1
|
Schaaf C, Sussel L. A Cure for Type 1 Diabetes: Are We There Yet? Diabetes Technol Ther 2025. [PMID: 39911033 DOI: 10.1089/dia.2024.0498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Type 1 diabetes (T1D) affects over 2 million people in the United States and has no known cure. The discovery and first use of insulin in humans 102 years ago marked a revolutionary course of treatment for the disease, and although the formulations and delivery systems have advanced, insulin administration remains the standard of care today. While improved treatment options represent notable progress in T1D management, finding a functional cure for the disease remains the ultimate goal. Approaches to curing T1D have historically focused on blunting the autoimmune response, although sustained effects of immune modulation have proven elusive. Islet transplant therapies have also proven effective, although a lack of available donor tissue and the need for immunosuppression to prevent both host-graft rejection and the autoimmune response have reserved such treatments for those who already require immunosuppressive regimens for other reasons or undergo severe hypoglycemic events in conjunction with hypoglycemic unawareness. With the advent of human stem cell research, the focus has shifted toward generating an abundance of allogeneic, functional beta-like cells that can be transplanted into the patients. Immunoisolation devices have also shown some promise as a method of preventing immune rejection and the autoimmune destruction of transplanted cells. Finally, advances in new immune therapies, if used in the early stages of T1D progression, have proven to delay the onset of diabetes. Stem cell-based therapies are a promising approach to curing T1D. The ongoing clinical trials show some success, although they currently require immunosuppressant agents. Encapsulation devices provide a method of immunoisolation that does not require immunosuppression; however, the devices tested thus far eventually lead to cell death and fibrotic tissue growth. Substantial research efforts are underway to develop new approaches to protect the stem cell-derived beta cells upon transplantation.
Collapse
Affiliation(s)
- Christopher Schaaf
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Center, Denver, Colorado, USA
| | - Lori Sussel
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Center, Denver, Colorado, USA
| |
Collapse
|
2
|
Wang Y, Sun Y, Zhang X, Wang S, Huang X, Xu K, Liu Y, Huang Y, Xu J, Wei X, Cheng H, Pan L, Wang J, Gu Z. A Granzyme B-Cleavable T Cell-Targeted Bispecific Cell Vesicle Connector for Reversing New-Onset Type 1 Diabetes. J Am Chem Soc 2025; 147:4167-4179. [PMID: 39869523 DOI: 10.1021/jacs.4c13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Type 1 diabetes (T1D) is an autoimmune disorder in which pancreatic β-cells are destroyed by CD8+ T cells. Anti-CD3 antibody effectively treats early-stage T1D when β-cell autoantibodies are detected but before symptoms appear. However, it impairs the immune system temporarily, exposing individuals to infection. A therapeutic that can reverse new-onset T1D without harming the immune system remains urgently needed. Herein, we have constructed cellular vesicles presenting granzyme B-responsive fusion proteins (designated aCD8-GrzBcs-IL2) composed of a single-chain variable fragment of anti-CD8 antibodies and a mutein interleukin-2 (IL2). aCD8-GrzBcs-IL2 is designed to simultaneously inhibit CD8+ T cells and promote Treg cells, especially when CD8+ T cells are attacking β-cells. In vitro, these cellular vesicles can inhibit the cell-killing effect of CD8+ T cells and enhance the expansion of Treg cells. Notably, intravenous administration of aCD8-GrzBcs-IL2-expressed cellular vesicles reversed newly onset diabetes in 77.8% of nonobese diabetic (NOD) mice without reducing blood CD3+ T cells and CD8+ T cells, indicating a favorable safety profile.
Collapse
Affiliation(s)
- Yanfang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanping Sun
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiuwen Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shenqiang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xuehui Huang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| | - Kairui Xu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yun Liu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingqi Huang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianchang Xu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinwei Wei
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| | - Hao Cheng
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Liqiang Pan
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinqiang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Liangzhu Laboratory, Hangzhou 311121, China
- Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
3
|
Du M, Li S, Jiang J, Ma X, Liu L, Wang T, Zhang J, Niu D. Advances in the Pathogenesis and Treatment Strategies for Type 1 Diabetes Mellitus. Int Immunopharmacol 2025; 148:114185. [PMID: 39893858 DOI: 10.1016/j.intimp.2025.114185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/26/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Type 1 diabetes (T1D) is a complex autoimmune disorder distinguished by the infiltration of immune cells into pancreatic islets, primarily resulting in damage to pancreatic β-cells. Despite extensive research, the precise pathogenesis of T1D remains elusive, with its etiology linked to a complex interplay of genetic, immune, and environmental factors. While genetic predispositions, such as HLA and other susceptibility genes, are necessary, they do not fully account for disease development. Environmental influences such as viral infections and dietary factors may contribute to the disease by affecting the immune system and epigenetic modifications. Additionally, endogenous retroviruses (ERVs) might play a role in T1D pathogenesis. Current therapeutic approaches, including insulin replacement therapy, immune omodulatory therapy, autoantigen immunotherapy, organ transplantation, and genetic modification, offer potential to alter disease progression but are still constrained by limitations. This review presents updated knowledge on T1D, with a focus on risk factors, predisposing hypotheses, and recent advancements in therapeutic strategies.
Collapse
Affiliation(s)
- Meiheng Du
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China
| | - Sihong Li
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China
| | - Jun Jiang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China
| | - Xiang Ma
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China
| | - Lu Liu
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China
| | - Tao Wang
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, Jiangsu 211300, China
| | - Jufang Zhang
- Department of Plastic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China.
| | - Dong Niu
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
4
|
Jiang Y, Xu Z, Wu Y, Li X, Ling J, Chen Y, Zhu Z, Yang P, Liu X, Zhang D, Liu J, Yin X, Zhang J, Yu P. Exploring the progress and trends of immunotherapy for type 1 diabetes: A comprehensive bibliometric analysis spanning nearly two decades. Obes Rev 2025:e13888. [PMID: 39871677 DOI: 10.1111/obr.13888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/19/2024] [Accepted: 10/21/2024] [Indexed: 01/29/2025]
Abstract
INTRODUCTION Immunotherapy is a crucial treatment for type 1 diabetes (T1D), yet analyses focusing on research priorities and trends in this field are limited. Therefore, this study employs bibliometric methods to systematically explore the current research status of immunotherapy for T1D. METHODS Based on the Web of Science Core Collection Database, 1573 articles and review articles related to immunotherapy for T1D published from 2004 to 2023 were screened for bibliometric analysis. VOSviewer, CiteSpace, and R software were applied to comprehensively analyze the number of publications, journals, countries, authors, institutions, keywords, and references. RESULTS In the past two decades, the global annual publication rate has seen a significant increase of 238.24%. Almost 40% of all publications have appeared in the last 5 years, accounting for over 50% of total citations. Journals such as Diabetes, Journal of Autoimmunity and Frontiers in Immunology have exerted substantial influence. Collaboration across nations has been notably strong, with the United States leading the way. The University of Florida is the most productive institution. Terms like "nivolumab," "ipilimumab," "pembrolizumab," and "immune checkpoint inhibitor(s)" gain considerable traction. The majority of research has clustered around themes such as immunomodulation, autoimmune diseases, immune checkpoint inhibitors, mesenchymal stem cells, and cell therapy. Precision medicine, immune checkpoint inhibitors, and nanotechnology are trending focal points in contemporary research. CONCLUSION The outcomes of the study are instrumental in enabling scholars to comprehend the evolving trajectory of immunotherapeutic approaches for T1D and facilitate the swift recognition of emerging research pathways.
Collapse
Affiliation(s)
- Yixin Jiang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, The Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhou Xu
- The Second Clinical Medical College, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yuting Wu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xinglei Li
- The Second Clinical Medical College, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
| | - Zicheng Zhu
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
| | - Pingping Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiao Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Jianping Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaoping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Foster TP, Bruggeman BS, Haller MJ. Emerging Immunotherapies for Disease Modification of Type 1 Diabetes. Drugs 2025:10.1007/s40265-025-02150-8. [PMID: 39873914 DOI: 10.1007/s40265-025-02150-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 01/30/2025]
Abstract
Type 1 diabetes mellitus (T1DM) is characterized by the progressive, autoimmune-mediated destruction of β cells. As such, restoring immunoregulation early in the disease course is sought to retain endogenous insulin production. Nevertheless, in the more than 100 years since the discovery of insulin, treatment of T1DM has focused primarily on hormone replacement and glucose monitoring. That said, immunotherapies are widely used to interdict autoimmune and autoinflammatory diseases and are emerging as potential therapeutics seeking the preservation of β-cell function among those with T1DM. In the past 4 decades of diabetes research, several immunomodulatory therapies have been explored, culminating with the US Food and Drug Administration approval of teplizumab to delay stage 3 (clinical) onset of T1DM. Clinical trials seeking to prevent or reverse T1DM by repurposing immunotherapies approved for other autoimmune conditions and by exploring new therapeutics are ongoing. Collectively, these efforts have the potential to transform the future of diabetes care. We encapsulate the past 40 years of immunotherapy trials, take stock of our successes and failures, and chart paths forward in this new age of clinically available immune therapies for T1DM.
Collapse
Affiliation(s)
- Timothy P Foster
- Division of Endocrinology, Department of Pediatrics, College of Medicine, University of Florida, 1699 SW 16th Ave, Building A, Gainesville, FL, 32608, USA.
| | - Brittany S Bruggeman
- Division of Endocrinology, Department of Pediatrics, College of Medicine, University of Florida, 1699 SW 16th Ave, Building A, Gainesville, FL, 32608, USA
| | - Michael J Haller
- Division of Endocrinology, Department of Pediatrics, College of Medicine, University of Florida, 1699 SW 16th Ave, Building A, Gainesville, FL, 32608, USA
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Fazeli P, Abolhasani S, Karamali N, Hajivalili M, Daryabor G, Panji M, Karimian M, Hosseini M. The role of memory T cells in type 1 diabetes: Phenotypes, mechanisms, and therapeutic implications. Autoimmun Rev 2025; 24:103759. [PMID: 39880347 DOI: 10.1016/j.autrev.2025.103759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by the loss of insulin-producing cells in the pancreatic islets. Patients with T1D have autoreactive CD4+ and CD8+ T cells that show specific features, indicating previous exposure to self-antigens. Despite that memory T cells are vital components of the adaptive immune system, providing enduring protection against pathogens; individuals with T1D have a higher proportion of memory T cells compared to healthy individuals with naїve phenotypes. Targeting memory T cells in newly diagnosed T1D patients has shown promising results, providing evidence for the significant role of memory T cells in this disease. There are various types of memory T cells, each with unique characteristics and functions. Recent advancements in understanding the complexity and heterogeneity of T cell subpopulations have shown that T1D cannot be fully understood through simple categorization. This review aims to discuss various types of memory T cells in the immunopathogenesis of T1D, focusing on their phenotypes and frequencies, as well as epigenetic and metabolic alterations. Additionally, it will address novel immunotherapeutic approaches targeting memory T cell subsets in T1D.
Collapse
Affiliation(s)
- Pooria Fazeli
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Abolhasani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Karamali
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Hajivalili
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Daryabor
- Autoimmune Disease Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Panji
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Karimian
- Brigham and Women's Hospital, Harvard Medical School Brigham and Women's Hospital, Boston, USA
| | - Maryam Hosseini
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Niri T, Inoue SI, Akazawa S, Nishikido S, Miwa M, Kobayashi M, Yui K, Okita M, Kawakami A, Abiru N. Essential role of interferon-regulatory factor 4 in regulating diabetogenic CD4+ T and innate immune cells in autoimmune diabetes in NOD mice. Clin Exp Immunol 2025; 219:uxae093. [PMID: 39432837 PMCID: PMC11773818 DOI: 10.1093/cei/uxae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/16/2024] [Accepted: 10/19/2024] [Indexed: 10/23/2024] Open
Abstract
Haploinsufficiency of the transcription factor interferon-regulatory factor 4 (IRF4) prevents the onset of spontaneous diabetes in NOD mice. However, the immunological mechanisms of the IRF4-mediated disease regulation remain unclear. This study aims to investigate the role of IRF4 in the pathogenesis of autoimmune diabetes by conducting adoptive transfer experiments using donor IRF4 gene-deficient CD4+ T cells from BDC2.5-transgenic (Tg) NOD mice and recipient Rag1-knockout NOD mice, respectively. Through this approach, we analyzed both clinical and immunological phenotypes of the recipient mice. Additionally, IRF4-deficient BDC2.5 CD4+ T cells were stimulated to assess their immunological and metabolic phenotypes in vitro. The findings revealed that diabetes was completely prevented in the recipients with Irf4-/- T cells and was approximately 50% lower in those with Irf4+/- T cells than in wild type (WT) controls, whereas Irf4-/- recipients with WT T cells only showed a delayed onset of diabetes. Islet-infiltrating T cells isolated from recipients with Irf4+/- T cells exhibited significantly lower proliferation and IFN-γ/IL-17 double-positive cell fraction rates compared with those in WT controls. Irf4-/- BDC2.5 CD4+ T cells stimulated in vitro showed a reduced number of cell divisions, decreased antigen-specific T-cell markers, and impairment of glycolytic capacity compared with those observed in WT controls. We concluded that IRF4 predominantly regulates the diabetogenic potential in a dose-dependent manner by mediating the proliferation and differentiation of islet-infiltrating T cells while playing an adjunctive role in the innate immune responses toward diabetes progression in NOD mice.
Collapse
Affiliation(s)
- Tetsuro Niri
- Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shin-Ichi Inoue
- Division of Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Satoru Akazawa
- Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shinpei Nishikido
- Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masaki Miwa
- Diabetes Care Support Center, Nagasaki University Hospital, Nagasaki, Japan
| | | | - Katsuyuki Yui
- Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Minoru Okita
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Atsushi Kawakami
- Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Norio Abiru
- Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
8
|
Foti Randazzese S, La Rocca M, Bombaci B, Di Pisa A, Giliberto E, Inturri T, Militi D, Lombardo F, Gitto E, Salzano G, Passanisi S. Severe Diabetic Ketoacidosis in Children with Type 1 Diabetes: Ongoing Challenges in Care. CHILDREN (BASEL, SWITZERLAND) 2025; 12:110. [PMID: 39857941 PMCID: PMC11763767 DOI: 10.3390/children12010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Diabetic ketoacidosis is the most common acute complication in children and adolescents with type 1 diabetes, and contributes significantly to morbidity, mortality, and healthcare burden. This review aims to explore the multifaceted aspects of severe diabetic ketoacidosis in pediatric age, including its epidemiology, pathogenesis, risk factors, complications and emphasizing advances in prevention strategies. Incidence rates vary due to influences from geographic, socioeconomic, cultural and demographic factors. Pathogenesis is linked to insulin deficiency and an excess of counter-regulatory hormones, which disrupt glucose, protein, and lipid metabolism, causing hyperglycemia, ketosis, acidosis, dehydration, and electrolyte imbalances. According to the International Society for Pediatric and Adolescent Diabetes guidelines, severe diabetic ketoacidosis is characterized by a pH < 7.1 or bicarbonate < 5 mmol/L. This condition can lead to a wide range of life-threatening complications, including cerebral edema that represents the leading cause of death. Several prevention strategies, including awareness campaigns, early diagnosis of diabetes, regular monitoring and management, effective insulin therapy, education, access to healthcare and technological assistance, may contribute to reduce the risk of severe diabetic ketoacidosis episodes in children and adolescents.
Collapse
Affiliation(s)
- Simone Foti Randazzese
- Department of Human Pathology in Adult and Developmental Age “G. Barresi”, University of Messina, 98122 Messina, Italy; (S.F.R.); (M.L.R.); (B.B.); (A.D.P.); (E.G.); (T.I.); (D.M.); (F.L.); (G.S.)
| | - Mariarosaria La Rocca
- Department of Human Pathology in Adult and Developmental Age “G. Barresi”, University of Messina, 98122 Messina, Italy; (S.F.R.); (M.L.R.); (B.B.); (A.D.P.); (E.G.); (T.I.); (D.M.); (F.L.); (G.S.)
| | - Bruno Bombaci
- Department of Human Pathology in Adult and Developmental Age “G. Barresi”, University of Messina, 98122 Messina, Italy; (S.F.R.); (M.L.R.); (B.B.); (A.D.P.); (E.G.); (T.I.); (D.M.); (F.L.); (G.S.)
| | - Alessandra Di Pisa
- Department of Human Pathology in Adult and Developmental Age “G. Barresi”, University of Messina, 98122 Messina, Italy; (S.F.R.); (M.L.R.); (B.B.); (A.D.P.); (E.G.); (T.I.); (D.M.); (F.L.); (G.S.)
| | - Elèna Giliberto
- Department of Human Pathology in Adult and Developmental Age “G. Barresi”, University of Messina, 98122 Messina, Italy; (S.F.R.); (M.L.R.); (B.B.); (A.D.P.); (E.G.); (T.I.); (D.M.); (F.L.); (G.S.)
| | - Teresa Inturri
- Department of Human Pathology in Adult and Developmental Age “G. Barresi”, University of Messina, 98122 Messina, Italy; (S.F.R.); (M.L.R.); (B.B.); (A.D.P.); (E.G.); (T.I.); (D.M.); (F.L.); (G.S.)
| | - Daniel Militi
- Department of Human Pathology in Adult and Developmental Age “G. Barresi”, University of Messina, 98122 Messina, Italy; (S.F.R.); (M.L.R.); (B.B.); (A.D.P.); (E.G.); (T.I.); (D.M.); (F.L.); (G.S.)
| | - Fortunato Lombardo
- Department of Human Pathology in Adult and Developmental Age “G. Barresi”, University of Messina, 98122 Messina, Italy; (S.F.R.); (M.L.R.); (B.B.); (A.D.P.); (E.G.); (T.I.); (D.M.); (F.L.); (G.S.)
| | - Eloisa Gitto
- Department of Clinical and Experimental Medicine, Neonatal and Pediatric Intensive Care Unit, University of Messina, 98122 Messina, Italy;
| | - Giuseppina Salzano
- Department of Human Pathology in Adult and Developmental Age “G. Barresi”, University of Messina, 98122 Messina, Italy; (S.F.R.); (M.L.R.); (B.B.); (A.D.P.); (E.G.); (T.I.); (D.M.); (F.L.); (G.S.)
| | - Stefano Passanisi
- Department of Human Pathology in Adult and Developmental Age “G. Barresi”, University of Messina, 98122 Messina, Italy; (S.F.R.); (M.L.R.); (B.B.); (A.D.P.); (E.G.); (T.I.); (D.M.); (F.L.); (G.S.)
| |
Collapse
|
9
|
Sundheim B, Hirani K, Blaschke M, Lemos JRN, Mittal R. Pre-Type 1 Diabetes in Adolescents and Teens: Screening, Nutritional Interventions, Beta-Cell Preservation, and Psychosocial Impacts. J Clin Med 2025; 14:383. [PMID: 39860389 PMCID: PMC11765808 DOI: 10.3390/jcm14020383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/19/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Type 1 Diabetes (T1D) is a progressive autoimmune disease often identified in childhood or adolescence, with early stages detectable through pre-diabetic markers such as autoantibodies and subclinical beta-cell dysfunction. The identification of the pre-T1D stage is critical for preventing complications, such as diabetic ketoacidosis, and for enabling timely interventions that may alter disease progression. This review examines the multifaceted approach to managing T1D risk in adolescents and teens, emphasizing early detection, nutritional interventions, beta-cell preservation strategies, and psychosocial support. Screening for T1D-associated autoantibodies offers predictive insight into disease risk, particularly when combined with education and family resources that promote lifestyle adjustments. Although nutritional interventions alone are not capable of preventing T1D, certain lifestyle interventions, such as weight management and specific nutritional choices, have shown the potential to preserve insulin sensitivity, reduce inflammation, and mitigate metabolic strain. Pharmacological strategies, including immune-modulating drugs like teplizumab, alongside emerging regenerative and cell-based therapies, offer the potential to delay disease onset by protecting beta-cell function. The social and psychological impacts of a T1D risk diagnosis are also significant, affecting adolescents' quality of life, family dynamics, and mental health. Supportive interventions, including counseling, cognitive-behavioral therapy (CBT), and group support, are recommended for managing the emotional burden of pre-diabetes. Future directions call for integrating universal or targeted screening programs within schools or primary care, advancing research into nutrition and psychosocial support, and promoting policies that enhance access to preventive resources. Advocacy for the insurance coverage of screening, nutritional counseling, and mental health services is also crucial to support families in managing T1D risk. By addressing these areas, healthcare systems can promote early intervention, improve beta-cell preservation, and support the overall well-being of adolescents at risk of T1D.
Collapse
Affiliation(s)
- Brody Sundheim
- Young Leaders Advocacy Group, Diabetes Research Institute Foundation, Hollywood, FL 33021, USA; (B.S.); (K.H.); (M.B.); (J.R.N.L.)
- Ransom Everglades High School, 3575 Main Hwy, Miami, FL 33133, USA
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Krish Hirani
- Young Leaders Advocacy Group, Diabetes Research Institute Foundation, Hollywood, FL 33021, USA; (B.S.); (K.H.); (M.B.); (J.R.N.L.)
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- American Heritage School, 12200 W Broward Blvd, Plantation, FL 33325, USA
| | - Mateo Blaschke
- Young Leaders Advocacy Group, Diabetes Research Institute Foundation, Hollywood, FL 33021, USA; (B.S.); (K.H.); (M.B.); (J.R.N.L.)
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Coral Gables High School, 450 Bird Rd, Coral Gables, FL 33146, USA
| | - Joana R. N. Lemos
- Young Leaders Advocacy Group, Diabetes Research Institute Foundation, Hollywood, FL 33021, USA; (B.S.); (K.H.); (M.B.); (J.R.N.L.)
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rahul Mittal
- Young Leaders Advocacy Group, Diabetes Research Institute Foundation, Hollywood, FL 33021, USA; (B.S.); (K.H.); (M.B.); (J.R.N.L.)
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
10
|
Hoffmann L, Kohls M, Arnolds S, Achenbach P, Bergholdt R, Bonifacio E, Bosi E, Gündert M, Hoefelschweiger BK, Hummel S, Jarosz-Chobot P, Kordonouri O, Lampasona V, Narendran P, Overbergh L, Pociot F, Raposo JF, Šumník Z, Szypowska A, Vercauteren J, Winkler C, Mathieu C, Ziegler AG. EDENT1FI Master Protocol for screening of presymptomatic early-stage type 1 diabetes in children and adolescents. BMJ Open 2025; 15:e088522. [PMID: 39753267 PMCID: PMC11749223 DOI: 10.1136/bmjopen-2024-088522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025] Open
Abstract
INTRODUCTION The identification of type 1 diabetes at an early presymptomatic stage has clinical benefits. These include a reduced risk of diabetic ketoacidosis (DKA) at the clinical manifestation of the disease and a significant reduction in clinical symptoms. The European action for the Diagnosis of Early Non-clinical Type 1 diabetes For disease Interception (EDENT1FI) represents a pioneering effort to advance early detection of type 1 diabetes through public health screening. With the EDENT1FI Master Protocol, the project aims to harmonise and standardise screening for early-stage type 1 diabetes and care. METHODS AND ANALYSIS Public health islet autoantibody screening is conducted in the Czech Republic, Denmark, Germany, Italy, Poland, Portugal, Sweden and the UK. Between November 2023 (start date) and October 2028 (planned end date), an estimated number of 200 000 children and adolescents aged 1-17 years are expected to be screened. Screening is performed in capillary blood, examining different islet autoantibodies (autoantibodies against insulin, glutamic acid decarboxylase-65, insulinoma-associated antigen-2 and/or zinc transporter-8). Positive screening results undergo confirmation through a second antibody method. A second (venous) blood sample is requested if at least two autoantibodies are detected, to confirm the autoantibody status. Children and adolescents with confirmed two or more autoantibodies are invited to metabolic staging (oral glucose tolerance test, haemoglobin A1c (HbA1c), random glucose, optionally continuous glucose monitoring); an educational programme and recommendations for monitoring are provided. The feasibility and acceptability of screening are evaluated by feedback questionnaires. Pseudonymised data is collated in the EDENT1FI Registry. Study outcomes include country-specific screening rates, prevalences of stage 1 and stage 2 type 1 diabetes, number in EDENT1FI Registry, proportion with DKA and symptoms at clinical diagnosis and median HbA1c. ETHICS AND DISSEMINATION Following the EDENT1FI Master Protocol, site-specific protocols are developed and approved by local ethics committees (Technical University of Munich, Medical Faculty, Nr. 70/14; Medizinische Hochschule Hannover, Nr. 9588_BO_S_2021; Technische Universität Dresden, Nr. BO-EK-356082020; Center for Sundhed Region Hovedstaden, Nr. H-22053116; Swedish Ethical Review Authority, Nr. 2023-00312-01; National Health Service Health Research Authority and Health Care Research Wales, IRAS (Integrated Research Application System) project ID 309252; Italian National Institute of Health, National ethics committee for clinical trials of public research bodies (EPR) and other national public institutions, Prot. PRE BIO CE Nr. 0059835; Charles University in Prague, Ethics Committee for Multi-Centric Clinical Trials of the University Hopital Motol and 2nd Faculty of Medicine, Nr. 1271/23; Bioethics Committee at the Medical University of Warsaw, Nr. 21/2024 and KB/6/R/2024; Associação Protectora dos Diabéticos de Portugal, Nr. 211/2024). Results are disseminated through peer-reviewed journals and conference presentations and will be shared openly.
Collapse
Affiliation(s)
- Luisa Hoffmann
- Institute of Diabetes Research, Helmholtz Munich German Research Center for Environmental Health, Munich, Germany
| | - Mirjam Kohls
- Institute of Diabetes Research, Helmholtz Munich German Research Center for Environmental Health, Munich, Germany
| | - Stefanie Arnolds
- Institute of Diabetes Research, Helmholtz Munich German Research Center for Environmental Health, Munich, Germany
| | - Peter Achenbach
- Institute of Diabetes Research, Helmholtz Munich German Research Center for Environmental Health, Munich, Germany
- Forschergruppe Diabetes at Klinikum Rechts der Isar, Technical University of Munich School of Medicine, Munich, Germany
| | | | - Ezio Bonifacio
- Center for Regenerative Therapies Dresden, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Emanuele Bosi
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Melanie Gündert
- Institute of Diabetes Research, Helmholtz Munich German Research Center for Environmental Health, Munich, Germany
| | - Bianca K Hoefelschweiger
- Institute of Diabetes Research, Helmholtz Munich German Research Center for Environmental Health, Munich, Germany
| | - Sandra Hummel
- Institute of Diabetes Research, Helmholtz Munich German Research Center for Environmental Health, Munich, Germany
| | - Przemysława Jarosz-Chobot
- Department of Children's Diabetology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | | | - Vito Lampasona
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Lut Overbergh
- Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Flemming Pociot
- Department of Clinical Research, Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - João Filipe Raposo
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Education and Research Center (APDP-ERC), APDP-Diabetes Portugal, Lisbon, Portugal
| | - Zdeněk Šumník
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | | | - Jurgen Vercauteren
- Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Christiane Winkler
- Institute of Diabetes Research, Helmholtz Munich German Research Center for Environmental Health, Munich, Germany
| | - Chantal Mathieu
- Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Munich German Research Center for Environmental Health, Munich, Germany
- Forschergruppe Diabetes at Klinikum Rechts der Isar, Technical University of Munich School of Medicine, Munich, Germany
| |
Collapse
|
11
|
Mallone R, Sims E, Achenbach P, Mathieu C, Pugliese A, Atkinson M, Dutta S, Evans-Molina C, Klatzmann D, Koralova A, Long SA, Overbergh L, Rodriguez-Calvo T, Ziegler AG, You S. Emerging Concepts and Success Stories in Type 1 Diabetes Research: A Road Map for a Bright Future. Diabetes 2025; 74:12-21. [PMID: 39446565 DOI: 10.2337/db24-0439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Type 1 diabetes treatment stands at a crucial and exciting crossroad since the 2022 U.S. Food and Drug Administration approval of teplizumab to delay disease development. In this article, we discuss four major conceptual and practical issues that emerged as key to further advancement in type 1 diabetes research and therapies. First, collaborative networks leveraging the synergy between the type 1 diabetes research and care community members are key to fostering innovation, know-how, and translation into the clinical arena worldwide. Second, recent clinical trials in presymptomatic stage 2 and recent-onset stage 3 disease have shown the promise, and potential pitfalls, of using immunomodulatory and/or β-cell protective agents to achieve sustained remission or prevention. Third, the increasingly appreciated heterogeneity of clinical, immunological, and metabolic phenotypes and disease trajectories is of critical importance to advance the decision-making process for tailored type 1 diabetes care and therapy. Fourth, the clinical benefits of early diagnosis of β-cell autoimmunity warrant consideration of general population screening for islet autoantibodies, which requires further efforts to address the technical, organizational, and ethical challenges inherent to a sustainable program. Efforts are underway to integrate these four concepts into the future directions of type 1 diabetes research and therapy. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Roberto Mallone
- Institut Cochin, CNRS, INSERM, Université Paris Cité, Paris, France
- Service de Diabétologie et Immunologie Clinique, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
- Indiana Biosciences Research Institute, Indianapolis, IN
| | - Emily Sims
- Division of Pediatric Endocrinology and Diabetology, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | - Peter Achenbach
- Institute of Diabetes Research, Helmholtz Munich, German Center for Environmental Health, Munich, Germany
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Alberto Pugliese
- Department of Diabetes Immunology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA
| | - Mark Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL
- Department of Pediatrics, University of Florida, Gainesville, FL
| | | | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Department of Medicine, and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN
| | - David Klatzmann
- Clinical Investigation Center for Biotherapies and Inflammation-Immunopathology-Biotherapy Department (i2B), Sorbonne Université, Pitié-Salpêtrière Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
- Immunology-Immunopathology-Immunotherapy (i3), INSERM UMRS 959, Sorbonne UniversitéParis, France
| | - Anne Koralova
- The Leona M. and Harry B. Helmsley Charitable Trust, New York, NY
| | - S Alice Long
- Translational Immunology, Benaroya Research Institute, Seattle, WA
| | - Lut Overbergh
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Teresa Rodriguez-Calvo
- Institute of Diabetes Research, Helmholtz Munich, German Center for Environmental Health, Munich, Germany
| | - Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Munich, German Center for Environmental Health, Munich, Germany
| | - Sylvaine You
- Institut Cochin, CNRS, INSERM, Université Paris Cité, Paris, France
- Indiana Biosciences Research Institute, Indianapolis, IN
| |
Collapse
|
12
|
Achenbach P, Berner R, Bonifacio E, Brämswig S, Braig S, Dunstheimer D, Ermer U, Ewald D, Gemulla G, Hauer J, Haupt F, Haus G, Hubmann M, Hummel S, Kandler M, Kordonouri O, Lange K, Laub O, Lorrmann A, Nellen-Hellmuth N, Sindichakis M, von dem Berge T, Warncke K, Weber L, Winkler C, Wintermeyer P, Ziegler AG. [Early Detection Of Type 1 Diabetes By Islet Autoantibody Screening: A Position Paper Of The Fr1daplex Project Leaders And Training Centres, Bvkj Bavaria And Paednetz (Registered) Bavaria]. DAS GESUNDHEITSWESEN 2025; 87:27-37. [PMID: 38710228 PMCID: PMC11740224 DOI: 10.1055/a-2320-2859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
This position paper is based on the authors' many years of clinical experience and basic science research on the diagnosis and treatment of children and adolescents with a presymptomatic early stage of type 1 diabetes. The benefits as well as potential disadvantages of early detection of type 1 diabetes by islet autoantibody screening are critically discussed. In addition, the perspectives of delaying the onset of the clinical metabolic disease through treatment with teplizumab are addressed. Today, we see the chance for a relevant improvement in therapeutic options and life perspectives of affected children and adolescents. Important next steps for the implementation of islet autoantibody screening in Germany are the training of pediatricians who should inform families about the screening, establishment of a few transregional laboratories that carry out the test, and expansion of regional capacities for the training and care of children with an early stage of type 1 diabetes.
Collapse
Affiliation(s)
- Peter Achenbach
- Institut für Diabetesforschung, Helmholtz Zentrum München Deutsches
Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
- Forschergruppe Diabetes, Klinikum rechts der Isar, Technische
Universität München Fakultät für Medizin, Munchen, Germany
| | - Reinhard Berner
- Universitätsklinikum Carl Gustav Carus, Klinik und Poliklinik für
Kinder- und Jugendmedizin, Technische Universität Dresden, Dresden,
Germany
| | - Ezio Bonifacio
- Center for Regenerative Therapies Dresden, Technische Universität
Dresden, Dresden, Germany
| | - Susanne Brämswig
- Klinik für Kinder- und Jugendmedizin, RoMed Klinikum Rosenheim,
Rosenheim, Germany
| | - Sonja Braig
- Klinik für Kinder und Jugendliche, Klinikum Bayreuth GmbH, Bayreuth,
Germany
| | - Desiree Dunstheimer
- Klinik für Kinder- und Jugendmedizin, Universitätsklinikum Augsburg,
Augsburg, Germany
| | - Uwe Ermer
- Kinder- und Jugendmedizin, Ameos Klinikum St. Elisabeth Neuburg,
Neuburg an der Donau, Germany
| | - Dominik Ewald
- Bahnhofstr. 24, Kinderarztpraxis, Regensburg, Germany
| | - Gita Gemulla
- Universitätsklinikum Carl Gustav Carus, Klinik und Poliklinik für
Kinder- und Jugendmedizin, Technische Universität Dresden, Dresden,
Germany
- Center for Regenerative Therapies Dresden, Technische Universität
Dresden, Dresden, Germany
| | - Julia Hauer
- Zentrum für Kinder und Jugendmedizin, München Klinik und Klinikum
rechts der Isar, Technische Universität München Fakultät für Medizin, Munchen,
Germany
| | - Florian Haupt
- Institut für Diabetesforschung, Helmholtz Zentrum München Deutsches
Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
- Forschergruppe Diabetes, Klinikum rechts der Isar, Technische
Universität München Fakultät für Medizin, Munchen, Germany
| | - Gabi Haus
- Hans-Mielich-Str. 35, Kinderarztpraxis, München, Germany
| | | | - Sandra Hummel
- Institut für Diabetesforschung, Helmholtz Zentrum München Deutsches
Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
- Forschergruppe Diabetes, Klinikum rechts der Isar, Technische
Universität München Fakultät für Medizin, Munchen, Germany
| | | | - Olga Kordonouri
- Diabetologie, Endokrinologie und Allgemeine Pädiatrie, Kinder- und
Jugendkrankenhaus AUF DER BULT, Hannover, Germany
| | - Karin Lange
- Medizinische Psychologie, Medizinische Hochschule Hannover, Hannover,
Germany
| | - Otto Laub
- Happinger Str. 98, Kinderarztpraxis, Rosenheim, Germany
| | - Anja Lorrmann
- Kinder und Jugendmedizin, KJF Klinik Josefinum GmbH, Augsburg,
Germany
| | | | - Marina Sindichakis
- Klinik für Kinder- und Jugendmedizin, Kinderdiabetologie, Klinikum
Traunstein, Traunstein, Germany
| | - Thekla von dem Berge
- Diabetologie, Endokrinologie und Allgemeine Pädiatrie, Kinder- und
Jugendkrankenhaus AUF DER BULT, Hannover, Germany
| | - Katharina Warncke
- Zentrum für Kinder und Jugendmedizin, München Klinik und Klinikum
rechts der Isar, Technische Universität München Fakultät für Medizin, Munchen,
Germany
| | - Leonie Weber
- Klinik für Kinderheilkunde und Jugendmedizin, Kinderdiabetologie,
Klinikum Kempten-Oberallgau GmbH, Kempten, Germany
| | - Christiane Winkler
- Institut für Diabetesforschung, Helmholtz Zentrum München Deutsches
Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
- Forschergruppe Diabetes, Klinikum rechts der Isar, Technische
Universität München Fakultät für Medizin, Munchen, Germany
| | | | - Anette-Gabriele Ziegler
- Forschergruppe Diabetes, Klinikum rechts der Isar, Technische
Universität München Fakultät für Medizin, Munchen, Germany
- Institute of Diabetes Research, Helmholtz Center Munich German Research
Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
13
|
Mallone R, Bismuth E, Thivolet C, Benhamou PY, Hoffmeister N, Collet F, Nicolino M, Reynaud R, Beltrand J. Screening and care for preclinical stage 1-2 type 1 diabetes in first-degree relatives: French expert position statement. DIABETES & METABOLISM 2025; 51:101603. [PMID: 39675522 DOI: 10.1016/j.diabet.2024.101603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
The natural history of type 1 diabetes (T1D) evolves from stage 1 (islet autoimmunity with normoglycemia; ICD-10 diagnostic code E10.A1) to stage 2 (autoimmunity with dysglycemia; E10.A2) and subsequent clinical stage 3 (overt hyperglycemia), which is commonly the first time of referral. Autoantibody testing can diagnose T1D at its preclinical stages 1-2 and lead to earlier initiation of care, particularly for first-degree relatives of people living with T1D, who are at higher genetic risk. Preclinical T1D screening and monitoring aims to avoid inaugural ketoacidosis and prolong preservation of endogenous insulin secretion, thereby improving glycemic control and reducing long-term morbidity. Moreover, early management can help coping with T1D and correct modifiable risk factors (obesity, sedentary lifestyle). New treatments currently under clinical deployment or trials also offer the possibility of delaying clinical progression. All these arguments lead to the proposition of a national screening and care pathway open to interested first-degree relatives. This pathway represents a new expertise to acquire for healthcare professionals. By adapting international consensus guidance to the French specificities, the proposed screening strategy involves testing for ≥ 2 autoantibodies (among IAA, anti-GAD, anti-IA-2) in relatives aged 2-45 years. Negative screening (∼95 % of cases) should be repeated every 4 years until the age of 12. A management workflow is proposed for relatives screening positive (∼5 % of cases), with immuno-metabolic monitoring by autoantibody testing, OGTT, glycemia and/or HbA1c of variable frequency, depending on T1D stage, age, patient preference and available resources, as well as the definition of expert centers for preclinical T1D.
Collapse
Affiliation(s)
- Roberto Mallone
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France; Assistance Publique Hôpitaux de Paris, Université Paris Cité, Service de Diabétologie et Immunologie Clinique, Hôpital Cochin, Paris, France; Indiana Biosciences Research Institute, Indianapolis, IN, USA.
| | - Elise Bismuth
- Assistance Publique Hôpitaux de Paris, Université Paris Cité, Service d'Endocrinologie et Diabétologie Pédiatrique, Hôpital Robert Debré, Paris, France
| | - Charles Thivolet
- Hospices Civils de Lyon, Université de Lyon, Centre du diabète DIAB-eCARE, Lyon, France
| | - Pierre-Yves Benhamou
- Université Grenoble Alpes, INSERM U1055, LBFA, Endocrinologie, CHU Grenoble Alpes, France
| | | | - François Collet
- CHU Lille, Psychiatrie de Liaison et psycho-oncologie, Lille, France
| | - Marc Nicolino
- Hospices Civils de Lyon, Université de Lyon, Service d'Endocrinologie et Diabétologie Pédiatrique, Lyon, France
| | - Rachel Reynaud
- Assistance Publique Hôpitaux de Marseille, Université Aix-Marseille, Service de Pédiatrie Multidisciplinaire, Hôpital de la Timone, Marseille, France
| | - Jacques Beltrand
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France; Assistance Publique Hôpitaux de Paris, Université Paris Cité, Service d'Endocrinologie, Gynécologie et Diabétologie Pédiatrique, Necker Hospital, Paris, France
| |
Collapse
|
14
|
Shapiro MR, Tallon EM, Brown ME, Posgai AL, Clements MA, Brusko TM. Leveraging artificial intelligence and machine learning to accelerate discovery of disease-modifying therapies in type 1 diabetes. Diabetologia 2024:10.1007/s00125-024-06339-6. [PMID: 39694914 DOI: 10.1007/s00125-024-06339-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/28/2024] [Indexed: 12/20/2024]
Abstract
Progress in developing therapies for the maintenance of endogenous insulin secretion in, or the prevention of, type 1 diabetes has been hindered by limited animal models, the length and cost of clinical trials, difficulties in identifying individuals who will progress faster to a clinical diagnosis of type 1 diabetes, and heterogeneous clinical responses in intervention trials. Classic placebo-controlled intervention trials often include monotherapies, broad participant populations and extended follow-up periods focused on clinical endpoints. While this approach remains the 'gold standard' of clinical research, efforts are underway to implement new approaches harnessing the power of artificial intelligence and machine learning to accelerate drug discovery and efficacy testing. Here, we review emerging approaches for repurposing agents used to treat diseases that share pathogenic pathways with type 1 diabetes and selecting synergistic combinations of drugs to maximise therapeutic efficacy. We discuss how emerging multi-omics technologies, including analysis of antigen processing and presentation to adaptive immune cells, may lead to the discovery of novel biomarkers and subsequent translation into antigen-specific immunotherapies. We also discuss the potential for using artificial intelligence to create 'digital twin' models that enable rapid in silico testing of personalised agents as well as dose determination. To conclude, we discuss some limitations of artificial intelligence and machine learning, including issues pertaining to model interpretability and bias, as well as the continued need for validation studies via confirmatory intervention trials.
Collapse
Affiliation(s)
- Melanie R Shapiro
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
- Diabetes Institute, University of Florida, Gainesville, FL, USA
| | - Erin M Tallon
- Division of Pediatric Endocrinology and Diabetes, Children's Mercy Kansas City, Kansas City, MO, USA
- Institute for Data Science and Informatics, University of Missouri-Columbia, Columbia, MO, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Matthew E Brown
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
- Diabetes Institute, University of Florida, Gainesville, FL, USA
| | - Amanda L Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
- Diabetes Institute, University of Florida, Gainesville, FL, USA
| | - Mark A Clements
- Division of Pediatric Endocrinology and Diabetes, Children's Mercy Kansas City, Kansas City, MO, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA.
- Diabetes Institute, University of Florida, Gainesville, FL, USA.
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA.
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
15
|
Lenzen S, Jörns A. Therapy concepts in type 1 diabetes mellitus treatment: disease modifying versus curative approaches. J Mol Med (Berl) 2024; 102:1451-1455. [PMID: 39420138 PMCID: PMC11579207 DOI: 10.1007/s00109-024-02494-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
For many autoimmune diseases, including type 1 diabetes mellitus (T1DM), efforts have been made to modify the disease process through pharmacotherapy. The ultimate goal must be to develop therapies with curative potential by achieving an organ without signs of parenchymal cell destruction and without signs of immune cell infiltration. In the case of the pancreas, this means regenerated and well-preserved beta cells in the islets without activated infiltrating immune cells. Recent research has opened up the prospect of successful antibody combination therapy for autoimmune diabetes with curative potential. This goal cannot be achieved with monotherapies. The requirements for the implementation of such a therapy with curative potential for the benefit of patients with T1DM and LADA (latent autoimmune diabetes in adults) are considered.
Collapse
Affiliation(s)
- Sigurd Lenzen
- Institute of Experimental Diabetes Research, Hannover Medical School, 30625, Hannover, Germany.
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| | - Anne Jörns
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
16
|
Jacobsen LM, Atkinson MA, Sosenko JM, Gitelman SE. Time to reframe the disease staging system for type 1 diabetes. Lancet Diabetes Endocrinol 2024; 12:924-933. [PMID: 39608963 DOI: 10.1016/s2213-8587(24)00239-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/16/2024] [Accepted: 07/25/2024] [Indexed: 11/30/2024]
Abstract
In 2015, introduction of a disease staging system offered a framework for benchmarking progression to clinical type 1 diabetes. This model, based on islet autoantibodies (stage 1) and dysglycaemia (stage 2) before type 1 diabetes diagnosis (stage 3), has facilitated screening and identification of people at risk. Yet, there are many limitations to this model as the stages combine a very heterogeneous group of individuals; do not have high specificity for type 1 diabetes; can occur without persistence (ie, reversion to an earlier risk stage); and exclude age and other influential risk factors. The current staging system also infers that individuals at risk of type 1 diabetes progress linearly from stage 1 to stage 2 and subsequently stage 3, whereas such movements are often more complex. With the approval of teplizumab by the US Food and Drug Administration in 2022 to delay type 1 diabetes in people at stage 2, there is a need to refine the definition and accuracy of type 1 diabetes staging. Theoretically, we propose that a type 1 diabetes risk calculator should incorporate any available demographic, genetic, autoantibody, metabolic, and immune data that could be continuously updated. Additionally, we call to action for the field to increase the breadth of knowledge regarding type 1 diabetes risk in non-relatives, adults, and individuals from minority populations.
Collapse
Affiliation(s)
- Laura M Jacobsen
- Department of Paediatrics and Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, USA.
| | - Mark A Atkinson
- Department of Paediatrics and Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jay M Sosenko
- Division of Endocrinology, University of Miami, Miami, FL, USA
| | - Stephen E Gitelman
- Department of Paediatrics, Diabetes Center, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
17
|
Chiche L, Truchetet ME, Cornec D, Immediato Daien C. [Between the normal and the pathological: The concept of pre-disease applied to systemic autoimmune rheumatic diseases]. Rev Med Interne 2024:S0248-8663(24)01282-7. [PMID: 39592283 DOI: 10.1016/j.revmed.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024]
Abstract
The incidence of systemic autoimmune diseases is constantly rising. They are chronic diseases requiring prolonged treatment, with considerable psychosocial impact. While attention to the promising results obtained with CAR-T cells in refractory patients is justified, it seems important not to overlook the opportunities for prevention based on the identification of a pre-disease state. After clarifying the various stages that make up this pre-disease state, using the prototypical example of systemic lupus erythematosus, we will apply a transdisciplinary and transpathological approach to describe comparatively recent data obtained for other systemic autoimmune diseases (rheumatoid arthritis, Sjögren's syndrome and systemic scleroderma). We will then discuss the practical implications of this new paradigm in the typical consultation of a potentially "pre-sick" individual, and on the prospects opened up by this new paradigm in care and research.
Collapse
Affiliation(s)
- L Chiche
- Service de médecine interne, hôpital européen, 6, rue Désirée-Clary, 13003 Marseille, France.
| | - M-E Truchetet
- Université de Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33000 Bordeaux, France; CHU de Bordeaux, FHU ACRONIM, Centre national de référence des maladies auto-immunes et systémiques rares Est/Sud-Ouest (RESO), 33000 Bordeaux, France
| | - D Cornec
- Inserm UMR1227 LBAI, Univ Brest, service de rhumatologie, centre national de référence des maladies auto-immunes systémiques rares CERAINOM, CHU de Brest, Brest, France
| | - C Immediato Daien
- Service d'immuno-rhumatologie, CHU de Montpellier, Inserm U1046, CNRS UMR 9214, université de Montpellier, physiologie et médecine expérimentale du cœur et des muscles (PhyMedExp), Montpellier, France
| |
Collapse
|
18
|
Galderisi A, Sims EK, Evans-Molina C, Petrelli A, Cuthbertson D, Nathan BM, Ismail HM, Herold KC, Moran A. Trajectory of beta cell function and insulin clearance in stage 2 type 1 diabetes: natural history and response to teplizumab. Diabetologia 2024:10.1007/s00125-024-06323-0. [PMID: 39560746 DOI: 10.1007/s00125-024-06323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/02/2024] [Indexed: 11/20/2024]
Abstract
AIMS/HYPOTHESIS We aimed to analyse TrialNet Anti-CD3 Prevention (TN10) data using oral minimal model (OMM)-derived indices to characterise the natural history of stage 2 type 1 diabetes in placebo-treated individuals, to describe early metabolic responses to teplizumab and to explore the predictive capacity of OMM measures for disease-free survival rate. METHODS OMM-estimated insulin secretion, sensitivity and clearance and the disposition index were evaluated at baseline and at 3, 6 and 12 months post randomisation in placebo- and teplizumab-treated groups, and, within each group, in slow- and rapid-progressors (time to stage 3 disease >2 or ≤ 2 years). OMM metrics were also compared with the standard AUC C-peptide. Percentage changes in CD8+ T memory cell and programmed death-1 (PD-1) expression were evaluated in each group. RESULTS Baseline metabolic characteristics were similar between 28 placebo- and 39 teplizumab-treated participants. Over 12 months, insulin secretion declined in placebo-treated and rose in teplizumab-treated participants. Within groups, placebo slow-progressors (n=14) maintained insulin secretion and sensitivity, while both declined in placebo rapid-progressors (n=14). Teplizumab slow-progressors (n=28) maintained elevated insulin secretion, while teplizumab rapid-progressors (n=11) experienced mild metabolic decline. Compared with rapid-progressor groups, insulin clearance significantly decreased between baseline and 3, 6 and 12 months in the slow-progressor groups in both treatment arms. In aggregate, both higher baseline insulin secretion (p=0.027) and reduced 12 month insulin clearance (p=0.045) predicted slower progression. A >25% loss of insulin secretion at 3 months had specificity of 0.95 (95% CI 0.86, 1.00) to identify rapid-progressors and correctly classified the 2 year risk for progression in 92% of participants, with a sensitivity of 0.19 (95% CI 0.08, 0.30). OMM-estimated insulin secretion outperformed AUC C-peptide to differentiate groups by treatment or to predict progression. Metabolic changes were paralleled by relative frequency of change in PD-1+ CD8+ T effector memory cells. CONCLUSIONS/INTERPRETATION OMM measures characterise the metabolic heterogeneity in stage 2 diabetes, identifying differences between rapid- and slow-progressors, and heterogeneous impacts of immunotherapy, suggesting the need to account for these differences when designing and interpreting clinical trials.
Collapse
Grants
- AI66387 Division of Diabetes, Endocrinology, and Metabolic Diseases
- DK057846 Division of Diabetes, Endocrinology, and Metabolic Diseases
- DK106993 Division of Diabetes, Endocrinology, and Metabolic Diseases
- K23DK129799 Division of Diabetes, Endocrinology, and Metabolic Diseases
- R01DK121929 Division of Diabetes, Endocrinology, and Metabolic Diseases
- R01DK133881 Division of Diabetes, Endocrinology, and Metabolic Diseases
- U01 DK061010 NIDDK NIH HHS
- U01 DK061034 NIDDK NIH HHS
- U01 DK061042 NIDDK NIH HHS
- U01 DK06 Division of Diabetes, Endocrinology, and Metabolic Diseases
- UL1TR000142 Division of Diabetes, Endocrinology, and Metabolic Diseases
- UL1TR002366 Division of Diabetes, Endocrinology, and Metabolic Diseases
- UL1TR000445 Division of Diabetes, Endocrinology, and Metabolic Diseases
- UL1TR000064 Division of Diabetes, Endocrinology, and Metabolic Diseases
- UM1 AI09565 Division of Diabetes, Endocrinology, and Metabolic Diseases
- 62288 John Templeton Foundation
- 3-SRA-2022-1186-S-B JDRF
- 3-SRA-2023-1422-S-B JDRF
Collapse
Affiliation(s)
| | - Emily K Sims
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carmella Evans-Molina
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alessandra Petrelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Pio Albergo Trivulzio, Milan, Italy
| | - David Cuthbertson
- Health Informatics Institute, University of South Florida, Tampa, FL, USA
| | - Brandon M Nathan
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Heba M Ismail
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kevan C Herold
- Department of Immunobiology, Yale University, New Haven, CT, USA
- Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Antoinette Moran
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
19
|
Chuang ST, Alcazar O, Watts B, Abdulreda MH, Buchwald P. Small-molecule inhibitors of the CD40-CD40L costimulatory interaction are effective in pancreatic islet transplantation and prevention of type 1 diabetes models. Front Immunol 2024; 15:1484425. [PMID: 39606229 PMCID: PMC11599200 DOI: 10.3389/fimmu.2024.1484425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
As part of our work to develop small-molecule inhibitors (SMIs) of the CD40-CD40L(CD154) costimulatory protein-protein interaction, here, we describe the ability of two of our most promising SMIs, DRI-C21041 and DRI-C21095, to prolong the survival and function of islet allografts in two murine models of islet transplantation (under the kidney capsule and in the anterior chamber of the eye) and to prevent autoimmune type 1 diabetes (T1D) onset in NOD mice. In both transplant models, a significant portion of islet allografts (50%-80%) remained intact and functional long after terminating treatment, suggesting the possibility of inducing operational immune tolerance via inhibition of the CD40-CD40L axis. SMI-treated mice maintained the structural integrity and function of their islet allografts with concomitant reduction in immune cell infiltration as evidenced by direct longitudinal imaging in situ. Furthermore, in female NODs, three-month SMI treatment reduced the incidence of diabetes from 80% to 60% (DRI-C21041) and 25% (DRI-C21095). These results (i) demonstrate the susceptibility of this TNF superfamily protein-protein interaction to small-molecule inhibition, (ii) confirm the in vivo therapeutic potential of these SMIs of a critical immune checkpoint, and (iii) reaffirm the therapeutic promise of CD40-CD40L blockade in islet transplantation and T1D prevention. Thus, CD40L-targeting SMIs could ultimately lead to alternative immunomodulatory therapeutics for transplant recipients and prevention of autoimmune diseases that are safer, less immunogenic, more controllable (shorter half-lives), and more patient-friendly (i.e., suitable for oral administration, which makes them easier to administer) than corresponding antibody-based interventions.
Collapse
Affiliation(s)
- Sung-Ting Chuang
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Oscar Alcazar
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Brandon Watts
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Midhat H. Abdulreda
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Ophthalmology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
20
|
O’Donovan AJ, Gorelik S, Nally LM. Shifting the paradigm of type 1 diabetes: a narrative review of disease modifying therapies. Front Endocrinol (Lausanne) 2024; 15:1477101. [PMID: 39568817 PMCID: PMC11576206 DOI: 10.3389/fendo.2024.1477101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/26/2024] [Indexed: 11/22/2024] Open
Abstract
A new diagnosis of type 1 diabetes (T1D) may be accompanied by numerous lifelong financial, emotional, and physical challenges, thus advancements in therapies that can delay the onset of clinical disease are crucial. T1D is an autoimmune condition involving destruction of pancreatic beta cells leading to insulin deficiency, hyperglycemia, and long-term insulin dependence. The pathogenesis of T1D is classified into stages, with the first signal being the detection of autoantibodies without any glycemic changes. In the second stage, dysglycemia develops without symptoms, and in stage 3, symptoms of hyperglycemia become apparent, and at this time a clinical diagnosis of T1D is made. As a greater understanding of these stages of T1D have evolved, research efforts have been devoted to delaying the onset of clinical disease. To date, only one medication, teplizumab, has been approved by the Food and Drug Administration (FDA) for the treatment of stage 2 T1D. This narrative review present published trials and ongoing research on disease modifying therapies (DMT) in T1D, the mechanisms of action for each therapy, and the stages of T1D that these interventions are being studied.
Collapse
Affiliation(s)
- Alexander J. O’Donovan
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT, United States
| | - Seth Gorelik
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT, United States
- Bowdoin College, Brunswick, ME, United States
| | - Laura M. Nally
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT, United States
| |
Collapse
|
21
|
Su FY, Siebart JC, Chan CS, Wang MY, Yao X, Trenkle AS, Sivakumar A, Su M, Harandi R, Shahrawat N, Nguyen CH, Goenka A, Mun J, Dhodapkar MV, Kwong GA. Antigen-specific T cell immunotherapy by in vivo mRNA delivery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620946. [PMID: 39554121 PMCID: PMC11566043 DOI: 10.1101/2024.10.29.620946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Immunotherapy has shown promise for treating patients with autoimmune diseases or cancer, yet treatment is associated with adverse effects associated with global activation or suppression of T cell immunity. Here, we developed antigen-presenting nanoparticles (APNs) to selectively engineer disease antigen (Ag)-specific T cells by in vivo mRNA delivery. APNs consist of a lipid nanoparticle core functionalized with peptide-major histocompatibility complexes (pMHCs), facilitating antigen-specific T cell transfection through cognate T cell receptor-mediated endocytosis. In mouse models of type 1 diabetes and multiple myeloma, APNs selectively deplete autoreactive T cells leading to durable control of glycemia, and engineer virus-specific T cells with anti-cancer chimeric antigen receptors (CARs), achieving comparable therapeutic outcome as virally transduced ex vivo CAR. Overall, our work supports the use of APNs to engineer disease-relevant T cells in vivo as Ag-specific immunotherapy for autoimmune disorders and cancer.
Collapse
Affiliation(s)
- Fang-Yi Su
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Jamison C. Siebart
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Ching S. Chan
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Matthew Y. Wang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Xinyi Yao
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Aaron Silva Trenkle
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Avanti Sivakumar
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Melanie Su
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Rustin Harandi
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Neha Shahrawat
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Chi H. Nguyen
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Anshika Goenka
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia
| | - Jinhee Mun
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Madhav V. Dhodapkar
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia
| | - Gabriel A. Kwong
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Georgia Immunoengineering Consortium, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
22
|
Greenbaum CJ, Nepom GT, Wood-Heickman LK, Wherrett DK, DiMeglio LA, Herold KC, Krischer JP. Evolving Concepts in Pathophysiology, Screening, and Prevention of Type 1 Diabetes: Report of Diabetes Mellitus Interagency Coordinating Committee Workshop. Diabetes 2024; 73:1780-1790. [PMID: 39167668 PMCID: PMC11493760 DOI: 10.2337/dbi24-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024]
Abstract
The approval of teplizumab to delay the onset of type 1 diabetes is an important inflection point in the decades-long pursuit to treat the cause of the disease rather than its symptoms. The National Institute of Diabetes and Digestive and Kidney Diseases convened a workshop of the Diabetes Mellitus Interagency Coordinating Committee titled "Evolving Concepts in Pathophysiology, Screening, and Prevention of Type 1 Diabetes" to review this accomplishment and identify future goals. Speakers representing Type 1 Diabetes TrialNet (TrialNet) and the Immune Tolerance Network emphasized that the ability to robustly identify individuals destined to develop type 1 diabetes was essential for clinical trials. The presenter from the U.S. Food and Drug Administration described how regulatory approval relied on data from the single clinical trial of TrialNet with testing of teplizumab for delay of clinical diagnosis, along with confirmatory evidence from studies in patients after diagnosis. The workshop reviewed the etiology of type 1 diabetes as a disease involving multiple immune pathways, highlighting the current understanding of prognostic markers and proposing potential strategies to improve the therapeutic response of disease-modifying therapies based on the mechanism of action. While celebrating these achievements funded by the congressionally appropriated Special Diabetes Program, panelists from professional organizations, nonprofit advocacy/funding groups, and industry also identified significant hurdles in translating this research into clinical care.
Collapse
Affiliation(s)
- Carla J. Greenbaum
- Center for Interventional Immunology, Benaroya Research Institute, Seattle, WA
| | - Gerald T. Nepom
- Immune Tolerance Network, Benaroya Research Institute, Seattle, WA
| | - Lauren K. Wood-Heickman
- Division of Diabetes, Lipid Disorders and Obesity in the Office of New Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD
| | - Diane K. Wherrett
- Paediatric Endocrinology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Linda A. DiMeglio
- Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN
| | - Kevan C. Herold
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT
| | - Jeffrey P. Krischer
- Departments of Pediatrics and Internal Medicine, Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL
| |
Collapse
|
23
|
Chen J, Hu Y, Chen Y, Zhou Z, Shen Y, Wang Y, Liu Z, Li X, Su Z, Wu J. LNP-mRNA vaccine prevents type 1 diabetes in non-obese diabetes mice. J Control Release 2024; 375:513-523. [PMID: 39278354 DOI: 10.1016/j.jconrel.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
Islet-antigen-specific tolerization is a key goal of experimental immunotherapies for type 1 diabetes. mRNA-based vaccines have demonstrated the feasibility of RNA delivery in inducing antigen tolerance in autoimmune diseases. In this study, mRNA vaccine, encoded tandem glutamic acid decarboxylase 65 (GAD65) epitopes and cholera toxin B subunit (CTB-GADIII), prepared by an in vitro transcription (IVT) system and encapsulated with lipid nanoparticles (LNP), was intramuscularly administered to non-obese diabetic (NOD) and cyclophosphamide (Cy)-NOD mice respectively. The results showed that the mRNA vaccines significantly reduced the incidence rate of type 1 diabetes, delayed the disease progression, improved glucose tolerance, and protected pancreatic morphology and function compared with the controls. Meanwhile, the vaccines also reduced the levels of autoantibodies to glutamic acid decarboxylase (GADA) and insulin (IAA) in the serum. Furthermore, the proportion of CD4+ T helper cell subsets was modulated in the spleen of mice treated with mRNA vaccines, in correspondence with the increased levels of IL-10 and TGF-β in serum, suggesting the possible mechanism of immune tolerance. This study provides experimental evidence for the application of mRNA vaccines encoding self-antigens in the prevention or treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Jiayin Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yiqi Hu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yan Chen
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ziqi Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yiming Shen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yan Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Zichuan Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xianglong Li
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhigui Su
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Jie Wu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
24
|
King JL, Urie RR, Morris AH, Rad L, Bealer E, Kasputis T, Shea LD. Polymer scaffolds delineate healthy from diseased states at sites distal from the pancreas in two models of type 1 diabetes. Biotechnol Bioeng 2024; 121:3600-3613. [PMID: 39082734 DOI: 10.1002/bit.28824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 10/17/2024]
Abstract
Type 1 diabetes (T1D) prevention is currently limited by the lack of diagnostic tools able to identify disease before autoimmune destruction of the pancreatic β cells. Autoantibody tests are used to predict risk and, in combination with glucose dysregulation indicative of β cell loss, to determine administration of immunotherapies. Our objective was to remotely identify immune changes associated with the disease, and we have employed a subcutaneously implanted microporous poly(e-caprolactone) (PCL) scaffold to function as an immunological niche (IN) in two models of T1D. Biopsy and analysis of the IN enables disease monitoring using transcriptomic changes at a distal site from autoimmune destruction of the pancreas, thereby gaining cellular level information about disease without the need for a biopsy of the native organ. Using this approach, we identified gene signatures that stratify healthy and diseased mice in both an adoptive transfer model and a spontaneous onset model of T1D. The gene signatures identified herein demonstrate the ability of the IN to identify immune activation associated with diabetes across models.
Collapse
Affiliation(s)
- Jessica L King
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Russell R Urie
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Aaron H Morris
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Laila Rad
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Elizabeth Bealer
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Tadas Kasputis
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
25
|
Huang Q, Zhu J. Regulatory T cell-based therapy in type 1 diabetes: Latest breakthroughs and evidence. Int Immunopharmacol 2024; 140:112724. [PMID: 39098233 DOI: 10.1016/j.intimp.2024.112724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
Autoimmune diseases (ADs) are among the most significant health complications, with their incidence rising in recent years. Type 1 diabetes (T1D), an AD, targets the insulin-producing β cells in the pancreas, leading to chronic insulin deficiency in genetically susceptible individuals. Regulatory immune cells, particularly T-cells (Tregs), have been shown to play a crucial role in the pathogenesis of diabetes by modulating immune responses. In diabetic patients, Tregs often exhibit diminished effectiveness due to various factors, such as instability in forkhead box P3 (Foxp3) expression or abnormal production of the proinflammatory cytokine interferon-gamma (IFN-γ) by autoreactive T-cells. Consequently, Tregs represent a potential therapeutic target for diabetes treatment. Building on the successful clinical outcomes of chimeric antigen receptor (CAR) T-cell therapy in cancer treatment, particularly in leukemias, the concept of designing and utilizing CAR Tregs for ADs has emerged. This review summarizes the findings on Treg targeting in T1D and discusses the benefits and limitations of this treatment approach for patients suffering from T1D.
Collapse
Affiliation(s)
- Qiongxiao Huang
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
| | - Jing Zhu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
26
|
Huber E, Singh T, Bunk M, Hebel M, Kick K, Weiß A, Kohls M, Köger M, Hergl M, Zapardiel Gonzalo JM, Bonifacio E, Ziegler AG. Discrimination and precision of Continuous Glucose Monitoring in staging children with presymptomatic type 1 diabetes. J Clin Endocrinol Metab 2024:dgae691. [PMID: 39413240 DOI: 10.1210/clinem/dgae691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/04/2024] [Accepted: 10/16/2024] [Indexed: 10/18/2024]
Abstract
CONTEXT Staging and monitoring of pre-symptomatic type 1 diabetes includes the assessment for dysglycemia. OBJECTIVE To assess the ability of Continuous Glucose Monitoring (CGM) to differentiate between islet autoantibody-negative controls and early-stage type 1 diabetes and explore whether CGM classifiers predict progression to clinical diabetes. RESEARCH DESIGN AND METHODS Children and adolescents participating in public health screening for islet autoantibodies in Bavaria, Germany were invited to undergo CGM with Dexcom G6. In total, 118 participated and valid data was obtained from 97 (57 female; median age 10 [range 3-17] years), including 46 with stage 1, 18 with stage 2, and 33 with no islet autoantibodies. RESULTS Mean glucose during CGM in islet autoantibody-negative controls was high (median, 115.3 mg/dl) and varied substantially (IQR, 106.8-124.4). Eleven (33%) of the controls had more than 10% of glucose values above 140 mg/dl (TA140). Using thresholds corresponding to 100% specificity in controls, differences between controls and stage 1 and stage 2 were obtained for glucose standard deviation, TA140, TA160 and TA180. Elevations in any two of these parameters identified 12 (67%) with stage 2 and 9 (82%) of 11 participants who developed clinical diabetes within one year. However, there was marked variation within groups for all parameters and poor consistency observed in a second CGM performed in 18 participants. CONCLUSION This study demonstrated the potential of integrating CGM into staging and monitoring of early-stage type 1 diabetes. However, substantial improvement in the precision of CGM is required for its application in routine monitoring practices.
Collapse
Affiliation(s)
- Elisabeth Huber
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Tarini Singh
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Melanie Bunk
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Mayscha Hebel
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Kerstin Kick
- Forschergruppe Diabetes at Klinikum rechts der Isar, School of Medicine, Technical University Munich, Munich, Germany
| | - Andreas Weiß
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Mirjam Kohls
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Melanie Köger
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Maja Hergl
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Jose Maria Zapardiel Gonzalo
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Ezio Bonifacio
- Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Germany
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
- Forschergruppe Diabetes at Klinikum rechts der Isar, School of Medicine, Technical University Munich, Munich, Germany
| |
Collapse
|
27
|
Ayers AT, Ho CN, Wong JC, Kerr D, Mader JK, Klonoff DC. The Benefits of Using Continuous Glucose Monitoring to Diagnose Type 1 Diabetes. J Diabetes Sci Technol 2024:19322968241288923. [PMID: 39394887 PMCID: PMC11571629 DOI: 10.1177/19322968241288923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Affiliation(s)
| | - Cindy N. Ho
- Diabetes Technology Society, Burlingame, CA, USA
| | - Jenise C. Wong
- Division of Endocrinology, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - David Kerr
- Center for Health Systems Research, Sutter Health, Santa Barbara, CA, USA
| | - Julia K. Mader
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - David C. Klonoff
- Diabetes Research Institute, Mills-Peninsula Medical Center, San Mateo, CA, USA
| |
Collapse
|
28
|
Jing G, Jo S, Shalev A. A novel class of oral, non-immunosuppressive, beta cell-targeting, TXNIP-inhibiting T1D drugs is emerging. Front Endocrinol (Lausanne) 2024; 15:1476444. [PMID: 39429740 PMCID: PMC11486709 DOI: 10.3389/fendo.2024.1476444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Diabetes treatment options have improved dramatically over the last 100 years, however, close to 2 million individuals in the U.S. alone live with type 1 diabetes (T1D) and are still dependent on multiple daily insulin injections and/or continuous insulin infusion with a pump to stay alive and no oral medications are available. After decades of focusing on immunosuppressive/immunomodulatory approaches for T1D, it has now become apparent that at least after disease onset, this by itself may not be sufficient, and in order to be effective, therapies need to also address beta cell health. This Perspective article discusses the emergence of such a beta cell-targeting, novel class of oral T1D drugs targeting thioredoxin-interacting protein (TXNIP) and some very recent advances in this field that start to address this unmet medical need. It thereby focuses on repurposing of the antihypertensive drug, verapamil found to non-specifically inhibit TXNIP and on TIX100, a new chemical entity specifically developed as an oral anti-diabetic drug to inhibit TXNIP. Both have shown striking anti-diabetic effects in preclinical studies. Verapamil has also proven to be beneficial in adults and children with recent onset T1D, while TIX100 has just been cleared by the U.S. Food and Drug Administration (FDA) to proceed to clinical trials. Taken together, we propose that such non-immunosuppressive, adjunctive therapies to insulin, alone or in combination with immune modulatory approaches, are critical in order to achieve effective and durable disease-modifying treatments for T1D.
Collapse
Affiliation(s)
| | | | - Anath Shalev
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
29
|
Golden GJ, Wu VH, Hamilton JT, Amses KR, Shapiro MR, Japp AS, Liu C, Pampena MB, Kuri-Cervantes L, Knox JJ, Gardner JS, Atkinson MA, Brusko TM, Prak ETL, Kaestner KH, Naji A, Betts MR. Immune perturbations in human pancreas lymphatic tissues prior to and after type 1 diabetes onset. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590798. [PMID: 39345402 PMCID: PMC11429609 DOI: 10.1101/2024.04.23.590798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Autoimmune destruction of pancreatic β cells results in type 1 diabetes (T1D), with pancreatic immune infiltrate representing a key feature in this process. Studies of human T1D immunobiology have predominantly focused on circulating immune cells in the blood, while mouse models suggest diabetogenic lymphocytes primarily reside in pancreas-draining lymph nodes (pLN). A comprehensive study of immune cells in human T1D was conducted using pancreas draining lymphatic tissues, including pLN and mesenteric lymph nodes, and the spleen from non-diabetic control, β cell autoantibody positive non-diabetic (AAb+), and T1D organ donors using complementary approaches of high parameter flow cytometry and CITEseq. Immune perturbations suggestive of a proinflammatory environment were specific for T1D pLN and AAb+ pLN. In addition, certain immune populations correlated with high T1D genetic risk independent of disease state. These datasets form an extensive resource for profiling human lymphatic tissue immune cells in the context of autoimmunity and T1D.
Collapse
Affiliation(s)
- Gregory J Golden
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Vincent H Wu
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jacob T Hamilton
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kevin R Amses
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Melanie R Shapiro
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL 32610, USA
| | - Alberto Sada Japp
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Chengyang Liu
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Maria Betina Pampena
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Leticia Kuri-Cervantes
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - James J Knox
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jay S Gardner
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL 32610, USA
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL 32610, USA
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Eline T Luning Prak
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ali Naji
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Michael R Betts
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
30
|
Stephens SB. Defining Cytokine Responsive and Non-responsive Human β-cells. FUNCTION 2024; 5:zqae039. [PMID: 39251388 PMCID: PMC11406544 DOI: 10.1093/function/zqae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024] Open
Affiliation(s)
- Samuel B Stephens
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52242, USA
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA, 52242, USA
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
31
|
Webb-Robertson BJM, Wu W, Flores JE, Bramer LM, Syed F, Tersey SA, May SC, Sims EK, Evans-Molina C, Mirmira RG. RNA Splicing Events in Circulation Distinguish Individuals with and without New-Onset Type 1 Diabetes. J Clin Endocrinol Metab 2024:dgae622. [PMID: 39252615 DOI: 10.1210/clinem/dgae622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
CONTEXT Alterations in RNA splicing may influence protein isoform diversity that contributes to or reflects the pathophysiology of certain diseases. Whereas specific RNA splicing events in pancreatic islets have been investigated in models of inflammation in vitro, how RNA splicing in the circulation correlates with or is reflective of T1D disease pathophysiology in humans remains unexplored. OBJECTIVE To use machine learning to investigate if alternative RNA splicing events differ between individuals with and without new-onset type 1 diabetes (T1D) and to determine if these splicing events provide insight into T1D pathophysiology. METHODS RNA deep sequencing was performed on whole blood samples from two independent cohorts: a training cohort consisting of 12 individuals with new-onset T1D and 12 age- and sex-matched nondiabetic controls and a validation cohort of the same size and demographics. Machine learning analysis was used to identify specific isoforms that could distinguish individuals with T1D from controls. RESULTS Distinct patterns of RNA splicing differentiated participants with T1D from unaffected controls. Notably, certain splicing events, particularly involving retained introns, showed significant association with T1D. Machine learning analysis using these splicing events as features from the training cohort demonstrated high accuracy in distinguishing between T1D subjects and controls in the validation cohort. Gene Ontology pathway enrichment analysis of the retained intron category showed evidence for a systemic viral response in T1D subjects. CONCLUSIONS Alternative RNA splicing events in whole blood are significantly enriched in individuals with new-onset T1D and can effectively distinguish these individuals from unaffected controls. Our findings also suggest that RNA splicing profiles offer the potential to provide insights into disease pathogenesis.
Collapse
Affiliation(s)
| | - Wenting Wu
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Javier E Flores
- Biological Sciences Division, Pacific Northwest National Lab, Richland, WA, USA
| | - Lisa M Bramer
- Biological Sciences Division, Pacific Northwest National Lab, Richland, WA, USA
| | - Farooq Syed
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sarah A Tersey
- Diabetes Research and Training Center and the Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Sarah C May
- Diabetes Research and Training Center and the Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Emily K Sims
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Roudebush Veteran's Affairs Medical Center, Indianapolis, IN, USA
| | - Raghavendra G Mirmira
- Diabetes Research and Training Center and the Department of Medicine, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
32
|
Lledó-Delgado A, Preston-Hurlburt P, Currie S, Clark P, Linsley PS, Long SA, Liu C, Koroleva G, Martins AJ, Tsang JS, Herold KC. Teplizumab induces persistent changes in the antigen-specific repertoire in individuals at risk for type 1 diabetes. J Clin Invest 2024; 134:e177492. [PMID: 39137044 PMCID: PMC11405034 DOI: 10.1172/jci177492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUNDTeplizumab, a non-FcR-binding anti-CD3 mAb, is approved to delay progression of type 1 diabetes (T1D) in at-risk patients. Previous investigations described the immediate effects of the 14-day treatment, but longer-term effects of the drug remain unknown.METHODSWith an extended analysis of study participants, we found that 36% were undiagnosed or remained free of clinical diabetes after 5 years, suggesting operational tolerance. Using single-cell RNA sequencing, we compared the phenotypes, transcriptome, and repertoire of peripheral blood CD8+ T cells including autoreactive T cells from study participants before and after teplizumab and features of responders and non-responders.RESULTSAt 3 months, there were transcriptional signatures of cell activation in CD4+ and CD8+ T cells including signaling that was reversed at 18 months. At that time, there was reduced expression of genes in T cell receptor and activation pathways in clinical responders. In CD8+ T cells, we found increased expression of genes associated with exhaustion and immune regulation with teplizumab treatment. These transcriptional features were further confirmed in an independent cohort. Pseudotime analysis showed differentiation of CD8+ exhausted and memory cells with teplizumab treatment. IL7R expression was reduced, and patients with lower expression of CD127 had longer diabetes-free intervals. In addition, the frequency of autoantigen-reactive CD8+ T cells, which expanded in the placebo group over 18 months, did not increase in the teplizumab group.CONCLUSIONThese findings indicate that teplizumab promotes operational tolerance in T1D, involving activation followed by exhaustion and regulation, and prevents expansion of autoreactive T cells.TRIAL REGISTRATIONClinicalTrials.gov NCT01030861.FUNDINGNational Institute of Diabetes and Digestive and Kidney Diseases/NIH, Juvenile Diabetes Research Foundation.
Collapse
Affiliation(s)
- Ana Lledó-Delgado
- Departments of Immunobiology and Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Paula Preston-Hurlburt
- Departments of Immunobiology and Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sophia Currie
- Departments of Immunobiology and Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Pamela Clark
- Departments of Immunobiology and Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - S. Alice Long
- Benaroya Research Institute, Seattle, Washington, USA
| | - Can Liu
- Center for Systems and Engineering Immunology and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Galina Koroleva
- NIH Center for Human Immunology, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew J. Martins
- Center for Systems and Engineering Immunology and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - John S. Tsang
- Center for Systems and Engineering Immunology and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- NIH Center for Human Immunology, National Institutes of Health, Bethesda, Maryland, USA
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Kevan C. Herold
- Departments of Immunobiology and Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
33
|
Collier JJ, Hsia DS, Burke SJ. From pre-clinical efficacy to promising clinical trials that delay Type 1 diabetes. Pharmacol Res 2024; 208:107342. [PMID: 39142538 DOI: 10.1016/j.phrs.2024.107342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Recent advancements in immunology and islet biology have unveiled remarkable prospects for the postponement of Type 1 diabetes (T1D) through the strategic modulation of the immune system. In this Perspective, we discuss the pharmaceutical strides achieved, traversing from pre-clinical validation to the execution of impactful clinical trials. We begin with the initial investigations involving cyclosporine and glucocorticoids in rodent models, such as the non-obese diabetic (NOD) mouse, which guided early clinical trials. We then discuss the pre-clinical studies using suitable mouse models that eventually led to contemporary clinical trials targeting immune cell functionality and cytokine signaling pathways. Collectively, these discoveries promote the exciting paradigm of immune system modulation to mitigate autoimmunity, which continues to broaden. Notably, the use of baricitinib, a potent JAK1/2 inhibitor, and teplizumab, an anti-CD3 monoclonal antibody, represent discrete methodologies converging upon a singular outcome: the preservation of islet beta-cell functionality. The latter interventional strategies build on the original idea that tempering specific facets of the immune system will generate therapeutic benefit. Enthusiasm from these discoveries stems from efficacy with reduced side effects when compared with past approaches. The success of therapeutic intervention(s) in pre-clinical studies, combined with knowledge about stages of progression to clinical T1D, have ultimately encouraged the design of more successful clinical trials targeting highly specific populations at risk. Collectively, these findings instill a profound sense of optimism, suggesting that the prevention and even reversal of T1D may soon be within reach.
Collapse
Affiliation(s)
- J Jason Collier
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
| | - Daniel S Hsia
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; Division of Endocrinology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Center for Gastroenterology, Endocrinology, & Nutrition, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Susan J Burke
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| |
Collapse
|
34
|
Urrutia I, Martinez R, Calvo B, Marcelo I, Saso-Jimenez L, Martinez de Lapiscina I, Bilbao JR, Castano L, Rica I. Risk for progression to type 1 diabetes in first-degree relatives under 50 years of age. Front Endocrinol (Lausanne) 2024; 15:1411686. [PMID: 39188918 PMCID: PMC11345149 DOI: 10.3389/fendo.2024.1411686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Introduction The detection of pancreatic autoantibodies in first-degree relatives of patients with type 1 diabetes (T1D) is considered a risk factor for disease. Novel available immunotherapies to delay T1D progression highlight the importance of identifying individuals at risk who might benefit from emerging treatments. The objective was to assess the autoimmunity in first-degree relatives of patients with T1D, estimate the time from autoimmunity detection to the onset of clinical diabetes, and identify the associated risk factors. Methods Retrospective multicenter study of 3,015 first-degree relatives of patients with T1D recruited between 1992 and 2018. Pancreatic autoantibodies (IAA, GADA, IA2A, and ZnT8A) were determined by radioimmunoassay, starting the analyses at diagnosis of the proband. All those with positive autoimmunity and normal fasting blood glucose without clinical symptoms of diabetes were followed up in the study. The progression rate to T1D was assessed according to sex, relationship with the proband, age at autoimmunity detection, type/number of autoantibodies, and HLA-DRB1 genotype. Cox proportional-hazard models and Kaplan-Meier survival plots were used for statistical analyses. Results Among the relatives, 21 progenitors [43.7 years (IQR: 38.1-47.7)] and 27 siblings [7.6 years (IQR: 5.8-16.1)] had positive autoantibodies. Of these, 54.2% (95% CI: 39.2%-68.6%) developed T1D (age at autoimmunity detection 11 months to 39 years) in a median of 5 years (IQR: 3.6-8.7; ranged from 0.9 to 22.6 years). Risk factors associated with faster progression to T1D were multiple autoimmunity and <20 years at autoimmunity detection. Younger relatives (<20 years) with multiple autoantibodies had a 5-year cumulative risk of developing diabetes of 52.9% (95% CI: 22.1%-71.6%) and a 20-year risk of 91.2% (95% CI: 50.5%-98.4%). The 20-year risk decreased to 59.9% (95% CI: 21.9%-79.5%) if only one risk factor was met and to 35.7% (95% CI: 0.0%-66.2%) if the relative was older than 20 years with one autoantibody. Conclusions In first-degree relatives with autoimmunity, the time to progression to T1D is faster in children and adolescents with multiple autoantibodies. Young adults are also at risk, which supports their consideration in screening strategies for people at risk of developing T1D.
Collapse
Affiliation(s)
- Ines Urrutia
- Biobizkaia Health Research Institute, Barakaldo, Spain
- UPV/EHU, CIBERDEM, CIBERER, Endo-ERN, Barakaldo, Spain
| | - Rosa Martinez
- Biobizkaia Health Research Institute, Barakaldo, Spain
- UPV/EHU, CIBERDEM, CIBERER, Endo-ERN, Barakaldo, Spain
| | - Begona Calvo
- Biobizkaia Health Research Institute, Barakaldo, Spain
- Department of Medical Oncology, Cruces University Hospital, Barakaldo, Spain
| | - Irene Marcelo
- Hospital de Mataró - Consorci Sanitari del Maresme, Barcelona, Spain
| | - Laura Saso-Jimenez
- Biobizkaia Health Research Institute, Barakaldo, Spain
- UPV/EHU, CIBERDEM, CIBERER, Endo-ERN, Barakaldo, Spain
| | - Idoia Martinez de Lapiscina
- Biobizkaia Health Research Institute, Barakaldo, Spain
- UPV/EHU, CIBERDEM, CIBERER, Endo-ERN, Barakaldo, Spain
| | - Jose Ramon Bilbao
- Biobizkaia Health Research Institute, Barakaldo, Spain
- UPV/EHU, CIBERDEM, CIBERER, Endo-ERN, Barakaldo, Spain
| | - Luis Castano
- Biobizkaia Health Research Institute, Barakaldo, Spain
- UPV/EHU, CIBERDEM, CIBERER, Endo-ERN, Barakaldo, Spain
| | - Itxaso Rica
- Biobizkaia Health Research Institute, Barakaldo, Spain
- UPV/EHU, CIBERDEM, CIBERER, Endo-ERN, Barakaldo, Spain
- Pediatric Endocrinology Unit, Cruces University Hospital, Barakaldo, Spain
| |
Collapse
|
35
|
Kokori E, Olatunji G, Ogieuhi IJ, Aboje JE, Olatunji D, Aremu SA, Igwe SC, Moradeyo A, Ajayi YI, Aderinto N. Teplizumab's immunomodulatory effects on pancreatic β-cell function in type 1 diabetes mellitus. Clin Diabetes Endocrinol 2024; 10:23. [PMID: 39123252 PMCID: PMC11316332 DOI: 10.1186/s40842-024-00181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/09/2024] [Indexed: 08/12/2024] Open
Abstract
This review explores the immunomodulatory potential of Teplizumab and its impact on pancreatic β-cell function in T1D. Characterized by the autoimmune destruction of insulin-producing beta cells, T1D's management involves maintaining glycemic control through exogenous insulin. Teplizumab, a humanized monoclonal antibody targeting the CD3 antigen, has shown promise in delaying T1D onset and preserving residual β-cell function. The review employs a narrative approach, synthesizing evidence from diverse clinical trials and studies gathered through a meticulous literature search. It scrutinizes Teplizumab's mechanisms of action, including its influence on autoreactive CD8 + T cells and regulatory T cells, offering insights into its immunological pathways. The synthesis of findings from various trials demonstrates Teplizumab's efficacy in preserving C-peptide levels and reducing exogenous insulin requirements, particularly in recent-onset T1D. Considering Teplizumab's real-world implications, the paper addresses potential obstacles, including side effects, patient selection criteria, and logistical challenges. It also emphasizes exploring combination therapies and personalized treatment strategies to maximize Teplizumab's benefits. The review contributes a nuanced perspective on Teplizumab's clinical implications and future directions in T1D management, bridging theoretical understanding with practical considerations.
Collapse
Affiliation(s)
- Emmanuel Kokori
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Gbolahan Olatunji
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | | | - John Ehi Aboje
- Department of Medicine, College of Health Sciences, Benue State University, Benue, Nigeria
| | - Doyin Olatunji
- Department of Health Sciences, Western Illinois University, Macomb, USA
| | | | | | - Abdulrahmon Moradeyo
- Department of Medicine and Surgery, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Yusuf Ismaila Ajayi
- Department of Medicine and Surgery, Obafemi Awolowo University, Ife, Nigeria
| | - Nicholas Aderinto
- Department of Medicine and Surgery, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.
| |
Collapse
|
36
|
Salama RAA, Patni MAMF, Ba-Hutair SNM, Wadid NA, Akikwala MS. Exploring Novel Treatment Modalities for Type 1 Diabetes Mellitus: Potential and Prospects. Healthcare (Basel) 2024; 12:1485. [PMID: 39120188 PMCID: PMC11311856 DOI: 10.3390/healthcare12151485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Despite the effectiveness of insulin injections in managing hyperglycemia in type 1 diabetes mellitus (T1DM), they fall short in addressing autoimmunity and regenerating damaged islets. This review aims to explore the potential and prospects of emerging treatment modalities for T1DM, including mesenchymal stem cells (MSCs), MSC-derived exosomes, gene therapy, islet allotransplantation, pancreatic islet cell transplantation, and teplizumab. We review emerging treatment modalities for T1DM, highlighting several promising strategies with varied mechanisms and outcomes. Mesenchymal stem cells demonstrate potential in modulating the immune response and preserving or restoring beta-cell function, although variability in sources and administration routes necessitates further standardization. Similarly, MSC-derived exosomes show promise in promoting beta-cell regeneration and immune regulation, supported by early-stage studies showing improved glucose homeostasis in animal models, albeit with limited clinical data. Gene therapy, utilizing techniques like CRISPR-Cas9, offers targeted correction of genetic defects and immune modulation; however, challenges in precise delivery and ensuring long-term safety persist. Islet allotransplantation and pancreatic islet cell transplantation have achieved some success in restoring insulin independence, yet challenges such as donor scarcity and immunosuppression-related complications remain significant. Teplizumab, an anti-CD3 monoclonal antibody, has demonstrated potential in delaying T1DM onset by modulating immune responses and preserving beta-cell function, with clinical trials indicating prolonged insulin production capability. Despite significant progress, standardization, long-term efficacy, and safety continue to pose challenges across these modalities. Conclusion: While these therapies demonstrate significant potential, challenges persist. Future research should prioritize optimizing these treatments and validating them through extensive clinical trials to enhance T1DM management and improve patient outcomes.
Collapse
Affiliation(s)
- Rasha Aziz Attia Salama
- Department of Community Medicine, College of Medicine, Ras Al Khaimah Medical and Health Science University, Ras Al Khaimah 11172, United Arab Emirates; (R.A.A.S.); (N.A.W.)
- Kasr El Aini Faculty of Medicine, Cairo University, Giza 12525, Egypt
| | - Mohamed Anas Mohamed Faruk Patni
- Department of Community Medicine, College of Medicine, Ras Al Khaimah Medical and Health Science University, Ras Al Khaimah 11172, United Arab Emirates; (R.A.A.S.); (N.A.W.)
| | - Shadha Nasser Mohammed Ba-Hutair
- Department of Obstetrics and Gynecology, College of Medicine, Ras Al Khaimah Medical and Health Science University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Nihal Amir Wadid
- Department of Community Medicine, College of Medicine, Ras Al Khaimah Medical and Health Science University, Ras Al Khaimah 11172, United Arab Emirates; (R.A.A.S.); (N.A.W.)
| | | |
Collapse
|
37
|
Abel ED, Gloyn AL, Evans-Molina C, Joseph JJ, Misra S, Pajvani UB, Simcox J, Susztak K, Drucker DJ. Diabetes mellitus-Progress and opportunities in the evolving epidemic. Cell 2024; 187:3789-3820. [PMID: 39059357 PMCID: PMC11299851 DOI: 10.1016/j.cell.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Diabetes, a complex multisystem metabolic disorder characterized by hyperglycemia, leads to complications that reduce quality of life and increase mortality. Diabetes pathophysiology includes dysfunction of beta cells, adipose tissue, skeletal muscle, and liver. Type 1 diabetes (T1D) results from immune-mediated beta cell destruction. The more prevalent type 2 diabetes (T2D) is a heterogeneous disorder characterized by varying degrees of beta cell dysfunction in concert with insulin resistance. The strong association between obesity and T2D involves pathways regulated by the central nervous system governing food intake and energy expenditure, integrating inputs from peripheral organs and the environment. The risk of developing diabetes or its complications represents interactions between genetic susceptibility and environmental factors, including the availability of nutritious food and other social determinants of health. This perspective reviews recent advances in understanding the pathophysiology and treatment of diabetes and its complications, which could alter the course of this prevalent disorder.
Collapse
Affiliation(s)
- E Dale Abel
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Anna L Gloyn
- Department of Pediatrics, Division of Endocrinology & Diabetes, Department of Genetics, Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joshua J Joseph
- Division of Endocrinology, Diabetes and Metabolism, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Shivani Misra
- Department of Metabolism, Digestion and Reproduction, Imperial College London, and Imperial College NHS Trust, London, UK
| | - Utpal B Pajvani
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Judith Simcox
- Howard Hughes Medical Institute, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
38
|
Ma XL, Ge D, Hu XJ. Evaluation of teplizumab's efficacy and safety in treatment of type 1 diabetes mellitus: A systematic review and meta-analysis. World J Diabetes 2024; 15:1615-1626. [PMID: 39099823 PMCID: PMC11292331 DOI: 10.4239/wjd.v15.i7.1615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/05/2024] [Accepted: 04/30/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Islets of Langerhans beta cells diminish in autoimmune type 1 diabetes mellitus (T1DM). Teplizumab, a humanized anti-CD3 monoclonal antibody, may help T1DM. Its long-term implications on clinical T1DM development, safety, and efficacy are unknown. AIM To assess the effectiveness and safety of teplizumab as a therapeutic intervention for individuals with T1DM. METHODS A systematic search was conducted using four electronic databases (PubMed, Embase, Scopus, and Cochrane Library) to select publications published in peer-reviewed journals written in English. The odds ratio (OR) and risk ratio (RR) were calculated, along with their 95%CI. We assessed heterogeneity using Cochrane Q and I 2 statistics and the appropriate P value. RESULTS There were 8 randomized controlled trials (RCTs) in the current meta-analysis with a total of 1908 T1DM patients from diverse age cohorts, with 1361 patients receiving Teplizumab and 547 patients receiving a placebo. Teplizumab was found to have a substantial link with a decrease in insulin consumption, with an OR of 4.13 (95%CI: 1.72 to 9.90). Teplizumab is associated with an improved C-peptide response (OR 2.49; 95%CI: 1.62 to 3.81) and a significant change in Glycated haemoglobin A1c (HbA1c) levels in people with type 1 diabetes [OR 1.75 (95%CI: 1.03 to 2.98)], and it has a RR of 0.71 (95%CI: 0.53 to 0.95). CONCLUSION In type 1 diabetics, teplizumab decreased insulin consumption, improved C-peptide response, and significantly changed HbA1c levels with negligible side effects. Teplizumab appears to improve glycaemic control and diabetes management with good safety and efficacy.
Collapse
Affiliation(s)
- Xiao-Lan Ma
- Department of Endocrinology and Metabolism, The Second Hospital of Lanzhou University, Lanzhou 730030, Gansu Province, China
| | - Dan Ge
- Department of Endocrinology and Metabolism, The Second Hospital of Lanzhou University, Lanzhou 730030, Gansu Province, China
| | - Xue-Jian Hu
- Department of Endocrinology and Metabolism, The Second Hospital of Lanzhou University, Lanzhou 730030, Gansu Province, China
| |
Collapse
|
39
|
Sims EK, Cuthbertson D, Jacobsen L, Ismail HM, Nathan BM, Herold KC, Redondo MJ, Sosenko J. Comparisons of Metabolic Measures to Predict T1D vs Detect a Preventive Treatment Effect in High-Risk Individuals. J Clin Endocrinol Metab 2024; 109:2116-2123. [PMID: 38267821 PMCID: PMC11244203 DOI: 10.1210/clinem/dgae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/19/2023] [Accepted: 01/23/2024] [Indexed: 01/26/2024]
Abstract
CONTEXT Metabolic measures are frequently used to predict type 1 diabetes (T1D) and to understand effects of disease-modifying therapies. OBJECTIVE Compare metabolic endpoints for their ability to detect preventive treatment effects and predict T1D. METHODS Six-month changes in metabolic endpoints were assessed for (1) detecting treatment effects by comparing placebo and treatment arms from the randomized controlled teplizumab prevention trial, a multicenter clinical trial investigating 14-day intravenous teplizumab infusion and (2) predicting T1D in the TrialNet Pathway to Prevention natural history study. For each metabolic measure, t-Values from t tests for detecting a treatment effect were compared with chi-square values from proportional hazards regression for predicting T1D. Participants in the teplizumab prevention trial and participants in the Pathway to Prevention study selected with the same inclusion criteria used for the teplizumab trial were studied. RESULTS Six-month changes in glucose-based endpoints predicted diabetes better than C-peptide-based endpoints, yet the latter were better at detecting a teplizumab effect. Combined measures of glucose and C-peptide were more balanced than measures of glucose alone or C-peptide alone for predicting diabetes and detecting a teplizumab effect. CONCLUSION The capacity of a metabolic endpoint to detect a treatment effect does not necessarily correspond to its accuracy for predicting T1D. However, combined glucose and C-peptide endpoints appear to be effective for both predicting diabetes and detecting a response to immunotherapy. These findings suggest that combined glucose and C-peptide endpoints should be incorporated into the design of future T1D prevention trials.
Collapse
Affiliation(s)
- Emily K Sims
- Department of Pediatrics, Wells Center for Pediatric Research, Pediatric Endocrinology and Diabetology, and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - David Cuthbertson
- Department of Pediatrics, Pediatrics Epidemiology Center, Morsani College of Medicine, University of South Florida, Tampa, FL 33606, USA
| | - Laura Jacobsen
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Heba M Ismail
- Department of Pediatrics, Wells Center for Pediatric Research, Pediatric Endocrinology and Diabetology, and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brandon M Nathan
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kevan C Herold
- Division of Diabetes and Endocrinology, Yale University, New Haven, CT 06520, USA
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT 06520, USA
| | - Maria J Redondo
- Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jay Sosenko
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, University of Miami, Miami, FL 33136, USA
- Diabetes Research Institute, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
40
|
Petrelli A, Rosen CJ. Dendritic Cells for Type 1 Diabetes - Emerging Approaches for Tertiary Prevention. NEJM EVIDENCE 2024; 3:EVIDe2400095. [PMID: 38916420 DOI: 10.1056/evide2400095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Affiliation(s)
- Alessandra Petrelli
- IRCCS Ospedale San Raffaele, Milan, Italy
- University of Milan, Milan, Italy
- Pio Albergo Trivulzio, Milan, Italy
| | | |
Collapse
|
41
|
Ramírez-Valle F, Maranville JC, Roy S, Plenge RM. Sequential immunotherapy: towards cures for autoimmunity. Nat Rev Drug Discov 2024; 23:501-524. [PMID: 38839912 DOI: 10.1038/s41573-024-00959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 06/07/2024]
Abstract
Despite major progress in the treatment of autoimmune diseases in the past two decades, most therapies do not cure disease and can be associated with increased risk of infection through broad suppression of the immune system. However, advances in understanding the causes of autoimmune disease and clinical data from novel therapeutic modalities such as chimeric antigen receptor T cell therapies provide evidence that it may be possible to re-establish immune homeostasis and, potentially, prolong remission or even cure autoimmune diseases. Here, we propose a 'sequential immunotherapy' framework for immune system modulation to help achieve this ambitious goal. This framework encompasses three steps: controlling inflammation; resetting the immune system through elimination of pathogenic immune memory cells; and promoting and maintaining immune homeostasis via immune regulatory agents and tissue repair. We discuss existing drugs and those in development for each of the three steps. We also highlight the importance of causal human biology in identifying and prioritizing novel immunotherapeutic strategies as well as informing their application in specific patient subsets, enabling precision medicine approaches that have the potential to transform clinical care.
Collapse
|
42
|
Grando Alves G, Cunha L, Henkes Machado R, Lins de Menezes V. Safety and efficacy of teplizumab in the treatment of type 1 diabetes mellitus: An updated systematic review and meta-analysis of randomized controlled trials. Diabetes Obes Metab 2024; 26:2652-2661. [PMID: 38602411 DOI: 10.1111/dom.15581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
AIM To provide updated efficacy and safety information for teplizumab in the treatment of Stage 3 type 1 diabetes mellitus (T1DM). MATERIALS AND METHODS The PubMed, Embase and Cochrane databases were searched for randomized controlled trials (RCTs) comparing teplizumab to placebo for T1DM that reported any of the following outcomes: (1) C-peptide area under the curve (AUC); (2) glycated haemoglobin (HbA1c) levels; (3) insulin requirements; and (4) adverse events. Heterogeneity was examined with I2 statistics. p values <0.05 were taken to indicate statistical significance. The continuous endpoints were compared through the pooled mean difference (MD) and binary endpoints were assessed using risk ratios, both with 95% confidence intervals (CIs). Statistical analyses were performed using Review Manager Web software. RESULTS Eight RCTs with 1052 patients (754 receiving teplizumab) were included. Teplizumab significantly increased the AUC of C-peptide levels at 6 (MD 0.10 nmol/L, 95% CI 0.05, 0.16), 12 (MD 0.13 nmol/L, 95% CI 0.06, 0.20), 18 (MD 0.18 nmol/L, 95% CI 0.09, 0.27) and 24 months (MD 0.16 nmol/L, 95% CI 0.02, 0.31), significantly reduced HbA1c levels at 6 (MD -0.57%, 95% CI -1.07, -0.08) and 12 months (MD -0.31%, 95% CI -0.59, -0.02), and significantly reduced insulin requirements at 6 (MD -0.12 U/kg, 95% CI -0.16, -0.08), 12 (MD -0.11 U/kg, 95% CI -0.15, -0.07), 18 (MD -0.17 U/kg, 95% CI -0.26, -0.09) and 24 months (MD -0.11 U/kg, 95% CI -0.22, -0.01). CONCLUSION Teplizumab increases AUC of C-peptide levels and decreases HbA1c levels and insulin use, without raising serious adverse event risk.
Collapse
Affiliation(s)
| | - Luisa Cunha
- Department of Medicine, Lusíada University Center, São Paulo, Brazil
| | | | - Vanessa Lins de Menezes
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
43
|
Long SA, Linsley PS. Integrating Omics into Functional Biomarkers of Type 1 Diabetes. Cold Spring Harb Perspect Med 2024; 14:a041602. [PMID: 38772709 PMCID: PMC11216170 DOI: 10.1101/cshperspect.a041602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Biomarkers are critical to the staging and diagnosis of type 1 diabetes (T1D). Functional biomarkers offer insights into T1D immunopathogenesis and are often revealed using "omics" approaches that integrate multiple measures to identify involved pathways and functions. Application of the omics biomarker discovery may enable personalized medicine approaches to circumvent the more recently appreciated heterogeneity of T1D progression and treatment. Use of omics to define functional biomarkers is still in its early years, yet findings to date emphasize the role of cytokine signaling and adaptive immunity in biomarkers of progression and response to therapy. Here, we share examples of the use of omics to define functional biomarkers focusing on two signatures, T-cell exhaustion and T-cell help, which have been associated with outcomes in both the natural history and treatment contexts.
Collapse
Affiliation(s)
- S Alice Long
- Center for Translational Immunology, Benaroya Research Institute, Seattle, Washington 98101, USA
| | - Peter S Linsley
- Center for Systems Immunology, Benaroya Research Institute, Seattle, Washington 98101, USA
| |
Collapse
|
44
|
Witkop EM, Diggins K, Wiedeman A, Serti E, Nepom G, Gersuk VH, Fuchs B, Long SA, Linsley PS. Interconnected lineage trajectories link conventional and natural killer (NK)-like exhausted CD8 + T cells beneficial in type 1 diabetes. Commun Biol 2024; 7:773. [PMID: 38937521 PMCID: PMC11211332 DOI: 10.1038/s42003-024-06456-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
Distinct Natural Killer (NK)-like CD57+ and PD-1+ CD8+ exhausted-like T cell populations (Tex) have both been linked to beneficial immunotherapy response in autoimmune type 1 diabetes (T1D) patients. The origins and relationships between these cell types are poorly understood. Here we show that while PD-1+ and CD57+ Tex populations are epigenetically similar, CD57+ Tex cells display unique increased chromatin accessibility of inhibitory Killer Cell Immunoglobulin-like Receptor (iKIR) and other NK cell genes. PD-1+ and CD57+ Tex also show reciprocal expression of Inhibitory Receptors (IRs) and iKIRs accompanied by chromatin accessibility of Tcf1 and Tbet transcription factor target sites, respectively. CD57+ Tex show unappreciated gene expression heterogeneity and share clonal relationships with PD-1+ Tex, with these cells differentiating along four interconnected lineage trajectories: Tex-PD-1+, Tex-CD57+, Tex-Branching, and Tex-Fluid. Our findings demonstrate new relationships between Tex-like populations in human autoimmune disease and suggest that modulating common precursor populations may enhance response to autoimmune disease treatment.
Collapse
Affiliation(s)
- Erin M Witkop
- Benaroya Research Institute, Systems Immunology, Seattle, WA, USA
| | - Kirsten Diggins
- Benaroya Research Institute, Systems Immunology, Seattle, WA, USA
| | - Alice Wiedeman
- Benaroya Research Institute, Translational Immunology, Seattle, WA, USA
| | | | - Gerald Nepom
- Benaroya Research Institute, Translational Immunology, Seattle, WA, USA
- Immune Tolerance Network (ITN), Bethesda, MD, USA
| | - Vivian H Gersuk
- Benaroya Research Institute, Genomics Core, Seattle, WA, USA
| | - Bryce Fuchs
- Benaroya Research Institute, Translational Immunology, Seattle, WA, USA
| | - S Alice Long
- Benaroya Research Institute, Translational Immunology, Seattle, WA, USA
| | - Peter S Linsley
- Benaroya Research Institute, Systems Immunology, Seattle, WA, USA.
| |
Collapse
|
45
|
Muralidharan C, Huang F, Enriquez JR, Wang JE, Nelson JB, Nargis T, May SC, Chakraborty A, Figatner KT, Navitskaya S, Anderson CM, Calvo V, Surguladze D, Mulvihill MJ, Yi X, Sarkar S, Oakes SA, Webb-Robertson BJM, Sims EK, Staschke KA, Eizirik DL, Nakayasu ES, Stokes ME, Tersey SA, Mirmira RG. Inhibition of the eukaryotic initiation factor-2α kinase PERK decreases risk of autoimmune diabetes in mice. J Clin Invest 2024; 134:e176136. [PMID: 38889047 PMCID: PMC11324307 DOI: 10.1172/jci176136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Preventing the onset of autoimmune type 1 diabetes (T1D) is feasible through pharmacological interventions that target molecular stress-responsive mechanisms. Cellular stresses, such as nutrient deficiency, viral infection, or unfolded proteins, trigger the integrated stress response (ISR), which curtails protein synthesis by phosphorylating eukaryotic translation initiation factor-2α (eIF2α). In T1D, maladaptive unfolded protein response (UPR) in insulin-producing β cells renders these cells susceptible to autoimmunity. We found that inhibition of the eIF2α kinase PKR-like ER kinase (PERK), a common component of the UPR and ISR, reversed the mRNA translation block in stressed human islets and delayed the onset of diabetes, reduced islet inflammation, and preserved β cell mass in T1D-susceptible mice. Single-cell RNA-Seq of islets from PERK-inhibited mice showed reductions in the UPR and PERK signaling pathways and alterations in antigen-processing and presentation pathways in β cells. Spatial proteomics of islets from these mice showed an increase in the immune checkpoint protein programmed death-ligand 1 (PD-L1) in β cells. Golgi membrane protein 1, whose levels increased following PERK inhibition in human islets and EndoC-βH1 human β cells, interacted with and stabilized PD-L1. Collectively, our studies show that PERK activity enhances β cell immunogenicity and that inhibition of PERK may offer a strategy for preventing or delaying the development of T1D.
Collapse
Affiliation(s)
- Charanya Muralidharan
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Fei Huang
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Jacob R. Enriquez
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Jiayi E. Wang
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Jennifer B. Nelson
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Titli Nargis
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Sarah C. May
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Advaita Chakraborty
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Kayla T. Figatner
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Svetlana Navitskaya
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Cara M. Anderson
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | | | | | | | - Xiaoyan Yi
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Soumyadeep Sarkar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Scott A. Oakes
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | | | - Emily K. Sims
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Wells Center for Pediatric Research, and
| | - Kirk A. Staschke
- Department of Biochemistry and Molecular Biology and the Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Decio L. Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | | | - Sarah A. Tersey
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Raghavendra G. Mirmira
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
46
|
Muralidharan C, Huang F, Enriquez JR, Wang JE, Nelson JB, Nargis T, May SC, Chakraborty A, Figatner KT, Navitskaya S, Anderson CM, Calvo V, Surguladze D, Mulvihill MJ, Yi X, Sarkar S, Oakes SA, Webb-Robertson BJM, Sims EK, Staschke KA, Eizirik DL, Nakayasu ES, Stokes ME, Tersey SA, Mirmira RG. Inhibition of the Eukaryotic Initiation Factor-2-α Kinase PERK Decreases Risk of Autoimmune Diabetes in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.06.561126. [PMID: 38895427 PMCID: PMC11185543 DOI: 10.1101/2023.10.06.561126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Preventing the onset of autoimmune type 1 diabetes (T1D) is feasible through pharmacological interventions that target molecular stress-responsive mechanisms. Cellular stresses, such as nutrient deficiency, viral infection, or unfolded proteins, trigger the integrated stress response (ISR), which curtails protein synthesis by phosphorylating eIF2α. In T1D, maladaptive unfolded protein response (UPR) in insulin-producing β cells renders these cells susceptible to autoimmunity. We show that inhibition of the eIF2α kinase PERK, a common component of the UPR and ISR, reverses the mRNA translation block in stressed human islets and delays the onset of diabetes, reduces islet inflammation, and preserves β cell mass in T1D-susceptible mice. Single-cell RNA sequencing of islets from PERK-inhibited mice shows reductions in the UPR and PERK signaling pathways and alterations in antigen processing and presentation pathways in β cells. Spatial proteomics of islets from these mice shows an increase in the immune checkpoint protein PD-L1 in β cells. Golgi membrane protein 1, whose levels increase following PERK inhibition in human islets and EndoC-βH1 human β cells, interacts with and stabilizes PD-L1. Collectively, our studies show that PERK activity enhances β cell immunogenicity, and inhibition of PERK may offer a strategy to prevent or delay the development of T1D.
Collapse
Affiliation(s)
- Charanya Muralidharan
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Fei Huang
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Jacob R. Enriquez
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Jiayi E. Wang
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Jennifer B. Nelson
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Titli Nargis
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Sarah C. May
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Advaita Chakraborty
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Kayla T. Figatner
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Svetlana Navitskaya
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Cara M. Anderson
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | | | | | | | - Xiaoyan Yi
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Soumyadeep Sarkar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Scott A. Oakes
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | | | - Emily K. Sims
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, and the Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Kirk A Staschke
- Department of Biochemistry and Molecular Biology and the Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Decio L. Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Sarah A. Tersey
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Raghavendra G. Mirmira
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
47
|
Herold KC, Delong T, Perdigoto AL, Biru N, Brusko TM, Walker LSK. The immunology of type 1 diabetes. Nat Rev Immunol 2024; 24:435-451. [PMID: 38308004 PMCID: PMC7616056 DOI: 10.1038/s41577-023-00985-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 02/04/2024]
Abstract
Following the seminal discovery of insulin a century ago, treatment of individuals with type 1 diabetes (T1D) has been largely restricted to efforts to monitor and treat metabolic glucose dysregulation. The recent regulatory approval of the first immunotherapy that targets T cells as a means to delay the autoimmune destruction of pancreatic β-cells highlights the critical role of the immune system in disease pathogenesis and tends to pave the way for other immune-targeted interventions for T1D. Improving the efficacy of such interventions across the natural history of the disease will probably require a more detailed understanding of the immunobiology of T1D, as well as technologies to monitor residual β-cell mass and function. Here we provide an overview of the immune mechanisms that underpin the pathogenesis of T1D, with a particular emphasis on T cells.
Collapse
Affiliation(s)
- Kevan C Herold
- Department of Immunobiology, Yale University, New Haven, CT, USA.
- Department of Internal Medicine, Yale University, New Haven, CT, USA.
| | - Thomas Delong
- Anschutz Medical Campus, University of Colorado, Denver, CO, USA
| | - Ana Luisa Perdigoto
- Department of Internal Medicine, Yale University, New Haven, CT, USA
- Internal Medicine, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Noah Biru
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Lucy S K Walker
- Institute of Immunity & Transplantation, University College London, London, UK.
- Division of Infection & Immunity, University College London, London, UK.
| |
Collapse
|
48
|
Pinheiro MM, Pinheiro FMM, Garo ML, Pastore D, Pacifici F, Ricordi C, Della-Morte D, Infante M. Prevention and treatment of type 1 diabetes: in search of the ideal combination therapy targeting multiple immunometabolic pathways. METABOLISM AND TARGET ORGAN DAMAGE 2024; 4. [DOI: 10.20517/mtod.2024.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Type 1 diabetes (T1D) represents an autoimmune disease caused by the gradual immune-mediated destruction of the insulin-producing beta cells within the pancreatic islets of Langerhans, resulting in the lifelong need for exogenous insulin therapy. According to recent estimates, T1D currently affects about 8.4 million individuals worldwide. Since a definitive biological cure for this disease is not available yet, there is a great need for novel therapeutic strategies aimed at safely and effectively altering the natural history of the disease during its sequential stages. Ideal therapeutic goals in T1D include the prevention of autoimmune beta-cell destruction, the preservation of residual beta-cell mass and endogenous insulin secretion, the replacement and/or regeneration of beta cells, as well as automated insulin delivery through advanced closed-loop artificial pancreas systems. With this regard, an important research area focused on the identification of a definitive biological cure for T1D is represented by the investigation of immunotherapeutic and beta-cell-protective agents used as disease-modifying therapies to forestall or eliminate insulin dependence. In this commentary, we discuss the reasons why the use of combination therapies targeting the multiple immunometabolic dysfunctions associated with T1D (other than beta-cell autoimmunity) is likely to be more effective in preserving beta cell function in individuals at different stages of T1D, as compared to the use of single therapeutic agents.
Collapse
|
49
|
Syed F, Ballew O, Lee CC, Rana J, Krishnan P, Castela A, Weaver SA, Chalasani NS, Thomaidou SF, Demine S, Chang G, Coomans de Brachène A, Alvelos MI, Marselli L, Orr K, Felton JL, Liu J, Marchetti P, Zaldumbide A, Scheuner D, Eizirik DL, Evans-Molina C. Pharmacological inhibition of tyrosine protein-kinase 2 reduces islet inflammation and delays type 1 diabetes onset in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585925. [PMID: 38766166 PMCID: PMC11100605 DOI: 10.1101/2024.03.20.585925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Tyrosine protein-kinase 2 (TYK2), a member of the Janus kinase family, mediates inflammatory signaling through multiple cytokines, including interferon-α (IFNα), interleukin (IL)-12, and IL-23. Missense mutations in TYK2 are associated with protection against type 1 diabetes (T1D), and inhibition of TYK2 shows promise in the management of other autoimmune conditions. Here, we evaluated the effects of specific TYK2 inhibitors (TYK2is) in pre-clinical models of T1D. First, human β cells, cadaveric donor islets, and iPSC-derived islets were treated in vitro with IFNα in combination with a small molecule TYK2i (BMS-986165 or a related molecule BMS-986202). TYK2 inhibition prevented IFNα-induced β cell HLA class I up-regulation, endoplasmic reticulum stress, and chemokine production. In co-culture studies, pre-treatment of β cells with a TYK2i prevented IFNα-induced activation of T cells targeting an epitope of insulin. In vivo administration of BMS-986202 in two mouse models of T1D (RIP-LCMV-GP mice and NOD mice) reduced systemic and tissue-localized inflammation, prevented β cell death, and delayed T1D onset. Transcriptional phenotyping of pancreatic islets, pancreatic lymph nodes (PLN), and spleen during early disease pathogenesis highlighted a role for TYK2 inhibition in modulating signaling pathways associated with inflammation, translational control, stress signaling, secretory function, immunity, and diabetes. Additionally, TYK2i treatment changed the composition of innate and adaptive immune cell populations in the blood and disease target tissues, resulting in an immune phenotype with a diminished capacity for β cell destruction. Overall, these findings indicate that TYK2i has beneficial effects in both the immune and endocrine compartments in models of T1D, thus supporting a path forward for testing TYK2 inhibitors in human T1D.
Collapse
Affiliation(s)
- Farooq Syed
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Olivia Ballew
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Chih-Chun Lee
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jyoti Rana
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Preethi Krishnan
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Angela Castela
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Staci A. Weaver
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Sofia F. Thomaidou
- Department of Cell and Chemical Biology, Leiden University Medical Center, The Netherlands
| | - Stephane Demine
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Garrick Chang
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | | | - Maria Ines Alvelos
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Lorella Marselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Kara Orr
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jamie L. Felton
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jing Liu
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, The Netherlands
| | | | - Decio L. Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Carmella Evans-Molina
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
50
|
Huston J, Sudhakar D, Malarvannan P, Aradhyula R, Clark AL. Diabetes and Dyslipidemia Screening in Pediatric Practice. MISSOURI MEDICINE 2024; 121:206-211. [PMID: 38854609 PMCID: PMC11160381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The incidence of diabetes and hyperlipidemia are increasing at rapid rates in children. These conditions are associated with increased risk of macrovascular and microvascular complications causing major morbidity and mortality later in life. Early diagnosis and treatment can reduce the lifelong risk of complications from these diseases, exemplifying the importance of screening in the pediatric population. The following article presents a summary of the current guidelines for diabetes and hyperlipidemia screening in pediatric patients.
Collapse
Affiliation(s)
- Jordyn Huston
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Deepti Sudhakar
- Saint Louis University School of Medicine, St. Louis, Missouri
| | | | | | - Amy L Clark
- Department of Pediatrics, Division of Endocrinology, Saint Louis University School of Medicine, SSM Health Cardinal Glennon, St. Louis, Missouri
| |
Collapse
|