 563003 Guizhou China
| | - Longqing Chen
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563003 Guizhou China.,Department of Immunology, Zunyi Medical University, Zunyi, 563003 Guizhou China
| | - Lin Hu
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563003 Guizhou China.,Department of Immunology, Zunyi Medical University, Zunyi, 563003 Guizhou China
| | - Shiming Liu
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563003 Guizhou China.,Department of Immunology, Zunyi Medical University, Zunyi, 563003 Guizhou China
| | - Wen Zheng
- Department of Laboratory Medicine, Qiannan Medical College for Nationalities, Guizhou, 558000 China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563003 Guizhou China.,Department of Immunology, Zunyi Medical University, Zunyi, 563003 Guizhou China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563003 Guizhou China.,Department of Immunology, Zunyi Medical University, Zunyi, 563003 Guizhou China
| | - Chao Chen
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563003 Guizhou China.,Department of Immunology, Zunyi Medical University, Zunyi, 563003 Guizhou China
| | - Zhixu He
- Department of Paediatrics, Affiliated Hospital of Zunyi Medical University, Guizhou, 563000 China.,Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences, Guizhou, 563000 China
| | - Lin Xu
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563003 Guizhou China.,Department of Immunology, Zunyi Medical University, Zunyi, 563003 Guizhou China
| |
Collapse
|
19
|
Wang Y, Jia Q, Zhang Y, Wei J, Liu P. Taoren Honghua Drug Attenuates Atherosclerosis and Plays an Anti-Inflammatory Role in ApoE Knock-Out Mice and RAW264.7 Cells. Front Pharmacol 2020; 11:1070. [PMID: 32765273 PMCID: PMC7379336 DOI: 10.3389/fphar.2020.01070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/30/2020] [Indexed: 12/25/2022] Open
Abstract
Taoren Honghua drug is a traditional Chinese medicinal drug used to treat cardiovascular disease. The aim of the study is to investigate the effects of Taoren Honghua drug on inflammation and atherosclerosis in ApoE knock-out mice and RAW264.7 cells. ApoE knock-out mice fed with high fat diet for 8 weeks were randomly divided into five groups and then continued the high fat diet, or plus Taoren Honghua drug at concentrations of 3.63, 1.815, and 0.9075 g/ml, or plus Simvastatin at 2.57 mg/kg. RAW 264.7 cells were intervened with lipopolysaccharide or lipopolysaccharide plus different concentrations of Taoren Honghua drug. Compared to mice only with high fat diet, mice with high fat diet and Taoren Honghua drug showed lower body weight, triglyceride, cholesterol, IL-6 and TNF-α, smaller plaque sizes, less lymph vessel, and T cell contents of lymph nodes, but higher IL-10 level. In RAW264.7 cells, groups with LPS plus Taoren Honghua drug had lower IL-6 and TNF-α, but higher IL-10 than LPS group, as revealed by PCR or ELISA methods. A decrease of total or phosphorylated ERK1/2, JNK, p38, ERK5, STAT3, and AKT were detected, so was the translocation of NF-κB p65 from nuclear to cytoplasm. These results suggested that Taoren Honghua drug could attenuate atherosclerosis and play an anti-inflammatory role via MAPKs, ERK5/STAT3, and AKT/NF-κB p65 signaling pathways in ApoE knock-out mice and lipopolysaccharide-induced RAW264.7 cells.
Collapse
Affiliation(s)
- Yiru Wang
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingyun Jia
- Second Ward of Trauma Surgery Department, Linyi People's Hospital, Linyi, China
| | - Yifan Zhang
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Wei
- Department of Traditional Chinese Medicine, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Ping Liu
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
20
|
Lochhead PA, Tucker JA, Tatum NJ, Wang J, Oxley D, Kidger AM, Johnson VP, Cassidy MA, Gray NS, Noble MEM, Cook SJ. Paradoxical activation of the protein kinase-transcription factor ERK5 by ERK5 kinase inhibitors. Nat Commun 2020; 11:1383. [PMID: 32170057 PMCID: PMC7069993 DOI: 10.1038/s41467-020-15031-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/11/2020] [Indexed: 12/20/2022] Open
Abstract
The dual protein kinase-transcription factor, ERK5, is an emerging drug target in cancer and inflammation, and small-molecule ERK5 kinase inhibitors have been developed. However, selective ERK5 kinase inhibitors fail to recapitulate ERK5 genetic ablation phenotypes, suggesting kinase-independent functions for ERK5. Here we show that ERK5 kinase inhibitors cause paradoxical activation of ERK5 transcriptional activity mediated through its unique C-terminal transcriptional activation domain (TAD). Using the ERK5 kinase inhibitor, Compound 26 (ERK5-IN-1), as a paradigm, we have developed kinase-active, drug-resistant mutants of ERK5. With these mutants, we show that induction of ERK5 transcriptional activity requires direct binding of the inhibitor to the kinase domain. This in turn promotes conformational changes in the kinase domain that result in nuclear translocation of ERK5 and stimulation of gene transcription. This shows that both the ERK5 kinase and TAD must be considered when assessing the role of ERK5 and the effectiveness of anti-ERK5 therapeutics.
Collapse
Affiliation(s)
- Pamela A Lochhead
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| | - Julie A Tucker
- York Biomedical Research Institute and Department of Biology, University of York, York, YO10 5DD, UK
| | - Natalie J Tatum
- CRUK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Newcastle University, Newcastle, NE2 4HH, UK
| | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - David Oxley
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Andrew M Kidger
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Victoria P Johnson
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Megan A Cassidy
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Martin E M Noble
- CRUK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Newcastle University, Newcastle, NE2 4HH, UK
| | - Simon J Cook
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| |
Collapse
|
21
|
Li SY, Zhang ZN, Jiang YJ, Fu YJ, Shang H. Transcriptional insights into the CD8 + T cell response in mono-HIV and HCV infection. J Transl Med 2020; 18:96. [PMID: 32093694 PMCID: PMC7038596 DOI: 10.1186/s12967-020-02252-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/31/2020] [Indexed: 12/04/2022] Open
Abstract
Background Disease progression in the absence of therapy varies significantly in mono-HIV and HCV infected individuals. Virus-specific CD8+ T cells play an important role in restricting lentiviral replication and determining the rate of disease progression during HIV and HCV mono- and co-infection. Thus, understanding the similarities in the characteristics of CD8+ T cells in mono-HIV and HCV infection at the transcriptomic level contributes to the development of antiviral therapy. In this study, a meta-analysis of CD8+ T cell gene expression profiles derived from mono-HIV and HCV infected individuals at different stages of disease progression, was conducted to understand the common changes experienced by CD8+ T cells. Methods Five microarray datasets, reporting CD8+ T cell mRNA expression of the mono-HIV and HCV infected patients, were retrieved from Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were identified via integrative meta-analysis of expression data (INMEX) program. Network analysis methods were used to assess protein–protein interaction (PPI) networks, Gene Ontology (GO) terms and pathway enrichment for DEGs. MirDIP and miRDB online prediction tools were used to predict potential microRNAs (miRNAs) targeting hub genes. Results First, we identified 625 and 154 DEGs in the CD8+ T cells originating from mono-HIV and HCV chronic progressor patients, respectively, compared to healthy individuals. Among them, interferon-stimulated genes (ISGs) including ISG15, IFIT3, ILI44L, CXCL8, FPR1 and TLR2, were upregulated after mono-HIV and HCV infection. Pathway enrichment analysis of DEGs showed that the “cytokine–cytokine receptor interaction” and “NF-kappa B” signaling pathways were upregulated after mono-HIV and HCV infection. In addition, we identified 92 and 50 DEGs in the CD8+ T cells of HIV non-progressor and HCV resolver patients, respectively, compared with corresponding chronic progressors. We observed attenuated mitosis and reduced ISG expression in HIV non-progressors and HCV resolvers compared with the corresponding chronic progressors. Finally, we identified miRNA-143-3p, predicted to target both IFIT3 in HIV and STAT5A in HCV infection. Conclusions We identified DEGs and transcriptional patterns in mono-HIV and HCV infected individuals at different stages of disease progression and identified miRNA-143-3p with potential to intervene disease progression, which provides a new strategy for developing targeted therapies.
Collapse
Affiliation(s)
- Si-Yao Li
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Zi-Ning Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yong-Jun Jiang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Ya-Jing Fu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Hong Shang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China. .,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
22
|
Xue Z, Wang J, Yu W, Li D, Zhang Y, Wan F, Kou X. Biochanin A protects against PM 2.5-induced acute pulmonary cell injury by interacting with the target protein MEK5. Food Funct 2019; 10:7188-7203. [PMID: 31608342 DOI: 10.1039/c9fo01382b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Epidemiological studies have shown that exposure to ambient fine particulate matter (PM2.5) is associated with an increased risk for cardiopulmonary diseases. The MEK5/ERK5 and NF-κB signaling pathways are closely related to the regulation of acute pulmonary cell injury (APCI) and may play an important role in the underlying pathophysiological mechanisms. Related studies have shown that Biochanin A (BCA) effectively interferes with APCI, but the underlying mechanism through which this occurs is not fully understood. Previously, based on proteomic and bioinformatic research, we found the indispensable role of MEK5 in mediating remission effects of BCA against PM2.5-induced lung toxicity. Therefore, using A549 adenocarcinoma human alveolar basal epithelial cells (A549 cells), we combined western blot and qRT-PCR to study the protective signaling pathways induced by BCA, indicating that MEK5/ERK5 and NF-κB are both involved in mediating APCI in response to PM2.5, and MEK5/ERK5 positively activated NF-κB and its downstream cellular regulatory factors. BCA significantly suppressed PM2.5-induced upregulation of MEK5/ERK5 expression and phosphorylation and activation of NF-κB. Furthermore, due to the specificity of the MEK5/ERK5 protein structure, the binding sites and binding patterns of BCA and MEK5 were analyzed using molecular docking correlation techniques, which showed that there are stable hydrogen bonds between BCA and the PB1 domain of MEK5 as well as its kinase domain. BCA forms a stable complex with MEK5, which has potential effects on MEKK2/3-MEK5-ERK5 ternary interactions, p62/αPKC-mediated NF-κB regulation, and inhibition of MEK5 target protein phosphorylation. Therefore, our study suggests that MEK5 is an important regulator of intracellular signaling of APCI in response to PM2.5 exposure. BCA may exert anti-APCI activity by targeting MEK5 to inhibit activation of the MEK5/ERK5/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhaohui Xue
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350, Tianjin, China.
| | - Junyu Wang
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350, Tianjin, China.
| | - Wancong Yu
- Tianjin Academy of Agricultural Science, 300381, Tianjin, China
| | - Dan Li
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350, Tianjin, China.
| | - Yixia Zhang
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350, Tianjin, China.
| | - Fang Wan
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350, Tianjin, China.
| | - Xiaohong Kou
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350, Tianjin, China.
| |
Collapse
|
23
|
Judith Hellman, M.D., Recipient of the 2019 Excellence in Research Award. Anesthesiology 2019. [DOI: 10.1097/aln.0000000000002903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Wang Y, Zhang X, Gao L, Li J, Chen W, Chi J, Zhang X, Fu Y, Zhao M, Liu N, Li Y, Xu Y, Yang K, Yin X, Liu Y. Cortistatin exerts antiproliferation and antimigration effects in vascular smooth muscle cells stimulated by Ang II through suppressing ERK1/2, p38 MAPK, JNK and ERK5 signaling pathways. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:561. [PMID: 31807542 DOI: 10.21037/atm.2019.09.45] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background Vascular remodeling, that contributes to cardiovascular diseases such as hypertension develops by anomalous proliferation and migration of vascular smooth muscle cells (VSMCs). Cortistatin (CST), a newly discovered biological peptide, has been acknowledged for its protective effects against cardiovascular diseases. Whether CST has an inhibitory regulation role in angiotensin II (Ang II)-induced proliferation and migration of VSMCs and what molecular mechanisms may participate in the CST inhibition process are still unknown. Methods VSMCs were divided into control group, Ang II (10-7 M) group, Ang II + PD98059 (5×10-5 M) group, Ang II + SB203580 (10-5 M) group, Ang II + SP600125 (10-5 M) group, Ang II + XMD17-109 (10-6 M) group, Ang II + CST (10-8 M) group and Ang II + CST (10-7 M) group. Cell proliferation was detected by western blotting and cell counting kit-8 (CCK8) analysis. Migration of VSMCs was measured by Transwell assay. Results Compared with control group, Ang II upregulated the expression levels of proliferating cell nuclear antigen (PCNA) and osteopontin (OPN) and downregulated that of α-smooth muscle actin (α-SMA), increased the proliferation rate as shown by CCK8 and VSMC migration as shown by Transwell assay in cultured VSMCs of the Ang II group. Meanwhile, in Ang II-cultured VSMCs, we found activation of extracellular signal-regulated kinase (ERK) 1/2, p38 MAP kinase (p38 MAPK), c-Jun N-terminal kinase (JNK), and ERK5 pathways by western blotting at different time points. However, the proliferation and migration stimulated by Ang II were partly reversed by drug inhibitors of the four pathways, namely, PD98059, SB203580, SP600125 and XMD17-109. When Ang II-stimulated VSMCs were cultured with CST pretreatment, we found that proliferation and migration were greatly suppressed as well as that the ERK1/2, p38 MAPK, JNK and ERK5 pathways were deactivated by CST. Conclusions The accumulated data suggest that CST may play a protective role in Ang II-promoted proliferation and migration of VSMCs via inhibiting the mitogen-activated protein kinase (MAPK) family pathways, providing a new orientation of CST in protecting against cardiovascular diseases.
Collapse
Affiliation(s)
- Ying Wang
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xin Zhang
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Lei Gao
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Jihe Li
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Wenjia Chen
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Jinyu Chi
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xiaohui Zhang
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yu Fu
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Meng Zhao
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Na Liu
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yang Li
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yang Xu
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Kelaier Yang
- Department of Endocrine, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xinhua Yin
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yue Liu
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
25
|
MEK5/ERK5 activation regulates colon cancer stem-like cell properties. Cell Death Discov 2019; 5:68. [PMID: 30774996 PMCID: PMC6370793 DOI: 10.1038/s41420-019-0150-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/21/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023] Open
Abstract
Colon cancer has been proposed to be sustained by a small subpopulation of stem-like cells with unique properties allowing them to survive conventional therapies and drive tumor recurrence. Identification of targetable signaling pathways contributing to malignant stem-like cell maintenance may therefore translate into new therapeutic strategies to overcome drug resistance. Here we demonstrated that MEK5/ERK5 signaling activation is associated with stem-like malignant phenotypes. Conversely, using a panel of cell line-derived three-dimensional models, we showed that ERK5 inhibition markedly suppresses the molecular and functional features of colon cancer stem-like cells. Particularly, pharmacological inhibition of ERK5 using XMD8-92 reduced the rate of primary and secondary sphere formation, the expression of pluripotency transcription factors SOX2, NANOG, and OCT4, and the proportion of tumor cells with increased ALDH activity. Notably, this was further associated with increased sensitivity to 5-fluorouracil-based chemotherapy. Mechanistically, ERK5 inhibition resulted in decreased IL-8 expression and NF-κB transcriptional activity, suggesting a possible ERK5/NF-κB/IL-8 signaling axis regulating stem-like cell malignancy. Taken together, our results provide proof of principle that ERK5-targeted inhibition may be a promising therapeutic approach to eliminate drug-resistant cancer stem-like cells and improve colon cancer treatment.
Collapse
|
26
|
Myeloid ERK5 deficiency suppresses tumor growth by blocking protumor macrophage polarization via STAT3 inhibition. Proc Natl Acad Sci U S A 2018; 115:E2801-E2810. [PMID: 29507229 PMCID: PMC5866536 DOI: 10.1073/pnas.1707929115] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Macrophages can be functionally reprogrammed by the tumor microenvironment to further tumor growth and malignancy. In this study, we have discovered that this pathological process is dependent on the ERK5 MAPK. Accordingly, we demonstrated that inactivation of ERK5 in macrophages blocked the phosphorylation of STAT3, a transcription factor crucial for determining macrophage polarity, and impaired the growth of melanoma and carcinoma grafts. These results raise the possibility that targeting protumor macrophages via anti-ERK5 therapy constitutes a very attractive strategy for cancer treatment. This is important given that the detection of large numbers of macrophages in human tumors often correlates with poor prognosis, but also with a poor response of the tumor to anticancer agents. Owing to the prevalence of tumor-associated macrophages (TAMs) in cancer and their unique influence upon disease progression and malignancy, macrophage-targeted interventions have attracted notable attention in cancer immunotherapy. However, tractable targets to reduce TAM activities remain very few and far between because the signaling mechanisms underpinning protumor macrophage phenotypes are largely unknown. Here, we have investigated the role of the extracellular-regulated protein kinase 5 (ERK5) as a determinant of macrophage polarity. We report that the growth of carcinoma grafts was halted in myeloid ERK5-deficient mice. Coincidentally, targeting ERK5 in macrophages induced a transcriptional switch in favor of proinflammatory mediators. Further molecular analyses demonstrated that activation of the signal transducer and activator of transcription 3 (STAT3) via Tyr705 phosphorylation was impaired in erk5-deleted TAMs. Our study thus suggests that blocking ERK5 constitutes a treatment strategy to reprogram macrophages toward an antitumor state by inhibiting STAT3-induced gene expression.
Collapse
|
27
|
Thompson JK, Shukla A, Leggett AL, Munson PB, Miller JM, MacPherson MB, Beuschel SL, Pass HI, Shukla A. Extracellular signal regulated kinase 5 and inflammasome in progression of mesothelioma. Oncotarget 2018; 9:293-305. [PMID: 29416614 PMCID: PMC5787465 DOI: 10.18632/oncotarget.22968] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/10/2017] [Indexed: 11/25/2022] Open
Abstract
Malignant mesothelioma is an aggressive cancer in desperate need of treatment. We have previously shown that extracellular signaling regulated kinase 5 (ERK5) plays an important role in mesothelioma pathogenesis using ERK5 silenced human mesothelioma cells exhibiting significantly reduced tumor growth in immunocompromised mice. Here, we used a specific ERK 5 inhibitor, XMD8-92 in various in vitro and in vivo models to demonstrate that inhibition of ERK5 can slow down mesothelioma tumorigenesis. First, we show a dose dependent toxicity of XMD8-92 to 2 human mesothelioma cell lines growing as a monolayer. We also demonstrate the inhibition of ERK5 phosphorylation in various human mesothelioma cell lines by XMD8-92. We further confirmed the toxicity of XMD8-92 towards mesothelioma cell lines grown as spheroids in a 3-D model as well as in intraperitoneal (immune-competent) and intrapleural (immune-deficient) mouse models with and without chemotherapeutic drugs. To ascertain the mechanism, we explored the role of the nod-like receptor family member containing a pyrin domain 3 (NLRP3) inflammasome in the process. We found XMD8-92 attenuated naïve and chemotherapeutic-induced inflammasome priming and activation in mesothelioma cells. It can thus be concluded that ERK5 inhibition attenuates mesothelioma tumor growth and this phenomenon in part is regulated by the inflammasome.
Collapse
Affiliation(s)
- Joyce K. Thompson
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Anurag Shukla
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Alan L. Leggett
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Phillip B. Munson
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Jill M. Miller
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Maximilian B. MacPherson
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Stacie L. Beuschel
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Harvey I. Pass
- Department of Cardiothoracic Surgery, Langone Medical Center, New York University, New York, NY 10012, USA
| | - Arti Shukla
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
28
|
Ikedo T, Minami M, Kataoka H, Hayashi K, Nagata M, Fujikawa R, Higuchi S, Yasui M, Aoki T, Fukuda M, Yokode M, Miyamoto S. Dipeptidyl Peptidase-4 Inhibitor Anagliptin Prevents Intracranial Aneurysm Growth by Suppressing Macrophage Infiltration and Activation. J Am Heart Assoc 2017. [PMID: 28630262 PMCID: PMC5669147 DOI: 10.1161/jaha.116.004777] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Chronic inflammation plays a key role in the pathogenesis of intracranial aneurysms (IAs). DPP‐4 (dipeptidyl peptidase‐4) inhibitors have anti‐inflammatory effects, including suppressing macrophage infiltration, in various inflammatory models. We examined whether a DPP‐4 inhibitor, anagliptin, could suppress the growth of IAs in a rodent aneurysm model. Methods and Results IAs were surgically induced in 7‐week‐old male Sprague Dawley rats, followed by oral administration of 300 mg/kg anagliptin. We measured the morphologic parameters of aneurysms over time and their local inflammatory responses. To investigate the molecular mechanisms, we used lipopolysaccharide‐treated RAW264.7 macrophages. In the anagliptin‐treated group, aneurysms were significantly smaller 2 to 4 weeks after IA induction. Anagliptin inhibited the accumulation of macrophages in IAs, reduced the expression of MCP‐1 (monocyte chemotactic protein 1), and suppressed the phosphorylation of p65. In lipopolysaccharide‐stimulated RAW264.7 cells, anagliptin treatment significantly reduced the production of tumor necrosis factor α, MCP‐1, and IL‐6 (interleukin 6) independent of GLP‐1 (glucagon‐like peptide 1), the key mediator in the antidiabetic effects of DPP‐4 inhibitors. Notably, anagliptin activated ERK5 (extracellular signal–regulated kinase 5), which mediates the anti‐inflammatory effects of statins, in RAW264.7 macrophages. Preadministration with an ERK5 inhibitor blocked the inhibitory effect of anagliptin on MCP‐1 and IL‐6 expression. Accordingly, the ERK5 inhibitor also counteracted the suppression of p65 phosphorylation in vitro. Conclusions A DPP‐4 inhibitor, anagliptin, prevents the growth of IAs via its anti‐inflammatory effects on macrophages.
Collapse
Affiliation(s)
- Taichi Ikedo
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Manabu Minami
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroharu Kataoka
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Suita Osaka, Japan
| | - Kosuke Hayashi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Manabu Nagata
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Risako Fujikawa
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sei Higuchi
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mika Yasui
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomohiro Aoki
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Core Research for Evolutional Science and Technology, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Miyuki Fukuda
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masayuki Yokode
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
29
|
Loveridge CJ, Mui EJ, Patel R, Tan EH, Ahmad I, Welsh M, Galbraith J, Hedley A, Nixon C, Blyth K, Sansom O, Leung HY. Increased T-cell Infiltration Elicited by Erk5 Deletion in a Pten-Deficient Mouse Model of Prostate Carcinogenesis. Cancer Res 2017; 77:3158-3168. [PMID: 28515147 PMCID: PMC5474317 DOI: 10.1158/0008-5472.can-16-2565] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/09/2016] [Accepted: 04/12/2017] [Indexed: 12/13/2022]
Abstract
Prostate cancer does not appear to respond to immune checkpoint therapies where T-cell infiltration may be a key limiting factor. Here, we report evidence that ablating the growth regulatory kinase Erk5 can increase T-cell infiltration in an established Pten-deficient mouse model of human prostate cancer. Mice that were doubly mutant in prostate tissue for Pten and Erk5 (prostate DKO) exhibited a markedly increased median survival with reduced tumor size and proliferation compared with control Pten-mutant mice, the latter of which exhibited increased Erk5 mRNA expression. A comparative transcriptomic analysis revealed upregulation in prostate DKO mice of the chemokines Ccl5 and Cxcl10, two potent chemoattractants for T lymphocytes. Consistent with this effect, we observed a relative increase in a predominantly CD4+ T-cell infiltrate in the prostate epithelial and stroma of tumors from DKO mice. Collectively, our results offer a preclinical proof of concept for ERK5 as a target to enhance T-cell infiltrates in prostate cancer, with possible implications for leveraging immune therapy in this disease. Cancer Res; 77(12); 3158-68. ©2017 AACR.
Collapse
Affiliation(s)
- Carolyn J Loveridge
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, United Kingdom
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Ernest J Mui
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Rachana Patel
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Ee Hong Tan
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Imran Ahmad
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, United Kingdom
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Michelle Welsh
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Julie Galbraith
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, United Kingdom
| | - Ann Hedley
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Colin Nixon
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Karen Blyth
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Owen Sansom
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Hing Y Leung
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, United Kingdom.
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| |
Collapse
|
30
|
Jiang L, Song J, Hu X, Zhang H, Huang E, Zhang Y, Deng F, Wu X. The Proteasome Inhibitor Bortezomib Inhibits Inflammatory Response of Periodontal Ligament Cells and Ameliorates Experimental Periodontitis in Rats. J Periodontol 2017; 88:473-483. [DOI: 10.1902/jop.2016.160396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Lin Jiang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University
- Department of Preventive Dentistry, College of Stomatology, Chongqing Medical University
| | - Jinlin Song
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University
- Department of Orthodontics, College of Stomatology, Chongqing Medical University
| | - Xiaolei Hu
- Key Laboratory of Clinical Laboratory Science, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University
| | - Hongmei Zhang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University
| | - Enyi Huang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University
| | - Yan Zhang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University
| | - Feng Deng
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University
- Department of Orthodontics, College of Stomatology, Chongqing Medical University
| | - Xiaomian Wu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University
- Department of Orthodontics, College of Stomatology, Chongqing Medical University
| |
Collapse
|
31
|
ERK5 kinase activity is dispensable for cellular immune response and proliferation. Proc Natl Acad Sci U S A 2016; 113:11865-11870. [PMID: 27679845 DOI: 10.1073/pnas.1609019113] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Unlike other members of the MAPK family, ERK5 contains a large C-terminal domain with transcriptional activation capability in addition to an N-terminal canonical kinase domain. Genetic deletion of ERK5 is embryonic lethal, and tissue-restricted deletions have profound effects on erythroid development, cardiac function, and neurogenesis. In addition, depletion of ERK5 is antiinflammatory and antitumorigenic. Small molecule inhibition of ERK5 has been shown to have promising activity in cell and animal models of inflammation and oncology. Here we report the synthesis and biological characterization of potent, selective ERK5 inhibitors. In contrast to both genetic depletion/deletion of ERK5 and inhibition with previously reported compounds, inhibition of the kinase with the most selective of the new inhibitors had no antiinflammatory or antiproliferative activity. The source of efficacy in previously reported ERK5 inhibitors is shown to be off-target activity on bromodomains, conserved protein modules involved in recognition of acetyl-lysine residues during transcriptional processes. It is likely that phenotypes reported from genetic deletion or depletion of ERK5 arise from removal of a noncatalytic function of ERK5. The newly reported inhibitors should be useful in determining which of the many reported phenotypes are due to kinase activity and delineate which can be pharmacologically targeted.
Collapse
|
32
|
Khakpour S, Wilhelmsen K, Hellman J. Vascular endothelial cell Toll-like receptor pathways in sepsis. Innate Immun 2015; 21:827-46. [DOI: 10.1177/1753425915606525] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/11/2015] [Indexed: 12/20/2022] Open
Abstract
The endothelium forms a vast network that dynamically regulates vascular barrier function, coagulation pathways and vasomotor tone. Microvascular endothelial cells are uniquely situated to play key roles during infection and injury, owing to their widespread distribution throughout the body and their constant interaction with circulating blood. While not viewed as classical immune cells, endothelial cells express innate immune receptors, including the Toll-like receptors (TLRs), which activate intracellular inflammatory pathways mediated through NF-κB and the MAP kinases. TLR agonists, including LPS and bacterial lipopeptides, directly upregulate microvascular endothelial cell expression of inflammatory mediators. Intriguingly, TLR activation also modulates microvascular endothelial cell permeability and the expression of coagulation pathway intermediaries. Microvascular thrombi have been hypothesized to trap microorganisms thereby limiting the spread of infection. However, dysregulated activation of endothelial inflammatory pathways is also believed to lead to coagulopathy and increased vascular permeability, which together promote sepsis-induced organ failure. This article reviews vascular endothelial cell innate immune pathways mediated through the TLRs as they pertain to sepsis, highlighting links between TLRs and coagulation and permeability pathways, and their role in healthy and pathologic responses to infection and sepsis.
Collapse
Affiliation(s)
- Samira Khakpour
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
- Biomedical Sciences and Immunology Programs, University of California, San Francisco, CA, USA
| | - Kevin Wilhelmsen
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
- Biomedical Sciences and Immunology Programs, University of California, San Francisco, CA, USA
| |
Collapse
|