1
|
Kanai M, Mok S, Yeo T, Shears MJ, Ross LS, Jeon JH, Narwal S, Haile MT, Tripathi AK, Mlambo G, Kim J, Gil-Iturbe E, Okombo J, Fairhurst KJ, Bloxham T, Bridgford JL, Sheth T, Ward KE, Park H, Rozenberg FD, Quick M, Mancia F, Lee MC, Small-Saunders JL, Uhlemann AC, Sinnis P, Fidock DA. Identification of the drug/metabolite transporter 1 as a marker of quinine resistance in a NF54×Cam3.II P. falciparum genetic cross. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615529. [PMID: 39386571 PMCID: PMC11463348 DOI: 10.1101/2024.09.27.615529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The genetic basis of Plasmodium falciparum resistance to quinine (QN), a drug used to treat severe malaria, has long been enigmatic. To gain further insight, we used FRG-NOD human liver-chimeric mice to conduct a P. falciparum genetic cross between QN-sensitive and QN-resistant parasites, which also differ in their susceptibility to chloroquine (CQ). By applying different selective conditions to progeny pools prior to cloning, we recovered 120 unique recombinant progeny. These progeny were subjected to drug profiling and QTL analyses with QN, CQ, and monodesethyl-CQ (md-CQ, the active metabolite of CQ), which revealed predominant peaks on chromosomes 7 and 12, consistent with a multifactorial mechanism of resistance. A shared chromosome 12 region mapped to resistance to all three antimalarials and was preferentially co-inherited with pfcrt. We identified an ATP-dependent zinc metalloprotease (FtsH1) as one of the top candidates and observed using CRISPR/Cas9 SNP-edited lines that ftsh1 is a potential mediator of QN resistance and a modulator of md-CQ resistance. As expected, CQ and md-CQ resistance mapped to a chromosome 7 region harboring pfcrt. However, for QN, high-grade resistance mapped to a chromosome 7 peak centered 295kb downstream of pfcrt. We identified the drug/metabolite transporter 1 (DMT1) as the top candidate due to its structural similarity to PfCRT and proximity to the peak. Deleting DMT1 in QN-resistant Cam3.II parasites significantly sensitized the parasite to QN but not to the other drugs tested, suggesting that DMT1 mediates QN response specifically. We localized DMT1 to structures associated with vesicular trafficking, as well as the parasitophorous vacuolar membrane, lipid bodies, and the digestive vacuole. We also observed that mutant DMT1 transports more QN than the wild-type isoform in vitro. Our study demonstrates that DMT1 is a novel marker of QN resistance and a new chromosome 12 locus associates with CQ and QN response, with ftsh1 is a potential candidate, suggesting these genes should be genotyped in surveillance and clinical settings.
Collapse
Affiliation(s)
- Mariko Kanai
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Sachel Mok
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, NY, USA
| | - Tomas Yeo
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Melanie J. Shears
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, MD, USA
| | - Leila S. Ross
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
| | - Jin H. Jeon
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Sunil Narwal
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Meseret T. Haile
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
| | - Abhai K. Tripathi
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, MD, USA
| | - Godfree Mlambo
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, MD, USA
| | - Jonathan Kim
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, NY, USA
| | - Eva Gil-Iturbe
- Department of Psychiatry, Columbia University Irving Medical Center, NY, USA
| | - John Okombo
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Kate J. Fairhurst
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Talia Bloxham
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Jessica L. Bridgford
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Tanaya Sheth
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Kurt E. Ward
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Heekuk Park
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, NY, USA
| | - Felix D. Rozenberg
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, NY, USA
| | - Matthias Quick
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, NY, USA
- Department of Psychiatry, Columbia University Irving Medical Center, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, NY, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, NY, USA
| | - Marcus C.S. Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Jennifer L. Small-Saunders
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, NY, USA
| | - Anne-Catrin Uhlemann
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, NY, USA
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, MD, USA
| | - David A. Fidock
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, NY, USA
| |
Collapse
|
2
|
Dziwornu G, Seanego D, Fienberg S, Clements M, Ferreira J, Sypu VS, Samanta S, Bhana AD, Korkor CM, Garnie LF, Teixeira N, Wicht KJ, Taylor D, Olckers R, Njoroge M, Gibhard L, Salomane N, Wittlin S, Mahato R, Chakraborty A, Sevilleno N, Coyle R, Lee MCS, Godoy LC, Pasaje CF, Niles JC, Reader J, van der Watt M, Birkholtz LM, Bolscher JM, de Bruijni MHC, Coulson LB, Basarab GS, Ghorpade SR, Chibale K. 2,8-Disubstituted-1,5-naphthyridines as Dual Inhibitors of Plasmodium falciparum Phosphatidylinositol-4-kinase and Hemozoin Formation with In Vivo Efficacy. J Med Chem 2024; 67:11401-11420. [PMID: 38918002 PMCID: PMC11247499 DOI: 10.1021/acs.jmedchem.4c01154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Structure-activity relationship studies of 2,8-disubstituted-1,5-naphthyridines, previously reported as potent inhibitors of Plasmodium falciparum (Pf) phosphatidylinositol-4-kinase β (PI4K), identified 1,5-naphthyridines with basic groups at 8-position, which retained Plasmodium PI4K inhibitory activity but switched primary mode of action to the host hemoglobin degradation pathway through inhibition of hemozoin formation. These compounds showed minimal off-target inhibitory activity against the human phosphoinositide kinases and MINK1 and MAP4K kinases, which were associated with the teratogenicity and testicular toxicity observed in rats for the PfPI4K inhibitor clinical candidate MMV390048. A representative compound from the series retained activity against field isolates and lab-raised drug-resistant strains of Pf. It was efficacious in the humanized NSG mouse malaria infection model at a single oral dose of 32 mg/kg. This compound was nonteratogenic in the zebrafish embryo model of teratogenicity and has a low predicted human dose, indicating that this series has the potential to deliver a preclinical candidate for malaria.
Collapse
Affiliation(s)
- Godwin
Akpeko Dziwornu
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Donald Seanego
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Stephen Fienberg
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Monica Clements
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Jasmin Ferreira
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Venkata S. Sypu
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Sauvik Samanta
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Ashlyn D. Bhana
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Constance M. Korkor
- Department
of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Larnelle F. Garnie
- Department
of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Nicole Teixeira
- Department
of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Kathryn J. Wicht
- Drug
Discovery and Development Centre (H3D), Department of Chemistry and
Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Dale Taylor
- Drug
Discovery and Development Centre (H3D), Division of Clinical Pharmacology,
Department of Medicine, University of Cape
Town, Observatory 7925, South Africa
| | - Ronald Olckers
- Drug
Discovery and Development Centre (H3D), Division of Clinical Pharmacology,
Department of Medicine, University of Cape
Town, Observatory 7925, South Africa
| | - Mathew Njoroge
- Drug
Discovery and Development Centre (H3D), Division of Clinical Pharmacology,
Department of Medicine, University of Cape
Town, Observatory 7925, South Africa
| | - Liezl Gibhard
- Drug
Discovery and Development Centre (H3D), Division of Clinical Pharmacology,
Department of Medicine, University of Cape
Town, Observatory 7925, South Africa
| | - Nicolaas Salomane
- Drug
Discovery and Development Centre (H3D), Institute of Infectious Disease
and Molecular Medicine, University of Cape
Town, Observatory, Cape Town 7925, South Africa
| | - Sergio Wittlin
- Swiss Tropical
and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- University
of Basel, 4001 Basel, Switzerland
| | | | | | - Nicole Sevilleno
- Wellcome
Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, U.K.
| | - Rachael Coyle
- Wellcome
Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, U.K.
| | - Marcus C. S. Lee
- Wellcome
Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, U.K.
| | - Luiz C. Godoy
- Department
of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Charisse Flerida Pasaje
- Department
of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jacquin C. Niles
- Department
of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Janette Reader
- Department
of Biochemistry, Genetics and Microbiology, Institute
for Sustainable Malaria Control, University
of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Mariette van der Watt
- Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Lyn-Marié Birkholtz
- Department
of Biochemistry, Genetics and Microbiology, Institute
for Sustainable Malaria Control, University
of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Judith M. Bolscher
- TropIQ Health Sciences, Transistorweg 5, 6534 AT Nijmegen, The Netherlands
| | | | - Lauren B. Coulson
- Drug
Discovery and Development Centre (H3D), Institute of Infectious Disease
and Molecular Medicine, University of Cape
Town, Observatory, Cape Town 7925, South Africa
| | - Gregory S. Basarab
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- Drug
Discovery and Development Centre (H3D), Division of Clinical Pharmacology,
Department of Medicine, University of Cape
Town, Observatory 7925, South Africa
| | - Sandeep R. Ghorpade
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery
and Development
Research Unit, Department of Chemistry and Institute of Infectious
Disease and Molecular Medicine, University
of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
3
|
Mbaba M, Golding TM, Omondi RO, Mohunlal R, Egan TJ, Reader J, Birkholtz LM, Smith GS. Exploring the modulatory influence on the antimalarial activity of amodiaquine using scaffold hybridisation with ferrocene integration. Eur J Med Chem 2024; 271:116429. [PMID: 38663284 DOI: 10.1016/j.ejmech.2024.116429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 05/13/2024]
Abstract
Amodiaquine (AQ) is a potent antimalarial drug used in combination with artesunate as part of artemisinin-based combination therapies (ACTs) for malarial treatment. Due to the rising emergence of resistant malaria parasites, some of which have been reported for ACT, the usefulness of AQ as an efficacious therapeutic drug is threatened. Employing the organometallic hybridisation approach, which has been shown to restore the antimalarial activity of chloroquine in the form of an organometallic hybrid clinical candidate ferroquine (FQ), the present study utilises this strategy to modulate the biological performance of AQ by incorporating ferrocene. Presently, we have conceptualised ferrocenyl AQ derivatives and have developed facile, practical routes for their synthesis. A tailored library of AQ derivatives was assembled and their antimalarial activity evaluated against chemosensitive (NF54) and multidrug-resistant (K1) strains of the malaria parasite, Plasmodium falciparum. The compounds generally showed enhanced or comparable activities to those of the reference clinical drugs chloroquine and AQ, against both strains, with higher selectivity for the sensitive phenotype, mostly in the double-digit nanomolar IC50 range. Moreover, representative compounds from this series show the potential to block malaria transmission by inhibiting the growth of stage II/III and V gametocytes in vitro. Preliminary mechanistic insights also revealed hemozoin inhibition as a potential mode of action.
Collapse
Affiliation(s)
- Mziyanda Mbaba
- Department of Chemistry, Faculty of Science, University of Cape Town, Rondebosch, 7701, South Africa
| | - Taryn M Golding
- Department of Chemistry, Faculty of Science, University of Cape Town, Rondebosch, 7701, South Africa
| | - Reinner O Omondi
- Department of Chemistry, Faculty of Science, University of Cape Town, Rondebosch, 7701, South Africa
| | - Roxanne Mohunlal
- Department of Chemistry, Faculty of Science, University of Cape Town, Rondebosch, 7701, South Africa
| | - Timothy J Egan
- Department of Chemistry, Faculty of Science, University of Cape Town, Rondebosch, 7701, South Africa
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, 0028, South Africa
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, 0028, South Africa
| | - Gregory S Smith
- Department of Chemistry, Faculty of Science, University of Cape Town, Rondebosch, 7701, South Africa.
| |
Collapse
|
4
|
Uddin A, Gupta S, Shoaib R, Aneja B, Irfan I, Gupta K, Rawat N, Combrinck J, Kumar B, Aleem M, Hasan P, Joshi MC, Chhonker YS, Zahid M, Hussain A, Pandey K, Alajmi MF, Murry DJ, Egan TJ, Singh S, Abid M. Blood-stage antimalarial activity, favourable metabolic stability and in vivo toxicity of novel piperazine linked 7-chloroquinoline-triazole conjugates. Eur J Med Chem 2024; 264:115969. [PMID: 38039787 DOI: 10.1016/j.ejmech.2023.115969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
The persistence of drug resistance poses a significant obstacle to the advancement of efficacious malaria treatments. The remarkable efficacy displayed by 1,2,3-triazole-based compounds against Plasmodium falciparum highlights the potential of triazole conjugates, with diverse pharmacologically active structures, as potential antimalarial agents. We aimed to synthesize 7-dichloroquinoline-triazole conjugates and their structure-activity relationship (SAR) derivatives to investigate their anti-plasmodial activity. Among them, QP11, featuring a m-NO2 substitution, demonstrated efficacy against both chloroquine-sensitive and -resistant parasite strains. QP11 selectively inhibited FP2, a cysteine protease involved in hemoglobin degradation, and showed synergistic effects when combined with chloroquine. Additionally, QP11 hindered hemoglobin degradation and hemozoin formation within the parasite. Metabolic stability studies indicated high stability of QP11, making it a promising antimalarial candidate. In vivo evaluation using a murine malaria model demonstrated QP11's efficacy in eradicating parasite growth without neurotoxicity, presenting it as a promising compound for novel antimalarial development.
Collapse
Affiliation(s)
- Amad Uddin
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India; Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sonal Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rumaisha Shoaib
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India; Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Babita Aneja
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Iram Irfan
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Kanika Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Neha Rawat
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Jill Combrinck
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch, Cape Town, 7701, South Africa
| | - Bhumika Kumar
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India; National Institute of Malaria Research, New Delhi, 110077, India
| | - Mohd Aleem
- Division of Behavioral Neuroscience, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| | - Phool Hasan
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mukesh C Joshi
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, 110007, India
| | - Yashpal S Chhonker
- Department of Pharmacy Practice and Science College of Pharmacy, University of Nebraska Medical Center, 986145, Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Muhammad Zahid
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, 986145, Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Kailash Pandey
- National Institute of Malaria Research, New Delhi, 110077, India
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Daryl J Murry
- Department of Pharmacy Practice and Science College of Pharmacy, University of Nebraska Medical Center, 986145, Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch, Cape Town, 7701, South Africa
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
5
|
Okombo J, Kumar M, Redhi D, Wicht KJ, Wiesner L, Egan TJ, Chibale K. Pyrido-Dibemequine Metabolites Exhibit Improved Druglike Features, Inhibit Hemozoin Formation in Plasmodium falciparum, and Synergize with Clinical Antimalarials. ACS Infect Dis 2023; 9:653-667. [PMID: 36802523 DOI: 10.1021/acsinfecdis.2c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Structural modification of existing chemical scaffolds to afford new molecules able to circumvent drug resistance constitutes one of the rational approaches to antimalarial drug discovery. Previously synthesized compounds based on the 4-aminoquinoline core hybridized with a chemosensitizing dibenzylmethylamine side group showed in vivo efficacy in Plasmodium berghei-infected mice despite low microsomal metabolic stability, suggesting a contribution from their pharmacologically active metabolites. Here, we report on a series of these dibemequine (DBQ) metabolites with low resistance indices against chloroquine-resistant parasites and improved metabolic stability in liver microsomes. The metabolites also exhibit improved pharmacological properties including lower lipophilicity, cytotoxicity, and hERG channel inhibition. Using cellular heme fractionation experiments, we also demonstrate that these derivatives inhibit hemozoin formation by causing a buildup of toxic "free" heme in a similar manner to chloroquine. Finally, assessment of drug interactions also revealed synergy between these derivatives and several clinically relevant antimalarials, thus highlighting their potential interest for further development.
Collapse
Affiliation(s)
- John Okombo
- Department of Chemistry, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa
| | - Malkeet Kumar
- Department of Chemistry, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa
| | - Devasha Redhi
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Kathryn J Wicht
- Department of Chemistry, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa.,South African Medical Research Council Drug Discovery and Development Research Unit, Holistic Drug Discovery and Development (H3D) Centre, Rondebosch, 7701 Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa.,South African Medical Research Council Drug Discovery and Development Research Unit, Holistic Drug Discovery and Development (H3D) Centre, Rondebosch, 7701 Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa
| |
Collapse
|
6
|
Identifying inhibitors of β-haematin formation with activity against chloroquine-resistant Plasmodium falciparum malaria parasites via virtual screening approaches. Sci Rep 2023; 13:2648. [PMID: 36788274 PMCID: PMC9929333 DOI: 10.1038/s41598-023-29273-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
The biomineral haemozoin, or its synthetic analogue β-haematin (βH), has been the focus of several target-based screens for activity against Plasmodium falciparum parasites. Together with the known βH crystal structure, the availability of this screening data makes the target amenable to both structure-based and ligand-based virtual screening. In this study, molecular docking and machine learning techniques, including Bayesian and support vector machine classifiers, were used in sequence to screen the in silico ChemDiv 300k Representative Compounds library for inhibitors of βH with retained activity against P. falciparum. We commercially obtained and tested a prioritised set of inhibitors and identified the coumarin and iminodipyridinopyrimidine chemotypes as potent in vitro inhibitors of βH and whole cell parasite growth.
Collapse
|
7
|
Sovari SN, Golding TM, Mbaba M, Mohunlal R, Egan TJ, Smith GS, Zobi F. Rhenium(I) derivatives of aminoquinoline and imidazolopiperidine-based ligands: Synthesis, in vitro and in silico biological evaluation against Plasmodium falciparum. J Inorg Biochem 2022; 234:111905. [PMID: 35752063 DOI: 10.1016/j.jinorgbio.2022.111905] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/23/2022] [Accepted: 06/12/2022] [Indexed: 12/31/2022]
Abstract
A small library of aminoquinoline and imidazolopiperidine (IMP)-based ligands, containing the 1,2,3-triazole moiety, and their corresponding tricarbonyl rhenium complexes were synthesised and their inhibitory activities evaluated against the chloroquine-sensitive (CQS) and multidrug-resistant (MDR) strains (NF54 and K1, respectively) of P. falciparum. The quinoline-based compounds (L1, L2, ReL1, and ReL2) were at least six-fold more potent than their IMP-based counterparts (L3, L4, ReL3, and ReL4) against both strains of P. falciparum, with the most promising compound (L1) displaying activity comparable to chloroquine diphosphate (CQDP) in the MDR strain. Additionally, all of the synthesised compounds have resistance indices less than CQDP. To gain insight into a possible mechanism of action, in silico hemozoin docking simulations were performed. These studies proposed that the tested compounds may act via hemozoin inhibition, as the new aminoquinoline-derivatives, with the exception of complex ReL2 (binding affinity: -12.62 kcal/mol), showed higher binding affinities than the reference drug chloroquine (CQ, -13.56 kcal/mol). Furthermore, the ligands exhibited superior binding affinity relative to their corresponding Re(I) complexes, which is reflected in their antiplasmodial activity.
Collapse
Affiliation(s)
- Sara Nasiri Sovari
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland
| | - Taryn M Golding
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Mziyanda Mbaba
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Roxanne Mohunlal
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Gregory S Smith
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa.
| | - Fabio Zobi
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland.
| |
Collapse
|
8
|
Heteroleptic Rh(III) Phenylpyridyl Complexes Based on an Aminoquinoline-Benzimidazole Hybrid Scaffold: Antiplasmodial evaluation and mechanistic insights. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Olivier T, Loots L, Kok M, de Villiers M, Reader J, Birkholtz LM, Arnott GE, de Villiers KA. Adsorption to the Surface of Hemozoin Crystals: Structure-Based Design and Synthesis of Amino-Phenoxazine β-Hematin Inhibitors. ChemMedChem 2022; 17:e202200139. [PMID: 35385211 PMCID: PMC9119941 DOI: 10.1002/cmdc.202200139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/05/2022] [Indexed: 11/07/2022]
Abstract
In silico adsorption of eight antimalarials that inhibit β-hematin (synthetic hemozoin) formation identified a primary binding site on the (001) face, which accommodates inhibitors via formation of predominantly π-π interactions. A good correlation (r2 =0.64, P=0.017) between adsorption energies and the logarithm of β-hematin inhibitory activity was found for this face. Of 53 monocyclic, bicyclic and tricyclic scaffolds, the latter yielded the most favorable adsorption energies. Five new amino-phenoxazine compounds were pursued as β-hematin inhibitors based on adsorption behaviour. The 2-substituted phenoxazines show good to moderate β-hematin inhibitory activity (<100 μM) and Plasmodium falciparum blood stage activity against the 3D7 strain. N1 ,N1 -diethyl-N4 -(10H-phenoxazin-2-yl)pentane-1,4-diamine (P2a) is the most promising hit with IC50 values of 4.7±0.6 and 0.64±0.05 μM, respectively. Adsorption energies are predictive of β-hematin inhibitory activity, and thus the in silico approach is a beneficial tool for structure-based development of new non-quinoline inhibitors.
Collapse
Affiliation(s)
- Tania Olivier
- Department of Chemistry and Polymer Science, Stellenbosch University, Private BagX1, Matieland, 7602, South Africa
| | - Leigh Loots
- Department of Chemistry and Polymer Science, Stellenbosch University, Private BagX1, Matieland, 7602, South Africa
| | - Michélle Kok
- Department of Biochemistry, Stellenbosch University, Private BagX1, Matieland, 7602, South Africa
| | - Marianne de Villiers
- Department of Biochemistry, Stellenbosch University, Private BagX1, Matieland, 7602, South Africa
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, 0028, South Africa
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, 0028, South Africa
| | - Gareth E Arnott
- Department of Chemistry and Polymer Science, Stellenbosch University, Private BagX1, Matieland, 7602, South Africa
| | - Katherine A de Villiers
- Department of Chemistry and Polymer Science, Stellenbosch University, Private BagX1, Matieland, 7602, South Africa
| |
Collapse
|
10
|
Acosta M, Gotopo L, Gamboa N, Rodrigues JR, Henriques GC, Cabrera G, Romero AH. Antimalarial Activity of Highly Coordinative Fused Heterocycles Targeting β -Hematin Crystallization. ACS OMEGA 2022; 7:7499-7514. [PMID: 35284702 PMCID: PMC8908514 DOI: 10.1021/acsomega.1c05393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
The β-hematin formation is a unique process adopted by Plasmodium sp. to detoxify free heme and represents a validated target to design new effective antimalarials. Most of the β-hematin inhibitors are mainly based on 4-aminoquinolines, but the parasite has developed diverse defense mechanisms against this type of chemical system. Thus, the identification of other molecular chemical entities targeting the β-hematin formation pathway is highly needed to evade resistance mechanisms associated with 4-aminoquinolines. Herein, we showed that the highly coordinative character can be a useful tool for the rational design of antimalarial agents targeting β-hematin crystallization. From a small library consisting of five compound families with recognized antitrypanosomatid activity and coordinative abilities, a group of tetradentate 1,4-disubstituted phthalazin-aryl/heteroarylhydrazinyl derivatives were identified as potential antimalarials. They showed a remarkable curative response against Plasmodium berghei-infected mice with a significant reduction of the parasitemia, which was well correlated with their good inhibitory activities on β-hematin crystallization (IC50 = 5-7 μM). Their in vitro inhibitory and in vivo responses were comparable to those found for a chloroquine reference. The active compounds showed moderate in vitro toxicity against peritoneal macrophages, a low hemolysis response, and a good in silico ADME profile, identifying compound 2f as a promising antimalarial agent for further experiments. Other less coordinative fused heterocycles exhibited moderate inhibitory responses toward β-hematin crystallization and modest efficacy against the in vivo model. The complexation ability of the ligands with iron(III) was experimentally and theoretically determined, finding, in general, a good correlation between the complexation ability of the ligand and the inhibitory activity toward β-hematin crystallization. These findings open new perspectives toward the rational design of antimalarial β-hematin inhibitors based on the coordinative character as an alternative to the conventional β-hematin inhibitors.
Collapse
Affiliation(s)
- María
E. Acosta
- Unidad
de Bioquímica, Facultad de Farmacia, Universidad Central de Venezuela, Los Chaguaramos, Caracas 1041-A, Venezuela
| | - Lourdes Gotopo
- Laboratorio
de Síntesis Orgaínica, Escuela de Química, Facultad de Ciencias, Universidad Central de Venezuela, Los Chaguaramos, Caracas 1041-A, Venezuela
| | - Neira Gamboa
- Unidad
de Bioquímica, Facultad de Farmacia, Universidad Central de Venezuela, Los Chaguaramos, Caracas 1041-A, Venezuela
| | - Juan R. Rodrigues
- Unidad
de Bioquímica, Facultad de Farmacia, Universidad Central de Venezuela, Los Chaguaramos, Caracas 1041-A, Venezuela
| | - Genesis C. Henriques
- Unidad
de Bioquímica, Facultad de Farmacia, Universidad Central de Venezuela, Los Chaguaramos, Caracas 1041-A, Venezuela
| | - Gustavo Cabrera
- Laboratorio
de Síntesis Orgaínica, Escuela de Química, Facultad de Ciencias, Universidad Central de Venezuela, Los Chaguaramos, Caracas 1041-A, Venezuela
| | - Angel H. Romero
- Caítedra
de Química General, Facultad de Farmacia, Universidad Central de Venezuela, Los Chaguaramos, Caracas 1041-A, Venezuela
| |
Collapse
|
11
|
de Sousa ACC, Combrinck JM, Maepa K, Egan TJ. THC shows activity against cultured Plasmodium falciparum. Bioorg Med Chem Lett 2021; 54:128442. [PMID: 34763083 DOI: 10.1016/j.bmcl.2021.128442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
The FDA approved drug Dronabinol was identified in a previous study applying virtual screening using the haemozoin crystal as a target against malaria parasites. The active ingredient of dronabinol is synthetic tetrahydrocannabinol (THC), which is one of the major cannabinoids from Cannabis sativa. Traditional use of cannabis for malaria fever was reported in the world's oldest pharmacopoeia, dating to around 5000 years ago. In this research we report that THC inhibits β-haematin (synthetic haemozoin) and malaria parasite growth. Due the psychoactivity of THC, CBD, the other major naturally occurring cannabinoid that lacks the off-target psychoactive effects of THC, was also tested and inhibited β-haematin but showed only a mild antimalarial activity. To evaluate whether THC inhibit haemozoin formation, we performed a cellular haem fractionation assay that indicated that is not the likely mechanism of action. For the first time, the cannabinoid chemical structure is raised as a new chemical class to be further studied for malaria treatment, aiming to overcome the undesirable psychoactive effects of THC and optimize the antimalarial effects.
Collapse
Affiliation(s)
| | - Jill M Combrinck
- University of Cape Town, Division of Pharmacology, Department of Medicine, Observatory 7925, South Africa
| | - Keletso Maepa
- University of Cape Town, Division of Pharmacology, Department of Medicine, Observatory 7925, South Africa
| | - Timothy J Egan
- University of Cape Town, Department of Chemistry, Rondebosch 7701, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa.
| |
Collapse
|
12
|
Golding TM, Mbaba M, Smith GS. Modular synthesis of antimalarial quinoline-based PGM metallarectangles. Dalton Trans 2021; 50:15274-15286. [PMID: 34633398 DOI: 10.1039/d1dt02842a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new ditopic, quinoline-based ligand L (7-chloro-4-(pyridin-4-yl)quinoline) was synthesized via a Suzuki cross-coupling reaction. The ligand was utilized to synthesize the corresponding half-sandwich iridium(III) and ruthenium(II) binuclear complexes (1c and 1d) and the subsequent metallarectangles (2c, 2d, 3c, and 3d), via [2 + 2] coordination-driven self-assembly. Single-crystal X-ray diffraction confirmed the proposed molecular structure of the binuclear complex [{IrCl2(Cp*)}2(μ-L)] (1c) and DFT calculations were used to predict the optimized geometry of the rectangular nature of [{Ir(μ-Cl)(Cp*)}4(μ-L)2](CF3SO3)4 (2c). All of the metallarectangles were isolated as their triflate salts and characterized using various spectroscopic (1H, 13C{1H}, DOSY NMR, and IR spectroscopy) and analytical techniques (ESI-MS). The synthesized compounds were screened against the NF54 chloroquine-sensitive (CQS) and K1 chloroquine-resistant (CQR) strains of Plasmodium falciparum. Incorporation of the ubiquitous quinoline core and metal complexation significantly enhanced the in vitro biological activity, with an increase in the nuclearity correlating with an increase in the resultant antiplasmodial activity. This was observed across both parasitic strains, alluding to the potential of supramolecular metallarectangles to act as antiplasmodial agents. Inhibition of haemozoin formation was considered a potential mechanism of action and selected metallarectangles exhibit β-haematin inhibition activity with near comparable activity to chloroquine.
Collapse
Affiliation(s)
- Taryn M Golding
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa.
| | - Mziyanda Mbaba
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa.
| | - Gregory S Smith
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa.
| |
Collapse
|
13
|
Melis DR, Barnett CB, Wiesner L, Nordlander E, Smith GS. Quinoline-triazole half-sandwich iridium(III) complexes: synthesis, antiplasmodial activity and preliminary transfer hydrogenation studies. Dalton Trans 2021; 49:11543-11555. [PMID: 32697227 DOI: 10.1039/d0dt01935f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Iridium(iii) half-sandwich complexes containing 7-chloroquinoline-1,2,3-triazole hybrid ligands were synthesised and their inhibitory activities evaluated against the Plasmodium falciparum malaria parasite. Supporting computational analysis revealed that metal coordination to the quinoline nitrogen occurs first, forming a kinetic product that, upon heating over time, forms a more stable cyclometallated thermodynamic product. Single crystal X-ray diffraction confirmed the proposed molecular structures of both isolated kinetic and thermodynamic products. Complexation with iridium significantly enhances the in vitro activity of selected ligands against the chloroquine-sensitive (NF54) Plasmodium falciparum strain, with selected complexes being over one hundred times more active than their respective ligands. No cross-resistance was observed in the chloroquine-resistant (K1) strain. No cytotoxicity was observed for selected complexes tested against the mammalian Chinese Hamster Ovarian (CHO) cell line. In addition, speed-of-action assays and β-haematin inhibition studies were performed. Through preliminary qualitative and quantitative cell-free experiments, it was found that the two most active neutral, cyclometallated complexes can act as transfer hydrogenation catalysts, by reducing β-nicotinamide adenine dinucleotide (NAD+) to NADH in the presence of a hydrogen source, sodium formate.
Collapse
Affiliation(s)
- Diana R Melis
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa.
| | - Christopher B Barnett
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa.
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | - Ebbe Nordlander
- Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Gregory S Smith
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa.
| |
Collapse
|
14
|
de Villiers KA, Egan TJ. Heme Detoxification in the Malaria Parasite: A Target for Antimalarial Drug Development. Acc Chem Res 2021; 54:2649-2659. [PMID: 33982570 DOI: 10.1021/acs.accounts.1c00154] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Over the last century, malaria deaths have decreased by more than 85%. Nonetheless, there were 405 000 deaths in 2018, mostly resulting from Plasmodium falciparum infection. In the 21st century, much of the advance has arisen from the deployment of insecticide-treated bed nets and artemisinin combination therapy. However, over the past few decades parasites with a delayed artemisinin clearance phenotype have appeared in Southeast Asia, threatening further gains. The effort to find new drugs is thus urgent. A prominent process in blood stage malaria parasites, which we contend remains a viable drug target, is hemozoin formation. This crystalline material consisting of heme can be readily seen when parasites are viewed microscopically. The process of its formation in the parasite, however, is still not fully understood.In early work, we recognized hemozoin formation as a biomineralization process. We have subsequently investigated the kinetics of synthetic hemozoin (β-hematin) crystallization catalyzed at lipid-aqueous interfaces under biomimetic conditions. This led us to the use of neutral detergent-based high-throughput screening (HTS) for inhibitors of β-hematin formation. A good hit rate against malaria parasites was obtained. Simultaneously, we developed a pyridine-based assay which proved successful in measuring the concentrations of hematin not converted to β-hematin.The pyridine assay was adapted to determine the effects of chloroquine and other clinical antimalarials on hemozoin formation in the cell. This permitted the determination of the dose-dependent amounts of exchangeable heme and hemozoin in P. falciparum for the first time. These studies have shown that hemozoin inhibitors cause a dose-dependent increase in exchangeable heme, correlated with decreased parasite survival. Electron spectroscopic imaging (ESI) showed a relocation of heme iron into the parasite cytoplasm, while electron microscopy provided evidence of the disruption of hemozoin crystals. This cellular assay was subsequently extended to top-ranked hits from a wide range of scaffolds found by HTS. Intriguingly, the amounts of exchangeable heme at the parasite growth IC50 values of these scaffolds showed substantial variation. The amount of exchangeable heme was found to be correlated with the amount of inhibitor accumulated in the parasitized red blood cell. This suggests that heme-inhibitor complexes, rather than free heme, lead to parasite death. This was supported by ESI using a Br-containing compound which showed the colocalization of Fe and Br as well as by confocal Raman microscopy which confirmed the presence of a complex in the parasite. Current evidence indicates that inhibitors block hemozoin formation by surface adsorption. Indeed, we have successfully introduced molecular docking with hemozoin to find new inhibitors. It follows that the resulting increase in free heme leads to the formation of the parasiticidal heme-inhibitor complex. We have reported crystal structures of heme-drug complexes for several aryl methanol antimalarials in nonaqueous media. These form coordination complexes but most other inhibitors interact noncovalently, and the determination of their structures remains a major challenge.It is our view that key future developments will include improved assays to measure cellular heme levels, better in silico approaches for predicting β-hematin inhibition, and a concerted effort to determine the structure and properties of heme-inhibitor complexes.
Collapse
Affiliation(s)
- Katherine A. de Villiers
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag, Matieland 7600, South Africa
| | - Timothy J. Egan
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7945, South Africa
| |
Collapse
|
15
|
Openshaw R, Maepa K, Benjamin SJ, Wainwright L, Combrinck JM, Hunter R, Egan TJ. A Diverse Range of Hemozoin Inhibiting Scaffolds Act on Plasmodium falciparum as Heme Complexes. ACS Infect Dis 2021; 7:362-376. [PMID: 33430579 DOI: 10.1021/acsinfecdis.0c00680] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A diverse series of hemozoin-inhibiting quinolines, benzamides, triarylimidazoles, quinazolines, benzimidazoles, benzoxazoles, and benzothiazoles have been found to lead to exchangeable heme levels in cultured Plasmodium falciparum (NF54) that ranged over an order of magnitude at the IC50. Surprisingly, less active compounds often exhibited higher levels of exchangeable heme than more active ones. Quantities of intracellular inhibitor measured using the inoculum effect exhibited a linear correlation with exchangeable heme, suggesting formation of heme-inhibitor complexes in the parasite. In an effort to confirm this, the presence of a Br atom in one of the benzimidazole derivatives was exploited to image its distribution in the parasite using electron spectroscopic imaging of Br, an element not naturally abundant in cells. This showed that the compound colocalized with iron, consistent with its presence as a heme complex. Direct evidence for this complex was then obtained using confocal Raman microscopy. Exchangeable heme and inhibitor were found to increase with decreased rate of killing, suggesting that slow-acting compounds have more time to build up exchangeable heme complexes. Lastly, some but not all compounds evidently cause pro-oxidant effects because their activity could be attenuated with N-acetylcysteine and potentiated with t-butyl hydroperoxide. Collectively, these findings suggest that hemozoin inhibitors act as complexes with free heme, each with its own unique activity.
Collapse
Affiliation(s)
- Roxanne Openshaw
- Department of Chemistry, University of Cape Town, Private Bag Rondebosch, Cape Town 7701, South Africa
| | | | - Stefan J. Benjamin
- Department of Chemistry, University of Cape Town, Private Bag Rondebosch, Cape Town 7701, South Africa
| | - Lauren Wainwright
- Department of Chemistry, University of Cape Town, Private Bag Rondebosch, Cape Town 7701, South Africa
| | | | - Roger Hunter
- Department of Chemistry, University of Cape Town, Private Bag Rondebosch, Cape Town 7701, South Africa
| | - Timothy J. Egan
- Department of Chemistry, University of Cape Town, Private Bag Rondebosch, Cape Town 7701, South Africa
| |
Collapse
|
16
|
Ishmail FZ, Melis DR, Mbaba M, Smith GS. Diversification of quinoline-triazole scaffolds with CORMs: Synthesis, in vitro and in silico biological evaluation against Plasmodium falciparum. J Inorg Biochem 2020; 215:111328. [PMID: 33340802 DOI: 10.1016/j.jinorgbio.2020.111328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022]
Abstract
A discrete series of tricarbonyl manganese and rhenium complexes conjugated to a quinoline-triazole hybrid scaffold were synthesised and their inhibitory activities evaluated against Plasmodium falciparum. In general, the complexes show moderate activity with improved inhibitory activities for the photoactivatable manganese(I) tricarbonyl complexes in the malaria parasite. All complexes are active in the dark against the NF54 CQS (chloroquine-sensitive) and K1 MDR (multidrug-resistant) strains of Plasmodium falciparum, with IC50 values in the low micromolar range. Of significance, the complexes retain their activity in the MDR strain with resistance indices ranging between 1.1 and 2.1. The Mn(I) analogues display photodissociation of all three CO ligands upon irradiation at 365 nm. More importantly, the complexes show increased antimalarial activity in vitro upon photoactivation, something not observed by the clinically used reference drug, chloroquine. As a purported mechanism of action, the compounds were evaluated as β-haematin inhibitors. To further understand the interactions of the complexes, in silico hemozoin docking simulations were performed, attesting to the fact that CO-release could be vital for blocking the hemozoin formation pathway. These results show that this strategy may be a valuable, novel route to design antimalarial agents with higher efficacy.
Collapse
Affiliation(s)
- Fatima-Zahra Ishmail
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Diana R Melis
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Mziyanda Mbaba
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Gregory S Smith
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa.
| |
Collapse
|
17
|
Horatscheck A, Andrijevic A, Nchinda AT, Le Manach C, Paquet T, Khonde LP, Dam J, Pawar K, Taylor D, Lawrence N, Brunschwig C, Gibhard L, Njoroge M, Reader J, van der Watt M, Wicht K, de Sousa ACC, Okombo J, Maepa K, Egan TJ, Birkholtz LM, Basarab GS, Wittlin S, Fish PV, Street LJ, Duffy J, Chibale K. Identification of 2,4-Disubstituted Imidazopyridines as Hemozoin Formation Inhibitors with Fast-Killing Kinetics and In Vivo Efficacy in the Plasmodium falciparum NSG Mouse Model. J Med Chem 2020; 63:13013-13030. [PMID: 33103428 DOI: 10.1021/acs.jmedchem.0c01411] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A series of 2,4-disubstituted imidazopyridines, originating from a SoftFocus Kinase library, was identified from a high throughput phenotypic screen against the human malaria parasite Plasmodium falciparum. Hit compounds showed moderate asexual blood stage activity. During lead optimization, several issues were flagged such as cross-resistance against the multidrug-resistant K1 strain, in vitro cytotoxicity, and cardiotoxicity and were addressed through structure-activity and structure-property relationship studies. Pharmacokinetic properties were assessed in mice for compounds showing desirable in vitro activity, a selectivity window over cytotoxicity, and microsomal metabolic stability. Frontrunner compound 37 showed good exposure in mice combined with good in vitro activity against the malaria parasite, which translated into in vivo efficacy in the P. falciparum NOD-scid IL-2Rγnull (NSG) mouse model. Preliminary mechanistic studies suggest inhibition of hemozoin formation as a contributing mode of action.
Collapse
Affiliation(s)
- André Horatscheck
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Ana Andrijevic
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Aloysius T Nchinda
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Claire Le Manach
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Tanya Paquet
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Lutete Peguy Khonde
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Jean Dam
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Kailash Pawar
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Dale Taylor
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, University of Cape Town, Rondebosch 7701, South Africa
| | - Nina Lawrence
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, University of Cape Town, Rondebosch 7701, South Africa
| | - Christel Brunschwig
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, University of Cape Town, Rondebosch 7701, South Africa
| | - Liezl Gibhard
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, University of Cape Town, Rondebosch 7701, South Africa
| | - Mathew Njoroge
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, University of Cape Town, Rondebosch 7701, South Africa
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Mariëtte van der Watt
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Kathryn Wicht
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | | | - John Okombo
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Keletso Maepa
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Gregory S Basarab
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute ,Socinstrasse 57, 4002 Basel, Switzerland.,University of Basel, 4002 Basel, Switzerland
| | - Paul V Fish
- Alzheimer's Research UK, UCL Drug Discovery Institute, The Cruciform Building, University College London, Gower Street, London WC1E 6BT, U.K
| | - Leslie J Street
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - James Duffy
- Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, P.O. Box 1826, 1215 Geneva, Switzerland
| | - Kelly Chibale
- South African Medical Research Council, Drug Discovery and Development Research Unit, Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
18
|
Baartzes N, Jordaan A, Warner DF, Combrinck J, Taylor D, Chibale K, Smith GS. Antimicrobial evaluation of neutral and cationic iridium(III) and rhodium(III) aminoquinoline-benzimidazole hybrid complexes. Eur J Med Chem 2020; 206:112694. [PMID: 32861176 DOI: 10.1016/j.ejmech.2020.112694] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 10/23/2022]
Abstract
A series of neutral and cationic Ir(III) and Rh(III) aminoquinoline-benzimidazole hybrid complexes were synthesised and their inhibitory activities evaluated against Plasmodium falciparum and Mycobacterium tuberculosis. In general, the hybrid complexes display good activity against the chloroquine-sensitive NF54 strain of P. falciparum. The neutral Ir(III)- and Rh(III)-Cp∗ complexes were the most active (IC50 = 0.488 μM for IrIII), maintaining activity against the multidrug-resistant K1 strain. Low to no cytotoxicity against the Chinese hamster ovarian cell line was observed for the tested complexes. Selected active hybrid complexes demonstrated significant inhibition of β-haematin formation in a cell-free NP-40 assay, suggesting an effect on the host haemoglobin degradation pathway as a potential contributing mechanism of action. When tested against M. tuberculosis H37Rv, most hybrid complexes displayed moderate to good activity. Again, the neutral complexes outperformed the cationic complexes, with the neutral Ir(III)-Cp∗ complexes proving most active (MIC90 = 0.488-1.490 μM).
Collapse
Affiliation(s)
- Nadia Baartzes
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
| | - Audrey Jordaan
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Clinical Laboratory Sciences, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Clinical Laboratory Sciences, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Rondebosch, 7701, South Africa
| | - Jill Combrinck
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Dale Taylor
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa; South African Medical Research Council, Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Gregory S Smith
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa.
| |
Collapse
|
19
|
Moyo P, Shamburger W, van der Watt ME, Reader J, de Sousa ACC, Egan TJ, Maharaj VJ, Bringmann G, Birkholtz LM. Naphthylisoquinoline alkaloids, validated as hit multistage antiplasmodial natural products. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 13:51-58. [PMID: 32505117 PMCID: PMC7270141 DOI: 10.1016/j.ijpddr.2020.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022]
Abstract
The discovery and development of multistage antimalarial drugs targeting intra-erythrocytic asexual and sexual Plasmodium falciparum parasites is of utmost importance to achieve the ambitious goal of malaria elimination. Here, we report the validation of naphthylisoquinoline (NIQ) alkaloids and their synthetic analogues as multistage active antimalarial drug candidates. A total of 30 compounds were tested, of which 17 exhibited IC50 values <1 μM against drug-sensitive P. falciparum parasites (NF54 strain); 15 of these retained activity against a panel of drug-resistant strains. These compounds showed low in vitro cytotoxicity against HepG2 cells, with selectivity indices of >10. The tested compounds showed activity in vitro against both early- and late-stage P. falciparum gametocytes while blocking male gamete formation (>70% inhibition of exflagellation at 2 μM). Additionally, five selected compounds were found to have good solubility (≥170 μM in PBS at pH 6.5), while metabolic stability towards human, mouse, and rat microsomes ranged from >90% to >7% after 30 min. Dioncophylline C (2a) emerged as a front runner from the study, displaying activity against both asexual parasites and gametocytes, a lack of cross-resistance to chloroquine, good solubility, and microsomal stability. Overall, this is the first report on the multistage activity of NIQs and their synthetic analogues including gametocytocidal and gametocidal effects induced by this class of compounds. Naphthylisoquinolines (NIQs) validated as antimalarial hit candidates. First report on transmission-blocking properties of NIQs and analogues. 15 compounds active across 9 P. falciparum strains, with acceptable RI <10 and SI >10. 5 compounds show good solubility and microsomal stability. Dioncophylline C is the frontrunner antimalarial candidate with multistage activity.
Collapse
Affiliation(s)
- Phanankosi Moyo
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - William Shamburger
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Mariëtte E van der Watt
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Janette Reader
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Ana Carolina C de Sousa
- Department of Chemistry, Faculty of Science, University of Cape Town, Rondebosch, 7701, South Africa
| | - Timothy J Egan
- Department of Chemistry, Faculty of Science, University of Cape Town, Rondebosch, 7701, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Vinesh J Maharaj
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany; Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa.
| | - Lyn-Marie Birkholtz
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa.
| |
Collapse
|
20
|
Joshi MC, Egan TJ. Quinoline Containing Side-chain Antimalarial Analogs: Recent Advances and Therapeutic Application. Curr Top Med Chem 2020; 20:617-697. [DOI: 10.2174/1568026620666200127141550] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 01/16/2023]
Abstract
The side-chains of quinoline antimalarial agents are the major concern of focus to build
novel and efficaciaous bioactive and clinical antimalarials. Bioative antimalarial analogs may play a
critical role in pH trapping in the food vacuole of RBC’s with the help of fragmented amino acid, thus
lead to β-hematin inhibition. Here, the authors tried to summarize a useful, comprehensive compilation
of side-chain modified ACQs along with their synthesis, biophysical and therapeutic applications etc.
of potent antiplasmodial agents and therefore, opening the door towards the potential clinical status.
Collapse
Affiliation(s)
- Mukesh C. Joshi
- Department of Chemistry, Motilal Nehru College, Benito Juarez Marg, South Campus, University of Delhi, New Delhi- 110021, India
| | - Timothy J. Egan
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
21
|
Veale CGL, Müller R. Recent Highlights in Anti-infective Medicinal Chemistry from South Africa. ChemMedChem 2020; 15:809-826. [PMID: 32149446 DOI: 10.1002/cmdc.202000086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Indexed: 12/17/2022]
Abstract
Global advancements in biological technologies have vastly increased the variety of and accessibility to bioassay platforms, while simultaneously improving our understanding of druggable chemical space. In the South African context, this has resulted in a rapid expansion in the number of medicinal chemistry programmes currently operating, particularly on university campuses. Furthermore, the modern medicinal chemist has the advantage of being able to incorporate data from numerous related disciplines into the medicinal chemistry process, allowing for informed molecular design to play a far greater role than previously possible. Accordingly, this review focusses on recent highlights in drug-discovery programmes, in which South African medicinal chemistry groups have played a substantive role in the design and optimisation of biologically active compounds which contribute to the search for promising agents for infectious disease.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| | - Ronel Müller
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
22
|
de Sousa ACC, Maepa K, Combrinck JM, Egan TJ. Lapatinib, Nilotinib and Lomitapide Inhibit Haemozoin Formation in Malaria Parasites. Molecules 2020; 25:molecules25071571. [PMID: 32235391 PMCID: PMC7180468 DOI: 10.3390/molecules25071571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 12/20/2022] Open
Abstract
With the continued loss of antimalarials to resistance, drug repositioning may have a role in maximising efficiency and accelerating the discovery of new antimalarial drugs. Bayesian statistics was previously used as a tool to virtually screen USFDA approved drugs for predicted β-haematin (synthetic haemozoin) inhibition and in vitro antimalarial activity. Here, we report the experimental evaluation of nine of the highest ranked drugs, confirming the accuracy of the model by showing an overall 93% hit rate. Lapatinib, nilotinib, and lomitapide showed the best activity for inhibition of β-haematin formation and parasite growth and were found to inhibit haemozoin formation in the parasite, providing mechanistic insights into their mode of antimalarial action. We then screened the USFDA approved drugs for binding to the β-haematin crystal, applying a docking method in order to evaluate its performance. The docking method correctly identified imatinib, lapatinib, nilotinib, and lomitapide. Experimental evaluation of 22 of the highest ranked purchasable drugs showed a 24% hit rate. Lapatinib and nilotinib were chosen as templates for shape and electrostatic similarity screening for lead hopping using the in-stock ChemDiv compound catalogue. The actives were novel structures worthy of future investigation. This study presents a comparison of different in silico methods to identify new haemozoin-inhibiting chemotherapeutic alternatives for malaria that proved to be useful in different ways when taking into consideration their strengths and limitations.
Collapse
Affiliation(s)
- Ana Carolina C. de Sousa
- Department of Chemistry, Faculty of Science, University of Cape Town, Rondebosch 7701, South Africa;
| | - Keletso Maepa
- Department of Medicine, Division of Pharmacology, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa; (K.M.); (J.M.C.)
| | - Jill M. Combrinck
- Department of Medicine, Division of Pharmacology, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa; (K.M.); (J.M.C.)
- Institute of Infectious Disease and Molecular Medicine, Wellcome Centre for Infectious Diseases Research in Africa, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Timothy J. Egan
- Department of Chemistry, Faculty of Science, University of Cape Town, Rondebosch 7701, South Africa;
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
- Correspondence:
| |
Collapse
|
23
|
Virtual screening as a tool to discover new β-haematin inhibitors with activity against malaria parasites. Sci Rep 2020; 10:3374. [PMID: 32099045 PMCID: PMC7042288 DOI: 10.1038/s41598-020-60221-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 02/10/2020] [Indexed: 12/24/2022] Open
Abstract
Malaria remains a major public health problem. With the loss of antimalarials to resistance, the malaria burden will likely continue for decades. New antimalarial scaffolds are crucial to avoid cross-resistance. Here, we present the first structure based virtual screening using the β-haematin crystal as a target for new inhibitor scaffolds by applying a docking method. The ZINC15 database was searched for compounds with high binding affinity with the surface of the β-haematin crystal using the PyRx Virtual Screening Tool. Top-ranked compounds predicted to interact with β-haematin were submitted to a second screen applying in silico toxicity and drug-likeness predictions using Osiris DataWarrior. Fifteen compounds were purchased for experimental testing. An NP-40 mediated β-haematin inhibition assay and parasite growth inhibition activity assay were performed. The benzoxazole moiety was found to be a promising scaffold for further development, showing intraparasitic haemozoin inhibition using a cellular haem fractionation assay causing a decrease in haemozoin in a dose dependent manner with a corresponding increase in exchangeable haem. A β-haematin inhibition hit rate of 73% was found, a large enrichment over random screening, demonstrating that virtual screening can be a useful and cost-effective approach in the search for new haemozoin inhibiting antimalarials.
Collapse
|
24
|
Veale CGL, Jayram J, Naidoo S, Laming D, Swart T, Olivier T, Akerman MP, de Villiers KA, Hoppe HC, Jeena V. Insights into structural and physicochemical properties required for β-hematin inhibition of privileged triarylimidazoles. RSC Med Chem 2019; 11:85-91. [PMID: 33479606 DOI: 10.1039/c9md00468h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/22/2019] [Indexed: 11/21/2022] Open
Abstract
In this study, we investigated a series of triarylimidazoles, in an effort to elucidate critical SAR information pertaining to their anti-plasmodial and β-hematin inhibitory activity. Our results showed that in addition to the positional effects of ring substitution, subtle changes to lipophilicity and imidazole ionisability were important factors in SAR interpretation. Finally, in silico adsorption analysis indicated that these compounds exert their effect by inhibiting β-hematin crystal growth at the fast growing 001 face.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics , Pietermaritzburg Campus , University of KwaZulu-Natal , Private Bag X01 , Scottsville , 3209 , South Africa
| | - Janeeka Jayram
- School of Chemistry and Physics , Pietermaritzburg Campus , University of KwaZulu-Natal , Private Bag X01 , Scottsville , 3209 , South Africa
| | - Shivani Naidoo
- School of Chemistry and Physics , Pietermaritzburg Campus , University of KwaZulu-Natal , Private Bag X01 , Scottsville , 3209 , South Africa
| | - Dustin Laming
- Department of Biochemistry and Microbiology , Rhodes University , Grahamstown , 6140 , South Africa
| | - Tarryn Swart
- Department of Biochemistry and Microbiology , Rhodes University , Grahamstown , 6140 , South Africa
| | - Tania Olivier
- Department of Chemistry and Polymer Science , Stellenbosch University , Private Bag X1 , Matieland , 7602 , South Africa . ;
| | - Matthew P Akerman
- School of Chemistry and Physics , Pietermaritzburg Campus , University of KwaZulu-Natal , Private Bag X01 , Scottsville , 3209 , South Africa
| | - Katherine A de Villiers
- Department of Chemistry and Polymer Science , Stellenbosch University , Private Bag X1 , Matieland , 7602 , South Africa . ;
| | - Heinrich C Hoppe
- Department of Biochemistry and Microbiology , Rhodes University , Grahamstown , 6140 , South Africa
| | - Vineet Jeena
- School of Chemistry and Physics , Pietermaritzburg Campus , University of KwaZulu-Natal , Private Bag X01 , Scottsville , 3209 , South Africa
| |
Collapse
|
25
|
Stringer T, Wiesner L, Smith GS. Ferroquine-derived polyamines that target resistant Plasmodium falciparum. Eur J Med Chem 2019; 179:78-83. [DOI: 10.1016/j.ejmech.2019.06.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 01/14/2023]
|
26
|
Ni S, Li B, Xu Y, Mao F, Li X, Lan L, Zhu J, Li J. Targeting virulence factors as an antimicrobial approach: Pigment inhibitors. Med Res Rev 2019; 40:293-338. [PMID: 31267561 DOI: 10.1002/med.21621] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/30/2019] [Accepted: 06/13/2019] [Indexed: 12/19/2022]
Abstract
The fascinating and dangerous colored pathogens contain unique chemically pigmented molecules, which give varied and efficient assistance as virulence factors to the crucial reproduction and growth of microbes. Therefore, multiple novel strategies and inhibitors have been developed in recent years that target virulence factor pigments. However, despite the importance and significance of this topic, it has not yet been comprehensively reviewed. Moreover, research groups around the world have made successful progress against antibacterial infections by targeting pigment production, including our serial works on the discovery of CrtN inhibitors against staphyloxanthin production in Staphylococcus aureus. On the basis of the previous achievements and recent progress of our group in this field, this article will be the first comprehensive review of pigment inhibitors against colored pathogens, especially S. aureus infections, and this article includes design strategies, representative case studies, advantages, limitations, and perspectives to guide future research.
Collapse
Affiliation(s)
- Shuaishuai Ni
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Baoli Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yixiang Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Lefu Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Material Medical, Chinese Academy of Sciences, Shanghai, China
| | - Jin Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
27
|
Baartzes N, Stringer T, Seldon R, Warner DF, Taylor D, Wittlin S, Chibale K, Smith GS. Bioisosteric ferrocenyl aminoquinoline-benzimidazole hybrids: Antimicrobial evaluation and mechanistic insights. Eur J Med Chem 2019; 180:121-133. [PMID: 31301563 DOI: 10.1016/j.ejmech.2019.06.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/08/2019] [Accepted: 06/25/2019] [Indexed: 01/29/2023]
Abstract
Phenyl- and bioisosteric ferrocenyl-derived aminoquinoline-benzimidazole hybrid compounds were synthesised and evaluated for their in vitro antiplasmodial activity against the chloroquine-sensitive NF54 and multi-drug resistant K1 strains of the human malaria parasite, Plasmodium falciparum. All compounds were active against the two strains, generally showing enhanced activity in the K1 strain, with resistance indices less than 1. Cytotoxicity studies using Chinese hamster ovarian cells revealed that the hybrids were relatively non-cytotoxic and demonstrated selective killing of the parasite. Based on favourable in vitro antiplasmodial and cytotoxicity data, the most active phenyl (4c) and ferrocenyl (5b) hybrids were tested in vivo against the rodent Plasmodium berghei mouse model. Both compounds caused a reduction in parasitemia relative to the control, with 5c displaying superior activity (92% reduction in parasitemia at 4 × 50 mg/kg oral doses). The most active phenyl and ferrocenyl derivatives showed inhibition of β-haematin formation in a NP-40 detergent-mediated assay, indicating a possible contributing mechanism of antiplasmodial action. The most active ferrocenyl hybrid did not display appreciable reactive oxygen species (ROS) generation in a ROS-induced DNA cleavage gel electrophoresis study. The compounds were also screened for their in vitro activity against Mycobacterium tuberculosis. The hybrids containing a more hydrophobic substituent had enhanced activity (<32.7 μM) compared to those with a less hydrophobic substituent (>62.5 μM).
Collapse
Affiliation(s)
- N Baartzes
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
| | - T Stringer
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
| | - R Seldon
- Drug Discovery and Development Centre (H3D), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
| | - D F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Clinical Laboratory Sciences, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Rondebosch, 7701, South Africa
| | - D Taylor
- H3D, Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - S Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland; University of Basel, 4003, Basel, Switzerland
| | - K Chibale
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa; South African Medical Research Council, Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, 7701, South Africa
| | - G S Smith
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa.
| |
Collapse
|
28
|
Stringer T, Quintero MAS, Wiesner L, Smith GS, Nordlander E. Evaluation of PTA-derived ruthenium(II) and iridium(III) quinoline complexes against chloroquine-sensitive and resistant strains of the Plasmodium falciparum malaria parasite. J Inorg Biochem 2019; 191:164-173. [DOI: 10.1016/j.jinorgbio.2018.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/15/2018] [Accepted: 11/25/2018] [Indexed: 10/27/2022]
|
29
|
Rylands LI, Welsh A, Maepa K, Stringer T, Taylor D, Chibale K, Smith GS. Structure-activity relationship studies of antiplasmodial cyclometallated ruthenium(II), rhodium(III) and iridium(III) complexes of 2-phenylbenzimidazoles. Eur J Med Chem 2019; 161:11-21. [DOI: 10.1016/j.ejmech.2018.10.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/03/2018] [Accepted: 10/09/2018] [Indexed: 12/24/2022]
|
30
|
Mudududdla R, Mohanakrishnan D, Bharate SS, Vishwakarma RA, Sahal D, Bharate SB. Orally Effective Aminoalkyl 10H-Indolo[3,2-b]quinoline-11-carboxamide Kills the Malaria Parasite by Inhibiting Host Hemoglobin Uptake. ChemMedChem 2018; 13:2581-2598. [PMID: 30358112 DOI: 10.1002/cmdc.201800579] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/10/2018] [Indexed: 12/26/2022]
Abstract
A series of indolo[3,2-b]quinoline-C11-carboxamides were synthesized by incorporation of aminoalkyl side chains into the core of indolo[3,2-b]quinoline-C11-carboxylic acid. Their in vitro antiplasmodial evaluation against Plasmodium falciparum led to the identification of a 2-(piperidin-1-yl)ethanamine-linked analogue {2-bromo-N-[2-(piperidin-1-yl)ethyl]-10H-indolo[3,2-b]quinoline-11-carboxamide (3 g)} (IC50 =1.3 μm) as the most promising compound exhibiting good selectivity indices against mammalian cell lines. The kill kinetics on erythrocytic-stage parasites revealed that 3 g caused complete killing of only the trophozoite-stage parasites. Mechanistic studies showed that 3 g targets the food vacuole of the parasite and inhibits hemoglobin uptake, β-hematin formation, and the basic endocytic processes of the parasite. Analogue 3 g was found to be orally bioavailable, and its curative antimalarial studies at 50 mg per kg p.o. against a Plasmodium berghei (ANKA)-infected mouse model revealed that mice treated with 3 g showed 27-35 % suppression of parasitemia with an increase in life span relative to untreated, control mice. Thus, the present work demonstrated a proof of concept for the oral efficacy of indolo[3,2-b]quinoline-C11-carboxamides.
Collapse
Affiliation(s)
- Ramesh Mudududdla
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Dinesh Mohanakrishnan
- Malaria Drug Discovery Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sonali S Bharate
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Ram A Vishwakarma
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Dinkar Sahal
- Malaria Drug Discovery Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sandip B Bharate
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| |
Collapse
|
31
|
Woodland JG, Hunter R, Smith PJ, Egan TJ. Chemical Proteomics and Super-resolution Imaging Reveal That Chloroquine Interacts with Plasmodium falciparum Multidrug Resistance-Associated Protein and Lipids. ACS Chem Biol 2018; 13:2939-2948. [PMID: 30208272 DOI: 10.1021/acschembio.8b00583] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is well established that chloroquine, a quinoline antimalarial, inhibits hemozoin formation in the malaria parasite. Counterintuitively, this archetypal antimalarial is also used in the treatment of diseases in which hemozoin biocrystallization does not play a role. Hence, we decided to investigate whether chloroquine possesses binding targets other than Fe(III) protoporphyrin IX in blood stage Plasmodium falciparum parasites and whether these are related to sites of accumulation within the parasite other than the digestive vacuole. A 7-nitrobenz-2-oxa-1,3-diazole (NBD)-labeled fluorescent derivative of chloroquine, especially sensitive to regions outside the digestive vacuole and retaining the antiplasmodial pharmacophore, was synthesized to investigate subcellular localization in the parasite. Super-resolution microscopy revealed association with membranes including the parasite plasma membrane, the endoplasmic reticulum, and possibly also the mitochondrion. A drug-labeled affinity matrix was then prepared to capture protein binding targets of chloroquine. SDS-PAGE revealed a single prominent band between 200 and 250 kDa from the membrane-associated fraction. Subsequent proteomic analysis revealed that this band corresponded to P. falciparum multidrug resistance-associated protein (PfMRP1). Intrigued by this finding, we demonstrated pull-down of PfMRP1 by matrices labeled with Cinchona alkaloids quinine and quinidine. While PfMRP1 has been implicated in resistance to quinolines and other antimalarials, this is the first time that these drugs have been found to bind directly to this protein. Based on previous reports, PfMRP1, the only prominent protein found to bind to quinolines in this work, is likely to modulate the activity of these antimalarials in P. falciparum rather than act as a drug target.
Collapse
Affiliation(s)
- John G. Woodland
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch, Cape Town 7701, South Africa
| | - Roger Hunter
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch, Cape Town 7701, South Africa
| | | | - Timothy J. Egan
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch, Cape Town 7701, South Africa
| |
Collapse
|
32
|
L'abbate FP, Müller R, Openshaw R, Combrinck JM, de Villiers KA, Hunter R, Egan TJ. Hemozoin inhibiting 2-phenylbenzimidazoles active against malaria parasites. Eur J Med Chem 2018; 159:243-254. [PMID: 30296683 DOI: 10.1016/j.ejmech.2018.09.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/22/2018] [Accepted: 09/24/2018] [Indexed: 12/23/2022]
Abstract
The 2-phenylbenzimidazole scaffold has recently been discovered to inhibit β-hematin (synthetic hemozoin) formation by high throughput screening. Here, a library of 325,728 N-4-(1H-benzo[d]imidazol-2-yl)aryl)benzamides was enumerated, and Bayesian statistics used to predict β-hematin and Plasmodium falciparum growth inhibition. Filtering predicted inactives and compounds with negligible aqueous solubility reduced the library to 35,124. Further narrowing to compounds with terminal aryl ring substituents only, reduced the library to 18, 83% of which were found to inhibit β-hematin formation <100 μM and 50% parasite growth <2 μM. Four compounds showed nanomolar parasite growth inhibition activities, no cross-resistance in a chloroquine resistant strain and low cytotoxicity. QSAR analysis showed a strong association of parasite growth inhibition with inhibition of β-hematin formation and the most active compound inhibited hemozoin formation in P. falciparum, with consequent increasing exchangeable heme. Pioneering use of molecular docking for this system demonstrated predictive ability and could rationalize observed structure activity trends.
Collapse
Affiliation(s)
- Fabrizio P L'abbate
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Ronel Müller
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Roxanne Openshaw
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Jill M Combrinck
- Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, Observatory, 7925, South Africa
| | - Katherine A de Villiers
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Roger Hunter
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, 7701, South Africa.
| |
Collapse
|
33
|
Prediction Model for Antimalarial Activities of Hemozoin Inhibitors by Using Physicochemical Properties. Antimicrob Agents Chemother 2018; 62:AAC.02424-17. [PMID: 29439979 DOI: 10.1128/aac.02424-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/07/2018] [Indexed: 12/22/2022] Open
Abstract
The rapid spread of strains of malaria parasites that are resistant to several drugs has threatened global malaria control. Hence, the aim of this study was to predict the antimalarial activity of chemical compounds that possess anti-hemozoin-formation activity as a new means of antimalarial drug discovery. After the initial in vitro anti-hemozoin-formation high-throughput screening (HTS) of 9,600 compounds, a total of 224 hit compounds were identified as hemozoin inhibitors. These 224 compounds were tested for in vitro erythrocytic antimalarial activity at 10 μM by using chloroquine-mefloquine-sensitive Plasmodium falciparum strain 3D7A. Two independent experiments were conducted. The physicochemical properties of the active compounds were extracted from the ChemSpider and SciFinder databases. We analyzed the extracted data by using Bayesian model averaging (BMA). Our findings revealed that lower numbers of S atoms; lower distribution coefficient (log D) values at pH 3, 4, and 5; and higher predicted distribution coefficient (ACD log D) values at pH 7.4 had significant associations with antimalarial activity among compounds that possess anti-hemozoin-formation activity. The BMA model revealed an accuracy of 91.23%. We report new prediction models containing physicochemical properties that shed light on effective chemical groups for synthetic antimalarial compounds and help with in silico screening for novel antimalarial drugs.
Collapse
|
34
|
Woodland JG, Hunter R, Smith PJ, Egan TJ. Shining new light on ancient drugs: preparation and subcellular localisation of novel fluorescent analogues of Cinchona alkaloids in intraerythrocytic Plasmodium falciparum. Org Biomol Chem 2018; 15:589-597. [PMID: 27785512 DOI: 10.1039/c6ob02110g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Fluorescent derivatives of the archetypal antimalarial quinine and its diastereomer, quinidine, suitable for cellular imaging have been synthesised by attaching the small extrinsic fluorophore, NBD. Interactions of these derivatives with ferriprotoporphyrin IX were evaluated to verify that insights generated by live-cell imaging were relevant to the parent molecules. These analogues are shown by confocal and super-resolution microscopy to accumulate selectively in Plasmodium falciparum. Localisation to the region corresponding to the digestive vacuole supports the putative primary role of these alkaloids as haemozoin inhibitors. Quantitative analysis revealed minimal accumulation within the nucleus, rejecting the disruption of DNA replication as a possible mode of action. While extensive localisation to phospholipid structures and associated organelles was observed, the analogues did not show evidence of association with neutral lipid bodies.
Collapse
Affiliation(s)
- John G Woodland
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch, 7701, South Africa.
| | - Roger Hunter
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch, 7701, South Africa.
| | - Peter J Smith
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch, 7701, South Africa.
| |
Collapse
|
35
|
G-Quadruplex DNA Motifs in the Malaria Parasite Plasmodium falciparum and Their Potential as Novel Antimalarial Drug Targets. Antimicrob Agents Chemother 2018; 62:AAC.01828-17. [PMID: 29311059 DOI: 10.1128/aac.01828-17] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/20/2017] [Indexed: 01/06/2023] Open
Abstract
G-quadruplexes are DNA or RNA secondary structures that can be formed from guanine-rich nucleic acids. These four-stranded structures, composed of stacked quartets of guanine bases, can be highly stable and have been demonstrated to occur in vivo in the DNA of human cells and other systems, where they play important biological roles, influencing processes such as telomere maintenance, DNA replication and transcription, or, in the case of RNA G-quadruplexes, RNA translation and processing. We report for the first time that DNA G-quadruplexes can be detected in the nuclei of the malaria parasite Plasmodium falciparum, which has one of the most A/T-biased genomes sequenced and therefore possesses few guanine-rich sequences with the potential to form G-quadruplexes. We show that despite this paucity of putative G-quadruplex-forming sequences, P. falciparum parasites are sensitive to several G-quadruplex-stabilizing drugs, including quarfloxin, which previously reached phase 2 clinical trials as an anticancer drug. Quarfloxin has a rapid initial rate of kill and is active against ring stages as well as replicative stages of intraerythrocytic development. We show that several G-quadruplex-stabilizing drugs, including quarfloxin, can suppress the transcription of a G-quadruplex-containing reporter gene in P. falciparum but that quarfloxin does not appear to disrupt the transcription of rRNAs, which was proposed as its mode of action in both human cells and trypanosomes. These data suggest that quarfloxin has potential for repositioning as an antimalarial with a novel mode of action. Furthermore, G-quadruplex biology in P. falciparum may present a target for development of other new antimalarial drugs.
Collapse
|
36
|
Joshi MC, Okombo J, Nsumiwa S, Ndove J, Taylor D, Wiesner L, Hunter R, Chibale K, Egan TJ. 4-Aminoquinoline Antimalarials Containing a Benzylmethylpyridylmethylamine Group Are Active against Drug Resistant Plasmodium falciparum and Exhibit Oral Activity in Mice. J Med Chem 2017; 60:10245-10256. [PMID: 29185748 DOI: 10.1021/acs.jmedchem.7b01537] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Emergence of drug resistant Plasmodium falciparum including artemisinin-tolerant parasites highlights the need for new antimalarials. We have previously shown that dibemequines, 4-amino-7-chloroquinolines with dibenzylmethylamine (dibemethin) side chains, are efficacious. In this study, analogues in which the terminal phenyl group of the dibemethin was replaced with a 2-pyridyl group and in which the 4-amino-7-chloroquinoline was either maintained or replaced with a 4-aminoquinoline-7-carbonitrile were synthesized in an effort to improve druglikeness. These compounds exhibited significantly improved solubility and decreased lipophilicity and were potent against chloroquine-sensitive (NF54) and -resistant (Dd2 and 7G8) P. falciparum strains with 5/6 having IC50 < 100 nM against the NF54 strain. All inhibited both β-hematin (synthetic hemozoin) formation and hemozoin formation in the parasite. Parasitemia was reduced by over 90% in P. berghei infected mice in 3/6 derivatives following oral dosing at 4 × 30 mg/kg, with microsomal metabolic stability data suggesting that this could be attributed to highly active metabolites.
Collapse
Affiliation(s)
- Mukesh C Joshi
- Department of Chemistry, University of Cape Town , Rondebosch 7701, South Africa
| | - John Okombo
- Department of Chemistry, University of Cape Town , Rondebosch 7701, South Africa
| | - Samkele Nsumiwa
- Department of Chemistry, University of Cape Town , Rondebosch 7701, South Africa
| | - Jeffrey Ndove
- Department of Medicine, Division of Clinical Pharmacology, University of Cape Town , Observatory 7925, South Africa
| | - Dale Taylor
- Department of Medicine, Division of Clinical Pharmacology, University of Cape Town , Observatory 7925, South Africa
| | - Lubbe Wiesner
- Department of Medicine, Division of Clinical Pharmacology, University of Cape Town , Observatory 7925, South Africa
| | - Roger Hunter
- Department of Chemistry, University of Cape Town , Rondebosch 7701, South Africa
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town , Rondebosch 7701, South Africa.,South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town , Rondebosch 7701, South Africa
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town , Rondebosch 7701, South Africa
| |
Collapse
|
37
|
Olafson KN, Nguyen TQ, Vekilov PG, Rimer JD. Deconstructing Quinoline-Class Antimalarials to Identify Fundamental Physicochemical Properties of Beta-Hematin Crystal Growth Inhibitors. Chemistry 2017; 23:13638-13647. [PMID: 28833627 DOI: 10.1002/chem.201702251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Indexed: 11/12/2022]
Abstract
A versatile approach to control crystallization involves the use of modifiers, which are additives that interact with crystal surfaces and alter their growth rates. Elucidating a modifier's binding specificity to anisotropic crystal surfaces is a ubiquitous challenge that is critical to their design. In this study, we select hematin, a byproduct of malaria parasites, as a model system to examine the complementarity of modifiers (i.e., antimalarial drugs) to β-hematin crystal surfaces. We divide two antimalarials, chloroquine and amodiaquine, into segments consisting of a quinoline base, common to both drugs, and side chains that differentiate their modes of action. Using a combination of scanning probe microscopy, bulk crystallization, and analytical techniques, we show that the base and side chain work synergistically to reduce the rate of hematin crystallization. In contrast to general observations that modifiers retain their function upon segmentation, we show that the constituents do not act as modifiers. A systematic study of quinoline isomers and analogues shows how subtle rearrangement and removal of functional moieties can create effective constituents from previously ineffective modifiers, along with tuning their inhibitory modes of action. These findings highlight the importance of specific functional moieties in drug compounds, leading to an improved understanding of modifier-crystal interactions that could prove to be applicable to the design of new antimalarials.
Collapse
Affiliation(s)
- Katy N Olafson
- Department of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Road, Houston, TX 77204, USA
| | - Tam Q Nguyen
- Department of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Road, Houston, TX 77204, USA
| | - Peter G Vekilov
- Department of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Road, Houston, TX 77204, USA.,Department of Chemistry, University of Houston, 3585 Cullen Boulevard, Houston, TX 77204, USA
| | - Jeffrey D Rimer
- Department of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Road, Houston, TX 77204, USA.,Department of Chemistry, University of Houston, 3585 Cullen Boulevard, Houston, TX 77204, USA
| |
Collapse
|
38
|
Fitzroy SM, Gildenhuys J, Olivier T, Tshililo NO, Kuter D, de Villiers KA. The Effects of Quinoline and Non-Quinoline Inhibitors on the Kinetics of Lipid-Mediated β-Hematin Crystallization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7529-7537. [PMID: 28689414 PMCID: PMC5709178 DOI: 10.1021/acs.langmuir.7b01132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The throughput of a biomimetic lipid-mediated assay used to investigate the effects of inhibitors on the kinetics of β-hematin formation has been optimized through the use of 24-well microplates. The rate constant for β-hematin formation mediated by monopalmitoyl-rac-glycerol was reduced from 0.17 ± 0.04 min-1 previously measured in Falcon tubes to 0.019 ± 0.002 min-1 in the optimized assay. While this necessitated longer incubation times, transferring aliquots from multiple 24-well plates to a single 96-well plate for final absorbance measurements actually improved the overall turnaround time per inhibitor. This assay has been applied to investigate the effects of four clinically relevant antimalarial drugs (chloroquine, amodiaquine, quinidine, and quinine) as well as several short-chain 4-aminoquinoline derivatives and non-quinoline (benzamide) compounds on the kinetics of β-hematin formation. The adsorption strength of these inhibitors to crystalline β-hematin (Kads) was quantified using a theoretical kinetic model that is based on the Avrami equation and the Langmuir isotherm. Statistically significant linear correlations between lipid-mediated β-hematin inhibitory activity and Kads values for quinoline (r2 = 0.76, P-value = 0.0046) and non-quinoline compounds (r2 = 0.99, P-stat = 0.0006), as well as between parasite inhibitory activity (D10) and Kads values for quinoline antimalarial drugs and short-chain chloroquine derivatives (r2 = 0.64, P-value = 0.0098), provide a strong indication that drug action involves adsorption to the surface of β-hematin crystals. Independent support in this regard is provided by experiments that spectrophotometrically monitor the direct adsorption of antimalarial drugs to preformed β-hematin.
Collapse
|
39
|
Wang W, Li Q, Wei Y, Xue J, Sun X, Yu Y, Chen Z, Li S, Duan L. Novel carbazole aminoalcohols as inhibitors of β-hematin formation: Antiplasmodial and antischistosomal activities. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2017; 7:191-199. [PMID: 28395189 PMCID: PMC5384886 DOI: 10.1016/j.ijpddr.2017.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 03/29/2017] [Accepted: 03/29/2017] [Indexed: 01/24/2023]
Abstract
Malaria and schistosomiasis are two of the most socioeconomically devastating parasitic diseases in tropical and subtropical countries. Since current chemotherapeutic options are limited and defective, there is an urgent need to develop novel antiplasmodials and antischistosomals. Hemozoin is a disposal product formed from the hemoglobin digestion by some blood-feeding parasites. Hemozoin formation is an essential process for the parasites to detoxify free heme, which is a reliable therapeutic target for identifying novel antiparasitic agents. A series of novel carbazole aminoalcohols were designed and synthesized as potential antiplasmodial and antischistosomal agents, and several compounds showed potent in vitro activities against Plasmodium falciparum 3D7 and Dd2 strains and adult and juvenile Schistosoma japonicum. Investigations on the dual antiparasitic mechanisms showed the correlation between inhibitory activity of β-hematin formation and antiparasitic activity. Inhibiting hemozoin formation was identified as one of the mechanisms of action of carbazole aminoalcohols. Compound 7 displayed potent antiplasmodial (Pf3D7 IC50 = 0.248 μM, PfDd2 IC50 = 0.091 μM) and antischistosomal activities (100% mortality of adult and juvenile schistosomes at 5 and 10 μg/mL, respectively) and exhibited low cytotoxicity (CC50 = 7.931 μM), which could be considered as a promising lead for further investigation. Stoichiometry determination and molecular docking studies were also performed to explain the mode of action of compound 7. Carbazole aminoalcohol was confirmed as a novel antiplasmodial and antischistosomal scaffold. The mechanism of action relied on β-hematin formation inhibition. The carbazole aminoalcohols interacted with hematin through forming a 1:1 complex. Compound 7 showed potent antiplasmodial ability (Pf3D7 IC50 = 0.248 μM, PfDd2 IC50 = 0.091 μM). In vitro antischistosomal effect of 7 meets the WHO's criterion of “hit” for schistosomiasis control.
Collapse
Affiliation(s)
- Weisi Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Malaria, Schistosomiasis, and Filariasis, Key Laboratory of Parasitology and Vector Biology of the Chinese Ministry of Health, Shanghai 200025, China; ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiang Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Malaria, Schistosomiasis, and Filariasis, Key Laboratory of Parasitology and Vector Biology of the Chinese Ministry of Health, Shanghai 200025, China
| | - Yufen Wei
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Malaria, Schistosomiasis, and Filariasis, Key Laboratory of Parasitology and Vector Biology of the Chinese Ministry of Health, Shanghai 200025, China
| | - Jian Xue
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Malaria, Schistosomiasis, and Filariasis, Key Laboratory of Parasitology and Vector Biology of the Chinese Ministry of Health, Shanghai 200025, China
| | - Xiao Sun
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Yu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhuo Chen
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Shizhu Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Malaria, Schistosomiasis, and Filariasis, Key Laboratory of Parasitology and Vector Biology of the Chinese Ministry of Health, Shanghai 200025, China
| | - Liping Duan
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Malaria, Schistosomiasis, and Filariasis, Key Laboratory of Parasitology and Vector Biology of the Chinese Ministry of Health, Shanghai 200025, China; Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
40
|
Vijayaraghavan S, Mahajan S. Docking, synthesis and antimalarial activity of novel 4-anilinoquinoline derivatives. Bioorg Med Chem Lett 2017; 27:1693-1697. [PMID: 28318947 DOI: 10.1016/j.bmcl.2017.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 11/25/2022]
Abstract
A series of 4-anilinoquinoline triazine derivatives were designed, synthesized and screened for in vivo antimalarial activity against a chloroquine-sensitive strain of Plasmodium berghei. The compounds were further subjected to in vitro antimalarial activity against chloroquine-resistant W2 strain of Plasmodium falciparum and β-haematin inhibition studies. All the compounds exhibited in vivo antimalarial activity better than that shown by the standard drug, chloroquine. Twelve out of fifteen compounds showed better inhibition than that of chloroquine against chloroquine-resistant W2 strain of Plasmodium falciparum. Ten compounds showed β-haematin inhibition, better than that of chloroquine, with IC50 values in the range of 18-25µM. One compound, 3k, was found to be better than artemisinin against W2 strain of Plasmodium falciparum and also displayed the best β-haematin inhibitory activity, thereby becoming eligible to be explored as a potential lead for antimalarial chemotherapy.
Collapse
Affiliation(s)
- Shilpa Vijayaraghavan
- Department of Pharmaceutical Chemistry, C.U. Shah College of Pharmacy, S.N.D.T. Women's University, Sir Vithaldas Vidyavihar, Santacruz (W), Mumbai 400049, India.
| | - Supriya Mahajan
- Department of Pharmaceutical Chemistry, C.U. Shah College of Pharmacy, S.N.D.T. Women's University, Sir Vithaldas Vidyavihar, Santacruz (W), Mumbai 400049, India
| |
Collapse
|
41
|
4-Nitro styrylquinoline is an antimalarial inhibiting multiple stages of Plasmodium falciparum asexual life cycle. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2017; 7:120-129. [PMID: 28285258 PMCID: PMC5350499 DOI: 10.1016/j.ijpddr.2017.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 01/07/2023]
Abstract
Drugs against malaria are losing their effectiveness because of emerging drug resistance. This underscores the need for novel therapeutic options for malaria with mechanism of actions distinct from current antimalarials. To identify novel pharmacophores against malaria we have screened compounds containing structural features of natural products that are pharmacologically relevant. This screening has identified a 4-nitro styrylquinoline (SQ) compound with submicromolar antiplasmodial activity and excellent selectivity. SQ exhibits a cellular action distinct from current antimalarials, acting early on malaria parasite's intraerythrocytic life cycle including merozoite invasion. The compound is a fast-acting parasitocidal agent and also exhibits curative property in the rodent malaria model when administered orally. In this report, we describe the synthesis, preliminary structure-function analysis, and the parasite developmental stage specific action of the SQ scaffold.
Collapse
|
42
|
Wicht KJ, Combrinck JM, Smith PJ, Hunter R, Egan TJ. Identification and Mechanistic Evaluation of Hemozoin-Inhibiting Triarylimidazoles Active against Plasmodium falciparum. ACS Med Chem Lett 2017; 8:201-205. [PMID: 28197312 DOI: 10.1021/acsmedchemlett.6b00416] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/24/2017] [Indexed: 11/28/2022] Open
Abstract
In a previous study, target based screening was carried out for inhibitors of β-hematin (synthetic hemozoin) formation, and a series of triarylimidazoles were identified as active against Plasmodium falciparum. Here, we report the subsequent synthesis and testing of derivatives with varying substituents on the three phenyl rings for this series. The results indicated that a 2-hydroxy-1,3-dimethoxy substitution pattern on ring A is required for submicromolar parasite activity. In addition, cell-fractionation studies revealed uncommonly large, dose-dependent increases of P. falciparum intracellular exchangeable (free) heme, correlating with decreased parasite survival for β-hematin inhibiting derivatives.
Collapse
Affiliation(s)
- Kathryn J. Wicht
- Department
of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Jill M. Combrinck
- Division
of Pharmacology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Peter J. Smith
- Division
of Pharmacology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Roger Hunter
- Department
of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Timothy J. Egan
- Department
of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
43
|
High-Throughput Screening and Prediction Model Building for Novel Hemozoin Inhibitors Using Physicochemical Properties. Antimicrob Agents Chemother 2017; 61:AAC.01607-16. [PMID: 27919903 DOI: 10.1128/aac.01607-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/14/2016] [Indexed: 12/13/2022] Open
Abstract
It is essential to continue the search for novel antimalarial drugs due to the current spread of resistance against artemisinin by Plasmodium falciparum parasites. In this study, we developed in silico models to predict hemozoin inhibitors as a potential first-step screening for novel antimalarials. An in vitro colorimetric high-throughput screening assay of hemozoin formation was used to identify hemozoin inhibitors from 9,600 structurally diverse compounds. The physicochemical properties of positive hits and randomly selected compounds were extracted from the ChemSpider database; they were used for developing prediction models to predict hemozoin inhibitors using two different approaches, i.e., traditional multivariate logistic regression and Bayesian model averaging. Our results showed that a total of 224 positive-hit compounds exhibited the ability to inhibit hemozoin formation, with 50% inhibitory concentrations (IC50s) ranging from 3.1 μM to 199.5 μM. The best model according to traditional multivariate logistic regression included the three variables octanol-water partition coefficient, number of hydrogen bond donors, and number of atoms of hydrogen, while the best model according to Bayesian model averaging included the three variables octanol-water partition coefficient, number of hydrogen bond donors, and index of refraction. Both models had a good discriminatory power, with area under the curve values of 0.736 and 0.781 for the traditional multivariate model and Bayesian model averaging, respectively. In conclusion, the prediction models can be a new, useful, and cost-effective approach for the first screen of hemozoin inhibition-based antimalarial drug discovery.
Collapse
|
44
|
Stringer T, Seldon R, Liu N, Warner DF, Tam C, Cheng LW, Land KM, Smith PJ, Chibale K, Smith GS. Antimicrobial activity of organometallic isonicotinyl and pyrazinyl ferrocenyl-derived complexes. Dalton Trans 2017; 46:9875-9885. [DOI: 10.1039/c7dt01952a] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Isonicotinyl and pyrazinyl ferrocenyl-derived complexes were evaluatedin vitrofor antimycobacterial and antiparasitic activity.
Collapse
|
45
|
Adams M, de Kock C, Smith PJ, Chibale K, Smith GS. Evaluation of Ferrocenyl-Containing Benzothiazoles as Potential Antiplasmodial Agents. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201601000] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Muneebah Adams
- Department of Chemistry; University of Cape Town; Private Bag, Rondebosch 7701 Cape Town South Africa
| | - Carmen de Kock
- Division of Pharmacology; Department of Medicine; University of Cape Town; Groote Schuur Hospital; K45, OMB, Observatory 7925 Cape Town South Africa
| | - Peter J. Smith
- Division of Pharmacology; Department of Medicine; University of Cape Town; Groote Schuur Hospital; K45, OMB, Observatory 7925 Cape Town South Africa
| | - Kelly Chibale
- Department of Chemistry; University of Cape Town; Private Bag, Rondebosch 7701 Cape Town South Africa
- Institute of Infectious Disease and Molecular Medicine; University of Cape Town; Rondebosch 7701 Cape Town South Africa
- South African Medical Research Council Drug Discovery & Development Research Unit; University of Cape Town; Rondebosch 7701 Cape Town South Africa
| | - Gregory S. Smith
- Department of Chemistry; University of Cape Town; Private Bag, Rondebosch 7701 Cape Town South Africa
| |
Collapse
|
46
|
Quiliano M, Mendoza A, Fong KY, Pabón A, Goldfarb NE, Fabing I, Vettorazzi A, López de Cerain A, Dunn BM, Garavito G, Wright DW, Deharo E, Pérez-Silanes S, Aldana I, Galiano S. Exploring the scope of new arylamino alcohol derivatives: Synthesis, antimalarial evaluation, toxicological studies, and target exploration. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2016; 6:184-198. [PMID: 27718413 PMCID: PMC5061469 DOI: 10.1016/j.ijpddr.2016.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/26/2016] [Indexed: 01/09/2023]
Abstract
Synthesis of new 1-aryl-3-substituted propanol derivatives followed by structure-activity relationship, in silico drug-likeness, cytotoxicity, genotoxicity, in silico metabolism, in silico pharmacophore modeling, and in vivo studies led to the identification of compounds 22 and 23 with significant in vitro antiplasmodial activity against drug sensitive (D6 IC50 ≤ 0.19 μM) and multidrug resistant (FCR-3 IC50 ≤ 0.40 μM and C235 IC50 ≤ 0.28 μM) strains of Plasmodium falciparum. Adequate selectivity index and absence of genotoxicity was also observed. Notably, compound 22 displays excellent parasitemia reduction (98 ± 1%), and complete cure with all treated mice surviving through the entire period with no signs of toxicity. One important factor is the agreement between in vitro potency and in vivo studies. Target exploration was performed; this chemotype series exhibits an alternative antimalarial mechanism. New aryl-substituted propanol derivatives (APD) show promising antimalarial activity. γ-amino alcohol moiety is significant antimalarial chemotype. Compound 22 displays excellent in vivo parasitemia reduction (98%) and complete cure. APD are active against drug sensitive and multidrug resistant strains.
Collapse
Affiliation(s)
- Miguel Quiliano
- Department of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, 31008, Spain; Institute of Tropical Health (ISTUN), University of Navarra, Pamplona, 31008, Spain
| | - Adela Mendoza
- Department of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, 31008, Spain
| | - Kim Y Fong
- Department of Chemistry, Vanderbilt University, Station B 351822, Nashville, TN 37235, USA
| | - Adriana Pabón
- Grupo Malaria, Universidad de Antioquía, Medellín, Colombia
| | - Nathan E Goldfarb
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Isabelle Fabing
- Laboratoire de Synthèse et Physicochimie de Molécules d'Intérêt Biologique SPCMIB - UMR5068, CNRS - Université Paul Sabatier, 118, route de Narbonne, 31062, Toulouse Cedex 09, France
| | - Ariane Vettorazzi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, 31008, Spain
| | - Adela López de Cerain
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, 31008, Spain
| | - Ben M Dunn
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Giovanny Garavito
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Farmacia (DFUNC), Grupo de investigación FaMeTra (Farmacología de la Medicina tradicional y popular), Carrera 30 45-03, Bogotá D.C., Colombia
| | - David W Wright
- Department of Chemistry, Vanderbilt University, Station B 351822, Nashville, TN 37235, USA
| | - Eric Deharo
- UMR 152 PHARMA-DEV, Université Toulouse, IRD, UPS, 31062, Toulouse, France
| | - Silvia Pérez-Silanes
- Department of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, 31008, Spain; Institute of Tropical Health (ISTUN), University of Navarra, Pamplona, 31008, Spain
| | - Ignacio Aldana
- Department of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, 31008, Spain; Institute of Tropical Health (ISTUN), University of Navarra, Pamplona, 31008, Spain
| | - Silvia Galiano
- Department of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, 31008, Spain; Institute of Tropical Health (ISTUN), University of Navarra, Pamplona, 31008, Spain.
| |
Collapse
|
47
|
Wicht KJ, Combrinck JM, Smith PJ, Hunter R, Egan TJ. Identification and SAR Evaluation of Hemozoin-Inhibiting Benzamides Active against Plasmodium falciparum. J Med Chem 2016; 59:6512-30. [PMID: 27299916 DOI: 10.1021/acs.jmedchem.6b00719] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Quinoline antimalarials target hemozoin formation causing a cytotoxic accumulation of ferriprotoporphyrin IX (Fe(III)PPIX). Well-developed SAR models exist for β-hematin inhibition, parasite activity, and cellular mechanisms for this compound class, but no comparably detailed investigations exist for other hemozoin inhibiting chemotypes. Here, benzamide analogues based on previous HTS hits have been purchased or synthesized. Only derivatives containing an electron deficient aromatic ring and capable of adopting flat conformations, optimal for π-π interactions with Fe(III)PPIX, inhibited β-hematin formation. The two most potent analogues showed nanomolar parasite activity, with little CQ cross-resistance, low cytotoxicity, and high in vitro microsomal stability. Selected analogues inhibited hemozoin formation in Plasmodium falciparum causing high levels of free heme. In contrast to quinolines, introduction of amine side chains did not lead to benzamide accumulation in the parasite. These data reveal complex relationships between heme binding, free heme levels, cellular accumulation, and in vitro activity of potential novel antimalarials.
Collapse
Affiliation(s)
- Kathryn J Wicht
- Department of Chemistry, University of Cape Town , Rondebosch 7701, South Africa
| | - Jill M Combrinck
- Department of Chemistry, University of Cape Town , Rondebosch 7701, South Africa.,Division of Pharmacology, Department of Medicine, Faculty of Health Sciences, University of Cape Town , Observatory 7925, South Africa
| | - Peter J Smith
- Division of Pharmacology, Department of Medicine, Faculty of Health Sciences, University of Cape Town , Observatory 7925, South Africa
| | - Roger Hunter
- Department of Chemistry, University of Cape Town , Rondebosch 7701, South Africa
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town , Rondebosch 7701, South Africa
| |
Collapse
|
48
|
Baartzes N, Stringer T, Chellan P, Combrinck JM, Smith PJ, Hutton AT, Smith GS. Synthesis, characterization, antiplasmodial evaluation and electrochemical studies of water-soluble heterobimetallic ferrocenyl complexes. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.02.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
Adams M, Stringer T, de Kock C, Smith PJ, Land KM, Liu N, Tam C, Cheng LW, Njoroge M, Chibale K, Smith GS. Bioisosteric ferrocenyl-containing quinolines with antiplasmodial and antitrichomonal properties. Dalton Trans 2016; 45:19086-19095. [DOI: 10.1039/c6dt03175g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioisosteric (C, Si) ferrocenyl-containing quinolines and ferrocenylamines were prepared and evaluated as antiplasmodial and antitrichomonal agents.
Collapse
|
50
|
Stringer T, De Kock C, Guzgay H, Okombo J, Liu J, Kanetake S, Kim J, Tam C, Cheng LW, Smith PJ, Hendricks DT, Land KM, Egan TJ, Smith GS. Mono- and multimeric ferrocene congeners of quinoline-based polyamines as potential antiparasitics. Dalton Trans 2016; 45:13415-26. [DOI: 10.1039/c6dt02685k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of mono- and multimeric polyamine-containing ferrocenyl complexes bearing a quinoline motif were prepared.
Collapse
|