1
|
Huang X, Zhang D, Zhang D, Guo J, Gu G, Wang Y, Wu G, Wang C, Fu B, Li K. Decoding PTEN: from biological functions to signaling pathways in tumors. Mol Biol Rep 2024; 51:1089. [PMID: 39446204 DOI: 10.1007/s11033-024-10049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
The tumor suppressor gene Phosphatase and tensin homologue deleted on chromosome 10 (PTEN), possessing both protein and lipid phosphatase activities, is frequently mutated in various human cancers. PTEN aberrations disrupt critical cellular processes like proliferation, apoptosis, migration, and invasion, thereby promoting tumor growth. In the cells, PTEN localizes to the nucleus, cytoplasm, or cell membrane, and its roles depends on the subcellular localization. PTEN is regulated at the transcriptional, post-transcriptional, and post-translational levels, implying that its functions on the tumors are complex. The relationship between PTEN abnormalities and tumors has garnered significant interest in recent years. PTEN regulates essential cellular processes involved in tumorigenesis. Mutations or deletions in the PTEN gene often correlate with unfavorable prognosis and increased cancer recurrence. Numerous studies suggest that PTEN expression levels in tumors could be a valuable biomarker for cancer diagnosis, treatment, and predicting patient outcomes. This paper provides a comprehensive review of the biological function, regulatory mechanisms, and post-translational modifications of PTEN. Furthermore, this review explores the expression and regulation of PTEN in different tumor types, as well as its interactions with environmental factors in tumorigenesis. This comprehensive analysis aims to deepen our understanding of the signaling pathways between PTEN and cancer.
Collapse
Affiliation(s)
- Xueping Huang
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong Province, PR China
| | - Dongyan Zhang
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng, PR China
| | - Di Zhang
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng, PR China
| | - Jianran Guo
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng, PR China
| | - Guohao Gu
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng, PR China
| | - Yingying Wang
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong Province, PR China
| | - Guohao Wu
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong Province, PR China
| | - Chuanbao Wang
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong Province, PR China
| | - Bo Fu
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng, PR China.
| | - Keyi Li
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng, PR China.
- Department of Stomatology, Liaocheng People's Hospital, Liaocheng, Shandong Province, PR China.
| |
Collapse
|
2
|
Liu S, Guo H, Li D, Wang C. Immunologically effective biomaterials enhance immunotherapy of prostate cancer. J Mater Chem B 2024; 12:9821-9834. [PMID: 39239675 DOI: 10.1039/d3tb03044j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Prostate cancer (PCa) is one of the most common malignant neoplasms affecting the male population. The onset of the disease is insidious and often associated with severe consequences, such as bone metastases at the time of initial diagnosis. Once it advances to metastatic castration-resistant PCa (mCRPC), conventional treatment methods become ineffective. As research on the mechanism of tumor therapy advances, immunotherapy has been evolving rapidly. However, PCa is a solid tumor type that primarily faces the challenges of poor immunogenicity and inhibitory tumor microenvironment (TME). Fortunately, the extensive use of biomaterials has led to continuous advancement in PCa immunotherapy. These innovative materials aim to address intractable issues, such as immune escape and immune desert, to inhibit tumor progression and metastasis. This detailed review focuses on the regulation of different aspects of tumor immunity by immunologically effective biomaterials, including modulating adaptive immunity, innate immunity, and the immune microenvironment, to enhance the efficacy of PCa immunotherapy. In addition, this review provides a perspective on the future prospects of immunotherapeutic nanoplatforms based on biomaterials in the treatment of PCa.
Collapse
Affiliation(s)
- Siqi Liu
- Department of Urology, General Surgery Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130061, P. R. China
| | - Hui Guo
- Department of Urology, General Surgery Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130061, P. R. China
| | - Di Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130061, P. R. China
| | - Chunxi Wang
- Department of Urology, General Surgery Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130061, P. R. China
| |
Collapse
|
3
|
Lee M, Lee M, Song Y, Kim S, Park N. Recent Advances and Prospects of Nucleic Acid Therapeutics for Anti-Cancer Therapy. Molecules 2024; 29:4737. [PMID: 39407665 PMCID: PMC11477775 DOI: 10.3390/molecules29194737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Nucleic acid therapeutics are promising alternatives to conventional anti-cancer therapy, such as chemotherapy and radiation therapy. While conventional therapies have limitations, such as high side effects, low specificity, and drug resistance, nucleic acid therapeutics work at the gene level to eliminate the cause of the disease. Nucleic acid therapeutics treat diseases in various forms and using different mechanisms, including plasmid DNA (pDNA), small interfering RNA (siRNA), anti-microRNA (anti-miR), microRNA mimics (miRNA mimic), messenger RNA (mRNA), aptamer, catalytic nucleic acid (CNA), and CRISPR cas9 guide RNA (gRNA). In addition, nucleic acids have many advantages as nanomaterials, such as high biocompatibility, design flexibility, low immunogenicity, small size, relatively low price, and easy functionalization. Nucleic acid therapeutics can have a high therapeutic effect by being used in combination with various nucleic acid nanostructures, inorganic nanoparticles, lipid nanoparticles (LNPs), etc. to overcome low physiological stability and cell internalization efficiency. The field of nucleic acid therapeutics has advanced remarkably in recent decades, and as more and more nucleic acid therapeutics have been approved, they have already demonstrated their potential to treat diseases, including cancer. This review paper introduces the current status and recent advances in nucleic acid therapy for anti-cancer treatment and discusses the tasks and prospects ahead.
Collapse
Affiliation(s)
- Minhyuk Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Minjae Lee
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea
| | - Youngseo Song
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea
| | - Sungjee Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Nokyoung Park
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea
| |
Collapse
|
4
|
Cui M, Qian L, Lu K, Liu J, Chu B, Wu X, Dong F, Song B, He Y. Defect-Rich Metastable MoS 2 Promotes Macrophage Reprogramming in Breast Cancer: A Clinical Perspective. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402101. [PMID: 38888117 DOI: 10.1002/smll.202402101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Tumor-associated macrophages (TAMs) play a crucial function in solid tumor antigen clearance and immune suppression. Notably, 2D transitional metal dichalcogenides (i.e., molybdenum disulfide (MoS2) nanozymes) with enzyme-like activity are demonstrated in animal models for cancer immunotherapy. However, in situ engineering of TAMs polarization through sufficient accumulation of free radical reactive oxygen species for immunotherapy in clinical samples remains a significant challenge. In this study, defect-rich metastable MoS2 nanozymes, i.e., 1T2H-MoS2, are designed via reduction and phase transformation in molten sodium as a guided treatment for human breast cancer. The as-prepared 1T2H-MoS2 exhibited enhanced peroxidase-like activity (≈12-fold enhancement) than that of commercial MoS2, which is attributed to the charge redistribution and electronic state induced by the abundance of S vacancies. The 1T2H-MoS2 nanozyme can function as an extracellular hydroxyl radical generator, efficiently repolarizing TAMs into the M1-like phenotype and directly killing cancer cells. Moreover, the clinical feasibility of 1T2H-MoS2 is demonstrated via ex vivo therapeutic responses in human breast cancer samples. The apoptosis rate of cancer cells is 3.4 times greater than that of cells treated with chemotherapeutic drugs (i.e., doxorubicin).
Collapse
Affiliation(s)
- Mingyue Cui
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Lulu Qian
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Ke Lu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Jinjin Liu
- Department of Ultrasound, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Binbin Chu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Xiaofeng Wu
- Department of Ultrasound, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Fenglin Dong
- Department of Ultrasound, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Bin Song
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Yao He
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
- Macao Translational Medicine Center, Macau University of Science and Technology, Taipa, Macau SAR, 999078, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR, 999078, China
| |
Collapse
|
5
|
Mirek J, Bal W, Olbryt M. Melanoma genomics - will we go beyond BRAF in clinics? J Cancer Res Clin Oncol 2024; 150:433. [PMID: 39340537 PMCID: PMC11438618 DOI: 10.1007/s00432-024-05957-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
In the era of next-generation sequencing, the genetic background of cancer, including melanoma, appears to be thoroughly established. However, evaluating the oncogene BRAF mutation in codon V600 is still the only companion diagnostic genomic test commonly implemented in clinics for molecularly targeted treatment of advanced melanoma. Are we wasting the collected genomic data? Will we implement our current genomic knowledge of melanoma in clinics soon? This question is rather urgent because new therapeutic targets and biomarkers are needed to implement more personalized, patient-tailored therapy in clinics. Here, we provide an update on the molecular background of melanoma, including a description of four already established molecular subtypes: BRAF+, NRAS+, NF1+, and triple WT, as well as relatively new NGS-derived melanoma genes such as PREX2, ERBB4, PPP6C, FBXW7, PIK3CA, and IDH1. We also present a comparison of genomic profiles obtained in recent years with a focus on the most common melanoma genes. Finally, we propose our melanoma gene panel consisting of 22 genes that, in our opinion, are "must-have" genes in both melanoma-specific genomic tests and pan-cancer tests established to improve the treatment of melanoma further.
Collapse
Affiliation(s)
- Justyna Mirek
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, 44-101, Poland
| | - Wiesław Bal
- Chemotherapy Day Unit, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, 44-101, Poland
| | - Magdalena Olbryt
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, 44-101, Poland.
| |
Collapse
|
6
|
Feng N, Peng Z, Zhang X, Lin Y, Hu L, Zheng L, Tang BZ, Zhang J. Strategically engineered Au(I) complexes for orchestrated tumor eradication via chemo-phototherapy and induced immunogenic cell death. Nat Commun 2024; 15:8187. [PMID: 39294133 PMCID: PMC11410803 DOI: 10.1038/s41467-024-52458-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 09/09/2024] [Indexed: 09/20/2024] Open
Abstract
Cancer is a significant cause of death around the world, and for many varieties, treatment is not successful. Therefore, there is a need for the development of innovative, efficacious, and precisely targeted treatments. Here, we develop a series of Au(I) complexes (1-4) through rational manipulation of ligand structures, thereby achieving tumor cell specific targeting and orchestrated tumor eradication via chemo-phototherapy and induced immunogenic cell death. A comprehensive exploration based on in vitro and in vivo female mice experimentation shows that complex 4 exhibits proficiency in specific tumor imaging, endoplasmic reticulum targeting, and has robust therapeutic capabilities. Mechanistic elucidation indicates that the anticancer effect derives from the synergistic actions of thioredoxin reductase inhibition, highly efficient reactive oxygen species production and immunogenic cell death. This work presents a report on a robust Au(I) complex integrating three therapeutic modalities within a singular system. The strategy presented in this work provides a valuable reference for the development of high-performance therapeutic agents.
Collapse
Affiliation(s)
- Na Feng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhen Peng
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Xin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yiling Lin
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lianrui Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China.
| | - Jing Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
7
|
Eftekhari Z, Zohrabi H, Oghalaie A, Ebrahimi T, Shariati FS, Behdani M, Kazemi-Lomedasht F. Advancements and challenges in mRNA and ribonucleoprotein-based therapies: From delivery systems to clinical applications. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102313. [PMID: 39281702 PMCID: PMC11402252 DOI: 10.1016/j.omtn.2024.102313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
The use of mRNA and ribonucleoproteins (RNPs) as therapeutic agents is a promising strategy for treating diseases such as cancer and infectious diseases. This review provides recent advancements and challenges in mRNA- and RNP-based therapies, focusing on delivery systems such as lipid nanoparticles (LNPs), which ensure efficient delivery to target cells. Strategies such as microfluidic devices are employed to prepare LNPs loaded with mRNA and RNPs, demonstrating effective genome editing and protein expression in vitro and in vivo. These applications extend to cancer treatment and infectious disease management, with promising results in genome editing for cancer therapy using LNPs encapsulating Cas9 mRNA and single-guide RNA. In addition, tissue-specific targeting strategies offer potential for improved therapeutic outcomes and reduced off-target effects. Despite progress, challenges such as optimizing delivery efficiency and targeting remain. Future research should enhance delivery efficiency, explore tissue-specific targeting, investigate combination therapies, and advance clinical translation. In conclusion, mRNA- and RNP-based therapies offer a promising avenue for treating various diseases and have the potential to revolutionize medicine, providing new hope for patients worldwide.
Collapse
Affiliation(s)
- Zohre Eftekhari
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Horieh Zohrabi
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Akbar Oghalaie
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Tahereh Ebrahimi
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Sadat Shariati
- Department of Influenza and other Respiratory Viruses, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| |
Collapse
|
8
|
Wu Y, Chen Z, Zheng Z, Li X, Shu J, Mao R, An J, Fan S, Luo R, Guo Y, Xu W, Liang M, Huang K, Wang C. Tudor-SN exacerbates pathological vascular remodeling by promoting the polyubiquitination of PTEN via NEDD4-1. J Biomed Sci 2024; 31:88. [PMID: 39237902 PMCID: PMC11378411 DOI: 10.1186/s12929-024-01076-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Dysregulation of vascular homeostasis can induce cardiovascular diseases and increase global mortality rates. Although lineage tracing studies have confirmed the pivotal role of modulated vascular smooth muscle cells (VSMCs) in the progression of pathological vascular remodeling, the underlying mechanisms are still unclear. METHODS The expression of Tudor-SN was determined in VSMCs of artery stenosis, PDGF-BB-treated VSMCs and atherosclerotic plaque. Loss- and gain-of-function approaches were used to explore the role of Tudor-SN in the modulation of VSMCs phenotype both in vivo and in vitro. RESULTS In this study, we demonstrate that Tudor-SN expression is significantly elevated in injury-induced arteries, atherosclerotic plaques, and PDGF-BB-stimulated VSMCs. Tudor-SN deficiency attenuates, but overexpression aggravates the synthetic phenotypic switching of VSMCs and pathological vascular remodeling. Loss of Tudor-SN also reduces atherosclerotic plaque formation and increases plaque stability. Mechanistically, PTEN, the major regulator of the MAPK and PI3K-AKT signaling pathways, plays a vital role in Tudor-SN-mediated regulation on proliferation and migration of VSMCs. Tudor-SN facilitates the polyubiquitination and degradation of PTEN via NEDD4-1, thus exacerbating vascular remodeling under pathological conditions. BpV (HOpic), a specific inhibitor of PTEN, not only counteracts the protective effect of Tudor-SN deficiency on proliferation and migration of VSMCs, but also abrogates the negative effect of carotid artery injury-induced vascular remodeling in mice. CONCLUSIONS Our findings reveal that Tudor-SN deficiency significantly ameliorated pathological vascular remodeling by reducing NEDD4-1-dependent PTEN polyubiquitination, suggesting that Tudor-SN may be a novel target for preventing vascular diseases.
Collapse
Affiliation(s)
- Yichen Wu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, Hubei, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China
- Hubei Clinical Research Center for Metabolic and Cardiovascular Disease, Wuhan, China
| | - Zilong Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, Hubei, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Zhe Zheng
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiaoguang Li
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Jiangcheng Shu
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Ruiqi Mao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, Hubei, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Jie An
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, Hubei, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Siyuan Fan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, Hubei, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Ruijie Luo
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, Hubei, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yi Guo
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, Hubei, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Wenjing Xu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, Hubei, China
| | - Minglu Liang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China
- Hubei Clinical Research Center for Metabolic and Cardiovascular Disease, Wuhan, China
| | - Kai Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, Hubei, China.
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China.
- Hubei Clinical Research Center for Metabolic and Cardiovascular Disease, Wuhan, China.
| | - Cheng Wang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
- Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, Hubei, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China.
- Hubei Clinical Research Center for Metabolic and Cardiovascular Disease, Wuhan, China.
| |
Collapse
|
9
|
Chen Y, Zhou Q, Jia Z, Cheng N, Zhang S, Chen W, Wang L. Enhancing cancer immunotherapy: Nanotechnology-mediated immunotherapy overcoming immunosuppression. Acta Pharm Sin B 2024; 14:3834-3854. [PMID: 39309502 PMCID: PMC11413684 DOI: 10.1016/j.apsb.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/12/2024] [Accepted: 05/24/2024] [Indexed: 09/25/2024] Open
Abstract
Immunotherapy is an important cancer treatment method that offers hope for curing cancer patients. While immunotherapy has achieved initial success, a major obstacle to its widespread adoption is the inability to benefit the majority of patients. The success or failure of immunotherapy is closely linked to the tumor's immune microenvironment. Recently, there has been significant attention on strategies to regulate the tumor immune microenvironment in order to stimulate anti-tumor immune responses in cancer immunotherapy. The distinctive physical properties and design flexibility of nanomedicines have been extensively utilized to target immune cells (including tumor-associated macrophages (TAMs), T cells, myeloid-derived suppressor cells (MDSCs), and tumor-associated fibroblasts (TAFs)), offering promising advancements in cancer immunotherapy. In this article, we have reviewed treatment strategies aimed at targeting various immune cells to regulate the tumor immune microenvironment. The focus is on cancer immunotherapy models that are based on nanomedicines, with the goal of inducing or enhancing anti-tumor immune responses to improve immunotherapy. It is worth noting that combining cancer immunotherapy with other treatments, such as chemotherapy, radiotherapy, and photodynamic therapy, can maximize the therapeutic effects. Finally, we have identified the challenges that nanotechnology-mediated immunotherapy needs to overcome in order to design more effective nanosystems.
Collapse
Affiliation(s)
- Yunna Chen
- Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Qianqian Zhou
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Zongfang Jia
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Nuo Cheng
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Sheng Zhang
- Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Weidong Chen
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Lei Wang
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| |
Collapse
|
10
|
Sun Y, Liu Y, Li R, Zhang C, Wu M, Zhang X, Zheng A, Liao N, Zheng Y, Xu H, Zeng R, Zeng Y, Liu X. Multifunctional Biomimetic Nanocarriers for Dual-Targeted Immuno-Gene Therapy Against Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400951. [PMID: 38973319 PMCID: PMC11425963 DOI: 10.1002/advs.202400951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/22/2024] [Indexed: 07/09/2024]
Abstract
Growing evidences have proved that tumors evade recognition and attack by the immune system through immune escape mechanisms, and PDL1/Pbrm1 genes have a strong correlation with poor response or resistance to immune checkpoint blockade (ICB) therapy. Herein, a multifunctional biomimetic nanocarrier (siRNA-CaP@PD1-NVs) is developed, which can not only enhance the cytotoxic activity of immune cells by blocking PD1/PDL1 axis, but also reduce tumor immune escape via Pbrm1/PDL1 gene silencing, leading to a significant improvement in tumor immunosuppressive microenvironment. Consequently, the nanocarrier promotes DC cell maturation, enhances the infiltration and activity of CD8+ T cells, and forms long-term immune memory, which can effectively inhibit tumor growth or even eliminate tumors, and prevent tumor recurrence and metastasis. Overall, this study presents a powerful strategy for co-delivery of siRNA drugs, immune adjuvant, and immune checkpoint inhibitors, and holds great promise for improving the effectiveness and safety of current immunotherapy regimens.
Collapse
Affiliation(s)
- Yupeng Sun
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
| | - Yan Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- College of Biological Science and EngineeringFuzhou UniversityFuzhou350116P. R. China
| | - Rui Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- College of Biological Science and EngineeringFuzhou UniversityFuzhou350116P. R. China
| | - Cuilin Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
| | - Xiaolong Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
| | - Aixian Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
| | - Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
| | - Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
| | - Haipo Xu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
| | - Rui Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
- Liver Disease CenterThe First Affiliated Hospital of Fujian Medical UniversityFuzhou350005P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Institute of Research on the Structure of Matter Chinese Academy of SciencesFuzhou350002P. R. China
| |
Collapse
|
11
|
Gao Y, Yang L, Li Z, Peng X, Li H. mRNA vaccines in tumor targeted therapy: mechanism, clinical application, and development trends. Biomark Res 2024; 12:93. [PMID: 39217377 PMCID: PMC11366172 DOI: 10.1186/s40364-024-00644-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Malignant tumors remain a primary cause of human mortality. Among the various treatment modalities for neoplasms, tumor vaccines have consistently shown efficacy and promising potential. These vaccines offer advantages such as specificity, safety, and tolerability, with mRNA vaccines representing promising platforms. By introducing exogenous mRNAs encoding antigens into somatic cells and subsequently synthesizing antigens through gene expression systems, mRNA vaccines can effectively induce immune responses. Katalin Karikó and Drew Weissman were awarded the 2023 Nobel Prize in Physiology or Medicine for their great contributions to mRNA vaccine research. Compared with traditional tumor vaccines, mRNA vaccines have several advantages, including rapid preparation, reduced contamination, nonintegrability, and high biodegradability. Tumor-targeted therapy is an innovative treatment modality that enables precise targeting of tumor cells, minimizes damage to normal tissues, is safe at high doses, and demonstrates great efficacy. Currently, targeted therapy has become an important treatment option for malignant tumors. The application of mRNA vaccines in tumor-targeted therapy is expanding, with numerous clinical trials underway. We systematically outline the targeted delivery mechanism of mRNA vaccines and the mechanism by which mRNA vaccines induce anti-tumor immune responses, describe the current research and clinical applications of mRNA vaccines in tumor-targeted therapy, and forecast the future development trends of mRNA vaccine application in tumor-targeted therapy.
Collapse
Affiliation(s)
- Yu Gao
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Zhenning Li
- Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, 110001, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| |
Collapse
|
12
|
Luobin L, Wanxin H, Yingxin G, Qinzhou Z, Zefeng L, Danyang W, Huaqin L. Nanomedicine-induced programmed cell death in cancer therapy: mechanisms and perspectives. Cell Death Discov 2024; 10:386. [PMID: 39209834 PMCID: PMC11362291 DOI: 10.1038/s41420-024-02121-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The balance of programmed cell death (PCD) mechanisms, including apoptosis, autophagy, necroptosis and others, is pivotal in cancer progression and treatment. Dysregulation of these pathways results in uncontrolled cell growth and resistance to conventional therapies. Nanomedicine offers a promising solution in oncology through targeted drug delivery enabling precise targeting of cancer cells while preserving healthy tissues. This approach reduces the side effects of traditional chemotherapy and enhances treatment efficacy by engaging PCD pathways. We details each PCD pathway, their mechanisms, and innovative nanomedicine strategies to activate these pathways, thereby enhancing therapeutic specificity and minimizing harm to healthy tissues. The precision of nanotechnology in targeting PCD pathways promises significant improvements in cancer treatment outcomes. This synergy between nanotechnology and targeted PCD activation could lead to more effective and less toxic cancer therapies, heralding a new era in cancer treatment.
Collapse
Affiliation(s)
- Lin Luobin
- School of Health Sciences, Guangzhou Xinhua University, 19 Huamei Road, Tianhe District, Guangzhou, 510520, China
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - He Wanxin
- School of Health Sciences, Guangzhou Xinhua University, 19 Huamei Road, Tianhe District, Guangzhou, 510520, China
| | - Guo Yingxin
- School of Health Sciences, Guangzhou Xinhua University, 19 Huamei Road, Tianhe District, Guangzhou, 510520, China
| | - Zheng Qinzhou
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Liang Zefeng
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wu Danyang
- School of Health Sciences, Guangzhou Xinhua University, 19 Huamei Road, Tianhe District, Guangzhou, 510520, China
| | - Li Huaqin
- School of Health Sciences, Guangzhou Xinhua University, 19 Huamei Road, Tianhe District, Guangzhou, 510520, China.
| |
Collapse
|
13
|
Li J, Zhang Y, Yang YG, Sun T. Advancing mRNA Therapeutics: The Role and Future of Nanoparticle Delivery Systems. Mol Pharm 2024; 21:3743-3763. [PMID: 38953708 DOI: 10.1021/acs.molpharmaceut.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The coronavirus (COVID-19) pandemic has underscored the critical role of mRNA-based vaccines as powerful, adaptable, readily manufacturable, and safe methodologies for prophylaxis. mRNA-based treatments are emerging as a hopeful avenue for a plethora of conditions, encompassing infectious diseases, cancer, autoimmune diseases, genetic diseases, and rare disorders. Nonetheless, the in vivo delivery of mRNA faces challenges due to its instability, suboptimal delivery, and potential for triggering undesired immune reactions. In this context, the development of effective drug delivery systems, particularly nanoparticles (NPs), is paramount. Tailored with biophysical and chemical properties and susceptible to surface customization, these NPs have demonstrated enhanced mRNA delivery in vivo and led to the approval of several NPs-based formulations for clinical use. Despite these advancements, the necessity for developing a refined, targeted NP delivery system remains imperative. This review comprehensively surveys the biological, translational, and clinical progress in NPs-mediated mRNA therapeutics for both the prevention and treatment of diverse diseases. By addressing critical factors for enhancing existing methodologies, it aims to inform the future development of precise and efficacious mRNA-based therapeutic interventions.
Collapse
Affiliation(s)
- Jiaxuan Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China
| | - Yuning Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China
- International Center of Future Science, Jilin University, Changchun, Jilin 130021, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China
- International Center of Future Science, Jilin University, Changchun, Jilin 130021, China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
14
|
Li W, Huang M, Wu Z, Zhang Y, Cai Y, Su J, Xia J, Yang F, Xiao D, Yang W, Xu Y, Liu Z. mRNA-Lipid Nanoparticle-Mediated Restoration of PTPN14 Exhibits Antitumor Effects by Overcoming Anoikis Resistance in Triple-Negative Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309988. [PMID: 39189475 PMCID: PMC11348215 DOI: 10.1002/advs.202309988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/11/2024] [Indexed: 08/28/2024]
Abstract
Triple-negative breast cancer (TNBC) poses a challenging prognosis due to early metastasis driven by anoikis resistance. Identifying crucial regulators to overcome this resistance is vital for improving patient outcomes. In this study, a genome-wide CRISPR/Cas9 knockout screen in TNBC cells has identified tyrosine-protein phosphatase nonreceptor type 14 (PTPN14) as a key regulator of anoikis resistance. PTPN14 expression has shown a progressive decrease from normal breast tissue to metastatic tumors. Overexpressing PTPN14 has induced anoikis and inhibited cell proliferation in TNBC cells, while normal human breast cells are unaffected. Mechanistically, PTPN14 is identified as a key factor in dephosphorylating breast cancer antiestrogen resistance 3, a novel substrate, leading to the subsequent inhibition of PI3K/AKT and ERK signaling pathways. Local delivery of in vitro transcribed PTPN14 mRNA encapsulated by lipid nanoparticles in a TNBC mouse model has effectively inhibited tumor growth and metastasis, prolonging survival. The study underscores PTPN14 as a potential therapeutic target for metastatic TNBC, with the therapeutic strategy based on mRNA expression of PTPN14 demonstrating clinical application prospects in alleviating the burden of both primary tumors and metastatic disease.
Collapse
Affiliation(s)
- Wei Li
- Department of Clinical PharmacologyHunan Key Laboratory of Pharmacogeneticsand National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008P. R. China
- Institute of Clinical PharmacologyEngineering Research Center for applied Technology of Pharmacogenomics of Ministry of EducationCentral South UniversityChangsha410078P. R. China
| | - Masha Huang
- Department of Biochemistry and Molecular Cell BiologyShanghai Key Laboratory for Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Zhaoping Wu
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangsha410008P. R. China
| | - Yu Zhang
- Department of Biochemistry and Molecular Cell BiologyShanghai Key Laboratory for Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Ying Cai
- Department of Biochemistry and Molecular Cell BiologyShanghai Key Laboratory for Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Juncheng Su
- Department of Gastrointestinal SurgeryRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127P. R. China
| | - Jia Xia
- Department of NephrologyRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127P. R. China
| | - Fan Yang
- Department of PhysiologySchool of Basic Medical SciencesShandong UniversityJinan250011P. R. China
| | - Desheng Xiao
- Department of PathologySchool of Basic MedicineXiangya HospitalCentral South UniversityChangsha410013P. R. China
| | - Wen Yang
- Department of Biochemistry and Molecular Cell BiologyShanghai Key Laboratory for Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Yingjie Xu
- Department of Biochemistry and Molecular Cell BiologyShanghai Key Laboratory for Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Zhaoqian Liu
- Department of Clinical PharmacologyHunan Key Laboratory of Pharmacogeneticsand National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008P. R. China
- Institute of Clinical PharmacologyEngineering Research Center for applied Technology of Pharmacogenomics of Ministry of EducationCentral South UniversityChangsha410078P. R. China
| |
Collapse
|
15
|
Wang B, Tang M, Chen Q, Ho W, Teng Y, Xiong X, Jia Z, Li X, Xu X, Zhang XQ. Delivery of mRNA Encoding Interleukin-12 and a Stimulator of Interferon Genes Agonist Potentiates Antitumor Efficacy through Reversing T Cell Exhaustion. ACS NANO 2024; 18:15499-15516. [PMID: 38832815 DOI: 10.1021/acsnano.4c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
T cell exhaustion has emerged as a major hurdle that impedes the clinical translation of stimulator of interferon genes (STING) agonists. It is crucial to explore innovative strategies to rejuvenate exhausted T cells and potentiate the antitumor efficacy. Here, we propose an approach utilizing MSA-2 as a STING agonist, along with nanoparticle-mediated delivery of mRNA encoding interleukin-12 (IL-12) to restore the function of T cells. We developed a lipid nanoparticle (DMT7-IL12 LNP) that encapsulated IL12 mRNA. Our findings convincingly demonstrated that the combination of MSA-2 and DMT7-IL12 LNP can effectively reverse the exhausted T cell phenotype, as evidenced by the enhanced secretion of cytokines, such as tumor necrosis factor alpha, interferon gamma, and Granzyme B, coupled with reduced levels of inhibitory molecules such as T cell immunoglobulin and mucin domain-3 and programmed cell death protein-1 on CD8+ T cells. Furthermore, this approach led to improved survival and tumor regression without causing any systemic toxicity in melanoma and lung metastasis models. These findings suggest that mRNA encoding IL-12 in conjunction with STING agonists has the potential to confer superior clinical outcomes, representing a promising advancement in cancer immunotherapy.
Collapse
Affiliation(s)
- Bin Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Maoping Tang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qijing Chen
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Yilong Teng
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaojian Xiong
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhitong Jia
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiuling Li
- Shanghai Institute of Biological Products Co., Ltd., Shanghai 200051, China
| | | | - Xue-Qing Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
16
|
Kim EH, Choi J, Jang H, Kim Y, Lee JW, Ryu Y, Choi J, Choi Y, Chi SG, Kwon IC, Yang Y, Kim SH. Targeted delivery of anti-miRNA21 sensitizes PD-L1 high tumor to immunotherapy by promoting immunogenic cell death. Theranostics 2024; 14:3777-3792. [PMID: 38994018 PMCID: PMC11234275 DOI: 10.7150/thno.97755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024] Open
Abstract
Rationale: Growing evidence has demonstrated that miRNA-21 (miR-21) upregulation is closely associated with tumor pathogenesis. However, the mechanisms by which miR-21 inhibition modulates the immunosuppressive tumor microenvironment (TME) and improves tumor sensitivity to immune checkpoint blockade therapies remain largely unexplored. In this study, we demonstrate the precise delivery of anti-miR-21 using a PD-L1-targeting peptide conjugate (P21) to the PD-L1high TME. Methods: Investigating miR-21 inhibition mechanisms involved conducting quantitative real-time PCR, western blot, flow cytometry, and confocal microscopy analyses. The antitumor efficacy and immune profile of P21 monotherapy, or combined with anti-PD-L1 immune checkpoint inhibitors, were assessed in mouse models bearing CT26.CL25 tumors and 4T1 breast cancer. Results Inhibition of oncogenic miR-21 in cancer cells by P21 efficiently activates tumor suppressor genes, inducing autophagy and endoplasmic reticulum stress. Subsequent cell-death-associated immune activation (immunogenic cell death) is initiated via the release of damage-associated molecular patterns. The in vivo results also illustrated that the immunogenic cell death triggered by P21 could effectively sensitize the immunosuppressive TME. That is, P21 enhances CD8+ T cell infiltration in tumor tissues by conferring immunogenicity to dying cancer cells and promoting dendritic cell maturation. Meanwhile, combining P21 with an anti-PD-L1 immune checkpoint inhibitor elicits a highly potent antitumor effect in a CT26.CL25 tumor-bearing mouse model and 4T1 metastatic tumor model. Conclusions: Collectively, we have clarified a miR-21-related immunogenic cell death mechanism through the precise delivery of anti-miR-21 to the PD-L1high TME. These findings highlight the potential of miR-21 as a target for immunotherapeutic interventions.
Collapse
Affiliation(s)
- Eun Hye Kim
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Jiwoong Choi
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hochung Jang
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Yelee Kim
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Jong Won Lee
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Youngri Ryu
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Jiwon Choi
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Bioengineering, Korea University, Seoul 02841, Republic of Korea
| | - Yeonho Choi
- Department of Bioengineering, Korea University, Seoul 02841, Republic of Korea
| | - Sung-Gil Chi
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Ick Chan Kwon
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Yoosoo Yang
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Sun Hwa Kim
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
17
|
Papi RM, Tasioulis KS, Kechagioglou PV, Papaioannou MA, Andriotis EG, Kyriakidis DA. Carbon Nanotube-Mediated Delivery of PTEN Variants: In Vitro Antitumor Activity in Breast Cancer Cells. Molecules 2024; 29:2785. [PMID: 38930850 PMCID: PMC11206347 DOI: 10.3390/molecules29122785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a crucial tumor suppressor protein with frequent mutations and alterations. Although protein therapeutics are already integral to numerous medical fields, their potential remains nascent. This study aimed to investigate the impact of stable, unphosphorylated recombinant human full-length PTEN and its truncated variants, regarding their tumor suppression activity with multiwalled-carbon nanotubes (MW-CNTs) as vehicles for their delivery in breast cancer cells (T-47D, ZR-75-1, and MCF-7). The cloning, overexpression, and purification of PTEN variants were achieved from E. coli, followed by successful binding to CNTs. Cell incubation with protein-functionalized CNTs revealed that the full-length PTEN-CNTs significantly inhibited cancer cell growth and stimulated apoptosis in ZR-75-1 and MCF-7 cells, while truncated PTEN fragments on CNTs had a lesser effect. The N-terminal fragment, despite possessing the active site, did not have the same effect as the full length PTEN, emphasizing the necessity of interaction with the C2 domain in the C-terminal tail. Our findings highlight the efficacy of full-length PTEN in inhibiting cancer growth and inducing apoptosis through the alteration of the expression levels of key apoptotic markers. In addition, the utilization of carbon nanotubes as a potent PTEN protein delivery system provides valuable insights for future applications in in vivo models and clinical studies.
Collapse
Affiliation(s)
- Rigini M. Papi
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (K.S.T.); (P.V.K.); (D.A.K.)
| | - Konstantinos S. Tasioulis
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (K.S.T.); (P.V.K.); (D.A.K.)
| | - Petros V. Kechagioglou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (K.S.T.); (P.V.K.); (D.A.K.)
| | - Maria A. Papaioannou
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Eleftherios G. Andriotis
- Laboratory of Organic Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Dimitrios A. Kyriakidis
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (K.S.T.); (P.V.K.); (D.A.K.)
| |
Collapse
|
18
|
Chen X, Gong L, Wang Y, Ye C, Guo H, Gao S, Chen J, Wang Z, Gao Y. IL-23 inhibitor enhances the effects of PTEN DNA-loaded lipid nanoparticles for metastatic CRPC therapy. Front Pharmacol 2024; 15:1388613. [PMID: 38898927 PMCID: PMC11186457 DOI: 10.3389/fphar.2024.1388613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/09/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction: Metastatic castration-resistant prostate cancer (mCRPC) patients face challenges due to limited treatment options. About 50% of patients with mCRPC have a functional loss of phosphatase and tensin homology deleted on chromosome 10 (PTEN), leading to tumor progression, metastasis, and immune suppression. Moreover, elevated IL-23 produced by myeloid-derived suppressor cells (MDSCs) is found in CRPC patients, driving tumor progression. Therefore, a combination strategy based on PTEN restoration and IL-23 inhibition may block CRPC progression and metastasis. Methods: The antitumor effect of restoring PTEN expression combined with the IL-23 inhibitor Apilimod was studied in a mouse model of bone metastasis CRPC and mouse prostate cancer RM-1 cells. To verify the targeting ability of PTEN DNA coated with lipid nanoparticles (LNP@PTEN) in vitro and in vivo. In addition, RT-qPCR and flow cytometry were used to investigate the related mechanisms of the antitumor effect of LNP@PTEN combined with Apilimod. Results: LNPs exhibited significant tumor-targeting and tumor accumulation capabilities both in vitro and in vivo, enhancing PTEN expression and therapeutic efficacy. Additionally, the combination of LNP@PTEN with the IL-23 inhibitor Apilimod demonstrated enhanced inhibition of tumor growth, invasion, and metastasis (particularly secondary organ metastasis) compared to other groups, and extended the survival of mice to 41 days, providing a degree of bone protection. These effects may be attributed to the PTEN function restoration combined with IL-23 inhibition, which help reverse immune suppression in the tumor microenvironment by reducing MDSCs recruitment and increasing the CD8+/CD4+ T cell ratio. Discussion: In summary, these findings highlight the potential of LNPs for delivering gene therapeutic agents. And the combination of LNP@PTEN with Apilimod could achieve anti-tumor effects and improve tumor microenvironment. This combinational strategy opens new avenues for the treatment of mCRPC.
Collapse
Affiliation(s)
- Xinlu Chen
- School of Pharmacy, Fudan University, Shanghai, China
- Department of Pharmacy, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Luyao Gong
- School of Pharmacy, Fudan University, Shanghai, China
| | - Yuanyuan Wang
- School of Pharmacy, Fudan University, Shanghai, China
| | - Chen Ye
- Department of Pharmacy, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Huanhuan Guo
- Department of Pharmacy, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shen Gao
- Department of Pharmacy, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jiyuan Chen
- Department of Pharmacy, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuo Wang
- School of Pharmacy, Fudan University, Shanghai, China
| | - Yuan Gao
- School of Pharmacy, Fudan University, Shanghai, China
- Department of Pharmacy, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
19
|
Kim Y, Choi J, Kim EH, Park W, Jang H, Jang Y, Chi S, Kweon D, Lee K, Kim SH, Yang Y. Design of PD-L1-Targeted Lipid Nanoparticles to Turn on PTEN for Efficient Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309917. [PMID: 38520717 PMCID: PMC11165541 DOI: 10.1002/advs.202309917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/15/2024] [Indexed: 03/25/2024]
Abstract
Lipid nanoparticles (LNPs) exhibit remarkable mRNA delivery efficiency, yet their majority accumulate in the liver or spleen after injection. Tissue-specific mRNA delivery can be achieved through modulating LNP properties, such as tuning PEGylation or varying lipid components systematically. In this paper, a streamlined method is used for incorporating tumor-targeting peptides into the LNPs; the programmed death ligand 1 (PD-L1) binding peptides are conjugated to PEGylated lipids via a copper-free click reaction, and directly incorporated into the LNP composition (Pep LNPs). Notably, Pep LNPs display robust interaction with PD-L1 proteins, which leads to the uptake of LNPs into PD-L1 overexpressing cancer cells both in vitro and in vivo. To evaluate anticancer immunotherapy mediated by restoring tumor suppressor, mRNA encoding phosphatase and tensin homolog (PTEN) is delivered via Pep LNPs to PTEN-deficient triple-negative breast cancers (TNBCs). Pep LNPs loaded with PTEN mRNA specifically promotes autophagy-mediated immunogenic cell death in 4T1 tumors, resulting in effective anticancer immune responses. This study highlights the potential of tumor-targeted LNPs for mRNA-based cancer therapy.
Collapse
Affiliation(s)
- Yelee Kim
- Biomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Department of Life SciencesKorea UniversitySeoul02841Republic of Korea
| | - Jiwoong Choi
- Biomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Eun Hye Kim
- Biomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Department of Life SciencesKorea UniversitySeoul02841Republic of Korea
| | - Wonbeom Park
- Department of Integrative BiotechnologySungkyunkwan UniversitySuwon16419Republic of Korea
| | - Hochung Jang
- Biomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science and TechnologyKIST SchoolKorea University of Science and TechnologySeoul02792Republic of Korea
| | - Yeongji Jang
- Biomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Department of Life SciencesKorea UniversitySeoul02841Republic of Korea
| | - Sung‐Gil Chi
- Department of Life SciencesKorea UniversitySeoul02841Republic of Korea
| | - Dae‐Hyuk Kweon
- Department of Integrative BiotechnologySungkyunkwan UniversitySuwon16419Republic of Korea
| | - Kyuri Lee
- College of Pharmacy and Research Institute of Pharmaceutical SciencesGyeongsang National UniversityJinju52828Republic of Korea
| | - Sun Hwa Kim
- Biomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Yoosoo Yang
- Biomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science and TechnologyKIST SchoolKorea University of Science and TechnologySeoul02792Republic of Korea
| |
Collapse
|
20
|
Yang K, Bai B, Lei J, Yu X, Qi S, Wang Y, Huang F, Tong Z, Yu G. Biodegradable Lipid-Modified Poly(Guanidine Thioctic Acid)s: A Fortifier of Lipid Nanoparticles to Promote the Efficacy and Safety of mRNA Cancer Vaccines. J Am Chem Soc 2024; 146:11679-11693. [PMID: 38482849 DOI: 10.1021/jacs.3c14010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Lipid nanoparticles (LNPs)-based messenger RNA (mRNA) therapeutics have emerged with promising potentials in the fields of infectious diseases, cancer vaccines, and protein replacement therapies; however, their therapeutic efficacy and safety can still be promoted by the optimization of LNPs formulations. Unfortunately, current LNPs suffer from increased production of reactive oxygen species during translation, which leads to a decreased translation efficiency and the onset of inflammation and other side effects. Herein, we synthesize a lipid-modified poly(guanidine thioctic acid) polymer to fabricate novel LNPs for mRNA vaccines. The acquired G-LNPs significantly promote the translation efficiency of loaded mRNA and attenuate inflammation after vaccination through the elimination of reactive oxygen species that are responsible for translational inhibition and inflammatory responses. In vivo studies demonstrate the excellent antitumor efficacy of the G-LNPs@mRNA vaccine, and two-dose vaccination dramatically increases the population and infiltration of cytotoxic T cells due to the intense antitumor immune responses, thus generating superior antitumor outcomes compared with the mRNA vaccine prepared from traditional LNPs. By synergy with immune checkpoint blockade, the tumor inhibition of G-LNPs@mRNA is further boosted, indicating that G-LNPs-based mRNA vaccines will be powerful and versatile platforms to combat cancer.
Collapse
Affiliation(s)
- Kai Yang
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Bing Bai
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jiaqi Lei
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xinyang Yu
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Shaolong Qi
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yangfan Wang
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, People's Republic of China
| | - Zaizai Tong
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Guocan Yu
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
21
|
Xu H, Qin X, Guo Y, Zhao S, Feng X, Zhang R, Tian T, Kong L, Yang C, Zhang Z. Radiation-based immunogenic vaccine combined with a macrophage "checkpoint inhibitor" for boosting innate and adaptive immunity against metastatic colon cancers. Acta Pharm Sin B 2024; 14:2247-2262. [PMID: 38799631 PMCID: PMC11120279 DOI: 10.1016/j.apsb.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/08/2023] [Accepted: 12/16/2023] [Indexed: 05/29/2024] Open
Abstract
Immunogenic dying tumor cells hold promising prospects as cancer vaccines to activate systemic immunity against both primary and metastatic tumors. Especially, X-ray- induced dying tumor cells are rich in highly immunogenic tumor-associated antigens and self-generated dsDNA as potent adjuvants. However, we found that the X-ray induction process can result in the excessive exposure of phosphatidylserine in cancer vaccines, which can specifically bind with the MerTK receptor on macrophages, acting as a "checkpoint" to facilitate immune silence in the tumor microenvironment. Therefore, we developed a novel strategy combining X-ray-induced cancer vaccines with UNC2250, a macrophage MerTK "checkpoint inhibitor," for treating peritoneal carcinomatosis in colon cancer. By incorporating UNC2250 into the treatment regimen, immunosuppressive efferocytosis of macrophages, which relies on MerTK-directed recognition of phosphatidylserine on vaccines, was effectively blocked. Consequently, the immune analysis revealed that this combination strategy promoted the maturation of dendritic cells and M1-like repolarization of macrophages, thereby simultaneously eliciting robust adaptive and innate immunity. This innovative approach utilizing X-ray-induced vaccines combined with a checkpoint inhibitor may provide valuable insights for developing effective cancer vaccines and immunotherapies targeting colon cancer.
Collapse
Affiliation(s)
- Hongbo Xu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xianya Qin
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuanyuan Guo
- Wuhan Liyuan Hospital of Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Siyu Zhao
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xingxing Feng
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Runzan Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tianyi Tian
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Conglian Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Engineering Research Center for Novel Drug Delivery System, Wuhan 430030, China
| |
Collapse
|
22
|
Lu Q, Kou D, Lou S, Ashrafizadeh M, Aref AR, Canadas I, Tian Y, Niu X, Wang Y, Torabian P, Wang L, Sethi G, Tergaonkar V, Tay F, Yuan Z, Han P. Nanoparticles in tumor microenvironment remodeling and cancer immunotherapy. J Hematol Oncol 2024; 17:16. [PMID: 38566199 PMCID: PMC10986145 DOI: 10.1186/s13045-024-01535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer immunotherapy and vaccine development have significantly improved the fight against cancers. Despite these advancements, challenges remain, particularly in the clinical delivery of immunomodulatory compounds. The tumor microenvironment (TME), comprising macrophages, fibroblasts, and immune cells, plays a crucial role in immune response modulation. Nanoparticles, engineered to reshape the TME, have shown promising results in enhancing immunotherapy by facilitating targeted delivery and immune modulation. These nanoparticles can suppress fibroblast activation, promote M1 macrophage polarization, aid dendritic cell maturation, and encourage T cell infiltration. Biomimetic nanoparticles further enhance immunotherapy by increasing the internalization of immunomodulatory agents in immune cells such as dendritic cells. Moreover, exosomes, whether naturally secreted by cells in the body or bioengineered, have been explored to regulate the TME and immune-related cells to affect cancer immunotherapy. Stimuli-responsive nanocarriers, activated by pH, redox, and light conditions, exhibit the potential to accelerate immunotherapy. The co-application of nanoparticles with immune checkpoint inhibitors is an emerging strategy to boost anti-tumor immunity. With their ability to induce long-term immunity, nanoarchitectures are promising structures in vaccine development. This review underscores the critical role of nanoparticles in overcoming current challenges and driving the advancement of cancer immunotherapy and TME modification.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Dongquan Kou
- Department of Rehabilitation Medicine, Chongqing Public Health Medical Center, Chongqing, China
| | - Shenghan Lou
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250000, Shandong, China
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Israel Canadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, USA
| | - Xiaojia Niu
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Pedram Torabian
- Cumming School of Medicine, Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Medical Sciences, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Lingzhi Wang
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore
| | - Gautam Sethi
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore.
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore, Republic of Singapore
| | - Franklin Tay
- The Graduate School, Augusta University, 30912, Augusta, GA, USA
| | - Zhennan Yuan
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Peng Han
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China.
| |
Collapse
|
23
|
Liu J, Cabral H, Mi P. Nanocarriers address intracellular barriers for efficient drug delivery, overcoming drug resistance, subcellular targeting and controlled release. Adv Drug Deliv Rev 2024; 207:115239. [PMID: 38437916 DOI: 10.1016/j.addr.2024.115239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
The cellular barriers are major bottlenecks for bioactive compounds entering into cells to accomplish their biological functions, which limits their biomedical applications. Nanocarriers have demonstrated high potential and benefits for encapsulating bioactive compounds and efficiently delivering them into target cells by overcoming a cascade of intracellular barriers to achieve desirable therapeutic and diagnostic effects. In this review, we introduce the cellular barriers ahead of drug delivery and nanocarriers, as well as summarize recent advances and strategies of nanocarriers for increasing internalization with cells, promoting intracellular trafficking, overcoming drug resistance, targeting subcellular locations and controlled drug release. Lastly, the future perspectives of nanocarriers for intracellular drug delivery are discussed, which mainly focus on potential challenges and future directions. Our review presents an overview of intracellular drug delivery by nanocarriers, which may encourage the future development of nanocarriers for efficient and precision drug delivery into a wide range of cells and subcellular targets.
Collapse
Affiliation(s)
- Jing Liu
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17 South Renmin Road, Chengdu, Sichuan 610041, China
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Peng Mi
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17 South Renmin Road, Chengdu, Sichuan 610041, China.
| |
Collapse
|
24
|
Yadav P, Rana K, Nardini V, Khan A, Pani T, Kar A, Jain D, Chakraborty R, Singh R, Jha SK, Mehta D, Sharma H, Sharma RD, Deo SVS, Sengupta S, Patil VS, Faccioli LH, Dasgupta U, Bajaj A. Engineered nanomicelles inhibit the tumour progression via abrogating the prostaglandin-mediated immunosuppression. J Control Release 2024; 368:548-565. [PMID: 38462044 DOI: 10.1016/j.jconrel.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Cancer treatment is challenged due to immunosuppressive inflammatory tumour microenvironment (TME) caused by infiltration of tumour-promoting and inhibition of tumour-inhibiting immune cells. Here, we report the engineering of chimeric nanomicelles (NMs) targeting the cell proliferation using docetaxel (DTX) and inflammation using dexamethasone (DEX) that alters the immunosuppressive TME. We show that a combination of phospholipid-DTX conjugate and PEGylated-lipid-DEX conjugate can self-assemble to form sub-100 nm chimeric NMs (DTX-DEX NMs). Anti-cancer activities against syngeneic and xenograft mouse models showed that the DTX-DEX NMs are more effective in tumour regression, enhance the survival of mice over other treatment modes, and alter the tumour stroma. DTX-DEX NMs cause a significant reduction in myeloid-derived suppressor cells, alter the polarization of macrophages, and enhance the accumulation of cytotoxic CD4+ and CD8+ T cells in tumour tissues, along with alterations in cytokine expression. We further demonstrated that these DTX-DEX NMs inhibit the synthesis of prostaglandins, especially PGE2, by targeting the cyclooxygenase 2 that is partly responsible for immunosuppressive TME. Therefore, this study presents, for the first time, the engineering of lithocholic acid-derived chimeric NMs that affect the prostaglandin pathway, alter the TME, and mitigate tumour progression with enhanced mice survival.
Collapse
Affiliation(s)
- Poonam Yadav
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3(rd) Milestone Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Kajal Rana
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3(rd) Milestone Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Viviani Nardini
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av do Café, s.n, Ribeirão Preto 14040-903, SP, Brazil
| | - Ali Khan
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Manesar, Gurgaon 122413, Haryana, India
| | - Trishna Pani
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Manesar, Gurgaon 122413, Haryana, India
| | - Animesh Kar
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3(rd) Milestone Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Dolly Jain
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3(rd) Milestone Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Ruchira Chakraborty
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3(rd) Milestone Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Ragini Singh
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3(rd) Milestone Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Somesh K Jha
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3(rd) Milestone Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Devashish Mehta
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Manesar, Gurgaon 122413, Haryana, India
| | - Harsh Sharma
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Manesar, Gurgaon 122413, Haryana, India
| | - Ravi Datta Sharma
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Manesar, Gurgaon 122413, Haryana, India
| | - S V S Deo
- Department of Surgical Oncology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sagar Sengupta
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India; National Institute of Biomedical Genomics, Post office- Netaji Subhas Sanatorium, Kalyani 741251, India
| | - Veena S Patil
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Lúcia Helena Faccioli
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av do Café, s.n, Ribeirão Preto 14040-903, SP, Brazil
| | - Ujjaini Dasgupta
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Manesar, Gurgaon 122413, Haryana, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3(rd) Milestone Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India.
| |
Collapse
|
25
|
Li P, Xie Y, Wang J, Bao C, Duan J, Liu Y, Luo Q, Xu J, Ren Y, Jiang M, Li J, Guo H, Zhao H, Wang G, Liang Y, Lu W. Gene engineered exosome reverses T cell exhaustion in cancer immunotherapy. Bioact Mater 2024; 34:466-481. [PMID: 38292412 PMCID: PMC10825617 DOI: 10.1016/j.bioactmat.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/23/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Cancer patients by immune checkpoint therapy have achieved long-term remission, with no recurrence of clinical symptoms of cancer for many years. Nevertheless, more than half of cancer patients are not responsive to this therapy due to immune exhaustion. Here, we report a novel gene engineered exosome which is rationally designed by engineering PD1 gene and simultaneously enveloping an immune adjuvant imiquimod (PD1-Imi Exo) for boosting response of cancer immune checkpoint blockage therapy. The results showed that PD1-Imi Exo had a vesicular round shape (approximately 139 nm), revealed a significant targeting and a strong binding effect with both cancer cell and dendritic cell, and demonstrated a remarkable therapeutic efficacy in the melanoma-bearing mice and in the breast cancer-bearing mice. The mechanism was associated with two facts that PD1-Imi Exo blocked the binding of CD8+ T cell with cancer cell, displaying a PD1/PDL1 immune checkpoint blockage effect, and that imiquimod released from PD1-Imi Exo promoted the maturation of immature dendritic cell, exhibiting a reversing effect on the immune exhaustion through activating and restoring function of CD8+ T cell. In conclusion, the gene engineered exosome could be used for reversing T cell exhaustion in cancer immunotherapy. This study also offers a promising new strategy for enhancing PD1/PDL1 therapeutic efficacy, preventing tumor recurrence or metastasis after surgery by rebuilding the patients' immunity, thus consolidating the overall prognosis.
Collapse
Affiliation(s)
- Peishan Li
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ying Xie
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jinling Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chunjie Bao
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jialun Duan
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yixuan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Qian Luo
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jiarui Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yuxin Ren
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Min Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jianwei Li
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Haitao Guo
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Huihui Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Guiling Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yanqin Liang
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Beijing Institute of Collaborative Innovation, Beijing, 100044, China
| | - Wanliang Lu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
26
|
Lee JY, Bhandare RR, Boddu SHS, Shaik AB, Saktivel LP, Gupta G, Negi P, Barakat M, Singh SK, Dua K, Chellappan DK. Molecular mechanisms underlying the regulation of tumour suppressor genes in lung cancer. Biomed Pharmacother 2024; 173:116275. [PMID: 38394846 DOI: 10.1016/j.biopha.2024.116275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Tumour suppressor genes play a cardinal role in the development of a large array of human cancers, including lung cancer, which is one of the most frequently diagnosed cancers worldwide. Therefore, extensive studies have been committed to deciphering the underlying mechanisms of alterations of tumour suppressor genes in governing tumourigenesis, as well as resistance to cancer therapies. In spite of the encouraging clinical outcomes demonstrated by lung cancer patients on initial treatment, the subsequent unresponsiveness to first-line treatments manifested by virtually all the patients is inherently a contentious issue. In light of the aforementioned concerns, this review compiles the current knowledge on the molecular mechanisms of some of the tumour suppressor genes implicated in lung cancer that are either frequently mutated and/or are located on the chromosomal arms having high LOH rates (1p, 3p, 9p, 10q, 13q, and 17p). Our study identifies specific genomic loci prone to LOH, revealing a recurrent pattern in lung cancer cases. These loci, including 3p14.2 (FHIT), 9p21.3 (p16INK4a), 10q23 (PTEN), 17p13 (TP53), exhibit a higher susceptibility to LOH due to environmental factors such as exposure to DNA-damaging agents (carcinogens in cigarette smoke) and genetic factors such as chromosomal instability, genetic mutations, DNA replication errors, and genetic predisposition. Furthermore, this review summarizes the current treatment landscape and advancements for lung cancers, including the challenges and endeavours to overcome it. This review envisages inspired researchers to embark on a journey of discovery to add to the list of what was known in hopes of prompting the development of effective therapeutic strategies for lung cancer.
Collapse
Affiliation(s)
- Jia Yee Lee
- School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Richie R Bhandare
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates.
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates
| | - Afzal B Shaik
- St. Mary's College of Pharmacy, St. Mary's Group of Institutions Guntur, Affiliated to Jawaharlal Nehru Technological University Kakinada, Chebrolu, Guntur, Andhra Pradesh 522212, India; Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Lakshmana Prabu Saktivel
- Department of Pharmaceutical Technology, University College of Engineering (BIT Campus), Anna University, Tiruchirappalli 620024, India
| | - Gaurav Gupta
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan 302017, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University, PO Box 9, Solan, Himachal Pradesh 173229, India
| | - Muna Barakat
- Department of Clinical Pharmacy & Therapeutics, Applied Science Private University, Amman-11937, Jordan
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney 2007, Australia
| | - Kamal Dua
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia.
| |
Collapse
|
27
|
Zhou F, Huang L, Li S, Yang W, Chen F, Cai Z, Liu X, Xu W, Lehto V, Lächelt U, Huang R, Shi Y, Lammers T, Tao W, Xu ZP, Wagner E, Xu Z, Yu H. From structural design to delivery: mRNA therapeutics for cancer immunotherapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20210146. [PMID: 38855617 PMCID: PMC11022630 DOI: 10.1002/exp.20210146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/15/2023] [Indexed: 06/11/2024]
Abstract
mRNA therapeutics have emerged as powerful tools for cancer immunotherapy in accordance with their superiority in expressing all sequence-known proteins in vivo. In particular, with a small dosage of delivered mRNA, antigen-presenting cells (APCs) can synthesize mutant neo-antigens and multi-antigens and present epitopes to T lymphocytes to elicit antitumor effects. In addition, expressing receptors like chimeric antigen receptor (CAR), T-cell receptor (TCR), CD134, and immune-modulating factors including cytokines, interferons, and antibodies in specific cells can enhance immunological response against tumors. With the maturation of in vitro transcription (IVT) technology, large-scale and pure mRNA encoding specific proteins can be synthesized quickly. However, the clinical translation of mRNA-based anticancer strategies is restricted by delivering mRNA into target organs or cells and the inadequate endosomal escape efficiency of mRNA. Recently, there have been some advances in mRNA-based cancer immunotherapy, which can be roughly classified as modifications of the mRNA structure and the development of delivery systems, especially the lipid nanoparticle platforms. In this review, the latest strategies for overcoming the limitations of mRNA-based cancer immunotherapies and the recent advances in delivering mRNA into specific organs and cells are summarized. Challenges and opportunities for clinical applications of mRNA-based cancer immunotherapy are also discussed.
Collapse
Affiliation(s)
- Feng Zhou
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lujia Huang
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Shiqin Li
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Wenfang Yang
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Fangmin Chen
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
| | - Wujun Xu
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Vesa‐Pekka Lehto
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Ulrich Lächelt
- Department of Pharmaceutical SciencesUniversity of ViennaViennaAustria
| | - Rongqin Huang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug DeliveryMinistry of Education, Fudan UniversityShanghaiChina
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular ImagingRWTH Aachen University ClinicAachenGermany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular ImagingRWTH Aachen University ClinicAachenGermany
| | - Wei Tao
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Zhi Ping Xu
- Institute of Biomedical Health Technology and Engineering and Institute of Systems and Physical BiologyShenzhen Bay LaboratoryShenzhenChina
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for NanoscienceLudwig‐Maximilians‐UniversitätMunichGermany
| | - Zhiai Xu
- School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiChina
| | - Haijun Yu
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
28
|
Wang X, Li F, Zhang J, Guo L, Shang M, Sun X, Xiao S, Shi D, Meng D, Zhao Y, Jiang C, Li J. A combination of PD-L1-targeted IL-15 mRNA nanotherapy and ultrasound-targeted microbubble destruction for tumor immunotherapy. J Control Release 2024; 367:45-60. [PMID: 38246204 DOI: 10.1016/j.jconrel.2024.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
PD-1/PD-L1-based immune checkpoint blockade therapy has shown limited benefits in tumor patients, partially attributed to the inadequate infiltration of immune effector cells within tumors. Here, we established a nanoplatform named DPPA/IL-15 NPs to target PD-L1 for the tumor delivery of IL-15 messenger RNA (mRNA). DPPA/IL-15 NPs were endowed with ultrasound responsiveness and contrast-enhanced ultrasound (CEUS) imaging performance. They effectively protected IL-15 mRNA from degradation and specifically transfected it into tumor cells through the utilization of ultrasound-targeted microbubble destruction (UTMD). This resulted in the activation of IL-15-related immune effector cells while blocking the PD-1/PD-L1 pathway. In addition, UTMD could generate reactive oxygen species (ROS) that induce endoplasmic reticulum (ER) stress-driven immunogenic cell death (ICD), initiating anti-tumor immunity. In vitro and in vivo studies revealed that this combination therapy could induce a robust systemic immune response and enhance anti-tumor efficacy. Thus, this combination therapy has the potential for clinical translation through enhanced immunotherapy and provides real-time ultrasound imaging guidance.
Collapse
Affiliation(s)
- Xiaoxuan Wang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Fangxuan Li
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Jialu Zhang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Lu Guo
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Mengmeng Shang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Xiao Sun
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Shan Xiao
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Dandan Shi
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Dong Meng
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Yading Zhao
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Chao Jiang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Jie Li
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Department of Ultrasound, Qilu Hospital (Qingdao) of Shandong University, Qingdao, Shandong 266035, China.
| |
Collapse
|
29
|
Chen Y, Liu K, Zhang G, Cheng J, Tu J. Monoclonal antibody-based systematic identification of SUMO1-modification sites reveals TFII-I SUMOylation is involved in tumor growth. J Cell Physiol 2024; 239:e31080. [PMID: 37450667 DOI: 10.1002/jcp.31080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
SUMOylation plays an essential role in diverse physiological and pathological processes. Identification of wild-type SUMO1-modification sites by mass spectrometry is still challenging. In this study, we produced a monoclonal SUMO1C-K antibody recognizing SUMOylated peptides and proposed an efficient streamline for identification of SUMOylation sites. We identified 471 SUMOylation sites in 325 proteins from five raw data. These identified sites exhibit a high positive rate when evaluated by mutation-verified SUMOylation sites. We identified many SUMOylated proteins involved in mitochondrial metabolism and non-membrane-bounded organelles formation. We proposed a SUMOylation motif, ΨKXD/EP, where proline is required for efficient SUMOylation. We further revealed SUMOylation of TFII-I was stimulated by growth signals and was required for nucleus-localization of p-ERK1/2. Mutation of SUMOylation sites of TFII-I suppressed tumor cell growth in vitro and in vivo. Taken together, we provided a strategy for personalized identification of wild-type SUMO1-modification sites and revealed the physiological significance of TFII-I SUMOylation in this study.
Collapse
Affiliation(s)
- Yalan Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kexin Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Geqiang Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Tu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Liu Y, Yan Q, Zeng Z, Fan C, Xiong W. Advances and prospects of mRNA vaccines in cancer immunotherapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189068. [PMID: 38171406 DOI: 10.1016/j.bbcan.2023.189068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
Cancer vaccines, designed to activate the body's own immune system to fight against tumors, are a current trend in cancer treatment and receiving increasing attention. Cancer vaccines mainly include oncolytic virus vaccine, cell vaccine, peptide vaccine and nucleic acid vaccine. Over the course of decades of research, oncolytic virus vaccine T-VEC, cellular vaccine sipuleucel-T, various peptide vaccines, and DNA vaccine against HPV positive cervical cancer have brought encouraging results for cancer therapy, but are losing momentum in development due to their respective shortcomings. In contrast, the advantages of mRNA vaccines such as high safety, ease of production, and unmatched efficacy are on full display. In addition, advances in technology such as pseudouridine modification have cracked down the bottleneck for developing mRNA vaccines including instability, innate immunogenicity, and low efficiency of in vivo delivery. Several cancer mRNA vaccines have achieved promising results in clinical trials, and their usage in conjunction with other immune checkpoint inhibitors (ICIs) has further boosted the efficiency of anti-tumor immune response. We expect a rapid development of mRNA vaccines for cancer immunotherapy in the near future. This review provides a brief overview of the current status of mRNA vaccines, highlights the action mechanism of cancer mRNA vaccines, their recent advances in clinical trials, and prospects for their clinical applications.
Collapse
Affiliation(s)
- Yixuan Liu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Qijia Yan
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| |
Collapse
|
31
|
Bhagat S, Singh S. Use of antioxidant nanoliposomes for co-delivery of PTEN plasmids and plumbagin to induce apoptosis in hepatic cancer cells. Biomed Mater 2024; 19:025026. [PMID: 38215478 DOI: 10.1088/1748-605x/ad1dff] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/12/2024] [Indexed: 01/14/2024]
Abstract
Hepatocellular carcinoma remains a challenging contributor to the global cancer and related mortality, and claims approximately 800,000 deaths each year. Dysregulation or loss of function mutations involving the tumor suppressor gene, phosphatase and tensin homolog deleted on chromosome ten (PTEN), has been well-characterized in various cancers to elicit anomalous cell proliferation and oncogenic transformation. However, the delivery and bioavailability of genes/drugs of interest to carcinomas remains a serious bottleneck behind the success of any anti-cancer formulation. In this study, we have engineered nanoliposomes containing PTEN plasmids, plumbagin, and antioxidant cerium oxide nanoparticles (Lipo-PTEN-Plum) to restore the PTEN expression and inhibit the AKT/PI3K pathway. The Lipo-PTEN-Plum was quasi-spherical in shape with ∼110 nm diameter and ∼64% plumbagin loading efficiency. The Lipo-PTEN-Plum was successfully internalized HepG2 cells, restore PTEN expression and inhibit PI3K/AKT pathway to induce death in cells grown in monolayer and in form of spheroids. Mechanistically, the formulation showed G2/M cell cycle arrest, DNA damage and apoptosis in hepatic cancer cells. Other cellular events such as Caspase-7 overexpression and PI3K (phosphoinositide 3-kinase), AKT (a serine/threonine protein kinase), PARP [Poly (ADP-ribose) polymerases], and mTOR (Mammalian target of rapamycin) inhibition led to the apoptosis in hepatic cancer cells. The mRNA expression profile of PTEN, PI3K, AKT3, Caspase-7, PARP and mTOR proteins, primarily controlling the cancer cell proliferation and apoptosis, suggest that exogenous supply of PTEN could regulate the expression of oncogenic proteins and thus cancer progression.
Collapse
Affiliation(s)
- Stuti Bhagat
- DBT-National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad 500032, Telangana, India
- DBT- Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India
- Department of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad 380009, Gujarat, India
| | - Sanjay Singh
- DBT-National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad 500032, Telangana, India
- DBT- Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India
- Department of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
32
|
Cui JW, Li Y, Yang Y, Yang HK, Dong JM, Xiao ZH, He X, Guo JH, Wang RQ, Dai B, Zhou ZL. Tumor immunotherapy resistance: Revealing the mechanism of PD-1 / PD-L1-mediated tumor immune escape. Biomed Pharmacother 2024; 171:116203. [PMID: 38280330 DOI: 10.1016/j.biopha.2024.116203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024] Open
Abstract
Tumor immunotherapy, an innovative anti-cancer therapy, has showcased encouraging outcomes across diverse tumor types. Among these, the PD-1/PD-L1 signaling pathway is a well-known immunological checkpoint, which is significant in the regulation of immune evasion by tumors. Nevertheless, a considerable number of patients develop resistance to anti-PD-1/PD-L1 immunotherapy, rendering it ineffective in the long run. This research focuses on exploring the factors of PD-1/PD-L1-mediated resistance in tumor immunotherapy. Initially, the PD-1/PD-L1 pathway is characterized by its role in facilitating tumor immune evasion, emphasizing its role in autoimmune homeostasis. Next, the primary mechanisms of resistance to PD-1/PD-L1-based immunotherapy are analyzed, including tumor antigen deletion, T cell dysfunction, increased immunosuppressive cells, and alterations in the expression of PD-L1 within tumor cells. The possible ramifications of altered metabolism, microbiota, and DNA methylation on resistance is also described. Finally, possible resolution strategies for dealing with anti-PD-1/PD-L1 immunotherapy resistance are discussed, placing particular emphasis on personalized therapeutic approaches and the exploration of more potent immunotherapy regimens.
Collapse
Affiliation(s)
- Jia-Wen Cui
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China; College of Pharmacy, Jinan University, Guangzhou, China
| | - Yao Li
- College of Pharmacy, Macau University of Science and Technology (MUST), China
| | - Yang Yang
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China; College of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Hai-Kui Yang
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Jia-Mei Dong
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Zhi-Hua Xiao
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China; College of Pharmacy, Jinan University, Guangzhou, China
| | - Xin He
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Jia-Hao Guo
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China; College of Pharmacy, Jinan University, Guangzhou, China
| | - Rui-Qi Wang
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China.
| | - Bo Dai
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan City 528200, Guangdong Province, China.
| | - Zhi-Ling Zhou
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China.
| |
Collapse
|
33
|
Zhou X, Li D, Xia S, Ma X, Li R, Mu Y, Liu Z, Zhang L, Zhou Q, Zhuo W, Ding K, Lin A, Liu W, Liu X, Zhou T. RNA-based modulation of macrophage-mediated efferocytosis potentiates antitumor immunity in colorectal cancer. J Control Release 2024; 366:128-141. [PMID: 38104775 DOI: 10.1016/j.jconrel.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/28/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Tumor-associated macrophages play pivotal roles in tumor progression and metastasis. Macrophage-mediated clearance of apoptotic cells (efferocytosis) supports inflammation resolution, contributing to immune evasion in colorectal cancers. To reverse this immunosuppressive process, we propose a readily translatable RNA therapy to selectively inhibit macrophage-mediated efferocytosis in tumor microenvironment. A clinically approved lipid nanoparticle platform (LNP) is employed to encapsulate siRNA for the phagocytic receptor MerTK (siMerTK), enabling selective MerTK inhibition in the diseased organ. Decreased MerTK expression in tumor-associated macrophages results in apoptotic cell accumulation and immune activation in tumor microenvironment, leading to suppressed tumor growth and better survival in both liver and peritoneal metastasis models of colorectal cancers. siMerTK delivery combined with PD-1 blockade further produces enhanced antimetastatic efficacy with reactivated intratumoral immune milieu. Collectively, LNP-based siMerTK delivery combined with immune checkpoint therapy may present a feasible modality for metastatic colorectal cancer therapy.
Collapse
Affiliation(s)
- Xuefei Zhou
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China.
| | - Dezhi Li
- Department of Oncology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China
| | - Shenglong Xia
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Xixi Ma
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou, Zhejiang 310020, China
| | - Rong Li
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yongli Mu
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zimo Liu
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lu Zhang
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Quan Zhou
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wei Zhuo
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Kefeng Ding
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou, Zhejiang 310020, China
| | - Aifu Lin
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Liu
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China
| | - Xiangrui Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; Cancer Center, Zhejiang University, Hangzhou 310058, China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China.
| | - Tianhua Zhou
- Cancer Center, Zhejiang University, Hangzhou 310058, China; Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou, Zhejiang 310020, China.
| |
Collapse
|
34
|
Nguyen MN, Than VT. RNA therapeutics in cancer treatment. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 203:197-223. [PMID: 38359999 DOI: 10.1016/bs.pmbts.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
RNA therapeutics are a class of drugs that use RNA molecules to treat diseases, including cancer. RNA therapeutics work by targeting specific genes or proteins involved in the disease process, with the aim of blocking or altering their activity to ultimately halt or reverse the disease progression. The use of RNA therapeutics in cancer treatment has shown great potential, as they offer the ability to specifically target cancer cells while leaving healthy cells intact. This is in contrast to traditional chemotherapy and radiation treatments, which can damage healthy cells and cause unpleasant side effects. The field of RNA therapeutics is rapidly advancing, with several types of RNA molecules being developed for cancer treatment, including small interfering RNA, microRNA, mRNA, and RNA aptamers. Each type of RNA molecule has unique properties and mechanisms of action, allowing for targeted and personalized cancer treatments. In this chapter, we will explore the different types of RNA therapeutics used in cancer treatment, their mechanisms of action, and their potential applications in treating different types of cancer. We will also discuss the challenges and opportunities in the development and research of RNA therapeutics for cancer, as well as the future outlook for this promising field.
Collapse
Affiliation(s)
- Minh Nam Nguyen
- Department of Biomedical Engineering, School of Medicine, Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam; Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, National University HCMC, Ho Chi Minh City, Vietnam.
| | - Van Thai Than
- Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| |
Collapse
|
35
|
Yu Y, Li T, Ou M, Luo R, Chen H, Ren H, Li Z, Sun J, Zhang H, Peng S, Zhao Y, Mei L. OX40L-expressing M1-like macrophage exosomes for cancer immunotherapy. J Control Release 2024; 365:469-479. [PMID: 38040340 DOI: 10.1016/j.jconrel.2023.11.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
With only limited clinical patient benefit, focusing on new immune checkpoint pathways could be an important complement to current immune checkpoint drugs. In addition, not only does T cell-mediated adaptive immunity play an important role, but also macrophage-mediated innate immunity, due to its abundant presence in solid tumors. Here, we developed an engineered M1-like macrophage exosome, OX40L M1-exos. OX40L M1-exos can activate the adaptive immunity by activating the OX40/OX40L pathway and can reprogram M2-like tumor-associated macrophages into M1-like macrophages, thereby restoring and enhancing macrophage-mediated innate immunity. Our OX40L M1-exos achieved an effective synergistic effect of innate and adaptive immunity and achieved a potent therapeutic effect in a mouse breast cancer model, effectively inhibiting tumor growth and metastasis. These results suggest that OX40L M1-exos are an attractive therapeutic strategy and may be an important complement to current cancer immunotherapies.
Collapse
Affiliation(s)
- Yongkang Yu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China; Tianjin Institutes of Health Science, Tianjin 301600, PR China; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Tingxuan Li
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China; Tianjin Institutes of Health Science, Tianjin 301600, PR China
| | - Meitong Ou
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China; Tianjin Institutes of Health Science, Tianjin 301600, PR China
| | - Ran Luo
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China; Tianjin Institutes of Health Science, Tianjin 301600, PR China
| | - Hongzhong Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, PR China
| | - He Ren
- Shandong Provincial Key Laboratory of Clinical Research for Pancreatic Diseases, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, PR China
| | - Zimu Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, PR China; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jie Sun
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Hanjie Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China; Tianjin Institutes of Health Science, Tianjin 301600, PR China
| | - Shaojun Peng
- Zhuhai Institute of Translational Medicine, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, PR China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Lin Mei
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China; Tianjin Institutes of Health Science, Tianjin 301600, PR China; Shandong Provincial Key Laboratory of Clinical Research for Pancreatic Diseases, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, PR China.
| |
Collapse
|
36
|
Chen Y, Lin T, Tang L, He L, He Y. MiRNA signatures in nasopharyngeal carcinoma: molecular mechanisms and therapeutic perspectives. Am J Cancer Res 2023; 13:5805-5824. [PMID: 38187072 PMCID: PMC10767356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/10/2023] [Indexed: 01/09/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a prevalent cancerous tumor that affects the head and neck region. Recent studies have provided compelling evidence indicating the significant involvement of microRNAs (miRNAs) in the development and progression of NPC. This review aims to present a comprehensive summary of the current knowledge regarding miRNA signatures in NPC, encompassing their expression patterns, molecular mechanisms, and potential therapeutic implications. Initially, the article outlines the aberrant expression of miRNAs in NPC and elucidates their roles in tumor initiation, invasion, and metastasis. Subsequently, the underlying molecular mechanisms of miRNA-mediated regulation of NPC-associated signaling pathways are discussed. Additionally, the review highlights the potential clinical applications of miRNAs as diagnostic and prognostic biomarkers, as well as their therapeutic potential in NPC treatment. In conclusion, this review underscores the critical involvement of miRNAs in NPC pathogenesis and underscores their promise as novel therapeutic targets for combating this devastating disease.
Collapse
Affiliation(s)
- Yan Chen
- School of Medicine, Hunan University of Chinese MedicineChangsha, Hunan, China
| | - Ting Lin
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese MedicineChangsha 410208, China
- Hunan Provincial Key Lab for The Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese MedicineChangsha 410208, China
| | - Le Tang
- School of Medicine, Hunan University of Chinese MedicineChangsha, Hunan, China
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese MedicineChangsha 410208, China
| | - Lan He
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese MedicineChangsha 410208, China
- The First Affiliated Hospital of Hunan University of Chinese MedicineChangsha, Hunan, China
| | - Yingchun He
- School of Medicine, Hunan University of Chinese MedicineChangsha, Hunan, China
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese MedicineChangsha 410208, China
- Hunan Provincial Key Lab for The Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese MedicineChangsha 410208, China
| |
Collapse
|
37
|
Tong Q, Li K, Huang F, Dai Y, Zhang T, Muaibati M, Abuduyilimu A, Huang X. Extracellular vesicles hybrid plasmid-loaded lipid nanovesicles for synergistic cancer immunotherapy. Mater Today Bio 2023; 23:100845. [PMID: 37942423 PMCID: PMC10628780 DOI: 10.1016/j.mtbio.2023.100845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/10/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023] Open
Abstract
Combination immunotherapy of cancer vaccines with immune checkpoint inhibitors (ICIs) represents a promising therapeutic strategy for immunosuppressed and cold tumors. However, this strategy still faces challenges, including the limited therapeutic efficacy of cancer vaccines and immune-related adverse events associated with systematic delivery of ICIs. Herein, we demonstrate the antitumor immune response induced by outer membrane vesicle from Akkermansia muciniphila (Akk-OMV), which exhibites a favorable safety profile, highlighting the potential application as a natural and biocompatible self-adjuvanting vesicle. Utilizing tumor cell-derived exosome as an antigen source and Akk-OMV as a natural adjuvant, we construct a cancer vaccine formulation of extracellular vesicles hybrid lipid nanovesicles (Lipo@HEV) for enhanced prophylactic and therapeutic vaccination by promoting dendritic cell (DC) maturation in lymph node and activating cytotoxic T cell (CTL) response. The Lipo@HEV is further loaded with plasmid to enable gene therapy-mediated PD-L1 blockade upon peritumoral injection. Meanwhile, it penetrates into lymph node to initiate DC maturation and CTL activation, synergistically inhibiting the established tumor. The fabrication of extracellular vesicles hybrid plasmid-loaded lipid nanovesicles reveals a promising gene therapy-guided and vesicle-based hybrid system for therapeutic cancer vaccination and synergistic immunotherapy strategy.
Collapse
Affiliation(s)
- Qing Tong
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kexin Li
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fanwei Huang
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Dai
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Zhang
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Munawaer Muaibati
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Abasi Abuduyilimu
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyuan Huang
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Zhou H, Chen DS, Hu CJ, Hong X, Shi J, Xiao Y. Stimuli-Responsive Nanotechnology for RNA Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303597. [PMID: 37915127 PMCID: PMC10754096 DOI: 10.1002/advs.202303597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/30/2023] [Indexed: 11/03/2023]
Abstract
Ribonucleic acid (RNA) drugs have shown promising therapeutic effects for various diseases in clinical and preclinical studies, owing to their capability to regulate the expression of genes of interest or control protein synthesis. Different strategies, such as chemical modification, ligand conjugation, and nanotechnology, have contributed to the successful clinical translation of RNA medicine, including small interfering RNA (siRNA) for gene silencing and messenger RNA (mRNA) for vaccine development. Among these, nanotechnology can protect RNAs from enzymatic degradation, increase cellular uptake and cytosolic transportation, prolong systemic circulation, and improve tissue/cell targeting. Here, a focused overview of stimuli-responsive nanotechnologies for RNA delivery, which have shown unique benefits in promoting RNA bioactivity and cell/organ selectivity, is provided. Many tissue/cell-specific microenvironmental features, such as pH, enzyme, hypoxia, and redox, are utilized in designing internal stimuli-responsive RNA nanoparticles (NPs). In addition, external stimuli, such as light, magnetic field, and ultrasound, have also been used for controlling RNA release and transportation. This review summarizes a wide range of stimuli-responsive NP systems for RNA delivery, which may facilitate the development of next-generation RNA medicines.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Cardiology, Clinical Trial CenterZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan University430071WuhanChina
- Center for Nanomedicine and Department of AnesthesiologyPerioperative and Pain MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & Telecommunications210023NanjingChina
| | - Dean Shuailin Chen
- Center for Nanomedicine and Department of AnesthesiologyPerioperative and Pain MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Caleb J. Hu
- Center for Nanomedicine and Department of AnesthesiologyPerioperative and Pain MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Xuechuan Hong
- Department of Cardiology, Clinical Trial CenterZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan University430071WuhanChina
| | - Jinjun Shi
- Center for Nanomedicine and Department of AnesthesiologyPerioperative and Pain MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Yuling Xiao
- Center for Nanomedicine and Department of AnesthesiologyPerioperative and Pain MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| |
Collapse
|
39
|
Zhang Y, Luo J, Gui X, Zheng Y, Schaar E, Liu G, Shi J. Bioengineered nanotechnology for nucleic acid delivery. J Control Release 2023; 364:124-141. [PMID: 37879440 PMCID: PMC10838211 DOI: 10.1016/j.jconrel.2023.10.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/15/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
Nucleic acid-based therapy has emerged as a promising therapeutic approach for treating various diseases, such as genetic disorders, cancers, and viral infections. Diverse nucleic acid delivery systems have been reported, and some, including lipid nanoparticles, have exhibited clinical success. In parallel, bioengineered nucleic acid delivery nanocarriers have also gained significant attention due to their flexible functional design and excellent biocompatibility. In this review, we summarize recent advances in bioengineered nucleic acid delivery nanocarriers, focusing on exosomes, cell membrane-derived nanovesicles, protein nanocages, and virus-like particles. We highlight their unique features, advantages for nucleic acid delivery, and biomedical applications. Furthermore, we discuss the challenges that bioengineered nanocarriers face towards clinical translation and the possible avenues for their further development. This review ultimately underlines the potential of bioengineered nanotechnology for the advancement of nucleic acid therapy.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jing Luo
- Department of Urology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiran Gui
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yating Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Eric Schaar
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
40
|
Zong Y, Lin Y, Wei T, Cheng Q. Lipid Nanoparticle (LNP) Enables mRNA Delivery for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303261. [PMID: 37196221 DOI: 10.1002/adma.202303261] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Messenger RNA (mRNA) has received great attention in the prevention and treatment of various diseases due to the success of coronavirus disease 2019 (COVID-19) mRNA vaccines (Comirnaty and Spikevax). To meet the therapeutic purpose, it is required that mRNA must enter the target cells and express sufficient proteins. Therefore, the development of effective delivery systems is necessary and crucial. Lipid nanoparticle (LNP) represents a remarkable vehicle that has indeed accelerated mRNA applications in humans, as several mRNA-based therapies have already been approved or are in clinical trials. In this review, the focus is on mRNA-LNP-mediated anticancer therapy. It summarizes the main development strategies of mRNA-LNP formulations, discusses representative therapeutic approaches in cancer, and points out current challenges and possible future directions of this research field. It is hoped that these delivered messages can help further improve the application of mRNA-LNP technology in cancer therapy.
Collapse
Affiliation(s)
- Yan Zong
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Yi Lin
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Tuo Wei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Cheng
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| |
Collapse
|
41
|
Sun Y, Lian T, Huang Q, Chang Y, Li Y, Guo X, Kong W, Yang Y, Zhang K, Wang P, Wang X. Nanomedicine-mediated regulated cell death in cancer immunotherapy. J Control Release 2023; 364:174-194. [PMID: 37871752 DOI: 10.1016/j.jconrel.2023.10.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Immunotherapy has attracted widespread attention in cancer treatment and has achieved considerable success in the clinical treatment of some tumors, but it has a low response rate in most tumors. To achieve sufficient activation of the immune response, significant efforts using nanotechnology have been made to enhance cancer immune response. In recent years, the induction of various regulated cell death (RCD) has emerged as a potential antitumor immuno-strategy, including processes related to apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis, and cuproptosis. In particular, damage-associated molecular patterns (DAMPs) released from the damaged membrane of dying cells act as in situ adjuvants to trigger antigen-specific immune responses by the exposure of an increased antigenicity. Thus, RCD-based immunotherapy offers a new approach for enhancing cancer treatment efficacy. Furthermore, incorporation with multimodal auxiliary therapies in cell death-based immunotherapy can trigger stronger immune responses, resulting in more efficient therapeutic outcome. This review discusses different RCD modalities and summarizes recent nanotechnology-mediated RCDs in cancer immunotherapy.
Collapse
Affiliation(s)
- Yue Sun
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China; The Xi'an key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Ting Lian
- Research Center for Prevention and Treatment of Respiratory Disease, School of Clinical Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Qichao Huang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yawei Chang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yuan Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiaoyu Guo
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Weirong Kong
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yifang Yang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Kun Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Pan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Xiaobing Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
42
|
Chen J, Tan J, Li J, Cheng W, Ke L, Wang A, Wang Q, Lin S, Li G, Wang B, Chen J, Zhang P. Genetically Engineered Biomimetic Nanoparticles for Targeted Delivery of mRNA to Treat Rheumatoid Arthritis. SMALL METHODS 2023; 7:e2300678. [PMID: 37526322 DOI: 10.1002/smtd.202300678] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/13/2023] [Indexed: 08/02/2023]
Abstract
In addition to inhibiting persistent inflammation, phosphatase and tensin homolog deleted from chromosome 10 (PTEN) is known as an important therapeutic target for alleviating rheumatoid arthritis (RA) symptoms. Modulation of PTEN gene expression in synovial tissue using messenger RNA (mRNA) is a promising approach to combat RA. However, mRNA therapeutics are often hampered by unsatisfactory stability and inefficient localization in synovial tissue. In this study, a genetically engineered biomimetic membrane-coated mRNA (MR@P-mPTEN) carrier that effectively delivers mRNA-PTEN (mPTEN) directly to the RA joint is presented. By overexpressing tumor necrosis factor (TNF-α) receptors on macrophage biomimetic membranes via plasmid transfection, decoys that reduce inflammatory pathway activation are prepared for TNF-α. The resulting construct, MR@P-mPTEN, shows good stability and RA targeting based on in vivo fluorescence imaging. It is also found that MR@P-mPTEN competitively binds TNF-α and activates the PTEN pathway in vitro and in vivo, thereby inhibiting synovitis and joint damage. Clinical micro-computed tomography and histological analyses confirm the treatment effects. These results suggest that the genetically engineered biomimetic therapeutic platform MR@P-mPTEN both inhibits pro-inflammatory cytokines and upregulates PTEN protein expression to alleviate RA damage, providing a new a new combination strategy for RA treatment.
Collapse
Affiliation(s)
- Jianhai Chen
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Research Center for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Rehabilitation Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Jianwei Tan
- Research Center for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jian Li
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Anqiao Wang
- Rehabilitation Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Qiqing Wang
- Rehabilitation Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, 999077, China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, 999077, China
| | - Benguo Wang
- Rehabilitation Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Jingqin Chen
- Research Center for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
43
|
Chen Y, Li H, Fan Y. Shaping the tumor immune microenvironment of SCLC: Mechanisms, and opportunities for immunotherapy. Cancer Treat Rev 2023; 120:102606. [PMID: 37579532 DOI: 10.1016/j.ctrv.2023.102606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/25/2023] [Accepted: 08/05/2023] [Indexed: 08/16/2023]
Abstract
Small-cell lung cancer (SCLC) is a very aggressive neuroendocrine tumor with a poor prognosis. Whereas immunotherapy has emerged as a promising approach for treating SCLC, its unique tumor immune microenvironment (TIME) might limit patient responses. To fully characterize the TIME and understand the mechanism of its formation with respect to SCLC is crucial. The recent rapid development of multi-omics technologies has rapidly advanced knowledge of TIME features and the regulatory mechanisms associated with SCLC. This review summarizes the TIME features of SCLC as well as shaping the TIME according to the genomics, epigenomics, and metabolomics of tumors. Future opportunities and challenges for immunotherapy are also discussed.
Collapse
Affiliation(s)
- Yunfei Chen
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Postgraduate Training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China
| | - Hui Li
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Postgraduate Training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China.
| | - Yun Fan
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Postgraduate Training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
44
|
Travis G, McGowan EM, Simpson AM, Marsh DJ, Nassif NT. PTEN, PTENP1, microRNAs, and ceRNA Networks: Precision Targeting in Cancer Therapeutics. Cancers (Basel) 2023; 15:4954. [PMID: 37894321 PMCID: PMC10605164 DOI: 10.3390/cancers15204954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a well characterised tumour suppressor, playing a critical role in the maintenance of fundamental cellular processes including cell proliferation, migration, metabolism, and survival. Subtle decreases in cellular levels of PTEN result in the development and progression of cancer, hence there is tight regulation of the expression, activity, and cellular half-life of PTEN at the transcriptional, post-transcriptional, and post-translational levels. PTENP1, the processed pseudogene of PTEN, is an important transcriptional and post-transcriptional regulator of PTEN. PTENP1 expression produces sense and antisense transcripts modulating PTEN expression, in conjunction with miRNAs. Due to the high sequence similarity between PTEN and the PTENP1 sense transcript, the transcripts possess common miRNA binding sites with the potential for PTENP1 to compete for the binding, or 'sponging', of miRNAs that would otherwise target the PTEN transcript. PTENP1 therefore acts as a competitive endogenous RNA (ceRNA), competing with PTEN for the binding of specific miRNAs to alter the abundance of PTEN. Transcription from the antisense strand produces two functionally independent isoforms (PTENP1-AS-α and PTENP1-AS-β), which can regulate PTEN transcription. In this review, we provide an overview of the post-transcriptional regulation of PTEN through interaction with its pseudogene, the cellular miRNA milieu and operation of the ceRNA network. Furthermore, its importance in maintaining cellular integrity and how disruption of this PTEN-miRNA-PTENP1 axis may lead to cancer but also provide novel therapeutic opportunities, is discussed. Precision targeting of PTENP1-miRNA mediated regulation of PTEN may present as a viable alternative therapy.
Collapse
Affiliation(s)
- Glena Travis
- Cancer Biology, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (G.T.); (E.M.M.)
| | - Eileen M. McGowan
- Cancer Biology, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (G.T.); (E.M.M.)
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Ann M. Simpson
- Gene Therapy and Translational Molecular Analysis Laboratory, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Deborah J. Marsh
- Translational Oncology Group, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Najah T. Nassif
- Cancer Biology, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (G.T.); (E.M.M.)
| |
Collapse
|
45
|
Chen G, Li X, Li R, Wu K, Lei Z, Dai R, Roche K, Wang AZ, Min Y. Chemotherapy-Induced Neoantigen Nanovaccines Enhance Checkpoint Blockade Cancer Immunotherapy. ACS NANO 2023; 17:18818-18831. [PMID: 37750443 DOI: 10.1021/acsnano.3c03274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Chemotherapeutics have the potential to increase the efficacy of cancer immunotherapies by stimulating the production of damage-associated molecular patterns (DAMPs) and eliciting mutations that result in the production of neoantigens, thereby increasing the immunogenicity of cancerous lesions. However, the dose-limiting toxicity and limited immunogenicity of chemotherapeutics are not sufficient to induce a robust antitumor response. We hypothesized that cancer cells in vitro treated with ultrahigh doses of various chemotherapeutics artificially increased the abundance, variety, and specificity of DAMPs and neoantigens, thereby improving chemoimmunotherapy. The in vitro chemotherapy-induced (IVCI) nanovaccines manufactured from cell lysates comprised multiple neoantigens and DAMPs, thereby exhibiting comprehensive antigenicity and adjuvanticity. Our IVCI nanovaccines exhibited enhanced immune responses in CT26 tumor-bearing mice, with a significant increase in CD4+/CD8+ T cells in tumors in combination with immune checkpoint inhibitors. The concept of IVCI nanovaccines provides an idea for manufacturing and artificial enhancement of immunogenicity vaccines to improve chemoimmunotherapy.
Collapse
Affiliation(s)
- Guiyuan Chen
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xiangxia Li
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Rui Li
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Kecheng Wu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Zhouhang Lei
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ruike Dai
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Kyle Roche
- School of Medicine and Health Sciences, The George Washington University, Washington D.C. 20052, United States
| | - Andrew Z Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, United States
| | - Yuanzeng Min
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
46
|
Chen W, Li Y, Liu C, Kang Y, Qin D, Chen S, Zhou J, Liu HJ, Ferdows BE, Patel DN, Huang X, Koo S, Kong N, Ji X, Cao Y, Tao W, Xie T. In situ Engineering of Tumor-Associated Macrophages via a Nanodrug-Delivering-Drug (β-Elemene@Stanene) Strategy for Enhanced Cancer Chemo-Immunotherapy. Angew Chem Int Ed Engl 2023; 62:e202308413. [PMID: 37380606 DOI: 10.1002/anie.202308413] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 06/30/2023]
Abstract
Tumor-associated macrophages (TAMs) play a critical role in the immunosuppressive solid tumor microenvironment (TME), yet in situ engineering of TAMs for enhanced tumor immunotherapy remains a significant challenge in translational immuno-oncology. Here, we report an innovative nanodrug-delivering-drug (STNSP@ELE) strategy that leverages two-dimensional (2D) stanene-based nanosheets (STNSP) and β-Elemene (ELE), a small-molecule anticancer drug, to overcome TAM-mediated immunosuppression and improve chemo-immunotherapy. Our results demonstrate that both STNSP and ELE are capable of polarizing the tumor-supportive M2-like TAMs into a tumor-suppressive M1-like phenotype, which acts with the ELE chemotherapeutic to boost antitumor responses. In vivo mouse studies demonstrate that STNSP@ELE treatment can reprogram the immunosuppressive TME by significantly increasing the intratumoral ratio of M1/M2-like TAMs, enhancing the population of CD4+ and CD8+ T lymphocytes and mature dendritic cells, and elevating the expression of immunostimulatory cytokines in B16F10 melanomas, thereby promoting a robust antitumor response. Our study not only demonstrates that the STNSP@ELE chemo-immunotherapeutic nanoplatform has immune-modulatory capabilities that can overcome TAM-mediated immunosuppression in solid tumors, but also highlights the promise of this nanodrug-delivering-drug strategy in developing other nano-immunotherapeutics and treating various types of immunosuppressive tumors.
Collapse
Affiliation(s)
- Wei Chen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yongjiang Li
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Chuang Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yong Kang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Duotian Qin
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Shuying Chen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jun Zhou
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hai-Jun Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Bijan Emiliano Ferdows
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Dylan Neal Patel
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiangang Huang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Seyoung Koo
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Na Kong
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiaoyuan Ji
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Yihai Cao
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| |
Collapse
|
47
|
Wang YS, Kumari M, Chen GH, Hong MH, Yuan JPY, Tsai JL, Wu HC. mRNA-based vaccines and therapeutics: an in-depth survey of current and upcoming clinical applications. J Biomed Sci 2023; 30:84. [PMID: 37805495 PMCID: PMC10559634 DOI: 10.1186/s12929-023-00977-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023] Open
Abstract
mRNA-based drugs have tremendous potential as clinical treatments, however, a major challenge in realizing this drug class will promise to develop methods for safely delivering the bioactive agents with high efficiency and without activating the immune system. With regard to mRNA vaccines, researchers have modified the mRNA structure to enhance its stability and promote systemic tolerance of antigenic presentation in non-inflammatory contexts. Still, delivery of naked modified mRNAs is inefficient and results in low levels of antigen protein production. As such, lipid nanoparticles have been utilized to improve delivery and protect the mRNA cargo from extracellular degradation. This advance was a major milestone in the development of mRNA vaccines and dispelled skepticism about the potential of this technology to yield clinically approved medicines. Following the resounding success of mRNA vaccines for COVID-19, many other mRNA-based drugs have been proposed for the treatment of a variety of diseases. This review begins with a discussion of mRNA modifications and delivery vehicles, as well as the factors that influence administration routes. Then, we summarize the potential applications of mRNA-based drugs and discuss further key points pertaining to preclinical and clinical development of mRNA drugs targeting a wide range of diseases. Finally, we discuss the latest market trends and future applications of mRNA-based drugs.
Collapse
Affiliation(s)
- Yu-Shiuan Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Monika Kumari
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Guan-Hong Chen
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Ming-Hsiang Hong
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Joyce Pei-Yi Yuan
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Jui-Ling Tsai
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan.
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan.
| |
Collapse
|
48
|
Luo H, Cao H, Jia H, Shang Y, Liu J, Gui H, Yang C, Ren C, Wang Z, Liu J. EISA in Tandem with ICD to Form In Situ Nanofiber Vaccine for Enhanced Tumor Radioimmunotherapy. Adv Healthc Mater 2023; 12:e2301083. [PMID: 37300544 DOI: 10.1002/adhm.202301083] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Radiotherapy (RT) can produce a vaccine effect and remodel a tumor microenvironment (TME) by inducing immunogenic cell death (ICD) and inflammation in tumors. However, RT alone is insufficient to elicit a systemic antitumor immune response owing to limited antigen presentation, immunosuppressive microenvironment, and chronic inflammation within the tumor. Here, a novel strategy is reported for the generation of in situ peptide-based nanovaccines via enzyme-induced self-assembly (EISA) in tandem with ICD. As ICD progresses, the peptide Fbp-GD FD FD pY (Fbp-pY), dephosphorylated by alkaline phosphatase (ALP) forms a fibrous nanostructure around the tumor cells, resulting in the capture and encapsulation of the autologous antigens produced by radiation. Utilizing the adjuvant and controlled-release advantages of self-assembling peptides, this nanofiber vaccine effectively increases antigen accumulation in the lymph nodes and cross-presentation by antigen-presenting cells (APCs). In addition, the inhibition of cyclooxygenase 2 (COX-2) expression by the nanofibers promotes the repolarization of M2-macrophages into M1 and reduces the number of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) required for TME remodeling. As a result, the combination of nanovaccines and RT significantly enhances the therapeutic effect on 4T1 tumors compared with RT alone, suggesting a promising treatment strategy for tumor radioimmunotherapy.
Collapse
Affiliation(s)
- Hongjing Luo
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Hongmei Cao
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Haixue Jia
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Yuna Shang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
- College of Chemistry, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Jinjian Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Han Gui
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Cuihong Yang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Chunhua Ren
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Zhongyan Wang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| |
Collapse
|
49
|
Bhamidipati D, Subbiah V. Tumor-agnostic drug development in dMMR/MSI-H solid tumors. Trends Cancer 2023; 9:828-839. [PMID: 37517955 DOI: 10.1016/j.trecan.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Abstract
Mismatch repair deficiency (dMMR) or microsatellite instability-high (MSI-H) represents a distinct phenotype among solid tumors characterized by frequent frameshift mutations resulting in the generation of neoantigens that are highly immunogenic. Seminal studies identified that dMMR/MSI-H tumors are exquisitely sensitive to immune checkpoint inhibitors, which has dramatically improved outcomes for patients harboring dMMR/MSI-H tumors. Nevertheless, many patients develop resistance to single-agent immune checkpoint blockade, prompting the need for improved therapeutic options for this patient population. In this review, we highlight key studies examining the efficacy of PD1 inhibitors in the metastatic and neoadjuvant setting for patients with dMMR/MSI-H tumors, describe resistance mechanisms to immune checkpoint blockade, and discuss novel treatment approaches that are currently under investigation for dMMR/MSI-H tumors.
Collapse
Affiliation(s)
- Deepak Bhamidipati
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivek Subbiah
- Sarah Cannon Research Institute, Nashville, TN, USA.
| |
Collapse
|
50
|
Pirmoradi L, Shojaei S, Ghavami S, Zarepour A, Zarrabi A. Autophagy and Biomaterials: A Brief Overview of the Impact of Autophagy in Biomaterial Applications. Pharmaceutics 2023; 15:2284. [PMID: 37765253 PMCID: PMC10536801 DOI: 10.3390/pharmaceutics15092284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Macroautophagy (hereafter autophagy), a tightly regulated physiological process that obliterates dysfunctional and damaged organelles and proteins, has a crucial role when biomaterials are applied for various purposes, including diagnosis, treatment, tissue engineering, and targeted drug delivery. The unparalleled physiochemical properties of nanomaterials make them a key component of medical strategies in different areas, such as osteogenesis, angiogenesis, neurodegenerative disease treatment, and cancer therapy. The application of implants and their modulatory effects on autophagy have been known in recent years. However, more studies are necessary to clarify the interactions and all the involved mechanisms. The advantages and disadvantages of nanomaterial-mediated autophagy need serious attention in both the biological and bioengineering fields. In this mini-review, the role of autophagy after biomaterial exploitation and the possible related mechanisms are explored.
Collapse
Affiliation(s)
- Leila Pirmoradi
- Department of Medical Physiology and Pharmacology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj 66177-13446, Iran;
| | - Shahla Shojaei
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Saeid Ghavami
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555 Katowice, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, Istanbul 34396, Türkiye;
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, Istanbul 34396, Türkiye;
| |
Collapse
|