1
|
Soni M, Tulsian K, Barot P, Vyas VK. Recent Advances in Therapeutic Approaches Against Ebola Virus Infection. RECENT ADVANCES IN ANTI-INFECTIVE DRUG DISCOVERY 2024; 19:276-299. [PMID: 38279760 DOI: 10.2174/0127724344267452231206061944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Ebola virus (EBOV) is a genus of negative-strand RNA viruses belonging to the family Filoviradae that was first described in 1976 in the present-day Democratic Republic of the Congo. It has intermittently affected substantial human populations in West Africa and presents itself as a global health menace due to the high mortality rate of patients, high transmission rate, difficult patient management, and the emergence of complicated autoimmune disease-like conditions post-infection. OBJECTIVE EBOV or other EBOV-like species as a biochemical weapon pose a significant risk; hence, the need to develop both prophylactic and therapeutic medications to combat the virus is unquestionable. METHODS In this review work, we have compiled the literature pertaining to transmission, pathogenesis, immune response, and diagnosis of EBOV infection. We included detailed structural details of EBOV along with all the available therapeutics against EBOV disease. We have also highlighted current developments and recent advances in therapeutic approaches against Ebola virus disease (EVD). DISCUSSION The development of preventive vaccines against the virus is proving to be a successful effort as of now; however, problems concerning logistics, product stability, multi- dosing, and patient tracking are prominent in West Africa. Monoclonal antibodies that target EBOV proteins have also been developed and approved in the clinic; however, no small drug molecules that target these viral proteins have cleared clinical trials. An understanding of clinically approved vaccines and their shortcomings also serves an important purpose for researchers in vaccine design in choosing the right vector, antigen, and particular physicochemical properties that are critical for the vaccine's success against the virus across the world. CONCLUSION Our work brings together a comprehensive review of all available prophylactic and therapeutic medications developed and under development against the EBOV, which will serve as a guide for researchers in pursuing the most promising drug discovery strategies against the EBOV and also explore novel mechanisms of fighting against EBOV infection.
Collapse
Affiliation(s)
- Molisha Soni
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Kartik Tulsian
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Parv Barot
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Vivek Kumar Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| |
Collapse
|
2
|
Liu CH, Hu YT, Wong SH, Lin LT. Therapeutic Strategies against Ebola Virus Infection. Viruses 2022; 14:v14030579. [PMID: 35336986 PMCID: PMC8954160 DOI: 10.3390/v14030579] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/10/2022] Open
Abstract
Since the 2014–2016 epidemic, Ebola virus (EBOV) has spread to several countries and has become a major threat to global health. EBOV is a risk group 4 pathogen, which imposes significant obstacles for the development of countermeasures against the virus. Efforts have been made to develop anti-EBOV immunization and therapeutics, with three vaccines and two antibody-based therapeutics approved in recent years. Nonetheless, the high fatality of Ebola virus disease highlights the need to continuously develop antiviral strategies for the future management of EBOV outbreaks in conjunction with vaccination programs. This review aims to highlight potential EBOV therapeutics and their target(s) of inhibition, serving as a summary of the literature to inform readers of the novel candidates available in the continued search for EBOV antivirals.
Collapse
Affiliation(s)
- Ching-Hsuan Liu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Yee-Tung Hu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Shu Hui Wong
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Correspondence:
| |
Collapse
|
3
|
Bradfute SB. The discovery and development of novel treatment strategies for filoviruses. Expert Opin Drug Discov 2021; 17:139-149. [PMID: 34962451 DOI: 10.1080/17460441.2022.2013800] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Filoviruses are negative-stranded, enveloped RNA viruses that can cause hemorrhagic fever in humans and include Ebola and Marburg viruses. Lethality rates can reach 90% in isolated outbreaks. The 2013-2016 Ebola virus epidemic demonstrated the global threat of filoviruses and hastened development of vaccines and therapeutics. There are six known filoviruses that cause disease in humans, but still few therapeutics are available for treatment. AREAS COVERED This review summarizes identification, testing, and development of therapeutics based on the peer-reviewed scientific literature beginning with the discovery of filoviruses in 1967. Small molecules, antibodies, cytokines, antisense, post-exposure vaccination, and host-targeted therapeutic approaches are discussed. An emphasis is placed on therapeutics that have shown promise in in vivo studies. EXPERT OPINION Two monoclonal antibody regimens are approved for use in humans for one filovirus (Ebola virus), and preclinical nonhuman primate studies suggest that other monoclonal-based therapies are likely to be effective against other filoviruses. Significant progress has been made in small-molecule antivirals and host-targeted approaches. An important consideration is the necessity of pan-filovirus therapeutics via broadly effective small molecules, antibody cocktails, and cross-reactive antibodies. The use of filovirus therapeutics as prophylactic treatment or in chronically infected individuals should be considered.
Collapse
Affiliation(s)
- Steven B Bradfute
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, USA
| |
Collapse
|
4
|
Hargreaves A, Brady C, Mellors J, Tipton T, Carroll MW, Longet S. Filovirus Neutralising Antibodies: Mechanisms of Action and Therapeutic Application. Pathogens 2021; 10:pathogens10091201. [PMID: 34578233 PMCID: PMC8468515 DOI: 10.3390/pathogens10091201] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/02/2022] Open
Abstract
Filoviruses, especially Ebola virus, cause sporadic outbreaks of viral haemorrhagic fever with very high case fatality rates in Africa. The 2013–2016 Ebola epidemic in West Africa provided large survivor cohorts spurring a large number of human studies which showed that specific neutralising antibodies played a key role in protection following a natural Ebola virus infection, as part of the overall humoral response and in conjunction with the cellular adaptive response. This review will discuss the studies in survivors and animal models which described protective neutralising antibody response. Their mechanisms of action will be detailed. Furthermore, the importance of neutralising antibodies in antibody-based therapeutics and in vaccine-induced responses will be explained, as well as the strategies to avoid immune escape from neutralising antibodies. Understanding the neutralising antibody response in the context of filoviruses is crucial to furthering our understanding of virus structure and function, in addition to improving current vaccines & antibody-based therapeutics.
Collapse
Affiliation(s)
- Alexander Hargreaves
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (A.H.); (C.B.); (J.M.); (T.T.); (M.W.C.)
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Caolann Brady
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (A.H.); (C.B.); (J.M.); (T.T.); (M.W.C.)
| | - Jack Mellors
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (A.H.); (C.B.); (J.M.); (T.T.); (M.W.C.)
- National Infection Service, Public Health England, Porton Down, Salisbury SP4 0JG, UK
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7ZX, UK
| | - Tom Tipton
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (A.H.); (C.B.); (J.M.); (T.T.); (M.W.C.)
| | - Miles W. Carroll
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (A.H.); (C.B.); (J.M.); (T.T.); (M.W.C.)
- National Infection Service, Public Health England, Porton Down, Salisbury SP4 0JG, UK
| | - Stephanie Longet
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (A.H.); (C.B.); (J.M.); (T.T.); (M.W.C.)
- Correspondence: ; Tel.: +44-18-6561-7892
| |
Collapse
|
5
|
Nonhuman primate to human immunobridging to infer the protective effect of an Ebola virus vaccine candidate. NPJ Vaccines 2020; 5:112. [PMID: 33335092 PMCID: PMC7747701 DOI: 10.1038/s41541-020-00261-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/13/2020] [Indexed: 01/07/2023] Open
Abstract
It has been proven challenging to conduct traditional efficacy trials for Ebola virus (EBOV) vaccines. In the absence of efficacy data, immunobridging is an approach to infer the likelihood of a vaccine protective effect, by translating vaccine immunogenicity in humans to a protective effect, using the relationship between vaccine immunogenicity and the desired outcome in a suitable animal model. We here propose to infer the protective effect of the Ad26.ZEBOV, MVA-BN-Filo vaccine regimen with an 8-week interval in humans by immunobridging. Immunogenicity and protective efficacy data were obtained for Ad26.ZEBOV and MVA-BN-Filo vaccine regimens using a fully lethal EBOV Kikwit challenge model in cynomolgus monkeys (nonhuman primates [NHP]). The association between EBOV neutralizing antibodies, glycoprotein (GP)-binding antibodies, and GP-reactive T cells and survival in NHP was assessed by logistic regression analysis. Binding antibodies against the EBOV surface GP were identified as the immune parameter with the strongest correlation to survival post EBOV challenge, and used to infer the predicted protective effect of the vaccine in humans using published data from phase I studies. The human vaccine-elicited EBOV GP-binding antibody levels are in a range associated with significant protection against mortality in NHP. Based on this immunobridging analysis, the EBOV GP-specific-binding antibody levels elicited by the Ad26.ZEBOV, MVA-BN-Filo vaccine regimen in humans will likely provide protection against EBOV disease.
Collapse
|
6
|
Adenovirus vectored IFN-α protects mice from lethal challenge of Chikungunya virus infection. PLoS Negl Trop Dis 2020; 14:e0008910. [PMID: 33270642 PMCID: PMC7738163 DOI: 10.1371/journal.pntd.0008910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 12/15/2020] [Accepted: 10/23/2020] [Indexed: 12/21/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne pathogen that is responsible for numerous large and geographical epidemics, causing millions of cases. However, there is no vaccine or therapeutics against CHIKV infection available. Interferon-alpha (IFN-α) has been shown to produce potent antiviral responses during viral infection. Herein we demonstrated the use of an adenovirus-vectored expressed mouse IFN-α (mDEF201) as a prophylactic and therapeutic treatment against CHIKV in vivo. 6-day-old BALB/c mice were pre- or post-treated intranasally with single dose of mDEF201 at 5 x 106 PFU per mouse and challenged with lethal dose of CHIKV. Complete survival protection was observed in mice upon a single dose of mDEF201 administration 1 days prior to virus challenge. Viral load in the serum and multiple organs were significantly reduced upon mDEF201 administration in a dose dependent manner as compare with adenovirus 5 vector placebo set. Histological analysis of the mice tissue revealed that mDEF201 could significantly reduce the tissue morphological abnormities, mainly infiltration of immune cells and muscle fibre necrosis caused by CHIKV infection. In addition, administration of mDEF201 at 6 hours post CHIKV challenge also showed promising inhibitory effect against viral replication and dissemination. In conclusion, single-dose of intranasal administration with mDEF201 as a prophylactic or therapeutic agent within 6 hours post CHIKV infection is highly protective against a lethal challenge of CHIKV in the murine model.
Collapse
|
7
|
Drake GJ, Haycock J, Dastjerdi A, Davies H, Lopez FJ. Use of immunostimulants in the successful treatment of a clinical EEHV1A infection in an Asian elephant (
Elephas maximus
). VETERINARY RECORD CASE REPORTS 2020. [DOI: 10.1136/vetreccr-2020-001158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gabby J Drake
- Veterinary DepartmentChester ZooChesterCheshire West and ChesterUK
| | - Jonathan Haycock
- MVIU VirologyAnimal and Plant Health AgencyAddlestoneSurreyUK
- School of Veterinary MedicineFaculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
| | - Akbar Dastjerdi
- MVIU VirologyAnimal and Plant Health AgencyAddlestoneSurreyUK
| | - Hannah Davies
- MVIU VirologyAnimal and Plant Health AgencyAddlestoneSurreyUK
- School of Veterinary MedicineFaculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
| | - F Javier Lopez
- Veterinary DepartmentChester ZooChesterCheshire West and ChesterUK
| |
Collapse
|
8
|
Jain S, Khaiboullina SF, Baranwal M. Immunological Perspective for Ebola Virus Infection and Various Treatment Measures Taken to Fight the Disease. Pathogens 2020; 9:E850. [PMID: 33080902 PMCID: PMC7603231 DOI: 10.3390/pathogens9100850] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/07/2020] [Accepted: 10/16/2020] [Indexed: 12/19/2022] Open
Abstract
Ebolaviruses, discovered in 1976, belongs to the Filoviridae family, which also includes Marburg and Lloviu viruses. They are negative-stranded RNA viruses with six known species identified to date. Ebola virus (EBOV) is a member of Zaire ebolavirus species and can cause the Ebola virus disease (EVD), an emerging zoonotic disease that results in homeostatic imbalance and multi-organ failure. There are three EBOV outbreaks documented in the last six years resulting in significant morbidity (> 32,000 cases) and mortality (> 13,500 deaths). The potential factors contributing to the high infectivity of this virus include multiple entry mechanisms, susceptibility of the host cells, employment of multiple immune evasion mechanisms and rapid person-to-person transmission. EBOV infection leads to cytokine storm, disseminated intravascular coagulation, host T cell apoptosis as well as cell mediated and humoral immune response. In this review, a concise recap of cell types targeted by EBOV and EVD symptoms followed by detailed run-through of host innate and adaptive immune responses, virus-driven regulation and their combined effects contributing to the disease pathogenesis has been presented. At last, the vaccine and drug development initiatives as well as challenges related to the management of infection have been discussed.
Collapse
Affiliation(s)
- Sahil Jain
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, Punjab, India;
| | - Svetlana F. Khaiboullina
- Department of Microbiology and Immunology, University of Nevada, Reno, NV 89557, USA
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Tatarstan, Russia
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, Punjab, India;
| |
Collapse
|
9
|
Cross RW, Bornholdt ZA, Prasad AN, Geisbert JB, Borisevich V, Agans KN, Deer DJ, Melody K, Fenton KA, Feldmann H, Sprecher A, Zeitlin L, Geisbert TW. Prior vaccination with rVSV-ZEBOV does not interfere with but improves efficacy of postexposure antibody treatment. Nat Commun 2020; 11:3736. [PMID: 32719371 PMCID: PMC7385100 DOI: 10.1038/s41467-020-17446-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/01/2020] [Indexed: 11/09/2022] Open
Abstract
A replication-competent vesicular stomatitis virus vaccine expressing the Ebola virus (EBOV) glycoprotein (GP) (rVSV-ZEBOV) was successfully used during the 2013-16 EBOV epidemic. Additionally, chimeric and human monoclonal antibodies (mAb) against the EBOV GP have shown promise in animals and humans when administered therapeutically. Uncertainty exists regarding the efficacy of postexposure antibody treatments in the event of a known exposure of a recent rVSV-ZEBOV vaccinee. Here, we model a worst-case scenario using rhesus monkeys vaccinated or unvaccinated with the rVSV-ZEBOV vaccine. We demonstrate that animals challenged with a uniformly lethal dose of EBOV one day following vaccination, and then treated with the anti-EBOV GP mAb MIL77 starting 3 days postexposure show no evidence of clinical illness and survive challenge. In contrast, animals receiving only vaccination or only mAb-based therapy become ill, with decreased survival compared to animals vaccinated and subsequently treated with MIL77. These results suggest that rVSV-ZEBOV augments immunotherapy.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Viral/administration & dosage
- Antibodies, Viral/immunology
- Antibodies, Viral/therapeutic use
- Ebola Vaccines/immunology
- Hemorrhagic Fever, Ebola/immunology
- Hemorrhagic Fever, Ebola/pathology
- Hemorrhagic Fever, Ebola/prevention & control
- Hemorrhagic Fever, Ebola/virology
- Humans
- Immunoglobulin G/blood
- Immunoglobulin M/blood
- Kaplan-Meier Estimate
- Macaca mulatta
- Post-Exposure Prophylaxis
- Treatment Outcome
- Vaccination
- Vesicular stomatitis Indiana virus/immunology
- Viral Load/immunology
Collapse
Affiliation(s)
- Robert W Cross
- Galveston National Laboratory, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0610, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0610, USA
| | - Zachary A Bornholdt
- Mapp Biopharmaceutical Inc., 6160 Lusk Blvd Ste C200, San Diego, CA, 92121, USA
| | - Abhishek N Prasad
- Galveston National Laboratory, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0610, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0610, USA
| | - Joan B Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0610, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0610, USA
| | - Viktoriya Borisevich
- Galveston National Laboratory, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0610, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0610, USA
| | - Krystle N Agans
- Galveston National Laboratory, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0610, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0610, USA
| | - Daniel J Deer
- Galveston National Laboratory, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0610, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0610, USA
| | - Kevin Melody
- Galveston National Laboratory, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0610, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0610, USA
| | - Karla A Fenton
- Galveston National Laboratory, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0610, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0610, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, NIAID/NIH, Hamilton, MT, 59840, USA
| | - Armand Sprecher
- Médecins Sans Frontières, Rue Arbre Benit 46, 1050, Brussels, Belgium
| | - Larry Zeitlin
- Mapp Biopharmaceutical Inc., 6160 Lusk Blvd Ste C200, San Diego, CA, 92121, USA
| | - Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0610, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0610, USA.
| |
Collapse
|
10
|
Abstract
Since its discovery in 1976, Ebola virus (EBOV) has caused numerous outbreaks of fatal hemorrhagic disease in Africa. The biggest outbreak on record is the 2013-2016 epidemic in west Africa with almost 30,000 cases and over 11,000 fatalities, devastatingly affecting Guinea, Liberia, and Sierra Leone. The epidemic highlighted the need for licensed drugs or vaccines to quickly combat the disease. While at the beginning of the epidemic no licensed countermeasures were available, several experimental drugs with preclinical efficacy were accelerated into human clinical trials and used to treat patients with Ebola virus disease (EVD) toward the end of the epidemic. In the same manner, vaccines with preclinical efficacy were administered primarily to known contacts of EVD patients on clinical trial protocols using a ring-vaccination strategy. In this review, we describe the pathogenesis of EBOV and summarize the current status of EBOV vaccine development and treatment of EVD.
Collapse
Affiliation(s)
- Wakako Furuyama
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA;
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA;
| |
Collapse
|
11
|
Ebola virus disease: An emerging and re-emerging viral threat. J Autoimmun 2019; 106:102375. [PMID: 31806422 DOI: 10.1016/j.jaut.2019.102375] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022]
Abstract
The genus Ebolavirus from the family Filoviridae is composed of five species including Sudan ebolavirus, Reston ebolavirus, Bundibugyo ebolavirus, Taï Forest ebolavirus, and Ebola virus (previously known as Zaire ebolavirus). These viruses have a large non-segmented, negative-strand RNA of approximately 19 kb that encodes for glycoproteins (i.e., GP, sGP, ssGP), nucleoproteins, virion proteins (i.e., VP 24, 30,40) and an RNA dependent RNA polymerase. These viruses have become a global health concern because of mortality, their rapid dissemination, new outbreaks in West-Africa, and the emergence of a new condition known as "Post-Ebola virus disease syndrome" that resembles inflammatory and autoimmune conditions such as rheumatoid arthritis, systemic lupus erythematosus and spondyloarthritis with uveitis. However, there are many gaps in the understanding of the mechanisms that may induce the development of such autoimmune-like syndromes. Some of these mechanisms may include a high formation of neutrophil extracellular traps, an uncontrolled "cytokine storm", and the possible formation of auto-antibodies. The likely appearance of autoimmune phenomena in Ebola survivors suppose a new challenge in the management and control of this disease and opens a new field of research in a special subgroup of patients. Herein, the molecular biology, pathogenesis, clinical manifestations, and treatment of Ebola virus disease are reviewed and some strategies for control of disease are discussed.
Collapse
|
12
|
van Lieshout LP, Soule G, Sorensen D, Frost KL, He S, Tierney K, Safronetz D, Booth SA, Kobinger GP, Qiu X, Wootton SK. Intramuscular Adeno-Associated Virus-Mediated Expression of Monoclonal Antibodies Provides 100% Protection Against Ebola Virus Infection in Mice. J Infect Dis 2019; 217:916-925. [PMID: 29365142 DOI: 10.1093/infdis/jix644] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/30/2017] [Indexed: 01/14/2023] Open
Abstract
The 2013-2016 West Africa outbreak demonstrated the epidemic potential of Ebola virus and highlighted the need for counter strategies. Monoclonal antibody (mAb)-based therapies hold promise as treatment options for Ebola virus infections. However, production of clinical-grade mAbs is labor intensive, and immunity is short lived. Conversely, adeno-associated virus (AAV)-mediated mAb gene transfer provides the host with a genetic blueprint to manufacture mAbs in vivo, leading to steady release of antibody over many months. Here we demonstrate that AAV-mediated expression of nonneutralizing mAb 5D2 or 7C9 confers 100% protection against mouse-adapted Ebola virus infection, while neutralizing mAb 2G4 was 83% protective. A 2-component cocktail, AAV-2G4/AAV-5D2, provided complete protection when administered 7 days prior to challenge and was partially protective with a 3-day lead time. Finally, AAV-mAb therapies provided sustained protection from challenge 5 months following AAV administration. AAV-mAb may be a viable alternative strategy for vaccination against emerging infectious diseases.
Collapse
Affiliation(s)
| | - Geoff Soule
- Zoonotic Diseases and Special Pathogens Program, Canada
| | - Debra Sorensen
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Kathy L Frost
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Shihua He
- Zoonotic Diseases and Special Pathogens Program, Canada
| | - Kevin Tierney
- Zoonotic Diseases and Special Pathogens Program, Canada
| | - David Safronetz
- Zoonotic Diseases and Special Pathogens Program, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Stephanie A Booth
- Molecular Pathobiology, National Microbiology Laboratory, Public Health Agency of Canada, Canada
| | - Gary P Kobinger
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, Laval University, Québec City, Canada
| | - Xiangguo Qiu
- Zoonotic Diseases and Special Pathogens Program, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
13
|
Abstract
Outbreaks of severe virus infections with the potential to cause global pandemics are increasing. In many instances these outbreaks have been newly emerging (SARS coronavirus), re-emerging (Ebola virus, Zika virus) or zoonotic (avian influenza H5N1) virus infections. In the absence of a targeted vaccine or a pathogen-specific antiviral, broad-spectrum antivirals would function to limit virus spread. Given the direct antiviral effects of type I interferons (IFNs) in inhibiting the replication of both DNA and RNA viruses at different stages of their replicative cycles, and the effects of type I IFNs on activating immune cell populations to clear virus infections, IFNs-α/β present as ideal candidate broad-spectrum antivirals.
Collapse
Affiliation(s)
- Ben X Wang
- Princess Margaret Cancer Center, Tumor Immunotherapy Program, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Eleanor N Fish
- Toronto General Hospital Research Institute, University Health Network, 67 College Street, Toronto, ON M5G 2M1, Canada; Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
14
|
Harms RZ, Borengasser K, Kumar V, Sarvetnick N. Anti-human Interleukin(IL)-4 Clone 8D4-8 Cross-Reacts With Myosin-9 Associated With Apoptotic Cells and Should Not Be Used for Flow Cytometry Applications Querying IL-4 Expression. Front Cell Dev Biol 2019; 7:46. [PMID: 31024909 PMCID: PMC6465524 DOI: 10.3389/fcell.2019.00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/15/2019] [Indexed: 11/17/2022] Open
Abstract
Interleukin(IL)-4 is produced by T cells and other leukocytes and is a critical mediator of monocyte and B cell responses. During routine flow cytometry panel validation for the investigation of intracellular cytokines, we observed unique IL-4 expression patterns associated with the widely available monoclonal antibody 8D4-8. Namely, IL-4 (8D4-8) expression was observed in the absence of cellular activation and enhanced following staurosporine exposure. Mass spectrometry analysis of immunoprecipitates from peripheral blood lymphocytes (PBL) revealed that 8D4-8 cross-reacts with the ubiquitous cytoskeletal protein myosin-9. We confirmed these results by western blotting immunoprecipitates, using immunofluorescence among staurosporine-treated Caco-2 cells, and by surface-labeling PBL for 8D4-8 and myosin-9 and analyzing by flow cytometry. Although previously reported from several independent groups, we found no evidence to support the hypothesis that IL-4 is produced by apoptotic cells. Rather, this appears to have been myosin-9. Our data indicate clone 8D4-8 should not be used in the flow cytometric study of IL-4. Furthermore, our work calls for a reevaluation of previous flow cytometric studies that have used this clone for IL-4 analysis and highlights the importance of validation in antibody-based assays.
Collapse
Affiliation(s)
- Robert Z Harms
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kiana Borengasser
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, NE, United States
| | - Vikas Kumar
- Mass Spectrometry and Proteomics Core Facility, University of Nebraska Medical Center, Omaha, NE, United States
| | - Nora Sarvetnick
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, NE, United States.,Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
15
|
Banadyga L, Schiffman Z, He S, Qiu X. Virus inoculation and treatment regimens for evaluating anti-filovirus monoclonal antibody efficacy in vivo. BIOSAFETY AND HEALTH 2019; 1:6-13. [PMID: 32835206 PMCID: PMC7347303 DOI: 10.1016/j.bsheal.2019.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/07/2019] [Accepted: 02/21/2019] [Indexed: 01/05/2023] Open
Abstract
The development of monoclonal antibodies to treat disease caused by filoviruses, particularly Ebola virus, has risen steeply in recent years thanks to several key studies demonstrating their remarkable therapeutic potential. The increased drive to develop new and better monoclonal antibodies has necessarily seen an increase in animal model efficacy testing, which is critical to the pre-clinical development of any novel countermeasure. Primary and secondary efficacy testing against filoviruses typically makes use of one or more rodent models (mice, guinea pigs, and occasionally hamsters) or the more recently described ferret model, although the exact choice of model depends on the specific filovirus being evaluated. Indeed, no single small animal model exists for all filoviruses, and the use of any given model must consider the nature of that model as well as the nature of the therapeutic and the experimental objectives. Confirmatory evaluation, on the other hand, is performed in nonhuman primates (rhesus or cynomolgus macaques) regardless of the filovirus. In light of the number of different animal models that are currently used in monoclonal antibody efficacy testing, we sought to better understand how these efficacy tests are being performed by numerous different laboratories around the world. To this end, we review the animal models that are being used for antibody efficacy testing against filoviruses, and we highlight the challenge doses and routes of infection that are used. We also describe the various antibody treatment regimens, including antibody dose, route, and schedule of administration, that are used in these model systems. We do not identify any single best model or treatment regimen, and we do not advocate for field-wide protocol standardization. Instead, we hope to provide a comprehensive resource that will facilitate and enhance the continued pre-clinical development of novel monoclonal antibody therapeutics.
Collapse
Affiliation(s)
- Logan Banadyga
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Zachary Schiffman
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Shihua He
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
16
|
Role of Type I Interferons on Filovirus Pathogenesis. Vaccines (Basel) 2019; 7:vaccines7010022. [PMID: 30791589 PMCID: PMC6466283 DOI: 10.3390/vaccines7010022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/06/2019] [Accepted: 02/15/2019] [Indexed: 01/19/2023] Open
Abstract
Filoviruses, such as Ebola and Marburg virus, encode viral proteins with the ability to counteract the type I interferon (IFN-I) response. These IFN-I antagonist proteins are crucial to ensure virus replication, prevent an antiviral state in infected and bystander cells, and impair the ability of antigen-presenting cells to initiate adaptive immune responses. However, in recent years, a number of studies have underscored the conflicting data between in vitro studies and in vivo data obtained in animal models and clinical studies during outbreaks. This review aims to summarize these data and to discuss the relative contributions of IFN-α and IFN-β to filovirus pathogenesis in animal models and humans. Finally, we evaluate the putative utilization of IFN-I in post-exposure therapy and its implications as a biomarker of vaccine efficacy.
Collapse
|
17
|
Go N, Touzeau S, Islam Z, Belloc C, Doeschl-Wilson A. How to prevent viremia rebound? Evidence from a PRRSv data-supported model of immune response. BMC SYSTEMS BIOLOGY 2019; 13:15. [PMID: 30696429 PMCID: PMC6352383 DOI: 10.1186/s12918-018-0666-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 11/21/2018] [Indexed: 01/24/2023]
Abstract
Background Understanding what determines the between-host variability in infection dynamics is a key issue to better control the infection spread. In particular, pathogen clearance is desirable over rebounds for the health of the infected individual and its contact group. In this context, the Porcine Respiratory and Reproductive Syndrome virus (PRRSv) is of particular interest. Numerous studies have shown that pigs similarly infected with this highly ubiquitous virus elicit diverse response profiles. Whilst some manage to clear the virus within a few weeks, others experience prolonged infection with a rebound. Despite much speculation, the underlying mechanisms responsible for this undesirable rebound phenomenon remain unclear. Results We aimed at identifying immune mechanisms that can reproduce and explain the rebound patterns observed in PRRSv infection using a mathematical modelling approach of the within-host dynamics. As diverse mechanisms were found to influence PRRSv infection, we established a model that details the major mechanisms and their regulations at the between-cell scale. We developed an ABC-like optimisation method to fit our model to an extensive set of experimental data, consisting of non-rebounder and rebounder viremia profiles. We compared, between both profiles, the estimated parameter values, the resulting immune dynamics and the efficacies of the underlying immune mechanisms. Exploring the influence of these mechanisms, we showed that rebound was promoted by high apoptosis, high cell infection and low cytolysis by Cytotoxic T Lymphocytes, while increasing neutralisation was very efficient to prevent rebounds. Conclusions Our paper provides an original model of the immune response and an appropriate systematic fitting method, whose interest extends beyond PRRS infection. It gives the first mechanistic explanation for emergence of rebounds during PRRSv infection. Moreover, results suggest that vaccines or genetic selection promoting strong neutralising and cytolytic responses, ideally associated with low apoptotic activity and cell permissiveness, would prevent rebound. Electronic supplementary material The online version of this article (10.1186/s12918-018-0666-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natacha Go
- BIOEPAR, INRA, Oniris, Route de Gachet, CS 40706, Nantes, France. .,BIOCORE, Inria, INRA, CNRS, UPMC Univ Paris 06, Université Côte d'Azur, 2004 route des Lucioles, BP 93, Sophia Antipolis, France. .,Division of Genetics and Genomics, The Roslin Institute, Easter Bush, Midlothian, UK.
| | - Suzanne Touzeau
- BIOCORE, Inria, INRA, CNRS, UPMC Univ Paris 06, Université Côte d'Azur, 2004 route des Lucioles, BP 93, Sophia Antipolis, France.,ISA, INRA, CNRS, Université Côte d'Azur, 400 route des Chappes, BP 167, Sophia Antipolis, France
| | - Zeenath Islam
- Division of Genetics and Genomics, The Roslin Institute, Easter Bush, Midlothian, UK
| | - Catherine Belloc
- BIOEPAR, INRA, Oniris, Route de Gachet, CS 40706, Nantes, France
| | - Andrea Doeschl-Wilson
- Division of Genetics and Genomics, The Roslin Institute, Easter Bush, Midlothian, UK
| |
Collapse
|
18
|
Fukuzawa N, Masuta C, Matsumura T. Rapid transient protein production by the coat protein-deficient cucumber mosaic virus vector: non-packaged CMV system, NoPaCS. PLANT CELL REPORTS 2018; 37:1513-1522. [PMID: 30039464 DOI: 10.1007/s00299-018-2322-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
KEY MESSAGE We developed a non-packaged CMV system (NoPaCS) for CMV-agroinfection with a virus-inescapable transgenic plant platform, enabling rapid, high production of a large-sequence target protein. For rapidly producing high levels of a desirable protein, many plant virus vectors have been developed. However, there is always a concern that such recombinant viruses may escape into the environment. Especially for insect-transmissible viruses, certain measures must be taken. We here developed a new cucumber mosaic virus (CMV) RNA 3-based vector that is not transmitted by aphids because we deleted the coat protein (CP) gene responsible for aphid transmission and replaced it with a foreign gene. Transgenic Nicotiana benthamiana plants expressing CMV RNA 1 (CR1Tg) were found to be the most suitable platform for producing a recombinant protein using the CMV vector. By agroinfiltrating CR1Tg plants with the RNA 2 construct and the CMV vector harboring the green fluorescence protein (GFP) gene instead of the CP gene, we achieved a high yield of GFP (e.g., ~ 750 mg/kg FW) throughout the bacteria-infiltrated tissues at 2-3 days after infiltration. Furthermore, with this CMV-agroinfection system, a large gene such as the β-glucuronidase (GUS) gene can be expressed because the viral RNAs are not necessarily encapsidated for replication. The system is designated "non-packaged CMV system (NoPaCS)".
Collapse
Affiliation(s)
- Noriho Fukuzawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517, Japan
| | - Chikara Masuta
- Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Takeshi Matsumura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517, Japan.
| |
Collapse
|
19
|
Fanunza E, Frau A, Corona A, Tramontano E. Antiviral Agents Against Ebola Virus Infection: Repositioning Old Drugs and Finding Novel Small Molecules. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2018; 51:135-173. [PMID: 32287476 PMCID: PMC7112331 DOI: 10.1016/bs.armc.2018.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Ebola virus (EBOV) causes a deadly hemorrhagic syndrome in humans with mortality rate up to 90%. First reported in Zaire in 1976, EBOV outbreaks showed a fluctuating trend during time and fora long period it was considered a tragic disease confined to the isolated regions of the African continent where the EBOV fear was perpetuated among the poor communities. The extreme severity of the recent 2014-16 EBOV outbreak in terms of fatality rate and rapid spread out of Africa led to the understanding that EBOV is a global health risk and highlights the necessity to find countermeasures against it. In the recent years, several small molecules have been shown to display in vitro and in vivo efficacy against EBOV and some of them have advanced into clinical trials. In addition, also existing drugs have been tested for their anti-EBOV activity and were shown to be promising candidates. However, despite the constant effort addressed to identify anti-EBOV therapeutics, no approved drugs are available against EBOV yet. In this chapter, we describe the main EBOV life cycle steps, providing a detailed picture of the druggable viral and host targets that have been explored so far by different technologies. We then summarize the small molecules, nucleic acid oligomers, and antibody-based therapies reported to have an effect either in in silico, or in biochemical and cell-based assays or in animal models and clinical trials, listing them according to their demonstrated or putative mechanism of action.
Collapse
Affiliation(s)
- Elisa Fanunza
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Aldo Frau
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
- Genetics and Biomedical Research Institute, National Research Council, Monserrato, Italy
| |
Collapse
|
20
|
Johnson TP, Nath A. Neurological syndromes driven by postinfectious processes or unrecognized persistent infections. Curr Opin Neurol 2018; 31:318-324. [PMID: 29547402 PMCID: PMC11391419 DOI: 10.1097/wco.0000000000000553] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW The immune system serves a critical role in protecting the host against various pathogens. However, under circumstances, once triggered by the infectious process, it may be detrimental to the host. This may be as a result of nonspecific immune activation or due to a targeted immune response to a specific host antigen. In this opinion piece, we discuss the underlying mechanisms that lead to such an inflammatory or autoimmune syndrome affecting the nervous system. We examine these hypotheses in the context of recent emerging infections to provide mechanistic insight into the clinical manifestations and rationale for immunomodulatory therapy. RECENT FINDINGS Some pathogens endure longer than previously thought. Persistent infections may continue to drive immune responses resulting in chronic inflammation or development of autoimmune processes, resulting in damage to the nervous system. Patients with genetic susceptibilities in immune regulation may be particularly vulnerable to pathogen driven autoimmune responses. SUMMARY The presence of prolonged pathogens may result in chronic immune stimulations that drives immune-mediated neurologic complications. Understanding the burden and mechanisms of these processes is challenging but important.
Collapse
Affiliation(s)
- Tory P Johnson
- Richard T Johnson Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
21
|
McElroy AK, Mühlberger E, Muñoz-Fontela C. Immune barriers of Ebola virus infection. Curr Opin Virol 2018; 28:152-160. [PMID: 29452995 PMCID: PMC5886007 DOI: 10.1016/j.coviro.2018.01.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 01/10/2023]
Abstract
Since its initial emergence in 1976 in northern Democratic Republic of Congo (DRC), Ebola virus (EBOV) has been a global health concern due to its virulence in humans, the mystery surrounding the identity of its host reservoir and the unpredictable nature of Ebola virus disease (EVD) outbreaks. Early after the first clinical descriptions of a disease resembling a 'septic-shock-like syndrome', with coagulation abnormalities and multi-system organ failure, researchers began to evaluate the role of the host immune response in EVD pathophysiology. In this review, we summarize how data gathered during the last 40 years in the laboratory as well as in the field have provided insight into EBOV immunity. From molecular mechanisms involved in EBOV recognition in infected cells, to antigen processing and adaptive immune responses, we discuss current knowledge on the main immune barriers of infection as well as outstanding research questions.
Collapse
Affiliation(s)
- Anita K McElroy
- Division of Pediatric Infectious Disease, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 3501 Fifth Ave, Pittsburgh, PA 15261, USA
| | - Elke Mühlberger
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, 620 Albany Street, 02118 Boston, MA, USA
| | - César Muñoz-Fontela
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Strasse 74, 20359 Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg, Germany.
| |
Collapse
|
22
|
|
23
|
Liu G, Wong G, Su S, Bi Y, Plummer F, Gao GF, Kobinger G, Qiu X. Clinical Evaluation of Ebola Virus Disease Therapeutics. Trends Mol Med 2017; 23:820-830. [PMID: 28822631 DOI: 10.1016/j.molmed.2017.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 01/17/2023]
Abstract
Ebola virus disease (EVD) was first described over 40 years ago, but no treatment has been approved for humans. The 2013-2016 EVD outbreak in West Africa has expedited the clinical evaluation of several candidate therapeutics that act through different mechanisms, but with mixed results. Nevertheless, these studies are important because the accumulation of clinical data and valuable experience in conducting efficacy trials under emergency circumstances will lead to better implementation of similar studies in the future. Here, we summarize the results of EVD clinical trials, focus on the discussion of factors that may have potentially impeded the effectiveness of existing candidate therapeutics, and highlight considerations that may help meet the challenges ahead in the quest to develop clinically approved drugs.
Collapse
Affiliation(s)
- Guodong Liu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada; Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gary Wong
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada; Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China; Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuo Su
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuhai Bi
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Frank Plummer
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - George F Gao
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Gary Kobinger
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada; Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, Canada
| | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada; Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
24
|
Bixler SL, Duplantier AJ, Bavari S. Discovering Drugs for the Treatment of Ebola Virus. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2017; 9:299-317. [PMID: 28890666 PMCID: PMC5570806 DOI: 10.1007/s40506-017-0130-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Purpose of review Ebola virus, a member of the Filoviridae family, is a causative agent of severe viral hemorrhagic fever in humans. Over the past 40 years, the virus has been linked to several high mortality outbreaks in Africa with the recent West African outbreak resulting in over 11,000 deaths. This review provides a summary of the status of the drug discovery and development process for therapeutics for Ebola virus disease, with a focus on the strategies being used and the challenges facing each stage of the process. Recent findings Despite the wealth of in vitro efficacy data, preclinical data in animal models, and human clinical data, no therapeutics have been approved for the treatment of Ebola virus disease. However, several promising candidates, such as ZMapp and GS-5734, have advanced into ongoing clinical trials. Summary The gravity of the 2014-2016 outbreak spurred a heightened effort to identify and develop new treatments for Ebola virus disease, including small molecules, immunotherapeutics, host factors, and clinical disease management options. Disclaimer Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endoresed by the U.S. Army.
Collapse
Affiliation(s)
- Sandra L Bixler
- United States Army Medical Research Institute of Infectious Diseases, 1425 Porter St, Frederick, MD 21702 USA
| | - Allen J Duplantier
- United States Army Medical Research Institute of Infectious Diseases, 1425 Porter St, Frederick, MD 21702 USA
| | - Sina Bavari
- United States Army Medical Research Institute of Infectious Diseases, 1425 Porter St, Frederick, MD 21702 USA
| |
Collapse
|
25
|
Wong G, Qiu X, Bi Y, Formenty P, Sprecher A, Jacobs M, Gao GF, Kobinger G. More Challenges From Ebola: Infection of the Central Nervous System. J Infect Dis 2017; 214:S294-S296. [PMID: 27707893 DOI: 10.1093/infdis/jiw257] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cases of relapsed Ebola virus disease involving symptoms in the central nervous system are reminiscent of our past observations with some nonhuman primates (NHPs) that survived acute Ebola virus infection. We document our findings in detail here and suggest that this phenomenon can be further investigated in NHPs.
Collapse
Affiliation(s)
- Gary Wong
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada Department of Medical Microbiology
| | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada Department of Medical Microbiology
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, China
| | - Pierre Formenty
- Department of Pandemic and Epidemic Diseases, World Health Organization, Geneva, Switzerland
| | - Armand Sprecher
- Médecins Sans Frontières, Operational Center of Brussels, Belgium
| | - Michael Jacobs
- Department of Infection, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences Office of the Director General, Chinese Center for Disease Control and Prevention, Beijing Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, China
| | - Gary Kobinger
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada Department of Medical Microbiology Department of Immunology, University of Manitoba, Winnipeg, Canada Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia
| |
Collapse
|
26
|
Dowall SD, Jacquot F, Landon J, Rayner E, Hall G, Carbonnelle C, Raoul H, Pannetier D, Cameron I, Coxon R, Al Abdulla I, Hewson R, Carroll MW. Post-exposure treatment of non-human primates lethally infected with Ebola virus with EBOTAb, a purified ovine IgG product. Sci Rep 2017. [PMID: 28642489 PMCID: PMC5481440 DOI: 10.1038/s41598-017-03910-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Despite sporadic outbreaks of Ebola virus (EBOV) over the last 4 decades and the recent public health emergency in West Africa, there are still no approved vaccines or therapeutics for the treatment of acute EBOV disease (EVD). In response to the 2014 outbreak, an ovine immunoglobulin therapy was developed, termed EBOTAb. After promising results in the guinea pig model of EBOV infection, EBOTAb was tested in the cynomolgus macaque non-human primate model of lethal EBOV infection. To ensure stringent therapeutic testing conditions to replicate likely clinical usage, EBOTAb was first delivered 1, 2 or 3 days post-challenge with a lethal dose of EBOV. Results showed a protective effect of EBOTAb given post-exposurally, with survival rates decreasing with increasing time after challenge. Viremia results demonstrated that EBOTAb resulted in a decreased circulation of EBOV in the bloodstream. Additionally, assay of liver enzymes and histology analysis of local tissues identified differences between EBOTAb-treated and untreated groups. The results presented demonstrate that EBOTAb conferred protection against EBOV when given post-exposure and should be explored and developed further as a potential intervention strategy for future outbreaks, which are likely to occur.
Collapse
Affiliation(s)
- Stuart D Dowall
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Frédéric Jacquot
- Laboratoire P4, INSERM Jean Merieux, 21 Avenue Tony Garnier, Lyon, France
| | - John Landon
- MicroPharm Ltd, Station Road, Newcastle Emlyn, Dyfed, SA38 9BY, UK
| | - Emma Rayner
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Graham Hall
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | | | - Hervé Raoul
- Laboratoire P4, INSERM Jean Merieux, 21 Avenue Tony Garnier, Lyon, France
| | - Delphine Pannetier
- Laboratoire P4, INSERM Jean Merieux, 21 Avenue Tony Garnier, Lyon, France
| | - Ian Cameron
- MicroPharm Ltd, Station Road, Newcastle Emlyn, Dyfed, SA38 9BY, UK
| | - Ruth Coxon
- MicroPharm Ltd, Station Road, Newcastle Emlyn, Dyfed, SA38 9BY, UK
| | | | - Roger Hewson
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Miles W Carroll
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK.
| |
Collapse
|
27
|
Mendoza EJ, Racine T, Kobinger GP. The ongoing evolution of antibody-based treatments for Ebola virus infection. Immunotherapy 2017; 9:435-450. [PMID: 28357917 DOI: 10.2217/imt-2017-0010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The 2014-2016 Ebola virus outbreak in West Africa was the deadliest in history, prompting the evaluation of various drug candidates, including antibody-based therapeutics for the treatment of Ebola hemorrhagic fever (EHF). Prior to 2014, only convalescent blood products from EHF survivors had been administered to newly infected individuals as a form of treatment. However, during the recent outbreak, monoclonal antibody cocktails such as ZMapp, ZMAb and MB-003 were either tested in a human clinical safety and efficacy trial or provided to some based on compassionate grounds. This review aims to discuss the evolution of antibody-based treatments for EHF, their clinical trial efficacy and the development of new antibody-based therapies currently advancing in preclinical testing.
Collapse
Affiliation(s)
- Emelissa J Mendoza
- Zoonotic Diseases & Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada.,Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Trina Racine
- Zoonotic Diseases & Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Gary P Kobinger
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada.,Department of Pathology & Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Département de Microbiologie-Infectiologie et D'immunologie, Université Laval, 2705 Boulevard Laurier, Quebec City, QC G1V4G2, Canada
| |
Collapse
|
28
|
Howell KA, Brannan JM, Bryan C, McNeal A, Davidson E, Turner HL, Vu H, Shulenin S, He S, Kuehne A, Herbert AS, Qiu X, Doranz BJ, Holtsberg FW, Ward AB, Dye JM, Aman MJ. Cooperativity Enables Non-neutralizing Antibodies to Neutralize Ebolavirus. Cell Rep 2017; 19:413-424. [PMID: 28402862 PMCID: PMC6082427 DOI: 10.1016/j.celrep.2017.03.049] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/13/2017] [Accepted: 03/15/2017] [Indexed: 11/25/2022] Open
Abstract
Drug combinations are synergistic when their combined efficacy exceeds the sum of the individual actions, but they rarely include ineffective drugs that become effective only in combination. We identified several “enabling pairs” of neutralizing and non-neutralizing anti-ebolavirus monoclonal antibodies, whose combination exhibited new functional profiles, including transforming a non-neutralizing antibody to a neutralizer. Sub-neutralizing concentrations of antibodies 2G4 or m8C4 enabled non-neutralizing antibody FVM09 (IC50 >1 μM) to exhibit potent neutralization (IC50 1–10 nM). While FVM09 or m8C4 alone failed to protect Ebola-virus-infected mice, a combination of the two antibodies provided 100% protection. Furthermore, non-neutralizers FVM09 and FVM02 exponentially enhanced the potency of two neutralizing antibodies against both Ebola and Sudan viruses. We identified a hotspot for the binding of these enabling antibody pairs near the interface of the glycan cap and GP2. Enabling cooperativity may be an underappreciated phenomenon for viruses, with implications for the design and development of immunotherapeutics and vaccines. We describe cooperative neutralization and in vivo protection Cooperativity turns non-neutralizing ebolavirus antibodies into potent neutralizers A hotspot for antibody cooperativity identified on Ebola virus glycoprotein
Collapse
Affiliation(s)
- Katie A Howell
- Integrated BioTherapeutics, Inc., Rockville, MD 20850, USA
| | - Jennifer M Brannan
- US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702-5011, USA
| | | | | | | | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hong Vu
- Integrated BioTherapeutics, Inc., Rockville, MD 20850, USA
| | | | - Shihua He
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Ana Kuehne
- US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702-5011, USA
| | - Andrew S Herbert
- US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702-5011, USA
| | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | | | | | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John M Dye
- US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702-5011, USA
| | - M Javad Aman
- Integrated BioTherapeutics, Inc., Rockville, MD 20850, USA.
| |
Collapse
|
29
|
Dyall J, Hart BJ, Postnikova E, Cong Y, Zhou H, Gerhardt DM, Freeburger D, Michelotti J, Honko AN, DeWald LE, Bennett RS, Olinger GG, Jahrling PB, Hensley LE. Interferon-β and Interferon-γ Are Weak Inhibitors of Ebola Virus in Cell-Based Assays. J Infect Dis 2017; 215:1416-1420. [PMID: 28368541 PMCID: PMC5853567 DOI: 10.1093/infdis/jix134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/14/2017] [Indexed: 11/14/2022] Open
Abstract
Previous studies have demonstrated little efficacy of interferons (IFNs) in animal models of Ebola virus disease. However, these studies were limited to a small number of type I IFNs and, during the most recent outbreak of Ebola virus, questions regarding the suitability of the animal models to evaluate IFNs were raised. To address the potential that anti-Ebola virus activity was overlooked, type I and type II IFNs (α-2a, α-2b, -β, -γ, and -universal) were tested in a variety of cell types (Vero E6, Huh 7 cells, and human macrophages). IFNs are weak inhibitors of Ebola virus Makona in these cell lines.
Collapse
Affiliation(s)
| | | | | | - Yu Cong
- Integrated Research Facility and
| | | | | | | | | | - Anna N Honko
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | | | | | | | - Peter B Jahrling
- Integrated Research Facility and
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | | |
Collapse
|
30
|
Siragam V, Qiu X. How can Ebola virus infection lead to endothelial dysfunction and coagulopathy? Future Virol 2017. [DOI: 10.2217/fvl-2016-0143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Vinayakumar Siragam
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xiangguo Qiu
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
31
|
Abstract
INTRODUCTION The potential roles of toll-like receptors (TLRs) in immunopathogenesis of Ebola virus disease should be unraveled to provoke possible prophylactic or therapeutic implications of TLRs for EVD. Areas covered: The Ebola virus (EBOV) infection virtually paralyses all the main mechanisms responsible for induction of type I interferon (IFN-I) response. To summarize, EBOV infection interferes with: a) the TIR-domain-containing adapter-inducing interferon-β (TRIF) pathway that is mediated by TLR3 and TLR4 signaling; b) the interferon regulatory factor 7 (IRF7) pathway that is stimulated by TLR7 and TLR9; c) the intracellular signaling that is induced by retinoic acid-inducible gene 1 (RIG-I)-like receptors (RLRs); and d) the autocrine/paracrine feedback loop that is mediated by the IFN-stimulated gene factor 3 (ISGF3) complex. Upon infection with EBOV infection, TLR4 plays a key role in production of proinflammatory mediators. Expert opinion: It is theoretically possible that use of TLRs 3, 4, 7, and 9 agonists would be beneficial to improve the IFN-I response, despite their systemic side effects. Also, antagonist of TLR4 can be utilized to prevent production of proinflammatory cytokines. Additionally, it is highly recommended to design future investigations aimed at determining if the utilization of IFN-I would be beneficial for prophylactic/therapeutic programs of Ebola.
Collapse
Affiliation(s)
- Amene Saghazadeh
- a Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,b Systematic Review and Meta-Analysis Expert Group (SRMEG) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| | - Nima Rezaei
- a Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,b Systematic Review and Meta-Analysis Expert Group (SRMEG) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran.,c Department of Immunology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran.,d Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA) , Universal Scientific Education and Research Network (USERN) , Sheffield , UK
| |
Collapse
|
32
|
Konde MK, Baker DP, Traore FA, Sow MS, Camara A, Barry AA, Mara D, Barry A, Cone M, Kaba I, Richard AA, Beavogui AH, Günther S, Pintilie M, Fish EN. Interferon β-1a for the treatment of Ebola virus disease: A historically controlled, single-arm proof-of-concept trial. PLoS One 2017; 12:e0169255. [PMID: 28225767 PMCID: PMC5321269 DOI: 10.1371/journal.pone.0169255] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/13/2016] [Indexed: 11/19/2022] Open
Abstract
To date there are no approved antiviral drugs for the treatment of Ebola virus disease (EVD). Based on our in vitro evidence of antiviral activity of interferon (IFN)-ß activity against Ebola virus, we conducted a single arm clinical study in Guinea to evaluate the safety and therapeutic efficacy of IFN β-1a treatment for EVD. Nine individuals infected with Ebola virus were treated with IFN β-1a and compared retrospectively with a matched cohort of 21 infected patients receiving standardized supportive care only during the same time period at the same treatment unit. Cognizant of the limitations of having treated only 9 individuals with EVD, the data collected are cautiously considered. When compared to supportive care only, IFN β-1a treatment seemed to facilitate viral clearance from the blood and appeared associated with earlier resolution of disease symptoms. Survival, calculated from the date of consent for those in the trial and date of admission from those in the control cohort, to the date of death, was 19% for those receiving supportive care only, compared to 67% for those receiving supportive care plus IFN β-1a. Given the differences in baseline blood viremia between the control cohort and the IFN-treated cohort, an additional 17 controls were included for a subset analysis, from other treatment units in Guinea, matched with the IFN-treated patients based on age and baseline blood viremia. Subset analyses using this expanded control cohort suggests that patients without IFN β-1a treatment were ~ 1.5–1.9 fold more likely to die than those treated. Viewed altogether the results suggest a rationale for further clinical evaluation of IFN β-1a.
Collapse
Affiliation(s)
- Mandy Kader Konde
- Sustainable Health Foundation (FOSAD), Conakry, Guinea.,Center of Excellence for Training on Research and Priority Diseases (CEFORPAG), Conakry, Guinea
| | - Darren P Baker
- Sanofi Genzyme, Cambridge, Massachusetts, United Staes of America
| | | | | | - Alioune Camara
- Center of Excellence for Training on Research and Priority Diseases (CEFORPAG), Conakry, Guinea
| | - Alpha Amadou Barry
- Center of Excellence for Training on Research and Priority Diseases (CEFORPAG), Conakry, Guinea
| | - Doussou Mara
- Center of Excellence for Training on Research and Priority Diseases (CEFORPAG), Conakry, Guinea
| | - Abdoulaye Barry
- Center of Excellence for Training on Research and Priority Diseases (CEFORPAG), Conakry, Guinea
| | - Moussa Cone
- Center of Excellence for Training on Research and Priority Diseases (CEFORPAG), Conakry, Guinea
| | - Ibrahima Kaba
- Infectious Disease Ward, National Donka Hospital, Conakry, Guinea
| | - Amento Ablam Richard
- Center of Excellence for Training on Research and Priority Diseases (CEFORPAG), Conakry, Guinea
| | - Abdoul Habib Beavogui
- Center of Excellence for Training on Research and Priority Diseases (CEFORPAG), Conakry, Guinea
| | - Stephan Günther
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | | | - Melania Pintilie
- Department of Biostatistics, University Health Network, Toronto, Canada
| | - Eleanor N Fish
- Toronto General Research Institute, University Health Network, Toronto, Canada.,Department of Immunology, University of Toronto, Toronto, Canada
| |
Collapse
|
33
|
Dai Q, Liang Q, Hu Y, Meng F, Li J, Hou L, Zhou H, Chu K, Hu X, Tang R, Wang W, Hu J, Huang H, Li Z, Yang S, Zhu F. The early-onset febrile reaction following vaccination and associated factors: An exploratory sub-study based on the Ebola vaccine clinical trial. Hum Vaccin Immunother 2017; 13:1-6. [PMID: 28362208 DOI: 10.1080/21645515.2017.1288328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A phase-1 clinical trial aimed to assess the safety and immunogenicity of the type-5 adenovirus vector based Ebola vaccine (Ad5-EBOV) was conducted in China. To provide more evidence for the safety evaluation and dose-selection, an exploratory sub-study using a wireless automatic temperature measuring platform was done based on the phase-1 clinical trial. The main aim of the sub-study was to obtain more information about the occurrence of fever and detect the potential associated factors, second was to assess the feasibility of the temperature measuring platform in vaccine clinical trials. Temperature data of 3 treatment groups all presented a rising tendency during the first 6 hours after vaccination, the incidence of elevated temperature and possible associated factors were analyzed. For the incidence of elevated temperature, no marked dose-response relationship was found in 6 hours with wireless thermometers; the information from mercury thermometers showed that the grade-1 fever proportion peaked at 6 hours and there was no difference between groups, while grade-2 fever proportion peaked at 24 hours and was significantly higher in high-dose group than those in the other 2 groups. Significant differences were found between sex groups (males vs. female, incidence rate ratios (IRR) = 2.93 and 7.62 for any-grade, grade-2 fever respectively, P<0.001); a decline in grade-2 fever incidence was found with the increasing age groups (IRR = 0.78, P = 0.003) and body mass index (BMI, IRR = 0.67, P<0.001) .Our findings show that the dose-dependent manner between fever and the dose of Ad5-EBOV in this study might emerge after 6 hours, and which is slight and transient. Wireless thermometers secured on the skin surface are not suitable for a long time (longer than 6 hours) measurement, new methods for temperature monitoring, like ear temperature measurement, should be tested in the further research.
Collapse
Affiliation(s)
- Qigang Dai
- a Jiangsu Provincial Center for Disease Control and Prevention , Nanjing , China
| | - Qi Liang
- a Jiangsu Provincial Center for Disease Control and Prevention , Nanjing , China
| | - Yuemei Hu
- a Jiangsu Provincial Center for Disease Control and Prevention , Nanjing , China
| | - Fanyue Meng
- a Jiangsu Provincial Center for Disease Control and Prevention , Nanjing , China
| | - Jingxin Li
- a Jiangsu Provincial Center for Disease Control and Prevention , Nanjing , China
| | - Lihua Hou
- b Beijing Institute of Biotechnology , Beijing , China
| | | | - Kai Chu
- a Jiangsu Provincial Center for Disease Control and Prevention , Nanjing , China
| | - Xiaokui Hu
- d Taixing Center for Disease Control and Prevention , Taizhou , China
| | - Rong Tang
- a Jiangsu Provincial Center for Disease Control and Prevention , Nanjing , China
| | - Wenjuan Wang
- a Jiangsu Provincial Center for Disease Control and Prevention , Nanjing , China
| | - Jialei Hu
- a Jiangsu Provincial Center for Disease Control and Prevention , Nanjing , China
| | - Haodi Huang
- a Jiangsu Provincial Center for Disease Control and Prevention , Nanjing , China
| | - Zhen Li
- a Jiangsu Provincial Center for Disease Control and Prevention , Nanjing , China
| | - Shuqi Yang
- a Jiangsu Provincial Center for Disease Control and Prevention , Nanjing , China
| | - Fengcai Zhu
- a Jiangsu Provincial Center for Disease Control and Prevention , Nanjing , China
| |
Collapse
|
34
|
Fausther-Bovendo H, Qiu X, McCorrister S, Westmacott G, Sandstrom P, Castilletti C, Di Caro A, Ippolito G, Kobinger GP. Ebola virus infection induces autoimmunity against dsDNA and HSP60. Sci Rep 2017; 7:42147. [PMID: 28181533 PMCID: PMC5299614 DOI: 10.1038/srep42147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/05/2017] [Indexed: 11/15/2022] Open
Abstract
Ebola virus (EBOV) survivors are affected by a variety of serious illnesses of unknown origin for years after viral clearance from the circulation. Identifying the causes of these persistent illnesses is paramount to develop appropriate therapeutic protocols. In this study, using mouse and non-human primates which survived EBOV challenge, ELISA, western blot, mass spectrometry and flow cytometry were used to screen for autoantibodies, identify their main targets, investigate the mechanism behind their induction and monitor autoantibodies accumulation in various tissues. In infected mice and NHP, polyclonal B cell activation and autoantigens secretion induced autoantibodies against dsDNA and heat shock protein 60 as well as antibody accumulation in tissues associated with long-term clinical manifestations in humans. Finally, the presence of these autoantibodies was confirmed in human EBOV survivors. Overall, this study supports the concept that autoimmunity is a causative parameter that contributes to the various illnesses observed in EBOV survivors.
Collapse
Affiliation(s)
- H Fausther-Bovendo
- University of Manitoba, Winnipeg, Canada.,National Microbiology Laboratory, Public health Agency of Canada, Winnipeg, Canada
| | - X Qiu
- University of Manitoba, Winnipeg, Canada.,National Microbiology Laboratory, Public health Agency of Canada, Winnipeg, Canada
| | - S McCorrister
- JC Wilt Infectious Disease Research Centre, Winnipeg, Canada
| | - G Westmacott
- JC Wilt Infectious Disease Research Centre, Winnipeg, Canada
| | - P Sandstrom
- JC Wilt Infectious Disease Research Centre, Winnipeg, Canada.,National HIV and Retrovirology Laboratory, Ottawa, Canada
| | - C Castilletti
- Lazzaro Spallanzani, National Institute for Infectious Diseases-IRCCS, Rome, Italy
| | - A Di Caro
- Lazzaro Spallanzani, National Institute for Infectious Diseases-IRCCS, Rome, Italy
| | - G Ippolito
- Lazzaro Spallanzani, National Institute for Infectious Diseases-IRCCS, Rome, Italy
| | - G P Kobinger
- National Microbiology Laboratory, Public health Agency of Canada, Winnipeg, Canada.,Department of Pathology and Laboratory Medicine, University of Pennsylvania School 27 of Medicine, Philadelphia, PA, USA.,Laval University, Department of Microbiology and Immunology, Faculty of Medicine, Quebec, Canada
| |
Collapse
|
35
|
Pyankov OV, Setoh YX, Bodnev SA, Edmonds JH, Pyankova OG, Pyankov SA, Pali G, Belford S, Lu L, La M, Lovrecz G, Volchkova VA, Chappell KJ, Watterson D, Marsh G, Young PR, Agafonov AA, Farmer JF, Volchkov VE, Suhrbier A, Khromykh AA. Successful post-exposure prophylaxis of Ebola infected non-human primates using Ebola glycoprotein-specific equine IgG. Sci Rep 2017; 7:41537. [PMID: 28155869 PMCID: PMC5290740 DOI: 10.1038/srep41537] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/19/2016] [Indexed: 12/31/2022] Open
Abstract
Herein we describe production of purified equine IgG obtained from horses immunized with plasmid DNA followed by boosting with Kunjin replicon virus-like particles both encoding a modified Ebola glycoprotein. Administration of the equine IgG over 5 days to cynomolgus macaques infected 24 hours previously with a lethal dose of Ebola virus suppressed viral loads by more than 5 logs and protected animals from mortality. Animals generated their own Ebola glycoprotein-specific IgG responses 9-15 days after infection, with circulating virus undetectable by day 15-17. Such equine IgG may find utility as a post-exposure prophylactic for Ebola infection and provides a low cost, scalable alternative to monoclonal antibodies, with extensive human safety data and WHO-standardized international manufacturing capability available in both high and low income countries.
Collapse
Affiliation(s)
- Oleg V. Pyankov
- State Center for Virology and Biotechnology Vector, Koltsovo, Russian Federation
| | - Yin Xiang Setoh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Sergey A. Bodnev
- State Center for Virology and Biotechnology Vector, Koltsovo, Russian Federation
| | - Judith H. Edmonds
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Olga G. Pyankova
- State Center for Virology and Biotechnology Vector, Koltsovo, Russian Federation
| | - Stepan A. Pyankov
- State Center for Virology and Biotechnology Vector, Koltsovo, Russian Federation
| | - Gabor Pali
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Brisbane, QLD, Australia
| | | | - Louis Lu
- Bio Medical Manufacturing, Fermentation and Protein Production Facility, CSIRO, Clayton, VIC, Australia
| | - Mylinh La
- Bio Medical Manufacturing, Fermentation and Protein Production Facility, CSIRO, Clayton, VIC, Australia
| | - George Lovrecz
- Bio Medical Manufacturing, Fermentation and Protein Production Facility, CSIRO, Clayton, VIC, Australia
| | - Valentina A. Volchkova
- Molecular Basis of Viral Pathogenicity, CIRI, INSERM, U1111-CNRS UMR5308, Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, France
| | - Keith J. Chappell
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Glenn Marsh
- Australian Animal Health Laboratory, CSIRO Health and Biosecurity, Geelong, VIC, Australia
| | - Paul R. Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Brisbane, QLD, Australia
| | | | | | - Victor E. Volchkov
- Molecular Basis of Viral Pathogenicity, CIRI, INSERM, U1111-CNRS UMR5308, Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, France
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Alexander A. Khromykh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Brisbane, QLD, Australia
| |
Collapse
|
36
|
González-González E, Alvarez MM, Márquez-Ipiña AR, Santiago GTD, Rodríguez-Martínez LM, Annabi N, Khademhosseini A. Anti-Ebola therapies based on monoclonal antibodies: current state and challenges ahead. Crit Rev Biotechnol 2017; 37:53-68. [PMID: 26611830 PMCID: PMC5568563 DOI: 10.3109/07388551.2015.1114465] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The 2014 Ebola outbreak, the largest recorded, took us largely unprepared, with no available vaccine or specific treatment. In this context, the World Health Organization declared that the humanitarian use of experimental therapies against Ebola Virus (EBOV) is ethical. In particular, an experimental treatment consisting of a cocktail of three monoclonal antibodies (mAbs) produced in tobacco plants and specifically directed to the EBOV glycoprotein (GP) was tested in humans, apparently with good results. Several mAbs with high affinity to the GP have been described. This review discusses our current knowledge on this topic. Particular emphasis is devoted to those mAbs that have been assayed in animal models or humans as possible therapies against Ebola. Engineering aspects and challenges for the production of anti-Ebola mAbs are also briefly discussed; current platforms for the design and production of full-length mAbs are cumbersome and costly.
Collapse
Affiliation(s)
- E González-González
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Ave. Eugenio Garza Sada 2501 Sur Col. Tecnológico, CP 64849, Monterrey, Nuevo León, México
| | - MM Alvarez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Ave. Eugenio Garza Sada 2501 Sur Col. Tecnológico, CP 64849, Monterrey, Nuevo León, México
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston 02139, MA, USA
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA
| | - AR Márquez-Ipiña
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Ave. Eugenio Garza Sada 2501 Sur Col. Tecnológico, CP 64849, Monterrey, Nuevo León, México
| | - G Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Ave. Eugenio Garza Sada 2501 Sur Col. Tecnológico, CP 64849, Monterrey, Nuevo León, México
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston 02139, MA, USA
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA
| | - LM Rodríguez-Martínez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Ave. Eugenio Garza Sada 2501 Sur Col. Tecnológico, CP 64849, Monterrey, Nuevo León, México
| | - N Annabi
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston 02139, MA, USA
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115
| | - A Khademhosseini
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston 02139, MA, USA
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, MA, USA
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| |
Collapse
|
37
|
Pettit DK, Rogers RS, Arthur K, Brodsky Y, Clark RH, Crowell C, Ennis J, Gillespie A, Gillespie R, Livingston B, Nalbandian E, Pace D, Smidt P, Pauly M, Timmons K, Trentalange M, Whaley KJ, Zeitlin L, Thomas JN. CHO cell production and sequence improvement in the 13C6FR1 anti-Ebola antibody. MAbs 2016; 8:347-57. [PMID: 26761424 DOI: 10.1080/19420862.2015.1127492] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
From March 2014 through February 2015, the Ebola virus spread rapidly in West Africa, resulting in almost 30,000 infections and approximately 10,000 deaths. With no approved therapeutic options available, an experimental antibody cocktail known as ZMapp™ was administered to patients on a limited compassionate-use basis. The supply of ZMapp™ was highly constrained at the time because it was in preclinical development and a novel production system (tobacco plants) was being used for manufacturing. To increase the production of ZMapp™ for an uncertain future demand, a consortium was formed in the fall of 2014 to quickly manufacture these anti-Ebola antibodies in Chinese hamster ovary (CHO) cells using bioreactors for production at a scale appropriate for thousands of doses. As a result of the efforts of this consortium, valuable lessons were learned about the processing of the antibodies in a CHO-based system. One of the ZMapp™ cocktail antibodies, known as c13C6FR1, had been sequence-optimized in the framework region for production in tobacco and engineered as a chimeric antibody. When transfected into CHO cells with the unaltered sequence, 13C6FR1 was difficult to process. This report describes efforts to produce 13C6FR1 and the parental murine hybridoma sequence, 13C6mu, in CHO cells, and provides evidence for the insertion of a highly conserved framework amino acid that improved the physical properties necessary for high-level expression and purification. Furthermore, it describes the technical and logistical lessons learned that may be beneficial in the event of a future Ebola virus or other pandemic viral outbreaks where mAbs are considered potential therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jane Ennis
- c Mapp Biopharmaceutical Inc , San Diego , CA USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Trad MA, Naughton W, Yeung A, Mazlin L, O'sullivan M, Gilroy N, Fisher DA, Stuart RL. Ebola virus disease: An update on current prevention and management strategies. J Clin Virol 2016; 86:5-13. [PMID: 27893999 DOI: 10.1016/j.jcv.2016.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 10/06/2016] [Accepted: 11/08/2016] [Indexed: 11/28/2022]
Abstract
Ebola virus disease (EVD) is characterised by systemic viral replication, immuno-suppression, abnormal inflammatory responses, large volume fluid and electrolyte losses, and high mortality in under-resourced settings. There are various therapeutic strategies targeting EVD including vaccines utilizing different antigen delivery methods, antibody-based therapies and antiviral drugs. These therapies remain experimental, but received attention following their use particularly in cases treated outside West Africa during the 2014-15 outbreak, in which 20 (80%) out of 25 patients survived. Emerging data from current trials look promising and are undergoing further study, however optimised supportive care remains the key to reducing mortality from EVD.
Collapse
Affiliation(s)
- M A Trad
- Department of Infectious Diseases, Wollongong Hospital, Wollongong, NSW, Australia; Graduate School of Medicine, University of Wollongong, Wollongong, Australia; Medecins Sans Frontieres, Paris, France.
| | - W Naughton
- Department of Infectious Diseases, Monash Health, Clayton, Victoria, Australia
| | - A Yeung
- Department of Infectious Diseases, Monash Health, Clayton, Victoria, Australia
| | - L Mazlin
- Medecins Sans Frontieres, Brussels, Belgium
| | - M O'sullivan
- Centre for Infectious Diseases and Microbiology, Pathology West, Westmead Hospital, NSW, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, NSW, Australia
| | - N Gilroy
- Centre for Infectious Diseases and Microbiology, Pathology West, Westmead Hospital, NSW, Australia
| | - D A Fisher
- Division of Infectious Diseases, University Medicine Cluster, National University Hospital, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - R L Stuart
- Department of Infectious Diseases, Monash Health, Clayton, Victoria, Australia; Department of Medicine, Monash University, Victoria, Australia
| |
Collapse
|
39
|
Moekotte AL, Huson MAM, van der Ende AJ, Agnandji ST, Huizenga E, Goorhuis A, Grobusch MP. Monoclonal antibodies for the treatment of Ebola virus disease. Expert Opin Investig Drugs 2016; 25:1325-1335. [PMID: 27676206 DOI: 10.1080/13543784.2016.1240785] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION To date, the management of patients with suspected or confirmed Ebolavirus disease (EVD) depends on quarantine, symptomatic management and supportive care, as there are no approved vaccines or treatments available for human use. However, accelerated by the recent large outbreak in West Africa, significant progress has been made towards vaccine development but also towards specific treatment with convalescent plasma and monoclonal antibodies. Areas covered: We describe recent developments in monoclonal antibody treatment for EVD, encompassing mAb114 and the MB-003, ZMAb, ZMapp™ and MIL-77E cocktails. Expert opinion: Preventive measures, are, and will remain essential to curb EVD outbreaks; even more so with vaccine development progressing. However, research for treatment options must not be neglected. Small-scale animal and individual human case studies show that monoclonal antibodies (mAbs) can be effective for EVD treatment; thus justifying exploration in clinical trials. Potential limitations are that high doses may be needed to yield clinical efficacy; epitope mutations might reduce efficacy; and constant evolution of (outbreak-specific) mAb mixtures might be required. Interim advice based on the clinical experience to date is that treatment of patients with mAbs is sensible, provided those could be made available in the necessary amounts in time.
Collapse
Affiliation(s)
- A L Moekotte
- a Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - M A M Huson
- a Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - A J van der Ende
- b Lion Heart Medical Center , Yele , Sierra Leone.,c Lion Heart Medical Research Unit , Yele , Sierra Leone
| | - S T Agnandji
- d Centre de Recherches Médicales en Lambaréné (CERMEL) , Lambaréné , Gabon.,e Institute of Tropical Medicine , University of Tübingen , Tübingen , Germany
| | - E Huizenga
- b Lion Heart Medical Center , Yele , Sierra Leone.,c Lion Heart Medical Research Unit , Yele , Sierra Leone
| | - A Goorhuis
- a Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands.,c Lion Heart Medical Research Unit , Yele , Sierra Leone
| | - M P Grobusch
- a Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands.,c Lion Heart Medical Research Unit , Yele , Sierra Leone.,d Centre de Recherches Médicales en Lambaréné (CERMEL) , Lambaréné , Gabon.,e Institute of Tropical Medicine , University of Tübingen , Tübingen , Germany
| |
Collapse
|
40
|
Limberis MP, Tretiakova A, Nambiar K, Wong G, Racine T, Crosariol M, Xiangguo Q, Kobinger G, Wilson JM. Adeno-Associated Virus Serotype 9-Expressed ZMapp in Mice Confers Protection Against Systemic and Airway-Acquired Ebola Virus Infection. J Infect Dis 2016; 214:1975-1979. [PMID: 27683818 DOI: 10.1093/infdis/jiw460] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/21/2016] [Indexed: 11/12/2022] Open
Abstract
Adeno-associated viral vectors can be used as a platform for delivering biological countermeasures against pandemic and biological threats. We show that vector delivery of two antibody components of the ZMapp product is effective in mice against systemic and airway challenge with a mouse-adapted strain of Ebola virus. This platform provides a generic manufacturing solution and overcomes some of the delivery challenges associated with repeated administration of the protective protein.
Collapse
Affiliation(s)
- Maria P Limberis
- Gene Therapy Program.,Department of Pathology and Laboratory Medicine
| | - Anna Tretiakova
- Gene Therapy Program.,Department of Medicine, University of Pennsylvania, Philadelphia
| | - Kalyani Nambiar
- Gene Therapy Program.,Department of Medicine, University of Pennsylvania, Philadelphia
| | - Gary Wong
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada.,Department of Medical Microbiology, University of Manitoba, Canada
| | - Trina Racine
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada.,Department of Medical Microbiology, University of Manitoba, Canada
| | - Marco Crosariol
- Gene Therapy Program.,Department of Medicine, University of Pennsylvania, Philadelphia
| | - Qiu Xiangguo
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada.,Department of Medical Microbiology, University of Manitoba, Canada
| | - Gary Kobinger
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada.,Department of Medical Microbiology, University of Manitoba, Canada
| | - James M Wilson
- Gene Therapy Program.,Department of Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
41
|
Filovirus proteins for antiviral drug discovery: A structure/function analysis of surface glycoproteins and virus entry. Antiviral Res 2016; 135:1-14. [PMID: 27640102 PMCID: PMC7113884 DOI: 10.1016/j.antiviral.2016.09.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/01/2016] [Accepted: 09/05/2016] [Indexed: 12/20/2022]
Abstract
This review focuses on the recent progress in our understanding of filovirus protein structure/function and its impact on antiviral research. Here we focus on the surface glycoprotein GP1,2 and its different roles in filovirus entry. We first describe the latest advances on the characterization of GP gene-overlapping proteins sGP, ssGP and Δ-peptide. Then, we compare filovirus surface GP1,2 proteins in terms of structure, synthesis and function. As they bear potential in drug-design, the discovery of small organic compounds inhibiting filovirus entry is a currently very active field. Although it is at an early stage, the development of antiviral drugs against Ebola and Marburg virus entry might prove essential to reduce outbreak-associated fatality rates through post-exposure treatment of both suspected and confirmed cases. The filovirus surface glycoprotein is the key player protein responsible for viral entry. Secreted forms of the glycoprotein have been suggested to participate to filovirus virus pathogenicity. Recent structural insights of the filovirus surface glycoprotein highlight new antiviral perspectives. Interesting compounds and innovative antiviral strategies emerge from research and development to inhibit filovirus entry.
Collapse
|
42
|
Boisen ML, Hartnett JN, Goba A, Vandi MA, Grant DS, Schieffelin JS, Garry RF, Branco LM. Epidemiology and Management of the 2013-16 West African Ebola Outbreak. Annu Rev Virol 2016; 3:147-171. [PMID: 27578439 DOI: 10.1146/annurev-virology-110615-040056] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The 2013-16 West African Ebola outbreak is the largest, most geographically dispersed, and deadliest on record, with 28,616 suspected cases and 11,310 deaths recorded to date in Guinea, Liberia, and Sierra Leone. We provide a review of the epidemiology and management of the 2013-16 Ebola outbreak in West Africa aimed at stimulating reflection on lessons learned that may improve the response to the next international health crisis caused by a pathogen that emerges in a region of the world with a severely limited health care infrastructure. Surveillance efforts employing rapid and effective point-of-care diagnostics designed for environments that lack advanced laboratory infrastructure will greatly aid in early detection and containment efforts during future outbreaks. Introduction of effective therapeutics and vaccines against Ebola into the public health system and the biodefense armamentarium is of the highest priority if future outbreaks are to be adequately managed and contained in a timely manner.
Collapse
Affiliation(s)
- M L Boisen
- Corgenix Inc., Broomfield, Colorado 80020.,Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana 70112; .,Zalgen Labs, LLC, Germantown, Maryland 20876;
| | - J N Hartnett
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana 70112;
| | - A Goba
- Lassa Fever Program, Kenema Government Hospital, Kenema, Sierra Leone.,Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - M A Vandi
- Lassa Fever Program, Kenema Government Hospital, Kenema, Sierra Leone.,Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - D S Grant
- Lassa Fever Program, Kenema Government Hospital, Kenema, Sierra Leone.,Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - J S Schieffelin
- Section of Infectious Diseases, Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - R F Garry
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana 70112; .,Zalgen Labs, LLC, Germantown, Maryland 20876;
| | - L M Branco
- Zalgen Labs, LLC, Germantown, Maryland 20876;
| |
Collapse
|
43
|
Pontremoli C, Forni D, Cagliani R, Filippi G, De Gioia L, Pozzoli U, Clerici M, Sironi M. Positive Selection Drives Evolution at the Host-Filovirus Interaction Surface. Mol Biol Evol 2016; 33:2836-2847. [PMID: 27512112 DOI: 10.1093/molbev/msw158] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Filovirus infection is mediated by engagement of the surface-exposed glycoprotein (GP) by its cellular receptor, NPC1 (Niemann-Pick C1). Two loops in the C domain of NPC1 (NPC1-C) bind filovirus GP. Herein, we show that filovirus GP and NPC1-C evolve under mutual selective pressure. Analysis of a large mammalian phylogeny indicated that strong functional/structural constraints limit the NPC1 sequence space available for adaptive change and most sites at the contact interface with GP are under negative selection. These constraints notwithstanding, we detected positive selection at NPC1-C in all mammalian orders, from Primates to Xenarthra. Different codons evolved adaptively in distinct mammals, and most selected sites are located within the two NPC1-C loops that engage GP, or at their anchor points. In Homininae, NPC1-C was a preferential selection target, and the T419I variant possibly represents a human-specific adaptation to filovirus infection. On the other side of the arms-race, GP evolved adaptively during filovirus speciation. One of the selected sites (S142Q) establishes several atom-to-atom contacts with NPC1-C. Additional selected sites are located within epitopes recognized by neutralizing antibodies, including the 14G7 epitope, where sites selected during the recent EBOV epidemic also map. Finally, pairs of co-evolving sites in Marburgviruses and Ebolaviruses were found to involve antigenic determinants. These findings suggest that the host humoral immune response was a major selective pressure during filovirus speciation. The S142Q variant may contribute to determine Ebolavirus host range in the wild. If this were the case, EBOV/BDBV (S142) and SUDV (Q142) may not share the same reservoir(s).
Collapse
Affiliation(s)
- Chiara Pontremoli
- Scientific Institute IRCCS E.MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Diego Forni
- Scientific Institute IRCCS E.MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E.MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Giulia Filippi
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Uberto Pozzoli
- Scientific Institute IRCCS E.MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E.MEDEA, Bioinformatics, Bosisio Parini, Italy
| |
Collapse
|
44
|
Braid LR, Hu WG, Davies JE, Nagata LP. Engineered Mesenchymal Cells Improve Passive Immune Protection Against Lethal Venezuelan Equine Encephalitis Virus Exposure. Stem Cells Transl Med 2016; 5:1026-35. [PMID: 27334491 PMCID: PMC4954456 DOI: 10.5966/sctm.2015-0341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/14/2016] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED : Mesenchymal stromal cells (MSCs) are being exploited as gene delivery vectors for various disease and injury therapies. We provide proof-of-concept that engineered MSCs can provide a useful, effective platform for protection against infectious disease. Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne pathogen affecting humans and equines and can be used in bio-warfare. No licensed vaccine or antiviral agent currently exists to combat VEEV infection in humans. Direct antibody administration (passive immunity) is an effective, but short-lived, method of providing immediate protection against a pathogen. We compared the protective efficacy of human umbilical cord perivascular cells (HUCPVCs; a rich source of MSCs), engineered with a transgene encoding a humanized VEEV-neutralizing antibody (anti-VEEV), to the purified antibody. In athymic mice, the anti-VEEV antibody had a half-life of 3.7 days, limiting protection to 2 or 3 days after administration. In contrast, engineered HUCPVCs generated protective anti-VEEV serum titers for 21-38 days after a single intramuscular injection. At 109 days after transplantation, 10% of the mice still had circulating anti-VEEV antibody. The mice were protected against exposure to a lethal dose of VEEV by an intramuscular pretreatment injection with engineered HUCPVCs 24 hours or 10 days before exposure, demonstrating both rapid and prolonged immune protection. The present study is the first to describe engineered MSCs as gene delivery vehicles for passive immunity and supports their utility as antibody delivery vehicles for improved, single-dose prophylaxis against endemic and intentionally disseminated pathogens. SIGNIFICANCE Direct injection of monoclonal antibodies (mAbs) is an important strategy to immediately protect the recipient from a pathogen. This strategy is critical during natural outbreaks or after the intentional release of bio-weapons. Vaccines require weeks to become effective, which is not practical for first responders immediately deployed to an infected region. However, mAb recipients often require booster shots to maintain protection, which is expensive and impractical once the first responders have been deployed. The present study has shown, for the first time, that mesenchymal stromal cells are effective gene delivery vehicles that can significantly improve mAb-mediated immune protection in a single, intramuscular dose of engineered cells. Such a cell-based delivery system can provide extended life-saving protection in the event of exposure to biological threats using a more practical, single-dose regimen.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/biosynthesis
- Antibodies, Monoclonal, Humanized/genetics
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Cells, Cultured
- Encephalitis Virus, Venezuelan Equine/immunology
- Encephalitis Virus, Venezuelan Equine/pathogenicity
- Encephalomyelitis, Venezuelan Equine/immunology
- Encephalomyelitis, Venezuelan Equine/prevention & control
- Encephalomyelitis, Venezuelan Equine/virology
- Female
- Genetic Therapy/methods
- Genotype
- Half-Life
- Host-Pathogen Interactions
- Humans
- Injections, Intramuscular
- Mesenchymal Stem Cells/immunology
- Mesenchymal Stem Cells/metabolism
- Mesenchymal Stem Cells/virology
- Mice, Inbred BALB C
- Mice, Nude
- Phenotype
- Protein Stability
- Transfection
- Umbilical Cord/cytology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
- Viral Vaccines/pharmacokinetics
Collapse
Affiliation(s)
- Lorena R Braid
- Bio-Threat Defence Section, Defence Research and Development Canada, Suffield Research Centre, Ralston, Alberta, Canada Aurora BioSolutions Inc., Medicine Hat, Alberta, Canada
| | - Wei-Gang Hu
- Bio-Threat Defence Section, Defence Research and Development Canada, Suffield Research Centre, Ralston, Alberta, Canada
| | - John E Davies
- Institute of Biomaterials and Bioengineering, University of Toronto, Toronto, Ontario, Canada Tissue Regeneration Therapeutics, Inc., Toronto, Ontario, Canada
| | - Les P Nagata
- Bio-Threat Defence Section, Defence Research and Development Canada, Suffield Research Centre, Ralston, Alberta, Canada
| |
Collapse
|
45
|
Madelain V, Nguyen THT, Olivo A, de Lamballerie X, Guedj J, Taburet AM, Mentré F. Ebola Virus Infection: Review of the Pharmacokinetic and Pharmacodynamic Properties of Drugs Considered for Testing in Human Efficacy Trials. Clin Pharmacokinet 2016; 55:907-23. [PMID: 26798032 PMCID: PMC5680399 DOI: 10.1007/s40262-015-0364-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The 2014-2015 outbreak of Ebola virus disease is the largest epidemic to date in terms of the number of cases, deaths, and affected areas. In October 2015, no antiviral agents had proven antiviral efficacy in patients. However, in September 2014, the World Health Organization inventoried and has since regularly updated a list of potential drug candidates with demonstrated antiviral efficacy in in vitro or animal models. This includes agents belonging to various therapeutic classes, namely direct antiviral agents (favipiravir and BCX4430), a combination of antibodies (ZMapp), type I interferons, RNA interference-based drugs (TKM-Ebola and AVI-7537), and anticoagulant drugs (rNAPc2). Here, we review the pharmacokinetic and pharmacodynamic information presently available for these drugs, using data obtained in healthy volunteers for pharmacokinetics and data obtained in human clinical trials or animal models for pharmacodynamics. Future studies evaluating these drugs in clinical trials are critical to confirm their efficacy in humans, propose appropriate doses, and evaluate the possibility of treatment combinations.
Collapse
Affiliation(s)
- Vincent Madelain
- INSERM, IAME, UMR 1137, Paris, France
- Université Paris Diderot, IAME, UMR 1137, Sorbonne Paris Cité, Paris, France
| | - Thi Huyen Tram Nguyen
- INSERM, IAME, UMR 1137, Paris, France
- Université Paris Diderot, IAME, UMR 1137, Sorbonne Paris Cité, Paris, France
| | - Anaelle Olivo
- Hospital Bicêtre, Assistance Publique-Hôpitaux de Paris, DHU Hepatinov, INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, Université Paris-Sud, Kremlin Bicêtre, France
| | - Xavier de Lamballerie
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 "Emergence des Pathologies Virales", Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Jérémie Guedj
- INSERM, IAME, UMR 1137, Paris, France
- Université Paris Diderot, IAME, UMR 1137, Sorbonne Paris Cité, Paris, France
| | - Anne-Marie Taburet
- Hospital Bicêtre, Assistance Publique-Hôpitaux de Paris, DHU Hepatinov, INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, Université Paris-Sud, Kremlin Bicêtre, France
| | | |
Collapse
|
46
|
Post-exposure treatment of Ebola virus disease in guinea pigs using EBOTAb, an ovine antibody-based therapeutic. Sci Rep 2016; 6:30497. [PMID: 27465308 PMCID: PMC4964638 DOI: 10.1038/srep30497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/04/2016] [Indexed: 01/14/2023] Open
Abstract
Ebola virus (EBOV) is highly pathogenic, with a predisposition to cause outbreaks in human populations accompanied by significant mortality. An ovine polyclonal antibody therapy has been developed against EBOV, named EBOTAb. When tested in the stringent guinea pig model of EBOV disease, EBOTAb has been shown to confer protection at levels of 83.3%, 50% and 33.3% when treatment was first started on days 3, 4 and 5 post-challenge, respectively. These timepoints of when EBOTAb treatment was initiated correspond to when levels of EBOV are detectable in the circulation and thus mimic when treatment would likely be initiated in human infection. The effects of EBOTAb were compared with those of a monoclonal antibody cocktail, ZMapp, when delivered on day 3 post-challenge. Results showed ZMapp to confer complete protection against lethal EBOV challenge in the guinea pig model at this timepoint. The data reported demonstrate that EBOTAb is an effective treatment against EBOV disease, even when delivered late after infection.
Collapse
|
47
|
Howell KA, Qiu X, Brannan JM, Bryan C, Davidson E, Holtsberg FW, Wec AZ, Shulenin S, Biggins JE, Douglas R, Enterlein SG, Turner HL, Pallesen J, Murin CD, He S, Kroeker A, Vu H, Herbert AS, Fusco ML, Nyakatura EK, Lai JR, Keck ZY, Foung SKH, Saphire EO, Zeitlin L, Ward AB, Chandran K, Doranz BJ, Kobinger GP, Dye JM, Aman MJ. Antibody Treatment of Ebola and Sudan Virus Infection via a Uniquely Exposed Epitope within the Glycoprotein Receptor-Binding Site. Cell Rep 2016; 15:1514-1526. [PMID: 27160900 PMCID: PMC4871745 DOI: 10.1016/j.celrep.2016.04.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/07/2016] [Accepted: 04/03/2016] [Indexed: 12/02/2022] Open
Abstract
Previous efforts to identify cross-neutralizing antibodies to the receptor-binding site (RBS) of ebolavirus glycoproteins have been unsuccessful, largely because the RBS is occluded on the viral surface. We report a monoclonal antibody (FVM04) that targets a uniquely exposed epitope within the RBS; cross-neutralizes Ebola (EBOV), Sudan (SUDV), and, to a lesser extent, Bundibugyo viruses; and shows protection against EBOV and SUDV in mice and guinea pigs. The antibody cocktail ZMapp™ is remarkably effective against EBOV (Zaire) but does not cross-neutralize other ebolaviruses. By replacing one of the ZMapp™ components with FVM04, we retained the anti-EBOV efficacy while extending the breadth of protection to SUDV, thereby generating a cross-protective antibody cocktail. In addition, we report several mutations at the base of the ebolavirus glycoprotein that enhance the binding of FVM04 and other cross-reactive antibodies. These findings have important implications for pan-ebolavirus vaccine development and defining broadly protective antibody cocktails.
Collapse
Affiliation(s)
- Katie A Howell
- Integrated BioTherapeutics, Inc., Gaithersburg, MD 20878, USA
| | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; Deparment of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Jennifer M Brannan
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | | | | | | | - Anna Z Wec
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sergey Shulenin
- Integrated BioTherapeutics, Inc., Gaithersburg, MD 20878, USA
| | - Julia E Biggins
- Integrated BioTherapeutics, Inc., Gaithersburg, MD 20878, USA
| | - Robin Douglas
- Integrated BioTherapeutics, Inc., Gaithersburg, MD 20878, USA
| | | | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jesper Pallesen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Charles D Murin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Shihua He
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; Deparment of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Andrea Kroeker
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; Deparment of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Hong Vu
- Integrated BioTherapeutics, Inc., Gaithersburg, MD 20878, USA
| | - Andrew S Herbert
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Marnie L Fusco
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Elisabeth K Nyakatura
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jonathan R Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Zhen-Yong Keck
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Steven K H Foung
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Erica Ollmann Saphire
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Gary P Kobinger
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; Deparment of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - John M Dye
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - M Javad Aman
- Integrated BioTherapeutics, Inc., Gaithersburg, MD 20878, USA.
| |
Collapse
|
48
|
A Rapid Screening Assay Identifies Monotherapy with Interferon-ß and Combination Therapies with Nucleoside Analogs as Effective Inhibitors of Ebola Virus. PLoS Negl Trop Dis 2016; 10:e0004364. [PMID: 26752302 PMCID: PMC4709101 DOI: 10.1371/journal.pntd.0004364] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 12/15/2015] [Indexed: 12/12/2022] Open
Abstract
To date there are no approved antiviral drugs for the treatment of Ebola virus disease (EVD). While a number of candidate drugs have shown limited efficacy in vitro and/or in non-human primate studies, differences in experimental methodologies make it difficult to compare their therapeutic effectiveness. Using an in vitro model of Ebola Zaire replication with transcription-competent virus like particles (trVLPs), requiring only level 2 biosafety containment, we compared the activities of the type I interferons (IFNs) IFN-α and IFN-ß, a panel of viral polymerase inhibitors (lamivudine (3TC), zidovudine (AZT) tenofovir (TFV), favipiravir (FPV), the active metabolite of brincidofovir, cidofovir (CDF)), and the estrogen receptor modulator, toremifene (TOR), in inhibiting viral replication in dose-response and time course studies. We also tested 28 two- and 56 three-drug combinations against Ebola replication. IFN-α and IFN-ß inhibited viral replication 24 hours post-infection (IC50 0.038μM and 0.016μM, respectively). 3TC, AZT and TFV inhibited Ebola replication when used alone (50-62%) or in combination (87%). They exhibited lower IC50 (0.98-6.2μM) compared with FPV (36.8μM), when administered 24 hours post-infection. Unexpectedly, CDF had a narrow therapeutic window (6.25-25μM). When dosed >50μM, CDF treatment enhanced viral infection. IFN-ß exhibited strong synergy with 3TC (97.3% inhibition) or in triple combination with 3TC and AZT (95.8% inhibition). This study demonstrates that IFNs and viral polymerase inhibitors may have utility in EVD. We identified several 2 and 3 drug combinations with strong anti-Ebola activity, confirmed in studies using fully infectious ZEBOV, providing a rationale for testing combination therapies in animal models of lethal Ebola challenge. These studies open up new possibilities for novel therapeutic options, in particular combination therapies, which could prevent and treat Ebola infection and potentially reduce drug resistance.
Collapse
|
49
|
Zhang X, Ao Z, Bello A, Ran X, Liu S, Wigle J, Kobinger G, Yao X. Characterization of the inhibitory effect of an extract of Prunella vulgaris on Ebola virus glycoprotein (GP)-mediated virus entry and infection. Antiviral Res 2016; 127:20-31. [PMID: 26778707 PMCID: PMC7113790 DOI: 10.1016/j.antiviral.2016.01.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 11/25/2022]
Abstract
Currently, no approved antiviral therapeutic is available for treatment or prevention of Ebola virus (EBOV) infection. In this study, we characterized an EBOV-glycoprotein (GP) pseudotyped HIV-1-based vector system in different cell cultures, including human umbilical vein endothelial cells (HUVECs) and human macrophages, for the screening of anti-EBOV-GP agent(s). Based on this system, we demonstrated that an aqueous extract (CHPV) from the Chinese herb Prunella vulgaris displayed a potent inhibitory effect on EBOV-GP pseudotyped virus (EBOV-GP-V)-mediated infection in various cell lines, including HUVEC and macrophage. In addition, our results indicated that CHPV was able to block an eGFP-expressing Zaire ebola virus (eGFP-ZEBOV) infection in VeroE6 cells. The anti-EBOV activity of CHPV was exhibited in a dose-dependent manner. At a 12.5 μg/ml concentration, the CHPV showed a greater than 80% inhibition of EBOV-GP-V and eGFP-EBOV infections. Likewise, our studies suggested that the inhibitory effect of CHPV occurred by binding directly to EBOV-GP-Vs and blocking the early viral events. Interestingly, our results have shown that CHPV was able to enhance the anti-EBOV activity of the monoclonal antibody MAb 2G4 against EBOV-GP. Overall, this study provides evidence that CHPV has anti-EBOV activity and may be developed as a novel antiviral approach against EBOV infection.
Collapse
Affiliation(s)
- Xu Zhang
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Canada
| | - Zhujun Ao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Canada; Department of Microbiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, PR China
| | - Alexander Bello
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Canada
| | - Xiaozhuo Ran
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Canada
| | - Shuiping Liu
- Department of Microbiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, PR China
| | - Jeffrey Wigle
- Department of Biochemistry and Medical Genetics, University of Manitoba, Canada
| | - Gary Kobinger
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Canada
| | - Xiaojian Yao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Canada; Department of Microbiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, PR China.
| |
Collapse
|
50
|
A Recombinant Adenovirus Expressing Ovine Interferon Tau Prevents Influenza Virus-Induced Lethality in Mice. J Virol 2016; 90:3783-8. [PMID: 26739058 DOI: 10.1128/jvi.03258-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 01/03/2016] [Indexed: 12/29/2022] Open
Abstract
Ovine interferon tau (IFN-τ) is a unique type I interferon with low toxicity and a broad host range in vivo. We report the generation of a nonreplicative recombinant adenovirus expressing biologically active IFN-τ. Using the B6.A2G-Mx1 mouse model, we showed that single-dose intranasal administration of recombinant Ad5-IFN-τ can effectively prevent lethality and disease induced by highly virulent hv-PR8 influenza virus by activating the interferon response and preventing viral replication.
Collapse
|