1
|
Buckley C, Lee MD, Zhang X, Wilson C, McCarron JG. Signalling switches maintain intercellular communication in the vascular endothelium. Br J Pharmacol 2024; 181:2810-2832. [PMID: 38651236 DOI: 10.1111/bph.16366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND AND PURPOSE The single layer of cells lining all blood vessels, the endothelium, is a sophisticated signal co-ordination centre that controls a wide range of vascular functions including the regulation of blood pressure and blood flow. To co-ordinate activities, communication among cells is required for tissue level responses to emerge. While a significant form of communication occurs by the propagation of signals between cells, the mechanism of propagation in the intact endothelium is unresolved. EXPERIMENTAL APPROACH Precision signal generation and targeted cellular manipulation was used in conjunction with high spatiotemporal mesoscale Ca2+ imaging in the endothelium of intact blood vessels. KEY RESULTS Multiple mechanisms maintain communication so that Ca2+ wave propagation occurs irrespective of the status of connectivity among cells. Between adjoining cells, regenerative IP3-induced IP3 production transmits Ca2+ signals and explains the propagated vasodilation that underlies the increased blood flow accompanying tissue activity. The inositide is itself sufficient to evoke regenerative phospholipase C-dependent Ca2+ waves across coupled cells. None of gap junctions, Ca2+ diffusion or the release of extracellular messengers is required to support this type of intercellular Ca2+ signalling. In contrast, when discontinuities exist between cells, ATP released as a diffusible extracellular messenger transmits Ca2+ signals across the discontinuity and drives propagated vasodilation. CONCLUSION AND IMPLICATIONS These results show that signalling switches underlie endothelial cell-to-cell signal transmission and reveal how communication is maintained in the face of endothelial damage. The findings provide a new framework for understanding wave propagation and cell signalling in the endothelium.
Collapse
Affiliation(s)
- Charlotte Buckley
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Matthew D Lee
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Xun Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
2
|
Davis MJ, Zawieja SD. Pacemaking in the lymphatic system. J Physiol 2024. [PMID: 38520402 DOI: 10.1113/jp284752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/08/2024] [Indexed: 03/25/2024] Open
Abstract
Lymphatic collecting vessels exhibit spontaneous phasic contractions that are critical for lymph propulsion and tissue fluid homeostasis. This rhythmic activity is driven by action potentials conducted across the lymphatic muscle cell (LMC) layer to produce entrained contractions. The contraction frequency of a lymphatic collecting vessel displays exquisite mechanosensitivity, with a dynamic range from <1 to >20 contractions per minute. A myogenic pacemaker mechanism intrinsic to the LMCs was initially postulated to account for pressure-dependent chronotropy. Further interrogation into the cellular constituents of the lymphatic vessel wall identified non-muscle cell populations that shared some characteristics with interstitial cells of Cajal, which have pacemaker functions in the gastrointestinal and lower urinary tracts, thus raising the possibility of a non-muscle cell pacemaker. However, recent genetic knockout studies in mice support LMCs and a myogenic origin of the pacemaker activity. LMCs exhibit stochastic, but pressure-sensitive, sarcoplasmic reticulum calcium release (puffs and waves) from IP3R1 receptors, which couple to the calcium-activated chloride channel Anoctamin 1, causing depolarisation. The resulting electrical activity integrates across the highly coupled lymphatic muscle electrical syncytia through connexin 45 to modulate diastolic depolarisation. However, multiple other cation channels may also contribute to the ionic pacemaking cycle. Upon reaching threshold, a voltage-gated calcium channel-dependent action potential fires, resulting in a nearly synchronous calcium global calcium flash within the LMC layer to drive an entrained contraction. This review summarizes the key ion channels potentially responsible for the pressure-dependent chronotropy of lymphatic collecting vessels and various mechanisms of IP3R1 regulation that could contribute to frequency tuning.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Scott D Zawieja
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, USA
| |
Collapse
|
3
|
Mackrill JJ. Non-inositol 1,4,5-trisphosphate (IP3) receptor IP3-binding proteins. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - MOLECULAR CELL RESEARCH 2023; 1870:119470. [PMID: 37011730 DOI: 10.1016/j.bbamcr.2023.119470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023]
Abstract
Conventionally, myo-D-inositol 1, 4,5-trisphosphate (IP3) is thought to exert its second messenger effects through the gating of IP3R Ca2+ release channels, located in Ca2+-storage organelles like the endoplasmic reticulum. However, there is considerable indirect evidence to support the concept that IP3 might interact with other, non-IP3R proteins within cells. To explore this possibility further, the Protein Data Bank was searched using the term "IP3". This resulted in the retrieval of 203 protein structures, the majority of which were members of the IP3R/ryanodine receptor superfamily of channels. Only 49 of these structures were complexed with IP3. These were inspected for their ability to interact with the carbon-1 phosphate of IP3, since this is the least accessible phosphate group of its precursor, phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). This reduced the number of structures retrieved to 35, of which 9 were IP3Rs. The remaining 26 structures represent a diverse range of proteins, including inositol-lipid metabolizing enzymes, signal transducers, PH domain containing proteins, cytoskeletal anchor proteins, the TRPV4 ion channel, a retroviral Gag protein and fibroblast growth factor 2. Such proteins may impact on IP3 signalling and its effects on cell-biology. This represents an area open for exploration in the field of IP3 signalling.
Collapse
Affiliation(s)
- John James Mackrill
- Department of Physiology, University College Cork, Western Gateway Building, Western Road, Cork T12 XF62, Ireland.
| |
Collapse
|
4
|
Abstract
Inositol 1,4,5-trisphosphate (IP3) plays a key role in calcium signaling. After stimulation, it diffuses from the plasma membrane where it is produced to the endoplasmic reticulum where its receptors are localized. Based on in vitro measurements, IP3 was long thought to be a global messenger characterized by a diffusion coefficient of ~ 280 μm2s-1. However, in vivo observations revealed that this value does not match with the timing of localized Ca2+ increases induced by the confined release of a non-metabolizable IP3 analog. A theoretical analysis of these data concluded that in intact cells diffusion of IP3 is strongly hindered, leading to a 30-fold reduction of the diffusion coefficient. Here, we performed a new computational analysis of the same observations using a stochastic model of Ca2+ puffs. Our simulations concluded that the value of the effective IP3 diffusion coefficient is close to 100 μm2s-1. Such moderate reduction with respect to in vitro estimations quantitatively agrees with a buffering effect by non-fully bound inactive IP3 receptors. The model also reveals that IP3 spreading is not much affected by the endoplasmic reticulum, which represents an obstacle to the free displacement of molecules, but can be significantly increased in cells displaying elongated, 1-dimensional like geometries.
Collapse
|
5
|
Zhukov VV, Saphonov MV. Calcium Component of the Retinal Light Response in the Snail Lymnaea stagnalis: a Pharmacological and Ultrastructural Study. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022030036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
High rates of calcium-free diffusion in the cytosol of living cells. Biophys J 2021; 120:3960-3972. [PMID: 34454909 DOI: 10.1016/j.bpj.2021.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/07/2021] [Accepted: 08/11/2021] [Indexed: 11/20/2022] Open
Abstract
Calcium (Ca2+) is a universal second messenger that participates in the regulation of innumerous physiological processes. The way in which local elevations of the cytosolic Ca2+ concentration spread in space and time is key for the versatility of the signals. Ca2+ diffusion in the cytosol is hindered by its interaction with proteins that act as buffers. Depending on the concentrations and the kinetics of the interactions, there is a large range of values at which Ca2+ diffusion can proceed. Having reliable estimates of this range, particularly of its highest end, which corresponds to the ions free diffusion, is key to understand how the signals propagate. In this work, we present the first experimental results with which the Ca2+-free diffusion coefficient is directly quantified in the cytosol of living cells. By means of fluorescence correlation spectroscopy experiments performed in Xenopus laevis oocytes and in cells of Saccharomyces cerevisiae, we show that the ions can freely diffuse in the cytosol at a higher rate than previously thought.
Collapse
|
7
|
Stochastic reaction-diffusion modeling of calcium dynamics in 3D dendritic spines of Purkinje cells. Biophys J 2021; 120:2112-2123. [PMID: 33887224 PMCID: PMC8390834 DOI: 10.1016/j.bpj.2021.03.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/22/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Calcium (Ca2+) is a second messenger assumed to control changes in synaptic strength in the form of both long-term depression and long-term potentiation at Purkinje cell dendritic spine synapses via inositol trisphosphate (IP3)-induced Ca2+ release. These Ca2+ transients happen in response to stimuli from parallel fibers (PFs) from granule cells and climbing fibers (CFs) from the inferior olivary nucleus. These events occur at low numbers of free Ca2+, requiring stochastic single-particle methods when modeling them. We use the stochastic particle simulation program MCell to simulate Ca2+ transients within a three-dimensional Purkinje cell dendritic spine. The model spine includes the endoplasmic reticulum, several Ca2+ transporters, and endogenous buffer molecules. Our simulations successfully reproduce properties of Ca2+ transients in different dynamical situations. We test two different models of the IP3 receptor (IP3R). The model with nonlinear concentration response of binding of activating Ca2+ reproduces experimental results better than the model with linear response because of the filtering of noise. Our results also suggest that Ca2+-dependent inhibition of the IP3R needs to be slow to reproduce experimental results. Simulations suggest the experimentally observed optimal timing window of CF stimuli arises from the relative timing of CF influx of Ca2+ and IP3 production sensitizing IP3R for Ca2+-induced Ca2+ release. We also model ataxia, a loss of fine motor control assumed to be the result of malfunctioning information transmission at the granule to Purkinje cell synapse, resulting in a decrease or loss of Ca2+ transients. Finally, we propose possible ways of recovering Ca2+ transients under ataxia.
Collapse
|
8
|
Verisokin AY, Verveyko DV, Postnov DE, Brazhe AR. Modeling of Astrocyte Networks: Toward Realistic Topology and Dynamics. Front Cell Neurosci 2021; 15:645068. [PMID: 33746715 PMCID: PMC7973220 DOI: 10.3389/fncel.2021.645068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
Neuronal firing and neuron-to-neuron synaptic wiring are currently widely described as orchestrated by astrocytes—elaborately ramified glial cells tiling the cortical and hippocampal space into non-overlapping domains, each covering hundreds of individual dendrites and hundreds thousands synapses. A key component to astrocytic signaling is the dynamics of cytosolic Ca2+ which displays multiscale spatiotemporal patterns from short confined elemental Ca2+ events (puffs) to Ca2+ waves expanding through many cells. Here, we synthesize the current understanding of astrocyte morphology, coupling local synaptic activity to astrocytic Ca2+ in perisynaptic astrocytic processes and morphology-defined mechanisms of Ca2+ regulation in a distributed model. To this end, we build simplified realistic data-driven spatial network templates and compile model equations as defined by local cell morphology. The input to the model is spatially uncorrelated stochastic synaptic activity. The proposed modeling approach is validated by statistics of simulated Ca2+ transients at a single cell level. In multicellular templates we observe regular sequences of cell entrainment in Ca2+ waves, as a result of interplay between stochastic input and morphology variability between individual astrocytes. Our approach adds spatial dimension to the existing astrocyte models by employment of realistic morphology while retaining enough flexibility and scalability to be embedded in multiscale heterocellular models of neural tissue. We conclude that the proposed approach provides a useful description of neuron-driven Ca2+-activity in the astrocyte syncytium.
Collapse
Affiliation(s)
| | - Darya V Verveyko
- Department of Theoretical Physics, Kursk State University, Kursk, Russia
| | - Dmitry E Postnov
- Department of Optics and Biophotonics, Saratov State University, Saratov, Russia
| | - Alexey R Brazhe
- Department of Biophysics, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia.,Department of Molecular Neurobiology, Institute of Bioorganic Chemistry RAS, Russian Federation, Moscow, Russia
| |
Collapse
|
9
|
Cremer T, Neefjes J, Berlin I. The journey of Ca 2+ through the cell - pulsing through the network of ER membrane contact sites. J Cell Sci 2020; 133:133/24/jcs249136. [PMID: 33376155 DOI: 10.1242/jcs.249136] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Calcium is the third most abundant metal on earth, and the fundaments of its homeostasis date back to pre-eukaryotic life forms. In higher organisms, Ca2+ serves as a cofactor for a wide array of (enzymatic) interactions in diverse cellular contexts and constitutes the most important signaling entity in excitable cells. To enable responsive behavior, cytosolic Ca2+ concentrations are kept low through sequestration into organellar stores, particularly the endoplasmic reticulum (ER), but also mitochondria and lysosomes. Specific triggers are then used to instigate a local release of Ca2+ on demand. Here, communication between organelles comes into play, which is accomplished through intimate yet dynamic contacts, termed membrane contact sites (MCSs). The field of MCS biology in relation to cellular Ca2+ homeostasis has exploded in recent years. Taking advantage of this new wealth of knowledge, in this Review, we invite the reader on a journey of Ca2+ flux through the ER and its associated MCSs. New mechanistic insights and technological advances inform the narrative on Ca2+ acquisition and mobilization at these sites of communication between organelles, and guide the discussion of their consequences for cellular physiology.
Collapse
Affiliation(s)
- Tom Cremer
- Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 20, 2300RC Leiden, The Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 20, 2300RC Leiden, The Netherlands
| | - Ilana Berlin
- Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 20, 2300RC Leiden, The Netherlands
| |
Collapse
|
10
|
Calizo RC, Bell MK, Ron A, Hu M, Bhattacharya S, Wong NJ, Janssen WGM, Perumal G, Pederson P, Scarlata S, Hone J, Azeloglu EU, Rangamani P, Iyengar R. Cell shape regulates subcellular organelle location to control early Ca 2+ signal dynamics in vascular smooth muscle cells. Sci Rep 2020; 10:17866. [PMID: 33082406 PMCID: PMC7576209 DOI: 10.1038/s41598-020-74700-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/05/2020] [Indexed: 12/23/2022] Open
Abstract
The shape of the cell is connected to its function; however, we do not fully understand underlying mechanisms by which global shape regulates a cell's functional capabilities. Using theory, experiments and simulation, we investigated how physiologically relevant cell shape changes affect subcellular organization, and consequently intracellular signaling, to control information flow needed for phenotypic function. Vascular smooth muscle cells going from a proliferative and motile circular shape to a contractile fusiform shape show changes in the location of the sarcoplasmic reticulum, inter-organelle distances, and differential distribution of receptors in the plasma membrane. These factors together lead to the modulation of signals transduced by the M3 muscarinic receptor/Gq/PLCβ pathway at the plasma membrane, amplifying Ca2+ dynamics in the cytoplasm, and the nucleus resulting in phenotypic changes, as determined by increased activity of myosin light chain kinase in the cytoplasm and enhanced nuclear localization of the transcription factor NFAT. Taken together, our observations show a systems level phenomenon whereby global cell shape affects subcellular organization to modulate signaling that enables phenotypic changes.
Collapse
Affiliation(s)
- R C Calizo
- Department of Pharmacological Sciences, Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1215, New York, NY, 10029, USA
| | - M K Bell
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - A Ron
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - M Hu
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - S Bhattacharya
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - N J Wong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - W G M Janssen
- Department of Pharmacological Sciences, Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1215, New York, NY, 10029, USA
| | - G Perumal
- Carl Zeiss Microscopy LLC, White Plains, NY, 10601, USA
| | - P Pederson
- Carl Zeiss Microscopy LLC, White Plains, NY, 10601, USA
| | - S Scarlata
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - J Hone
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - E U Azeloglu
- Department of Pharmacological Sciences, Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1215, New York, NY, 10029, USA
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - P Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, 92093, USA.
| | - R Iyengar
- Department of Pharmacological Sciences, Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1215, New York, NY, 10029, USA.
| |
Collapse
|
11
|
Stasiak SE, Jamieson RR, Bouffard J, Cram EJ, Parameswaran H. Intercellular communication controls agonist-induced calcium oscillations independently of gap junctions in smooth muscle cells. SCIENCE ADVANCES 2020; 6:eaba1149. [PMID: 32821820 PMCID: PMC7406377 DOI: 10.1126/sciadv.aba1149] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
In this study, we report the existence of a communication system among human smooth muscle cells that uses mechanical forces to frequency modulate long-range calcium waves. An important consequence of this mechanical signaling is that changes in stiffness of the underlying extracellular matrix can interfere with the frequency modulation of Ca2+ waves, causing smooth muscle cells from healthy human donors to falsely perceive a much higher agonist dose than they actually received. This aberrant sensing of contractile agonist dose on stiffer matrices is completely absent in isolated smooth muscle cells, although the isolated cells can sense matrix rigidity. We show that the intercellular communication that enables this collective Ca2+ response in smooth muscle cells does not involve transport across gap junctions or extracellular diffusion of signaling molecules. Instead, our data support a collective model in which mechanical signaling among smooth muscle cells regulates their response to contractile agonists.
Collapse
Affiliation(s)
- S. E. Stasiak
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - R. R. Jamieson
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - J. Bouffard
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - E. J. Cram
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - H. Parameswaran
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
12
|
Su CK. State-dependent modulation of sympathetic firing by α 1-adrenoceptors requires constitutive PKC activity in the neonatal rat spinal cord. Auton Neurosci 2020; 227:102688. [PMID: 32502943 DOI: 10.1016/j.autneu.2020.102688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/10/2020] [Accepted: 05/15/2020] [Indexed: 01/02/2023]
Abstract
The central adrenergic and noradrenergic neurotransmitter systems diffusively affect the operation of the spinal neural network and dynamically gauge central sympathetic outflow. Using in vitro splanchnic nerve-thoracic spinal cord preparations as an experimental model, this study examined the intraspinal α1-adrenoceptor-meidated modulation of sympathetic firing behaviors. Several sympathetic single-fiber activities were simultaneously recorded. Application of phenylephrine (Phe, an α1-adrenoceptor agonist) increased, decreased or did not affect spontaneous firing. A log-log plot of the change ratios of the average firing rates (AFR) versus their basal AFR displays a linear data distribution. Thus, the heterogeneity in α1-adrenoceptor-mediated responses is well described by a power law function. Phe-induced power-law firing modulation (plFM) was sensitive to prazosin (Prz, an α1-adrenoceptor antagonist). Heparin (Hep, a competitive IP3 receptor blocker) and chelerythrine (Che, a protein kinase C inhibitor) also caused plFM. Phe-induced plFM persisted in the presence of Hep; however, it was occluded by Che pretreatment. Pair-wise analysis of single-fiber activities revealed synchronous sympathetic discharges. Application of Phe, Hep or Che suppressed synchronous discharges in fiber pairs with apparent correlated firing (ACF) and induced or potentiated synchronous discharges in those without or with minimal ACF. Thus, the basal activities of the sympathetic preganglionic neurons participate in determining the responses mediated by the activation of α1-adrenoceptors. This deterministic factor, which is intrinsic to spinal neural networks, helps the supraspinal adrenergic and noradrenergic systems differentially control their widely distributed neural targets.
Collapse
Affiliation(s)
- Chun-Kuei Su
- Department of Biotechnology, College of Life Science, Zhaoqing University, Zhaoqing, Guangdong, China; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC.
| |
Collapse
|
13
|
Giaume C, Naus CC, Sáez JC, Leybaert L. Glial Connexins and Pannexins in the Healthy and Diseased Brain. Physiol Rev 2020; 101:93-145. [PMID: 32326824 DOI: 10.1152/physrev.00043.2018] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Over the past several decades a large amount of data have established that glial cells, the main cell population in the brain, dynamically interact with neurons and thus impact their activity and survival. One typical feature of glia is their marked expression of several connexins, the membrane proteins forming intercellular gap junction channels and hemichannels. Pannexins, which have a tetraspan membrane topology as connexins, are also detected in glial cells. Here, we review the evidence that connexin and pannexin channels are actively involved in dynamic and metabolic neuroglial interactions in physiological as well as in pathological situations. These features of neuroglial interactions open the way to identify novel non-neuronal aspects that allow for a better understanding of behavior and information processing performed by neurons. This will also complement the "neurocentric" view by facilitating the development of glia-targeted therapeutic strategies in brain disease.
Collapse
Affiliation(s)
- Christian Giaume
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Christian C Naus
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Juan C Sáez
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Luc Leybaert
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
14
|
Lemmey HAL, Garland CJ, Dora KA. Intrinsic regulation of microvascular tone by myoendothelial feedback circuits. CURRENT TOPICS IN MEMBRANES 2020; 85:327-355. [PMID: 32402644 DOI: 10.1016/bs.ctm.2020.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The endothelium is an important regulator of arterial vascular tone, acting to release nitric oxide (NO) and open Ca2+-activated K+ (KCa) channels to relax vascular smooth muscle cells (VSMCs). While agonists acting at endothelial cell (EC) receptors are widely used to assess the ability of the endothelium to reduce vascular tone, the intrinsic EC-dependent mechanisms are less well characterized. In small resistance arteries and arterioles, the presence of heterocellular gap junctions termed myoendothelial gap junctions (MEGJs) allows the passage of not only current, but small molecules including Ca2+ and inositol trisphosphate (IP3). When stimulated to contract, the increase in VSM Ca2+ and IP3 can therefore potentially pass through MEGJs to activate adjacent ECs. This activation releases NO and opens KCa channels, which act to limit contraction. This myoendothelial feedback (MEF) is amplified by EC Ca2+ influx and release pathways, and is dynamically modulated by processes regulating gap junction conductance. There is a remarkable localization of key signaling and regulatory proteins within the EC projection toward VSM, and the intrinsic EC-dependent signaling pathways occurring with this highly specialized microdomain are reviewed.
Collapse
Affiliation(s)
- Hamish A L Lemmey
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | | | - Kim A Dora
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
15
|
Jackson L, Qifti A, Pearce KM, Scarlata S. Regulation of bifunctional proteins in cells: Lessons from the phospholipase Cβ/G protein pathway. Protein Sci 2019; 29:1258-1268. [PMID: 31867822 DOI: 10.1002/pro.3809] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022]
Abstract
Some proteins can serve multiple functions depending on different cellular conditions. An example of a bifunctional protein is inositide-specific mammalian phospholipase Cβ (PLCβ). PLCβ is activated by G proteins in response to hormones and neurotransmitters to increase intracellular calcium. Recently, alternate cellular function(s) of PLCβ have become uncovered. However, the conditions that allow these different functions to be operative are unclear. Like many mammalian proteins, PLCβ has a conserved catalytic core along with several regulatory domains. These domains modulate the intensity and duration of calcium signals in response to external sensory information, and allow this enzyme to inhibit protein translation in a noncatalytic manner. In this review, we first describe PLCβ's cellular functions and regulation of the switching between these functions, and then discuss the thermodynamic considerations that offer insight into how cells manage multiple and competitive associations allowing them to rapidly shift between functional states.
Collapse
Affiliation(s)
- Lela Jackson
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Androniqi Qifti
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Katherine M Pearce
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Suzanne Scarlata
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts
| |
Collapse
|
16
|
Wakai T, Mehregan A, Fissore RA. Ca 2+ Signaling and Homeostasis in Mammalian Oocytes and Eggs. Cold Spring Harb Perspect Biol 2019; 11:a035162. [PMID: 31427376 PMCID: PMC6886447 DOI: 10.1101/cshperspect.a035162] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Changes in the intracellular concentration of calcium ([Ca2+]i) represent a vital signaling mechanism enabling communication between and among cells as well as with the environment. Cells have developed a sophisticated set of molecules, "the Ca2+ toolkit," to adapt [Ca2+]i changes to specific cellular functions. Mammalian oocytes and eggs, the subject of this review, are not an exception, and in fact the initiation of embryo devolvement in all species is entirely dependent on distinct [Ca2+]i responses. Here, we review the components of the Ca2+ toolkit present in mammalian oocytes and eggs, the regulatory mechanisms that allow these cells to accumulate Ca2+ in the endoplasmic reticulum, release it, and maintain basal and stable cytoplasmic concentrations. We also discuss electrophysiological and genetic studies that have uncovered Ca2+ influx channels in oocytes and eggs, and we analyze evidence supporting the role of a sperm-specific phospholipase C isoform as the trigger of Ca2+ oscillations during mammalian fertilization including its implication in fertility.
Collapse
Affiliation(s)
- Takuya Wakai
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Aujan Mehregan
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Rafael A Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
17
|
Cao X, Chen J, Li D, Xie P, Xu M, Lin W, Li S, Pan G, Tang Y, Xu J, Olkkonen VM, Yan D, Zhong W. ORP4L couples IP 3 to ITPR1 in control of endoplasmic reticulum calcium release. FASEB J 2019; 33:13852-13865. [PMID: 31648575 DOI: 10.1096/fj.201900933rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Oxysterol-binding protein-related protein (ORP) 4L acts as a scaffold protein assembling CD3-ε, G-αq/11, and PLC-β3 into a complex at the plasma membrane that mediates inositol (1,4,5)-trisphosphate (IP3)-induced endoplasmic reticulum (ER) Ca2+ release and oxidative phosphorylation in T-cell acute lymphoblastic leukemia cells. Here, we offer new evidence that ORP4L interacts with the carboxyl terminus of the IP3 receptor type 1 (ITPR1) in Jurkat T cells. ORP4L enables IP3 binding to ITPR1; a truncated construct that lacks the ITPR1-binding region retains the ability to increase IP3 production but fails to mediate IP3 and ITPR1 binding. In association with this ability of ORP4L, it enhances Ca2+ release from the ER and subsequent cytosolic and mitochondrial parallel Ca2+ spike oscillations that stimulate mitochondrial energetics and thus maintains cell survival. These data support a novel model in which ORP4L is a cofactor of ITPR1, which increases ITPR1 sensitivity to IP3 and enables ER Ca2+ release.-Cao, X., Chen, J., Li, D., Xie, P., Xu, M., Lin, W., Li, S., Pan, G., Tang, Y., Xu, J., Olkkonen, V. M., Yan, D., Zhong, W. ORP4L couples IP3 to ITPR1 in control of endoplasmic reticulum calcium release.
Collapse
Affiliation(s)
- Xiuye Cao
- Department of Biology, Jinan University, Guangzhou, China
| | - Jianuo Chen
- Department of Biology, Jinan University, Guangzhou, China
| | - Dan Li
- Department of Biology, Jinan University, Guangzhou, China
| | - Peipei Xie
- Department of Biology, Jinan University, Guangzhou, China
| | - Mengyang Xu
- Department of Biology, Jinan University, Guangzhou, China
| | - Weize Lin
- Department of Biology, Jinan University, Guangzhou, China
| | - Shiqian Li
- Department of Biology, Jinan University, Guangzhou, China
| | - Guoping Pan
- Department of Biology, Jinan University, Guangzhou, China
| | - Yong Tang
- Department of Biology, Jinan University, Guangzhou, China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Helsinki, Finland
| | - Daoguang Yan
- Department of Biology, Jinan University, Guangzhou, China
| | - Wenbin Zhong
- Department of Biology, Jinan University, Guangzhou, China
| |
Collapse
|
18
|
Cugno A, Bartol TM, Sejnowski TJ, Iyengar R, Rangamani P. Geometric principles of second messenger dynamics in dendritic spines. Sci Rep 2019; 9:11676. [PMID: 31406140 PMCID: PMC6691135 DOI: 10.1038/s41598-019-48028-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 07/29/2019] [Indexed: 01/27/2023] Open
Abstract
Dendritic spines are small, bulbous protrusions along dendrites in neurons and play a critical role in synaptic transmission. Dendritic spines come in a variety of shapes that depend on their developmental state. Additionally, roughly 14-19% of mature spines have a specialized endoplasmic reticulum called the spine apparatus. How does the shape of a postsynaptic spine and its internal organization affect the spatio-temporal dynamics of short timescale signaling? Answers to this question are central to our understanding the initiation of synaptic transmission, learning, and memory formation. In this work, we investigated the effect of spine and spine apparatus size and shape on the spatio-temporal dynamics of second messengers using mathematical modeling using reaction-diffusion equations in idealized geometries (ellipsoids, spheres, and mushroom-shaped). Our analyses and simulations showed that in the short timescale, spine size and shape coupled with the spine apparatus geometries govern the spatiotemporal dynamics of second messengers. We show that the curvature of the geometries gives rise to pseudo-harmonic functions, which predict the locations of maximum and minimum concentrations along the spine head. Furthermore, we showed that the lifetime of the concentration gradient can be fine-tuned by localization of fluxes on the spine head and varying the relative curvatures and distances between the spine apparatus and the spine head. Thus, we have identified several key geometric determinants of how the spine head and spine apparatus may regulate the short timescale chemical dynamics of small molecules that control synaptic plasticity.
Collapse
Affiliation(s)
- Andrea Cugno
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, 92093-0411, CA, United States
| | - Thomas M Bartol
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Terrence J Sejnowski
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
- Division of Biological Sciences, University of California, San Diego, San Diego, CA, USA
| | - Ravi Iyengar
- Department of Pharmacological Sciences and Systems Biology Center New York, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, 92093-0411, CA, United States.
| |
Collapse
|
19
|
Piegari E, Villarruel C, Ponce Dawson S. Changes in Ca 2+ Removal Can Mask the Effects of Geometry During IP 3R Mediated Ca 2+ Signals. Front Physiol 2019; 10:964. [PMID: 31417423 PMCID: PMC6684793 DOI: 10.3389/fphys.2019.00964] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/11/2019] [Indexed: 12/29/2022] Open
Abstract
Calcium (Ca2+) signals are ubiquitous. Most intracellular Ca2+ signals involve the release of Ca2+ from the endoplasmic reticulum (ER) through Inositol 1,4,5-Trisphosphate Receptors (IP3Rs). The non-uniform spatial organization of IP3Rs and the fact that their individual openings are coupled via cytosolic Ca2+ are key factors for the variety of spatio-temporal distributions of the cytosolic [Ca2+] and the versatility of the signals. In this paper we combine experiments performed in untreated and in progesterone-treated Xenopus laevis oocytes and mathematical models to investigate how the interplay between geometry (the IP3R spatial distribution) and dynamics (the processes that characterize the release, transport, and removal of cytosolic Ca2+) affects the resulting signals. Signal propagation looks more continuous and spatially uniform in treated (mature) than in untreated (immature) oocytes. This could be due to the different underlying IP3R spatial distribution that has been observed in both cell types. The models, however, show that the rate of cytosolic Ca2+ removal, which is also different in both cell types, plays a key role affecting the coupling between Ca2+ release sites in such a way that the effect of the underlying IP3R spatial distribution can be modified.
Collapse
Affiliation(s)
- Estefanía Piegari
- Departamento de Física FCEN-UBA and IFIBA (CONICET), Ciudad Universitaria, Buenos Aires, Argentina
| | - Cecilia Villarruel
- Departamento de Física FCEN-UBA and IFIBA (CONICET), Ciudad Universitaria, Buenos Aires, Argentina
| | - Silvina Ponce Dawson
- Departamento de Física FCEN-UBA and IFIBA (CONICET), Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
20
|
Pages N, Vera-Sigüenza E, Rugis J, Kirk V, Yule DI, Sneyd J. A Model of [Formula: see text] Dynamics in an Accurate Reconstruction of Parotid Acinar Cells. Bull Math Biol 2019; 81:1394-1426. [PMID: 30644065 PMCID: PMC6449190 DOI: 10.1007/s11538-018-00563-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/21/2018] [Indexed: 01/23/2023]
Abstract
We have constructed a spatiotemporal model of [Formula: see text] dynamics in parotid acinar cells, based on new data about the distribution of inositol trisphophate receptors (IPR). The model is solved numerically on a mesh reconstructed from images of a cluster of parotid acinar cells. In contrast to our earlier model (Sneyd et al. in J Theor Biol 419:383-393. https://doi.org/10.1016/j.jtbi.2016.04.030 , 2017b), which cannot generate realistic [Formula: see text] oscillations with the new data on IPR distribution, our new model reproduces the [Formula: see text] dynamics observed in parotid acinar cells. This model is then coupled with a fluid secretion model described in detail in a companion paper: A mathematical model of fluid transport in an accurate reconstruction of a parotid acinar cell (Vera-Sigüenza et al. in Bull Math Biol. https://doi.org/10.1007/s11538-018-0534-z , 2018b). Based on the new measurements of IPR distribution, we show that Class I models (where [Formula: see text] oscillations can occur at constant [[Formula: see text]]) can produce [Formula: see text] oscillations in parotid acinar cells, whereas Class II models (where [[Formula: see text]] needs to oscillate in order to produce [Formula: see text] oscillations) are unlikely to do so. In addition, we demonstrate that coupling fluid flow secretion with the [Formula: see text] signalling model changes the dynamics of the [Formula: see text] oscillations significantly, which indicates that [Formula: see text] dynamics and fluid flow cannot be accurately modelled independently. Further, we determine that an active propagation mechanism based on calcium-induced calcium release channels is needed to propagate the [Formula: see text] wave from the apical region to the basal region of the acinar cell.
Collapse
Affiliation(s)
- Nathan Pages
- Department of Mathematics, The University of Auckland, 38 Princes Street, Auckland 1010, New Zealand
| | - Elías Vera-Sigüenza
- Department of Mathematics, The University of Auckland, 38 Princes Street, Auckland 1010, New Zealand
| | - John Rugis
- Department of Mathematics, The University of Auckland, 38 Princes Street, Auckland 1010, New Zealand
| | - Vivien Kirk
- Department of Mathematics, The University of Auckland, 38 Princes Street, Auckland 1010, New Zealand
| | - David I. Yule
- University of Rochester Medical Center, School of Medicine and Dentistry, 601 Elmwood Ave, Box 711, Rochester NY, United States of America
| | - James Sneyd
- Department of Mathematics, The University of Auckland, 38 Princes Street, Auckland 1010, New Zealand
| |
Collapse
|
21
|
Taylor CW, Machaca K. IP3 receptors and store-operated Ca2+ entry: a license to fill. Curr Opin Cell Biol 2019; 57:1-7. [DOI: 10.1016/j.ceb.2018.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/05/2018] [Indexed: 10/28/2022]
|
22
|
Prole DL, Taylor CW. Structure and Function of IP 3 Receptors. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a035063. [PMID: 30745293 DOI: 10.1101/cshperspect.a035063] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs), by releasing Ca2+ from the endoplasmic reticulum (ER) of animal cells, allow Ca2+ to be redistributed from the ER to the cytosol or other organelles, and they initiate store-operated Ca2+ entry (SOCE). For all three IP3R subtypes, binding of IP3 primes them to bind Ca2+, which then triggers channel opening. We are now close to understanding the structural basis of IP3R activation. Ca2+-induced Ca2+ release regulated by IP3 allows IP3Rs to regeneratively propagate Ca2+ signals. The smallest of these regenerative events is a Ca2+ puff, which arises from the nearly simultaneous opening of a small cluster of IP3Rs. Ca2+ puffs are the basic building blocks for all IP3-evoked Ca2+ signals, but only some IP3 clusters, namely those parked alongside the ER-plasma membrane junctions where SOCE occurs, are licensed to respond. The location of these licensed IP3Rs may allow them to selectively regulate SOCE.
Collapse
Affiliation(s)
- David L Prole
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| | - Colin W Taylor
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| |
Collapse
|
23
|
Lock JT, Smith IF, Parker I. Spatial-temporal patterning of Ca 2+ signals by the subcellular distribution of IP 3 and IP 3 receptors. Semin Cell Dev Biol 2019; 94:3-10. [PMID: 30703557 DOI: 10.1016/j.semcdb.2019.01.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 12/25/2022]
Abstract
The patterning of cytosolic Ca2+ signals in space and time underlies their ubiquitous ability to specifically regulate numerous cellular processes. Signals mediated by liberation of Ca2+ sequestered in the endoplasmic reticulum (ER) through inositol trisphosphate receptor (IP3R) channels constitute a hierarchy of events; ranging from openings of individual IP3 channels, through the concerted openings of several clustered IP3Rs to generate local Ca2+ puffs, to global Ca2+ waves and oscillations that engulf the entire cell. Here, we review recent progress in elucidating how this hierarchy is shaped by an interplay between the functional gating properties of IP3Rs and their spatial distribution within the cell. We focus in particular on the subset of IP3Rs that are organized in stationary clusters and are endowed with the ability to preferentially liberate Ca2+.
Collapse
Affiliation(s)
- Jeffrey T Lock
- Department of Neurobiology & Behavior, UC Irvine, Irvine, CA, USA.
| | - Ian F Smith
- Department of Neurobiology & Behavior, UC Irvine, Irvine, CA, USA
| | - Ian Parker
- Department of Neurobiology & Behavior, UC Irvine, Irvine, CA, USA; Department of Physiology & Biophysics, UC Irvine, Irvine, CA, USA
| |
Collapse
|
24
|
Brazhe AR, Postnov DE, Sosnovtseva O. Astrocyte calcium signaling: Interplay between structural and dynamical patterns. CHAOS (WOODBURY, N.Y.) 2018; 28:106320. [PMID: 30384660 DOI: 10.1063/1.5037153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
Inspired by calcium activity in astrocytes, which is different in the cell body and thick branches on the one hand and thin branchlets and leaflets on the other hand, we formulate a concept of spatially partitioned oscillators. These are inhomogeneous media with regions having different excitability properties, with a global dynamics governed by spatial configuration of such regions. Due to a high surface-to-volume ratio, calcium dynamics in astrocytic leaflets is dominated by transmembrane currents, while somatic calcium dynamics relies on exchange with intracellular stores, mediated by IP 3 , which is in turn synthesized in the space nearby the plasma membrane. Reciprocal coupling via diffusion of calcium and IP 3 between the two regions makes the spatial configuration an essential contributor to overall dynamics. Due to these features, the mechanisms governing the pattern formation of calcium dynamics differ from classical excitable systems with noise or from networks of clustered oscillators. We show how geometrical inhomogeneity can play an ordering role allowing for stable scenarios for calcium wave initiation and propagation.
Collapse
Affiliation(s)
- A R Brazhe
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1/24, 119234 Moscow, Russia
| | - D E Postnov
- Department of Physics, Saratov State University, Astrakhanskaya st. 83, 410012 Saratov, Russia
| | - O Sosnovtseva
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| |
Collapse
|
25
|
Piegari E, Lopez LF, Ponce Dawson S. Using two dyes to observe the competition of Ca 2+ trapping mechanisms and their effect on intracellular Ca 2+ signals. Phys Biol 2018; 15:066006. [PMID: 29848796 DOI: 10.1088/1478-3975/aac922] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The specificity and universality of intracellular [Formula: see text] signals rely on the variety of spatio-temporal patterns that the [Formula: see text] concentration can display. [Formula: see text] liberation through inositol 1,4,5-trisphosphate receptors ([Formula: see text]) is key for this variety. In this paper, we study how the competition between buffers of different kinetics affects [Formula: see text] signals that involve [Formula: see text] release through [Formula: see text]. The study also provides insight into the underlying spatial distribution of the channels that participate in the signals. Previous works on the effects of [Formula: see text] buffers have drawn conclusions 'indirectly' by observing the [Formula: see text]-bound dye distributions in the presence of varying concentrations of exogenous buffers and using simulations to interpret the results. In this paper, we make visible the invisible by observing the signals simultaneously with two dyes, [Formula: see text] and [Formula: see text], each of which plays the role of a slow or fast [Formula: see text] buffer, respectively. Our observations obtained for different concentrations of [Formula: see text] highlight the dual role that fast buffers exert on the dynamics, either reducing the intracluster channel coupling or preventing channel inhibition and allowing the occurrence of relatively long cycles of [Formula: see text] release. Our experiments also show that signals with relatively high [Formula: see text] release rates remain localized in the presence of large [Formula: see text] concentrations, while the mean speed of the elicited waves increases. We interpret this as a consequence of the more effective uncoupling between [Formula: see text] clusters as the slow dye concentration increases. Combining the analysis of the experiments with numerical simulations, we also conclude that [Formula: see text] release not only occurs within the close vicinity of the centers of the clearly identifiable release sites ([Formula: see text] clusters) but there are also functional [Formula: see text] in between them.
Collapse
Affiliation(s)
- E Piegari
- Departamento de Física and IFIBA (CONICET), FCEyN-UBA, Ciudad Universitaria, Buenos Aires, Argentina
| | | | | |
Collapse
|
26
|
Filadi R, Basso E, Lefkimmiatis K, Pozzan T. Beyond Intracellular Signaling: The Ins and Outs of Second Messengers Microdomains. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 981:279-322. [PMID: 29594866 DOI: 10.1007/978-3-319-55858-5_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A typical characteristic of eukaryotic cells compared to prokaryotes is represented by the spatial heterogeneity of the different structural and functional components: for example, most of the genetic material is surrounded by a highly specific membrane structure (the nuclear membrane), continuous with, yet largely different from, the endoplasmic reticulum (ER); oxidative phosphorylation is carried out by organelles enclosed by a double membrane, the mitochondria; in addition, distinct domains, enriched in specific proteins, are present in the plasma membrane (PM) of most cells. Less obvious, but now generally accepted, is the notion that even the concentration of small molecules such as second messengers (Ca2+ and cAMP in particular) can be highly heterogeneous within cells. In the case of most organelles, the differences in the luminal levels of second messengers depend either on the existence on their membrane of proteins that allow the accumulation/release of the second messenger (e.g., in the case of Ca2+, pumps, exchangers or channels), or on the synthesis and degradation of the specific molecule within the lumen (the autonomous intramitochondrial cAMP system). It needs stressing that the existence of a surrounding membrane does not necessarily imply the existence of a gradient between the cytosol and the organelle lumen. For example, the nuclear membrane is highly permeable to both Ca2+ and cAMP (nuclear pores are permeable to solutes up to 50 kDa) and differences in [Ca2+] or [cAMP] between cytoplasm and nucleoplasm are not seen in steady state and only very transiently during cell activation. A similar situation has been observed, as far as Ca2+ is concerned, in peroxisomes.
Collapse
Affiliation(s)
- Riccardo Filadi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Emy Basso
- Institute of Neuroscience, Padova Section, National Research Council, Padova, Italy
| | - Konstantinos Lefkimmiatis
- Institute of Neuroscience, Padova Section, National Research Council, Padova, Italy
- Venetian Institute of Molecular Medicine, Padova, Italy
| | - Tullio Pozzan
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
- Institute of Neuroscience, Padova Section, National Research Council, Padova, Italy.
- Venetian Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
27
|
Díaz-Vegas AR, Cordova A, Valladares D, Llanos P, Hidalgo C, Gherardi G, De Stefani D, Mammucari C, Rizzuto R, Contreras-Ferrat A, Jaimovich E. Mitochondrial Calcium Increase Induced by RyR1 and IP3R Channel Activation After Membrane Depolarization Regulates Skeletal Muscle Metabolism. Front Physiol 2018; 9:791. [PMID: 29988564 PMCID: PMC6026899 DOI: 10.3389/fphys.2018.00791] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/06/2018] [Indexed: 11/13/2022] Open
Abstract
Aim: We hypothesize that both type-1 ryanodine receptor (RyR1) and IP3-receptor (IP3R) calcium channels are necessary for the mitochondrial Ca2+ increase caused by membrane depolarization induced by potassium (or by electrical stimulation) of single skeletal muscle fibers; this calcium increase would couple muscle fiber excitation to an increase in metabolic output from mitochondria (excitation-metabolism coupling). Methods: Mitochondria matrix and cytoplasmic Ca2+ levels were evaluated in fibers isolated from flexor digitorium brevis muscle using plasmids for the expression of a mitochondrial Ca2+ sensor (CEPIA3mt) or a cytoplasmic Ca2+ sensor (RCaMP). The role of intracellular Ca2+ channels was evaluated using both specific pharmacological inhibitors (xestospongin B for IP3R and Dantrolene for RyR1) and a genetic approach (shIP3R1-RFP). O2 consumption was detected using Seahorse Extracellular Flux Analyzer. Results: In isolated muscle fibers cell membrane depolarization increased both cytoplasmic and mitochondrial Ca2+ levels. Mitochondrial Ca2+ uptake required functional inositol IP3R and RyR1 channels. Inhibition of either channel decreased basal O2 consumption rate but only RyR1 inhibition decreased ATP-linked O2 consumption. Cell membrane depolarization-induced Ca2+ signals in sub-sarcolemmal mitochondria were accompanied by a reduction in mitochondrial membrane potential; Ca2+ signals propagated toward intermyofibrillar mitochondria, which displayed increased membrane potential. These results are compatible with slow, Ca2+-dependent propagation of mitochondrial membrane potential from the surface toward the center of the fiber. Conclusion: Ca2+-dependent changes in mitochondrial membrane potential have different kinetics in the surface vs. the center of the fiber; these differences are likely to play a critical role in the control of mitochondrial metabolism, both at rest and after membrane depolarization as part of an “excitation-metabolism” coupling process in skeletal muscle fibers.
Collapse
Affiliation(s)
- Alexis R Díaz-Vegas
- Muscle Physiology Laboratory, Center of Studies in Exercise, Metabolism and Cancer, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | - Alex Cordova
- Biomedical Neuroscience Institute, Center of Studies in Exercise, Metabolism and Cancer, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | - Denisse Valladares
- Muscle Physiology Laboratory, Center of Studies in Exercise, Metabolism and Cancer, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Exercise and Movement Science Laboratory, Universidad Finis Terrae, Santiago, Chile
| | - Paola Llanos
- Muscle Physiology Laboratory, Center of Studies in Exercise, Metabolism and Cancer, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Institute for Research in Dental Science, Universidad de Chile, Santiago, Chile
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute, Center of Studies in Exercise, Metabolism and Cancer, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | - Gaia Gherardi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Diego De Stefani
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ariel Contreras-Ferrat
- Muscle Physiology Laboratory, Center of Studies in Exercise, Metabolism and Cancer, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | - Enrique Jaimovich
- Muscle Physiology Laboratory, Center of Studies in Exercise, Metabolism and Cancer, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
28
|
Sanders JR, Ashley B, Moon A, Woolley TE, Swann K. PLCζ Induced Ca 2+ Oscillations in Mouse Eggs Involve a Positive Feedback Cycle of Ca 2+ Induced InsP 3 Formation From Cytoplasmic PIP 2. Front Cell Dev Biol 2018; 6:36. [PMID: 29666796 PMCID: PMC5891639 DOI: 10.3389/fcell.2018.00036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/15/2018] [Indexed: 11/13/2022] Open
Abstract
Egg activation at fertilization in mammalian eggs is caused by a series of transient increases in the cytosolic free Ca2+ concentration, referred to as Ca2+ oscillations. It is widely accepted that these Ca2+ oscillations are initiated by a sperm derived phospholipase C isoform, PLCζ that hydrolyses its substrate PIP2 to produce the Ca2+ releasing messenger InsP3. However, it is not clear whether PLCζ induced InsP3 formation is periodic or monotonic, and whether the PIP2 source for generating InsP3 from PLCζ is in the plasma membrane or the cytoplasm. In this study we have uncaged InsP3 at different points of the Ca2+ oscillation cycle to show that PLCζ causes Ca2+ oscillations by a mechanism which requires Ca2+ induced InsP3 formation. In contrast, incubation in Sr2+ media, which also induces Ca2+ oscillations in mouse eggs, sensitizes InsP3-induced Ca2+ release. We also show that the cytosolic level Ca2+ is a key factor in setting the frequency of Ca2+ oscillations since low concentrations of the Ca2+ pump inhibitor, thapsigargin, accelerates the frequency of PLCζ induced Ca2+ oscillations in eggs, even in Ca2+ free media. Given that Ca2+ induced InsP3 formation causes a rapid wave during each Ca2+ rise, we use a mathematical model to show that InsP3 generation, and hence PLCζ's substate PIP2, has to be finely distributed throughout the egg cytoplasm. Evidence for PIP2 distribution in vesicles throughout the egg cytoplasm is provided with a rhodamine-peptide probe, PBP10. The apparent level of PIP2 in such vesicles could be reduced by incubating eggs in the drug propranolol which also reversibly inhibited PLCζ induced, but not Sr2+ induced, Ca2+ oscillations. These data suggest that the cytosolic Ca2+ level, rather than Ca2+ store content, is a key variable in setting the pace of PLCζ induced Ca2+ oscillations in eggs, and they imply that InsP3 oscillates in synchrony with Ca2+ oscillations. Furthermore, they support the hypothesis that PLCζ and sperm induced Ca2+ oscillations in eggs requires the hydrolysis of PIP2 from finely spaced cytoplasmic vesicles.
Collapse
Affiliation(s)
| | - Bethany Ashley
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Anna Moon
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Thomas E Woolley
- School of Mathematics, Cardiff University, Cardiff, United Kingdom
| | - Karl Swann
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
29
|
Montes de Oca Balderas P, Montes de Oca Balderas H. Synaptic neuron-astrocyte communication is supported by an order of magnitude analysis of inositol tris-phosphate diffusion at the nanoscale in a model of peri-synaptic astrocyte projection. BMC BIOPHYSICS 2018; 11:3. [PMID: 29456837 PMCID: PMC5809920 DOI: 10.1186/s13628-018-0043-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/30/2018] [Indexed: 12/13/2022]
Abstract
Background Astrocytes were conceived for decades only as supporting cells of the brain. However, the observation of Ca2+ waves in astrocyte synctitia, their neurotransmitter receptor expression and gliotransmitter secretion suggested a role in information handling, conception that has some controversies. Synaptic Neuron-Astrocyte metabotropic communication mediated by Inositol tris-phosphate (SN-AmcIP3) is supported by different reports. However, some models contradict this idea and Ca2+ stores are 1000 ± 325 nm apart from the Postsynaptic Density in the Perisynaptic Astrocyte Projections (PAP’s), suggesting that SN-AmcIP3 is extrasynaptic. However, this assumption does not consider IP3 Diffusion Coefficient (Dab), that activates IP3 Receptor (IP3R) releasing Ca2+ from intracellular stores. Results In this work we idealized a model of a PAP (PAPm) to perform an order of magnitude analysis of IP3 diffusion using a transient mass diffusion model. This model shows that IP3 forms a concentration gradient along the PAPm that reaches the steady state in milliseconds, three orders of magnitude before IP3 degradation. The model predicts that IP3 concentration near the Ca2+ stores may activate IP3R, depending upon Phospholipase C (PLC) number and activity. Moreover, the PAPm supports that IP3 and extracellular Ca2+ entry synergize to promote global Ca2+ transients. Conclusion The model presented here indicates that Ca2+ stores position in PAP’s does not limit SN-AmcIP3. Electronic supplementary material The online version of this article (10.1186/s13628-018-0043-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pavel Montes de Oca Balderas
- Unit of Dynamic Neurobiology, Neurochemistry Deprtment Instituto Nacional de Neurología y Neurocirugía, Insurgentes Sur #3877, Col. La Fama, C.P. 14269 Ciudad de México, Mexico
| | - Horacio Montes de Oca Balderas
- Unit of Dynamic Neurobiology, Neurochemistry Deprtment Instituto Nacional de Neurología y Neurocirugía, Insurgentes Sur #3877, Col. La Fama, C.P. 14269 Ciudad de México, Mexico
| |
Collapse
|
30
|
Hong K, Cope EL, DeLalio LJ, Marziano C, Isakson BE, Sonkusare SK. TRPV4 (Transient Receptor Potential Vanilloid 4) Channel-Dependent Negative Feedback Mechanism Regulates G q Protein-Coupled Receptor-Induced Vasoconstriction. Arterioscler Thromb Vasc Biol 2018; 38:542-554. [PMID: 29301784 DOI: 10.1161/atvbaha.117.310038] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Several physiological stimuli activate smooth muscle cell (SMC) GqPCRs (Gq protein-coupled receptors) to cause vasoconstriction. As a protective mechanism against excessive vasoconstriction, SMC GqPCR stimulation invokes endothelial cell vasodilatory signaling. Whether Ca2+ influx in endothelial cells contributes to the regulation of GqPCR-induced vasoconstriction remains unknown. Ca2+ influx through TRPV4 (transient receptor potential vanilloid 4) channels is a key regulator of endothelium-dependent vasodilation. We hypothesized that SMC GqPCR stimulation engages endothelial TRPV4 channels to limit vasoconstriction. APPROACH AND RESULTS Using high-speed confocal microscopy to record unitary Ca2+ influx events through TRPV4 channels (TRPV4 sparklets), we report that activation of SMC α1ARs (alpha1-adrenergic receptors) with phenylephrine or thromboxane A2 receptors with U46619 stimulated TRPV4 sparklets in the native endothelium from mesenteric arteries. Activation of endothelial TRPV4 channels did not require an increase in Ca2+ as indicated by the lack of effect of L-type Ca2+ channel activator or chelator of intracellular Ca2+ EGTA-AM. However, gap junction communication between SMCs and endothelial cells was required for phenylephrine activation or U46619 activation of endothelial TRPV4 channels. Lowering inositol 1,4,5-trisphosphate levels with phospholipase C inhibitor or lithium chloride suppressed phenylephrine activation of endothelial TRPV4 sparklets. Moreover, uncaging inositol 1,4,5-trisphosphate profoundly increased TRPV4 sparklet activity. In pressurized arteries, phenylephrine-induced vasoconstriction was followed by a slow, TRPV4-dependent vasodilation, reflecting activation of negative regulatory mechanism. Consistent with these data, phenylephrine induced a significantly higher increase in blood pressure in TRPV4-/- mice. CONCLUSIONS These results demonstrate that SMC GqPCR stimulation triggers inositol 1,4,5-trisphosphate-dependent activation of endothelial TRPV4 channels to limit vasoconstriction.
Collapse
Affiliation(s)
- Kwangseok Hong
- From the Robert M. Berne Cardiovascular Research Center (K.H., E.L.C., L.J.D., C.M., B.E.I., S.K.S.), Department of Molecular Physiology and Biological Physics (C.M., B.E.I., S.K.S.), and Department of Pharmacology (L.J.D., S.K.S), University of Virginia-School of Medicine, Charlottesville
| | - Eric L Cope
- From the Robert M. Berne Cardiovascular Research Center (K.H., E.L.C., L.J.D., C.M., B.E.I., S.K.S.), Department of Molecular Physiology and Biological Physics (C.M., B.E.I., S.K.S.), and Department of Pharmacology (L.J.D., S.K.S), University of Virginia-School of Medicine, Charlottesville
| | - Leon J DeLalio
- From the Robert M. Berne Cardiovascular Research Center (K.H., E.L.C., L.J.D., C.M., B.E.I., S.K.S.), Department of Molecular Physiology and Biological Physics (C.M., B.E.I., S.K.S.), and Department of Pharmacology (L.J.D., S.K.S), University of Virginia-School of Medicine, Charlottesville
| | - Corina Marziano
- From the Robert M. Berne Cardiovascular Research Center (K.H., E.L.C., L.J.D., C.M., B.E.I., S.K.S.), Department of Molecular Physiology and Biological Physics (C.M., B.E.I., S.K.S.), and Department of Pharmacology (L.J.D., S.K.S), University of Virginia-School of Medicine, Charlottesville
| | - Brant E Isakson
- From the Robert M. Berne Cardiovascular Research Center (K.H., E.L.C., L.J.D., C.M., B.E.I., S.K.S.), Department of Molecular Physiology and Biological Physics (C.M., B.E.I., S.K.S.), and Department of Pharmacology (L.J.D., S.K.S), University of Virginia-School of Medicine, Charlottesville
| | - Swapnil K Sonkusare
- From the Robert M. Berne Cardiovascular Research Center (K.H., E.L.C., L.J.D., C.M., B.E.I., S.K.S.), Department of Molecular Physiology and Biological Physics (C.M., B.E.I., S.K.S.), and Department of Pharmacology (L.J.D., S.K.S), University of Virginia-School of Medicine, Charlottesville.
| |
Collapse
|
31
|
Dynamic Ca 2+ imaging with a simplified lattice light-sheet microscope: A sideways view of subcellular Ca 2+ puffs. Cell Calcium 2017; 71:34-44. [PMID: 29604962 DOI: 10.1016/j.ceca.2017.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 11/24/2022]
Abstract
We describe the construction of a simplified, inexpensive lattice light-sheet microscope, and illustrate its use for imaging subcellular Ca2+ puffs evoked by photoreleased i-IP3 in cultured SH-SY5Y neuroblastoma cells loaded with the Ca2+ probe Cal520. The microscope provides sub-micron spatial resolution and enables recording of local Ca2+ transients in single-slice mode with a signal-to-noise ratio and temporal resolution (2ms) at least as good as confocal or total internal reflection microscopy. Signals arising from openings of individual IP3R channels are clearly resolved, as are stepwise changes in fluorescence reflecting openings and closings of individual channels during puffs. Moreover, by stepping the specimen through the light-sheet, the entire volume of a cell can be scanned within a few hundred ms. The ability to directly visualize a sideways (axial) section through cells directly reveals that IP3-evoked Ca2+ puffs originate at sites in very close (≤a few hundred nm) to the plasma membrane, suggesting they play a specific role in signaling to the membrane.
Collapse
|
32
|
Keebler MV, Taylor CW. Endogenous signalling pathways and caged IP 3 evoke Ca 2+ puffs at the same abundant immobile intracellular sites. J Cell Sci 2017; 130:3728-3739. [PMID: 28893841 PMCID: PMC5702060 DOI: 10.1242/jcs.208520] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/04/2017] [Indexed: 12/18/2022] Open
Abstract
The building blocks of intracellular Ca2+ signals evoked by inositol 1,4,5-trisphosphate receptors (IP3Rs) are Ca2+ puffs, transient focal increases in Ca2+ concentration that reflect the opening of small clusters of IP3Rs. We use total internal reflection fluorescence microscopy and automated analyses to detect Ca2+ puffs evoked by photolysis of caged IP3 or activation of endogenous muscarinic receptors with carbachol in human embryonic kidney 293 cells. Ca2+ puffs evoked by carbachol initiated at an estimated 65±7 sites/cell, and the sites remained immobile for many minutes. Photolysis of caged IP3 evoked Ca2+ puffs at a similar number of sites (100±35). Increasing the carbachol concentration increased the frequency of Ca2+ puffs without unmasking additional Ca2+ release sites. By measuring responses to sequential stimulation with carbachol or photolysed caged IP3, we established that the two stimuli evoked Ca2+ puffs at the same sites. We conclude that IP3-evoked Ca2+ puffs initiate at numerous immobile sites and the sites become more likely to fire as the IP3 concentration increases; there is no evidence that endogenous signalling pathways selectively deliver IP3 to specific sites. Summary: Ca2+ puffs are the building blocks for IP3-evoked Ca2+ signals. Ca2+ puffs evoked by caged IP3 or via endogenous signalling pathways initiate at the same fixed intracellular sites.
Collapse
Affiliation(s)
- Michael V Keebler
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Colin W Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| |
Collapse
|
33
|
Kim D, Woo JA, Geffken E, An SS, Liggett SB. Coupling of Airway Smooth Muscle Bitter Taste Receptors to Intracellular Signaling and Relaxation Is via G αi1,2,3. Am J Respir Cell Mol Biol 2017; 56:762-771. [PMID: 28145731 DOI: 10.1165/rcmb.2016-0373oc] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bitter taste receptors (TAS2Rs) are expressed on human airway smooth muscle (HASM) and evoke marked relaxation. Agonist interaction with TAS2Rs activates phospholipase C and increases compartmentalized intracellular Ca2+ ([Ca2+]i) via inositol 1,4,5 triphosphate. In taste cells, the G protein gustducin couples TAS2R to phospholipase C; however, we find very low levels of Gαgust mRNA or protein in HASM. We hypothesized that another G protein in HASM transmits TAS2R function. TAS2R signaling to [Ca2+]i, extracellular signal-regulated kinase (ERK) 1/2, and physiologic relaxation was sensitive to pertussis toxin, confirming a role for a member of the Gi family. α subunit expression in HASM was Gαi2 > Gαi1 = Gαi3 > Gαtrans1 ≈ Gαtrans2, with Gαgust and Gαo at the limits of detection (>100-fold lower than Gαi2). Small interfering RNA knockdowns in HASM showed losses of [Ca2+]i and ERK1/2 signaling when Gαi1, Gαi2, or Gαi3 were reduced. Gαtrans1 and Gαtrans2 knockdowns had no effect on [Ca2+]i and a minimal, transient effect on ERK1/2 phosphorylation. Furthermore, Gαgust and Gαo knockdowns did not affect any TAS2R signaling. In overexpression experiments in human embryonic kidney-293T cells, we confirmed an agonist-dependent physical interaction between TAS2R14 and Gαi2. ASM cells from transgenic mice expressing a peptide inhibitor of Gαi2 had attenuated relaxation to TAS2R agonist. These data indicate that, unlike in taste cells, TAS2Rs couple to the prevalent G proteins, Gαi1, Gαi2, and Gαi3, with no evidence for functional coupling to Gαgust. This absence of function for the "canonical" TAS2R G protein in HASM may be due to the very low expression of Gαgust, indicating that TAS2Rs can optionally couple to several G proteins in a cell type-dependent manner contingent upon G protein expression.
Collapse
Affiliation(s)
- Donghwa Kim
- 1 Department of Medicine and the Center for Personalized Medicine and Genomics, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Jung A Woo
- 1 Department of Medicine and the Center for Personalized Medicine and Genomics, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Ezekiel Geffken
- 2 Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; and
| | - Steven S An
- 2 Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; and
| | - Stephen B Liggett
- 3 Departments of Internal Medicine and Molecular Pharmacology and Physiology, and the Center for Personalized Medicine and Genomics, University of South Florida Morsani College of Medicine, Tampa, Florida
| |
Collapse
|
34
|
Garland CJ, Bagher P, Powell C, Ye X, Lemmey HAL, Borysova L, Dora KA. Voltage-dependent Ca 2+ entry into smooth muscle during contraction promotes endothelium-mediated feedback vasodilation in arterioles. Sci Signal 2017; 10:10/486/eaal3806. [PMID: 28676489 DOI: 10.1126/scisignal.aal3806] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vascular smooth muscle contraction is suppressed by feedback dilation mediated by the endothelium. In skeletal muscle arterioles, this feedback can be activated by Ca2+ signals passing from smooth muscle through gap junctions to endothelial cells, which protrude through holes in the internal elastic lamina to make contact with vascular smooth muscle cells. Although hypothetically either Ca2+ or inositol trisphosphate (IP3) may provide the intercellular signal, it is generally thought that IP3 diffusion is responsible. We provide evidence that Ca2+ entry through L-type voltage-dependent Ca2+ channels (VDCCs) in vascular smooth muscle can pass to the endothelium through positions aligned with holes in the internal elastic lamina in amounts sufficient to activate endothelial cell Ca2+ signaling. In endothelial cells in which IP3 receptors (IP3Rs) were blocked, VDCC-driven Ca2+ events were transient and localized to the endothelium that protrudes through the internal elastic lamina to contact vascular smooth muscle cells. In endothelial cells in which IP3Rs were not blocked, VDCC-driven Ca2+ events in endothelial cells were amplified to form propagating waves. These waves activated voltage-insensitive, intermediate-conductance, Ca2+-activated K+ (IKCa) channels, thereby providing feedback that effectively suppressed vasoconstriction and enabled cycles of constriction and dilation called vasomotion. Thus, agonists that stimulate vascular smooth muscle depolarization provide Ca2+ to endothelial cells to activate a feedback circuit that protects tissue blood flow.
Collapse
Affiliation(s)
- Christopher J Garland
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Pooneh Bagher
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Chloe Powell
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Xi Ye
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Hamish A L Lemmey
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Lyudmyla Borysova
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Kim A Dora
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| |
Collapse
|
35
|
Shears SB. Intimate connections: Inositol pyrophosphates at the interface of metabolic regulation and cell signaling. J Cell Physiol 2017; 233:1897-1912. [PMID: 28542902 DOI: 10.1002/jcp.26017] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 12/11/2022]
Abstract
Inositol pyrophosphates are small, diffusible signaling molecules that possess the most concentrated three-dimensional array of phosphate groups in Nature; up to eight phosphates are crammed around a six-carbon inositol ring. This review discusses the physico-chemical properties of these unique molecules, and their mechanisms of action. Also provided is information on the enzymes that regulate the levels and hence the signaling properties of these molecules. This review pursues the idea that many of the biological effects of inositol pyrophosphates can be rationalized by their actions at the interface of cell signaling and metabolism that is essential to cellular and organismal homeostasis.
Collapse
Affiliation(s)
- Stephen B Shears
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
36
|
Abstract
Early Ca2+ signaling is characterized by occurrence of Ca2+ microdomains formed by opening of single or clusters of Ca2+ channels, thereby initiating first signaling and subsequently activating global Ca2+ signaling mechanisms. However, only few data are available focusing on the first seconds and minutes of Ca2+ microdomain formation and related signaling pathways in activated T-lymphocytes. In this review, we condense current knowledge on Ca2+ microdomain formation in T-lymphocytes and early Ca2+ signaling, function of Ca2+ microdomains, and microdomain organization. Interestingly, considering the first seconds of T cell activation, a triphasic Ca2+ signal is becoming apparent: (i) initial Ca2+ microdomains occurring in the first second of T cell activation, (ii) amplification of Ca2+ microdomains by recruitment of further channels in the next 5-10 s, and (iii) a transition to global Ca2+ increase. Apparently, the second messenger nicotinic acid adenine dinucleotide phosphate is the first second messenger involved in initiation of Ca2+ microdomains. Ryanodine receptors type 1 act as initial Ca2+ release channels in CD4+ T-lymphocytes. Regarding the temporal correlation of Ca2+ microdomains with other molecular events of T cell activation, T cell receptor-dependent microdomain organization of signaling molecules Grb2 and Src homology [SH2] domain-containing leukocyte protein of 65 kDa was observed within the first 20 s. In addition, fast cytoskeletal changes are initiated. Furthermore, the involvement of additional Ca2+ channels and organelles, such as the Ca2+ buffering mitochondria, is discussed. Future research developments will comprise analysis of the causal relation between these temporally coordinated signaling events. Taken together, high-resolution Ca2+ imaging techniques applied to T cell activation in the past years paved the way to detailed molecular understanding of initial Ca2+ signaling mechanisms in non-excitable cells.
Collapse
Affiliation(s)
- Insa M A Wolf
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H Guse
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
37
|
Lock JT, Smith IF, Parker I. Comparison of Ca 2+ puffs evoked by extracellular agonists and photoreleased IP 3. Cell Calcium 2017; 63:43-47. [PMID: 28108028 PMCID: PMC5459673 DOI: 10.1016/j.ceca.2016.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 11/19/2022]
Abstract
The inositol trisphosphate (IP3) signaling pathway evokes local Ca2+ signals (Ca2+ puffs) that arise from the concerted openings of clustered IP3 receptor/channels in the ER membrane. Physiological activation is triggered by binding of agonists to G-protein-coupled receptors (GPCRs) on the cell surface, leading to cleavage of phosphatidyl inositol bisphosphate and release of IP3 into the cytosol. Photorelease of IP3 from a caged precursor provides a convenient and widely employed means to study the final stage of IP3-mediated Ca2+ liberation, bypassing upstream signaling events to enable more precise control of the timing and relative concentration of cytosolic IP3. Here, we address whether Ca2+ puffs evoked by photoreleased IP3 fully replicate those arising from physiological agonist stimulation. We imaged puffs in individual SH-SY5Y neuroblastoma cells that were sequentially stimulated by picospritzing extracellular agonist (carbachol, CCH or bradykinin, BK) followed by photorelease of a poorly-metabolized IP3 analog, i-IP3. The centroid localizations of fluorescence signals during puffs evoked in the same cells by agonists and photorelease substantially overlapped (within ∼1μm), suggesting that IP3 from both sources accesses the same, or closely co-localized clusters of IP3Rs. Moreover, the time course and spatial spread of puffs evoked by agonists and photorelease matched closely. Because photolysis generates IP3 uniformly throughout the cytoplasm, our results imply that IP3 generated in SH-SY5Y cells by activation of receptors to CCH and BK also exerts broadly distributed actions, rather than specifically activating a subpopulation of IP3Rs that are scaffolded in close proximity to cell surface receptors to form a signaling nanodomain.
Collapse
Affiliation(s)
- Jeffrey T Lock
- Department of Neurobiology and Behavior, University of California, Irvine, CA, 92697, United States.
| | - Ian F Smith
- Department of Neurobiology and Behavior, University of California, Irvine, CA, 92697, United States.
| | - Ian Parker
- Department of Neurobiology and Behavior, University of California, Irvine, CA, 92697, United States; Department of Physiology and Biophysics, University of California, Irvine, CA, 92697, United States.
| |
Collapse
|
38
|
Sigaut L, Villarruel C, Ponce Dawson S. FCS experiments to quantify Ca 2+ diffusion and its interaction with buffers. J Chem Phys 2017; 146:104203. [PMID: 28298094 DOI: 10.1063/1.4977586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ca2+ signals are ubiquitous. One of the key factors for their versatility is the variety of spatio-temporal distributions that the cytosolic Ca2+ can display. In most cell types Ca2+ signals not only depend on Ca2+ entry from the extracellular medium but also on Ca2+ release from internal stores, a process which is in turn regulated by cytosolic Ca2+ itself. The rate at which Ca2+ is transported, the fraction that is trapped by intracellular buffers, and with what kinetics are thus key features that affect the time and spatial range of action of Ca2+ signals. The quantification of Ca2+ diffusion in intact cells is quite challenging because the transport rates that can be inferred using optical techniques are intricately related to the interaction of Ca2+ with the dye that is used for its observation and with the cellular buffers. In this paper, we introduce an approach that uses Fluorescence Correlation Spectroscopy (FCS) experiments performed at different conditions that in principle allows the quantification of Ca2+ diffusion and of its reaction rates with unobservable (non-fluorescent) Ca2+ buffers. To this end, we develop the necessary theory to interpret the experimental results and then apply it to FCS experiments performed in a set of solutions containing Ca2+, a single wavelength Ca2+ dye, and a non-fluorescent Ca2+ buffer. We show that a judicious choice of the experimental conditions and an adequate interpretation of the fitting parameters can be combined to extract information on the free diffusion coefficient of Ca2+ and of some of the properties of the unobservable buffer. We think that this approach can be applied to other situations, particularly to experiments performed in intact cells.
Collapse
Affiliation(s)
- Lorena Sigaut
- Departamento de Física, FCEN-UBA, and IFIBA, CONICET, Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina
| | - Cecilia Villarruel
- Departamento de Física, FCEN-UBA, and IFIBA, CONICET, Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina
| | - Silvina Ponce Dawson
- Departamento de Física, FCEN-UBA, and IFIBA, CONICET, Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina
| |
Collapse
|
39
|
An SS, Liggett SB. Taste and smell GPCRs in the lung: Evidence for a previously unrecognized widespread chemosensory system. Cell Signal 2017; 41:82-88. [PMID: 28167233 DOI: 10.1016/j.cellsig.2017.02.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 02/02/2017] [Indexed: 12/13/2022]
Abstract
Taste and smell receptor expression has been traditionally limited to the tongue and nose. We have identified bitter taste receptors (TAS2Rs) and olfactory receptors (ORs) on human airway smooth muscle (HASM) cells. TAS2Rs signal to PLCβ evoking an increase in [Ca2+]i causing membrane hyperpolarization and marked HASM relaxation ascertained by single cell, ex vivo, and in vivo methods. The presence of TAS2Rs in the lung was unexpected, as was the bronchodilatory function which has been shown to be due to signaling within specific microdomains of the cell. Unlike β2-adrenergic receptor-mediated bronchodilation, TAS2R function is not impaired in asthma and shows little tachyphylaxis. HASM ORs do not bronchodilate, but rather modulate cytoskeletal remodeling and hyperplasia, two cardinal features of asthma. We have shown that short chain fatty acids, byproducts of fermentation of polysaccharides by the gut microbiome, activate HASM ORs. This establishes a non-immune gut-lung mechanism that ties observations on gut microbial communities to asthma phenotypes. Subsequent studies by multiple investigators have revealed expression and specialized functions of TAS2Rs and ORs in multiple cell-types and organs throughout the body. Collectively, the data point towards a previously unrecognized chemosensory system which recognizes endogenous and exogenous agonists. These receptors and their ligands play roles in normal homeostatic functions, predisposition or adaptation to disease, and represent drug targets for novel therapeutics.
Collapse
Affiliation(s)
- Steven S An
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe Street, Baltimore, MD 21205, United States.
| | - Stephen B Liggett
- Department of Internal Medicine, Center for Personalized Medicine and Genomics, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., MDC 2, Tampa, FL 33612, United States; Department of Pharmacology and Physiology, Center for Personalized Medicine and Genomics, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., MDC 2, Tampa, FL 33612, United States.
| |
Collapse
|
40
|
Abstract
In this issue of Science Signaling, Dickinson et al show that the intracellular messenger inositol 1,4,5-trisphosphate (IP3), which triggers the release of calcium (Ca2+) from the endoplasmic reticulum, is a slowly diffusing local signal, rather than a rapidly diffusing global one. These findings have implications for the understanding of the mechanisms of Ca2+ wave propagation, especially long-range, cell-to-cell propagating Ca2+ waves.
Collapse
Affiliation(s)
- Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium.
| |
Collapse
|