1
|
Subbanna MS, Winters MJ, Örd M, Davey NE, Pryciak PM. A quantitative intracellular peptide binding assay reveals recognition determinants and context dependence of short linear motifs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621084. [PMID: 39553988 PMCID: PMC11565833 DOI: 10.1101/2024.10.30.621084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Transient protein-protein interactions play key roles in controlling dynamic cellular responses. Many examples involve globular protein domains that bind to peptide sequences known as Short Linear Motifs (SLiMs), which are enriched in intrinsically disordered regions of proteins. Here we describe a novel functional assay for measuring SLiM binding, called Systematic Intracellular Motif Binding Analysis (SIMBA). In this method, binding of a foreign globular domain to its cognate SLiM peptide allows yeast cells to proliferate by blocking a growth arrest signal. A high-throughput application of the SIMBA method involving competitive growth and deep sequencing provides rapid quantification of the relative binding strength for thousands of SLiM sequence variants, and a comprehensive interrogation of SLiM sequence features that control their recognition and potency. We show that multiple distinct classes of SLiM-binding domains can be analyzed by this method, and that the relative binding strength of peptides in vivo correlates with their biochemical affinities measured in vitro. Deep mutational scanning provides high-resolution definitions of motif recognition determinants and reveals how sequence variations at non-core positions can modulate binding strength. Furthermore, mutational scanning of multiple parent peptides that bind human tankyrase ARC or YAP WW domains identifies distinct binding modes and uncovers context effects in which the preferred residues at one position depend on residues elsewhere. The findings establish SIMBA as a fast and incisive approach for interrogating SLiM recognition via massively parallel quantification of protein-peptide binding strength in vivo.
Collapse
Affiliation(s)
- Mythili S. Subbanna
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Matthew J. Winters
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Mihkel Örd
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Norman E. Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Peter M. Pryciak
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
2
|
Elgazzaz M, Filipeanu C, Lazartigues E. Angiotensin-Converting Enzyme 2 Posttranslational Modifications and Implications for Hypertension and SARS-CoV-2: 2023 Lewis K. Dahl Memorial Lecture. Hypertension 2024; 81:1438-1449. [PMID: 38567498 PMCID: PMC11168885 DOI: 10.1161/hypertensionaha.124.22067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
ACE2 (angiotensin-converting enzyme 2), a multifunctional transmembrane protein, is well recognized as an important member of the (RAS) renin-angiotensin system with important roles in the regulation of cardiovascular function by opposing the harmful effects of Ang-II (angiotensin II) and AT1R (Ang-II type 1 receptor) activation. More recently, ACE2 was found to be the entry point for the SARS-CoV-2 virus into cells, causing COVID-19. This finding has led to an exponential rise in the number of publications focused on ACE2, albeit these studies often have opposite objectives to the preservation of ACE2 in cardiovascular regulation. However, notwithstanding accumulating data of the role of ACE2 in the generation of angiotensin-(1-7) and SARS-CoV-2 internalization, numerous other putative roles of this enzyme remain less investigated and not yet characterized. Currently, no drug modulating ACE2 function or expression is available in the clinic, and the development of new pharmacological tools should attempt targeting each step of the lifespan of the protein from synthesis to degradation. The present review expands on our presentation during the 2023 Lewis K. Dahl Memorial Lecture Sponsored by the American Heart Association Council on Hypertension. We provide a critical summary of the current knowledge of the mechanisms controlling ACE2 internalization and intracellular trafficking, the mutual regulation with GPCRs (G-protein-coupled receptors) and other proteins, and posttranslational modifications. A major focus is on ubiquitination which has become a critical step in the modulation of ACE2 cellular levels.
Collapse
Affiliation(s)
- Mona Elgazzaz
- Department of Physiology, Augusta University, Medical College of Georgia, Augusta, GA 30912, USA
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Catalin Filipeanu
- Department of Pharmacology, Howard University, Washington, DC 20059, USA
| | - Eric Lazartigues
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA
| |
Collapse
|
3
|
Geanes ES, McLennan R, LeMaster C, Bradley T. Autoantibodies to ACE2 and immune molecules are associated with COVID-19 disease severity. COMMUNICATIONS MEDICINE 2024; 4:47. [PMID: 38491326 PMCID: PMC10943194 DOI: 10.1038/s43856-024-00477-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/05/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Increased inflammation caused by SARS-CoV-2 infection can lead to severe coronavirus disease 2019 (COVID-19) and long-term disease manifestations. The mechanisms of this variable long-term immune activation are poorly defined. One feature of this increased inflammation is elevated levels of proinflammatory cytokines and chemokines. Autoantibodies targeting immune factors such as cytokines, as well as the viral host cell receptor, angiotensin-converting enzyme 2 (ACE2), have been observed after SARS-CoV-2 infection. Autoantibodies to immune factors and ACE2 could interfere with normal immune regulation and lead to increased inflammation, severe COVID-19, and long-term complications. METHODS Here, we deeply profiled the features of ACE2, cytokine, and chemokine autoantibodies in samples from patients recovering from severe COVID-19. We measured the levels of immunoglobulin subclasses (IgG, IgA, IgM) in the peripheral blood against ACE2 and 23 cytokines and other immune molecules. We then utilized an ACE2 peptide microarray to map the linear epitopes targeted by ACE2 autoantibodies. RESULTS We demonstrate that ACE2 autoantibody levels are increased in individuals with severe COVID-19 compared with those with mild infection or no prior infection. We identify epitopes near the catalytic domain of ACE2 targeted by these antibodies. Levels of autoantibodies targeting ACE2 and other immune factors could serve as determinants of COVID-19 disease severity, and represent a natural immunoregulatory mechanism in response to viral infection. CONCLUSIONS These results demonstrate that SARS-CoV-2 infection can increase autoantibody levels to ACE2 and other immune factors. The levels of these autoantibodies are associated with COVID-19 disease severity.
Collapse
Affiliation(s)
- Eric S Geanes
- Genomic Medicine Center, Children's Mercy Research Institute, Kansas City, MO, USA
| | - Rebecca McLennan
- Genomic Medicine Center, Children's Mercy Research Institute, Kansas City, MO, USA
| | - Cas LeMaster
- Genomic Medicine Center, Children's Mercy Research Institute, Kansas City, MO, USA
| | - Todd Bradley
- Genomic Medicine Center, Children's Mercy Research Institute, Kansas City, MO, USA.
- Department of Pediatrics, University of Missouri, Kansas City, MO, USA.
- Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS, USA.
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
4
|
Luebbert L, Hoang C, Kumar M, Pachter L. Fast and scalable querying of eukaryotic linear motifs with gget elm. Bioinformatics 2024; 40:btae095. [PMID: 38377393 PMCID: PMC10927331 DOI: 10.1093/bioinformatics/btae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/18/2024] [Indexed: 02/22/2024] Open
Abstract
MOTIVATION Eukaryotic linear motifs (ELMs), or Short Linear Motifs, are protein interaction modules that play an essential role in cellular processes and signaling networks and are often involved in diseases like cancer. The ELM database is a collection of manually curated motif knowledge from scientific papers. It has become a crucial resource for investigating motif biology and recognizing candidate ELMs in novel amino acid sequences. Users can search amino acid sequences or UniProt Accessions on the ELM resource web interface. However, as with many web services, there are limitations in the swift processing of large-scale queries through the ELM web interface or API calls, and, therefore, integration into protein function analysis pipelines is limited. RESULTS To allow swift, large-scale motif analyses on protein sequences using ELMs curated in the ELM database, we have extended the gget suite of Python and command line tools with a new module, gget elm, which does not rely on the ELM server for efficiently finding candidate ELMs in user-submitted amino acid sequences and UniProt Accessions. gget elm increases accessibility to the information stored in the ELM database and allows scalable searches for motif-mediated interaction sites in the amino acid sequences. AVAILABILITY AND IMPLEMENTATION The manual and source code are available at https://github.com/pachterlab/gget.
Collapse
Affiliation(s)
- Laura Luebbert
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Chi Hoang
- California Institute of Technology, Pasadena, CA 91125, United States
| | - Manjeet Kumar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Lior Pachter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125, United States
| |
Collapse
|
5
|
Kumar M, Michael S, Alvarado-Valverde J, Zeke A, Lazar T, Glavina J, Nagy-Kanta E, Donagh J, Kalman Z, Pascarelli S, Palopoli N, Dobson L, Suarez C, Van Roey K, Krystkowiak I, Griffin J, Nagpal A, Bhardwaj R, Diella F, Mészáros B, Dean K, Davey N, Pancsa R, Chemes L, Gibson T. ELM-the Eukaryotic Linear Motif resource-2024 update. Nucleic Acids Res 2024; 52:D442-D455. [PMID: 37962385 PMCID: PMC10767929 DOI: 10.1093/nar/gkad1058] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Short Linear Motifs (SLiMs) are the smallest structural and functional components of modular eukaryotic proteins. They are also the most abundant, especially when considering post-translational modifications. As well as being found throughout the cell as part of regulatory processes, SLiMs are extensively mimicked by intracellular pathogens. At the heart of the Eukaryotic Linear Motif (ELM) Resource is a representative (not comprehensive) database. The ELM entries are created by a growing community of skilled annotators and provide an introduction to linear motif functionality for biomedical researchers. The 2024 ELM update includes 346 novel motif instances in areas ranging from innate immunity to both protein and RNA degradation systems. In total, 39 classes of newly annotated motifs have been added, and another 17 existing entries have been updated in the database. The 2024 ELM release now includes 356 motif classes incorporating 4283 individual motif instances manually curated from 4274 scientific publications and including >700 links to experimentally determined 3D structures. In a recent development, the InterPro protein module resource now also includes ELM data. ELM is available at: http://elm.eu.org.
Collapse
Affiliation(s)
- Manjeet Kumar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Sushama Michael
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Jesús Alvarado-Valverde
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Germany
| | - András Zeke
- Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Tamas Lazar
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Juliana Glavina
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CP 1650, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Av. 25 de Mayo y Francia, CP1650 San Martín, Buenos Aires, Argentina
| | - Eszter Nagy-Kanta
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, Budapest 1083, Hungary
| | - Juan Mac Donagh
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Buenos Aires, Argentina
| | - Zsofia E Kalman
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, Budapest 1083, Hungary
| | - Stefano Pascarelli
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nicolas Palopoli
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Buenos Aires, Argentina
| | - László Dobson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Department of Bioinformatics, Semmelweis University, Tűzoltó u. 7, Budapest 1094, Hungary
| | - Carmen Florencia Suarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CP 1650, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Av. 25 de Mayo y Francia, CP1650 San Martín, Buenos Aires, Argentina
| | - Kim Van Roey
- Health Services Research, Sciensano, Brussels, Belgium
| | - Izabella Krystkowiak
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Rd, Chelsea, London SW3 6JB, UK
| | - Juan Esteban Griffin
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Buenos Aires, Argentina
| | - Anurag Nagpal
- Department of Biological Sciences, BITS Pilani, K. K. Birla Goa campus, Zuarinagar, Goa 403726, India
| | - Rajesh Bhardwaj
- Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Francesca Diella
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Bálint Mészáros
- Department of Structural Biology and Center of Excellence for Data Driven Discovery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Kellie Dean
- School of Biochemistry and Cell Biology, 3.91 Western Gateway Building, University College Cork, Cork, Ireland
| | - Norman E Davey
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Rd, Chelsea, London SW3 6JB, UK
| | - Rita Pancsa
- Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Lucía B Chemes
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CP 1650, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Av. 25 de Mayo y Francia, CP1650 San Martín, Buenos Aires, Argentina
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| |
Collapse
|
6
|
Schuck P, Zhao H. Diversity of short linear interaction motifs in SARS-CoV-2 nucleocapsid protein. mBio 2023; 14:e0238823. [PMID: 38018991 PMCID: PMC10746173 DOI: 10.1128/mbio.02388-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE Short linear motifs (SLiMs) are 3-10 amino acid long binding motifs in intrinsically disordered protein regions (IDRs) that serve as ubiquitous protein-protein interaction modules in eukaryotic cells. Through molecular mimicry, viruses hijack these sequence motifs to control host cellular processes. It is thought that the small size of SLiMs and the high mutation frequencies of viral IDRs allow rapid host adaptation. However, a salient characteristic of RNA viruses, due to high replication errors, is their obligate existence as mutant swarms. Taking advantage of the uniquely large genomic database of SARS-CoV-2, here, we analyze the role of sequence diversity in the presentation of SLiMs, focusing on the highly abundant, multi-functional nucleocapsid protein. We find that motif mimicry is a highly dynamic process that produces an abundance of motifs transiently present in subsets of mutant species. This diversity allows the virus to efficiently explore eukaryotic motifs and evolve the host-virus interface.
Collapse
Affiliation(s)
- Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | - Huaying Zhao
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Zhang H, Wang Z, Nguyen HTT, Watson AJ, Lao Q, Li A, Zhu J. Integrin α 5β 1 contributes to cell fusion and inflammation mediated by SARS-CoV-2 spike via RGD-independent interaction. Proc Natl Acad Sci U S A 2023; 120:e2311913120. [PMID: 38060559 PMCID: PMC10723138 DOI: 10.1073/pnas.2311913120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/03/2023] [Indexed: 12/17/2023] Open
Abstract
The Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus infects host cells by engaging its spike (S) protein with human ACE2 receptor. Recent studies suggest the involvement of integrins in SARS-CoV-2 infection through interaction with the S protein, but the underlying mechanism is not well understood. This study investigated the role of integrin α5β1, which recognizes the Arg-Gly-Asp (RGD) motif in its physiological ligands, in S-mediated virus entry and cell-cell fusion. Our results showed that α5β1 does not directly contribute to S-mediated cell entry, but it enhances S-mediated cell-cell fusion in collaboration with ACE2. This effect cannot be inhibited by the putative α5β1 inhibitor ATN-161 or the high-affinity RGD-mimetic inhibitor MK-0429 but requires the participation of α5 cytoplasmic tail (CT). We detected a direct interaction between α5β1 and the S protein, but this interaction does not rely on the RGD-containing receptor binding domain of the S1 subunit of the S protein. Instead, it involves the S2 subunit of the S protein and α5β1 homo-oligomerization. Furthermore, we found that the S protein induces inflammatory responses in human endothelial cells, characterized by NF-κB activation, gasdermin D cleavage, and increased secretion of proinflammatory cytokines IL-6 and IL-1β. These effects can be attenuated by the loss of α5 expression or inhibition of the α5 CT binding protein phosphodiesterase-4D (PDE4D), suggesting the involvement of α5 CT and PDE4D pathway. These findings provide molecular insights into the pathogenesis of SARS-CoV-2 mediated by a nonclassical RGD-independent ligand-binding and signaling function of integrin α5β1 and suggest potential targets for antiviral treatment.
Collapse
Affiliation(s)
- Heng Zhang
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI53226
| | - Zhengli Wang
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI53226
| | - Huong T. T. Nguyen
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI53226
| | - Abigail J. Watson
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI53226
| | - Qifang Lao
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI53226
| | - An Li
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI53226
| | - Jieqing Zhu
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI53226
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI53226
| |
Collapse
|
8
|
Xiao Y, Chang L, Ji H, Sun H, Song S, Feng K, Nuermaimaiti A, Halemubieke S, Mei L, Lu Z, Yan Y, Wang L. Posttranslational modifications of ACE2 protein: Implications for SARS-CoV-2 infection and beyond. J Med Virol 2023; 95:e29304. [PMID: 38063421 DOI: 10.1002/jmv.29304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/21/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023]
Abstract
The present worldwide pandemic of coronavirus disease 2019 (COVID-19) has highlighted the important function of angiotensin-converting enzyme 2 (ACE2) as a receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry. A deeper understanding of ACE2 could offer insights into the mechanisms of SARS-CoV-2 infection. While ACE2 is subject to regulation by various factors in vivo, current research in this area is insufficient to fully elucidate the corresponding pathways of control. Posttranslational modification (PTM) is a powerful tool for broadening the variety of proteins. The PTM study of ACE2 will help us to make up for the deficiency in the regulation of protein synthesis and translation. However, research on PTM-related aspects of ACE2 remains limited, mostly focused on glycosylation. Accordingly, a comprehensive review of ACE2 PTMs could help us better understand the infection process and provide a basis for the treatment of COVID-19 and beyond.
Collapse
Affiliation(s)
- Yingzi Xiao
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Le Chang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Huimin Ji
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Huizhen Sun
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Shi Song
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Kaihao Feng
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Abudulimutailipu Nuermaimaiti
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Shana Halemubieke
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Ling Mei
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Zhuoqun Lu
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Ying Yan
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Lunan Wang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| |
Collapse
|
9
|
Bradley T, Geanes E, McLennan R, LeMaster C. Autoantibodies against Angiotensin-converting enzyme 2 and immune molecules are associated with COVID-19 disease severity. RESEARCH SQUARE 2023:rs.3.rs-3304083. [PMID: 37841848 PMCID: PMC10571615 DOI: 10.21203/rs.3.rs-3304083/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Increased inflammation caused by SARS-CoV-2 infection can lead to severe coronavirus disease 2019 (COVID-19) and long-term disease manifestations referred to as post-acute sequalae of COVID (PASC). The mechanisms of this variable long-term immune activation are poorly defined. Autoantibodies targeting immune factors such as cytokines, as well as the viral host cell receptor, angiotensin-converting enzyme 2 (ACE2), have been observed after SARS-CoV-2 infection. Autoantibodies to immune factors and ACE2 could interfere with normal immune regulation and lead to increased inflammation, severe COVID-19, and long-term complications. Here, we deeply pro led the features of ACE2, cytokine, and chemokine autoantibodies in samples from patients recovering from severe COVID-19. We identified epitopes in the catalytic domain of ACE2 targeted by these antibodies, that could inhibit ACE2 function. Levels of autoantibodies targeting ACE2 and other immune factors could serve as determinants of COVID-19 disease severity, and represent a natural immunoregulatory mechanism in response to viral infection.
Collapse
|
10
|
Martucci LF, Eichler RA, Silva RN, Costa TJ, Tostes RC, Busatto GF, Seelaender MC, Duarte AJ, Souza HP, Ferro ES. Intracellular peptides in SARS-CoV-2-infected patients. iScience 2023; 26:107542. [PMID: 37636076 PMCID: PMC10448160 DOI: 10.1016/j.isci.2023.107542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/29/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
Intracellular peptides (InPeps) generated by the orchestrated action of the proteasome and intracellular peptidases have biological and pharmacological significance. Here, human plasma relative concentration of specific InPeps was compared between 175 patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and 45 SARS-CoV-2 non-infected patients; 2,466 unique peptides were identified, of which 67% were InPeps. The results revealed differences of a specific group of peptides in human plasma comparing non-infected individuals to patients infected by SARS-CoV-2, following the results of the semi-quantitative analyses by isotope-labeled electrospray mass spectrometry. The protein-protein interactions networks enriched pathways, drawn by genes encoding the proteins from which the peptides originated, revealed the presence of the coronavirus disease/COVID-19 network solely in the group of patients fatally infected by SARS-CoV-2. Thus, modulation of the relative plasma levels of specific InPeps could be employed as a predictive tool for disease outcome.
Collapse
Affiliation(s)
- Luiz Felipe Martucci
- Department of Pharmacology, Biomedical Sciences Institute, São Paulo 05508-000, Brazil
| | | | - Renée N.O. Silva
- Department of Pharmacology, Biomedical Sciences Institute, São Paulo 05508-000, Brazil
| | - Tiago J. Costa
- Department of Pharmacology, Ribeirao Preto Medical School, Ribeirão Preto 14049-900, Brazil
| | - Rita C. Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, Ribeirão Preto 14049-900, Brazil
| | - Geraldo F. Busatto
- Department of Psichiatry, Medical School and Hospital das Clínicas, University of São Paulo, 01246-903 SP, Brazil
| | - Marilia C.L. Seelaender
- Department of Surgery, Medical School and Hospital das Clínicas, University of São Paulo, 01246-903 SP, Brazil
| | - Alberto J.S. Duarte
- Department of Patology, Medical School and Hospital das Clínicas, University of São Paulo, 01246-903 SP, Brazil
| | - Heraldo P. Souza
- Department of Internal Medicine, Medical School and Hospital das Clínicas, University of São Paulo, 01246-903 SP, Brazil
| | - Emer S. Ferro
- Department of Pharmacology, Biomedical Sciences Institute, São Paulo 05508-000, Brazil
- Department of Patology, Medical School and Hospital das Clínicas, University of São Paulo, 01246-903 SP, Brazil
- Department of Internal Medicine, Medical School and Hospital das Clínicas, University of São Paulo, 01246-903 SP, Brazil
| |
Collapse
|
11
|
Shan T, Li LY, Yang JM, Cheng Y. Role and clinical implication of autophagy in COVID-19. Virol J 2023; 20:125. [PMID: 37328875 PMCID: PMC10276507 DOI: 10.1186/s12985-023-02069-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/10/2023] [Indexed: 06/18/2023] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic constitutes a serious public health concern worldwide. Currently, more than 6 million deaths have occurred despite drastic containment measures, and this number is still increasing. Currently, no standard therapies for COVID-19 are available, which necessitates identifying effective preventive and therapeutic agents against COVID-19. However, developing new drugs and vaccines is a time-consuming process, and therefore, repurposing the existing drugs or redeveloping related targets seems to be the best strategy to develop effective therapeutics against COVID-19. Autophagy, a multistep lysosomal degradation pathway contributing to nutrient recycling and metabolic adaptation, is involved in the initiation and progression of numerous diseases as a part of an immune response. The key role of autophagy in antiviral immunity has been extensively studied. Moreover, autophagy can directly eliminate intracellular microorganisms by selective autophagy, that is, "xenophagy." However, viruses have acquired diverse strategies to exploit autophagy for their infection and replication. This review aims to trigger the interest in the field of autophagy as an antiviral target for viral pathogens (with an emphasis on COVID-19). We base this hypothesis on summarizing the classification and structure of coronaviruses as well as the process of SARS-CoV-2 infection and replication; providing the common understanding of autophagy; reviewing interactions between the mechanisms of viral entry/replication and the autophagy pathways; and discussing the current state of clinical trials of autophagy-modifying drugs in the treatment of SARS-CoV-2 infection. We anticipate that this review will contribute to the rapid development of therapeutics and vaccines against COVID-19.
Collapse
Affiliation(s)
- Tianjiao Shan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, China
| | - Lan-Ya Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, China
| | - Jin-Ming Yang
- Department of Toxicology and Cancer Biology, Department of Pharmacology, and Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA.
| | - Yan Cheng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, China.
| |
Collapse
|
12
|
Cermakova K, Hodges HC. Interaction modules that impart specificity to disordered protein. Trends Biochem Sci 2023; 48:477-490. [PMID: 36754681 PMCID: PMC10106370 DOI: 10.1016/j.tibs.2023.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 02/09/2023]
Abstract
Intrinsically disordered regions (IDRs) are especially enriched among proteins that regulate chromatin and transcription. As a result, mechanisms that influence specificity of IDR-driven interactions have emerged as exciting unresolved issues for understanding gene regulation. We review the molecular elements frequently found within IDRs that confer regulatory specificity. In particular, we summarize the differing roles of disordered low-complexity regions (LCRs) and short linear motifs (SLiMs) towards selective nuclear regulation. Examination of IDR-driven interactions highlights SLiMs as organizers of selectivity, with widespread roles in gene regulation and integration of cellular signals. Analysis of recurrent interactions between SLiMs and folded domains suggests diverse avenues for SLiMs to influence phase-separated condensates and highlights opportunities to manipulate these interactions for control of biological activity.
Collapse
Affiliation(s)
- Katerina Cermakova
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - H Courtney Hodges
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
13
|
Norris EG, Pan XS, Hocking DC. Receptor-binding domain of SARS-CoV-2 is a functional αv-integrin agonist. J Biol Chem 2023; 299:102922. [PMID: 36669646 PMCID: PMC9846890 DOI: 10.1016/j.jbc.2023.102922] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Among the novel mutations distinguishing SARS-CoV-2 from similar coronaviruses is a K403R substitution in the receptor-binding domain (RBD) of the viral spike (S) protein within its S1 region. This amino acid substitution occurs near the angiotensin-converting enzyme 2-binding interface and gives rise to a canonical RGD adhesion motif that is often found in native extracellular matrix proteins, including fibronectin. Here, the ability of recombinant S1-RBD to bind to cell surface integrins and trigger downstream signaling pathways was assessed and compared with RGD-containing, integrin-binding fragments of fibronectin. We determined that S1-RBD supported adhesion of fibronectin-null mouse embryonic fibroblasts as well as primary human small airway epithelial cells, while RBD-coated microparticles attached to epithelial monolayers in a cation-dependent manner. Cell adhesion to S1-RBD was RGD dependent and inhibited by blocking antibodies against αv and β3 but not α5 or β1 integrins. Similarly, we observed direct binding of S1-RBD to recombinant human αvβ3 and αvβ6 integrins, but not α5β1 integrins, using surface plasmon resonance. S1-RBD adhesion initiated cell spreading, focal adhesion formation, and actin stress fiber organization to a similar extent as fibronectin. Moreover, S1-RBD stimulated tyrosine phosphorylation of the adhesion mediators FAK, Src, and paxillin; triggered Akt activation; and supported cell proliferation. Thus, the RGD sequence of S1-RBD can function as an αv-selective integrin agonist. This study provides evidence that cell surface αv-containing integrins can respond functionally to spike protein and raises the possibility that S1-mediated dysregulation of extracellular matrix dynamics may contribute to the pathogenesis and/or post-acute sequelae of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Emma G Norris
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Xuan Sabrina Pan
- Department of Biomedical Engineering, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Denise C Hocking
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Department of Biomedical Engineering, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
| |
Collapse
|
14
|
Biological soft matter: intrinsically disordered proteins in liquid-liquid phase separation and biomolecular condensates. Essays Biochem 2022; 66:831-847. [PMID: 36350034 DOI: 10.1042/ebc20220052] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/10/2022]
Abstract
The facts that many proteins with crucial biological functions do not have unique structures and that many biological processes are compartmentalized into the liquid-like biomolecular condensates, which are formed via liquid-liquid phase separation (LLPS) and are not surrounded by the membrane, are revolutionizing the modern biology. These phenomena are interlinked, as the presence of intrinsic disorder represents an important requirement for a protein to undergo LLPS that drives biogenesis of numerous membrane-less organelles (MLOs). Therefore, one can consider these phenomena as crucial constituents of a new IDP-LLPS-MLO field. Furthermore, intrinsically disordered proteins (IDPs), LLPS, and MLOs represent a clear link between molecular and cellular biology and soft matter and condensed soft matter physics. Both IDP and LLPS/MLO fields are undergoing explosive development and generate the ever-increasing mountain of crucial data. These new data provide answers to so many long-standing questions that it is difficult to imagine that in the very recent past, protein scientists and cellular biologists operated without taking these revolutionary concepts into account. The goal of this essay is not to deliver a comprehensive review of the IDP-LLPS-MLO field but to provide a brief and rather subjective outline of some of the recent developments in these exciting fields.
Collapse
|
15
|
Zeng S, Zhao Y, Peng O, Xia Y, Xu Q, Li H, Xue C, Cao Y, Zhang H. Swine Acute Diarrhea Syndrome Coronavirus Induces Autophagy to Promote Its Replication via the Akt/mTOR Pathway. iScience 2022; 25:105394. [PMID: 36281226 PMCID: PMC9581643 DOI: 10.1016/j.isci.2022.105394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 08/06/2022] [Accepted: 10/14/2022] [Indexed: 11/28/2022] Open
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is an enveloped, single-stranded, positive-sense RNA virus belonging to the Coronaviridae family. Increasingly studies have demonstrated that viruses could utilize autophagy to promote their own replication. However, the relationship between SADS-CoV and autophagy remains unknown. Here, we reported that SADS-CoV infection-induced autophagy and pharmacologically increased autophagy were conducive to viral proliferation. Conversely, suppression of autophagy by pharmacological inhibitors or knockdown of autophagy-related protein impeded viral replication. Furthermore, we demonstrated the underlying mechanism by which SADS-CoV triggered autophagy through the inactivation of the Akt/mTOR pathway. Importantly, we identified integrin α3 (ITGA3) as a potential antiviral target upstream of Akt/mTOR and autophagy pathways. Knockdown of ITGA3 enhanced autophagy and consequently increased the replication of SADS-CoV. Collectively, our studies revealed a novel mechanism that SADS-CoV-induced autophagy to facilitate its proliferation via Akt/mTOR pathway and found that ITGA3 was an effective antiviral factor for suppressing viral infection. SADS-CoV triggers autophagy pathway to facilitate its proliferation Inhibition of autophagy flux impairs SADS-CoV replication SADS-CoV negatively regulates Akt/mTOR pathway to induce autophagy ITGA3 prevents SADS-CoV production through autophagy inhibition
Collapse
Affiliation(s)
- Siying Zeng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yan Zhao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ouyang Peng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yu Xia
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qiuping Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China,Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Hongmei Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China,Corresponding author
| |
Collapse
|
16
|
Lu G, Wang Y, Shi Y, Zhang Z, Huang C, He W, Wang C, Shen H. Autophagy in health and disease: From molecular mechanisms to therapeutic target. MedComm (Beijing) 2022; 3:e150. [PMID: 35845350 PMCID: PMC9271889 DOI: 10.1002/mco2.150] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 02/05/2023] Open
Abstract
Macroautophagy/autophagy is an evolutionally conserved catabolic process in which cytosolic contents, such as aggregated proteins, dysfunctional organelle, or invading pathogens, are sequestered by the double-membrane structure termed autophagosome and delivered to lysosome for degradation. Over the past two decades, autophagy has been extensively studied, from the molecular mechanisms, biological functions, implications in various human diseases, to development of autophagy-related therapeutics. This review will focus on the latest development of autophagy research, covering molecular mechanisms in control of autophagosome biogenesis and autophagosome-lysosome fusion, and the upstream regulatory pathways including the AMPK and MTORC1 pathways. We will also provide a systematic discussion on the implication of autophagy in various human diseases, including cancer, neurodegenerative disorders (Alzheimer disease, Parkinson disease, Huntington's disease, and Amyotrophic lateral sclerosis), metabolic diseases (obesity and diabetes), viral infection especially SARS-Cov-2 and COVID-19, cardiovascular diseases (cardiac ischemia/reperfusion and cardiomyopathy), and aging. Finally, we will also summarize the development of pharmacological agents that have therapeutic potential for clinical applications via targeting the autophagy pathway. It is believed that decades of hard work on autophagy research is eventually to bring real and tangible benefits for improvement of human health and control of human diseases.
Collapse
Affiliation(s)
- Guang Lu
- Department of Physiology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Yu Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Yin Shi
- Department of BiochemistryZhejiang University School of MedicineHangzhouChina
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn ResearchSouthwest HospitalArmy Medical UniversityChongqingChina
| | - Chuang Wang
- Department of Pharmacology, Provincial Key Laboratory of PathophysiologyNingbo University School of MedicineNingboZhejiangChina
| | - Han‐Ming Shen
- Department of Biomedical Sciences, Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision OncologyUniversity of MacauMacauChina
| |
Collapse
|
17
|
Omidian N, Mohammadi P, Sadeghalvad M, Mohammadi-Motlagh HR. Cerebral microvascular complications associated with SARS-CoV-2 infection: How did it occur and how should it be treated? Biomed Pharmacother 2022; 154:113534. [PMID: 35994816 PMCID: PMC9381434 DOI: 10.1016/j.biopha.2022.113534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 01/08/2023] Open
Abstract
Cerebral microvascular disease has been reported as a central feature of the neurological disorders in patients with SARS-CoV-2 infection that may be associated with an increased risk of ischemic stroke. The main pathomechanism in the development of cerebrovascular injury due to SARS-CoV-2 infection can be a consequence of endothelial cell dysfunction as a structural part of the blood-brain barrier (BBB), which may be accompanied by increased inflammatory response and thrombocytopenia along with blood coagulation disorders. In this review, we described the properties of the BBB, the neurotropism behavior of SARS-CoV-2, and the possible mechanisms of damage to the CNS microvascular upon SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Neda Omidian
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mona Sadeghalvad
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamid-Reza Mohammadi-Motlagh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
18
|
Falcinelli E, Petito E, Gresele P. The role of platelets, neutrophils and endothelium in COVID-19 infection. Expert Rev Hematol 2022; 15:727-745. [PMID: 35930267 DOI: 10.1080/17474086.2022.2110061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION COVID-19 is associated to an increased risk of thrombosis, as a result of a complex process that involves the activation of vascular and circulating cells, the release of soluble inflammatory and thrombotic mediators and blood clotting activation. AREAS COVERED This article reviews the pathophysiological role of platelets, neutrophils and the endothelium, and of their interactions, in the thrombotic complications of COVID-19 patients, and the current and future therapeutic approaches targeting these cell types. EXPERT OPINION Virus-induced platelet, neutrophil and endothelial cell changes are crucial triggers of the thrombotic complications and of the adverse evolution of COVID-19. Both the direct interaction with the virus and the associated cytokine storm concur to trigger cell activation in a classical thromboinflammatory vicious circle. Although heparin has proven to be an effective prophylactic and therapeutic weapon for the prevention and treatment of COVID-19-associated thrombosis, it acts downstream of the cascade of events triggered by SARS-CoV-2. The identification of specific molecular targets interrupting the thromboinflammatory cascade upstream, and more specifically acting either on the interaction of SARS-CoV-2 with blood and vascular cells or on the specific signalling mechanisms associated with their COVID-19-associated activation, might theoretically offer greater protection with potentially lesser side effects.
Collapse
Affiliation(s)
- E Falcinelli
- Section of Internal and Cardiovascular Medicine, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - E Petito
- Section of Internal and Cardiovascular Medicine, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - P Gresele
- Section of Internal and Cardiovascular Medicine, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
19
|
He W, Gao Y, Zhou J, Shi Y, Xia D, Shen HM. Friend or Foe? Implication of the autophagy-lysosome pathway in SARS-CoV-2 infection and COVID-19. Int J Biol Sci 2022; 18:4690-4703. [PMID: 35874956 PMCID: PMC9305279 DOI: 10.7150/ijbs.72544] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/24/2022] [Indexed: 12/14/2022] Open
Abstract
There is increasing amount of evidence indicating the close interplays between the replication cycle of SARS-CoV-2 and the autophagy-lysosome pathway in the host cells. While autophagy machinery is known to either assist or inhibit the viral replication process, the reciprocal effects of the SARS-CoV-2 on the autophagy-lysosome pathway have also been increasingly appreciated. More importantly, despite the disappointing results from the clinical trials of chloroquine and hydroxychloroquine in treatment of COVID-19, there is still ongoing effort in discovering new therapeutics targeting the autophagy-lysosome pathway. In this review, we provide an update-to-date summary of the interplays between the autophagy-lysosome pathway in the host cells and the pathogen SARS-CoV-2 at the molecular level, to highlight the prognostic value of autophagy markers in COVID-19 patients and to discuss the potential of developing novel therapeutic strategies for COVID-19 by targeting the autophagy-lysosome pathway. Thus, understanding the nature of such interactions between SARS-CoV-2 and the autophagy-lysosome pathway in the host cells is expected to provide novel strategies in battling against this global pandemic.
Collapse
Affiliation(s)
- Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yuan Gao
- Faculty of Health Sciences, University of Macau, Macau, China
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Jing Zhou
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Province, China
| | - Yi Shi
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Dajing Xia
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital; Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Han-Ming Shen
- Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
20
|
The AI-Assisted Identification and Clinical Efficacy of Baricitinib in the Treatment of COVID-19. Vaccines (Basel) 2022; 10:vaccines10060951. [PMID: 35746559 PMCID: PMC9231077 DOI: 10.3390/vaccines10060951] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 02/07/2023] Open
Abstract
During the current pandemic, the vast majority of COVID-19 patients experienced mild symptoms, but some had a potentially fatal aberrant hyperinflammatory immune reaction characterized by high levels of IL-6 and other cytokines. Modulation of this immune reaction has proven to be the only method of reducing mortality in severe and critical COVID-19. The anti-inflammatory drug baricitinib (Olumiant) has recently been strongly recommended by the WHO for use in COVID-19 patients because it reduces the risk of progressive disease and death. It is a Janus Kinase (JAK) 1/2 inhibitor approved for rheumatoid arthritis which was suggested in early 2020 as a treatment for COVID-19. In this review the AI-assisted identification of baricitinib, its antiviral and anti-inflammatory properties, and efficacy in clinical trials are discussed and compared with those of other immune modulators including glucocorticoids, IL-6 and IL-1 receptor blockers and other JAK inhibitors. Baricitinib inhibits both virus infection and cytokine signalling and is not only important for COVID-19 management but is “non-immunological”, and so should remain effective if new SARS-CoV-2 variants escape immune control. The repurposing of baricitinib is an example of how advanced artificial intelligence (AI) can quickly identify new drug candidates that have clinical benefit in previously unsuspected therapeutic areas.
Collapse
|
21
|
Gahmberg CG, Grönholm M, Madhavan S. Regulation of Dynamic Cell Adhesion by Integrin-Integrin Crosstalk. Cells 2022; 11:cells11101685. [PMID: 35626722 PMCID: PMC9140058 DOI: 10.3390/cells11101685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Most cells express several integrins. The integrins are able to respond to various cellular functions and needs by modifying their own activation state, but in addition by their ability to regulate each other by activation or inhibition. This crosstalk or transdominant regulation is strictly controlled. The mechanisms resulting in integrin crosstalk are incompletely understood, but they often involve intracellular signalling routes also used by other cell surface receptors. Several studies show that the integrin cytoplasmic tails bind to a number of cytoskeletal and adaptor molecules in a regulated manner. Recent work has shown that phosphorylations of integrins and key intracellular molecules are of pivotal importance in integrin-cytoplasmic interactions, and these in turn affect integrin activity and crosstalk. The integrin β-chains play a central role in regulating crosstalk. In addition to Integrin-integrin crosstalk, crosstalk may also occur between integrins and related receptors, including other adhesion receptors, growth factor and SARS-CoV-2 receptors.
Collapse
Affiliation(s)
- Carl G. Gahmberg
- Molecular and Integrative Biosciences Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9 C, 00014 Helsinki, Finland; (M.G.); (S.M.)
- Correspondence: ; Tel.: +358-50-539-9439
| | - Mikaela Grönholm
- Molecular and Integrative Biosciences Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9 C, 00014 Helsinki, Finland; (M.G.); (S.M.)
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 9 C, 00014 Helsinki, Finland
| | - Sudarrshan Madhavan
- Molecular and Integrative Biosciences Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9 C, 00014 Helsinki, Finland; (M.G.); (S.M.)
| |
Collapse
|
22
|
Wadie B, Kleshchevnikov V, Sandaltzopoulou E, Benz C, Petsalaki E. Use of viral motif mimicry improves the proteome-wide discovery of human linear motifs. Cell Rep 2022; 39:110764. [PMID: 35508127 DOI: 10.1016/j.celrep.2022.110764] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 02/09/2022] [Accepted: 04/08/2022] [Indexed: 12/16/2022] Open
Abstract
Linear motifs have an integral role in dynamic cell functions, including cell signaling. However, due to their small size, low complexity, and frequent mutations, identifying novel functional motifs poses a challenge. Viruses rely extensively on the molecular mimicry of cellular linear motifs. In this study, we apply systematic motif prediction combined with functional filters to identify human linear motifs convergently evolved also in viral proteins. We observe an increase in the sensitivity of motif prediction and improved enrichment in known instances. We identify >7,300 non-redundant motif instances at various confidence levels, 99 of which are supported by all functional and structural filters. Overall, we provide a pipeline to improve the identification of functional linear motifs from interactomics datasets and a comprehensive catalog of putative human motifs that can contribute to our understanding of the human domain-linear motif code and the associated mechanisms of viral interference.
Collapse
Affiliation(s)
- Bishoy Wadie
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Vitalii Kleshchevnikov
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Elissavet Sandaltzopoulou
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Caroline Benz
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK.
| |
Collapse
|
23
|
Insights into Membrane Curvature Sensing and Membrane Remodeling by Intrinsically Disordered Proteins and Protein Regions. J Membr Biol 2022; 255:237-259. [PMID: 35451616 PMCID: PMC9028910 DOI: 10.1007/s00232-022-00237-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/29/2022] [Indexed: 12/15/2022]
Abstract
Cellular membranes are highly dynamic in shape. They can rapidly and precisely regulate their shape to perform various cellular functions. The protein’s ability to sense membrane curvature is essential in various biological events such as cell signaling and membrane trafficking. As they are bound, these curvature-sensing proteins may also change the local membrane shape by one or more curvature driving mechanisms. Established curvature-sensing/driving mechanisms rely on proteins with specific structural features such as amphipathic helices and intrinsically curved shapes. However, the recent discovery and characterization of many proteins have shattered the protein structure–function paradigm, believing that the protein functions require a unique structural feature. Typically, such structure-independent functions are carried either entirely by intrinsically disordered proteins or hybrid proteins containing disordered regions and structured domains. It is becoming more apparent that disordered proteins and regions can be potent sensors/inducers of membrane curvatures. In this article, we outline the basic features of disordered proteins and regions, the motifs in such proteins that encode the function, membrane remodeling by disordered proteins and regions, and assays that may be employed to investigate curvature sensing and generation by ordered/disordered proteins.
Collapse
|
24
|
Norris EG, Pan XS, Hocking DC. Receptor binding domain of SARS-CoV-2 is a functional αv-integrin agonist. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.04.11.487882. [PMID: 35441172 PMCID: PMC9016641 DOI: 10.1101/2022.04.11.487882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Among the novel mutations distinguishing SARS-CoV-2 from similar respiratory coronaviruses is a K403R substitution in the receptor-binding domain (RBD) of the viral spike (S) protein within its S1 region. This amino acid substitution occurs near the angiotensin-converting enzyme 2 (ACE2)-binding interface and gives rise to a canonical RGD adhesion motif that is often found in native extracellular matrix proteins, including fibronectin. In the present study, the ability of recombinant S1-RBD to bind to cell surface integrins and trigger downstream signaling pathways was assessed and compared to RGD-containing, integrin-binding fragments of fibronectin. S1-RBD supported adhesion of both fibronectin-null mouse embryonic fibroblasts as well as primary human small airway epithelial cells. Cell adhesion to S1-RBD was cation- and RGD-dependent, and was inhibited by blocking antibodies against α v and β 3 , but not α 5 or β 1 , integrins. Similarly, direct binding of S1-RBD to recombinant human α v β 3 and α v β 6 integrins, but not α 5 β 1 integrins, was observed by surface plasmon resonance. Adhesion to S1-RBD initiated cell spreading, focal adhesion formation, and actin stress fiber organization to a similar extent as fibronectin. Moreover, S1-RBD stimulated tyrosine phosphorylation of the adhesion mediators FAK, Src, and paxillin, Akt activation, and supported cell proliferation. Together, these data demonstrate that the RGD sequence within S1-RBD can function as an α v -selective integrin agonist. This study provides evidence that cell surface α v -containing integrins can respond functionally to spike protein and raise the possibility that S1-mediated dysregulation of ECM dynamics may contribute to the pathogenesis and/or post-acute sequelae of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Emma G. Norris
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Xuan Sabrina Pan
- Department of Biomedical Engineering University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Denise C. Hocking
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
- Department of Biomedical Engineering University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| |
Collapse
|
25
|
Zhang Q, Ling S, Hu K, Liu J, Xu JW. Role of the renin-angiotensin system in NETosis in the coronavirus disease 2019 (COVID-19). Pharmacotherapy 2022; 148:112718. [PMID: 35176710 PMCID: PMC8841219 DOI: 10.1016/j.biopha.2022.112718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/20/2022]
Abstract
Myocardial infarction and stroke are the leading causes of death in the world. Numerous evidence has confirmed that hypertension promotes thrombosis and induces myocardial infarction and stroke. Recent findings reveal that neutrophil extracellular traps (NETs) are involved in the induction of myocardial infarction and stroke. Meanwhile, patients with severe COVID-19 suffer from complications such as myocardial infarction and stroke with pathological signs of NETs. Due to the extremely low amount of virus detected in the blood and remote organs (e.g., heart, brain and kidney) in a few cases, it is difficult to explain the mechanism by which the virus triggers NETosis, and there may be a different mechanism than in the lung. A large number of studies have found that the renin-angiotensin system regulates the NETosis at multiple levels in patients with COVID-19, such as endocytosis of SARS-COV-2, abnormal angiotensin II levels, neutrophil activation and procoagulant function at multiple levels, which may contribute to the formation of reticular structure and thrombosis. The treatment of angiotensin-converting enzyme inhibitors (ACEI), angiotensin II type 1 receptor blockers (ARBs) and neutrophil recruitment and active antagonists helps to regulate blood pressure and reduce the risk of net and thrombosis. The review will explore the possible role of the angiotensin system in the formation of NETs in severe COVID-19.
Collapse
|
26
|
Kastenhuber ER, Mercadante M, Nilsson-Payant B, Johnson JL, Jaimes JA, Muecksch F, Weisblum Y, Bram Y, Whittaker GR, tenOever BR, Schwartz RE, Chandar V, Cantley L. Coagulation factors directly cleave SARS-CoV-2 spike and enhance viral entry. eLife 2022; 11:77444. [PMID: 35294338 PMCID: PMC8942469 DOI: 10.7554/elife.77444] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Coagulopathy is a significant aspect of morbidity in COVID-19 patients. The clotting cascade is propagated by a series of proteases, including factor Xa and thrombin. While certain host proteases, including TMPRSS2 and furin, are known to be important for cleavage activation of SARS-CoV-2 spike to promote viral entry in the respiratory tract, other proteases may also contribute. Using biochemical and cell-based assays, we demonstrate that factor Xa and thrombin can also directly cleave SARS-CoV-2 spike, enhancing infection at the stage of viral entry. Coagulation factors increased SARS-CoV-2 infection in human lung organoids. A drug-repurposing screen identified a subset of protease inhibitors that promiscuously inhibited spike cleavage by both transmembrane serine proteases and coagulation factors. The mechanism of the protease inhibitors nafamostat and camostat may extend beyond inhibition of TMPRSS2 to coagulation-induced spike cleavage. Anticoagulation is critical in the management of COVID-19, and early intervention could provide collateral benefit by suppressing SARS-CoV-2 viral entry. We propose a model of positive feedback whereby infection-induced hypercoagulation exacerbates SARS-CoV-2 infectivity.
Collapse
Affiliation(s)
| | - Marisa Mercadante
- Department of Medicine, Weill Cornell Medical College, New York, United States
| | - Benjamin Nilsson-Payant
- Institute of Experimental Virology, TWINCORE Zentrum für Experimentelle und Klinische Infektionsforschung GmbH, Hannover, Germany
| | - Jared L Johnson
- Department of Medicine, Weill Cornell Medical College, New York, United States
| | - Javier A Jaimes
- Department of Microbiology and Immunology, Cornell University, Ithaca, United States
| | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller University, New York, United States
| | - Yiska Weisblum
- Laboratory of Retrovirology, The Rockefeller University, New York, United States
| | - Yaron Bram
- Department of Medicine, Weill Cornell Medicine, New York, United States
| | - Gary R Whittaker
- Department of Microbiology and Immunology, Cornell University, Ithaca, United States
| | - Benjamin R tenOever
- Department of Microbiology, New York University Langone Medical Center, New York, United States
| | - Robert E Schwartz
- Department of Medicine, Weill Cornell Medicine, New York, United States
| | - Vasuretha Chandar
- Department of Medicine, Weill Cornell Medicine, New York, United States
| | - Lewis Cantley
- Department of Medicine, Weill Cornell Medical College, New York, United States
| |
Collapse
|
27
|
Othman H, Messaoud HB, Khamessi O, Ben-Mabrouk H, Ghedira K, Bharuthram A, Treurnicht F, Achilonu I, Sayed Y, Srairi-Abid N. SARS-CoV-2 Spike Protein Unlikely to Bind to Integrins via the Arg-Gly-Asp (RGD) Motif of the Receptor Binding Domain: Evidence From Structural Analysis and Microscale Accelerated Molecular Dynamics. Front Mol Biosci 2022; 9:834857. [PMID: 35237662 PMCID: PMC8883519 DOI: 10.3389/fmolb.2022.834857] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
The Receptor Binding Domain (RBD) of SARS-CoV-2 virus harbors a sequence of Arg-Gly-Asp tripeptide named RGD motif, which has also been identified in extracellular matrix proteins that bind integrins as well as other disintegrins and viruses. Accordingly, integrins have been proposed as host receptors for SARS-CoV-2. However, given that the microenvironment of the RGD motif imposes a structural hindrance to the protein-protein association, the validity of this hypothesis is still uncertain. Here, we used normal mode analysis, accelerated molecular dynamics microscale simulation, and protein-protein docking to investigate the putative role of RGD motif of SARS-CoV-2 RBD for interacting with integrins. We found, that neither RGD motif nor its microenvironment showed any significant conformational shift in the RBD structure. Highly populated clusters of RBD showed no capability to interact with the RGD binding site in integrins. The free energy landscape revealed that the RGD conformation within RBD could not acquire an optimal geometry to allow the interaction with integrins. In light of these results, and in the event where integrins are confirmed to be host receptors for SARS-CoV-2, we suggest a possible involvement of other residues to stabilize the interaction.
Collapse
Affiliation(s)
- Houcemeddine Othman
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Haifa Ben Messaoud
- National Gene Bank of Tunisia, Boulevard du Leader Yesser Arafet, Tunis, Tunisia
| | - Oussema Khamessi
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT08 Venins et Biomolecules Therapeutiques, Tunis, Tunisie
| | - Hazem Ben-Mabrouk
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (BIMS), Institut Pasteur de Tunis (IPT), University of Tunis El Manar, Tunis, Tunisia
| | - Avani Bharuthram
- Department of Virology, National Health Laboratory Services and the School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Florette Treurnicht
- Department of Virology, National Health Laboratory Services and the School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Ikechukwu Achilonu
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of Witwatersrand, Johannesburg, South Africa
| | - Yasien Sayed
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of Witwatersrand, Johannesburg, South Africa
| | - Najet Srairi-Abid
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
28
|
Martín M, Brunello FG, Modenutti CP, Nicola JP, Marti MA. MotSASi: Functional short linear motifs (SLiMs) prediction based on genomic single nucleotide variants and structural data. Biochimie 2022; 197:59-73. [DOI: 10.1016/j.biochi.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/17/2022] [Accepted: 02/02/2022] [Indexed: 11/28/2022]
|
29
|
Yang B, Jia Y, Meng Y, Xue Y, Liu K, Li Y, Liu S, Li X, Cui K, Shang L, Cheng T, Zhang Z, Hou Y, Yang X, Yan H, Duan L, Tong Z, Wu C, Liu Z, Gao S, Zhuo S, Huang W, Gao GF, Qi J, Shang G. SNX27 suppresses SARS-CoV-2 infection by inhibiting viral lysosome/late endosome entry. Proc Natl Acad Sci U S A 2022; 119:e2117576119. [PMID: 35022217 PMCID: PMC8794821 DOI: 10.1073/pnas.2117576119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/08/2021] [Indexed: 12/28/2022] Open
Abstract
After binding to its cell surface receptor angiotensin converting enzyme 2 (ACE2), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the host cell through directly fusing with plasma membrane (cell surface pathway) or undergoing endocytosis traveling to lysosome/late endosome for membrane fusion (endocytic pathway). However, the endocytic entry regulation by host cell remains elusive. Recent studies show ACE2 possesses a type I PDZ binding motif (PBM) through which it could interact with a PDZ domain-containing protein such as sorting nexin 27 (SNX27). In this study, we determined the ACE2-PBM/SNX27-PDZ complex structure, and, through a series of functional analyses, we found SNX27 plays an important role in regulating the homeostasis of ACE2 receptor. More importantly, we demonstrated SNX27, together with retromer complex (the core component of the endosomal protein sorting machinery), prevents ACE2/virus complex from entering lysosome/late endosome, resulting in decreased viral entry in cells where the endocytic pathway dominates. The ACE2/virus retrieval mediated by SNX27-retromer could be considered as a countermeasure against invasion of ACE2 receptor-using SARS coronaviruses.
Collapse
Affiliation(s)
- Bo Yang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
- Shanxi Provincial Key Laboratory for Major Infectious Disease Response, Taiyuan 030012, China
| | - Yuanyuan Jia
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Yumin Meng
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Xue
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Kefang Liu
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Li
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shichao Liu
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Xiaoxiong Li
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Kaige Cui
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Lina Shang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Tianyou Cheng
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Zhichao Zhang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Yingxiang Hou
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Xiaozhu Yang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Hong Yan
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Liqiang Duan
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Zhou Tong
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Changxin Wu
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Zhida Liu
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Shan Gao
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Shu Zhuo
- Signet Therapeutics Inc, Shenzhen 518000, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing 102629, China
| | - George Fu Gao
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China;
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxun Qi
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Guijun Shang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China;
- Shanxi Provincial Key Laboratory for Major Infectious Disease Response, Taiyuan 030012, China
| |
Collapse
|
30
|
Kumar M, Michael S, Alvarado-Valverde J, Mészáros B, Sámano‐Sánchez H, Zeke A, Dobson L, Lazar T, Örd M, Nagpal A, Farahi N, Käser M, Kraleti R, Davey N, Pancsa R, Chemes L, Gibson T. The Eukaryotic Linear Motif resource: 2022 release. Nucleic Acids Res 2022; 50:D497-D508. [PMID: 34718738 PMCID: PMC8728146 DOI: 10.1093/nar/gkab975] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/27/2021] [Indexed: 02/03/2023] Open
Abstract
Almost twenty years after its initial release, the Eukaryotic Linear Motif (ELM) resource remains an invaluable source of information for the study of motif-mediated protein-protein interactions. ELM provides a comprehensive, regularly updated and well-organised repository of manually curated, experimentally validated short linear motifs (SLiMs). An increasing number of SLiM-mediated interactions are discovered each year and keeping the resource up-to-date continues to be a great challenge. In the current update, 30 novel motif classes have been added and five existing classes have undergone major revisions. The update includes 411 new motif instances mostly focused on cell-cycle regulation, control of the actin cytoskeleton, membrane remodelling and vesicle trafficking pathways, liquid-liquid phase separation and integrin signalling. Many of the newly annotated motif-mediated interactions are targets of pathogenic motif mimicry by viral, bacterial or eukaryotic pathogens, providing invaluable insights into the molecular mechanisms underlying infectious diseases. The current ELM release includes 317 motif classes incorporating 3934 individual motif instances manually curated from 3867 scientific publications. ELM is available at: http://elm.eu.org.
Collapse
Affiliation(s)
- Manjeet Kumar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Sushama Michael
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Jesús Alvarado-Valverde
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Bálint Mészáros
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Hugo Sámano‐Sánchez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, China
- Biomedical Sciences, Edinburgh Medical School, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - András Zeke
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Laszlo Dobson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Tamas Lazar
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Mihkel Örd
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Rd, Chelsea, London SW3 6JB, UK
| | - Anurag Nagpal
- Department of Biological Sciences, BITS Pilani, K. K. Birla Goa campus, Zuarinagar, Goa 403726, India
| | - Nazanin Farahi
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Melanie Käser
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Heidelberg, Germany
| | - Ramya Kraleti
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Justus Liebig University Giessen, Ludwigstraße 23, 35390 Gießen, Germany
| | - Norman E Davey
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Rd, Chelsea, London SW3 6JB, UK
| | - Rita Pancsa
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Lucía B Chemes
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde”, IIB-UNSAM, IIBIO-CONICET, Universidad Nacional de San Martín, Av. 25 de Mayo y Francia, CP1650 San Martín, Buenos Aires, Argentina
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| |
Collapse
|
31
|
Gahmberg CG, Grönholm M. How integrin phosphorylations regulate cell adhesion and signaling. Trends Biochem Sci 2021; 47:265-278. [PMID: 34872819 PMCID: PMC8642147 DOI: 10.1016/j.tibs.2021.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022]
Abstract
Cell adhesion is essential for the formation of organs, cellular migration, and interaction with target cells and the extracellular matrix. Integrins are large protein α/β-chain heterodimers and form a major family of cell adhesion molecules. Recent research has dramatically increased our knowledge of how integrin phosphorylations regulate integrin activity. Phosphorylations determine the signaling complexes formed on the cytoplasmic tails, regulating downstream signaling. α-Chain phosphorylation is necessary for inducing β-chain phosphorylation in LFA-1, and the crosstalk from one integrin to another activating or inactivating its function is in part mediated by phosphorylation of β-chains. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus receptor angiotensin-converting enzyme 2 (ACE2) and possible integrin coreceptors may crosstalk and induce a phosphorylation switch and autophagy.
Collapse
Affiliation(s)
- Carl G Gahmberg
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Viikinkaari 9 C, 00014 Helsinki, Finland.
| | - Mikaela Grönholm
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Viikinkaari 9 C, 00014 Helsinki, Finland; Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00014 Helsinki, Finland
| |
Collapse
|
32
|
Dynamic, but Not Necessarily Disordered, Human-Virus Interactions Mediated through SLiMs in Viral Proteins. Viruses 2021; 13:v13122369. [PMID: 34960638 PMCID: PMC8703344 DOI: 10.3390/v13122369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
Most viruses have small genomes that encode proteins needed to perform essential enzymatic functions. Across virus families, primary enzyme functions are under functional constraint; however, secondary functions mediated by exposed protein surfaces that promote interactions with the host proteins may be less constrained. Viruses often form transient interactions with host proteins through conformationally flexible interfaces. Exposed flexible amino acid residues are known to evolve rapidly suggesting that secondary functions may generate diverse interaction potentials between viruses within the same viral family. One mechanism of interaction is viral mimicry through short linear motifs (SLiMs) that act as functional signatures in host proteins. Viral SLiMs display specific patterns of adjacent amino acids that resemble their host SLiMs and may occur by chance numerous times in viral proteins due to mutational and selective processes. Through mimicry of SLiMs in the host cell proteome, viruses can interfere with the protein interaction network of the host and utilize the host-cell machinery to their benefit. The overlap between rapidly evolving protein regions and the location of functionally critical SLiMs suggest that these motifs and their functional potential may be rapidly rewired causing variation in pathogenicity, infectivity, and virulence of related viruses. The following review provides an overview of known viral SLiMs with select examples of their role in the life cycle of a virus, and a discussion of the structural properties of experimentally validated SLiMs highlighting that a large portion of known viral SLiMs are devoid of predicted intrinsic disorder based on the viral SLiMs from the ELM database.
Collapse
|
33
|
Caillet-Saguy C, Wolff N. PDZ-Containing Proteins Targeted by the ACE2 Receptor. Viruses 2021; 13:2281. [PMID: 34835087 PMCID: PMC8624105 DOI: 10.3390/v13112281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/28/2022] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a main receptor for SARS-CoV-2 entry to the host cell. Indeed, the first step in viral entry is the binding of the viral trimeric spike (S) protein to ACE2. Abundantly present in human epithelial cells of many organs, ACE2 is also expressed in the human brain. ACE2 is a type I membrane protein with an extracellular N-terminal peptidase domain and a C-terminal collectrin-like domain that ends with a single transmembrane helix and an intracellular 44-residue segment. This C-terminal segment contains a PDZ-binding motif (PBM) targeting protein-interacting domains called PSD-95/Dlg/ZO-1 (PDZ). Here, we identified the human PDZ specificity profile of the ACE2 PBM using the high-throughput holdup assay and measuring the binding intensities of the PBM of ACE2 against the full human PDZome. We discovered 14 human PDZ binders of ACE2 showing significant binding with dissociation constants' values ranging from 3 to 81 μM. NHERF, SHANK, and SNX27 proteins found in this study are involved in protein trafficking. The PDZ/PBM interactions with ACE2 could play a role in ACE2 internalization and recycling that could be of benefit for the virus entry. Interestingly, most of the ACE2 partners we identified are expressed in neuronal cells, such as SHANK and MAST families, and modifications of the interactions between ACE2 and these neuronal proteins may be involved in the neurological symptoms of COVID-19.
Collapse
Affiliation(s)
- Célia Caillet-Saguy
- Unité Récepteurs-Canaux, Institut Pasteur, UMR CNRS 3571, 75015 Paris, France
| | - Nicolas Wolff
- Unité Récepteurs-Canaux, Institut Pasteur, UMR CNRS 3571, 75015 Paris, France
| |
Collapse
|
34
|
Dobson L, Tusnády GE. MemDis: Predicting Disordered Regions in Transmembrane Proteins. Int J Mol Sci 2021; 22:12270. [PMID: 34830151 PMCID: PMC8623522 DOI: 10.3390/ijms222212270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Transmembrane proteins (TMPs) play important roles in cells, ranging from transport processes and cell adhesion to communication. Many of these functions are mediated by intrinsically disordered regions (IDRs), flexible protein segments without a well-defined structure. Although a variety of prediction methods are available for predicting IDRs, their accuracy is very limited on TMPs due to their special physico-chemical properties. We prepared a dataset containing membrane proteins exclusively, using X-ray crystallography data. MemDis is a novel prediction method, utilizing convolutional neural network and long short-term memory networks for predicting disordered regions in TMPs. In addition to attributes commonly used in IDR predictors, we defined several TMP specific features to enhance the accuracy of our method further. MemDis achieved the highest prediction accuracy on TMP-specific dataset among other popular IDR prediction methods.
Collapse
Affiliation(s)
| | - Gábor E. Tusnády
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary;
| |
Collapse
|
35
|
The Emerging Roles of Autophagy in Human Diseases. Biomedicines 2021; 9:biomedicines9111651. [PMID: 34829881 PMCID: PMC8615641 DOI: 10.3390/biomedicines9111651] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy, a process of cellular self-digestion, delivers intracellular components including superfluous and dysfunctional proteins and organelles to the lysosome for degradation and recycling and is important to maintain cellular homeostasis. In recent decades, autophagy has been found to help fight against a variety of human diseases, but, at the same time, autophagy can also promote the procession of certain pathologies, which makes the connection between autophagy and diseases complex but interesting. In this review, we summarize the advances in understanding the roles of autophagy in human diseases and the therapeutic methods targeting autophagy and discuss some of the remaining questions in this field, focusing on cancer, neurodegenerative diseases, infectious diseases and metabolic disorders.
Collapse
|
36
|
Amruta N, Engler-Chiurazzi EB, Murray-Brown IC, Gressett TE, Biose IJ, Chastain WH, Befeler JB, Bix G. In Vivo protection from SARS-CoV-2 infection by ATN-161 in k18-hACE2 transgenic mice. Life Sci 2021; 284:119881. [PMID: 34389403 PMCID: PMC8352850 DOI: 10.1016/j.lfs.2021.119881] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/01/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an infectious disease that has spread worldwide. Current treatments are limited in both availability and efficacy, such that improving our understanding of the factors that facilitate infection is urgently needed to more effectively treat infected individuals and to curb the pandemic. We and others have previously demonstrated the significance of interactions between the SARS-CoV-2 spike protein, integrin α5β1, and human ACE2 to facilitate viral entry into host cells in vitro. We previously found that inhibition of integrin α5β1 by the clinically validated small peptide ATN-161 inhibits these spike protein interactions and cell infection in vitro. In continuation with our previous findings, here we have further evaluated the therapeutic potential of ATN-161 on SARS-CoV-2 infection in k18-hACE2 transgenic (SARS-CoV-2 susceptible) mice in vivo. We discovered that treatment with single or repeated intravenous doses of ATN-161 (1 mg/kg) within 48 h after intranasal inoculation with SARS-CoV-2 lead to a reduction of lung viral load, viral immunofluorescence, and improved lung histology in a majority of mice 72 h post-infection. Furthermore, ATN-161 reduced SARS-CoV-2-induced increased expression of lung integrin α5 and αv (an α5-related integrin that has also been implicated in SARS-CoV-2 interactions) as well as the C-X-C motif chemokine ligand 10 (Cxcl10), further supporting the potential involvement of these integrins, and the anti-inflammatory potential of ATN-161, respectively, in SARS-CoV-2 infection. To the best of our knowledge, this is the first study demonstrating the potential therapeutic efficacy of targeting integrin α5β1 in SARS-CoV-2 infection in vivo and supports the development of ATN-161 as a novel SARS-CoV-2 therapy.
Collapse
Affiliation(s)
- Narayanappa Amruta
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Elizabeth B Engler-Chiurazzi
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA; Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Isabel C Murray-Brown
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Timothy E Gressett
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ifechukwude J Biose
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wesley H Chastain
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jaime B Befeler
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Gregory Bix
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA; Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70122, USA.
| |
Collapse
|
37
|
Dynamics of urinary and respiratory shedding of Severe acute respiratory syndrome virus 2 (SARS-CoV-2) RNA excludes urine as a relevant source of viral transmission. Infection 2021; 50:635-642. [PMID: 34716901 PMCID: PMC8556791 DOI: 10.1007/s15010-021-01724-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/17/2021] [Indexed: 10/27/2022]
Abstract
PURPOSE To investigate the expression of the receptor protein ACE-2 alongside the urinary tract, urinary shedding and urinary stability of SARS-CoV-2 RNA. METHODS Immunohistochemical staining was performed on tissue from urological surgery of 10 patients. Further, patients treated for coronavirus disease (COVID-19) at specialized care-units of a university hospital were assessed for detection of SARS-CoV-2 RNA in urinary samples via PCR, disease severity (WHO score), inflammatory response of patients. Finally, the stability of SARS-CoV-2 RNA in urine was analyzed. RESULTS High ACE-2 expression (3/3) was observed in the tubules of the kidney and prostate glands, moderate expression in urothelial cells of the bladder (0-2/3) and no expression in kidney glomeruli, muscularis of the bladder and stroma of the prostate (0/3). SARS-CoV-2 RNA was detected in 5/199 urine samples from 64 patients. Viral RNA was detected in the first urinary sample of sequential samples. Viral RNA load from other specimen as nasopharyngeal swabs (NPS) or endotracheal aspirates revealed higher levels than from urine. Detection of SARS-CoV-2 RNA in urine was not associated with impaired WHO score (median 5, range 3-8 vs median 4, range 1-8, p = 0.314), peak white blood cell count (median 24.1 × 1000/ml, range 5.19-48.1 versus median 11.9 × 1000/ml, range 2.9-60.3, p = 0.307), peak CRP (median 20.7 mg/dl, 4.2-40.2 versus median 11.9 mg/dl, range 0.1-51.9, p = 0.316) or peak IL-6 levels (median: 1442 ng/ml, range 26.7-3918 versus median 140 ng/ml, range 3.0-11,041, p = 0.099). SARS-CoV-2 RNA was stable under different storage conditions and after freeze-thaw cycles. CONCLUSIONS SARS-CoV-2 RNA in the urine of COVID-19 patients occurs infrequently. The viral RNA load and dynamics of SARS-CoV-2 RNA shedding suggest no relevant route of transmission through the urinary tract.
Collapse
|
38
|
Simons P, Rinaldi DA, Bondu V, Kell AM, Bradfute S, Lidke DS, Buranda T. Integrin activation is an essential component of SARS-CoV-2 infection. Sci Rep 2021; 11:20398. [PMID: 34650161 PMCID: PMC8516859 DOI: 10.1038/s41598-021-99893-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2 infection depends on binding its spike (S) protein to angiotensin-converting enzyme 2 (ACE2). The S protein expresses an RGD motif, suggesting that integrins may be co-receptors. Here, we UV-inactivated SARS-CoV-2 and fluorescently labeled the envelope membrane with octadecyl rhodamine B (R18) to explore the role of integrin activation in mediating cell entry and productive infection. We used flow cytometry and confocal microscopy to show that SARS-CoV-2R18 particles engage basal-state integrins. Furthermore, we demonstrate that Mn2+, which induces integrin extension, enhances cell entry of SARS-CoV-2R18. We also show that one class of integrin antagonist, which binds to the αI MIDAS site and stabilizes the inactive, closed conformation, selectively inhibits the engagement of SARS-CoV-2R18 with basal state integrins, but is ineffective against Mn2+-activated integrins. RGD-integrin antagonists inhibited SARS-CoV-2R18 binding regardless of integrin activation status. Integrins transmit signals bidirectionally: 'inside-out' signaling primes the ligand-binding function of integrins via a talin-dependent mechanism, and 'outside-in' signaling occurs downstream of integrin binding to macromolecular ligands. Outside-in signaling is mediated by Gα13. Using cell-permeable peptide inhibitors of talin and Gα13 binding to the cytoplasmic tail of an integrin's β subunit, we demonstrate that talin-mediated signaling is essential for productive infection.
Collapse
Affiliation(s)
- Peter Simons
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Derek A Rinaldi
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Virginie Bondu
- Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Alison M Kell
- Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
- Center for Infectious Diseases and Immunity, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Steven Bradfute
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
- Center for Infectious Diseases and Immunity, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Diane S Lidke
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Tione Buranda
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA.
- Center for Infectious Diseases and Immunity, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA.
| |
Collapse
|
39
|
Knyazev E, Nersisyan S, Tonevitsky A. Endocytosis and Transcytosis of SARS-CoV-2 Across the Intestinal Epithelium and Other Tissue Barriers. Front Immunol 2021; 12:636966. [PMID: 34557180 PMCID: PMC8452982 DOI: 10.3389/fimmu.2021.636966] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 08/20/2021] [Indexed: 12/14/2022] Open
Abstract
Since 2003, the world has been confronted with three new betacoronaviruses that cause human respiratory infections: SARS-CoV, which causes severe acute respiratory syndrome (SARS), MERS-CoV, which causes Middle East respiratory syndrome (MERS), and SARS-CoV-2, which causes Coronavirus Disease 2019 (COVID-19). The mechanisms of coronavirus transmission and dissemination in the human body determine the diagnostic and therapeutic strategies. An important problem is the possibility that viral particles overcome tissue barriers such as the intestine, respiratory tract, blood-brain barrier, and placenta. In this work, we will 1) consider the issue of endocytosis and the possibility of transcytosis and paracellular trafficking of coronaviruses across tissue barriers with an emphasis on the intestinal epithelium; 2) discuss the possibility of antibody-mediated transcytosis of opsonized viruses due to complexes of immunoglobulins with their receptors; 3) assess the possibility of the virus transfer into extracellular vesicles during intracellular transport; and 4) describe the clinical significance of these processes. Models of the intestinal epithelium and other barrier tissues for in vitro transcytosis studies will also be briefly characterized.
Collapse
Affiliation(s)
- Evgeny Knyazev
- Laboratory of Microfluidic Technologies for Biomedicine, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics (HSE), Moscow, Russia
| | - Stepan Nersisyan
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics (HSE), Moscow, Russia
| | - Alexander Tonevitsky
- Laboratory of Microfluidic Technologies for Biomedicine, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics (HSE), Moscow, Russia
| |
Collapse
|
40
|
Simons P, Rinaldi DA, Bondu V, Kell AM, Bradfute S, Lidke D, Buranda T. Integrin activation is an essential component of SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34312625 DOI: 10.1101/2021.07.20.453118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cellular entry of coronaviruses depends on binding of the viral spike (S) protein to a specific cellular receptor, the angiotensin-converting enzyme 2 (ACE2). Furthermore, the viral spike protein expresses an RGD motif, suggesting that cell surface integrins may be attachment co-receptors. However, using infectious SARS-CoV-2 requires a biosafety level 3 laboratory (BSL-3), which limits the techniques that can be used to study the mechanism of cell entry. Here, we UV-inactivated SARS-CoV-2 and fluorescently labeled the envelope membrane with octadecyl rhodamine B (R18) to explore the role of integrin activation in mediating both cell entry and productive infection. We used flow cytometry and confocal fluorescence microscopy to show that fluorescently labeled SARS-CoV-2 R18 particles engage basal-state integrins. Furthermore, we demonstrate that Mn 2+ , which activates integrins and induces integrin extension, enhances cell binding and entry of SARS-CoV-2 R18 in proportion to the fraction of integrins activated. We also show that one class of integrin antagonist, which binds to the αI MIDAS site and stabilizes the inactive, closed conformation, selectively inhibits the engagement of SARS-CoV-2 R18 with basal state integrins, but is ineffective against Mn 2+ -activated integrins. At the same time, RGD-integrin antagonists inhibited SARS-CoV-2 R18 binding regardless of integrin activity state. Integrins transmit signals bidirectionally: 'inside-out' signaling primes the ligand binding function of integrins via a talin dependent mechanism and 'outside-in' signaling occurs downstream of integrin binding to macromolecular ligands. Outside-in signaling is mediated by Gα 13 and induces cell spreading, retraction, migration, and proliferation. Using cell-permeable peptide inhibitors of talin, and Gα 13 binding to the cytoplasmic tail of an integrin's β subunit, we further demonstrate that talin-mediated signaling is essential for productive infection by SARS-CoV-2.
Collapse
|
41
|
Cox D. Targeting SARS-CoV-2-Platelet Interactions in COVID-19 and Vaccine-Related Thrombosis. Front Pharmacol 2021; 12:708665. [PMID: 34290613 PMCID: PMC8287727 DOI: 10.3389/fphar.2021.708665] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/24/2021] [Indexed: 01/08/2023] Open
Abstract
It is clear that COVID-19 is more than a pneumonia and is associated with a coagulopathy and multi-organ failure. While the use of anti-coagulants does reduce the incidence of pulmonary emboli, it does not help with survival. This suggests that the coagulopathy is more likely to be platelet-driven rather than thrombin-driven. There is significant evidence to suggest that SARS-CoV-2 virions directly interact with platelets to trigger activation leading to thrombocytopenia and thrombosis. I propose a model of multiple interactions between SARS-CoV-2 and platelets that has many similarities to that with Staphylococcus aureus and Dengue virus. As platelet activation and thrombosis are major factors in poor prognosis, therapeutics that target the platelet-SARS-CoV-2 interaction have potential in treating COVID-19 and other virus infections.
Collapse
Affiliation(s)
- Dermot Cox
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
42
|
Vianello A, Del Turco S, Babboni S, Silvestrini B, Ragusa R, Caselli C, Melani L, Fanucci L, Basta G. The Fight against COVID-19 on the Multi-Protease Front and Surroundings: Could an Early Therapeutic Approach with Repositioning Drugs Prevent the Disease Severity? Biomedicines 2021; 9:710. [PMID: 34201505 PMCID: PMC8301470 DOI: 10.3390/biomedicines9070710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022] Open
Abstract
The interaction between the membrane spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the transmembrane angiotensin-converting enzyme 2 (ACE2) receptor of the human epithelial host cell is the first step of infection, which has a critical role for viral pathogenesis of the current coronavirus disease-2019 (COVID-19) pandemic. Following the binding between S1 subunit and ACE2 receptor, different serine proteases, including TMPRSS2 and furin, trigger and participate in the fusion of the viral envelope with the host cell membrane. On the basis of the high virulence and pathogenicity of SARS-CoV-2, other receptors have been found involved for viral binding and invasiveness of host cells. This review comprehensively discusses the mechanisms underlying the binding of SARS-CoV2 to ACE2 and putative alternative receptors, and the role of potential co-receptors and proteases in the early stages of SARS-CoV-2 infection. Given the short therapeutic time window within which to act to avoid the devastating evolution of the disease, we focused on potential therapeutic treatments-selected mainly among repurposing drugs-able to counteract the invasive front of proteases and mild inflammatory conditions, in order to prevent severe infection. Using existing approved drugs has the advantage of rapidly proceeding to clinical trials, low cost and, consequently, immediate and worldwide availability.
Collapse
Affiliation(s)
- Annamaria Vianello
- Department of Information Engineering, Telemedicine Section, University of Pisa, 56122 Pisa, Italy; (A.V.); (L.F.)
| | - Serena Del Turco
- Council of National Research (CNR), Institute of Clinical Physiology, 56124 Pisa, Italy; (S.B.); (R.R.); (C.C.)
| | - Serena Babboni
- Council of National Research (CNR), Institute of Clinical Physiology, 56124 Pisa, Italy; (S.B.); (R.R.); (C.C.)
| | - Beatrice Silvestrini
- Department of Surgical, Medical, Molecular Pathology, and Critical Area, University of Pisa, 56122 Pisa, Italy;
| | - Rosetta Ragusa
- Council of National Research (CNR), Institute of Clinical Physiology, 56124 Pisa, Italy; (S.B.); (R.R.); (C.C.)
| | - Chiara Caselli
- Council of National Research (CNR), Institute of Clinical Physiology, 56124 Pisa, Italy; (S.B.); (R.R.); (C.C.)
| | - Luca Melani
- Department of Territorial Medicine, ASL Toscana Nord-Ovest, 56121 Pisa, Italy;
| | - Luca Fanucci
- Department of Information Engineering, Telemedicine Section, University of Pisa, 56122 Pisa, Italy; (A.V.); (L.F.)
| | - Giuseppina Basta
- Council of National Research (CNR), Institute of Clinical Physiology, 56124 Pisa, Italy; (S.B.); (R.R.); (C.C.)
| |
Collapse
|
43
|
Lam SD, Ashford P, Díaz-Sánchez S, Villar M, Gortázar C, de la Fuente J, Orengo C. Arthropod Ectoparasites Have Potential to Bind SARS-CoV-2 via ACE. Viruses 2021; 13:v13040708. [PMID: 33921873 PMCID: PMC8073597 DOI: 10.3390/v13040708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
Coronavirus-like organisms have been previously identified in Arthropod ectoparasites (such as ticks and unfed cat flea). Yet, the question regarding the possible role of these arthropods as SARS-CoV-2 passive/biological transmission vectors is still poorly explored. In this study, we performed in silico structural and binding energy calculations to assess the risks associated with possible ectoparasite transmission. We found sufficient similarity between ectoparasite ACE and human ACE2 protein sequences to build good quality 3D-models of the SARS-CoV-2 Spike:ACE complex to assess the impacts of ectoparasite mutations on complex stability. For several species (e.g., water flea, deer tick, body louse), our analyses showed no significant destabilisation of the SARS-CoV-2 Spike:ACE complex, suggesting these species would bind the viral Spike protein. Our structural analyses also provide structural rationale for interactions between the viral Spike and the ectoparasite ACE proteins. Although we do not have experimental evidence of infection in these ectoparasites, the predicted stability of the complex suggests this is possible, raising concerns of a possible role in passive transmission of the virus to their human hosts.
Collapse
Affiliation(s)
- Su Datt Lam
- Institute of Structural and Molecular Biology, UCL, Darwin Building, Gower Street, London WC1E 6BT, UK;
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Correspondence: (S.D.L.); (J.d.l.F.); (C.O.)
| | - Paul Ashford
- Institute of Structural and Molecular Biology, UCL, Darwin Building, Gower Street, London WC1E 6BT, UK;
| | - Sandra Díaz-Sánchez
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (S.D.-S.); (M.V.); (C.G.)
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (S.D.-S.); (M.V.); (C.G.)
- Regional Centre for Biomedical Research (CRIB), Biochemistry Section, Faculty of Science and Chemical Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Christian Gortázar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (S.D.-S.); (M.V.); (C.G.)
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (S.D.-S.); (M.V.); (C.G.)
- Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA
- Correspondence: (S.D.L.); (J.d.l.F.); (C.O.)
| | - Christine Orengo
- Institute of Structural and Molecular Biology, UCL, Darwin Building, Gower Street, London WC1E 6BT, UK;
- Correspondence: (S.D.L.); (J.d.l.F.); (C.O.)
| |
Collapse
|
44
|
Gruca A, Ziemska-Legiecka J, Jarnot P, Sarnowska E, Sarnowski TJ, Grynberg M. Common low complexity regions for SARS-CoV-2 and human proteomes as potential multidirectional risk factor in vaccine development. BMC Bioinformatics 2021; 22:182. [PMID: 33832440 PMCID: PMC8027979 DOI: 10.1186/s12859-021-04017-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The rapid spread of the COVID-19 demands immediate response from the scientific communities. Appropriate countermeasures mean thoughtful and educated choice of viral targets (epitopes). There are several articles that discuss such choices in the SARS-CoV-2 proteome, other focus on phylogenetic traits and history of the Coronaviridae genome/proteome. However none consider viral protein low complexity regions (LCRs). Recently we created the first methods that are able to compare such fragments. RESULTS We show that five low complexity regions (LCRs) in three proteins (nsp3, S and N) encoded by the SARS-CoV-2 genome are highly similar to regions from human proteome. As many as 21 predicted T-cell epitopes and 27 predicted B-cell epitopes overlap with the five SARS-CoV-2 LCRs similar to human proteins. Interestingly, replication proteins encoded in the central part of viral RNA are devoid of LCRs. CONCLUSIONS Similarity of SARS-CoV-2 LCRs to human proteins may have implications on the ability of the virus to counteract immune defenses. The vaccine targeted LCRs may potentially be ineffective or alternatively lead to autoimmune diseases development. These findings are crucial to the process of selection of new epitopes for drugs or vaccines which should omit such regions.
Collapse
Affiliation(s)
- Aleksandra Gruca
- Department of Computer Networks and Systems, Silesian University of Technology, Gliwice, Poland
| | | | - Patryk Jarnot
- Department of Computer Networks and Systems, Silesian University of Technology, Gliwice, Poland
| | - Elzbieta Sarnowska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Tomasz J Sarnowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
45
|
Waman VP, Sen N, Varadi M, Daina A, Wodak SJ, Zoete V, Velankar S, Orengo C. The impact of structural bioinformatics tools and resources on SARS-CoV-2 research and therapeutic strategies. Brief Bioinform 2021; 22:742-768. [PMID: 33348379 PMCID: PMC7799268 DOI: 10.1093/bib/bbaa362] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 01/18/2023] Open
Abstract
SARS-CoV-2 is the causative agent of COVID-19, the ongoing global pandemic. It has posed a worldwide challenge to human health as no effective treatment is currently available to combat the disease. Its severity has led to unprecedented collaborative initiatives for therapeutic solutions against COVID-19. Studies resorting to structure-based drug design for COVID-19 are plethoric and show good promise. Structural biology provides key insights into 3D structures, critical residues/mutations in SARS-CoV-2 proteins, implicated in infectivity, molecular recognition and susceptibility to a broad range of host species. The detailed understanding of viral proteins and their complexes with host receptors and candidate epitope/lead compounds is the key to developing a structure-guided therapeutic design. Since the discovery of SARS-CoV-2, several structures of its proteins have been determined experimentally at an unprecedented speed and deposited in the Protein Data Bank. Further, specialized structural bioinformatics tools and resources have been developed for theoretical models, data on protein dynamics from computer simulations, impact of variants/mutations and molecular therapeutics. Here, we provide an overview of ongoing efforts on developing structural bioinformatics tools and resources for COVID-19 research. We also discuss the impact of these resources and structure-based studies, to understand various aspects of SARS-CoV-2 infection and therapeutic development. These include (i) understanding differences between SARS-CoV-2 and SARS-CoV, leading to increased infectivity of SARS-CoV-2, (ii) deciphering key residues in the SARS-CoV-2 involved in receptor-antibody recognition, (iii) analysis of variants in host proteins that affect host susceptibility to infection and (iv) analyses facilitating structure-based drug and vaccine design against SARS-CoV-2.
Collapse
Affiliation(s)
| | | | | | - Antoine Daina
- Molecular Modeling Group at SIB, Swiss Institute of Bioinformatics
| | | | - Vincent Zoete
- Department of Fundamental Oncology at the University of Lausanne and Group leader at SIB
| | | | | |
Collapse
|
46
|
Martínez YA, Guo X, Portales-Pérez DP, Rivera G, Castañeda-Delgado JE, García-Pérez CA, Enciso-Moreno JA, Lara-Ramírez EE. The analysis on the human protein domain targets and host-like interacting motifs for the MERS-CoV and SARS-CoV/CoV-2 infers the molecular mimicry of coronavirus. PLoS One 2021; 16:e0246901. [PMID: 33596252 PMCID: PMC7888644 DOI: 10.1371/journal.pone.0246901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
The MERS-CoV, SARS-CoV, and SARS-CoV-2 are highly pathogenic viruses that can cause severe pneumonic diseases in humans. Unfortunately, there is a non-available effective treatment to combat these viruses. Domain-motif interactions (DMIs) are an essential means by which viruses mimic and hijack the biological processes of host cells. To disentangle how viruses achieve this process can help to develop new rational therapies. Data mining was performed to obtain DMIs stored as regular expressions (regexp) in 3DID and ELM databases. The mined regexp information was mapped on the coronaviruses' proteomes. Most motifs on viral protein that could interact with human proteins are shared across the coronavirus species, indicating that molecular mimicry is a common strategy for coronavirus infection. Enrichment ontology analysis for protein domains showed a shared biological process and molecular function terms related to carbon source utilization and potassium channel regulation. Some of the mapped motifs were nested on B, and T cell epitopes, suggesting that it could be as an alternative way for reverse vaccinology. The information obtained in this study could be used for further theoretic and experimental explorations on coronavirus infection mechanism and development of medicines for treatment.
Collapse
Affiliation(s)
- Yamelie A. Martínez
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
- Laboratorio de Inmunología y Biología Celular y Molecular, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Xianwu Guo
- Laboratorio de Biotecnología Genómica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, México
| | - Diana P. Portales-Pérez
- Laboratorio de Inmunología y Biología Celular y Molecular, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, México
| | - Julio E. Castañeda-Delgado
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
- Cátedras-CONACYT, Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
| | - Carlos A. García-Pérez
- Information and Communication Technology Department (ICT), Complex Systems, Helmholtz Zentrum München, Neuherberg, Germany
| | - José A. Enciso-Moreno
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
| | - Edgar E. Lara-Ramírez
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
| |
Collapse
|
47
|
Kliche J, Kuss H, Ali M, Ivarsson Y. Cytoplasmic short linear motifs in ACE2 and integrin β 3 link SARS-CoV-2 host cell receptors to mediators of endocytosis and autophagy. Sci Signal 2021; 14:14/665/eabf1117. [PMID: 33436498 PMCID: PMC7928716 DOI: 10.1126/scisignal.abf1117] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SARS-CoV-2, the virus that causes COVID-19, enters cells through endocytosis upon binding to the cell surface receptor ACE2 and potentially others, including integrins. Using bioinformatics, Mészáros et al. predicted the presence of short amino acid sequences, called short linear motifs (SLiMs), in the cytoplasmic tails of ACE2 and various integrins that may engage the endocytic and autophagic machinery. Using affinity binding assays, Kliche et al. not only confirmed that many of these predicted SLiMs interacted with target peptides in various components of the endocytosis and autophagy machinery, but also found that these interactions were regulated by the phosphorylation of SLiM-adjacent amino acids. Together, these findings have identified a potential link between autophagy and integrin signaling and could lead to new ways to prevent viral infection. The spike protein of SARS-CoV-2 binds the angiotensin-converting enzyme 2 (ACE2) on the host cell surface and subsequently enters host cells through receptor-mediated endocytosis. Additional cell receptors may be directly or indirectly involved, including integrins. The cytoplasmic tails of ACE2 and integrins contain several predicted short linear motifs (SLiMs) that may facilitate internalization of the virus as well as its subsequent propagation through processes such as autophagy. Here, we measured the binding affinity of predicted interactions between SLiMs in the cytoplasmic tails of ACE2 and integrin β3 with proteins that mediate endocytic trafficking and autophagy. We validated that a class I PDZ-binding motif mediated binding of ACE2 to the scaffolding proteins SNX27, NHERF3, and SHANK, and that a binding site for the clathrin adaptor AP2 μ2 in ACE2 overlaps with a phospho-dependent binding site for the SH2 domains of Src family tyrosine kinases. Furthermore, we validated that an LC3-interacting region (LIR) in integrin β3 bound to the ATG8 domains of the autophagy receptors MAP1LC3 and GABARAP in a manner enhanced by LIR-adjacent phosphorylation. Our results provide molecular links between cell receptors and mediators of endocytosis and autophagy that may facilitate viral entry and propagation.
Collapse
Affiliation(s)
- Johanna Kliche
- Department of Chemistry, BMC, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - Hanna Kuss
- Department of Chemistry, BMC, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden.,WWU Münster, Institute for Evolution and Biodiversity, DE-48149 Münster, Germany
| | - Muhammad Ali
- Department of Chemistry, BMC, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - Ylva Ivarsson
- Department of Chemistry, BMC, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden.
| |
Collapse
|